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Preface

This volume contains the papers presented at the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016), which took place September
19–21, 2016, in Athens, Greece. Graph drawing is concerned with the theory of and
algorithms for the geometric representation of graphs, while network visualization has
wide applications in understanding and analyzing relational datasets. Information about
the conference series and past symposia is maintained at http://www.graphdrawing.org.
This year, the conference was hosted by the Institute of Communications and Computer
Systems, an affiliate of the National Technical University of Athens, with Antonios
Symvonis as the chair of the Organizing Committee. A total of 99 participants from 16
countries attended the conference, whose venue was located in the beautiful historic
center of Athens.

Paper submissions were divided into two main tracks and an additional poster track:
Track 1 for combinatorial and algorithmic aspects of graph drawing and Track 2 for
experimental, applied, and network visualization aspects. In each of the two tracks
authors could submit full papers or short papers. All tracks were handled by a single
Program Committee. In response to the call for papers, the Program Committee
received a total of 112 submissions consisting of 99 papers (66 in Track 1 and 33 in
Track 2) and 13 posters. More than 350 expert reviews were provided, of which more
than 130 were contributed by external subreviewers. After often extensive electronic
discussions, the Program Committee selected 44 papers and all 13 posters for inclusion
in the scientific program of GD 2016. This resulted in an overall paper acceptance rate
of 44% (48% in Track 1 and 36% in Track 2). Two new policies were introduced in the
submission and publication process this year. Firstly, references no longer count toward
the page limits of 12 pages for regular papers and six pages for short papers. Secondly,
electronic versions of all accepted papers were made available through a conference
index on the ArXiv repository before the conference.

There were two keynote talks at GD 2016. Roger Wattenhofer (ETH Zurich,
Switzerland) talked about “Distributed Computing: Graph Drawing Unplugged” and
Daniel Keim (University of Konstanz, Germany) talked about “The Role of Visual
Analytics in Exploring Graph Data.” Abstracts of both talks are included in the
proceedings.

Springer sponsored awards for the best paper in each of Track 1 and Track 2, plus a
best presentation award and a best poster award. The Program Committee voted to give
the best paper award in Track 1 to the paper “Block Crossings in Storyline Visual-
izations” by Thomas C. van Dijk, Martin Fink, Norbert Fischer, Fabian Lipp, Peter
Markfelder, Alex Ravsky, Subhash Suri, and Alexander Wolff, and in Track 2 to the
paper “A Sparse Stress Model” by Mark Ortmann, Mirza Klimenta, and Ulrik Brandes.
The participants of the conference voted to give the best presentation award to Martin
Gronemann for his presentation of the paper “Bitonic st-orderings for Upward Planar
Graphs” and the best poster award to Jonathan Klawitter and Tamara Mchedlidze for
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their poster entitled “Heuristic Picker for Book Drawings.” Congratulations to all
award winners for their excellent contributions!

Following the tradition, the 23rd Annual Graph Drawing Contest was held during
the conference. The contest had two parts, each with two categories: the Creative
Topics (Panama papers and Greek mythology family tree) and the Live Challenge on
crossing minimization in book embeddings (Automatic Category and Manual Cate-
gory). Awards were given in each of the four categories. We thank the Contest
Committee for preparing interesting and challenging contest problems. A report about
the contest is included in the proceedings.

Directly after GD 2016, a two-day PhD school on “Visualization Software” took
place. We thank Antonios Symvonis for organizing this satellite event. A short report
about the school is also included in the proceedings.

Many people and organizations contributed to the success of GD 2016. We thank
the Program Committee members and the external reviewers for carefully reviewing
and discussing the submitted papers and posters, and for putting together a strong and
interesting program. Thanks to all the authors for choosing GD 2016 as the publication
venue for their research. Further, we thank the local organizers, Kostas Karpouzis,
Chrysanthi Raftopoulou, Antonios Symvonis, and Ioannis Tollis, and all the volunteers
who put a lot of time and effort into the organization of GD 2016.

GD 2016 thanks its sponsors, “gold” sponsor Tom Sawyer Software, “silver”
sponsors yWorks and Microsoft, and “bronze” sponsor Springer. Their generous
support helps to ensure the continued success of this conference. We further thank the
team behind EasyChair for providing an incredibly useful conference management
system.

The 25th International Symposium on Graph Drawing and Network Visualization
(GD 2017) will take place in September, 2017, in Boston, MA, USA. Fabrizio Frati and
Kwan-Liu Ma will co-chair the Program Committee, Cody Dunne and Alan Keahey
will chair the Organizing Committee.

October 2016 Yifan Hu
Martin Nöllenburg
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Distributed Computing:
Graph Drawing Unplugged

Roger Wattenhofer

Distributed Computing Group, ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@ethz.ch

Abstract. Computer networks and distributed systems are typically represented
as graphs, and sooner or later everybody working in distributed computing is
facing a graph drawing problem. In my talk I will discuss a few artifacts in
distributed computing that are related to graph theory and graph drawing. The
focus of my talk will be wireless communication networks. While a vertex in a
wireless network is simply some kind of communication device, vertices are not
necessarily connected by edges, but rather “unplugged.” We discuss the fol-
lowing “family of open problems”: How well can we draw a wireless network
modeled by a UDG, QUDG, BIG, or UBG, using connectivity, interference,
distance, angle, or multipath information, to understand which node is which?
Does such a drawing help to design better routing or media access protocols?



The Role of Visual Analytics in Exploring
Graph Data

Daniel A. Keim

Database and Visualization Group, Computer and Information Science,
University of Konstanz, Konstanz, Germany

Abstract. Sophisticated algorithms are the central part of most graph analysis
and graph drawing methods. Many clearly specified problems can be solved
using algorithmic methods, but in some cases fully automatic methods are not
enough to understand the complex graph data and draw valid conclusions.
Humans with their abilities - their background knowledge, their creativity, and
their judgment? need to be an integral part of the analysis process. This is where
the research field of visual analysis comes into play: It tries to integrate auto-
matic data analysis methods with interactive visualization techniques to support
the human in gaining new insights. In this presentation, we will discuss the role
of the human in the process of exploring and analyzing large graphs, and will
illustrate the exiting potential of current Visual Analytics techniques as well as
their limitations with several application examples.
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Abstract. The wide availability of powerful and inexpensive cloud com-
puting services naturally motivates the study of distributed graph layout
algorithms, able to scale to very large graphs. Nowadays, to process Big
Data, companies are increasingly relying on PaaS infrastructures rather
than buying and maintaining complex and expensive hardware. So far,
only a few examples of basic force-directed algorithms that work in a
distributed environment have been described. Instead, the design of a
distributed multilevel force-directed algorithm is a much more challeng-
ing task, not yet addressed. We present the first multilevel force-directed
algorithm based on a distributed vertex-centric paradigm, and its imple-
mentation on Giraph, a popular platform for distributed graph algo-
rithms. Experiments show the effectiveness and the scalability of the
approach. Using an inexpensive cloud computing service of Amazon, we
draw graphs with ten million edges in about 60min.

1 Introduction

Force-directed algorithms are very popular techniques to automatically compute
graph layouts. They model the graph as a physical system, where attractive and
repulsive forces act on each vertex. Computing a drawing corresponds to finding
an equilibrium state (i.e., a state of minimum energy) of the force system through
a simple iterative approach. Different kinds of force and energy models give
rise to different graph drawing algorithms. Refer to the work of Kobourov for
a survey on the many force-directed algorithms described in the literature [25].
Although basic force-directed algorithms usually compute nice drawings of small
or medium graphs, using them to draw large graphs has two main obstacles:
(i) There could be several local minima in their physical models: if the algorithm
falls in one of them, it may produce bad drawings. The probability of this event
and its negative effect increase with the size of the graph. (ii) Their approach
is computationally expensive, thus it gives rise to scalability problems even for
graphs with a few thousands of vertices.
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To overcome the above obstacles, multilevel force-directed algorithms have
been conceived. A limited list of works on this subject includes [13,15,18,20,21,
23,33] (see [25] for more references). These algorithms generate from the input
graph G a series (hierarchy) of progressively simpler structures, called coarse
graphs, and then incrementally compute a drawing of each of them in reverse
order, from the simplest to the most complex (corresponding to G). On com-
mon machines, multilevel force-directed algorithms perform quickly on graphs
with several thousand vertices and usually produce qualitatively better draw-
ings than basic algorithms [8,19,25]. Implementations based on GPUs have been
also experimented [16,24,29,34]. They scale to graphs with a few million edges,
but their development requires a low-level implementation and the necessary
infrastructure could be expensive in terms of hardware and maintenance.

The wide availability of powerful and inexpensive cloud computing services
and the growing interest towards PaaS infrastructures observed in the last few
years, naturally motivate the study of distributed graph layout algorithms, able
to scale to very large graphs. So far, the design of distributed graph visual-
ization algorithms has been only partially addressed. Mueller et al. [27] and
Chae et al. [9] proposed force-directed algorithms that use multiple large dis-
plays. Vertices are evenly distributed on the different displays, each associated
with a different processor, which is responsible for computing the positions of its
vertices; scalability experiments are limited to graphs with some thousand ver-
tices. Tikhonova and Ma [30] presented a parallel force-directed algorithm that
can run on graphs with few hundred thousand edges. It takes about 40 minutes
for a graph of 260, 385 edges, on 32 processors of the PSC’s BigBen Cray XT3
cluster. More recently, the use of emerging frameworks for distributed graph
algorithms has been investigated. Hinge and Auber [22] described a distributed
basic force-directed algorithm implemented in the Spark framework, using the
GraphX library. Their algorithm is mostly based on a MapReduce paradigm
and shows margins for improvement: it takes 5 hours on a graph with 8, 000
vertices and 35, 000 edges, on a cluster of 16 machines, each equipped with 24
cores and 48 GB of RAM. A distributed basic force-directed algorithm running
on the Apache Giraph framework has been presented in [7] (see also [5] for an
extended version of this work). Giraph is a popular platform for distributed
graph algorithms, based on a vertex-centric paradigm, also called the TLAV
(“Think Like a Vertex”) paradigm [11]. Giraph is used by Facebook to analyze
the huge network of its users and their connections [12]. The algorithm in [7] can
draw graphs with a million edges in a few minutes, running on an inexpensive
cloud computing infrastructure. However, the design of a distributed multilevel
force-directed algorithm is a much more challenging task, due to the difficulty
of efficiently computing the hierarchy required by a multilevel approach in a
distributed manner (see, also [5,22]).

Our Contribution. This paper presents Multi-GiLA (Multilevel Giraph Layout
Algorithm), the first distributed multilevel force-directed algorithm based on the
TLAV paradigm and running on Giraph. The model for generating the coarse
graph hierarchy is inspired by FM3 (Fast Multipole Multilevel Method), one
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of the most effective multilevel techniques described in the literature [8,18,19].
The basic force-directed algorithm used by Multi-GiLA to refine the drawing
of each coarse graph is the distributed algorithm in [5] (Sect. 3). We show the
effectiveness and the efficiency of our approach by means of an extensive experi-
mental analysis: Multi-GiLA can draw graphs with ten million edges in about
60 min (see Sect. 4), using an inexpensive PaaS of Amazon, and exhibits high
scalability. To allow replicability of the experiments, our source code and graph
benchmarks are made publicly available [1]. It is worth observing that in order to
get an overview of the structure of a very large graph and subsequently explore
it in more details, one can combine the use of Multi-GiLA with systems like
LaGo [35], which provides an interactive level-of-detail rendering, conceived for
the exploration of large graphs (see Sect. 4). Section 2 contains the necessary
background on multilevel algorithms and on Giraph. Conclusions and future
research are in Sect. 5. Additional figures can be found in [6].

2 Background

Multilevel Force-Directed Algorithms. Multilevel force-directed algorithms
work in three main phases: coarsening, placement, and single-level layout. Given
an input graph G, the coarsening phase computes a sequence of graphs {G =
G0, G1, . . . , Gk}, such that the size of Gi+1 is smaller than the size of Gi, for
i = 0, . . . , k−1. To compute Gi+1, subsets of vertices of Gi are merged into single
vertices. The criterion for deciding which vertices should be merged is chosen as a
trade-off between two conflicting goals. On one hand, the overall graph structure
should be preserved throughout the sequence of graphs, as it influences the way
the graph is unfolded. On the other hand, both the number of graphs in the
sequence and the size of the coarsest graph may have a significant influence
on the overall running time of the algorithm. Therefore, it is fundamental to
design a coarsening phase that produces a sequence of graphs whose sizes quickly
decrease, and, at the same time, whose structures smoothly change. The sequence
of graphs produced by the coarsening phase is then traversed from Gk to G0 = G,
and a final layout of G is obtained by progressively computing a layout for each
graph in the sequence. In the placement phase, the vertices of Gi are placed
by exploiting the information of the (already computed) drawing Γi+1 of Gi+1.
Starting from this initial placement, in the single-level (basic) layout phase, a
drawing Γi of Gi is computed by applying a single-level force-directed algorithm.
Thanks to the good initial placement, such an algorithm will reach an equilibrium
after a limited number of iterations. For Gk an initial placement is not possible,
thus the layout phase is directly applied starting from a random placement.

Since our distributed multilevel force-directed algorithm is partially based
on the FM3 algorithm, we briefly recall how the coarsening and placement
phases are implemented by FM3 (see [17,18] for details). Let G = G0 be a con-
nected graph (distinct connected components can be processed independently),
the coarsening phase is implemented through the Solar Merger algorithm.
The vertices of G are partitioned into vertex-disjoint subgraphs called solar sys-
tems. The diameter of each solar system is at most four. Within each solar
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system S, there is a vertex s classified as a sun. Each vertex v of S at distance
one (resp., two) from s is classified as a planet (resp., a moon) of S. There is
an inter-system link between two solar systems S1 and S2, if there is at least
an edge of G between a vertex of S1 and a vertex of S2. The coarser graph G1

is obtained by collapsing each solar system into the corresponding sun, and the
inter-system links are transformed into edges connecting the corresponding pairs
of suns. Also, all vertices of G = G0 are associated with a mass equal to one.
The mass of a sun is the sum of the masses of all vertices in its solar system.
The coarsening procedure halts when a coarse graph has a number of vertices
below a predefined threshold. The placement phase of FM3 is called Solar
Placer and uses information from the coarsening phase. The vertices of Gi+1

correspond to the suns of Gi, whose initial position is defined in the drawing
Γi+1. The position of each vertex v in Gi \ Gi+1 is computed by taking into
account all inter-system links to which v belongs. The rough idea is to position
v in a barycentric position with respect to the positions of all suns connected by
an inter-system link that passes through v.

The TLAV Paradigm and the Giraph Framework. The TLAV paradigm
requires to implement distributed algorithms from the perspective of a vertex
rather than of the whole graph. Each vertex can store a limited amount of
data and can exchange messages only with its neighbors. The TLAV framework
Giraph [11] is built on the Apache Hadoop infrastructure and originated as the
open source counterpart of Google’s Pregel [26] (based on the BSP model [31]).
In Giraph, the computation is split into supersteps executed iteratively and
synchronously. A superstep consists of two phases: (i) Each vertex executes a
user-defined vertex function based on both local vertex data and on data coming
from its adjacent vertices; (ii) Each vertex sends the results of its local compu-
tation to its neighbors, along its incident edges. The whole computation ends
after a fixed number of supersteps or when certain user-defined conditions are
met (e.g., no message has been sent or an equilibrium state is reached).

Design Challenges and the GILA Algorithm. Force-directed algorithms
(both single-level and multilevel) are conceived as sequential, shared-memory
graph algorithms, and thus are inherently centralized. On the other hand, the
following three properties must be guaranteed in the design of a TLAV-based
algorithm: P1. Each vertex exchange messages only with its neighbors; P2. Each
vertex locally stores a small amount of data; P3. The communication load in each
supertsep (number and length of messages sent in the superstep) is small: for
example, linear in the number of edges of the graph. Property P1 corresponds to
an architectural constraint of Giraph. Violating P2 causes out-of-memory errors
during the computation of large instances, which translates in the impossibility
of storing large routing tables in each vertex to cope with the absence of global
information. Violating P3 quickly leads to inefficient computations, especially on
graphs that are locally dense or that have high-degree vertices. Hence, sending
heavy messages containing the information related to a large part of the graph
is not an option.
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In the design of a multilevel force-directed algorithm, the above three
constraints P1–P3 do not allow for simple strategies to make a vertex aware
of the topology of a large part of the graph, which is required in the coarsening
phase. In Sect. 3 we describe a sophisticated distributed protocol used to cope
with this issue. For the same reason, a vertex is not aware of the positions of
all other vertices in the graph, which is required to compute the repulsive forces
acting on the vertex in the single-level layout phase. The algorithm described
in [5], called GiLA, addresses this last issue by adopting a locality principle,
based on the experimental evidence that in a drawing computed by a force-
directed algorithm (see, e.g., [25]) the graph theoretic distance between two ver-
tices is a good approximation of their geometric distance, and that the repulsive
forces between two vertices u and v tend to be less influential as their geomet-
ric distance increases. Following these observations, in the GiLA algorithm, the
resulting force acting on each vertex v only depends on its k-neighborhood Nv(k),
i.e., the set of vertices whose graph theoretic distance from v is at most k, for
a predefined small constant k. Vertex v acquires the positions of all vertices in
Nv(k) by means of a controlled flooding technique. According to an experimental
analysis in [5], k = 3 is a good trade-off between drawing quality and running
time. The attractive and repulsive forces acting on a vertex are defined using
Fruchterman-Reingold model [14].

3 The Multi-GILA Algorithm

In this section we describe our multilevel algorithm Multi-GiLA. It is designed
having in mind the challenges and constraints discussed in Sect. 2. The key ingre-
dients of Multi-GiLA are a distributed version of both the Solar Merger
and of the Solar Placer used by FM3, together with a suitable dynamic
tuning of GiLA.

3.1 Algorithm Overview

The algorithm is based on the pipeline described below. The pruning, partition-
ing, and reinsertion phases are the same as for the GiLA algorithm, and hence
they are only briefly recalled (see [5] for details).

Pruning: In order to lighten the algorithm execution, all vertices of degree one
are temporarily removed from the graph; they will be reinserted at the end of
the computation by means of an ad-hoc technique.

Partitioning: The vertex set is then partitioned into subsets, each assigned
to a computing unit, also called worker in Giraph (each computer may have
more than one worker). The default partitioning algorithm provided by Giraph
may create partitions with a very high number of edges that connect vertices
of different partition sets; this would negatively affect the communication load
between different computing units. To cope with this problem, we use a parti-
tioning algorithm by Vaquero et al. [32], called Spinner, which creates balanced
partition sets by exploiting the graph topology.
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Layout: This phase executes the pipeline of the multilevel approach. The coars-
ening phase (Sect. 3.2) is implemented by means of a distributed protocol, which
attempts to behave as the Solar Merger of FM3. The placement (Sect. 3.3)
and single-level layout (Sect. 3.4) phases are iterated until a drawing of the graph
is computed.

Reinsertion: For each vertex v, its neighbors of degree one (if any) are suitably
reinserted in a region close to v, avoiding to introduce additional edge crossings.

This pipeline is applied independently to each connected component of the
graph, and the resulting layouts are then arranged in a matrix to avoid overlaps.

3.2 Coarsening Phase: DISTRIBUTED SOLAR MERGER

Our Distributed Solar Merger algorithm yields results (in terms of number
of levels) comparable to those obtained with the Solar Merger of FM3 (see
also Sect. 4). The algorithm works into four steps described below; each of them
involve several Giraph supersteps. For every iteration i of these four steps, a new
coarser graph Gi is generated, until its number of vertices is below a predefined
threshold. We use the same terminology as in Sect. 2, and equip each vertex with
four properties called ID, level, mass, and state. The ID is the unique identifier
of the vertex. The level represents the iteration in which the vertex has been
generated. That is, a vertex has level i if it belongs to graph Gi. The vertices
of the input graph have level zero. The second property represents the mass of
the vertex and it is initialized to one plus the number of its previously pruned
neighbors of degree one for the vertices of the input graph. The state of a vertex
can receive one of the following values: sun, planet, moon, or unassigned. We shall
call sun, planet, moon, or unassigned, a vertex with the corresponding value for
its state. All vertices of the input graph are initially unassigned.

Sun Generation. In the first superstep, each vertex turns its state to sun
with probability p, for a predefined value of p. The next three supersteps aim
at avoiding pairs of suns with graph theoretic distance less than 3. First, each
sun broadcasts a message containing its ID. In the next superstep, if a sun t
receives a message from an adjacent sun s, then also s receives a message from
t, and the sun between s and t with lower ID changes its state to unassigned. In
the same superstep, all vertices (of any state) broadcast to their neighbors only
the messages received from those vertices still having state sun. In the third
superstep, if a sun t receives a message generated from a sun s (with graph
theoretic distance 2 from t), again also t receives a message from s and the sun
with lower ID changes its state to unassigned. This procedure ensures that all
pairs of suns have graph theoretic distance at least three.

Solar System Generation. In the first superstep, each sun broadcasts an
offer message. At the next superstep, if an unassigned vertex v receives an offer
message m from a sun s, then v turns its state to planet and stores the ID of
s in a property called system-sun. Also, v sends a confirmation message to s.
Finally, v forwards the message m to all its neighbors. At the next superstep,
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every sun vertex processes the received confirmation messages. If a sun s received
a confirmation message, s stores the ID of the sender in a property called planet-
list. This property is used by each sun to keep track of the planets in its solar
system. If a planet v receives an offer message, then such a message comes from
the same sun stored in the system-sun property of v, and thus it can be ignored
(recall that the theoretic distance between two suns is greater than two). If an
unassigned vertex u receives one or more offer messages originated by the same
sun s, then u turns its state to moon and stores the ID of s in its system-sun
property. Furthermore, u stores the ID of all planets that forwarded the above
offer messages in a property called system-planets. This property is used by each
moon u to keep track of the planets adjacent to u and in the same solar system
as u. Finally, u sends a confirmation message to its sun s through a two-hop
message (that requires two further supersteps to be delivered), which will be
sent to one of the planets stored in the system-planets property. If u receives
offer messages from distinct vertices, then the above procedure is applied only for
those messages originated by the sun s with greatest ID. For every offer message
originated by a sun t with ID lower than the one of s, u informs both s and t of
the conflict through ad-hoc two-hop messages. These messages will be used by
s and t to maintain a suitable data structure containing the information of each
path between s and t. At the end of this phase, all the galaxies of the generated
sun vertices have been created and have diameter at most four. Also, some of
the inter-system links have already been discovered, and this information will be
useful in the following. The two steps described above are repeated until there
are no more unassigned vertices. An example is illustrated in Fig. 1.

Inter-system Link Generation. In the first superstep, every planet and every
moon broadcasts an inter-link discovery message containing the ID stored in
the system-sun property of the vertex. In the next superstep, each vertex v
processes the received messages. All messages originated by vertices in the same
solar system are ignored. Similarly as in the previous step, for each inter-link
discovery message originated from a sun t different from the sun s of v, vertex v
informs both s and t of the conflict through two-hop messages that will be used

s, 1

t, 2

(a)

s, 1

t, 2

(b)

s, 1

t, 2

(c)

Fig. 1. Illustration for the coarsening phase. (a) Two suns s (ID 1) and t (ID 2)
broadcast an offer message. (b) The dark gray vertices receive the offer messages,
become planets, and forward the received offer messages. The striped vertex will then
receive offer messages from both s and t, and (c) will accept the offer message of t due
to the greatest ID of t. In (c) the final galaxies are enclosed by dashed curves, suns
(planets, moons) are light gray (dark gray, black).
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by s and t to maintain a suitable data structure containing the information of
each path between s and t. Once all messages have been delivered, each sun s
is aware of all links between its solar system and other systems. Also, for each
link, s knows what planet and moon (if any) are involved.

Next Level Generation. In the first superstep, every sun s creates a vertex
vs whose level equals the level of s plus one, and whose mass equals the sum of
the masses of all the vertices in the solar system of s. Also, an inter-level edge
between s and vs is created and will be used in the placement phase. In the next
superstep, every sun s adds an edge between vs and vt, if t is a sun of a solar
system for which there are k > 0 inter-system links. The edge (vs, vt) is equipped
with a weight equal to the maximum number of vertices involved in any of the k
links. Finally, all vertices (except the newly created ones) deactivate themselves.

3.3 Placement Phase: DISTRIBUTED SOLAR PLACER

We now describe a Distributed Solar Placer algorithm, which behaves
similarly to the Solar Placer of FM3. After the coarsening phase, the only
active vertices are those of the coarsest graph Gk. For this graph, the placement
phase is not executed, and the computation goes directly to the single-level
layout phase (described in the next subsection). The output of the single-level
layout phase is an assignment of coordinates to all vertices of Gk. Then, the
placement phase starts and its execution is as follows.

In the first superstep, every vertex broadcasts its coordinates. In the second
superstep, all vertices whose level is one less than the level of the currently
active vertices activate themselves, and hence will start receiving messages from
the next superstep. In the same superstep, every vertex v forwards the received
messages to the corresponding vertex v∗ of lower level through its inter-level edge.
Then v deletes itself. At the next superstep, if a vertex s receives a message, then
s is the sun of a solar system. Thanks to the received messages, s becomes aware
of the position of all suns of its neighboring solar systems. Hence, s exploits this
information (and the data structure containing information on the inter-system
links), to compute the coordinates of all planets and moons in its solar system,
as for the Solar Placer. Once this is done, s sends to every planet u of its
solar system the coordinates of u. The coordinates of the moons are delivered
through two-hop messages (that is, sent to planets and then forwarded).

3.4 Single-Level Layout Phase: The GILA Algorithm

This phase is based on the GiLA algorithm, the distributed single-level force-
directed algorithm described in Sect. 2. Recall that the execution of GiLA is
based on a set of parameters, whose tuning affects the trade-off between quality
of the drawing and speed of the computation. The most important parameter
is the maximum graph theoretic distance k between pairs of vertices for which
the pairwise repulsive forces are computed. Also, there are further parameters
that affect the maximum displacement of a vertex, at a given iteration of the
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algorithm. The idea is to tune these parameters in order to achieve better quality
for the coarser graphs, and shorter running times for the graphs whose size is
closer to the original graph. Here we only describe how the parameter k has been
experimentally tuned, since it is the parameter that mostly affect the trade-off
between quality and running time. The other parameters have been set similarly.
For the drawing of every graph Gi, the value of k is 6 if the number of edges mi

of Gi is below 103, it is 5 if 103 ≤ mi < 5 · 103, it is 4 if 5 · 103 ≤ mi < 104, it is
3 if 104 ≤ mi < 105, it is 2 if 105 ≤ mi < 106, and it is 1 if mi ≥ 106.

4 Experimental Analysis

We executed an experimental analysis whose objective is to evaluate the perfor-
mance of Multi-GiLA. We aim to investigate both the quality of the produced
drawings and the running time of the algorithm, also in terms of scalability when
we increase the number of machines. We expect that Multi-GiLA computes
drawings whose quality is comparable to that achieved by centralized multi-
level force-directed algorithms. This is because the locality-based approximation
scheme adopted by GiLA (used in the single-level layout phase) should be mit-
igated by the use of a graph hierarchy. Also, we expect Multi-GiLA to be able
to handle graphs with several million edges in tens of minutes on an inexpen-
sive PaaS infrastructure. Clearly, the use of a scalable vertex-centric distributed
framework adds some unavoidable overhead, which may make Multi-GiLA not
suited for graphs whose size is limited to a few hundred thousand of edges. Our
experimental analysis is based on three benchmarks called RegularGraphs,
RealGraphs, and BigGraphs, described in the following.

The RegularGraphs benchmark is the same used by Bartel et al. [8] in
an experimental evaluation of various implementations of the three main phases
of a multilevel force-directed algorithm (coarsening, placement, and single-level
layout). It contains 43 graphs with a number of edges between 78 and 48, 232,
and it includes both real-world and generated instances [2]. See also Table 1
for more details. We used this benchmark to evaluate Multi-GiLA in terms of
quality of the computed drawings. Since the coarsening phase plays an important
role in the computation of a good drawing, we first evaluated the performance
of our Distributed Solar Merger in terms of number of produced levels
compared to the number of levels produced by the Solar Merger of FM3.
It may be worth remarking that, in the experimental evaluation conducted by
Bartel et al. [8], the Solar Merger algorithm showed the best performance in
terms of drawing quality when used for the coarsening phase. Our experiments
show that the number of levels produced by the two algorithms is comparable and
follows a similar trend throughout the series of graphs. The Distributed Solar
Merger produces one or two levels less than the Solar Merger in most of
the cases, and this is probably due to some slight difference in the tuning of the
two algorithms. To capture the quality of the computed drawings, we compared
FM3 (the implementation available in the OGDF library [10]) and Multi-GiLA
in terms of average number of crossings per edge (CRE), and normalized edge
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Table 1. RegularGraphs: number of vertices (n), number of edges (m), average
number of crossings per edge (CRE), normalized edge length std deviation (NELD).

FM3 Multi-GiLA FM3 Multi-GiLA

Name n m CRE NELD CRE NELD Name n m CRE NELD CRE NELD

karateclub 34 78 1.10 0.25 1.09 0.33 Grid 40 40 df 1, 597 3, 120 0.19 0.23 0.20 0.33

snowflake A 98 97 0.00 0.25 0.11 0.21 Grid 40 40 sf 1, 599 3, 120 0.39 0.18 0.38 0.31

spider A 100 160 3.06 0.24 2.86 0.27 ug 380 1, 104 3, 231 25.68 0.64 13.47 0.96

cylinder 010 97 178 0.35 0.16 0.72 0.08 esslingen 2, 075 5, 530 19.89 0.41 34.18 0.53

sierpinski 04 123 243 0.00 0.25 0.00 0.22 uk 4, 824 6, 837 0.07 0.36 0.06 0.65

tree 06 03 259 258 0.40 0.29 1.54 0.17 4970 4, 970 7, 400 0.01 0.23 0.01 0.46

rna 363 468 0.04 0.24 0.06 0.50 add20 2, 395 7, 462 60.38 0.50 100.44 0.50

protein part 417 511 1.20 0.33 1.73 0.50 dg 1087 7, 602 7, 601 0.06 0.34 0.00 1.04

516 516 729 0.09 0.13 0.18 0.44 tree 06 05 9, 331 9, 330 8.63 0.47 19.65 0.93

Grid 20 20 400 760 0.00 0.13 0.00 0.23 add32 4, 960 9, 462 1.31 0.88 0.97 1.66

Grid 20 20 df 397 760 0.24 0.23 0.20 0.34 snowflake C 9, 701 9, 700 0.00 0.64 0.00 0.40

Grid 20 20 sf 397 760 0.41 0.17 0.41 0.26 flower 005 930 13, 521 48.76 0.61 45.24 0.61

dg 617 part 341 797 10.57 0.30 16.61 0.36 3elt 4, 720 13, 722 0.40 0.35 0.27 0.60

snowflake B 971 970 0.00 0.42 0.00 0.39 data 2, 851 15, 093 2.15 0.39 2.52 0.64

tree 06 04 1, 555 1, 554 8.53 0.35 7.04 0.19 grid400 20 8, 000 15, 580 0.02 0.22 0.24 0.89

spider B 1, 000 1, 600 7.03 0.24 8.26 0.73 spider C 10, 000 16, 000 171.31 0.32 262.09 0.93

grid rnd 032 985 1, 834 0.00 0.15 0.00 0.30 grid rnd 100 9, 499 17, 849 0.00 0.16 0.00 0.34

cylinder 032 985 1, 866 0.46 0.19 0.44 0.39 sierpinski 08 9, 843 19, 683 0.09 0.44 0.03 0.70

cylinder 100 985 1, 866 4.60 0.18 4.48 0.45 crack 10, 240 30, 380 0.00 0.26 0.00 0.42

sierpinski 06 1, 095 2, 187 0.06 0.34 0.03 0.63 4elt 15, 607 45, 878 0.52 0.39 0.30 0.62

flower 001 210 3, 057 47.37 0.67 45.97 0.47 cti 16, 840 48, 232 10.19 0.39 10.26 0.71

Grid 40 40 1, 600 3, 120 0.00 0.15 0.00 0.32

length standard deviation (NELD). The values of NELD are obtained by dividing
the edge length standard deviation by the average edge length of each drawing.
We chose FM3 for this comparison for two main reasons: (i) Multi-GiLA is
partially based on distributed implementations of the Solar Merger and of
the Solar Placer algorithms; (ii) FM3 showed the best trade-off between
running time and quality of the produced drawings in the experiments of Hachul
and Jünger [19]. The results of our experiments are reported in Table 1. The
performance of Multi-GiLA is very close to that of FM3 in terms of CRE.
In several cases Multi-GiLA produces drawings with a smaller value of CRE
than FM3 (see, e.g., ug 380). Concerning the NELD, Multi-GiLA most of the
times generates drawings with larger values than FM3. This may depend on how
the length of the edges is set by the Distributed Solar Placer algorithm.
However, also in this case the values of NELD follow a similar trend throughout
the series of graphs. Figure 2 shows a visual comparison for some of the graphs.
Similarly to FM3, Multi-GiLA is able to unfold graphs with a very regular
structure and large diameter.

The RealGraphs and BigGraphs sets contain much bigger graphs than
RegularGraphs, and are used to evaluate the running time of Multi-GiLA,
especially in terms of strong scalability (i.e., how the running time varies on a
given instance when we increase the number of machines). The RealGraphs
set is composed of the 5 largest real-world graphs (mainly scale-free graphs)
used in the experimental study of GiLA [5]. These graphs are taken from the
Stanford Large Networks Dataset Collection [3] and from the Network Data
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(a) 3elt (b) 4elt

(c) crack (d) grid 40 40 doublefolded

(e) sierpinski 06 (f) flower 005

Fig. 2. Layouts of some RegularGraphs instances. For each graph, the drawing com-
puted by FM3 (Multi-GiLA) is on the left (right).

Repository [4], and their number of edges is between 121, 523 and 1, 541, 514. The
BigGraphs set consists of 3 very large graphs with up to 12 million edges, taken
from the collection of graphs described in [28]1. Details about the RealGraphs
and BigGraphs sets are in Table 2.

Table 2. Left: Details for RealGraphs. Right: Details for BigGraphs benchmark.
Isolated vertices, self-loops, and parallel edges have been removed from the original
graphs. The graphs are ordered by increasing number of edges.

Name n m Description Name n m Description

asic-320 121,523 515,300 circuit sim. problem hugetric-10 6,600,000 10,000,000 Mesh

amazon0302 262,111 899,792 co-purchasing network hugetric-20 7,100,000 10,700,000 Mesh

com-amazon 334,863 925,872 co-purchasing network delaunay n22 4,100,000 12,200,000 Triangulation

com-DBLP 317,080 1,049,866 collaboration network

roadNet-PA 1,087,562 1,541,514 road network

1 See also http://www.networkrepository.com/.

http://www.networkrepository.com/
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Table 3 reports the running times of Multi-GiLA on the RealGraphs
and BigGraphs instances, using increasing clusters of Amazon. Namely, for
the RealGraphs instances, 5 machines were always sufficient to compute a
drawing in a reasonable time, and using 15 machines the time is reduced by 35%
on average. For the BigGraphs instances we used a number of machines from
20 to 30, and the reduction of the time going from the smallest to the largest
cluster is even more evident than for the RealGraphs set (50% on average).
Figure 3 depicts the trend of the data in Table 3, showing the strong scalability of
Multi-GiLA. Figure 4 shows some layouts of RealGraphs and BigGraphs
instances computed by Multi-GiLA and visualized (rendered) with LaGo. It
is worth observing that some centralized algorithm may be able to draw quicker
than Multi-GiLA graphs of similar size as those in the RealGraphs set (see
e.g. [16]). This is partially justified by the use of a distributed framework such as
Giraph, which introduces overheads in the computation that are significant for
graphs of this size. However, this kind of overhead is amortized when scaling to
larger graphs as those in the BigGraphs set. Also, using an optimized cluster
rather than a PaaS infrastructure may improve the performance of the algorithm.

Table 3. Running time of Multi-GiLA on the RealGraphs and BigGraphs
instances, using increasing clusters of Amazon.

Running time (s) Running time (s)

Name 5 machines 10 machines 15 machines Name 20 machines 25 machines 30 machines

asic-320 1,626 1,102 1,281 hugetric-10 7,923 4,828 3,679

amazon0302 2,518 2,696 1,577 hugetric-20 9,891 8,243 4,445

com-amazon 3,400 3,395 2,242 delaunay n22 8,160 3,301 3,932

com-DBLP 4,000 3,612 2,366

roadNet-PA 3,813 2,369 2,241

Fig. 3. Scalability of Multi-GiLA on RealGraphs instances.
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Fig. 4. Layouts of (a–d) RealGraphs instances and (e–f) BigGraphs instances com-
puted by Multi-GiLA and visualized (rendered) with LaGo.

5 Conclusions and Future Research

As far as we know, Multi-GiLA is the first multilevel force-directed technique
working in a distributed vertex-centric framework. Its communication protocol
allows for an effective computation of a coarse graph hierarchy. Experiments
indicate that the quality of the computed layouts compares with that of drawings
computed by popular centralized multilevel algorithms and that it exhibits high
scalability to very large graphs. Our source code is made available to promote
research on the subject and to allow replicability of the experiments. In the near
future we will investigate more coarsening techniques and single-level layout
methods for a vertex-centric distributed environment.
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Abstract. Force-directed layout methods constitute the most common
approach to draw general graphs. Among them, stress minimization pro-
duces layouts of comparatively high quality but also imposes compar-
atively high computational demands. We propose a speed-up method
based on the aggregation of terms in the objective function. It is akin to
aggregate repulsion from far-away nodes during spring embedding but
transfers the idea from the layout space into a preprocessing phase. An
initial experimental study informs a method to select representatives,
and subsequent more extensive experiments indicate that our method
yields better approximations of minimum-stress layouts in less time than
related methods.

1 Introduction

There are two main variants of force-directed layout methods, expressed either
in terms of forces to balance or an energy function to minimize [3,25]. For con-
venience, we refer to the former as spring embedders and to the latter as multi-
dimensional scaling (MDS) methods.

Force-directed layout methods are in wide-spread use and of high practi-
cal significance, but their scalability is a recurring issue. Besides investigations
into adaptation, robustness, and flexibility, much research has therefore been
devoted to speed-up methods [20]. These efforts address, e.g., the speed of con-
vergence [10,11] or the time per iteration [1,17]. Generally speaking, the most
scalable methods are based on multi-level techniques [13,18,21,35].

Experiments [5] suggest that minimization of the stress function [27]

s(x) =
∑

i<j

wij(||xi − xj || − dij)2 (1)

is the primary candidate for high-quality force-directed layouts x ∈ (R2)V of
a simple undirected graph G = (V,E) with V = {1, . . . , n} and m = |E|.
The target distances dij are usually chosen to be the graph-theoretic distances,
the weights set to wij = 1/d2ij , and the dominant method for minimization is
majorization [16]. Several variant methods reduce the cost of evaluating the stress
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function by involving only a subset of node pairs over the course of the algo-
rithm [6,7,13]. If long distances are represented well already, for instance because
of initialization with a fast companion algorithm, it has been suggested that one
restrict further attention to short-range influences from k-neighborhoods only [5].

We here propose to stabilize the sparse stress function restricted to 1-neigh-
borhoods [5] with aggregated long-range influences inspired by the use of Barnes
& Hut approximation [1] in spring embedders [33]. Extensive experiments sug-
gest how to determine representatives for individually weak influences, and that
the resulting method represents a favorable compromise between efficiency and
quality.

Related work is discussed in more detail in the next section. Our approach
is derived in Sect. 3, and evaluated in Sect. 4. We conclude in Sect. 5.

2 Related Work

While we are interested in approximating the full stress model of Eq. (1), there
are other approaches capable of dealing with given target distances such as the
strain model [4,24,32] or the Laplacian [19,26].

An early attempt to make the full stress model scale to large graphs is
GRIP [13]. Via a greedy maximal independent node set filtration, this multi-
level approach constructs a hierarchy of more and more coarse graphs. While a
sparse stress model calculates the layout of the coarsened levels, the finest level
is drawn by a localized spring-embedder [11]. Given the coarsening hierarchy for
graphs of bounded degree, GRIP requires O(nk2) time and O(nk) space with
k = log max{dij : i, j ∈ V }.

Another notable attempt has been made by Gansner et al. [15]. Like the
spring embedder the maxent-model is split into two terms:

∑

{i,j}∈E

wij(||xi − xj || − dij)2 − α
∑

{i,j}�∈E

log ||xi − xj ||

The first part is the 1-stress model [4,13], while the second term tries to maximize
the entropy. Applying Barnes & Hut approximation technique [1], the running
time of the maxent-model can be reduced from O(n2) per iteration to O(m +
n log n), e.g., using quad-trees [30,34]. In order to make the maxent-model even
more scalable Meyerhenke et al. [28] embed it into a multi-level framework, where
the coarsening hierarchy is constructed using an adapted size-constrained label
propagation algorithm.

Gansner et al. [14], inspired by the idea of decomposing the stress model
into two parts, proposed COAST. The main difference between COAST and
maxent is that it adds a square to the two terms in the 1-stress part and that the
second term is quadratic instead of logarithmic. Transforming the energy system
of COAST allows one to apply fast-convex optimization techniques making its
running time comparable to the maxent model.

While all these approaches somewhat steer away from the stress model,
MARS [23] tries to approximate the solution of the full stress model. Building
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on a result of Drineas et al. [9], MARS requires only k � n instead of n single-
source shortest path computations. Reconstructing the distance matrix from two
smaller matrices and by setting wij = 1/dij , MARS runs in O(kn+n log n+m)
per iteration with a preprocessing time in O(k3 + k(m + n log n + k2n)), and a
space requirement in O(nk).

3 Sparse Stress Model

The full stress model, Eq. (1), is in our opinion the best choice to draw general
graphs, not least because of its very natural definition. However, its O(n2) run-
ning time per iteration and space requirement, and expensive processing time of
O(n(m + n log n)), hamper its way into practice.

The reason sparse stress models are still in early stages of development is that
the adaption to large graphs requires not just a reduction in the running time per
iteration, but also the preprocessing time and its associated space requirement.
Where these problems originate from is best explained by rewriting Eq. (1) to
the following form:

s(x) =
∑

{i,j}∈E

wij(||xi − xj || − dij)2 +
∑

{i,j}∈(V
2)\E

wij(||xi − xj || − dij)2 (2)

As minimizing the first term only requires O(m) computations and all dij are
part of the input, solving this part of the stress model can be done efficiently. Yet,
the second term requires an all-pairs shortest path computation (APSP), O(n2)
time per iteration, and in order to stay within this bound O(n2) additional space.
We note that the 1-stress approaches presented in Sect. 2 of Gajer et al. [13] and
Brandes and Pich [4] ignore the second term, while Gansner et al. [14,15] replace
it. Discounting the problems arising from the APSP computation, we can see
that the spring embedder suffered from exactly the same problem, namely the
computation of the second term – there called repulsive forces. Barnes & Hut
introduced a simple, yet ingenious and efficient solution, namely to approximate
the second term by using only a subset of its addends.

To approximate the repulsive forces operating on node i Barnes & Hut parti-
tion the graph. Associated with each of these O(log n) partitions is an artificial
representative, a so called super-node, used to approximate the repulsive forces
of the nodes in its partition affecting i. However, as these super-nodes have only
positions in the euclidean space, but no graph-theoretic distance to any node in
the graph they cannot be processed in the stress model. Furthermore, deriving
a distance for a super-node as a function of the graph-theoretic distance of the
nodes it represents would require an APSP computation, which is too costly,
and since the partitioning is computed in the layout space, probably not a good
approximation. Choosing a node from the partition as a super-node would not
solve the problems, not least because the partitioning changes over time.

Therefore, adapting this approach cannot be done in a straightforward man-
ner. However, the model we are proposing sticks to its main ideas. In order to
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reduce the complexity of the second term in Eq. (2), we restrict the stress com-
putation of each i ∈ V to a subset P ⊆ V of k = |P| representatives, from now
on called pivots. The resulting sparse stress model, where N(i) are the neighbors
of i and w′

ip are adapted weights, has the following form:

s′(x) =
∑

{i,j}∈E

wij(||xi − xj || − dij)2 +
∑

i∈V

∑

p∈P\N(i)

w′
ip(||xi − xp|| − dip)2 (3)

Note that GLINT [22] uses a similar function, yet the pivots change in each
iteration, no weights are involved, and it is assumed that dip is accessible in
constant time.

Just like Barnes & Hut, we associate with each pivot p ∈ P a set of nodes
R(p) ⊆ V , where p ∈ R(p),

⋃
p∈P R(p) = V , and R(p) ∩ R(p′) = ∅ for p, p′ ∈ P.

However, we propose to use only one global partitioning of the graph that does
not change over time. Still, just like the super-nodes, we want that the pivots
are representative for their associated region. In terms of the localized stress
minimization algorithm [16] this means we want that for each i ∈ V and p ∈ P

∑
j∈R(p) wij(xα

j + dij(xα
i − xα

j )/||xi − xj ||)∑
j∈R(p) wij

≈ xα
p +

dip(xα
i − xα

p )
||xi − xp|| ,

where α is the dimension. As the left part is the weighted average of all positional
votes of j ∈ R(p) for the new position of i, we require p to fulfill the following
requirements in order to be a good representative:

– The graph-theoretic distances to i from all j ∈ R(p) should be similar to dip

– The positions of j ∈ R(p) in x should be well distributed in close proximity
around p.

We propose to construct the partitioning induced by R only based on the graph
structure, not on the layout space, and associate each node v ∈ V with R(p)
of the closest pivot subject to their graph-theoretic distance. As our algorithm
incrementally constructs R, ties are broken by favoring the currently smallest
partition. Given the case that P has been chosen properly and since all nodes
in R(p) are at least as close to p as to any other pivot, and consequently in the
stress drawing, it is appropriate to assume that both conditions are met.

Even if the positional vote of each pivot is optimal w.r.t. R(p), it is still not
enough to approximate the full stress model. In the full stress model the iterative
algorithm to minimize the stress moves one node at a time while fixing the rest.
By setting node i’s position in dimension α to

xα
i =

∑
j �=i wij(xα

j + dij(xα
i − xα

j )/||xi − xj ||)∑
j �=i wij

,

it can be shown that the stress monotonically decreases [16]. However, in our
model we move node i according to

xα
i =

∑
j∈N(i) wij

(
xα

j + dij(x
α
i −xα

j )

||xi−xj ||
)

+
∑

p∈P\N(i) w′
ip

(
xα

p + dip(x
α
i −xα

p )

||xi−xp||
)

∑
j∈N(i) wij +

∑
p∈P\N(i) w′

ij

. (4)
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Algorithm 1. Sparse Stress
Input: Graph G = (V, E) with w : E → R>0, and k number of pivots.
Output: α−dimensional layout x ∈ (Rα)V

1 sample P with |P| = k
2 calculate R, all adapted weights w′

ip, and all dip via weighted MSSP
3 x ←PivotMDS(G) [4]
4 rescale x such that

∑
{i,j}∈E ||xi − xj || =

∑
{i,j}∈E wij

5 while relative positional change > 10−4 do
6 foreach i ∈ V do
7 foreach dimension α do

8 tα ←
∑

j∈N(i) wij

(

xα
j +

dij(xα
i −xα

j )

||xi−xj ||

)

+
∑

p∈P\N(i) w′
ip

(

xα
p +

dip(xα
i −xα

p )

||xi−xp||

)

∑
j∈N(i) wij+

∑
p∈P\N(i) w′

ij

9 xi ← t

This implies that in order to find the globally optimal position of i we further-
more have to find weights w′

ip, such that w′
ip∑

j∈N(i) wij+
∑

p∈P\N(i) w′
ip

≈
∑

j∈R(p) wij
∑

i�=j wij
.

Since our goal is only to reconstruct the proportions, and our model only
knows the shortest-path distance between all nodes i ∈ V and p ∈ P, we set
w′

ip = s/d2ip where s ≥ 1. At the first glance setting s = |R(p)| seems appro-
priate, since p represents |R(p)| addends of the stress model. Nevertheless, this
strongly overestimates the weight of close partitions. Therefore, we propose to
set s = |{j ∈ R(p) : djp ≤ dip/2}|. This follows the idea that p is only a good
representative for the nodes in R(p) that are at least as close to p as to i. Since
the graph-theoretic distance between i and j ∈ R(p) is unknown, our best guess
is that j lies on the shortest path from p to i. Consequently, if djp ≤ dip/2 node
j must be at least as close to p as to i. Note that w′

pp′ does not necessarily equal
w′

p′p for p, p′ ∈ P, and if k = n our model reduces to the full stress model.

Asymptotic Running Time: To minimize Eq. (3) in each iteration we displace all
nodes i ∈ V according to Eq. (4). Since this requires |N(i)| + k constant time
operations, given that all graph-theoretic distances are known, the total time
per iteration is in O(kn+m). Furthermore, only the distances between all i ∈ V
and p ∈ P have to be known, which can be done in O(k(m + n log n)) time and
requires O(kn) additional space. If the graph-theoretic distances for all p ∈ P
are computed with a multi-source shortest path algorithm (MSSP), it is possible
to construct R as well as calculate all w′

ip during its execution without increasing
its asymptotic running time. The full algorithm to minimize our sparse stress
model is presented in Algorithm 1.
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Table 1. Dataset: n, m, δ(G), Δ(G), and D(G) denote the number of nodes, edges,
the min. and max. degree, and the diameter, respectively. Column {deg(i)} shows the
degree and {dij} the distance distribution. Bipartite graphs are marked with ∗ and
weighted graphs with ∗∗

graph n m δ(G) Δ(G) D(G) {deg(i)} {dij} graph n m δ(G) Δ(G) D(G) {deg(i)} {dij}
dwt1005 1005 3808 3 26 34 pesa 11738 33914 2 9 208

1138bus 1138 1458 1 17 31 bodyy5 18589 55346 2 8 132

plat1919 1919 15240 2 18 43 finance256 20657 71866 1 54 55

3elt 4740 13722 3 9 65 btree (binary tree) 1023∗ 1022 1 3 18

USpowerGrid 4941 6594 1 19 46 qh882 1764∗ 3354 1 14 32

commanche 7920 11880∗∗ 3 3 438.00 lpship04l 2526∗ 6380 1 84 13

LeHavre 11730 15133∗∗ 1 7 33800.67

4 Experimental Evaluation

We report on two sets of experiments. The first is concerned with the evaluation
of the impact of different pivot sampling strategies. The second set is designed
to assess how well the different sparse stress models approximate the full stress
model, in both absolute terms and in relation to the speed-up achieved.

For the experiments we implemented the sparse stress model, Algorithm 1,
as well as different sampling techniques in Java using Oracle SDK 1.8 and
the yFiles 2.9 graph library (www.yworks.com). The tests were carried out
on a single 64-bit machine with a 3.60 GHz quad-core Intel Core i7-4790
CPU, 32 GB RAM, running Ubuntu 14.10. Times were measured using the
System.currentTimeMillis() command. The reported running times were
averaged over 25 iterations. We note here that all drawing algorithms, except
stated otherwise, were initialized with a 200 PivotMDS layout [4]. Furthermore,
the maximum number of iterations for the full stress algorithm was set to 500.
As stress is not resilient against scaling, see Eq. (1), we optimally rescaled each
drawing such that it creates the lowest possible stress value [2].

Data: We conducted our experiments on a series of different graphs, see Tab. 1,
most of them taken from the sparse matrix collection [8]. We selected these
graphs as they differ in their structure and size, and are large enough to compare
the results of different techniques. Two of the graphs, LeHavre and commanche,
have predefined edge lengths that were derived from the node coordinates. We
did not modify the graphs in any way, except for those that were disconnected.
In this case we only kept the largest component.

4.1 Sampling Evaluation

In Sect. 3 we discussed how vital the proper selection of the pivots is for our
model. In the optimal case we would sample pivots that are well distributed over
the graph, creating regions of equal complexity, and are central in the drawing
of their regions. In order to evaluate the impact of different sampling strategies

www.yworks.com
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on the quality of our sparse stress model and recommend a proper sampling
scheme, we compared a set of different strategies:

– random: nodes are selected uniformly at random
– MIS filtration: nodes are sampled according to the maximal independent set

filtration algorithm by Gajer et al. [13]. Once n ≤ k the coarsening stops. If
n < k, unsampled nodes from the previous level are randomly added

– max/min euclidean: starting with a uniformly randomly chosen node, P is
extended by adding arg maxi∈V \P minp∈P ||xi − xp||

– max/min sp: similar to max/min euclidean except that P is extended accord-
ing arg maxi∈V \P minp∈P dip [4]

Pretests showed that the max/min sp strategy initially favors sampling leaves,
but nevertheless produces good results for large k. Thus, we also evaluated strate-
gies building on this idea, yet try to overcome the problem of leaf node sampling.

– max/min random sp: similar to max/min sp, yet each node i is sampled with
a probability proportional to minp∈P dip

– k-means layout: the nodes are selected via a k-means algorithm, running at
most 50 iterations, on the initial layout

– k-means sp: initially k nodes with max/min sp are sampled succeeded by
k-means sampling using the shortest path entries of these pivots

– k-means + max/min sp: P is initialized with k/2 pivots via k-means layout
and the remaining nodes are sampled via max/min sp

To quantify how well suited each of the sampling techniques is for our model,
we ran each combination on each graph with k ∈ {50, 51, . . . , 200} pivots. For
all tests the sparse stress algorithm terminated after 200 iterations. Since all
techniques at some point rely on a random decision, we repeated each execution
20 times in order to ensure we do not rest our results upon outliers. To distinguish
the applicability of the different techniques to our model, we used two measures.
The first measure is the normalized stress, which is the stress value divided by(
n
2

)
. While the normalized stress measures the quality of our drawing, we also

calculated the Procrustes statistic, which measures how well the layout matches
the full stress drawing [31]. The range of the Procrustes statistic is [0, 1], where
0 is the optimal match.

The results of these experiments for some of the instances are presented in
Figs. 1 and 2 (see the Appendix in [29] for the full set of data). In these plots
each dot represents the median and each line starts at the 25%, 75% percentile
and ends at the 5%, 95% percentile, respectively. For the sake of readability
we binned each 25 consecutive sample sizes. Furthermore, the strategies were
ordered according to their overall ranking w.r.t. the evaluated measure. For
most of the graphs using k-means sp sampling yields the layouts with the lowest
normalized stress value. There are only two graphs where this strategy performs
worse than other tested strategies. The one graph where k-means sp is outclassed,
yet only for large k by max/min sp, is pesa. The reason for this result is that k-
means sp mainly samples pivots in the center of the left arm, see Table 4, creating
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twists. Max/min sp for small k in contrast mostly samples nodes on the contour
of the arm, yet once k reaches a certain threshold the resulting distribution of
the pivots prevents twists, yielding a lower normalized stress value.

Fig. 1. Comparison of different sampling strategies and number of pivots w.r.t. the
resulting normalized stress value

Fig. 2. Comparison of different sampling strategies and number of pivots w.r.t. the
resulting Procrustes statistic

The explanation of the poor behavior for lpship04l is strongly related to its
structure. The low diameter of 13 causes, after a few iterations, the max/min
sp strategy to repeatedly sample nodes that are part of the same cluster, see
Table 4, and consequently are structurally very similar. As k-means sp builds on
max/min sp, it can only slightly improve the pivot distribution. The argument
that the problem is related to the structure is reinforced by the outcome of
the random strategy. Still, except for these two graphs k-means sp generates
the best outcomes, and since this strategy is also strongly favorable over the
others subject to the Procrustes statistics, see Fig. 2, our following evaluation
always relies on this sampling strategy. However, we note that the Procrustes
statistic for btree and lpship04l are by magnitudes larger than for any other
tested graph. While for lpship04l this is mostly caused by the quality of the
drawings, this is only partly true for btree. The other factor contributing to the
high Procrustes statistic for btree is caused by the restricted set of operations
provided by the Procrustes analysis. As dilation, translation, and rotation are
used to find the best match between two layouts, the Procrustes analysis cannot
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Table 2. Stress and Procrustes statistics: sparse model values are highlighted when no
larger than minimum over previous methods

graph full stress sparse 200 sparse 100 sparse 50 maxent MARS 200 MARS 100 GRIP 1-stress PivotMDS

stress

dwt1005 10 729 10 940 11 081 11 329 21 623 17 660 20 134 52 517 12 495 14 459
1138bus 39 974 40 797 41 471 42 686 44 650 64 363 63 614 54 986 73 512 75 427
plat1919 18 572 18 840 19 072 19 719 23 850 53 246 64 166 113 765 75 973 82 865
3elt 422 940 426 564 430 200 437 051 585 967 503 600 754 134 934 206 555 934 634 401
USpowerGrid 702 055 720 642 731 187 749 464 1 021 457 766 535 783 888 1 495 373 1 111 216 1 123 698
commanche 654 694 677 220 699 890 749 609 1 507 654 2 761 605 3 145 489 1 539 767 2 085 818 2 157 943
LeHavre 439 188 433 030 441 986 454 785 1 231 283 12 012 307 12 570 692 8 658 371 1 255 474 1 305 577
pesa 1 373 514 1 417 449 1 452 975 1 495 512 10 423 779 3 563 772 8 281 116 2 957 738 3 486 176 3 325 889
bodyy5 3 547 659 3 566 636 3 585 087 3 630 380 5 248 755 6 385 559 4 072 905 10 389 846 4 245 006 4 715 728
finance256 6 175 210 6 415 761 6 474 787 6 582 890 8 151 335 7 267 598 8 643 239 19 817 355 12 257 268 11 380 089
btree 60 206 61 839 63 325 66 122 67 871 103 436 100 767 96 235 157 988 164 329
qh882 84 524 86 345 87 695 89 556 103 601 117 195 161 113 127 914 146 935 143 142
lpship04l 250 599 297 547 316 674 343 694 329 255 558 923 542 667 771 284 775 813 793 238

Procrustes statistic

dwt1005 0.001 0.005 0.003 0.027 0.008 0.018 0.263 0.004 0.008
1138bus 0.009 0.016 0.025 0.022 0.148 0.145 0.071 0.097 0.102
plat1919 0.000 0.000 0.001 0.015 0.026 0.031 0.236 0.045 0.051
3elt 0.001 0.001 0.002 0.026 0.009 0.029 0.199 0.017 0.023
USpowerGrid 0.006 0.008 0.012 0.068 0.014 0.018 0.256 0.051 0.051
commanche 0.001 0.002 0.005 0.039 0.026 0.167 0.092 0.066 0.066
LeHavre 0.001 0.001 0.001 0.012 0.163 0.173 0.256 0.010 0.010
pesa 0.009 0.010 0.010 0.095 0.025 0.070 0.017 0.021 0.021
bodyy5 0.000 0.000 0.000 0.012 0.011 0.003 0.100 0.004 0.007
finance256 0.009 0.006 0.005 0.013 0.007 0.018 0.206 0.042 0.041
btree 0.748 0.165 0.241 0.233 0.360 0.367 0.386 0.361 0.364
qh882 0.015 0.015 0.021 0.046 0.061 0.114 0.075 0.086 0.079
lpship04l 0.176 0.112 0.148 0.160 0.246 0.587 0.463 0.393 0.401

Table 3. Runtime in seconds: fastest sparse model yielding lower stress than best
previous method, c.f. Table 2, is highlighted. Marked implementations written in C/C++

with time measured via clock() command

graph full stress sparse 200 sparse 100 sparse 50 maxent∗ MARS 200∗ MARS 100∗ GRIP∗ 1-stress PivotMDS

dwt1005 1.26 0.22 0.14 0.10 0.47 1.02 2.36 0.06 0.08 0.06
1138bus 2.20 0.25 0.14 0.09 0.91 3.16 1.96 0.20 0.06 0.04
plat1919 9.70 0.74 0.51 0.42 1.15 6.80 4.79 0.19 0.31 0.20
3elt 31.82 0.94 0.59 0.46 2.26 16.31 8.43 0.71 0.37 0.23
USpowerGrid 36.48 0.81 0.48 0.35 2.53 13.54 7.62 1.67 0.28 0.21
commanche 340.10 4.89 2.56 1.47 3.60 22.72 12.43 2.29 0.47 0.35
LeHavre 475.05 6.53 3.48 2.37 6.31 27.57 19.50 10.18 0.81 0.54
pesa 373.23 4.25 2.47 1.53 5.96 50.10 42.68 3.56 0.95 0.60
bodyy5 463.47 3.84 2.63 1.78 9.97 46.63 9.27 10.43 1.64 1.04
finance256 1016.92 7.32 4.41 3.09 14.76 32.16 24.66 12.12 2.51 1.60
btree 7.79 0.38 0.15 0.10 0.63 2.70 1.48 0.06 0.06 0.03
qh882 6.61 0.45 0.30 0.23 0.97 8.45 5.79 0.15 0.17 0.14
lpship04l 18.30 0.55 0.30 0.20 0.99 7.06 7.63 0.16 0.15 0.10

resolve reflections. Therefore, if in the one layout of btree, the subtree T1 of v
is drawn to the right of subtree T2 of v and vice versa in the second drawing,
although the two layouts are identical, the statistic will be high. This symmetry
problem mainly explains the low performance w.r.t. btree.

4.2 Full Stress Layout Approximation

The next set of experiments is designed to assess how well our sparse stress model
using k-means sp sampling, as well as related sparse stress techniques, resembles
the full stress model. For this we compared the median stress layout over 25
repetitions on the same graph of our sparse stress model with k ∈ {50, 100, 200},
with MARS,1 maxent,2 PivotMDS, 1-stress, and the weighted version of GRIP.3

1 https://github.com/marckhoury/mars.
2 We are grateful to Yifan Hu for providing us with the code.
3 http://www.cs.arizona.edu/∼kobourov/GRIP/.

https://github.com/marckhoury/mars
http://www.cs.arizona.edu/~kobourov/GRIP/
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Fig. 3. The similarity of the Gabriel Graph of the full stress layout and the Gabriel
Graph of the layout algorithms under consideration as a function of k. For each node
of the graph the k-neighborhood in the Gabriel Graph of the full stress layout and the
layout algorithm are compared by calculating the Jaccard coefficient. A higher value
indicates that the nodes share a high percentage of common neighbors in the different
Gabriel Graphs.

The number of iterations of our model as well as for MARS and 1-stress have
been limited to 200. Furthermore, we tested MARS with 100 and 200 pivots
and report the layout with the smallest stress from the drawings obtained by
running mars with argument -p ∈ {1, 2} combined with a PivotMDS or randomly
initialized layout.

Besides comparing the resulting stress values and Procrustes statistics, we
compared the distribution of pairwise euclidean distances subject to their graph-
theoretic distances. Since the Procrustes statistic has problems with symmetries,
as we pointed out in the previous subsection, we propose to evaluate the similar-
ity of the sparse stress layouts with the full stress layout via Gabriel graphs [12].
The Gabriel graph of a given layout x contains an edge between a pair of points
if and only if the disc associated with the diameter of the endpoints does not
contain any other point. Since the treatment of identical positions is not defined
for Gabriel Graphs, we resolve this by adding edges between each pair of iden-
tical positions. We assess the similarity between the Gabriel Graph of the full
stress layout and the sparse stress layouts by comparing the k-neighborhoods of
a node in the graphs using the Jaccard coefficient.

A further measure we introduce evaluates the visual error. More precisely
we measure for a given node v the percentage of nodes that lie in the drawing
area of the k-neighborhood, but are not part of it. We calculate this value by
computing the convex hull induced by the k-neighborhood and then test for
each other node if it belongs to the hull or not. This number is then divided by
n − |{w ∈ V |dvw ≤ k}|. Therefore, a low value implies that there are only a few
nodes lying in the region, while high values indicate we cannot distinguish non
k-neighborhood and k-neighborhood nodes in the drawing. This measure is to a
certain extend similar to the precision of neighborhood preservation [15].
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Fig. 4. Error charts as a function of k. For each node of the graph the convex hull
w.r.t. the coordinates of the nodes in the k-neighborhood is computed. For each of the
convex hulls the error is calculated by counting the number of non k-neighborhood
nodes that lie inside or on the contour of this hull divided by their total number.

The results of all these experiments, see Tables 2 and 4, Figs. 3 and 4, and
the Appendix in [29], reveal that our model is more adequate in resembling the
full stress drawing than any other of the tested algorithm, while showing com-
parable running times that scale nicely with k, cf. Table 3. The error plots in
Table 4 expose the strength of our approximation scheme. We can see that, while
all approaches work very well in representing short distances, our approach is
more precise in approximating middle and especially long distances, explain-
ing our good results. As the evaluation clearly shows that our approach yields
better approximations of the full stress model, we rather want to discuss the
low performance of our model for lpship04l and thereby expose one weakness of
our approach.

Looking at the sparse 50 drawing of lpship04l in Table 4, we can see that a
large portion of nodes share a similar or even the same position. This is because
lpship04l has a lot of nodes that share very similar graph-theoretic distance vec-
tors, exhibit highly overlapping neighborhoods, and are drawn in close proximity
in the initial PivotMDS layout. While our model would rely on small variations
of the graph-theoretic distances to create a good drawing we diminish these
differences even further by restricting our model to P. Consequently, the posi-
tional vote for two similar non-pivot nodes i and j that lie in the same partition
will only slightly differ, mainly caused by their distinct neighbors. However, as
these neighbors are also in close proximity in the initial drawing of lpship04l
the distance between i and j will not increase. Therefore, if the graph has a lot
of structurally very similar nodes and the initial layout has poor quality, our
approach will inevitably create drawings where nodes are placed very close to
one another.
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Table 4. Layouts and error charts of the algorithms. Each chart shows the zero y
coordinate (black horizontal line), the median (red line), the 25 and 75 percentiles
(black/gray ribbon) and the min/max error (outer black dashed line). The error (y-
axis) is the difference between the euclidean distance and the graph-theoretic distance
(x-axis). 1000 bins have been used for weighted graphs

graph full stress sparse 200 sparse 100 sparse 50 maxent MARS 200 MARS 100 GRIP 1-stress PivotMDS
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5 Conclusion

In this paper we proposed a sparse stress model that requires O(kn + m) space
and time per iteration, and a preprocessing time of O(k(m + n log n)). While
Barnes & Hut derive their representatives from a given partitioning, we argued
that for our model it is more appropriate to first select the pivots and then to
partition the graph only relying on its structure. Since the approximation quality
heavily depends on the proper selection of these pivots, we evaluated different
sampling techniques, showing that k-means sp works very well in practice.

Furthermore, we compared a variety of sparse stress models w.r.t. their per-
formance in approximating the full stress model. We therefore proposed two new
measures to assemble the similarity between two layouts of the same graph. For
the tested graphs, all our experiments clearly showed that our proposed sparse
stress model exceeds related approaches in approximating the full stress layout
without compromising the computation time.
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Abstract. Node overlap removal is a necessary step in many scenarios
including laying out a graph, or visualizing a tag cloud. Our contribu-
tion is a new overlap removal algorithm that iteratively builds a Min-
imum Spanning Tree on a Delaunay triangulation of the node centers
and removes the node overlaps by “growing” the tree. The algorithm is
simple to implement yet produces high quality layouts. According to our
experiments it runs several times faster than the current state-of-the-art
methods.

1 Introduction

Removing node overlap after laying out a graph is a common task in network
visualization. Most graph layout algorithms [23] consider nodes as points that do
not occupy any geometrical space. In practice, nodes often have shapes, labels,
and so on. These shapes and labels may overlap in the visualization and affect
the visual readability. To remove such overlaps a specialized algorithm is usually
applied.

The main contribution of this paper is a new node overlap removal algorithm
that we call Growing Tree, or GTree further on. The basic idea is to first capture
most of the overlap and the local structure with a specific spanning tree on top
of a proximity graph, and then resolve the overlap by letting the tree “grow”.

We compare GTree with PRISM [6], which is widely used for the same pur-
pose. Needing more area than PRISM, our method preserves the original layout
well and is up to eight times faster than PRISM. To compare the two algo-
rithms we implemented GTree in the open source graph visualization software
Graphviz 1, where PRISM is the default overlap removal algorithm. On the other
side, GTree is the default in MSAGL2, where we also have an implementation
of PRISM. We ran comparisons by using both tools.
1 http://www.graphviz.org/.
2 https://github.com/Microsoft/automatic-graph-layout.
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2 Related Work

There is vast research on node overlap removal. Some methods, including hier-
archical layouts [4], incorporate the overlap removal with the layout step. Like-
wise, force-directed methods [5] have been extended to take the node sizes into
account [16,17,24], but it is difficult to guarantee overlap-free layouts without
increasing the repulsive forces extensively. Dwyer et al. [2] show how to avoid
node overlaps with Stress Majorization [7]. The method can remove node over-
laps during the layout step, but it needs an initial state that is overlap free;
sometimes such a state is not given.

Another approach, which we also choose, is to use a post-processing step. In
Cluster Busting [8,18] the nodes are iteratively moved towards the centers of
their Voronoi cells. The process has the disadvantage of distributing the nodes
uniformly in a given bounding box.

Imamichi et al. [15] approximate the node shapes by circles and minimize a
function penalizing the circle overlaps.

Starting from the center of a node, RWorldle [22] removes the overlaps by
discovering the free space around a node by using a spiral curve and then utilizing
this space. The approach requires a large number of intersection queries that are
time consuming. This idea is extended by Strobelt et al. [21] to discover available
space by scanning the plane with a line or a circle.

Another set of node overlap removal algorithms focus on the idea of defining
pairwise node constraints and translating the nodes to satisfy the constraints
[11,13,19,20]. These methods consider horizontal and vertical problems sep-
arately, which often leads to a distorted aspect ratio [6]. A Force-transfer-
algorithm is introduced by Huang et al. [14]; horizontal and vertical scans of
overlapped nodes create forces moving nodes vertically and horizontally; the
algorithm takes O(n2) steps, where n is the number of the nodes. Gomez et
al. [9] develop Mixed Integer Optimization for Layout Arrangement to remove
overlaps in a set of rectangles. The paper discusses the quality of the layout,
which seems to be high, but not the effectiveness of the method, which relies
on a mixed integer problem solver. Dwyer et al. [3] reduce the overlap removal
to a quadratic problem and solve it efficiently in O(n log n) steps. According to
Gansner and Hu [6], the quality and the speed of the method of Dwyer et al. [3]
is very similar to the ones of PRISM.

The ProjSnippet method [10] generates good quality layouts. The method
requires O(n2) amount of memory, at least if applied directly as described in the
paper, and the usage of a nonlinear problem solver.

In PRISM [6,12], a Delaunay triangulation on the node centers is used as the
starting point of an iterative step. Then a stress model for node overlap removal
is built on the edges of the triangulation and the stress function of the model
is minimized. GTree also starts with building this Delaunay triangulation, but
then the algorithms diverge.
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3 GTree Algorithm

An input to GTree is a set of nodes V , where each node i ∈ V is represented
by an axis-aligned rectangle Bi with the center pi. We assume that for different
i, j ∈ V the centers pi, pj are different too. If this is not the case, we randomly
shift the nodes by tiny offsets. We denote by D a Delaunay triangulation of the
set {pi : i ∈ V }, and let E be the set of edges of D.

On a high level, our method proceeds as follows. First we calculate the tri-
angulation D, then we define a cost function on E and build a minimum cost
spanning tree on D for this cost function. Finally, we let the tree “grow”. The
steps are repeated until there are no more overlaps. The last several steps are
slightly modified. Now we explain the algorithm in more detail.

We define the cost function c on E in such a way that the larger the overlap
on an edge becomes, the smaller the cost of this edge comes to be. Let (i, j) ∈ E.
If the rectangles Bi and Bj do not overlap then c(i, j) = dist(Bi, Bj), that is
the distance between Bi and Bj . Otherwise, for a real number t let us denote by
Bj(t) a rectangle with the same dimensions as Bj and with the same orientation,
but with the center at pi + t(pj −pi). We find tij > 1 such that the rectangles Bi

and Bj(tij) touch each other. Let s = ‖pj − pi‖, where ‖‖ denotes the Euclidean
norm. We set c(i, j) = −(tij − 1)s. See Fig. 1 for an illustration.

pi

pjs d d = tijs

cij = s − d

overlapping nodes

Bi

Bj

dist(Bi, Bj)

cij = dist(Bi, Bj)

non overlapping nodes

Fig. 1. Cost function cij for edges of the Delaunay triangulation. For overlapping
nodes −cij is equal to the minimal distance that is necessary to shift the boxes along
the edge direction so they touch each other.

Having the cost function ready, we compute a minimum spanning tree T on
D. Remember that it is a tree with the set of vertices V for which the cost,∑

e∈E′ c(e), is minimal, where E′ is the set of edges of the tree. We use Prim’s
algorithm to find T .

The algorithm proceeds by growing T , similar to the growth of a tree in
nature. It starts from the root of T . For each child of the root overlapping with
the root, it extends the edge connecting the root and the child to remove the
overlap. To achieve this, it keeps the root fixed but translates the sub-tree of the
child. The edges between the root and other children remain unchanged. The
algorithm recursively processes the children of the root in the same manner. This
process is described in Algorithm 1.

The number tij in line 5 of Algorithm 1 is the same as in the definition of the
cost of the edge (i, j) when Bi and Bj overlap, and is 1 otherwise.
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Algorithm 1: Growing T

Input: Current center positions p and root r
Output: New center positions p′

1 p′
r = pr

2 GrowAtNode (r)
3 function GrowAtNode (i)
4 foreach j ∈ Children(i) do
5 p′

j = p′
i + tij(pj − pi)

6 GrowAtNode (j);

(a) iteration 1 (b) iteration 2 (c) iteration 3

(d) iteration 4 (e) iteration 5
(f) final overlap free graph
with original shapes

Fig. 2. Overlap removal process with the minimum spanning tree on the proximity
graph, where the latter here is a Delaunay triangulation on rectangle centers. The blue
edges form a tree; there are four different trees in the figure. The tree edges connecting
overlapped nodes are thick and solid. In each iteration the thick edges are elongated
and the dashed tree edges shift accordingly. Overlap is completely resolved in four
iterations.

The algorithm does not update all positions for the child sub-tree nodes
immediately, but updates only the root of the sub-tree. Using the initial positions
of a parent and a child, and the new position of the parent, the algorithm obtains
the new position of the child in line 5. In total, Algorithm1 works in O(|V |) steps.
The choice of the root of the tree does not matter. Different roots produce the
same results modulo a translation of the plane by a vector. Indeed it can be
shown that after applying the algorithm, for any i, j ∈ V the vector p′

j − p′
i is

defined uniquely by the path from i to j in T .
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While an overlap along any edge of the triangulation exists, we iterate, start-
ing from finding a Delaunay triangulation, then building a minimum spanning
tree on it, and finally running Algorithm1. See Fig. 2 for an example.

When there are no overlaps on the edges of the triangulation, as noticed
by Gansner and Hu [6], overlaps are still possible. We follow the same idea as
PRISM and modify the iteration step. In addition to calculating the Delaunay
triangulation we run a sweep-line algorithm to find all overlapping node pairs
and augment the Delaunay graph D with each such a pair. As a consequence,
the resulting minimum spanning tree contains non-Delaunay edges catching the
overlaps, and the rest of the overlaps are removed. This stage usually requires
much less time than the previous one.

It is possible to create an example where the algorithm will not remove all
overlaps. However, such examples are extremely rare and have not been seen yet
in practice of using MSAGL or in our experiments. MSAGL applies random tiny
changes to the initial layout which prevents GTree from cycling.

4 Comparing PRISM and GTree by Measuring Layout
Similarity, Quality, and Run Time

Our data includes the same set of graphs that was used by the authors of PRISM
to compare it with other algorithms [6]. The set is available in the Graphviz
open source package3. We also used a small collection of random graphs and a
collection of about 10,000 files4. For the experiments we use a modified version
of Dot, where we can invoke either GTree or Prism for the overlap removal step,
and we also used MSAGL, where we implemented PRISM and GTree. MSAGL
was used only to obtain the quality measures. We ran the experiments on a PC
with Linux, 64bit and an Intel Core i7-2600K CPU@3.40 GHz with 16 GB RAM.

Some of resulting layouts can be seen in Figs. 3, 5, 6.
One can try to resolve overlap by scaling the node centers of the original

layout. If there are no two coincident node centers this will work, but the resulting
layout may require a huge area if some centers are close to each other. We
consider the area of the final layout as one of the quality measures, and usually
PRISM produces a smaller area than GTree, see Table 1.

In addition to comparing the areas, we compare some other layout properties.
Following Gansner and Hu [6], we look at edge length dissimilarity, denoted as
σedge. This measure reflects the relative change of the edge lengths of a Delaunay
Triangulation on the node centers of the original layout.

The other measure, which is denoted by σdisp, is the Procrustean
similarity [1]. It shows how close the transformation of the original graph is
to a combination of a scale, a rotation, and a shift transformation. PRISM and
GTree performs similar in the last two measures as Table 1 shows.

3 http://www.graphviz.org.
4 https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata

?dl=0.

http://www.graphviz.org
https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata?dl=0
https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata?dl=0
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PRISM original layout GTree

Fig. 3. Comparison between PRISM, original, and GTree layouts. In four top rows the
initial layouts were generated randomly. At the bottom are the drawings of nodes of
graph “root” which was initially laid out by the Multi Dimensional Scaling algorithm
of MSAGL. In our opinion, the initial structure is more preserved in the right column,
containing the results of GTree.



Node Overlap Removal by Growing a Tree 39

Table 1. Similarity to the initial layout (left) and number of iterations for different
graph sizes and different initialization methods (right). PR stands for PRISM

σedge σdisp area
Graph PR GTree PR GTree PR GTree

dpd 0.34 0.28 0.37 0.36 0.82 0.84
unix 0.22 0.19 0.24 0.20 2.38 2.38
rowe 0.29 0.26 0.23 0.24 0.68 0.73
size 0.39 0.37 0.24 0.26 1.09 1.28
ngk10 4 0.30 0.30 0.27 0.30 0.00 0.00
NaN 0.56 0.44 0.73 0.51 4.03 4.34
b124 0.55 0.53 0.97 0.83 5.52 6.22
b143 0.67 0.70 1.12 0.93 3.62 3.88
mode 0.54 0.50 0.59 0.53 1.53 2.29
b102 0.71 0.77 1.43 1.27 4.50 6.62
xx 0.75 0.70 1.65 1.42 6.21 9.57
root 1.09 1.19 2.89 2.45 34.58 91.87
badvoro 0.88 0.92 2.27 2.42 25.68 47.43
b100 0.84 0.98 3.08 3.14 20.64 37.38

init. layout: neato SFDP
Graph |V | |E| PR GTree PR GTree

dpd 36 108 4 7 3 6
unix 41 49 3 4 12 5
rowe 43 68 5 4 13 7
size 47 55 7 3 9 5
ngk10 4 50 100 6 3 14 7
NaN 76 121 8 3 24 6
b124 79 281 14 4 30 12
b143 135 366 21 6 37 12
mode 213 269 37 8 11 6
b102 302 611 60 24 113 19
xx 302 611 83 18 50 19
root 1054 1083 95 18 99 22
badvoro1235 1616 40 20 50 23
b100 1463 5806 80 24 136 28

Table 2. k closest neighbors error, the Multi Dimensional Scaling algorithm of MSAGL
was used for the initial layout. PR stands for PRISM.

k = 8 k = 9 k = 10 k = 11 k = 12
Graph PR GTree PR GTree PR GTree PR GTree PR GTree

dpd 7.75 6.06 9.61 7.36 9.5 8 10.14 8.5 9.97 7.64
unix 8.56 7.05 10.51 8.8 10.95 10.02 11.66 10.54 13 11.41
rowe 6.28 8.09 7.09 9.95 7.49 10.49 9.12 11.4 11.05 12.51
size 4.68 6.09 5.47 6.47 6.28 7.57 6.89 8.13 8.26 10.02
ngk10 4 6.76 7.4 7.52 9.26 8.28 11.38 10.72 13.74 11.92 14.66
NaN 11.83 8.95 14.46 11.5 17.32 13.88 19.88 16.37 22.17 19.7
b124 11.03 11.44 13.22 13.56 14.76 15.54 15.91 17.32 18.23 20.04
b143 13.49 12.39 16.31 14.99 19.49 17.93 23.11 21.04 26.53 24.43
mode 16.91 11.46 20.58 13.95 24.68 16.85 29.54 19.92 34.48 22.56
b102 15.99 14.62 19.61 18.78 23.38 22.77 27.28 26.77 32.15 31.45
xx 15.68 15.65 19.01 19.45 23.05 23.37 26.98 27.35 31.29 32.47
root 17.09 15.7 20.89 19.36 25.48 23.3 30.48 27.66 35.74 32.83
badvoro 16.18 15.15 20.16 18.98 24.37 23.28 29.18 28.03 34.29 33.29
b100 18 19.25 22.11 23.65 26.79 28.69 32.03 34.46 37.44 40.5

To distinguish the methods further, we measure the change in the set of k
closest neighbors of the nodes. Namely, let p1, . . . , pn be the positions of the
node centers, and let k be an integer such that 0 < k ≤ n. Let I = {1, . . . , n}
be the set of node indices. For each i ∈ I we define Nk(i) ⊂ I \ {i}, such
that |Nk(p, i)| = k, and for every j ∈ I \ Nk(p, i) and for every j′ ∈ Nk(p, i)
holds ‖pj − pi‖ ≥ ‖pj′ − pi‖. In other words, Nk(p, i) represents a set of k
closest neighbors of i, excluding i. Let p′

1, . . . , p
′
n be transformed node centers.

To see how much the layout is distorted nearby node i, we intersect Nk(p, i)
and Nk(p′, i). We measure the distortion as (k − m)2, where m is the number of
elements in the intersection. One can see that if the node preserves its k closest
neighbors then the distortion is zero.
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Table 3. Statistics on collection A. Here k-cn stands for k-closest neighbors, and “iters”
stands for the number of iterations. Each cell contains the number of graphs for the
measure on which the method performed better. We can see that PRISM produced a
layout of smaller area than the one of GTree on 8498 graph, against 1579 graphs where
GTree required less area. From the other side, GTree gives better results on all other
measures. The columns of k-cn and “iters” do not sum to 10077, the number of graphs
in A, because some of the results were equal for PRISM and GTree.

Method k-cn σedge σdisp area iters time

PRISM 3237 4741 4114 8498 46 7
GTree 4088 5336 5963 1579 9986 10070

Fig. 4. Runtimes for PRISM and GTree.

Our experiments for k from 8 to 12 show that under this measure GTree
produced a smaller error, showing less distortion, on 8 graphs from 14, and on
the rest PRISM produced a better result, see Table 2. GTree produced a smaller
error on all small random graphs from other collections5.

We ran tests on the graphs from a subdirectory of the same site called
“dot files”, let us call this set of graphs collection A. Each graph from A rep-
resents the control flow of a method from a version of the .NET framework. A
contains 10077 graphs. The graph sizes do not exceed several thousands. We

5 https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata
?dl=0.

https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata?dl=0
https://www.dropbox.com/sh/4q0k89yrv4x3ae3/AAA3xyKFRhLyyHXcG9jpcgata?dl=0
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Fig. 5. Root graph with 1054 nodes and 1083 edges. (a) initial layout with NEATO,
(b) applying PRISM, (c) applying GTree.

GTree original PRISM

GTree original PRISM

Fig. 6. Results for GTree and PRISM initialized with SFDP. From top to bottom
and left to right: b100, b102, b124, b143, badvoro, dpd, mode, - NaN, ngk10 4, root,
rowe, size, unix, and xx. To make the original drawings more readable they have been
changed; In most cases the nodes were diminished and the edges removed. The drawings
were scaled differently.
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used the Multi Dimensional Scaling algorithms of MSAGL for the initial layout
in this test. The results of the run are summarized in Table 3.

Runtime Comparison. Both methods remove the overlap iteratively using
the proximity graph. However, while PRISM needs O(|V | · √|V |) time to solve
the stress model, GTree needs only O(|V |) time per iteration with the growing
tree procedure. Therefore, GTree is asymptotically faster in a single iteration.
In addition, as Table 1 (right) shows, GTree usually needs fewer iterations than
PRISM, especially on larger graphs. The overall runtime can be seen in Fig. 4.
It shows that GTree outperforms PRISM on larger graphs.

In Fig. 5 we experiment with the way we expand the edges. Instead of the
formula p′

j = p′
i+tij(pj −pi), which resolves the overlap between the nodes i and

j immediately, we use the update p′
j = p′

i + min(tij , 1.5)(pj − pi). As a result,
the algorithm runs a little bit slower but produces layouts with smaller area.

5 Conclusion and Future Work

We proposed a new overlap removal algorithm that uses the minimum spanning
tree. The algorithm is simple and easy to implement, and yet it preserves the
initial layout well and is efficient.

Although we introduced our approach in the context of graph visualization,
our method can also be used for any other purpose where overlap needs to be
resolved while maintaining the initial layout. Finding a measure of how well an
overlap removal algorithm preserves clusters of the initial layout seems to be an
interesting challenge.
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Abstract. We consider the problem of placing arrow heads in directed
graph drawings without them overlapping other drawn objects. This
gives drawings where edge directions can be deduced unambiguously. We
show hardness of the problem, present exact and heuristic algorithms,
and report on a practical study.

1 Introduction

The default way of drawing a directed edge is to draw it as a line with an
arrow head at its target. While there also exist other models (placing arrows at
the middle, drawing edges in a “tapered” fashion, etc.; cf. [7,8]) the former is
prevailing in virtually all software systems. However, this simple model becomes
problematic when several edges attach to a vertex on a similar trajectory: it may
be hard to see whether a specific edge is in- or outgoing, cf. Fig. 1 and [1].

We try to solve this issue by looking for a placement of the arrow heads such
that (a) they do not overlap other edges or arrow heads, and (b) still retain the
property of being at—or at least close to—the target vertices of the edges. In
the following, we show NP-hardness of the problem, propose exact and heuristic
algorithms for its discretized variant, and evaluate their practical performance in
a brief exploratory study. We remark that our problem is related to map labeling
and in particular to edge labeling problems [4,5,9–11,13,15–18].

For space reasons, some proofs and technical details are omitted in this
extended abstract, and can be found in the appendix of the ArXiv version [1].

2 The Arrow Placement Problem

We first formally define our arrow placement problem and establish its theoret-
ical time complexity. Let G = (V,E) be a digraph and let Γ be a straight-line
drawing of G. We assume that in Γ each vertex v ∈ V is drawn as a circle

Work is partially supported by the MIUR project AMANDA “Algorithmics for
MAssive and Networked DAta”, prot. 2012C4E3KT 001.

c© Springer International Publishing AG 2016
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Fig. 1. Layouts of a digraph with 10 vertices and 21 edges. (left) The arrows are placed
by a common editor; several arrows overlap and the direction of, e.g., the thick red edge
is not clear. (right) The arrows are placed by our exact method. (Color figure online)

(possibly a point) Cv. We also assume that, for each edge e ∈ E, the arrow of
e is modeled as a circle Ce of positive radius, centered in a point along the seg-
ment that represents e: when Γ is displayed, the arrow of e is drawn as a triangle
inscribed in Ce, suitably rotated according to the direction of e. We assume that all
circles representing a vertex (arrow) have a common radius rV (rE , respectively).
We say that two arrows—or an arrow and a vertex—overlap if their corresponding
circles intersect in two points. An arrow and an edge overlap if the segment rep-
resenting the edge intersects the circle representing the arrow in two points. For
the sake of simplicity, we reuse terms of theoretical concepts also for their visual
representation: “arrow” and “vertex” also refer to their corresponding circle in Γ ;
“edge” also refers to its corresponding segment in Γ .

Definition 1. Let ae denote the arrow of an edge e ∈ E. A valid position for
ae in Γ is such that: (P1) for every vertex v ∈ V , ae and v do not overlap; (P2)
for every edge g ∈ E, g �= e, ae and g do not overlap. An assignment of a valid
position to each arrow is called a valid placement of the arrows, denoted by PΓ .

Definition 2. Given a valid placement PΓ , the overlap number of PΓ is the
number of pairs of overlapping arrows, and is denoted as ov(PΓ ).

Given a straight-line drawing Γ of a digraph G = (V,E), and constants rV ,
rE , we ask for a valid placement PΓ of the arrows (if one exists) such that ov(PΓ )
is minimum. This optimization problem is NP-hard; we prove this by showing
the hardness of the following decision problem Arrow-Placement.

Problem: Arrow-Placement

Instance: 〈G = (V,E), Γ, rV , rE〉.
Question: Does there exist a valid placement PΓ of the arrows with ov(PΓ ) = 0?

Theorem 1. The Arrow-Placement problem is NP-hard.

The proof of Theorem1 uses a reduction from Planar 3-SAT [12], and
is similar to those used in the context of edge labeling [9,13,16,18]. It yields
an instance of Arrow-Placement where the search of a valid placement PΓ

with ov(PΓ ) = 0 can be restricted to a finite number of valid positions for
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each arrow.Hence,Arrow-Placement remainsNP-hard even ifwe fix a finite set
of positions for each arrow, and a valid placement with overlap number zero (if any)
may only choose from these positions. As this variant of Arrow-Placement,
which we call Discrete-Arrow-Placement, clearly belongs to NP, it is
NP-complete.

3 Algorithms

We describe algorithms for the optimization version of Discrete-Arrow-
Placement. We assume that a set of valid positions for each arrow is given,
based on {Γ, rV , rE}, and look for a valid placement PΓ that minimizes ov(PΓ )
over this set of positions. We give both an exact algorithm and two variants of a
heuristic, which we experimentally compare in Sect. 4. Given an edge e ∈ E, let
Ae denote the set of valid positions for the arrow of edge e, and let A :=

⋃
e∈E Ae

be the set of all valid positions. Our algorithms are based on an arrow conflict
graph CA, depending on A, Γ , and rE . The positions A form the node set of
CA. Two positions are conflicting, and connected by an (undirected) edge in CA,
if they correspond to positions of different edges and the arrows would overlap
when placed on these positions. Finding a valid placement PΓ with ov(PΓ ) = 0
means to select one element from each Ae such that they form an independent
set in CA. More general, finding a valid placement PΓ with ov(PΓ ) = k (k ≥ 0)
means to select one element from each Ae such that they induce a subgraph with
k edges in CA. Our exact algorithm minimizes k using an ILP formulation, while
our heuristic adopts a greedy strategy. Both techniques try to minimize the dis-
tance of each arrow from its target vertex as a secondary objective. However, our
algorithms can be easily adapted to privilege other positions (e.g., close to the
source vertices, in the middle of the edges, etc.), or to consider bidirected edges.

ILP Formulation. For each position pe ∈ Ae of an edge e = (v, u), we have
a binary variable xpe

. We define a distance d(pe) ∈ {1, . . . , |Ae|}, from pe to
u: d(pe) = 1 (d(pe) = |Ae|) means that pe is the position closest (farthest,
respectively) to u. Let EA := E(CA) be the pairs of conflicting positions. For
every (pe, pg) ∈ EA, we define a binary variable ypepg

. The total number of
variables is O(|A|2), and we write:

min
∑

(pe,pg)∈EA

ypepg
+

1
M

·
∑

e∈E

∑

pe∈Ae

d(pe)xpe
(1)

∑

pe∈Ae

xpe
= 1 ∀e ∈ E (2)

xpe
+ xpg

≤ ypepg
+ 1 ∀(pe, pg) ∈ EA (3)

The objective function minimizes the overlap number and, secondly, the sum
of the distances of the arrows from their target vertices. To do this, the second
term is divided for a sufficiently large constant M . For example, one can set
M = |E|maxe∈E{|Ae|}. Equation 2 guarantee that exactly one valid position
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per edge is selected. Constraint 3 enforces ypepg
= 1 if both conflicting positions

xpe
and xpg

are chosen. In the following, the exact technique will be referred to
as Opt. We remark that optimization problems and ILP formulations similar to
above have been given in the context of edge and map labeling [4,5,9,11,15,16].

Heuristics. Our heuristics follow a greedy strategy, again based on CA. Let
pe ∈ Ae ⊂ V (CA) as above. We initially assigns cost c(pe) to each position
pe, and then execute |E| iterations. In each iteration, we select a position pe of
minimum cost (over all e ∈ E) and place the arrow of the corresponding edge
there; then, we remove all positions Ae from CA (including pe), and update the
costs of the remaining positions. We define c(pe) := δ(pe)+ 1

M d(pe)+Tσpe
, where:

δ(pe) is the degree of pe in CA (i.e., the number of positions conflicting with pe);
constant M and “distance” d(pe) are defined as in the ILP; σpe

is the number of
already chosen positions conflicting with pe (0 in the first iteration); T is equal
to the maximum initial cost of a valid position. This cost function guarantees
that: (i) positions conflicting with already selected positions are chosen only
if necessary; (ii) the algorithm prefers positions with the minimum number of
conflicts with the remaining positions and, among them, those closer to the target
vertex. Since constructing CA may be time-consuming in practice (we compare
all pairs of valid positions), we also consider using only a subset of the edges of
CA; we may consider only those conflicts arising from positions of adjacent edges
in the input graph. In the following, HeurGlobal is the heuristic that considers
full CA, while HeurLocal is the variant based on this simplified version of CA.

4 Experimental Analysis

Experimental Setting. We use three different sets of graph: Planar are bicon-
nected planar digraphs with edge density 1.5–2.5, randomly generated with the
OGDF [3]. Random are digraphs generated with uniform probability distrib-
ution with edge density 1.4–1.6. Both sets contain 30 instances each; 6 graphs
for each number of vertices n ∈ {100, 200, . . . , 500}. We did not generate denser
graphs, as they give rise to cluttered drawings with few valid positions for the
arrows—there, the arrow placement problem seems less relevant. Finally, North
is a popular set of 1, 275 real-world digraphs with 10–100 vertices and average
density 1.4 [14]. We draw each instance of the three sets with straight-line edges
using OGDF’s FM3 algorithm [6]. The layouts of the Planar may contain edge
crossings, as they are generated by a force-directed approach.

Value rE is chosen as the minimum of (a) 40% of the shortest edge length,
(b) 25% of the average edge length, and (c) 10 pixels, but enforced to be at least
3 pixels. We set rV := rE . For each edge e = (w, u) we compute positions Ae as
follows. The i-th position, i ≥ 1, has its center at distance rV +i·rE from target u.
We generate positions as long as they have distance at least rV +rE from source
vertex w. We then remove positions that overlap with edges or vertices in Γ . If
no valid positions remain, we choose the one closest to u as e’s unique arrow
position. Thus, in the final placements there might be some conflicts between an
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arrow and a vertex or edge of the drawing. We call such conflicts crossings and
observe that a single invalid position may result in several crossings.

We apply Opt, HeurGlobal, and HeurLocal to each of the drawings. The algo-
rithms are implemented in C# and run on an Intel Core i7-3630QM notebook
with 8 GB RAM under Windows 10. For the ILP we use CPLEX 12.6.1 with
default settings. For each computation, we measure total running time, overlap
number, and number of crossings (due to invalid positions, see above). From the
qualitative point of view, we also compare the algorithmic results with a trivial
placement, called Editor, which simply places each arrow close to its target ver-
tex, similarly as most graph editors do. We also measure placement time, i.e.,
the time spent by an algorithm to find a placement after CA has been computed.

Results. For Planar, the average numbers of positions in CA range from 640
to 7, 150. Figures 2(a) and (b) show that for Planar all the algorithms are
very applicable, although Opt is of course significantly slower. While the pure
placement time for HeurGlobal is not much longer than that of HeurLocal, it
suffers from the fact that generating the full CA constitutes roughly 1/3 of
its overall runtime, whereas the generation time of the reduced conflict graph is
rather neglectable. On the other hand, Fig. 2(c) shows that HeurGlobal practically
coincides with the optimum w.r.t. the number of overlaps (its average gap is
below 3%; the worst gap is 6.76%). HeurLocal still gives very good solutions,
with gaps about half that of Editor. Figure 2(d) shows that our algorithms reduce
the number of invalid positions by 33−77% compared to Editor. The number of

Fig. 2. Planar: (a) Placement time; (b) Total running time; (c) Number of overlaps;
(d) Number of crossings (edge/vertex with arrow) and of invalid positions.
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Fig. 3. Random: (a) Total running time; (b) Number of overlaps, relative to Opt.

Fig. 4. North: (a) Total running time; (b) Number of overlaps, relative to to Opt.

crossings is the same for all our algorithms, as they occur when we cannot find
any valid position for arrows during the generation procedure. Figure 2(d) shows
that our algorithms cause significantly less crossings than Editor.

For Random, average numbers of positions in CA range from 640 to 4, 377.
The general behavior for Random is similar to that of Planar but the difference
between the running time of Opt and the heuristics is slightly more pronounced
(Fig. 3(a)). Again, constructing CA constitutes roughly 1/3 of HeurGlobal’s run-
ning time. Still, the quality of HeurGlobal’s solutions again essentially coincide
with Opt; the other heuristics are now closer than before, see Fig. 3(b).

For North, the average |V (CA)| range from 62 to 311. We observe the same
patterns, see Figs. 4: HeurLocal requires nearly no time, while HeurGlobal is very
competitive at just above 20ms for the large graphs (a third of which is the
construction of full CA). Again, Opt always finds a solution very quickly, in fact
within roughly 80ms. HeurGlobal again gives essentially optimal solutions, while
HeurLocal exhibits 5−10% gaps. Editor requires 30−50% more overlaps than Opt.

5 Conclusions and Future Work

We discussed optimizing arrow head placement in directed graph drawings, to
improve readability. As mentioned, this is very related to studies in map and
graph labeling, but its specifics seem to make a more focused study worthwhile.
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Our techniques are of practical use, and could be sped-up by constructing
CA using a sweepline or the labeling techniques in [17]. It would be interesting
to validate the effectiveness of our approach through a user study (e.g. for tasks
that involve path recognition). Moreover, one may consider both placing labels
and arrow heads. Finally, the non-discretized problem variant, as well as the
variants’ respective (practical) benefits, should be investigated in more depth.

Acknowledgments. Research on this problem started at the Dagstuhl seminar
15052 [2]. We thank Michael Kaufmann and Dorothea Wagner for valuable discus-
sions, and the anonymous referees for their comments and suggestions.
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Abstract. Bundling of graph edges (node-to-node connections) is a
common technique to enhance visibility of overall trends in the edge
structure of a large graph layout, and a large variety of bundling algo-
rithms have been proposed. However, with strong bundling, it becomes
hard to identify origins and destinations of individual edges. We pro-
pose a solution: we optimize edge coloring to differentiate bundled edges.
We quantify strength of bundling in a flexible pairwise fashion between
edges, and among bundled edges, we quantify how dissimilar their colors
should be by dissimilarity of their origins and destinations. We solve the
resulting nonlinear optimization, which is also interpretable as a novel
dimensionality reduction task. In large graphs the necessary compro-
mise is whether to differentiate colors sharply between locally occurring
strongly bundled edges (“local bundles”), or also between the weakly
bundled edges occurring globally over the graph (“global bundles”); we
allow a user-set global-local tradeoff. We call the technique “peacock bun-
dles”. Experiments show the coloring clearly enhances comprehensibility
of graph layouts with edge bundling.

Keywords: Graph visualization · Network data · Machine learning ·
Dimensionality reduction

1 Introduction

Graphs are a prominent type of data in visual analytics. Prominent graph types
include for instance hyperlinks of webpages, social networks, citation networks
between publications, interaction networks between genes, variable dependency
networks of probabilistic graphical models, message citations and replies in dis-
cussion forums, traces of eye fixations, and many others. 2D or 3D visualization
of graphs is a common need in data analysis systems. If node coordinates are not
available from the data, several node layout methods have been developed, from
constrained layouts such as circular layouts ordered by node degree to uncon-
strained layouts optimized by various criteria; the latter methods can be based
on the node and edge set (node adjacency matrix) alone, or can make use of
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 52–64, 2016.
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multivariate node and edge features, typically aiming to reduce edge crossings
and place nodes close-by if they are similar by some criterion.

In layouts with numerous edges it may be hard to see trends in node-to-node
connections. Edge bundling draws multiple edges as curves that are close-by and
parallel for at least part of their length. Bundling simplifies the appearance of
the graph, and bundles also summarize connection trends between areas of the
layout. However, when edges are drawn close together, the ability to visually
follow edges and discover their start and end points is lost. Interactive systems
[10] can allow inspection of edges, but inspecting numerous edges is laborious.

Comprehensibility of edges can be enhanced by distinguishing them by visual
properties, such as line style, line width, markers along the curve, or color.
Following an edge by its color can allow an analyst to see where each edge goes,
but poorly assigned colors can make this task hard to do at a glance. We present
a machine learning method that optimizes edge colors in graphs with
edge bundling, to keep bundled edges maximally distinguishable. We
focus on edge color as it has several degrees of freedom suitable for optimization
(up to three continuous-valued color channels if using RGB color space), but our
method is easily applicable to other continuous-valued edge properties. We call
our solution peacock bundles as it is inspired by the plumage of a peacock; our
method results in a fan of colors, reminiscent of a peacock tail, at fan-in locations
of edges arriving into a bundle and fan-out locations of edges departing from a
bundle. Figure 1 (middle) illustrates the concept and how it can help follow edges.
We next review related works and then present the method and experiments.

Fig. 1. Illustration of peacock bundle coloring. Left: A graph with node groups A–F,
drawn with hierarchical edge bundling. With plain gray coloring finding the connecting
vertex pairs is not possible. Middle: Peacock bundle coloring reveals that nodes in
group A connect to nodes in group E in order, and similarly B to D in order, and
C to F in reverse order. The connections are easily seen from the optimized coloring
produced by our Peacock Bundles method: bundled edges traveling from and to close-by
nodes get close-by colors. Right: Pairwise bundling detection as described in Sect. 3.1,
for three edges, control points zij shown as circles, distance threshold T as the radius
of light gray circles (small threshold used for illustration). Control points z12, . . . , z15 of
edge 1 are near control points of edge 2, but only z13 is near a control point of edge 3.
If, e.g., Kij = 2 nearby control points are required between edges, edge 1 is considered
bundled with edge 2 but not edge 3; edge 2 is considered bundled with edges 1 and 3,
and edge 3 with edge 2 but not edge 1. Since edges 1 and 3 are not considered bundled
they could be assigned a similar color. (Color figure online)
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2 Background: Node Layout, Edge Bundling,
and Coloring

Node layouts of graphs have been optimized by many approaches, see [9] for a
survey. Our approach is not specific to any node layout approach and can be run
for any resulting layout. Several methods have been proposed for edge bundling
[4,6–8,13,16,17,19]. For example, Cui et al. [4] generate a mesh covering the
graph on the display based on node positions and edge distribution. The mesh
helps cluster edges spatially; edges within a cluster are bundled. Hierarchical
Edge Bundling [13] embeds a tree representation for data with hierarchy onto
the 2D display. Tree nodes are used as spline control points for edges; bundles
come from reusing control points. See Zhou et al. [22] for a recent review and
taxonomy.

Unlike node layout and edge bundling, relatively little attention has been
paid to practical edge coloring; while graph theory papers exist about the “edge
coloring problem” of setting distinct colors to adjacent edges with a minimum
number of colors, that combinatorial problem does not reflect real-life graph
visual analytics where a continuous edge color space exists and the task is to
set colors to be informative about graph properties. Simple coloring approaches
exist. A naive coloring sets a random color to each edge: such coloring is unrelated
to spatial positions of nodes and edges and is chaotic, making it hard to grasp an
overview of edge origins and destinations at a glance. Edge colors are sometimes
reserved to show discrete or multivariate annotations such as edge strengths;
such coloring relies on external data and may not help gain an overview of the
graph layout itself. A simple layout-driven solution is to color each edge by
onscreen position of the start or end node. If edges have been clustered by some
method, one often sets the same color to the whole cluster [7,21]; this simplifies
coloring, but prevents telling apart origins and destinations of individual edges.

Hu and Shi [15] create edge colorings with a maximal distinguishability moti-
vation related to ours, but their method does not consider actual edge bundling
and operates on the original graph; we operate on bundled graphs and quan-
tify edge bundling. Also, instead of only using binary detection of bundled edge
pairs (a hard criterion whether two edges are bundled) we differentiate all edges,
emphasizing each pair by a weight that is high between strongly bundled local
edges and smaller between others, with a user-set global-local tradeoff. Lastly,
their method tries to set maximally distinct colors between all bundled edges,
needing harder compromises for larger bundles: we quantify which bundled edges
need the most distinct colors by comparing their origin and destination coordi-
nates in the layout, and thus can devote color resources efficiently even in large
graphs.

Our algorithm is related to nonlinear dimensionality reduction. Although
dimensionality reduction has been used in colorization for other domains [3,5],
to our knowledge ours is the first method to optimize local graph coloring with
edge bundling as a dimensionality reduction task.
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3 The Method: Peacock Bundles

Bundle coloring has several challenges. 1. Efficient coloring should depend not
only on high-dimensional graph properties on the low-dimensional graph layout:
if two edges are spatially distinct they do not need different colors. 2. Bun-
dles are typically not clearly defined : the curve corresponding to an individual
edge may become locally bundled with several other edges at different places
along the curve between its start and end node, and edges cannot be cleanly
separated into groups that would correspond to some globally nonoverlapping
bundles. Solutions requiring nonoverlapping bundles would be suboptimal: they
would either not be applicable to real-life edge-bundled graphs or would need to
artificially approximate the bundle structure of such graphs as nonoverlapping
subsets. 3. The solution should scale up to large graphs with large bundles. In
large bundles it is typically not feasible to assign strongly distinct colors between
all edges; it is then crucial to quantify how to make the compromise, that is,
which edges should have the most distinct colors within the bundle.

Our coloring solution neatly solves these challenges, by posing the coloring
as an optimization task defined based on local bundling between each individual
pair of edges. Our solution is applicable to all graphs and takes into account
the full bundle structure in a graph layout without approximations. For any two
edges it is easy to define whether their curves are bundled (close enough and
parallel) for some part of their length, without requiring a notion of a globally
defined bundle; we optimize the coloring to tell each edge apart from the ones it
has been bundled with. Such optimization makes maximally efficient use of the
colors: two edges need distinct colors only if they are bundled together, whereas
two edges that are not bundled can share the same color or very similar colors.
Moreover, even between two bundled edges, how distinct their colors need to be
can be quantified in a natural way based on the node layout: the more dissimilar
their origins and destinations are, the more dissimilar their colors should be.
Differentiating origins and destinations helps analysts assuming the node layout
is meaningful. Computation of peacock bundles requires two steps:

1. Detection of which pairs of edges are bundled together at some location along
their curve. We solve this by a well-defined closeness threshold of consecutive
curve segments. An edge may participate in multiple bundles along its curve.

2. Definition of the color optimization task. We formalize the color assignment
task as a dimensionality reduction task from two input matrices, a pairwise
edge-to-edge bundling matrix and a dissimilarity matrix that quantifies how
dissimilar colors of bundled edges should be, to a continuous-valued low-
dimensional colorspace, which can be one-dimensional (1D) to achieve a color
gradient, or 2D or 3D for greater variety. (Properties like width or continuous
line-style attributes could be included in a higher than 3D output space; here
we use color only.) We define the color assignment as an edge dissimilarity
preservation task: colors are optimized to preserve spatial dissimilarities of
start and end nodes among each pair of bundled edges, whereas no constraint
is placed between colors of non-bundled edge pairs.
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Peacock bundle coloring can be integrated into edge bundling algorithms,
but can be also run as standalone postprocessing for graphs with edge bundling,
regardless of which algorithms yielded the node layout and edge curves. Peacock
bundles optimize colors taking both the graph and its visualization (node and
edge layout) into account: color separation needs to be emphasized only for edges
that appear spatially bundled. We demonstrate the result on several graphs with
different node layouts and a popular edge bundling technique.

3.1 Detection of Bundled Pairs of Edges

Let the graph contain M edges i = 1, . . . ,M , each represented by a curve. If
the curves are spline curves, let each curve be generated by Ci control points;
if the curves are piecewise linear, let each curve be divided into Ci segments
represented e.g. by the midpoint of a segment. For brevity we use the terminology
of control points in the following, but the algorithm can be used just as well
for other definitions of a curve, such as midpoints of piecewise linear curves or
equidistributed points on the curves if getting such locations is convenient.

Let Bij be a variable in [0, 1] denoting whether edge i is bundled together with
edge j. If the edge bundling has been created by an algorithm that explicitly
defines bundle memberships for edges, Bij can simply be set to 1 for edges
assigned to the same bundle and zero otherwise. However, for several situations
this is insufficient: (i) sometimes the bundling algorithm is not available or the
bundling has e.g. been created interactively; (ii) some bundling algorithms only
e.g. attract edge segments and do not define which edges are bundled; (iii) an
edge may be close to several different other edges, so that no single bundle
membership is sufficient to describe its relationship to other edges. For these
reasons we provide a way to define pairwise edge bundling variables Bij that
does not require availability of any previous bundling algorithm.

We set Bij = 1 if at least Kij consecutive control points of edge i are each
close enough to one or more control points of edge j. Intuitively, if several con-
secutive control points of edge i are close to edge j, the edges travel close and
parallel (as a bundle) at least between those control points. Since our choice of
control points does not allow the curves to change drastically between two con-
secutive control points, the defined Bij is stable when the control point densities
between curve i and curve j do not differ too much. In practice, we set Kij to an
integer at least 1, separately for each pair of edges, as a fraction of the number
of available control points as detailed later in this section.

Formally, for edge i denote the on-screen coordinates of the Ci control points
by zi1, . . . , ziCi

, and similarly for edge j. Let d(·, ·) denote the Euclidean distance
between two control points, and let T be a distance threshold. Then

Bij = max
r0=1,...,Ci−Kij+1

r0+Kij−1∏

r=r0

1( min
s=1,...,Cj

d(zir, zjs) ≤ T ) (1)

where r = r0, . . . , r0 +Kij −1 are indices of consecutive control points in edge i.
The term 1(·) is 1 if the statement inside is true and zero otherwise: that is, the
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term is 1 if the rth control point of edge i is close to edge j (to some control
point s of edge j). The whole product term is 1 if the Kij consecutive control
points of i from r0 onwards are all close to edge j. Finally, the whole term Bij

is 1 if edge i has Kij consecutive points (from any r0 onwards) that are all close
to edge j. Figure 1 (right) illustrates the pairwise bundling detection.

The distance threshold T should be set to a value below which line segments
appear very similar; a rule of thumb is to set T to a fraction of the total diameter
(or larger dimension) of the screen area of the graph. Similarly, a convenient
way to set the required number of close-by control points Kij is to set it to a
fraction of the maximum number of control points in the two edges, requiring
at least 1 control point, so that for each pair of edges i and j we set Kij =
max(1, �max(Ci, Cj)Kmin�) where Kmin ∈ (0, 1] is the desired fraction.

Detected pairwise bundles match ground truth in all simple examples we
tried (e.g. Fig. 1 left); in experiments of Sect. 4 where no ground truth is available
the bundling is visually good; edges bundled with any edge of interest can be
interactively checked at http://ziyuang.github.io/peacock-examples/.

3.2 Optimization of Edge Colors by Dimensionality Reduction

Our coloring is based on dimensionality reduction of bundled edges from an
original dissimilarity (distance) matrix to a color space; we thus need to define
how dissimilar two bundled edges are. We aim to help analysts differentiate
where in the graph layout each edge goes; we thus use the node locations of
edges to define the similarity. Denote the two on-screen node layout coordinates
of edge i by v1

i and v2
i . We first define

doriginalij = min(‖v1
i − v1

j‖ + ‖v2
i − v2

j‖, ‖v1
i − v2

j‖ + ‖v2
i − v1

j‖) . (2)

Denote the set of p features for edge i as a vector xi = [xi1, . . . , xip], and denote
the low-dimensional output features for edge i as a vector yi = [yi1, . . . , yiq]
where q ∈ {1, 2, 3} is the output dimensionality. We define the dimensionality
reduction task as minimizing the difference between the endpoint dissimilarity
of bundled edges and dissimilarity of their optimized colors. This yields the
cost function

min
{y1,...,yM}

∑

i

∑

j

Bij(d
original
ij − dout(yi,yj))2 (3)

where dout(yi,yj) is the Euclidean distance between the output features. The
terms Bij are large for only those pairs of edges that are bundled, thus minimiz-
ing the cost assigns colors to preserve dissimilarity within bundled edges, but
allows freedom of color assignment between non-bundled edges. The cost encap-
sulates that greater difference of edge destinations should yield greater color
difference, and that color differentiation is most needed for strongly bundled
edges. While alternative formulations are possible, (3) is simple and works well.

From Local to Global Color Differentiation. The weights Bij detect edges
according to thresholds T and Kij . Some edge pairs that fail the detection
might still visually appear nearly bundled: instead of differentiating only within

http://ziyuang.github.io/peacock-examples/
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detected bundles, it is meaningful to differentiate other edges too. The simplest
way is to encode a tradeoff between local (within-bundle) and global differ-
entiation in the Bij : we set Bij = 1 if edges i and j are bundled, otherwise
Bij = ε where ε ∈ [0, 1] is a user-set parameter for the preferred global-local
tradeoff. When 0 < ε < 1, the cost emphasizes achieving desired color differ-
ences between bundled edges (where Bij = 1) according to their dissimilarity of
origins and destinations, but also aims to achieve color differences between other
edges (Bij = ε) according to the same dissimilarity. As the optimization is based
on desired dissimilarities between edges, it intelligently optimizes colors even
when all edge pairs can have nonzero weight: ε = 0 means a pure local coloring
where only bundled edge pairs matter, and ε = 1 means a pure global coloring
that aims to show dissimilarity of origin and destination for all edges regardless
of bundling. In our tests coloring changes gradually with respect to ε. In experi-
ments, when emphasizing local color differences, we set ε = 0.001 which achieved
local differentiation and formed color gradients for bundles in most cases.

A way to set a more nuanced tradeoff is to run edge detection with multiple
settings and set weaker Bij for edges detected with weaker thresholds; in practice
the above simple tradeoff already worked well.

Relationship to Nonlinear Multidimensional Scaling. Interestingly, min-
imizing (3) can be seen as a specialized weighted form of nonlinear multidi-
mensional scaling, with several differences: unlike traditional multidimensional
scaling we treat edges (not data items or nodes) as input items whose dissimi-
larities are preserved; our output is not a spatial layout but a color scheme; and
most importantly, the cost function does not aim to preserve all “distances” but
weights each pairwise distance according to how strongly that pair of edges is
bundled. The theoretical connection lets us make use of optimization approaches
previously developed for multidimensional scaling, here we choose to use the pop-
ular stress majorization algorithm (SMACOF) [1] to minimize the cost function.

Color Range Normalization. After optimization, output features yi of each
edge must be normalized to the range of the color channels (or positions along
a color gradient). Simple ideas like applying an affine transform to the output
matrix Y = (y1, . . . ,yM ) would give different amounts of color space to different
bundles, thus colors within bundles would not be well differentiated. We propose
a normalization to maximally distinguish edges within each bundle. Let Col
denote the color matrix to be obtained from normalization. For each yi, let
{yil}Mi

l=1 be the set of output features where each edge l is bundled with edge i.
We assemble yi and {yil}Mi

l=1 into a matrix Y i = (yi,yi1 , . . . ,yiMi
), affinely

transform Y i to Ỹ i = (ỹi, ỹi1 , . . . , ỹiMi
) so that each entry in Ỹ i is within the

allowed range (say, [0, 1]), then set Coli, the i-th column of Col (color vector for
edge i) as ỹi. This normalization expands the color range within bundles.

Where to Show Colors. The optimized colors can be shown along the
whole edge, or at “fan-in” segments where the edge enters a bundle and “fan-
out” segments where it departs a bundle. Edge i is bundled with j if several
consecutive curve segments of i are close to j; the last segment before the close-by
ones is the fan-in segment; the first segment after the close-by ones is the fan-out
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segment. In experiments we show color along the whole edge for simplicity. Note
that, as with any edge coloring, colors of close-by edges may perceptually blend,
but our optimized colors then remain visible at fan-in and fan-out locations.

4 Experiments

We demonstrate the Peacock bundles method on five graphs (Figs. 2, 3 and 4):
two graphs with hierarchical edge bundling [13], and three with force-directed
edge bundling [14]. The two graphs with hierarchical edge bundling are created

Fig. 2. Colorings for the graph “radial”. Top left: the coloring from Peacock with
ε = 0.001. Top right: zoomed-in versions of the parts within dashed-line circles in the
top-left figure as examples of local coloring. In the four zoomed-in parts, colors show a
linear gradient and vary in yellow-red-blue, thus (1) local colors are differentiated, and
(2) they span roughly the same full color range. The local colors also help follow edges
at bottom right of the graph, where colors are homogeneous in the baseline coloring.
Bottom left: coloring from Peacock, ε = 1. The bundles are colored into 3 parts: the
blue-ish upper half, green-ish lower-left part, and yellow-ish lower-right part. There
are also red bundles joining the blue and green parts, differentiating itself from other
bundles. Bottom right: the baseline coloring. The bundles are colored into the red-
ish upper half and blue-ish lower half. Compared with the coloring with ε = 1 from
Peacock, the bundle from left to right, and the bundle at the top-left corner are less
distinguishable. (Color figure online)
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Fig. 3. Colorings for the graphs “tree map” and “airline”. In both subfigures: Top
left: the colorings from Peacock with ε = 0.001. In Fig. 3a, the local linear gradient
is clearer at the ends of the bundles. In Fig. 3b, the large bundle in the middle shows
the local coloring, by separating the bundle into the upper blue dominating part,
the middle red-ish part, and the lower lighter part. Top right: examples of how the
colorings enhance readability by investigating the parts within dashed line circles in
both top-left subfigures. In Fig. 3a, the colors in bundle A help the user to recognize,
for example, 1) the blue-ish part in bundle A leads to the blue-ish part of the top-right
“claw” or the right “claw”; 2) the red-ish pa0rt in bundle A leads to the red-ish part
of the “claw” at the right of bundle B, or the top right “claw”; 3) the yellow-ish half
that joins in the middle leads to bundle B or to the “claw” at the right of bundle B.
Figure 3b shows how the coloring help a pink edge from A to B stand out against other
edges in the same bundle. Bottom left: the coloring from Peacock with ε = 1. In
Fig. 3a, bundles are globally differentiated. In Fig. 3b, for nodes of large degrees, the
edges connecting to them have distinct colors for different directions. Bottom right:
the baseline coloring. In Fig. 3a, the user may mis-recognize that there are edges from
bundle A to bundle B. In Fig. 3b, unlike the bottom-left subfigure, edges connecting
to the same node tend to have similar colors. (Color figure online)
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Fig. 4. Colorings for graph “Jane Austen”. Top left: the coloring from Peacock with
ε = 0.001. The “crossing” at the right half of the figure shows a clear differentiation:
red edges go from upper-right to lower-left; green edges go from upper to lower; blue
edges go from upper-left to lower-right. Without the local coloring, it is difficulty to tell
whether the bundles or the edges are crossing or just tangental to one another. Top
right: another example from the zoomed-in version of the part within the dashed line
circle in the top-left figure. Edge colors change from green to purple-ish. The colors
help the user follow the edges after the heavily bundled part in the middle: red edges
mostly go leftwards, green edges are scattered, and blue edges mostly go rightwards.
Bottom left: the coloring from Peacock with ε = 1. Less locality but more globality.
The earlier blue edges in the right “crossing” become purple, but still distinguishable
from the other two bundles. Bottom right: the baseline coloring, which loses the
distinguishablity shown in the Peacock coloring. (Color figure online)

from the class hierarchy of the visualization toolkit Flare [11], with the built-
in radial layout (graph named “radial”; Fig. 2) and tree map layout (“tree
map”; Fig. 3a) in d3.js [2] respectively. The four graphs with force-directed
edge bundling are: a spatial graph of US flight connections (“airline”; Fig. 3b);
a graph of consecutive word-to-word appearances in novels of Jane Austen (“Jane
Austen”; Fig. 4); and a graph of matches between US college football teams
(“football”; Fig. 5). The last three graphs are laid out as an unconstrained 2D
graph by a recent node-neighborhood preserving layout method [18]. For all
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Fig. 5. Colorings for graph “football”. Top left: the coloring from Peacock with ε =
0.001. The uncertainty in this graph is mostly from the small clusters of nodes at the
end of the edges. Top right: an example showing how the coloring help distinguish
heavily bundled edges from A to B. The shown segments are the zoomed-in version of
the parts within the dashed line circle or ellipse in the top-left figure. We can see, for
example, that the blue edge leads to the top node in B, while the yellow edge leads
to leftmost node in B. This is also noticeable in the top-left figure, particularly for
the blue edge. However, it will be a difficult task with the baseline coloring since the
part between A and B is heavily bundled. Bottom left: the coloring from Peacock
with ε = 1. Colors of edges from the same cluster are differentiated (e.g., at the top-left
cluster, edge colors vary from red to blue). Bottom right: the baseline coloring, which
only reflects the locations of the bundles. (Color figure online)

graphs, edge bundles were created by a d3.js plugin implementing the algorithm
[20] adapted to splines. All coloring are compared with a baseline coloring from
end point positions.

The Baseline. We compare our method with a baseline coloring that directly
encodes end point positions into color channels. We choose channel red and blue
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for the encoding in the experiments. Let v1
i = (x1

i , y
1
i ) and v2

i = (x2
i , y

2
i ) be

the onscreen coordinates of edge i’s two end points as in (2). We first create a

3-dimensional vector C̃ol
baseline

i as the “unnormalized” color for edge i as

C̃ol
baseline

i = (min(xi,1, xi,2), 0,min(yi,1, yi,2))T (4)

then we affinely normalize the matrix C̃ol
baseline

into [0, 1] to obtain the final
baseline colors Colbaseline.

Choices of Peacock Parameters. The parameters T and Kmin in (1) must be
chosen to determine Bij . We set T to 2−4% of max(graph width, graph height),
and fix Kmin as 0.4. Experiments show the choices give good results empirically.

Figures 2, 3 and 4 show the results from the proposed method and the base-
line. The top-left subfigures are with the tradeoff parameter set to prefer local-
ity in the coloring. The top-right subfigures provide zoomed-in views detailing
the local color variation (“peacock fans”) and demonstrating how the color-
ing improves readability and helps follow edges. The bottom-left figures are
optimized to differentiate origins and destinations globally (tradeoff parameter
ε = 1), hence colors indicate overall trends of connections between areas of the
graph layout, at the expense of less color variability within bundles. The bottom-
right figures are from the baseline, also aiming to show variability of endpoint
positions the coloring but not optimized by machine learning; the simple baseline
coloring leaves bundles and within-bundle variation less distinguishable.

5 Conclusions

We introduced “peacock bundles”, a novel edge coloring algorithm for graphs
with edge bundling. Colors are optimized both to preserve differences between
bundle locations, and differentiate edges within bundles. The algorithm is based
on dimensionality reduction without need to explicitly define bundles. Experi-
ments show the method outperforms the baseline coloring with several graphs
and bundling algorithms, greatly improving the comprehensibility of graphs with
edge bundling. Potential future work includes incorporating color perception
models [12], and more nuanced weighting schemes for global-local tradeoffs.

We acknowledge computational resources from the Aalto Science-IT project.
Authors belong to the COIN centre of excellence. The work was supported by
Academy of Finland grants 252845 and 256233.
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Abstract. Visualizing hypergraphs, systems of subsets of some uni-
verse, has continuously attracted research interest in the last decades.
We study a natural kind of hypergraph visualization called subdivision
drawings. Dinkla et al. [Comput. Graph. Forum ’12] claimed that only
few hypergraphs have a subdivision drawing. However, this statement
seems to be based on the assumption (also used in previous work) that
the input hypergraph does not contain twins, pairs of vertices which are
in precisely the same hyperedges (subsets of the universe). We show that
such vertices may be necessary for a hypergraph to admit a subdivision
drawing. As a counterpart, we show that the number of such “necessary
twins” is upper-bounded by a function of the number m of hyperedges
and a further parameter r of the desired drawing related to its number
of layers. This leads to a linear-time algorithm for determining such sub-
division drawings if m and r are constant; in other words, the problem
is linear-time fixed-parameter tractable with respect to the parameters
m and r.

1 Introduction

Hypergraph drawings are useful as visual aid in diverse applications [1], among
them electronic circuit design [11] and relational databases [2,18]. There are
several methods for embedding hypergraphs in the plane. The combinatorial
problem studied in this work stems from obtaining subdivision drawings [14,15].
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Herein, given a hypergraph H, we divide the plane into closed regions that one-to-
one correspond to the vertices of H in such a way that, for each hyperedge F , the
union of the regions corresponding to the vertices in F is connected. Subdivision
drawings have also been called vertex-based Venn diagrams [14]. Figure 1 shows
an example for such a drawing.

Fig. 1. Two drawings of the same hypergraph. On the left, we see a drawing in the
subset standard in which the vertices (white circles) are enclosed by curves that cor-
respond to hyperedges. On the right, we see a subdivision drawing in which we assign
vertices to regions (enclosed by black lines) and we color these regions with colors that
one-to-one correspond to the hyperedges; for each hyperedge, the union of the regions
of the vertices in that hyperedge is connected. (Color figure online)

Subdivision drawings are a natural extension of planarity for ordinary graphs:
A graph is planar if and only if it has a subdivision drawing when viewed as a
hypergraph. For hypergraphs, having a subdivision drawing is a rather general
concept of planar embeddings, as, for example, each Zykov planar hypergraph
(meaning that the incidence graph is planar) and each hypergraph with a well-
formed Euler diagram (see Flower et al. [12]) has a subdivision drawing. Still,
Dinkla et al. [10] claimed that “most hypergraphs do not have [subdivision draw-
ings]”. However, this claim might have been based on the fact that several works
on subdivision drawings assumed that the input hypergraph is twinless, that
is, there are no two vertices contained in precisely the same hyperedges (see
Mäkinen [18, p. 179], Buchin et al. [6, p. 535], and Kaufmann et al. [15, p. 399]).
Twins do not seem useful at first glance: whatever role one vertex can play to
obtain a subdivision drawing, its twin can also fulfill. One of our contributions is
disproving the general validity of this assumption in Sect. 3. More specifically, we
give a hypergraph with two twins that has a subdivision drawing but, removing
one twin, it ceases to have one. Thus, twins may indeed be helpful to find a
solution.

More generally, we can construct hypergraphs with � twins that allow for sub-
division drawings but cease doing so when removing one of the twins. However,
the number of hyperedges in the construction grows with �. It is thus natural to
ask whether there is a function ψ : N → N such that, in each hypergraph with
m hyperedges, we can forget all but ψ(m) twins while maintaining the property
of having a subdivision drawing. Using well-quasi orderings, one can relatively
easily prove the existence of such a function ψ, yet finding a closed form for ψ
turned out to be surprisingly difficult: so far we could only compute a concrete
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upper bound when considering a second parameter r measuring the number of
“layers” in the drawing. A small number r of layers, however, is a relevant special
case [4,6].

We study subdivision drawings from a combinatorial point of view, exploiting
the fact that it is equivalent for a hypergraph to have a subdivision drawing and
to have a support that is planar [14]. Herein, a support for a hypergraph H =
(V, E) is a graph G on the same vertex set as H such that each hyperedge F ∈ E
induces a connected subgraph G[F ]. The outerplanarity number r of the support
roughly translates to the number of layers in a corresponding drawing:1 An
r-outerplanar graph admits a planar embedding (without edge crossings) which
has the property that, after removing r times all vertices on the outer face, we
obtain an empty graph. Similar restrictions were studied before [4,6]. Formally,
we study the following problem.

Problem (r-Outerplanar Support).
Input: A connected hypergraph H with n vertices and m hyperedges, and r ∈ N.
Question: Does H admit an r-outerplanar support?

Our main result is a concrete upper bound on the number ψ(m, r) of twins that
might be necessary to obtain an r-outerplanar support. Since superfluous twins
can then be removed in linear time, this gives the following algorithmic result.

Theorem 1. There is an algorithm solving r-Outerplanar Support which,
for constant r and m, has linear running time.

In contrast to Theorem 1, r-Outerplanar Support remains NP-complete for
r = ∞ [14] and even for every fixed r > 1 [6] (see below). The constants in the
running time of the algorithm in Theorem1 have a large dependence on m and r.
However, it is conceivable that the parameters m and r are small in practical
instances: for a large number m of hyperedges, it is plausible that we obtain only
hardly legible drawings unless the hyperedges adhere to some special structure.
Thus, it makes sense to design algorithms particularly for hypergraphs with a
small number of hyperedges, as done by Verroust and Viaud [21]. Moreover, a
small outerplanarity number r leads to few layers in the drawing which may lead
to aesthetically pleasing drawings, similarly to path- or cycle-supports [6].

Related Work. For specifics on the relations of some different planar embeddings
for hypergraphs, see Kaufmann et al. [15], Brandes et al. [4].

As mentioned before, Johnson and Pollak [14] showed that find-
ing a planar support is NP-complete. Buchin et al. [6] proved that
r-Outerplanar Support is NP-complete for r = 2, 3. From their proof it fol-
lows that r-Outerplanar Support is also NP-complete for every r > 3. This
is due to a property of the reduction that Buchin et al. use. Given a formula φ

1 We refer to Kaufmann et al. [15] for a method to obtain a subdivision drawing from
a planar support.
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in 3CNF, they construct a hypergraph H that has a planar support if and only
if φ is satisfiable. Due to the way in which H is constructed, if there is any pla-
nar support, then it is 3-outerplanar. Thus, deciding whether an r-outerplanar
support, r ≥ 3, exists also decides the satisfiability of the corresponding formula.

Towards determining the computational complexity of finding an outerplanar
hypergraph support, Buchin et al. [4] gave a polynomial-time algorithm for cac-
tus supports (graphs in which each edge is contained in at most one cycle). They
also showed that finding an outerplanar support (or planar support) can be done
in polynomial time if, in the input hypergraph, each intersection or difference
of two hyperedges is either a singleton or again a hyperedge in the hypergraph.
Getting even more special, a tree support can be found in linear time [2,19].
Buchin et al. [6] gave a polynomial-time algorithm that can deal with an addi-
tional upper bound on the vertex degrees in the tree support. Klemz et al. [16]
studied so-called area-proportional Euler diagrams, for which the corresponding
computational problem reduces to finding a minimum-weight tree support. Such
supports can also be found in polynomial time [16,17].

In a wider scope, motivated by drawing metro maps and metro map-like dia-
grams, Brandes et al. [5] studied the problem of finding path-based planar hyper-
graph supports, that is, planar supports that fulfill the additional constraint that
the subgraph induced by each hyperedge contains a Hamiltonian path, giving
NP-hardness and tractability results. Finding path-based tree supports is also
known as the Graph Realization problem, for which several polynomial-time
algorithms were already known [3].

Chen et al. [7] showed that for obtaining minimum-edge supports (not nec-
essarily planar), twins show a similar behavior as for r-outerplanar supports:
Removing a twin can increase the minimum number of edges needed for a sup-
port and finding a minimum-edge support is linear-time solvable for a constant
number of hyperedges via removing superfluous twins. The proof is quite differ-
ent, however.

Organization. In Sect. 2 we provide some technical preliminaries used throughout
the work. In Sect. 3 we give an example that shows that twins can be crucial for
a hypergraph to have a planar support. As mentioned, for each m ∈ N, there
is a number ψ(m) such that in each hypergraph with a planar support we can
safely forget all but ψ(m) twins (a proof is deferred to a full version). In Sect. 4
we give a concrete upper bound for ψ(m) in the case of r-outerplanar supports
and derive the linear-time algorithm for r-Outerplanar Support promised in
Theorem 1. We conclude and give some directions for future research in Sect. 5.

2 Preliminaries

General Notation. By A�B we denote the union of two disjoint sets A and B. For
a family of sets F , we write

⋃ F in place of
⋃

S∈F S. For equivalence relations ρ
over some set S and v ∈ S we use [v]ρ to denote the equivalence class of v in ρ.
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Hypergraphs. A hypergraph H is a tuple (V, E) consisting of a vertex set V , also
denoted V (H), and a hyperedge set E , also denoted E(H). The hyperedge set E
is a family of subsets of V , that is, F ⊆ V for every hyperedge F ∈ E . Where it
is not ambiguous, we use n := |V | and m := |E|. When specifying running times,
we use |H| to denote |V (H)|+∑

F∈E(H) |F |. The size |F | of a hyperedge F is the
number of vertices in it. Unless stated otherwise, we assume that hypergraphs
do not contain hyperedges of size at most one or multiple copies of the same
hyperedge. (These do not play any role for the problem under consideration,
and removing them can be done easily and efficiently.)

A vertex v ∈ V and a hyperedge F ∈ E are incident with one another
if v ∈ F . For a vertex v ∈ V (H), we let EH(v) := {F ∈ H | v ∈ F}. If it is
not ambiguous, then we omit the subscript H from EH. A vertex v covers a
vertex u if E(u) ⊆ E(v). Two vertices u, v ∈ V are twins if E(v) = E(u). Clearly,
the relation τ on V defined by ∀u, v ∈ V : (u, v) ∈ τ ⇐⇒ E(u) = E(v) is an
equivalence relation. The equivalence classes [u]τ , u ∈ V , are called twin classes.

Removing a vertex subset S ⊆ V (H) from a hypergraph H = (V, E) results
in the hypergraph H−S := (V \S, E ′) where E ′ is obtained from {F \S | F ∈ E}
by removing empty and singleton sets. For brevity, we also write H − v instead
of H − {v}. The subhypergraph shrunken to V ′ ⊆ V is the hypergraph H|V ′ :=
H − (V \ V ′).

Graphs. Our notation related to graphs is basically standard and heavily borrows
from Diestel’s book [9]. In particular, a bridge of a graph is an edge whose
removal increases its number of connected components. Analogously, a cut-vertex
is a vertex whose removal increases its number of connected components. Some
special notation including the gluing of graphs is given below. We use the usual
notation for planar and plane graphs. An r-outerplanar graph admits a planar
embedding which has the property that, after r times of removing all vertices on
the outer face, we obtain an empty graph. The ith layer Li of a plane graph is
defined as the set of vertices on the outer face, after having i − 1 times removed
all vertices on the outer face.

Boundaried Graphs and Gluing. For a nonnegative integer b ∈ N, a b-boundaried
graph is a tuple (G,B, β) where G is a graph, B ⊆ V (G) such that |B| = b,
and β : B → {1, . . . , b} is a bijection. Vertex subset B is called the boundary
and β the boundary labeling. For ease of notation we also refer to (G,B, β)
as the b-boundaried graph G with boundary B and boundary labeling β. For
brevity, we also denote by β-boundaried graph G that b-boundaried graph G
whose boundary is the domain of β and whose boundary labeling is β.

For a nonnegative integer b, the gluing operation ◦b maps two b-boundaried
graphs to an ordinary graph as follows: Given two b-boundaried graphs G1, G2

with corresponding boundaries B1, B2 and boundary labelings β1, β2, to obtain
the graph G1 ◦b G2 take the disjoint union of G1 and G2, and identify each
v ∈ B1 with β−1

2 (β1(v)) ∈ B2. We omit the index b in ◦b if it is clear from the
context.
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3 Beware of Removing Twins

In Fig. 2, we provide a concrete example that shows that twins can be necessary
to obtain a 2-outer-planar support:

Fig. 2. A hypergraph H and its support, showing that twins can be essential for obtain-
ing a 2-outer-planar support. The set of hyperedges consists of size-two hyperedges
that are drawn as solid lines between the corresponding vertices and, additionally,
{a, va, t, t′, c}, {a, vb, t, t

′, c}, {b, va, t, t′, c}, {b, vb, t, t
′, c}, {b, ub, t, t

′, a}, {b, uc, t, t
′, a},

{c, ub, t, t
′, a}, and {c, uc, t, t

′, a}. Note that the vertices t and t′ are twins. The hyper-
graph H has a (2-outer)planar support whose edges are indicated by the solid and the
dotted lines. However, H− t does not have a planar support.

The vertex set of the hypergraph H shown in Fig. 2 is V := {a, b, c, d, va, vb,
vd, ub, uc, ud, t, t

′}. We choose the hyperedges in such a way that t and t′ are twins
and H has a planar (more precisely, 2-outerplanar) support but H − t does not.
First, we add to the set of hyperedges E of H the size-two hyperedges represented
by solid lines between the corresponding vertices in Fig. 2. The corresponding
“solid” hyperedges incident with (and only with) a, b, c, d form a K4 and have the
purpose of essentially fixing the embedding of each support G: Since the complete
graph on four vertices, K4, is 3-connected, it has only one planar embedding up to
the choice of the outer face [20, p. 747]. The remaining solid hyperedges (incident
with va, vb, vd and ua, uc, ud) have the purpose of anchoring the u- and v-vertices
within two different faces of the embedding of the K4: These hyperedges form
two connected components that are adjacent to a, b, d and b, c, d, respectively.
Hence, these connected components reside in those (unique) faces of the K4 that
are incident with a, b, d and b, c, d, respectively.

With the following additional hyperedges, our goal is to enforce that t and
t′ are used as conduits to connect the v-vertices to c via both a and b, and to
connect the u-vertices to a via both b and c. As we explain below, this is achieved
by the following hyperedges:

{a, va, t, t′, c}, {a, vb, t, t
′, c}, {b, va, t, t′, c}, {b, vb, t, t

′, c},

{b, ub, t, t
′, a}, {b, uc, t, t

′, a}, {c, ub, t, t
′, a}, {c, uc, t, t

′, a}.
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Clearly, t and t′ are twins. As can easily be verified, adding t and t′ and the
dotted edges in Fig. 2 to the graph induced by the solid edges gives a planar
support for H.

We now show that t and t′ have to reside in different faces for each planar
support G for H. First, observe that, in G, either va is not adjacent to b or vb is
not adjacent to a. Moreover, neither of va and vb is adjacent to c. Thus, to connect
the subgraphs induced by the hyperedges that contain va or vb, either vertex t or
its twin t′ must be adjacent to one of the two vertices in G. For the same reason,
one of t and t′ must be adjacent to one of ub and uc. Since there is no face in G
that is simultaneously incident with one of va or vb and one of ub or uc, the twins
t and t′ thus have to be in different faces. This implies that it is impossible to
obtain a planar support if t or t′ is missing. Consequently, removing one vertex
of a twin class can transform a yes-instance of r-Outerplanar Support into
a no-instance.

The example above is not a pathology of having only one pair of twins, in a
full version, we extend it so that an arbitrarily large set of twins is required for
the existence of a planar support.

4 Relevant Twins for r-Outerplanar Supports

In this section, we show that there is an explicit function ψ such that, out of
each twin class of a given hypergraph H, we can remove all but ψ(m, r) twins
such that the resulting hypergraph has an r-outerplanar support if and only if H
has. In other words, we prove that the following data reduction rule is correct.

Rule 1. Let H be a hypergraph with m edges. If there is a twin class with more
than ψ(m, r) = 26r·2m·(2r2+r+1)·(r+1)32r

2+8r
vertices, then remove one vertex out

of this class.

Assuming that Rule 1 is correct, Theorem 1 follows.

Proof (Theorem 1). Rule 1 can be applied exhaustively in linear time because
the twin classes can be computed in linear time [13]. After this, each twin class
contains at most ψ(m, r) vertices, meaning that, overall, at most 2mψ(m, r)
vertices remain. Testing all possible planar graphs for whether they are a support
for the resulting hypergraph thus takes constant time if m and r are constant.
Hence, the overall running time is linear in the input size. �
We mention in passing that, in the terms of parameterized algorithmics, exhaus-
tive application of Rule 1 can be seen as a problem kernel (see [8], for example).

The correctness proof for Rule 1 consists of two parts. First, in Theorem 2,
we show that each r-outerplanar graph has a long sequence of nested separators.
Here, nested means that each separator separates the graph into a left side and
a right side, and each left side contains all previous left sides. Furthermore,
the sequence of separators has the additional property that, for any pair of
separators S1, S2, we can glue the left side of S1 and the right side of S2, obtaining
another r-outerplanar graph.



74 R. van Bevern et al.

In the second part of the proof, we fix an initial support for our input hyper-
graph. We then show that, in a long sequence of nested separators for this sup-
port as above, there are two separators such that we can carry out the following
procedure. We discard all vertices between the separators, glue their left and
right sides, and reattach the vertices which we discarded as degree-one ver-
tices. Furthermore, we can do this in such a way that the resulting graph is an
r-outerplanar support. The reattached degree-one vertices hence are not crucial
to obtain an r-outerplanar support. We will show that if our input hypergraph is
large enough, that is, larger than some function of m and r, then there is always
at least one non-crucial vertex which can be removed.

We now formalize our approach. Theorem2 will guarantee the existence of a
long sequence of gluable separators. To formally state it, we need the following
notation.

Definition 1. For an edge bipartition A�B = E(G) of a graph G, let M(A,B)
be the set of vertices in G which are incident with both an edge in A and in B,
that is,

M(A,B) := {v ∈ V (G) | ∃a ∈ A∃b ∈ B : v ∈ a ∩ b}.

We call M(A,B) the middle set of A,B. For an edge set A ⊆ E(G), denote by
G〈A〉 := (

⋃
e∈A e,A) the subgraph induced by A.

Recall from Sect. 2 the definitions of graph gluing, boundary, and boundary
labeling.

Theorem 2 (�2). For every connected, bridgeless, r-outerplanar graph G with
n vertices there is a sequence ((Ai, Bi, βi))s

i=1 where each pair Ai, Bi ⊆ E(G)
is an edge bipartition of G and βi : M(Ai, Bi) → {1, . . . , |M(Ai, Bi)|} such that
s ≥ log(n)/(r + 1)32r2+8r, and, for every i, j, 1 ≤ i < j ≤ s,

(i) |M(Ai, Bi)| = |M(Aj , Bj)| ≤ 2r,
(ii) Ai � Aj, Bi � Bj, and
(iii) G〈Ai〉 ◦ G〈Bj〉 is r-outerplanar, where G〈Ai〉 is understood to be βi-

boundaried and G〈Bj〉 is understood to be βj-boundaried.

To gain some intuition for Theorem2 note that each M(Ai, Bi) is a separator,
separating its left side G〈Ai〉 from its right side G〈Bi〉 in G. Statement (ii)
ensures that each left sides contains all previous left sides, that is, the separators
are nested. Statement (iii) ensures that for any two separators in the sequence,
we can glue their left and right sides and again obtain an r-outerplanar graph.
In this new graph, the vertices inbetween the separators are missing—these will
be the vertices which are not crucial to obtain an r-outerplanar support.

The reason why we can prove the lower bound on the length of the sequence
is basically because r-outerplanar graphs have a tree-like structure, whence large
r-outerplanar graphs have a long “path” in this structure, and a long path in

2 Results labeled by � are deferred to a full version of the paper.
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such a structure induces many nested separators from which we can glean the
separators that are amenable to Statement (iii).

We next formalize the crucial vertices for obtaining an r-outerplanar support.
These are the vertices in a smallest representative support, defined as follows.

Definition 2 (Representative support). Let H be a hypergraph. A graph G
is a representative support for H if V (G) ⊆ V (H), graph G is a support for
subhypergraph H|V (G) shrunken to V (G), and every vertex in V (H) \ V (G) is
covered in H by some vertex in V (G).

Using the sequence of separators from Theorem 2, we show that the size of a
smallest representative r-outerplanar support is upper-bounded by a function
of m and r. To this end, we take an initial support, find two separators whose
vertices in between we can remove and reattach as non-crucial vertices, that
is, vertices not in a representative support. Intuitively, the two separators have
to have the same “status” with respect to the hyperedges that cross them. We
formalize this as follows.

Definition 3 (Edge-bipartition signature). Let H = (V, E) be a hypergraph
and let G be a representative planar support for H. Let (A,B, β) be a tuple where
(A,B) is an edge bipartition of G, and β : M(A,B) → {1, . . . , |M(A,B)|}. Let
� := |M(A,B)|. The signature of (A,B, β) is a triple (T , φ, C), where

– T := {[u]τ | u ∈ ⋃
A} is the set of twin classes in

⋃
A,

– φ : {1, . . . , �} → {[u]τ | u ∈ V } : j �→ [β−1(j)]τ maps each index of a vertex
in M(A,B) to the twin class of that vertex, and

– C := {(F, γF ) | F ∈ E}, where γF is the relation on {1, . . . , �} defined by
(i, j) ∈ γF whenever β−1(i), β−1(j) ∈ F and β−1(i) is connected to β−1(j) in
G〈B〉[F ∩ ⋃

B]. Herein, G〈B〉[F ∩ ⋃
B] is the subgraph of G〈B〉 induced by

F ∩ ⋃
B.

We have the following upper bound on the number of different separator states.

Lemma 1 (�). In a sequence ((Ai, Bi, βi))s
i=1 as in Theorem2 the number of

distinct edge-bipartition signatures is upper-bounded by 2m·(2r2+r+1).

As before, let ψ(m, r) := 26r·2m·(2r2+r+1)·(r+1)32r
2+8r

.

Lemma 2. If a hypergraph H = (V, E) has an r-outerplanar support, then it
has a representative r-outerplanar support with at most ψ(m, r) vertices.

Proof. Let G = (W,E) be a representative r-outerplanar support for H with
the minimum number of vertices and fix a corresponding planar embedding.
Assume towards a contradiction that |W | > ψ(m, r). We show that there is a
representative support for H with less than ψ(m, r) vertices.

We aim to apply Theorem 2 to G. For this we need that G is connected and
does not contain any bridges. Indeed, if G is not connected, then add edges
between its connected components in a tree-like fashion. This does not affect the
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outerplanarity number of G (although it adds bridges). If G has a bridge {u, v},
then proceed as follows. At least one of the ends of the bridge, say v, has degree
at least two because |W | > ψ(m, r) ≥ 2. One neighbor w �= u of v is incident
with the same face as u, because {u, v} is a bridge. Add the edge {u,w}. Thus,
edge {u, v} ceases to be a bridge. We can embed {u,w} in such a way that the
face F incident with u, v, and w is split into one face that is incident with only
{u, v, w} and devoid of any other vertex, and one face F′ that is incident with
all the vertices that are incident with F including u, v, and w. This implies that
each vertex retains its layer Li, meaning that G remains r-outerplanar. Thus,
we may assume that G is connected, bridgeless, and r-outerplanar.

Since G contains more than ψ(m, r) vertices, there is a sequence S =
((Ai, Bi, βi))s

i=1 as in Theorem 2 of length at least

s ≥ log(ψ(m, r))
(r + 1)32r2+8r

=
6r · 2m·(2r2+r+1) · (r + 1)32r2+8r

(r + 1)32r2+8r
= 6r · 2m·(2r2+r+1).

Since there are less than 2m·(2r2+r+1) different signatures in S (Lemma 1),
there are 6r elements of S with the same signature. Note that each middle
set M(Ai, Bi) induces a plane graph in G and, since |M(Ai, Bi)| ≤ 2r, induces
at most max{1, 3|M(Ai, Bi)| − 6} ≤ max{1, 6r − 6} edges. Thus, there are two
edge bipartitions (Ai, Bi, βi) and (Aj , Bj , βj), i < j, in S with the same sig-
nature such that the middle sets M(Ai, Bi), M(Aj , Bj) differ in at least one
vertex.

Let Gij := G〈Ai〉 ◦ G〈Bj〉, wherein G〈Ai〉 is βi-boundaried and G〈Bj〉 is
βj-boundaried. Let W ′ := V (Gij), where we assume that W ′ ∩ M(Aj , Bj) ⊆
M(Ai, Bi) for the sake of a simpler notation. Note that W \ W ′ �= ∅ since the
middle sets of the two edge bipartitions differ in at least one vertex and since
Ai � Aj .

We prove that Gij is a representative support for H, that is, each vertex
V \ W ′ is covered by some vertex in W ′ in H and that Gij is a support for
H|W ′ . Since Gij is r-outerplanar by Theorem2, Statement (iii), this contradicts
the choice of G according to the minimum number of vertices, thus proving the
lemma.

To prove that each vertex V \ W ′ is covered by some vertex in W ′, we show
that {[u]τ | u ∈ V } = {[u]τ | u ∈ W ′}. Since G = (W,E) is a representative
support, {[u]τ | u ∈ V } = {[u]τ | u ∈ W}. Furthermore, by the definition
of signature, we have {[u]τ | u ∈ ⋃

Ai} = {[u]τ | u ∈ ⋃
Aj}. Thus, for each

vertex u ∈ W \ W ′, there is a vertex v ∈ W ′ with [u]τ = [v]τ , meaning that,
indeed, {[u]τ | u ∈ V } = {[u]τ | u ∈ W ′}.

To show that Gij is a representative support it remains to show that it is
a support for H|W ′ , that is, each hyperedge F ′ of H|W ′ induces a connected
graph Gij [F ′]. Let F be a hyperedge of H such that F ∩ W ′ = F ′. Observe
that such a hyperedge F exists and that G[F ∩ W ] is connected since G is a
representative support of H. Denote by Sk the middle set M(Ak, Bk) of (Ak, Bk)
in G for k ∈ {i, j} and by S the middle set M(Ai, Bj) = Si = Sj of (Ai, Bj)
in Gij .



Twins in Subdivision Drawings of Hypergraphs 77

To show that Gij [F ′] is connected, consider first the case that F ∩(Si ∪Sj) =
∅. Since each vertex in V \ W ′ is covered by a vertex in W ′ we have that each
vertex in F is contained in either G〈Ai〉 or G〈Bj〉 along with all edges of G[F ].
All these edges are also present in Gij whence Gij [F ′] is connected.

Now consider the case that F ∩ (Si ∪ Sj) �= ∅. Since Si and Sj are separators
in G, each vertex in F \(Si∪Sj) is connected in G[F ] to some vertex in Si or Sj via
a path with internal vertices in F \(Si∪Sj). We consider the connectivity relation
of their corresponding vertices in S. To this end, for a graph H and T ⊆ V (H) use
γ(T,H) for the equivalence relation on T of connectivity in H. That is, for u, v ∈
T we have (u, v) ∈ γ(T,H) if u and v are connected in H. Using this terminology,
since both Si and Sj equal S in Gij , to show that Gij [F ′] is connected, it is
enough to prove that the transitive closure δ of γ(F ′ ∩ S,Gij〈Ai〉) ∪ γ(F ′ ∩
S,Gij〈Bj〉) contains only one equivalence class.

Denote by Ĝ the graph obtained from G by identifying each v ∈ Si with
β−1

j (βi(v)) ∈ Sj , hence, identifying Si and Sj , resulting in the set S. Relation
α := γ(F ∩S, Ĝ) has only one equivalence class and, moreover, it is the transitive
closure of γ(F ∩Si, G〈Ai〉) ∪ γ(F ∩S, Ĝ〈Bi \Bj〉) ∪ γ(F ∩Sj , G〈Bj〉), wherein
we identify each v ∈ Si with β−1

j (βi(v)) ∈ Sj as above and, thus, Si = Sj = S.
We have γ(F ′ ∩ S,Gij〈Ai〉) = γ(F ∩ Si, G〈Ai〉) and γ(F ′ ∩ S,Gij〈Bj〉) =
γ(F ∩Sj , G〈Bj〉). Thus for α = δ it suffices to prove that γ(F ∩S, Ĝ〈Bi\Bj〉) ⊆
γ(F ′ ∩ Sj , Gij〈Bj〉). Indeed, the left-hand side γ(F ∩ S, Ĝ〈Bi \ Bj〉) is contained
in γ(F ∩Si, G〈Bi〉). Let (T , φ, C) be the signature of (Ai, Bi, βi) and (Aj , Bj , βj)
and (F, γF ) ∈ C. Note that γ(F ∩ Si, G〈Bi〉) = γF = γ(F ∩ Sj , G〈Bj〉) where
we abuse notation and set u = βi(u) for u ∈ Si and v = βj(v) for v ∈ Sj .
Hence, γ(F ∩ S, Ĝ〈Bi \ Bj〉) ⊆ γ(F ∩ Sj , G〈Bj〉) = γ(F ′ ∩ Sj , G〈Bj〉) = γ(F ′ ∩
Sj , Gij〈Bi〉). Thus, indeed, δ = α, that is, F ′ is connected. �
We now use the upper bound on the number of vertices in representative supports
to get rid of superfluous twins. First, we show that representative supports can
be extended to obtain a support.

Lemma 3. Let G = (W,E) be a representative r-outerplanar support for a
hypergraph H = (V, E). Then H has an r-outerplanar support in which all ver-
tices of V \ W have degree one.

Proof. Let G′ be the graph obtained from G by making each vertex v of V \W a
degree-one neighbor of a vertex in W that covers v (such a vertex exists by the
definition of representative support). Clearly, the resulting graph is planar. It is
also r-outerplanar, which can be seen by adapting an r-outerplanar embedding
of G for G′: If the neighbor v of a new degree-one vertex u is in L1, then place u
in the outer face. If v ∈ Li, i > 1, then place u in a face which is incident with v
and a vertex in Li−1 (such a face exists by the definition of Li).

It remains to show that G′ is a support for H. Consider a hyperedge F ∈ E .
Since G is a representative support for H, we have that F ∩W is nonempty and
that G[F ∩ W ] is connected. In G′, each vertex u ∈ F \ W is adjacent to some
vertex v ∈ W that covers u. Hence v ∈ F . Thus, G′[F ] is connected as G′[F ∩W ]
is connected and all vertices in F \ W are neighbors of a vertex in F ∩ W . �
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We now use Lemma 3 to show that, if there is a twin class that contains
more vertices than a small representative support, then we can safely remove
one vertex from this twin class.

Lemma 4. Let � ∈ N, let H be a hypergraph, and let v ∈ V (H) be a vertex such
that |[v]τ | ≥ �. If H has a representative r-outerplanar support with less than �
vertices, then H − v has an r-outerplanar support.

Proof. Let G = (W,E) be a representative r-outerplanar support for H such that
|W | < �. Then at least one vertex of [v]τ is not in W and we can assume that this
vertex is v without loss of generality. Thus, H has an r-outerplanar support G′

in which v has degree one by Lemma 3. The graph G′ − v is an r-outerplanar
support for H − v: For each hyperedge F in H − v, we have that G′[F \ {v}] is
connected because v is not a cut-vertex in G′[F ] (since it has degree one). �
Now we combine the observations above with the fact that there are small r-
outerplanar supports to prove that Rule 1 is correct.

Proof (Correctness of Rule 1). Consider an instance H = (V, E) of
r-Outerplanar Support to which Rule 1 is applicable and let v ∈ V be a ver-
tex to be removed, that is, v is contained in a twin class of size more than ψ(m, r).
By Lemma 2, if H has an r-outerplanar support, then it has a representative
r-outerplanar support with at most ψ(m, r) vertices. By Lemma 4, this implies
that H−v has an r-outerplanar support. Moreover, if H−v has an r-outerplanar
support, then this r-outerplanar support is a representative r-outerplanar sup-
port for H. By Lemma 3, this implies that H has an r-outerplanar support.
Therefore, H and H − v are equivalent instances, and v can be safely removed
from H. �

5 Concluding Remarks

The main contribution of this work is to show that twins may be crucial
for instances of r-Outerplanar Support but the number of crucial twins
is upper-bounded in terms of the number m of hyperedges and the outer-
planarity number r of a support. As a result, we can safely remove non-
crucial twins. More specifically, in linear time we can transform any instance of
r-Outerplanar Support into an equivalent one whose size is upper-bounded
by a function of m and r only. In turn, this implies fixed-parameter tractability
with respect to m+ r. It is fair to say, however, that due to the strong exponen-
tial growth in m and r this result is mainly of classification nature. Improved
bounds (perhaps based on further data reduction rules) are highly desirable for
practical applications.

Two further directions for future research are as follows. First, above we only
showed how to reduce the size of the input instance. We also need an efficient
algorithm to construct an r-outerplanar support for such an instance. As a first
step, it would be interesting to improve on the nO(n)-time brute-force algorithm
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that simply enumerates all n-vertex planar graphs and tests whether one of them
is an r-outerplanar support.3

Second, it is interesting to gear the parameters under consideration more
towards practice. In Sect. 4 above we attached signatures to each edge bipartition
in a sequence of edge bipartitions of a support and we could reduce our input only
if there were sufficiently many edge bipartitions with the same signature. This
signature contained, among other information, the twin class of each vertex of
the separator induced by the edge bipartition. Clearly, if all of these at least 2mr

different types of signatures are present, this will lead to an illegible drawing of
the hypergraph (and still, in absence of better upper bounds, we cannot reduce
our input). It seems thus worthwhile to contemplate parameters that capture
legibility of the hypergraph drawing by restricting further the number of possible
signatures.

Finally, an obvious open question is whether finding a planar support is
(linear-time) fixed-parameter tractable with respect to the number m of hyper-
edges only. A promising direction might be to show that there is a planar repre-
sentative support (as in Definition 2) which has treewidth upper-bounded by a
function of m. From this, we would get a sequence of gluable subgraphs similarly
to the one we have used here, amenable to the same approach as in Sect. 4.
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Abstract. We study a problem proposed by Hurtado et al. [10] moti-
vated by sparse set visualization. Given n points in the plane, each
labeled with one or more primary colors, a colored spanning graph (CSG)
is a graph such that for each primary color, the vertices of that color
induce a connected subgraph. The Min-CSG problem asks for the min-
imum sum of edge lengths in a colored spanning graph. We show that
the problem is NP-hard for k primary colors when k ≥ 3 and provide a
(2 − 1

3+2�
)-approximation algorithm for k = 3 that runs in polynomial

time, where � is the Steiner ratio. Further, we give a O(n) time algorithm
in the special case that the input points are collinear and k is constant.

1 Introduction

Visualizing set systems is a basic problem in data visualization. Among the
oldest and most popular set visualization tools are the Venn and Euler diagrams.
However, other methods are preferred when the data involves a large number of
sets with complex intersection relations [2]. In particular, a variety of tools have
been proposed for set systems where the elements are associated with location
data. Many of these methods use geometric graphs to represent set membership,
motivated by reducing the amount of ink used in the representation, including
LineSets [1], Kelp Diagrams [7] and KelpFusion [11].

Hurtado et al. [10] recently proposed a method for drawing sets using outlines
that minimise the total visual clutter. The underlying combinatorial problem is
to compute a minimum colored spanning graph; see Fig. 1. They studied the
problem for n points in a plane and two sets (each point is a member of one or
both sets). The output is a graph with the minimum sum of edge lengths such
that the subgraph induced by each set is connected. They gave an algorithm that
runs in O(n6)-time,1 and a (12� + 1)-approximation in O(n log n) time, where �
is the Steiner ratio (the ratio between the length of a minimum spanning tree
and the length of a minimum Steiner tree). Efficient algorithms are known in
two special cases: One runs in O(n) time for collinear points that are already
sorted [10]; the other runs in O(m2 + n) time for cocircular points, where m is

1 An earlier claim that the problem was NP-hard [9] turned out to be incorrect [10].
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Fig. 1. Left: A set of points and three subsets, S1, S2, and S3, drawn as outlines in
different colors. Right: The corresponding (minimum) colored spanning graph. Refer
to Sect. 2 for an explanation of color use. (Color figure online)

the number of points that are elements of both sets [5]. This problem also has
applications for connecting different networks with minimum cost, provided that
edges whose endpoints belong to both networks can be shared.
Results and Organization. We study the minimum colored spanning graph
problem for n points in a plane and k sets, k ≥ 3. The formal definition and
some properties of the optimal solution are in Sect. 2. In Sect. 3, we show that
Min-kCSG is NP-complete for all k ≥ 3, and in Sect. 4 we provide an (2− 2

2+2� )-
approximation algorithm for k = 3 that runs in O(n log n + m6) time, where m
is the number of multichromatic points. This improves the previous (2 + �

2 )-
approximation from [10]. Section 5 describes an algorithm for the special case of
collinear points that runs in 2O(k22k) · n time. Due to space constraints, some
proofs are omitted; they can be found in the full version of this paper.

2 Preliminaries

In this section, we define the problem and show a property of the optimal solution
related to the minimum spanning trees, which is used in Sects. 3 and 4.
Definitions. Given a set of n points in the plane S = {p1, . . . , pn} and subsets
S1, . . . , Sk ⊆ S, we represent set membership with a function α : S → 2{1,...,k},
where p ∈ Sc iff c ∈ α(p) for every primary color c ∈ {1, . . . , k}. We call α(p) the
color of point p. A point p is monochromatic if it is a member of a single set Si,
that is, |α(p)| = 1, and multi-chromatic if |α(p)| > 1. For an edge {pi, pj} ∈ E in
a graph G = (S,E), we use the shorthand notation α({pi, pj}) = α(pi) ∩ α(pj)
for the shared primary colors of the two vertices. For every c ∈ {1, . . . , k}, we let
Gc = (Sc, Ec) denote the subgraph of G = (S,E) induced by Sc. All figures in
this paper depict only three primary colors: r, b, and y for red, blue, and yellow
respectively. Multi-chromatic points and edges are shown green, orange, purple,
or black if their color is {b, y}, {r, y} or {r, b}, or {r, b, y}, respectively. See, for
example, Fig. 1 (b).

A colored spanning graph for the pair (S, α), denoted CSG(S, α), is a graph
G = (S,E) such that (Sc, Ec) is connected for every primary color c ∈ {1, . . . , k}.
The minimum colored spanning graph problem (Min-CSG), for a given pair
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(S, α), asks for the minimum cost
∑

e∈E w(e) of a CSG(S, α), where w(e) is the
Euclidean length of e. When we wish to emphasize the number k of primary
colors, we talk about the Min-kCSG problem.
Monochromatic Edges in a Minimum CSG. The following lemma shows
that we can efficiently compute some of the monochromatic edges of a minimum
CSG for an instance (S, α) using the minimum spanning tree (MST ) of Sc for
every primary color c ∈ {1, . . . , k}.

Lemma 1. Let (S, α) be an instance of Min-CSG and c ∈ {1, . . . , k}. Let
E(MST (Sc)) be the edge set of an MST of Sc, and let S′

c be the set of multi-
chromatic points in Sc. Then there exists a minimum CSG that contains at
least |E(MST(Sc))| − |S′

c| + 1 edges of E(MST (Sc)). The common edges of
E(MST (Sc)) and of such a minimum CSG can be computed in O(n log n) time.

Proof. Construct a monochromatic subset E′
c ⊂ E(MST(Sc)) by successively

removing a longest edge from the path in MST(Sc) between any two points in
S′

c. An MST(Sc) can be computed in O(n log n) time, and E′
c can be obtained in

O(n) time. The graph (Sc, E
′
c) has |S′

c| components, each containing one element
of S′

c, hence |E′
c| = |E(MST(Sc))| − |S′

c| + 1.
Let (S,EOPT) be a minimum CSG. While there is an edge e ∈ E′

c \ EOPT,
we can find an edge e∗ ∈ EOPT \E′

c such that exchanging e∗ for e yields another
minimum CSG. Indeed, since (Sc, E

OPT
c ) is connected, the insertion of the edge e

creates a cycle C that contains e. Consider the longest (open or closed) path P ⊆
C that is monochromatic and contains e. Note that at least one of the endpoints
of e is monochromatic, therefore P contains at least two monochromatic edges.
Since every component of (Sc, E

′
c) is a tree and contains only one multi-chromatic

point, there is a monochromatic edge e∗ ∈ EOPT \ E′
c in P . We have w(e) ≤

w(e∗), because there is a cut of the complete graph on Sc that contains both e and
e∗, and e ∈ E(MST(Sc)). Since α(e∗) = c, the deletion of e∗ can only influence
the connectivity of the induced subgraph (Sc, E

OPT
c ). Consequently, (S,EOPT ∪

{e} \ {e∗}) is a CSG with equal or lower cost than (S,EOPT). By successively
exchanging the edges in E′

c \ EOPT, we obtain a minimal CSG containing E′
c. 
�

Hurtado et al. [10] gave an O(n6)-time algorithm for Min-2CSG, by a reduc-
tion to a matroid intersection problem on the set of all possible edges on S, which
has O(n2) elements. Their algorithm for matroid intersection finds O(n2) single
source shortest paths in a bipartite graph with O(n2) vertices and O(n4) edges,
which leads to an overall running time of O(n6). We improve the runtime to
O(n log n + m6), where m is the number of multi-chromatic points.

Corollary 1. An instance (S, α) of Min-2CSG can be solved in O(n log n+m6)
time, where m is the number of multi-chromatic points in S.

Proof. By Lemma 1, we can compute two spanning forests on S1 and S2, respec-
tively, each with m components, that are subgraphs of a minimum CSG in
O(n log n) time. It remains to find edges of minimum total length that connect
these components in each color, for which we can use the same matroid inter-
section algorithm as in [10], but with a ground set of size O(m2). 
�
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3 General Case

We show that the decision version of Min-CSG is NP-complete. We define the
decision version of Min-CSG as follows: given an instance (S, α) and W > 0, is
there a CSG (S,E) such that

∑
e∈E w(e) < W?

Lemma 2. Min-kCSG is in NP.

Proof. Given a set of edges E, we can verify if (S,E) is a CSG(S, α) in O(k|S|)
time by testing connectivity in (Sc, Ec) for each primary color c ∈ {1, . . . , k},
and then check whether

∑
e∈E w(e) ≤ W in O(|E|) time. 
�

We reduce Min-3CSG from Planar-Monotone-3SAT, which is known to
be NP-complete [4]. For every instance A of Planar-Monotone-3SAT, we
construct an instance f(A) of Min-3CSG. An instance A consists of a plane
bipartite graph between n variable and m clause vertices such that every clause
has degree three or two, all variables lie on the x-axis and edges do not cross
the x-axis. Clauses are called positive if they are in the upper half-plane or
negative otherwise. The problem asks for an assignment from the variable set
to {true, false} such that each positive (negative) clause is adjacent to a true
(false) variable.

Fig. 2. Construction for an instance A equivalent to the boolean formula (x1 ∨ x3 ∨
x5) ∧ (¬x1 ∨ ¬x5) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4). (Color figure online)

Given an instance A of Planar-Monotone-3SAT, we construct f(A) as
shown in Fig. 2 (refer to the full paper for a figure of a single variable gadget).
The points marked with small disks are called active and they are the only
multi-chromatic points in the construction. The dashed lines in a primary color
represent a chain of equidistant monochromatic points, where the gap between
consecutive points is ε. A purple (resp., black) dashed line represents a red and
a blue (resp., a red, a blue, and a yellow) dashed line that run ε close to each
other. Informally, the value of ε is set small enough such that every point in the
interior of a dashed line is adjacent to its neighbors in any minimum CSG. The
boolean assignment of A is encoded in the edges connecting active points. We
break the construction down to gadgets and explain their behavior individually.

The long horizontal purple dashed line is called spine and the set of yellow
dashed lines (shown in Fig. 3(a)) is called cage. The rest of the construction
consists of variable and clause gadgets (shown in Figs. 3(b) and (c)). The width
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Fig. 3. (a) Cage. (b) Variable gadget. (c) Clause gadget. (Color figure online)

of a variable gadget depends on the degree of the corresponding variable in the
bipartite graph given by the instance A. For every edge incident to the variable,
we repeat the middle part of the gadget as shown in Fig. 3(b) (see Fig. 2 for
variables of degree 1 and 2). The vertical black dashed lines are called ribs and
the set of three or four active points close to an endpoint of a rib is called switch.
The variable gadget contains switches of two different sizes alternately from left
to right. A 2-switch (resp., 2 δ-switch) is a switch in which active points are at
most 2 (resp., 2δ) apart. The clause gadgets are positioned as the embedding of
clauses in A; refer to Fig. 2. Each active point of a positive (negative) clause is
assigned to a 2δ-switch and positioned vertically above (below) the active point
of the rib, at distance 2δ from it.

Let E′ be the set of all monochromatic edges of a minimum CSG computable
by Lemma 1. Let r be the number of edges in the bipartite graph of A. The
instance f(A) contains 13r active points, so (S,E′) contains 13r connected com-
ponents. By construction, the number of ε-edges in a solution of f(A) between
components of (S,E′) is upper bounded by 39r (one edge per color per compo-
nent). Finally, we set W = (

∑
e∈E′ w(e)) + 39rε + r(2 + 2

√
2) + rδ(2 + 2

√
2) +

mδ(2
√

2 − 2) and we choose ε = 1
500r2 and δ = 1

10r . This particular choice of ε
and δ is justified by the proofs of Corollaries 2 and 3. By construction, f(A) has
the following property:

(I) For every partition of the components of (Sc, E
′
c) into two sets C1, C2, where

c is a primary color, let {p1, p2} be the shortest edge between C1 and C2.
Then either w({p1, p2}) = ε or p1 and p2 are active points in the same switch.

Definition 1. A standard solution of Min-3CSG is a solution that contains
E′ and in which every edge longer than ε is between two active points of the
same switch.

Lemma 3. Let A be a positive instance of Planar-Monotone-3SAT. Then
f(A) is a positive instance of Min-3CSG.

To prove the lemma, we construct a standard solution for f(A) based on the
solution for A. This proof, and subsequent proofs, argues about all possible ways
to connect the vertices in a switch of f(A). The most efficient ones are shown
in Fig. 4; these may appear in an optimal solution. Refer to the full paper for a
complete list.
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(b)(a) (c)

Fig. 4. Possible ways to connect the vertices in a switch of f(A). (a) One of the
two states of a 2-switch, encoding the truth value of the variable. (b) The two pos-
sible states of a 2δ-switch if the incident clause is not satisfied through this variable.
(c) The only possible state of a 2δ-switch if the incident clause is satisfied through this
variable. (Color figure online)

Lemma 4. If f(A) is a positive instance of Min-3CSG, there exists a standard
solution for this instance.

Before proving the other direction of the reduction, we show some proper-
ties of a standard solution. The active points in a switch impose some local
constraints. The black and purple points attached to horizontal dashed lines
determine the switch constraint : since these points have more colors than their
incident dashed lines, they each are incident to at least one edge in the switch.
Each rib determines a rib constraint to a pair of switches that contain its end-
points: at least one of these switches must contain an edge between its black
active points or else there is no yellow path between this rib and the cage. The
following lemmas establish some bounds on the length of the edges used to sat-
isfy local constraints of a pair of switches adjacent to a rib. We refer to this pair
as a 2-pair or 2δ-pair according to the type of the switch.

Lemma 5. In a standard solution, the minimum length required to satisfy the
local constraints of a 2-pair (resp., 2δ-pair) is 2(1 +

√
2) (resp., 2δ(1 +

√
2)).

Corollary 2. In a standard solution, every 2-pair is connected minimally.

Lemma 6. In a standard solution, for each clause gadget, there exists a 2δ-pair
with local cost at least 4δ

√
2.

Corollary 3. In a standard solution, for each clause gadget, there exists a 2δ-
pair connected as Fig. 4(c). All other 2δ-pairs are connected minimally as shown
in Fig. 4(b).

Lemma 7. Let f(A) be a positive instance of Min-3CSG. Then A is a positive
instance of Planar-Monotone-3SAT.

The following theorem is a direct consequence of Lemmata 2, 3, and 7.

Theorem 1. Min-kCSG is NP-complete for k ≥ 3.
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4 Approximation

Hurtado et al. [10] gave an approximation algorithm for Min-kCSG that runs in
O(n log n) time and achieves a ratio of k/2� + �k/2��/2, where � is the Steiner
ratio. The value of � is not known and the current best upper bound is � ≤ 1.21
by Chung and Graham [6] (Gilbert and Pollack [8] conjectured � = 2√

3
≈ 1.15).

For the special case k = 3, the previous best approximation ratio is 2+�/2 ≤ 2.6.
We improve the approximation ratio to 2, and then further to 1.81. Our first
algorithm immediately generalises to k ≥ 3, and yields an k/2�-approximation,
improving on the general result by Hurtado et al.; our second algorithm also
generalizes to k > 3, however, we do not know whether it achieves a good ratio.

Suppose we are given an instance of Min-3CSG defined by (S, α) where |S| =
n and the set of primary colors is {r,b,y}. We define αrb : Sr ∪Sb → 2{r,b} \{∅}
where αrb(p) = α(p) \ {y}. Let G∗ be an optimal solution for Min-3CSG, and
put OPT = ‖G∗‖. Algorithm A1 computes a minimum red-blue-purple graph
Grb = CSG(Sr ∪ Sb, αrb) in O(n log n + m6) time, where m = |Sr ∩ Sb| by
Corollary 1; then computes a minimum spanning tree Gy of Sy, and returns the
union Grb ∪ Gy. Since G∗ contains a red, a blue, and a yellow spanning tree, we
have ‖Grb‖ ≤ OPT and ‖Gy‖ ≤ OPT; that is, Algorithm A1 returns a solution
to Min-3CSG whose length is at most 2OPT.

Theorem 2. Algorithm A1 returns a 2-approximation for Min-3CSG; it runs
in O(n log n + m6) time on n points, m of which are multi-chromatic.

Algorithm A1 can be extended to k colors by partitioning the primary colors
into k

2 � groups of at most two and computing the minimum CSG for each
group. The union of these graphs is a k

2 �-approximation that can be computed
in O(kn6) time.

Algorithm A2 computes six solutions for a given instance of Min-3CSG,
G1, . . . , G6, and returns one with minimum weight. Graph G1 is the union of Grb

and Gy defined above. Graphs G2 and G3 are defined analogously: G2 = Gry∪Gb

and G3 = Gby ∪ Gr, each of which can be computed in O(n6) time by [10]. Let
Srby ⊆ S be the set of “black” points that have all three colors, and let H
be an MST of Srby, which can be computed in O(n log n) time. We augment
H into a solution of Min-3CSG in three different ways as follows. First, let
Grb:H be the minimum forest such that H ∪ Grb:H is a minimum red-blue-
purple spanning graph on Sr ∪ Sb. Grb:H can be computed in O(n log n + m6)
time by the same matroid intersection algorithm as in Corollary 1, by setting
the weight of any edge between components containing black points to zero.
Similarly, let Gy:H be the minimum forest such that H ∪ Gy:H is a spanning
tree on Sy, which can be computed in O(n log n) time by Prim’s algorithm.
Now we let G4 = H ∪ Grb:H ∪ Gy:H . Similarly, let G5 = H ∪ Gry:H ∪ Gb:H and
G6 = H ∪ Gby:H ∪ Gr:H .

Theorem 3. Algorithm A2 returns a (2− 1
3+2� )-approximation for Min-3CSG;

it runs in O(n log n + m6) time on an input of n points, m of which are multi-
chromatic.
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Proof. Consider an instance (S, α) of Min-3CSG, and let G∗ = (S,E∗) be
an optimal solution with ‖E∗‖ = OPT. Partition E∗ into 7 subsets: for every
color γ ∈ 2{r,b,y} \ ∅, let E∗

γ = {e ∈ E∗ : α(e) = γ}, that is E∗
γ is the set of

edges of color γ in G∗. Put β = ‖E∗
rby‖/OPT. Then we have 2(1 − β)OPT =

(2‖E∗
r‖+ ‖E∗

rb‖+ ‖E∗
ry‖)+ (2‖E∗

b‖+ ‖E∗
rb‖+ ‖E∗

by‖)+ (2‖E∗
y‖+ ‖E∗

ry‖+ ‖E∗
by‖).

Without loss of generality, we may assume 2‖E∗
y‖+‖E∗

ry‖+‖E∗
by‖ ≤ 2

3 (1−β)OPT.
First, consider G1 = Grb ∪ Gy. The edges of G∗ whose colors include red or

blue (resp., yellow) form a connected graph on Sr∪Sb (resp., Sy). Consequently,

‖Grb‖ ≤ ‖E∗
r‖ + ‖E∗

b‖ + ‖E∗
rb‖ + ‖E∗

ry‖ + ‖E∗
by‖ + ‖E∗

rby‖. (1)
‖Gy‖ ≤ ‖E∗

y‖ + ‖E∗
ry‖ + ‖E∗

by‖ + ‖E∗
rby‖. (2)

The combination of (1) and (2) yields

‖G1‖ ≤ ‖Grb‖ + ‖Gy‖ ≤ OPT + ‖E∗
ry‖ + ‖E∗

by‖ + ‖E∗
rby‖

≤ OPT +
2
3
(1 − β) · OPT + β · OPT =

5 + β

3
OPT. (3)

Next, consider G4 = H ∪Grb:H ∪Gy:H . The edges of G∗ whose colors include
yellow contain a spanning tree on Sy, hence a Steiner tree on the black points
Srby. Specifically, the black edges in E∗

rby form a black spanning forest, which is
completed to a Steiner tree by some of the edges of E∗

y ∪E∗
by ∪E∗

ry. This implies

‖H‖ ≤ ‖E∗
rby‖ + � · (‖E∗

y‖ + ‖E∗
by‖ + ‖E∗

ry‖)

≤ β · OPT + �
2
3
(1 − β) · OPT =

(
β +

2
3
� − 2

3
β�

)
OPT.

Since H is a spanning tree on the black vertices Srby, (1) and (2) reduce to

‖Grb:H‖ ≤ ‖E∗
r‖ + ‖E∗

b‖ + ‖E∗
rb‖ + ‖E∗

ry‖ + ‖E∗
by‖, (4)

‖Gy:H‖ ≤ ‖E∗
y‖ + ‖E∗

ry‖ + ‖E∗
by‖. (5)

The combination of (4) and (5) yields

‖Grb:H‖ + ‖Gy:H‖ ≤ (OPT − ‖E∗
rby‖) + ‖E∗

ry‖ + ‖E∗
by‖

≤ (1 − β) · OPT +
2
3
(1 − β) · OPT =

5
3
(1 − β) · OPT.

Therefore,

‖G4‖ = ‖H‖ + ‖Grb:H‖ + ‖Gy:H‖ ≤
(

5
3

+
2
3
(� − β − β�)

)
OPT. (6)

If we set β = 2�
3+2� , then both (3) and (6) give the same upper bound

min(‖G1‖, ‖G4‖)
OPT

≤ 5 + β

3
= 2 − 1

3 + 2�
≤ 1.816,

where we used the current best upper bound for the Steiner ratio � ≤ 1.21
from [6]. 
�
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5 Collinear Points

In this section we consider instances of Min-kCSG, (S, α), where k ≥ 3 and
S consists of collinear points. An example is shown in Fig. 5. Without loss of
generality, S = {p1, . . . , pn} and the points pi, 1 ≤ i ≤ n, lie on the x-axis
sorted by x-coordinates. We present a dynamic programming algorithm that
solves Min-kCSG in 2O(k22k) · n time.

Fig. 5. An example with optimal solution for collinear points. (Color figure online)

Our first observation is that if the points in S are collinear, we may assume
that every edge satisfies the following property.

If {pa, pb}, a < b, is an edge, then there is no r, a < r < b, such that
α({pa, pb}) ⊆ α(pr). (�)

Lemma 8. For every graph G = (S,E), there exists a graph G′ = (S,E′) of the
same cost that satisfies (�) and for each color c ∈ {1, . . . , k}, every component of
(Sc, Ec) is contained in some component of (Sc, E

′
c). In particular, Min-kCSG

has a solution with property (�).

Proof. Let G = (S,E) be a graph, and let XG denote the set of triples (i, j; r)
such that 1 ≤ i < r < j ≤ n, {pi, pj} ∈ E, and α({pi, pj}) ⊆ α(pr). If XG = ∅,
then G satisfies (�). Suppose XG �= ∅. For every triple (i, j; r) ∈ XG, successively,
replace the edge {pi, pj} by two edges {pi, pr} and {pr, pj} (i.e., subdivide edge
{pi, pj} at pr). Note that α({ph, pi}), α({pi, pj}) ⊆ α(pi), consequently pi and pj

remain in the same component for each primary color c ∈ α({pi, pj}). Each step
maintains the total edge length of the graph and strictly decreases XG. After
|XG| subdivision steps, we obtain a graph G′ = (S,E′) as required. 
�

In the remainder of this section we assume that every edge has property (�).
Furthermore, all graphs considered in this section are defined on an interval of
consecutive vertices of S.

Corollary 4. Let G = (S,E) be a graph and let i ∈ {1, . . . , n}.
1. If e ∈ E is an edge between {p1, . . . , pi} and {pi+1, . . . , pn} and α(e) = γ,

then the endpoints of e are uniquely determined. Specifically, if e = {pa, pb}
with 1 ≤ a ≤ i < b ≤ n, then a ∈ {1, . . . , i} is the largest index such that
γ ⊂ α(pa), and b ∈ {i + 1, . . . , n} is the smallest index such that γ ⊂ α(pb).

2. If two edges e1, e2 ∈ E overlap, then α(e1) �= α(e2).
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Proof.

(1) Suppose, to the contrary, that there is index j, a < j ≤ i, such that γ ⊂
α(pj). Then edge {pa, pb} and point pr violate (�). The case that there is
some j, i + 1 ≤ j < b, leads to the same contradiction.

(2) Without loss of generality e1 = {pa, pb} and e2 = {pi, pj} with a ≤ i < b ≤ j.
Then both edges e1 and e2 are between {p1, . . . , pi} and {pi+1, . . . , pn},
contradicting part (1). 
�

The basis for our dynamic programming algorithm is that Min-kCSG has the
optimal substructure and overlapping substructures properties when the points
in S are collinear. We introduce some notation for defining the subproblems. For
indices 1 ≤ a ≤ b ≤ n, let S[a, b] = {pa, . . . , pb}. For every graph G = (S,E) and
index i ∈ {1, . . . , n}, we partition the edge set E into three subsets as follows:
let E−

i be the set of edges induced by S[1, i], E+
i the set of edges induced by

S[i + 1, n], and E0
i the set of edges between S[1, i] and S[i + 1, n]. With this

notation, Min-kCSG has the following optimal substructure property.
Lemma 9. Let G = (S,E) be a minimum CSG, i ∈ {1, . . . , n}, and X be the
family of edge sets X−

i on S[1, i] such that (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG. Then

(S,X−
i ∪ E0

i ∪ E+
i ) is a minimum CSG iff X−

i ∈ X has minimum cost.

Proof. If (S,X−
i ∪E0

i ∪E+
i ) is a minimum CSG, but some Y −

i ∈ X costs less than
E−

i , then (S, Y −
i ∪ E0

i ∪ E+
i ) would be a CSG that costs less than G = (S,E),

contradicting the minimality of (S,X−
i ∪ E0

i ∪ E+
i ). If X−

i ∈ X has minimum
cost, but G = (S,E) costs less than (S,X−

i ∪ E0
i ∪ E+

i ), then E−
i ∈ X would

costs less than X−
i , contradicting the minimality of X−

i ∈ X . 
�
Lemma 9 immediately suggests a näıve algorithm for Min-kCSG: Guess the

edge set E0
i ∪E+

i of a minimum CSG G = (S,E), and compute a minimum-cost
set X−

i on S[1, i] such that (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG. However, all possible

edge sets E0
i ∪ E+

i could generate 2Θ(n) subproblems. We reduce the number
of subproblems using the overlapping subproblem property. Instead of guessing
E0

i ∪ E+
i , it is enough to guess the information relevant for finding the minimal

cost X−
i on S[1, i]. First, the edges in E0

i can be uniquely determined by the
set of their colors (using Corollary 4 (1)). Second, the only useful information
from E+

i is to tell which points in S[1, i] are adjacent to the same component
of (S[i + 1, n]c, (E+

i )c), for each primary color c ∈ {1, . . . , k}. This information
can be summarized by k equivalence relations on the sets (E0

i )1, . . . , (E0
i )k. We

continue with the details.
We can encode E0

i by the set of its colors Γi = {α(e) : e ∈ E0
i }. For i ∈

{1, . . . , n}, a set of edges X0
i between S[1, i] and S[i+1, n] is valid if there exists

a CSG G = (S,E) such that X0
i = E0

i .

Lemma 10. For i ∈ {1, . . . , n}, an edge set X0
i between S[1, i] and S[i + 1, n]

is valid iff for every primary color c ∈ {1, . . . , k}, there is an edge e ∈ X0
i such

that c ∈ α(e) whenever both S[1, i]c and S[i + 1, n]c are nonempty.

We encode the relevant information from E+
i using k equivalence relations as

follows. For every c ∈ {1, . . . , k}, the components of (S[i + 1, n]c, (E+
i )c) define
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an equivalence relation on (E0
i )c, which we denote by πc

i : two edges in (E0
i )c

are related iff they are incident to the same component of (S[i + 1, n]c, (E+
i )c).

Let Πi = (π1
i , . . . , πk

i ). The equivalence relation πc
i , in turn, determines a graph

(S[1, i]c, E(πc
i )): two distinct vertices in S[1, i]c are adjacent iff they are incident

to equivalent edges in (E0
i )c (that is, two distinct vertices in S[1, i]c are adjacent

iff they both are adjacent to the same component of (S[i + 1, n]c, (E+
i )c)). See

Fig. 6 for examples of E0
i and Πi. The condition that (S,X−

i ∪ E0
i ∪ E+

i ) is a
CSG can now be formulated in terms of E0

i and Πi (without using E+
i directly).

Lemma 11. Let G = (S,E) be a CSG, i ∈ {1, . . . , n}, and X−
i an edge set on

S[1, i]. The graph (S,X−
i ∪ E0

i ∪ E+
i ) is a CSG iff the graph (S[1, i]c, (X−

i )c ∪
E(πc

i )) is connected for every c ∈ {1 . . . , k}.
We can now define subproblems for Min-kCSG. For an index i ∈ {1, . . . , n},

a valid set E0
i , and equivalence relations Πi = (π1

i , . . . , πk
i ), let X (E0

i ,Πi) be the
family of edge sets X−

i on S[1, i] such that for every c ∈ {1 . . . , k}, the graph
(S[1, i]c, (X−

i )c ∪E(πc
i )) is connected. The subproblem A[i, E0

i ,Πi] is to find the
minimum cost of an edge set X−

i ∈ X (E0
i ,Πi).

Note that for i = n, A[n, ∅, (∅, . . . , ∅)] is the minimum cost of a CSG for
an instance (S, α) of Min-kCSG. Next, we establish a recurrence relation for
A[i, E0

i ,Πi], which will allow computing A[n, ∅, (∅, . . . , ∅)] by dynamic program-
ming. For i = 1, we have A[1, E0

1 ,Π1] = 0 for any valid E0
1 and Π1. For all i,

1 < i ≤ n, we wish to express A[i, E0
i ,Πi] in terms of A[i − 1, E0

i−1,Πi−1]’s for
suitable E0

i−1 and Πi−1.
We say that two valid edge sets E0

i−1 and E0
i are compatible if there exists

an X−
i ∈ X (E0

i ,Πi) for some Πi such that E0
i−1 = (X−

i ∪ E0
i )0i−1. We can

characterize compatible edge sets as follows.

Lemma 12. Two valid edge sets E0
i−1 and E0

i are compatible iff every edge e
in the symmetric difference of E0

i−1 and E0
i is incident to pi.

For two valid compatible edge sets, Ei−1 and Ei, and a sequence of equiv-
alence relations Πi, we define equivalence relations Π̂i−1 = (π̂1

i−1, . . . , π̂
k
i−1) as

follows. For every primary color c ∈ {1, . . . , k}, let the equivalence relation π̂c
i−1

on (E0
i−1)c be the transitive closure of the union of four equivalence relations:

two edges in (E0
i−1)c are related if (1) they both incident to pi; (2) they both are

in (E0
i )c and πc

i -equivalent; (3) they are both in (E0
i )c and each are equivalent

to some edge in (E0
i )c that are πc

i -equivalent; (4) one is incident to pi and the
other is in (E0

i )c and πc
i -equivalent to some edge in (E0

i )c incident to πc
i .

Lemma 13. Let E0
i−1 and E0

i be two valid compatible edge sets, and Πi =
(π1

i , . . . , πc
i ). Let E−

i−1 be a set of edges on S[1, i−1], and put E = E−
i−1 ∪E0

i−1 ∪
E0

i . Then, Π̂i−1 has the following property: E−
i ∈ X (E0

i ,Πi) if and only if

(d1) E−
i−1 ∈ X (E0

i−1, Π̂i−1); and
(d2) if c ∈ α(pi) and S[1, i]c �= {pi}, then pi is incident to an edge in (E0

i−1)c

or an edge in (E0
i )c that is πc

i -equivalent to some edge incident to S[1, i−1]c.
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(a)

S[1, i − 1]

πblue
i

S[i, n]

(b)

S[1, i − 2]

πblue
i−1

S[i − 1, n]

(c)

S[1, i − 2]

πblue
i−1

S[i − 1, n]

Fig. 6. (a) E0
i and πblue

i . (b) E0
i+1 and πblue

i+1 , where E0
i+1 and E0

i are compatible. (c)
E0

i+1 and πblue
i+1 violate condition (d2). (Color figure online)

Lemma 14. For all i ∈ {2, . . . , n}, we have the following recurrence:

A[i, E0
i ,Πi] =

∑

{ph,pi}∈E0
i

w({ph, pi}) + min
E0

i−1compatible
A[i − 1, E0

i−1, Π̂i−1]. (7)

Theorem 4. For every constant k ≥ 1, Min-kCSG can be solved in O(n) time
when the input points are collinear.

Proof. We determine the number of subproblems. By Corollary 4, every valid
E0

i contains at most |2{1,...,k} \ {∅}| = 2k − 1 edges. We have |(E0
i )c| ≤ 2k−1,

since 2k−1 different colors contain any primary color c ∈ {1, . . . , k}. The num-
ber of equivalence relations of a set of size t is known as the t-th Bell number,
denoted B(t). It is known [3] that B(t) ≤ (0.792t/ ln(t+1))t < 2O(t log t). Conse-
quently, the number of possible Πi is at most (B(2k−1))k. The total number of
subproblems is O(n2k(B(2k−1))k), which is O(n) for any constant k. We solve
the subproblems A[i, E0

i ,Πi], 1 < i ≤ n, by dynamic programming, using the
recursive formula (7). The time required to evaluate (7) is O(2k) for the sum
of edge weights and O(2k(B(2k−1))k) to compare all compatible subproblems
A[i − 1, E0

i−1, Π̂i−1], that is, O(1) time when k is a constant. Therefore, the
dynamic programming can be implemented in O(n) time. 
�

6 Conclusions

We have shown that Min-3CSG is NP-complete in general and given a O(n)
time algorithm for Min-kCSG in the special case that all points are collinear and
k is a constant. We also improved the approximation factor of a polynomial time
algorithm from (2+ 1

2�) [10] to (2− 2
2+2� ) when k = 3. It remains open whether

there exists a PTAS for Min-kCSG, k ≥ 3. Several other special cases are open
for Min-3CSG, such as when the points in S are on a circle or in convex position.
We can generalize Min-kCSG so that the edge weights need not be Euclidean
distances. Given an arbitrary graph (V,E) and a coloring α : V → P({1, . . . , k}),
what is the minimum set E′ ⊆ E such that (V,E′) is a colored spanning graph?
Since the 2-approximation algorithm presented here did not rely on the geometry
of the problem, it extends to the generalization; however, this problem may be
harder to approximate than its Euclidean counterpart.
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out Borders program. Löffler was partially supported by the Netherlands Organisation
for Scientific Research (NWO) projects 639.021.123 and 614.001.504.

References

1. Alper, B., Riche, N., Ramos, G., Czerwinski, M.: Design study of linesets, a novel
set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267
(2011)

2. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: Visual-
izing sets and set-typed data: state-of-the-art and future challenges. In: Proceedings
of Eurographics Conference on Visualization (EuroVis), pp. 1–21 (2014)

3. Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums
of random variables. Prob. Math. Stat. 30(2), 185–205 (2010)

4. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

5. Biniaz, A., Bose, P., van Duijn, I., Maheshwari, A., Smid, M.: A faster algorithm
for the minimum red-blue-purple spanning graph problem for points on a circle. In:
Proceedings of 28th Canadian Conference on Computational Geometry, Vancouver,
BC, pp. 140–146 (2016)

6. Chung, F., Graham, R.: A new bound for Euclidean Steiner minimum trees. Ann.
N.Y. Acad. Sci. 440, 328–346 (1986)

7. Dinkla, K., van Kreveld, M.J., Speckmann, B., Westenberg, M.A.: Kelp diagrams:
point set membership visualization. Comput. Graph. Forum 31(3), 875–884 (2012)

8. Gilbert, E., Pollak, H.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)
9. Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira, R.I.,
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Abstract. We show that c-planarity is solvable in quadratic time for flat
clustered graphs with three clusters if the combinatorial embedding of the
underlying graph is fixed. In simpler graph-theoretical terms our result
can be viewed as follows. Given a graph G with the vertex set partitioned
into three parts embedded on a 2-sphere, our algorithm decides if we can
augment G by adding edges without creating an edge-crossing so that in
the resulting spherical graph the vertices of each part induce a connected
sub-graph. We proceed by a reduction to the problem of testing the
existence of a perfect matching in planar bipartite graphs. We formulate
our result in a slightly more general setting of cyclic clustered graphs,
i.e., the simple graph obtained by contracting each cluster, where we
disregard loops and multi-edges, is a cycle.

1 Introduction

Testing planarity of graphs with additional constraints is a popular theme in
the area of graph visualizations. One of most the prominent such planarity vari-
ants, c-planarity, raised in 1995 by Feng, Cohen and Eades [12,13] asks for a
given planar graph G equipped with a hierarchical structure on its vertex set,
i.e., clusters, to decide if a planar embedding G with the following property
exists: the vertices in each cluster are drawn inside a disc so that the discs form
a laminar set family corresponding to the given hierarchical structure and the
embedding has the least possible number of edge-crossings with the boundaries
of the discs. Shortly after, several groups of researchers tried to settle the main
open problem formulated by Feng et al. asking to decide its complexity status,
i.e., either provide a polynomial/sub-exponential-time algorithm for c-planarity
or show its NP-hardness. First, Biedl [5] gave a polynomial-time algorithm for
c-planarity with two clusters. A different approach for two clusters was consid-
ered by Hong and Nagamochi [19] and quite recently in [15]. The result also fol-
lows from a work by Gutwenger et al. [17]. Beyond two clusters a polynomial time
algorithm for c-planarity was obtained only in special cases, e.g., [8,16,17,20,21],
and most recently in [6,7]. Cortese et al. [9] shows that c-planarity is solvable in
polynomial time if the underlying graph is a cycle and the number of clusters is
at most three.
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In the present work we generalize the result of Cortese et al. to the class of all
planar graphs with a given combinatorial embedding. In a recent pre-print [14]
we established a strengthening for trees, where we do not fix the embedding. In
the general case (including already the case of three clusters) of so-called flat
clustered graphs a similar result was obtained only in very limited cases. Specif-
ically, either when every face of G is incident to at most five vertices [10,15], or
when there exist at most two vertices of a cluster incident to a single face [7].
We remark that the techniques of the previously mentioned papers do not give
a polynomial-time algorithm for the case of three clusters, and also do not seem
to be adaptable to this setting. Our result and the technique used to achieve
it suggest that, for a fairly general class of clustered graphs, c-planarity could
be tractable/solvable in sub-exponential time at least with a fixed combinator-
ial embedding.

Notation. Let G = (V,E) denote a connected planar graph possibly with multi-
edges. For standard graph theoretical definitions such as path, cycle, walk etc.,
we refer reader to [11, Sect. 1]. A drawing of G is a representation of G in
the plane where every vertex in V is represented by a unique point and every
edge e = uv in E is represented by a Jordan arc joining the two points that
represent u and v. We assume that in a drawing no edge passes through a
vertex, no two edges touch and every pair of edges cross in finitely many points.
An embedding of G is an edge-crossing free drawing. If it leads to no confusion,
we do not distinguish between a vertex or an edge and its representation in the
drawing and we use the words “vertex” and “edge” in both contexts. A face in
an embedding is a connected component of the complement of the embedding
of G (as a topological space) in the plane. The facial walk of f is the closed
walk in G with a fixed orientation that we obtain by traversing the boundary
of f counter-clockwise. In order to simplify the notation we sometimes denote
the facial walk of a face f by f . A pair of consecutive edges e and e′ in a facial
walk f creates a wedge incident to f at their common vertex. A vertex or an
edge is incident to a face f , if it appears on its facial walk. The rotation at a
vertex is the counter-clockwise cyclic order of the end pieces of its incident edges
in a drawing of G. An embedding of G is up to an isotopy and the choice of an
outer (unbounded) face described by the rotations at its vertices. We call such
a description of an embedding of G a combinatorial embedding. Remaining faces
are inner faces. The interior and exterior of a cycle in an embedded graph is the
bounded and unbounded, respectively, connected component of its complement
in the plane. Similarly, the interior and exterior of an inner face in an embedded
graph is the bounded and unbounded, respectively, connected component of the
complement of its facial walk in the plane, and vice-versa for the outer face.
When talking about interior/exterior or area of a cycle in a graph G with a
combinatorial embedding and a designated outer face we mean it with respect
to an embedding in the isotopy class that G defines. For V ′ ⊆ V we denote by
G[V ′] the sub-graph of G induced by V ′.

A flat clustered graph, shortly c-graph, is a pair (G,T ), where G = (V,E) is
a graph and T = {V0, . . . , Vc−1},

⊎
i Vi = V , is a partition of the vertex set into
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clusters. See Fig. 1 for an illustration. A c-graph (G,T ) is clustered planar (or
briefly c-planar) if G has an embedding in the plane such that (i) for every Vi ∈ T
there is a topological disc D(Vi), where interior(D(Vi)) ∩ interior(D(Vj)) = ∅, if
i �= j, containing all the vertices of Vi in its interior, and (ii) every edge of G inter-
sects the boundary of D(Vi) at most once for every D(Vi). A c-graph (G,T ) with
a given combinatorial embedding of G is c-planar if additionally the embedding
is combinatorially described as given. A clustered drawing and embedding of a
flat clustered graph (G,T ) is a drawing and embedding, respectively, of G satis-
fying (i) and (ii). In 1995 Feng, Cohen and Eades [12,13] introduced the notion
of clustered planarity for clustered graphs, shortly c-planarity, (using, a more
general, hierarchical clustering) as a natural generalization of graph planarity.
(Under a different name Lengauer [22] studied a similar concept in 1989.)

V1

V2 V0

(a)

V1

V2 V0

(b)

Fig. 1. A c-graph that is not c-planar
(left); and a c-planar c-graph (right).

By slightly abusing the notation for
the rest of the paper G denotes a flat c-
graph (G,T ) = (V0 � V1 � . . . � Vc−1, E)
with c clusters V0, V1, . . . and Vc−1, and
a given combinatorial embedding, and we
assume that G is cyclic [15, Sect. 6]. Thus,
every e = uv of G is such that u ∈ Vi and
v ∈ Vj where j − i mod c ≤ 1 and for
every i there exists an edge in G between
Vi and Vi+1 mod c. In the case of three
clusters, the first condition is redundant.
If the second condition is violated, the problem was essentially solved for three
clusters as discussed in Sect. 2.3. We assume that G is connected, since in the
problem that we are studying, the connected components of G can be treated
separately. Indeed, without loss of generality we assume throughout the paper
that in a clustered embedding of G the clusters are unbounded wedges defined
by pairs of rays emanating from the origin (see Fig. 2a) that is disjoint from all
the edges. We call such a clustered drawing a fan drawing.

V1 V0

V2

0

uei
ei+1

v

(a)

V1 V0

V2

0

f
fo

(b)

Fig. 2. (a) A clustered graph G = (V0 �V1 �V2, E) with clusters represented by wedges
bounded by rays meeting at the origin. The highlighted wedge at u is concave and at v
convex. (b) A semi-simple face f and the outer face fo with an incident concave wedge.
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Thus, a connected component in a clustered embedding can be drawn so that
it is disjoint from a ball B centered at the origin of radius ε > 0 for any ε. The
rest of the graph is then embedded inductively inside B. The aim of the present
work is to prove the following.

Theorem 1. There exists a quadratic-time algorithm in |V (G)| to test if a cyclic
c-graph (G,T ) is c-planar.

Further Research Directions. We think that our technique should be extend-
able by means of Euler’s formula to resolve the c-planarity in more general sit-
uations than the one treated in the present paper. In particular, we suspect
that the technique should yield a generalization of the characterization of strip
planar clustered graphs [14, Sect. 5]. That would allow us to work with graphs
without a fixed embedding. We mention that the tractability in a special case of
our problem known as cyclic level planarity, when the embedding is not fixed,
follows from a recent work of Angelini et al. [2].

Organization. In Sect. 2 we introduce concepts used in the proof of our result.
We give an outline of our approach in Sect. 2.1. A more detailed description and
a proof of correctness of our algorithm is in Sect. 3.

2 Preliminaries

2.1 Outline of the Approach

By [13, Theorem 1] deciding c-planarity of instances G in which all G[Vi]’s are
connected amounts to checking if an outer face of G can be chosen so that every
Vi is embedded in the outer face of G[V \Vi]. On the other hand, once we have a
clustered embedding of G we can augment G by adding edges drawn inside clus-
ters without creating an edge-crossing so that clusters become connected. These
observations suggest that c-planarity of G could be viewed as a connectivity
augmentation problem, for example as in [7,15], in which we want to decide if it
is possible to make clusters connected while maintaining the planarity of G. One
minor problem with this viewpoint is the fact that if G is c-planar we do not
allow a cluster Vi to induce a cycle such that clusters Vj and Vj′ , i �= j, j′, are
drawn on its opposite sides. However, this cannot happen if G is cyclic. Following
the above line of thought our algorithm tries to augment G by subdividing its
faces with paths and edges. We proceed in two steps. In the first step, Sect. 3.2,
we either detect that G is not c-planar or similarly as in [1] and [14] by turn-
ing clusters into independent sets and adding certain paths we normalize the
instance. In the second step, Sect. 3.1, we decide if the normalized instance can
be further augmented by edges as desired.

In order to prove the correctness of the second step of the algorithm we use
the notion of the winding number wn(W ) ∈ Z of a walk W of G, as defined
in Sect. 2.3. The parameter wn(W ) says how many times and in which sense a
walk W of G winds around the origin in a clustered drawing of G. Thus, G is
not c-planar if there exists a face f such that for its facial walk |wn(f)| > 1 or if
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there exists at least two inner faces f with |wn(f)| > 0. However, it can be easily
seen that this necessary condition of c-planarity is not sufficient except when G
is a cycle [9]. The necessary condition allows us to reduce the c-planarity testing
problem of a normalized instance to the problem of finding a perfect matching
in an auxiliary face-vertex incidence graph which is polynomially solvable. The
novelty of our work lies in the use of the winding number in the context of
connectivity augmentation guided by the flow and matching in the auxiliary
face-vertex incidence graph à la [1,14], respectively.

We remark that the approach of [1] via a variant of upward embeddings for
directed graphs in our settings has several problems that seem quite hard to
overcome, the main one being the fact that the result of Bertolazzi et al. [4] does
not extend, at least not in a natural way, to the drawings on the rolling cylinder,
see e.g., Auer et al. [3] for the definition of these drawings. We are not aware of a
polynomial-time algorithm for the corresponding problem, nor a corresponding
NP-hardness result, and find the corresponding algorithmic question interesting
and related to our problem.

2.2 Winding Number

We define the winding number wn(W ) of a closed oriented walk W in a drawing
disjoint from the origin of a graph G (possibly with crossings). In what follows
facial walks are understood with the orientations as in an embedding of G with
the given rotations and a face fo being a designated outer face. By viewing a
closed walk W in the drawing as a continuous function w from the unit circle
S1 to R

2 \ 0, the winding number wn(W ) ∈ Z corresponds to the element of
the fundamental group of S1 [18, Chap. 1.1] represented by w(x)

||w(x)||2 . Let W1 and
W2 denote a pair of oriented closed walks meeting in a vertex v. Let W denote
the closed oriented walk from v to v obtained by concatenating W1 and W2.
By the definition of wn we have wn(W ) = wn(W1) + wn(W2). Let f1 and f2,
fo �= f1, f2, denote a pair of faces of G whose walks intersect in a single walk.
Let G′ denote a graph we get from G by deleting edges incident to both f1 and
f2. Let f denote the new face thereby obtained. Since f1 and f2 intersect in a
single walk, the boundary of f is connected. In the drawing of G′ inherited from
the drawing of G we have wn(f) = wn(f1) + wn(f2), since common edges of f1
and f2 are traversed in opposite directions by f1 and f2. A face or a vertex is
in the interior of a closed walk W in G if it is in the interior of a cycle induced
by the edges of W in an embedding of G with the given rotations and fo as the
outer face. The previous observation is easily generalized by a simple inductive
argument as follows

(∗)
∑

f wn(f) = wn(W )

where we sum over all faces f of G in the interior of the closed walk W in G. In
particular,

∑
f wn(f) = wn(fo), where we sum over all faces f �= fo of G.
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2.3 Labeling Vertices

Let γ : V → {0, 1, . . . c − 1} be a labeling of the vertices V by integers such that
γ(v) = i if v ∈ Vi. Let W denote an oriented closed walk in a clustered drawing
of G. We put height(W ) =

∑
v′u′∈E(W ) g(γ(u′) − γ(v′)), where g(0) = 0, g(1) =

g(1 − c) = 1 and g(c − 1) = g(−1) = −1. We have the following.

Lemma 1. For a walk W in a fan drawing of G we have wn(W ) = height(W )/c.

Proof. The number of times the walk W crosses the ray between Vi and
Vi+1 mod c from right to left w.r.t. to the direction of the ray is wn+

i (W ) =∑
v′u′ g(γ(u′) − γ(v′)), where we sum over the edges v′u′ in the walk W , where

v′ ∈ Vi immediately precedes u′ ∈ Vi+1 mod c in the walk. Similarly, we define
wn−

i (W ) =
∑

v′u′ g(γ(u′) − γ(v′)), where we sum over the edges v′u′ in W ,
where v′ ∈ Vi+1 mod c immediately precedes u′ ∈ Vi in the walk. We have,
wn(W ) = wn+

i (W )+wn−
i (W ) which in turn implies c ·wn(W ) =

∑
i(wn+

i (W )+
wn−

i (W )) = height(W ). �

By the previous lemma wn(W ) is determined already by the c-graph G and is the
same in all clustered drawings of G, and hence, putting wn(W ) := height(W )/c,
for a walk W with a fixed orientation, allows us to speak about wn(W ) without
referring to a particular drawing of G. Thus, wn(W ) tells us the winding number
of W in any clustered drawing. By Jordan-Schönflies theorem G the following
holds.

Lemma 2. G is not c-planar if there exists a face f such that |wn(f)| > 1 or
if there exists more than one inner face f ′ with |wn(f ′)| = 1.

Proof. In a crossing free drawing |wn(f)| ≤ 1 for every face f . If |wn(f ′)| = 1 the
origin 0 lies in the interior of f ′ since otherwise the facial walk is null-homotopic,
i.e., homotopic to a constant map, in R

2 \ 0 (contradiction). However, interiors
of faces are disjoint. �

If wn(f) = 0 for all faces f , [14, Lemma 1.2] extends easily to this case, reducing
the problem to the work of Angelini et al. [1]. Thus, by Lemma 2 and for the
sake of simplicity of the presentation, throughout the paper we assume that
there exists a pair of faces fo, f

′
o, wn(fo) = wn(f ′

o) �= 0 (by (∗) there cannot be
just one such face) one of which, let’s say fo, we designate as an outer face. The
roles of fo and f ′

o are, in fact, interchangeable. Also such a restriction is by no
means crucial in our problem, and alternatively, it is always possible to choose
and subdivide the outer face in the normalized instance (defined later) by a path
so that the restriction is satisfied.

Viewing a facial walk f as a sequence of vertices and edges
w0e0w1e2 . . . emwm, where ei−1 = wi−1wi, let Vf be the set {w0, . . . , wm} of
vertex occurrences along f . We treat Vf also as a multi-set of vertices, and thus,
γ is defined on its elements. Let γf : Vf → N, for f �= fo, f

′
o, be a labeling of

the elements of Vf by integers defined as follows. We mark all the vertex occur-
rences in Vf as unprocessed. We pick an arbitrary vertex occurrence v ∈ Vf ,
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set γf (v) := γ(v) and mark v as processed. We repeatedly pick an unprocessed
vertex occurrence u ∈ Vf that has its predecessor or successor v along the bound-
ary walk of f in Vf processed. We put γf (u) := γf (v)+g(γ(u)−γ(v)). Intuitively,
γf records the distance in terms of “winding around origin” of vertex occur-
rences along the boundary walk of f from a single chosen vertex occurrence.
Since wn(f) = 0 the function γf (u) is completely determined by the choice of
the first occurrence of a vertex we processed. This choice is irrelevant for our
use of γf as we see later. Also notice that γ(v) = γf (v) mod c for all vertices
incident to f .

A normalized instance allows only the faces of the types defined next. An
element v in Vf is a local minimum (maximum) of a face f if in the facial
walk f the value of γ(v) is not bigger (not smaller) with respect to the relation
0 < 1 < . . . < c − 1 < 0 than the value of its successor and predecessor.
A walk W in G is (strictly) monotone with respect to γ if the labels of the
occurrences of vertices on W form a (strictly) monotone sequence with respect
to the relation 0 < 1 < . . . < c− 1 < 0 when ordered in the correspondence with
their appearance on W . The face f is simple if f has at most one local minimum.
It follows that a simple face f has also at most one local maximum. The inner
face f �= f ′

o is semi-simple if f has exactly two local minima and maxima and
these minima and maxima, respectively, have the same γf value.

3 Algorithm

A cyclic c-graph G is normalized if

(i) G is connected;
(ii) each cluster Vi induces an independent set; and
(iii) each face of G is simple or semi-simple, and fo and f ′

o are both simple.

Suppose that (i)–(iii) are satisfied. By (ii) we put directions on all the edges
in G as follows. Let

−→
G denote the directed c-graph obtained from G by orienting

every edge uv from the vertex with the smaller label min(γ(u), γ(v)) to the vertex
with the bigger label max(γ(u), γ(v)) with respect to the relation 0 < 1 < . . . <

c − 1 < 0. A sink and source of
−→
G is a vertex with no outgoing and incoming,

respectively, edges.
Let e denote an edge of G not contained in a single cluster. Given a clustered

embedding D of G let pe := pe(D) denote the intersection point of e with a ray
separating a pair of clusters. Let e0, . . . , ek−1 be the edges incident to a sink or
source u. By Jordan curve theorem it is not hard to see that (i)–(iii) imply that a
clustered embedding D of G is “combinatorially” determined once we order the
set of intersection points pe0 , . . . ,pek−1

along rays separating clusters for every
sink and sources u in G. Moreover, the set of intersection points corresponding
to a sink or source u admits in an embedding only orders that are cyclic shifts of
one another, since we have the rotations at vertices of G fixed. The wedge in D
formed by a pair of edges ei and ei+1 incident to a face f at its local extreme u is
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concave (see Fig. 2a for an illustration) if u is a sink or source of
−→
G and the line

segment pei
pei+1

contains all the other points pej
or in other words the order

of intersection points corresponding to u is pei+1
,pei+2

, . . . ,pek−1
,pe0 , . . . ,pei

.
A non-concave wedge is convex. Note that in D every sink or source is incident
to exactly one concave wedge that in turn determines the order of intersection
points. Thus, combinatorially D is also determined by a prescription of concave
wedges at sink and sources.

Let S be the set of sinks and sources of
−→
G . Let F denote the union of the

set of semi-simple faces of G with a subset of {fo, f
′
o} containing faces incident

to a sink and a source. We construct a planar bipartite graph I = (S ∪ F,E(I))
with parts S and F , where s ∈ S and f ∈ F is joined by an edge if s is incident
to f . Given that (i)–(iii) are satisfied, the existence of a perfect matching M
in I is a necessary condition for G being c-planar. Indeed, as we just said, in a
clustered embedding, each source or sink has exactly one of its wedges concave.
On the other hand, by Jordan curve theorem it can be easily checked that in the
clustered embedding

(A) every semi-simple face is incident to exactly one concave wedge
(B) faces fo and f ′

o are incident to one concave wedge if they are incident to a
sink and source, and

(C) all the other faces are not incident to any concave wedges at the minimum
and maximum.

This is fairly easy to see if G is vertex two-connected, see Fig. 2b for an illus-
tration. The cycle C corresponding to a closed walk is obtained by traversing the
walk and introducing a new vertex for each vertex occurrence in the walk. For a
face f incident to cut-vertices, (A)–(C) follows by considering the cycle corre-
sponding to the facial walk of f (treated as a face) embedded in a close vicinity
of the boundary of f . Thus, a desired matching M is obtained by matching each
source or sink with the face incident to its concave wedge.

We show in Sect. 3.1 that if M exists G is c-planar by augmenting G with
edges as described in Sect. 2.1. Testing the existence, but even counting per-
fect matchings in a planar bipartite graph can be carried out in a polynomial
time [23, Sect. 8].

The running time of our algorithm is O(|V |2) since finding the perfect match-
ing can be done in O(|V |2) time, due to |E(I)| = O(|V |), and the pre-processing
step including the construction of I and the normalization will be easily seen to
have this time complexity. Also computing the winding number for all the faces
can be performed in a linear time by Lemma 1. First, we explain and prove the
correctness of the algorithm for instances satisfying (i)–(iii). In Sect. 3.2, we show
a polynomial-time reduction of the general case to instances satisfying (i)–(iii).
We often use Jordan–Schönflies theorem without explicitly mentioning it.
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3.1 Constructing a Clustered Embedding

u
u′

u
u′

Fig. 3. Subdividing a semi-
simple face (left). Subdividing a
simple face f ′

o (right).

Given a normalized instance G and a matching
M between sources and sinks in S, and faces
in F of G we construct a clustered embedding
of G as follows. Recall that we assume that G
does not have a face f with |wn(f)| > 0 besides
fo and f ′

o. We start with
−→
G defined above and

add edges to it thereby eliminating all the sinks
and sources, see Fig. 3. Let u ∈ S be a source
matched in M with f . If f is a semi-simple inner face let u′ denote another local
minimum incident to f . We add to

−→
G an edge

−→
u′u embedded in the interior of

f . If f = fo or f = f ′
o we join u by

−→
u′u with the vertex in the same cluster u′ so

that we subdivide f into two simple faces f ′ and f ′′ such that wn(f ′) = 0 and
wn(f ′′) = wn(f). If f = fo face f ′′ is the new outer face. By Lemma 1, such a
vertex u′ exists and it is unique.

We proceed with u ∈ S that are sinks analogously thereby eliminating all the
sinks and source in the resulting graph

−→
G′, where by G′ we denote its underlying

undirected graph. By Lemma 1, there still exists exactly one inner face f ′
o with

a non-zero winding number in the resulting graph G′.

Lemma 3. G′ has exactly one inner face f ′
o such that |wn(f ′

o)| = 1.

Since γ(v) = γf (v) mod c for every face f �= fo, f
′
o and v incident to f , every

edge we added joins a pair of vertices in the same cluster.

Lemma 4. The induced sub-graph G′[Vi] of (undirected) G′ does not contain a
cycle for i = 0, 1, . . . , c − 1.

Proof. For the sake of contradiction suppose that a cycle C is contained in
G′[Vj′ ]. Let us choose C such that the area of its interior is minimized. Since
G[Vj′ ] is an independent set all the edges of C are newly added. Thus, by looking
at the rotation of an arbitrary vertex v′ of C we see that v′ is incident to a vertex
v from Vj , j �= j′, in the interior of C. Indeed, no two edges of C subdivide the
same face of G.

Using the fact that
−→
G′ does not contain any source or sink, we show that

a vertex w in the interior of C belongs to an oriented cycle C ′ (by chance
also directed in

−→
G′), whose interior is contained in the interior of C such that

wn(C ′) > 0. The cycle C ′ is obtained by following a directed path in
−→
G′ (from

which it inherits its orientation) passing through v. Either both ends of the path
meet each other, they both meet C, or the path meet itself in the interior. In the
first two cases we can take w := v in the last case it can happen that the directed
path gives rise to a cycle C ′ not containing v. However, C ′ is not induced by
a single cluster by the choice of C, and thus, wn(C ′) > 0 by Lemma 1 and C ′

contains a vertex w from Vj . Let F ′ denote the set of faces in the interior of
C and not in the interior of C ′. In all cases it can be seen by Lemma 1 that
wn(C ′) > 0.
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Indeed, as we proved in the proof of Lemma 1 wn(C ′) = wn+
j (C ′)+wn−

j (C ′).
Since C ′ follows a directed path and is not induced by a single cluster we have
wn+

j (W ) > 0 and wn−
j (W ) = 0. Hence, wn(C ′) = wn+

j (C ′) + wn−
j (C ′) > 0.

By (*) it follows that C ′ contains the unique inner face with a non-zero
winding number in its interior. Then Lemma3 with (*) yields the following
contradiction

0 = wn(C) = wn(C ′) +
∑

f∈F ′
wn(f) = wn(C ′) �= 0

�

Let E′ ⊆ ⋃
i

(
Vi

2

)\E(G′) such that each edge in E′ can be added to the embedding
of G′ without creating a crossing or increasing the number of inner faces with a
non-zero winding number. We do not put any direction on the edges in E′. Since
every inner face �= f ′

o in G′ is simple, and its outer face and the face f ′
o are not

adjacent to a source or sink, all the edges in E′ can be introduced simultaneously
without creating a crossing. In particular, no edge of E′ subdivides f ′

o or the
outer face. Let E′′ denote a maximal subset of E′ that does not introduce a
cycle in (G′ ∪ E′′)[Vi] for every i = 0, 1, . . . , c − 1 (see Fig. 4), where G′ ∪ E′′ =
(V (G′), E(G′) ∪ E′′). By Lemma 4, E′′ is well-defined.

1 0
2 0 1 2

2 0

1
2 0

2 0

f

1 2

1 2

1 2

0

Fig. 4. A simple face f of G′ (left). The face f subdivided with edges of E′′ (right).
Labels at vertices are their γ values (or indices of their clusters).

Lemma 5. (G′ ∪ E′′)[Vi] is a tree for i = 0, 1, . . . , c − 1.

Proof. Suppose for the sake of contradiction that (G′ ∪ E′′)[Vi] for some i is not
a tree, and thus, it is just a forest with more than one connected component.
It follows that either (1) there exists a cycle in (G′ ∪ E′′)[V \ Vi] containing a
vertex v of Vi in its interior or (2) a pair of vertices of Vi in different connected
components of (G′∪E′′)[Vi] are incident to the same face of (G′∪E′′). The claim
(1) or (2) implies that there exists a cycle C in (G′ ∪ E′)[V \ Vi] containing a
vertex w of Vi in its interior. Similarly as in the proof of Lemma4, by following a
directed path through v we obtain an oriented cycle C ′ (this time not necessarily
directed) in G, whose interior is contained in the interior of C with wn(C ′) > 0
yielding a contradiction.

Indeed, as we proved in the proof of Lemma 1 wn(C ′) = wn+
i (C ′)+wn−

i (C ′).
Since C ′ is not induced by a single cluster and follows in the interior of C a
directed path, and C does not have any vertex in Vi we have wn+

i (W ) > 0 and
wn−

i (W ) = 0. Hence, wn(C ′) = wn+
i (C ′) + wn−

i (C ′) > 0. �
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By Lemma 5, every Fi is a tree. Taking a close neighborhood of each such Fi

as a disc representing the cluster Vi we obtain a desired clustered embedding of
(G′ ∪ E′′). In the obtained embedding we just delete edges not belonging to G
and that concludes the proof of the correctness of our algorithm.

3.2 Normalization

In the present section we normalize the instance so that (i)–(iii) are satisfied.
We argued the connectedness in Introduction, and hence, (i) is taken care of. To
achieve (ii) is fairly standard by contracting components induced by clusters to
vertices. Thus, it remains to satisfy (iii).

We want to sub-divide a non-simple face f into a pair of faces one of which
is semi-simple by a monotone path P ′ w.r.t. γ. Let uPv denote an oriented
monotone sub-walk of f w.r.t. γ joining a local minimum u and maximum v
of f minimizing |height(P )|. Let vQv′ denote the oriented monotone walk with
|height(P )| = |height(Q)| immediately following P on the facial walk of f , and
let u′Q′u be such walk immediately preceding P on the facial walk of f . Note
that Q and Q′ exists due to the minimality of P and that we have height(Q) =
height(Q′) = −height(P ). Similarly as in [14] we subdivide f into two faces
f ′ and f ′′ by a strictly monotone path v′P ′u′ w.r.t. γ. Hence, height(P ) =
height(P ′). We have height(Q) = height(Q′) = −height(P ) = −height(P ′).
Thus, by Lemma 1 if f with wn(f) �= 0 is semi-simple we obtain a simple face
f ′ with wn(f ′) �= 0 and a semi-simple face f ′′ with wn(f ′′) = 0 as desired.
Indeed, wn(f ′′) = height(P ′) + height(Q′) + height(P ) + height(Q) = 0 and c ·
wn(f) = height(v′P ′′u′)+height(Q′)+height(P )+height(Q) = height(v′P ′′u′)−
height(P ′) = c · wn(f ′). It remains to show the following lemma, since both f ′

and f ′′ are incident to less local minima and maxima than f if f is not semi-
simple. Hence, after O(|V |) facial subdivisions we obtain a desired instance, since
|E(I)| = O(|V |).
Lemma 6. If the c-graph G is c-planar then by subdividing f of G by P ′ into a
pair of faces f ′ and f ′′, where f ′′ is semi-simple we obtain a c-planar c-graph.
Moreover, wn(f ′) = wn(f) and wn(f ′′) = 0.

Proof. The second statement is proved above. Hence, we deal just with the first
one. Let eu and e′

u denote the first edge on P and the last edge on Q′, respectively.
Let ev and e′

v denote the last edge on P and the first edge on Q, respectively. Let
ev′ and eu′ denote the last edge on Q and the first edge on Q′. Let pu = peu , and
pv′ = pev′ denote the intersection of the edges eu, and ev′ , respectively, with a
ray separating a pair of clusters. Let ωu and ωv denote the wedge between eu, e′

u

and ev, e
′
v, respectively, in f .

We presently show that subdividing f with P ′ preserves c-planarity, since
a clustered embedding without P ′ can be deformed so that P ′ can be added
to a clustered planar embedding without creating a crossing, while keeping the
embedding clustered. This is not hard to see if, let’s say ωv, is convex and the
line segment pupv′ is not crossed by an edge. Since ωv is convex, the relative
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Fig. 5. A pair of deformations of the clustered embedding of G so that f can be
subdivided by P ′. For the sake of clarity clusters are drawn as horiznotal strips rather
than wedges.

interior of pupv′ is contained in the interior of f . Note that u′Q′PQv′ is a sub-
walk of f since f is not simple. We draw a curve C joining u′ with v′ following
the walk u′Q′PQv′ in its small neighborhood in the interior f ; we cut C at its
(two) intersection points with pupv′ and reconnected the severed ends on both
sides by a curve following pupv′ in its small neighborhood thereby obtaining a
closed curve, and a curve C ′ joining v′ and u′. Finally, C ′ can be subdivided
by vertices thereby yielding a desired embedding of G ∪ P ′. Otherwise, if ωv is
concave or pupv′ is crossed by an edge of G we need to deform the clustered
embedding of G so that this is not longer the case.

By a spur with the tip u we understand a closed curve obtained as a con-
catenation of a line segment contained in a ray separating clusters and a curve
contained in the boundary of f passing through exactly one extreme u of f such
that the curve is longest possible. The length is the spur is one plus the number
of its crossings with rays separating clusters divided by two. If ωu is concave,
the vertex u is a tip of a spur whose length is the distance of u to a closest other
extreme along the face. Note that both P and Q′ must be paths in this case.
The rough idea in the omitted part of the proof is that shortest spurs have room
around them to be deformed while maintaining the embedding clustered such
that P ′ can be added. Spurs are deformed as illustrated in Fig. 5. �
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Abstract. NodeTrix representations are a popular way to visualize clus-
tered graphs; they represent clusters as adjacency matrices and inter-
cluster edges as curves connecting the matrix boundaries. We study the
complexity of constructing NodeTrix representations focusing on pla-
narity testing problems, and we show several NP-completeness results
and some polynomial-time algorithms.

1 Introduction and Overview

NodeTrix representations have been introduced by Henry et al. [17] in one of the
most cited papers of the InfoVis conference [1]. A NodeTrix representation is a
hybrid representation for the visualization of social networks where the node-link
paradigm is used to visualize the overall structure of the network, within which
adjacency matrices show communities.

Formally, a NodeTrix (NT for short) representation is defined as follows.
A flat clustered graph (V,E, C) is a graph (V,E) with a partition C of V into
sets V1, . . . , Vk, called clusters, that can be defined according to the application
needs. The word “flat” is used to underline that clusters are not arranged in
a multi-level hierarchy [10,13]. An edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is
an intra-cluster edge if i = j and is an inter-cluster edge if i �= j. In an NT
representation clusters V1, . . . , Vk are represented by non-overlapping symmet-
ric adjacency matrices M1, . . . ,Mk, where Mi is drawn in the plane so that its
boundary is a square Qi with sides parallel to the coordinate axes. Thus, the
matrices M1, . . . ,Mk convey the information about the intra-cluster edges of
(V,E, C), while each inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is repre-
sented by a curve connecting a point on Qi with a point on Qj , where the point
on Qi (on Qj) belongs to the column or to the row of Mi (resp. of Mj) associated
with u (resp. with v).

Several papers aimed at improving the readability of NT representations by
reducing the number of crossings between inter-cluster edges. For this purpose,
vertices can have duplicates in different matrices [16] or clusters can be computed
so to have dense intra-cluster graphs and a planar inter-cluster graph [9].

Research partially supported by MIUR project AMANDA, prot. 2012C4E3KT 001.

c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 107–120, 2016.
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In this paper we study the problem of automatically constructing an NT
representation of a given flat clustered graph. This problem combines traditional
graph drawing issues, like the placement of a set of geometric objects in the
plane (here the squares Q1, . . . , Qk) and the routing of the graph edges (here
the inter-cluster edges), with a novel algorithmic challenge: To handle the degrees
of freedom given by the choice of the order for the rows and the columns of the
matrices and by the choice of the side of the matrices to which the inter-cluster
edges attach to. Indeed, the order of the rows and columns of a matrix Mi is
arbitrary, as long as Mi is symmetric; further, an inter-cluster edge incident to
Mi can arbitrarily exit Mi from four sides: left or right if it exits Mi from its
associated row, or top or bottom if it exits Mi from its associated column.

When working on a new model for graph representations, the very first step
is usually to study the complexity of testing if a graph admits a planar represen-
tation within that model. Hence, in Sect. 2 we deal with the problem of testing if
a flat clustered graph admits a planar NT representation. An NT representation
is planar if no inter-cluster edge e intersects any matrix Mi, except possibly at
an end-point of e on Qi, and no two inter-cluster edges e and e′ cross each other,
except possibly at a common end-point. The NT Planarity problem asks if a
flat clustered graph admits a planar NT representation.

Our findings show how tough the problem is (see Table 1). Namely, we show
that NT Planarity is NP-complete even if the order of the rows and of the
columns of the matrices is fixed (i.e., it is part of the input), or if the exit sides of
the inter-cluster edges are fixed. It is easy to show that NT Planarity becomes
linear-time solvable if both the order and the sides are fixed. But this is probably
too restrictive for practical applications since all the degrees of freedom that are
representation-specific are lost.

Table 1. Complexity results for NT Planarity. The result marked † assumes that
the number of clusters is constant.

General model Monotone model

Free sides Fixed sides Free sides Fixed sides

Row/column

order

Free NPC [Theorem1] NPC [Theorem2] NPC [Theorem5] NPC [Theorem6]

Fixed NPC [Theorem3] P [Theorem4] P [Theorem8]† P [Theorem7]

Motivated by such complexity results, in Sect. 3 we study a more constrained
model that is still useful for practical applications. A monotone NT represen-
tation is an NT representation in which the matrices have prescribed positions
and the inter-cluster edges are represented by xy-monotone curves inside the
convex hull of their incident matrices. We require that this convex hull does
not intersect any other matrix. We study this model for two reasons. First, in
most of (although not in all) the available examples of NT representations the
inter-cluster edges are represented by xy-monotone curves (see, e.g., NodeTrix
clips and prototype [2]). Second, we are interested in supporting a visualization
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system where the position of the matrices is decided by the user and the
inter-cluster edges are automatically drawn with “few” crossings. Therefore, the
crossings between inter-cluster edges not incident to a common matrix are some-
how unavoidable, as they depend on the positions of the matrices selected by
the users, and we are only interested in reducing the number of local crossings,
that are the crossings between pairs of edges incident to the same matrix.

We say that an NT representation is locally planar if no two inter-cluster
edges incident to the same matrix cross. While testing if a flat clustered graph
admits a monotone NT locally planar representation is NP-complete even if the
sides are fixed (see Table 1), the problem becomes polynomial-time solvable in
the reasonable scenario in which the number of matrices is constant, the order
of the rows and columns is fixed, and the sides of the matrices to which the
inter-cluster edges attach is variable.

Conclusions and open problems are discussed in Sect. 4 where NT Pla-
narity is related to graph drawing problems of theoretical interest.

Before proceeding to prove our results, we establish formal definitions and
notation. An NT representation consists of: (a) A row-column order σi for each
cluster Vi, that is, a bijection σi : Vi ↔ {1, . . . , |Vi|}. (b) A side assignment
si for each inter-cluster edge incident to Vi, that is, an injective mapping si :⋃

j �=i Ei,j → {t,b, l,r}, where Ei,j is the set of inter-cluster edges between the
clusters Vi and Vj (Vi and Vj are adjacent if Ei,j �= ∅). (c) A matrix Mi for each
cluster Vi, that is, a representation of Vi as a symmetric adjacency matrix such
that: (i) the boundary of Mi is a square Qi with sides parallel to the coordinate
axes; let minx(Qi) be the minimum x-coordinate of a point on Qi; miny(Qi),
maxx(Qi), and maxy(Qi) are defined analogously; (ii) the left-to-right order of
the columns and the top-to-bottom order of the rows in Mi is σi; and (iii) every
two distinct matrices are disjoint; if Vi has only one vertex, we often talk about
the matrix representing that vertex, rather than the matrix representing Vi. (d)
An edge drawing for each inter-cluster edge e = (u, v) with u ∈ Vi and v ∈ Vj ,
that is, a representation of e as a Jordan curve between two points pu and pv

defined as follows. Let mu
t be the mid-point of the line segment that is the

intersection of the top side of Qi with the column associated to u in Mi; points
mu

b , mu
l , and mu

r are defined analogously. Then pu coincides with mu
t , mu

b , mu
l ,

or mu
r if si(e) = t, si(e) = b, si(e) = l, or si(e) = r, respectively. Point pv is

defined analogously. The full versi on of the paper [12] contains complete proofs.

2 Testing NodeTrix Planarity

In this section we study the time complexity of testing NodeTrix Planarity.

Theorem 1. NodeTrix Planarity is NP-complete even if at most three clus-
ters contain more than one vertex.

Proof Sketch: Lemma 1 will prove that NT Planarity is in NP. For the NP-
hardness we give a reduction from the NP-complete problem Partitioned 3-
Page Book Embedding [7] that, given a graph 〈V,E = E1 ∪ E2 ∪ E3〉, asks
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whether a total ordering O of V exists such that no two edges e and e′ in the same
set Ei have alternating end-vertices in O. We construct an instance 〈V ′, E′, C′〉
of NT Planarity from 〈V,E = E1 ∪ E2 ∪ E3〉 as follows; see Fig. 1.

The instance 〈V ′, E′, C′〉 has a cycle D composed of vertices ul, tij , ur, bi
j ,

and ui
b, where i = 1, . . . , 3 and j = 1, . . . , 7 (each in a distinct cluster containing

that vertex only) and of inter-cluster edges called bounding edges. The instance
contains three “big” clusters V ′′

i = V ′
i ∪ {xi, yi, wi, zi} with i = 1, 2, 3, where V ′

i

is in bijection with V ; these are the only clusters with more than one vertex.
Any two vertices, one in V ′

i and one in V ′
i+1, that are in bijection (via a vertex in

V ) are connected by an order-preserving edge. Further, the vertices xi, yi, wi, zi

of V ′′
i are connected to the vertices in D via corner edges, and side-filling edges

connect ul with every vertex in V ′
1 , ur with every vertex in V ′

3 , and ui
b with every

vertex in V ′
i . Finally, 〈V ′, E′, C′〉 contains paths corresponding to the edges in

E; namely, for every e = (r, s) ∈ Ei, 〈V ′, E′, C′〉 contains a cluster {u′
e} and two

equivalence edges (u′
e, r

′
i) and (u′

e, s
′
i), where r′

i and s′
i are the vertices in V ′

i in
bijection with r and s, respectively. The construction can be easily performed in
polynomial time. We now prove the equivalence between the two instances.

For the direction (=⇒), consider a total order O of V which solves instance
〈V,E〉. An order σ′

i of V ′
i is constructed from O via the bijection between V ′

i

and V ; then define an order σi of V ′′
i as xi, yi, σ

′
i, wi, zi. Embed D in the plane

and embed each matrix Mi representing V ′′
i inside D with row-column order σi.

The corner, order-preserving, and side-filling edges are routed inside D so that
their end-vertices are not assigned to the top side of Mi; for example, the side-
filling edges incident to ul (to u1

b) are assigned to the left (resp. bottom) side
of M1 and the order-preserving edges incident to V ′

1 are assigned to the right
side of M1; the order-preserving edges can be routed without crossings since σ′

i

and σ′
i+1 coincide (via the bijection of V ′

i and V ′
i+1 with V ). Finally, each path

(r′
i, u

′
e, s

′
i) corresponding to an edge (r, s) ∈ Ei is incident to the top side of Mi;

no two of these paths have alternating end-vertices since σ′
i coincides with O (via

the bijection between V ′
i and V ) and since no two edges in Ei have alternating

end-vertices in O. This results in a planar NT representation of 〈V ′, E′, C′〉.
The direction (⇐=) is more involved. Consider a planar NT representation

Γ of 〈V ′, E′, C′〉. First, the matrices representing clusters not in D induce a
connected part of Γ , hence they are all on the same side of D, say they are
all inside D. Second, the boundary Qi of Mi and the corner edges incident to
it subdivide the interior of D into five regions, namely one containing Mi, and
four incident to the sides of Qi. All the vertices in V ′

i are incident to each of
the latter four regions; this is proved by arguing that the first two and the last
two vertices in the row-column order σi of Mi are among {xi, yi, wi, zi}, and by
arguing about how the corner edges are incident to the sides of Qi. Third, the
side-filling edges incident to a same vertex in D “fill” one of such regions and so
do the order-preserving edges connecting Mi with Mi+1 (or with Mi−1). Hence,
all the equivalence edges are incident to the same side of Qi. Finally, the order-
preserving edges between vertices in V ′

i and in V ′
i+1 are in the region shared by

Mi and Mi+1; these regions are gray in Fig. 1. This implies that σ′
i and σ′

i+1 are
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Fig. 1. (a) An instance 〈V,E = E1 ∪E2 ∪E3〉 of Partitioned 3-Page Book Embed-
ding and (b) the corresponding instance 〈V ′, E′, C′〉 of NT Planarity.

either the same or the reverse of each other, via the bijection with the vertices
in V . Hence, we define an order O of V according to the bijection with the order
σ′

i of V ′
i ; then no two edges in E1, in E2, or in E3 have alternating end-vertices,

as otherwise the corresponding paths would cross in Γ . �

Fig. 2. Illustration for Theorem 2.

Let G = (V,E, C) be a flat clustered graph
with a given side assignment si, for each Vi ∈
C. We say that G is NT planar with fixed side
if G admits a NT planar representation Γ such
that, ∀e = (u, v) ∈ E with u ∈ Vi and v ∈ Vj ,
the incidence points of e with the matrices Mi

and Mj representing Vi and Vj in Γ , respec-
tively, lie on the segments corresponding to
the si(u) side of Mi and to the sj(v) side of
Mj , respectively.

Theorem 2. NodeTrix Planarity with Fixed Side is NP-complete even
for instances with two clusters.

Proof Sketch: Lemma 1 will prove that NT Planarity with Fixed Side is in
NP. For the NP-hardness we give a reduction from Betweenness [18], whose
input is a set of items {a1, . . . ah} and a collection of t ordered triples τj =
〈abj , acj , adj

〉. The goal is to find a total order of the items such that, for each τj =
〈abj , acj , adj

〉, item acj is between abj and adj
. We construct the corresponding

instance of NT Planarity with Fixed Side by defining a flat clustered graph
(V,E, C = {V1, V2}) and side assignments s1 and s2 as follows; refer to Fig. 2.
Cluster V1 (V2) contains t vertices for each ai plus two vertices vα and vβ (plus
two vertices uα and uβ and 2t vertices tj1 and tj2 for j = 1, . . . , t). Let M1

and M2 be matrices representing V1 and V2, respectively; also, let eα = (uα, vα)
(eβ = (uβ , vβ)) be assigned to the right (left) side of M1 and to the left (right)
side of M2. We associate to each element ai a (2t + 1)-vertex path πi that starts
at uβ , and repeatedly leaves the bottom side of M2, enters the bottom side of
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M1, leaves the top side of M1, and enters the top side of M2; this routing of
πi can be prescribed by s1 and s2. Further, for every even j, the left-to-right
order of the columns associated to the j-th vertices of paths π1, . . . , πh in M1

is the same. This allows us to introduce five inter-cluster edges for each triple
τj = 〈abj , acj , adj

〉, all connecting the right side of M1 with the left side of M2.
These edges connect the j-th vertex in πbj to tj1, the j-th vertex in πcj to tj1
and tj2, and the j-th vertex in πdj

to tj2. These five edges can be drawn without
crossings if and only if the row associated to the j-th vertex in πcj is between the
rows associated to the j-th vertices in πbj and πdj

. This establishes the desired
correspondence with the Betweenness problem. �
Let G = (V,E, C) be a flat clustered graph with a given row-column order σi,
for each Vi ∈ C. We say that G is NT planar with fixed order if it admits a NT
planar representation Γ where, for each Vi ∈ C, each vertex v ∈ Vi is associated
with the σi(v)-th row and column of the matrix Mi representing Vi in Γ .

Theorem 3. NodeTrix Planarity with Fixed Order is NP-complete
even if at most one cluster contains more than one vertex.

Proof Sketch: The membership in NP will be proved in Lemma 1. For the NP-
hardness, we give a reduction from the 4-coloring problem for circle graphs [20].
We construct in polynomial time [19] a representation 〈P,O〉 of G, where P is
a linear sequence of distinct points on a circle and O is a set of chords between
points in P such that: (i) each chord c ∈ O corresponds to a vertex n ∈ N
and (ii) two chords c′, c′′ ∈ O intersect if and only if (n′, n′′) ∈ A, where n′

and n′′ are the vertices in N corresponding to c′ and c′′, respectively. Starting
from 〈P,O〉 we construct an instance (V,E, C) of NodeTrix Planarity with
Fixed Order as follows (refer to Fig. 3). The instance (V,E, C) contains: (i)
a cycle D composed of vertices vtl, v′

tr, v′′
tr, vbr, v′

bl, and v′′
bl (each in a distinct

cluster containing that vertex only) and of bounding edges; (ii) a cluster V∗
containing a vertex vi for each point pi ∈ P, plus vertices vα and vω; (iii) corner
edges connecting vtl, v′

tr, v′′
tr, vbr, v′

bl, and v′′
bl with either vα or vω; and (iv) for

every chord c = (pi, pj) ∈ O, a path corresponding to c composed of a cluster

Fig. 3. (a) An intersection representation 〈P,O〉 of a circle graph G = (N,A). (b)
Instance (V,E, C) of NodeTrix Planarity corresponding to 〈P,O〉.eps
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{vc} and of two chord edges (vi, vc) and (vc, vj). Let the row-column order σ∗ of
V∗ be vα,P, vω. We now prove the equivalence between the instances.

(=⇒) Suppose that the chords of 〈P,O〉 can be assigned colors 1, 2, 3, 4 so
that no two chords with the same color cross. Embed D in the plane and embed
the matrix M∗ representing V∗ inside D with row-column order σ∗. Route the
corner edges inside D, subdividing the region inside D and outside M∗ into four
regions, each incident to a distinct side of M∗. Arbitrarily color these four regions
with colors 1, 2, 3, 4; embed a path (vi, vc, vj) inside a region if the chord (pi, pj)
corresponding to (vi, vc, vj) has the color of the region. Then only paths in the
same region might intersect, however if they do then they correspond to chords
with the same color that cross in 〈P,O〉, given that the order of the vertices in
σ∗ is the same as the order of the corresponding points in P.

(⇐=) Suppose that (V,E, C) has a planar NT representation Γ with row-
column order σ∗ for the matrix M∗ representing V∗. Since vα and vω are the
first and last vertex in σ∗, the corner edges subdivide the region inside D and
outside M∗ into four regions, each incident to a distinct side of M∗, which we
arbitrarily color 1, 2, 3, 4. By the planarity of Γ , each path (vi, vc, vj) is in one of
such regions; then we color each chord (pi, pj) with the color of the region path
(vi, vc, vj) is embedded into. If two chords with the same color cross in 〈P,O〉,
then the corresponding paths cross in Γ , as the order of the vertices in σ∗ is the
same as the order of the corresponding points in P. �
Let G = (V,E, C) be a flat clustered graph with a given row-column order σi

and side assignment si, for each Vi ∈ C. Then G is NT planar with fixed order
and fixed side if it is simultaneously planar with fixed order and with fixed side.

Theorem 4. NodeTrix Planarity with Fixed Order and Fixed Side
can be solved in linear time.

Proof Sketch: Consider the graph G′ obtained from an instance G = (V,E, C)
by collapsing each cluster Vi into a vertex vi. Instance G is NT planar with fixed
order and fixed side if and only if G′ is planar with the additional constraint
that the clockwise order of the edges incident to each vertex vi is compatible
with the order of the rows of the matrix representing Vi and the side assignment
for each inter-cluster edge incident to Vi. We obtain an instance of constrained
planarity that can be tested in linear time with known techniques [15]. �
We conclude the section with the following lemma.

Lemma 1. NodeTrix Planarity, NodeTrix Planarity with Fixed
Side, and NodeTrix Planarity with Fixed Order are in NP.

Proof Sketch: The number of distinct row-column orders and side assignments
for an instance (V,E, C) is a function of |V | + |E|. The statement follows from
Theorem 4. �
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3 Monotone NodeTrix Representations

Let G = (V,E, C) be a flat clustered graph and γ be a square assignment for G
that maps each cluster in C to an axis-aligned square in the plane. A curve is
x-monotone (resp. y-monotone) if no two of its points have the same projection
on the x-axis (resp. on the y-axis) and is xy-monotone if it is either a horizontal
or a vertical segment or it is both x- and y-monotone. A monotone NT repre-
sentation Γ of 〈G, γ〉 is a NT representation such that: (i) all the inter-cluster
edges are represented by xy-monotone curves; (ii) the boundary of the matrix
Mi representing cluster Vi ∈ C is Qi = γ(Vi); (iii) for each pair of adjacent clus-
ters Vi and Vj , with i �= j, the convex hull of Qi and Qj does not intersect any
other Qk, with k �= i, j – we call this convex hull the pipe of Qi and Qj ; and (iv)
all the inter-cluster edges between vertices in Vi and vertices in Vj lie inside the
pipe of Qi and Qj . In a monotone NT representation Γ of G let χi(Γ ) denote
the number of edge crossings between pairs of inter-cluster edges incident to Vi.
Let χ(Γ ) =

∑k
i=1 χi(Γ ); we say that Γ is locally planar if χ(Γ ) = 0 and no inter-

cluster edge intersects any matrix except at its incidence points. The notions of
fixed order and fixed side easily extend to monotone NT representations.

We study the complexity of testing if a flat clustered graph with fixed square
assignment admits a monotone locally-planar NT representation, a problem
which we call Monotone NT Local Planarity (MNTLP). The next two
theorems show the NP-hardness of MNTLP and of its variant with fixed side.

Theorem 5. MNTLP is NP-complete.

Theorem 6. MNTLP with Fixed Side is NP-complete.

Since the instances of MNTLP used in the proof of Theorem5 are planar when-
ever they are locally planar, testing the existence of a planar monotone NT
representation with fixed square assignment is also NP-complete. Further, the
instances of NT Planarity used in the proof of Theorem1 can be drawn pla-
narly with straight-line (i.e., monotone) edges, whenever they are planar. Hence,
testing whether a flat clustered graph admits a monotone planar NT represen-
tation – without square assignment – is NP-complete.

Consider now a flat clustered graph G = (V,E, C) and a monotone NT
representation Γ of G with fixed square assignment γ. Consider two clusters
Va, Vb ∈ C and let Qa = γ(Va) and Qb = γ(Vb). Since Qa and Qb are dis-
joint, there exists either a vertical or a horizontal line separating them. Sup-
pose that the former holds, the other case being analogous. Also suppose that
maxx(Qa) < minx(Qb) and maxy(Qa) ≥ maxy(Qb), the other cases being anal-
ogous up to reflections of the Cartesian axes (refer to Fig. 4). Also, consider an
inter-cluster edge e = (u, v) ∈ Ea,b. Depending on the relative positions of Qa

and Qb in Γ , not all the possible combinations of side assignments for e might
be allowed, as described in the following property.

Property 1. Let yu and yv be the y-coordinate of points mu
r and mv

l , respectively.
The following three arrangements are possible for Qa and Qb in Γ .
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Fig. 4. Possible arrangements of squares Qa and Qb. Thick red segments represent sides
of Qa and Qb edge (u, v) cannot be assigned to. Red curves show further forbidden
side assignment pairs for edge (u, v).eps (Color figure online)

Arrangement 1: maxy(Qb) < miny(Qa). Then sb(e) �= b and all other four side
assignments 〈sa(e) = r, sb(e) = t〉, 〈sa(e) = r, sb(e) = l〉, 〈sa(e) = b, sb(e) =
t〉, and 〈sa(e) = b, sb(e) = l〉 are allowed for e.

Arrangement 2: miny(Qb) < miny(Qa) ≤ maxy(Qb). Then sb(e) �= b; also,
pair 〈sa(e) = b, sb(e) = t〉 is not allowed, while pair 〈sa(e) = r, sb(e) = l〉 is
allowed. The remaining two possible pairs 〈sa(e) = r, sb(e) = t〉 and 〈sa(e) =
b, sb(e) = l〉 are or are not allowed, depending on yu and yv. In particular, if
yu ≤ maxy(Qb), then 〈sa(e) = r, sb(e) = t〉 is not allow+ed, otherwise it is;
also, if yv ≥ miny(Qa), then 〈sa(e) = b, sb(e) = l〉 is not allowed, otherwise it is.

Arrangement 3: miny(Qa) ≤ miny(Qb). Then sa(e) �= b; also, pair 〈sa(e) =
r, sb(e) = l〉 is allowed. The remaining two possible pairs 〈sa(e) = r, sb(e) = t〉
and 〈sa(e) = r, sb(e) = b〉 are or are not allowed, depending on yu. In particular,
if yu ≤ maxy(Qb), then 〈sa(e) = r, sb(e) = t〉 is not allowed, otherwise it is, and
if yu ≥ miny(Qb), then 〈sa(e) = r, sb(e) = b〉 is not allowed, otherwise it is.

Note that if an edge e can be drawn as an xy-monotone curve not crossing
any matrix then it can also be drawn as a straight-line segment not crossing any
matrix, since the pipe of Qa and Qb does not intersect any matrix other than
Ma and Mb. The next lemma extends this observation by arguing that the xy-
monotonicity constraint can be replaced by a straight-line requirement also for
what concerns crossings between inter-cluster edges incident to the same matrix.

Lemma 2. An instance 〈G = (V,E, C), γ〉 of MNTLP with Fixed Order
and Fixed Side is locally planar if and only if it admits a locally planar
monotone NT representation where all the inter-cluster edges are drawn as
straight-line segments.

In contrast to the negative results of Theorems 5 and 6, we show that
MNTLP with Fixed Order and Fixed Side is solvable in polynomial time.

Theorem 7. MNTLP with Fixed Order and Fixed Side can be solved in
polynomial time.

Proof: We check whether every edge can be represented as an xy-monotone curve
by Property 1. Further, we check whether all pairs of inter-cluster edges incident
to the same cluster admit a non-crossing straight-line drawing by Lemma 2. �
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The remaining piece of the complexity puzzle for MNTLP is the setting with
fixed row-column order and free side assignment. Although we are not able to
establish the complexity of the corresponding decision problem, we show that
testing MNTLP with fixed order is polynomial-time solvable if the number of
clusters is constant. In order to do that, we show how to transform instances of
our problem into instances of 2-SAT.

Assuming the hypotheses stated before Property 1 about the relative position
of Qa and Qb, we say that an inter-cluster edge e = (u ∈ Va, v ∈ Vb) is S-drawn
in Γ if: (i) Qa and Qb are arranged as in Arrangement 1 of Property 1 and either
〈sa(e) = r, sb(e) = l〉 or 〈sa(e) = b, sb(e) = t〉; or (ii) Qa and Qb are arranged as
in Arrangement 2 of Property 1 and it holds that (a) 〈sa(e) = r, sb(e) = l〉, (b)
yu > maxy(Qb), and (c) yv < miny(Qa). Note that if Qa and Qb are arranged
as in Arrangement 3 of Property 1, then e is not S-drawn in Γ , by definition.
The representation of an S-drawn edge is an S-drawing. We have the following.

Lemma 3. Let 〈G = (V,E, C = {Va, Vb}), γ, σ〉 be an instance of MNTLP
with Fixed Order. Consider the following two cases: an inter-cluster edge
e∗ ∈ E has a given S-drawing Γe (Case 1), or no inter-cluster edge in E has an
S-drawing (Case 2). Both in Case 1 and in Case 2, we can construct in O(|E|2)
time a 2-SAT formula φ(a, b, Γe) and φ(a, b), respectively, with length O(|E|2)
that is satisfiable if and only if 〈G, γ, σ〉 admits a locally planar monotone NT
representation with fixed order satisfying the constraint of the corresponding case.

Proof Sketch: If Qa = γ(Va) and Qb = γ(Vb) are not disjoint, no NT represen-
tation of G exists, hence the statement is trivially true. Otherwise, there exists
either a vertical or a horizontal line separating them. Suppose that the former
holds and that maxx(Qa) < minx(Qb) and maxy(Qa) ≥ maxy(Qb), the other
cases being analogous. Suppose that an inter-cluster edge e∗ is required to have
a drawing Γe as in Case 1. By the definition of an S-drawn edge, if Qa and Qb

are arranged as in Arrangement 3 of Property 1, the required NT representation
does not exist, thus the statement trivially holds. Hence, we can assume that Qa

and Qb are arranged as in Arrangement 1 or 2 of Property 1. Let e �= e∗ ∈ E be
any inter-cluster edge not adjacent to e.

Consider Arrangement 1 and suppose sa(e∗) = r and sb(e∗) = l. The end-
vertices of e and e∗ in Va (in Vb) have two possible relative positions in σa (resp.
in σb). This leads to four possible combinations for these relative positions.

If σa(e∗) < σa(e) and σb(e) < σb(e∗), then any xy-monotone curve represent-
ing e crosses e∗ independently of the side assignment for e and the statement
trivially holds. See Fig. 5a. For each of the three remaining combinations, exactly
two side assignments for e create no crossing with e∗. If σa(e) < σa(e∗) and
σb(e) < σb(e∗), then it holds that either sa(e) = r and sb(e) = t or sa(e) = r
and sb(e) = l. See Fig. 5b. If σa(e) < σa(e∗) and σb(e∗) < σb(e), then it holds
that either sa(e) = r and sb(e) = t or sa(e) = b and sb(e) = l. See Fig. 5c.
If σa(e∗) < σa(e) and σb(e∗) < σb(e), then it holds that either sa(e) = r and
sb(e) = l or sa(e) = b and sb(e) = l. See Fig. 5d.

The case in which Qa and Qb are arranged as in Arrangement 1, sa(e∗) = b,
and sb(e∗) = t is analogous. The proof for Arrangement 2 is also analogous.
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Fig. 5. Illustrations for the proof of Lemma 3, Case 1, Arrangement 1.

We are now ready to show, for Case 1 of the lemma, that a locally planar
monotone NT representation of 〈G = (V,E, C = {Va, Vb}), γ〉 with sa(e∗) = r
and sb(e∗) = l exists if and only if a suitable 2-SAT formula φ is satisfiable.
For each inter-cluster edge e �= e∗ ∈ E not adjacent to e∗, we define a Boolean
variable xe. The above discussion shows that, if a trivially false formula cannot
be associated with the instance 〈G, γ, σ〉, then there are exactly two distinct
side assignments for e. We select one arbitrarily, which we call canonical side
assignment, and associate xe = true to it and xe = false to the other. For
each pair of non-adjacent inter-cluster edges e1, e2 �= e∗ ∈ E, consider the four
possible side assignments for them. We add to φ at most four clauses defined
as follows. If the canonical side assignment for e1 and the one for e2 generate a
crossing between e1 and e2, then we add clause {xe1 ∨xe2} to φ. If the canonical
side assignment for e1 and the non-canonical side assignment for e2 generate
a crossing between e1 and e2, then we add clause {xe1 ∨ xe2} to φ. If the non-
canonical side assignment for e1 and the canonical side assignment for e2 generate
a crossing between e1 and e2, then we add clause {xe1 ∨ xe2} to φ. If the non-
canonical side assignment for e1 and the one for e2 generate a crossing between
e1 and e2, then we add clause {xe1 ∨ xe2} to φ.

As a consequence of the above discussion 〈G = (V,E, C = {Va, Vb}), γ〉 admits
a locally planar monotone NT representation such that sa(e∗) = r and sb(e∗) = l
if and only if φ is satisfiable. Further, since the number of clauses in φ is upper-
bounded by O(|E|2) and since it can be determined in constant time whether
a side assignment for any two edges produces a crossing, then formula φ can
be constructed in O(|E|2) time and has O(|E|2) size. Since 2-SAT formulae can
be tested for satisfiability in linear time [8], the statement of Case 1 follows if
sa(e∗) = r and sb(e∗) = l; a 2-SAT formula can be analogously constructed if
sa(e∗) = b and sb(e∗) = t.

The discussion of Case 2 and the corresponding construction of the Boolean
formula are analogous to those of Case 1. �
We now turn to the study of flat clustered graphs with three clusters.

Lemma 4. Let 〈G = (V,E, C = {Va, Vb, Vc}), γ, σ〉 be an instance of MNTLP
with Fixed Order. Consider the four cases that are generated by assuming
that an edge e∗ ∈ Ea,b has a prescribed S-drawing or not and that an edge
f∗ ∈ Ea,c has a prescribed S-drawing or not. In each case, we can construct in
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O(|E|2) time a 2-SAT formula with length O(|E|2) that is satisfiable if and only if
〈G, γ, σ〉 admits a monotone NT representation with fixed order that satisfies the
constraints of the corresponding case, such that no inter-cluster edge intersects
any matrix except at its incidence points, and such that there are no two edges,
one in Ea,b and one in Ea,c, that cross each other.

Proof: In each of the four cases, the hypotheses lead us in either Case 1 or
Case 2 of Lemma 3 for the edges in Ea,b and the same holds for the edges in Ea,c.
Hence, by Lemma 3, each of these edges admits at most two side assignments in
each case. Moreover, each of these side assignments corresponds to a directed or
negated literal. For each pair of edges e ∈ Ea,b and f ∈ Ea,c and for each of the
at most four side assignments for them, we exploit Lemma 2 to test whether a
side assignment for e and f leads to a crossing and in the case of a crossing we
introduce suitable clauses to rule out that side assignment. �
We finally get the following.

Theorem 8. MNTLP with Fixed Ordering can be tested in O(
(|2E+1|

|C|2
)

|E|2) time for an instance 〈G = (V,E, C), γ, σ〉.
Proof Sketch: The proof is based on guessing, for each pair of adjacent clusters,
whether they are connected by an S-drawn edge or not. For each guess we exploit
Lemmata 3 and 4 to construct a 2-SAT formula that is checked for satisfiability.
For each pair of adjacent clusters Va, Vb we have to guess among 2|Ea,b| + 1
possibilities, corresponding to the choice of |Ea,b| edges to be S-drawn, each in
two possible ways, plus the possibility of not having any S-drawn edge. This
leads to O(

(|2E+1|
|C|2

)
) guesses. �

Observe that the computational complexity of the algorithm described in the
proof of Theorem 8 is polynomial if the number of clusters is constant.

4 Conclusions and Open Problems

We have shown that testing NodeTrix (NT) representations of clustered graphs
for planarity is NP-complete even if the order of the rows and columns is fixed or
if the sides where the inter-cluster edges attach to the matrices is fixed. We have
also studied the setting where matrices have fixed positions and inter-cluster
edges are xy-monotone curves. In this case we established negative and positive
results; leveraging on the latter, we developed a library that computes a layout of
the inter-cluster edges with few crossings. A demo [3] shows that the computation
allows the user to move matrices without any slowdown of the interaction.

Several theoretical problems are related to the planarity of NT representa-
tions. First, the NP-completeness of NT planarity can be interpreted as a proof
of the NP-completeness of clustered planarity (see, for example, [4,6,11,14])
when a specific type of representation is required. Observe, though, that a flat
clustered graph may be NT planar even if its underlying graph is not planar.
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Second, planarity of hybrid representations have been recently studied [5] in the
setting in which clusters are represented as the intersections of geometric objects.
Our results can be viewed as a further progress in this area. Third, consider a
clustered graph with two clusters represented as matrices aligned along their
principal diagonal. Computing a locally planar NT representation is equivalent
to solve the 2-page bipartite book embedding with spine crossings problem [5].
Interestingly, if the two matrices are aligned along their secondary diagonal this
equivalence is not evident anymore.

Among the future research directions, we mention the one of automatically
embedding the matrices to minimize crossings in monotone NT representations.
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Abstract. It is proved that every series-parallel digraph whose maxi-
mum vertex-degree is Δ admits an upward planar drawing with at most
one bend per edge such that each edge segment has one of Δ distinct
slopes. This is shown to be worst-case optimal in terms of the number of
slopes. Furthermore, our construction gives rise to drawings with optimal
angular resolution π

Δ
. A variant of the proof technique is used to show

that (non-directed) reduced series-parallel graphs and flat series-parallel
graphs have a (non-upward) one-bend planar drawing with �Δ

2
� distinct

slopes if biconnected, and with �Δ
2

� + 1 distinct slopes if connected.

1 Introduction

The k-bend planar slope number of a family of planar graphs with maximum
vertex-degree Δ is the minimum number of distinct slopes used for the edges
when computing a crossing-free drawing with at most k > 0 bends per edge of
any graph in the family. For example, if Δ = 4, a classic result is that every
planar graph has a crossing-free drawing such that every edge segment is either
horizontal or vertical and each edge has at most two bends (see, e.g., [2]). Clearly,
this is an optimal bound on the number of slopes. This result has been extended
to values of Δ larger than four by Keszegh et al. [15], who prove that �Δ

2 � slopes
suffice to construct a planar drawing with at most two bends per edge for any
planar graph. However, if additional geometric constraints are imposed on the
crossing-free drawing, only a few tight bounds on the planar slope number are
known. For example, if one requires that the edges cannot have bends, the best
known upper bound on the planar slope number is O(cΔ) (for a constant c > 1)
while a general lower bound of just 3Δ − 6 has been proved [15]. Tight bounds
are only known for outerplanar graphs [17] and subcubic planar graphs [9], while
the gap between upper and lower bound has been reduced for planar graphs with
treewidth two [18] or three [10,14]. If one bend per edge is allowed, Keszegh et
al. [15] show an upper bound of 2Δ and a lower bound of 3

4 (Δ−1) on the planar
slope number of the planar graphs with maximum vertex-degree Δ. In a recent
paper, Knauer and Walczak [16] improve the upper bound to 3

2 (Δ − 1); in the
same paper, it is also proved that a tight bound of �Δ

2 � can be achieved for the
outerplanar graphs.
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In this paper we focus on the 1-bend planar slope number of directed graphs
with the additional requirement that the computed drawing be upward, i.e.,
each edge is drawn as a curve monotonically increasing in the y-direction. We
recall that upward drawings are a classic research topic in graph drawing, see,
e.g., [1,3,11–13] for a limited list of references. Also, upward drawings of ordered
sets with no bends and few slopes have been studied by Czyzowicz [4,5]. We show
that every series-parallel digraph (SP-digraph for short) G whose maximum
vertex-degree is Δ has 1-bend upward planar slope number Δ. That is, G admits
an upward planar drawing with at most one bend per edge where at most Δ
distinct slopes are used for the edges. This is shown to be worst-case optimal in
terms of the number of slopes. An implication of this result is that the general
3
2 (Δ− 1) upper bound for the (undirected) 1-bend planar slope number [16] can
be lowered to Δ when the graph is series-parallel. We then extend our drawing
technique to undirected graphs and hence look at non-upward drawings. We
show a tight bound of �Δ

2 � for the 1-bend planar slope number of biconnected
reduced SP-graphs and biconnected flat SP-graphs (see Sect. 2 for definitions).
The biconnectivity requirement can be dropped at the expenses of one more
slope. To prove the above results, we construct a suitable contact representation
γ of an SP-digraph where each vertex is represented as a cross, i.e. a horizontal
segment intersected by a vertical segment (Sect. 3); then, we transform γ into a
1-bend upward planar drawing Γ optimizing the number of slopes used in such
transformation (Sect. 4). Our algorithm runs in linear time and gives rise to
drawings with angular resolution at least π

Δ , which is worst-case optimal. Some
proofs and technicalities are omitted and can be found in [7].

2 Preliminaries

A series-parallel digraph (SP-diagraph for short) [6] is a simple planar digraph
that has one source and one sink, called poles, and it is recursively defined as
follows. A single edge is an SP-digraph. The digraph obtained by identifying the
sources and the sinks of two SP-digraphs is an SP-digraph (parallel composition).
The digraph obtained by identifying the sink of one SP-digraph with the source
of a second SP-digraph is an SP-digraph (series composition). A reduced SP-
digraph is an SP-digraph with no transitive edges. An SP-digraph G is associated
with a binary tree T , called the decomposition tree of G. The nodes of T are
of three types, Q-nodes, S-nodes, and P-nodes, representing single edges, series
compositions, and parallel compositions, respectively. An example is shown in
Fig. 1(a). The decomposition tree of G has O(n) nodes and can be constructed
in O(n) time [6]. An SP-digraph is flat if its decomposition tree does not contain
two P -nodes that share only one pole and that are not in a series composition
(see, e.g., [8]). The underlying undirected graph of an SP-digraph is called an
SP-graph , and the definitions of reduced and flat SP-digraphs translate to it.

The slope s of a line � is the angle that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with �. The slope of a segment is
the slope of its supporting line. We denote by Sk the set of slopes: si = π

2 + iπ
k
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Fig. 1. (a) An SP-digraph G and its decomposition tree. (b) The safe-region (dotted)
of a cross.

(i = 0, . . . , k − 1). Note that Sk contains the slope π
2 for any value of k. Also,

any polyline drawing using only slopes in Sk has angular resolution (i.e. the
minimum angle between any two consecutive edges around a vertex) at least π

k .

3 Cross Contact Representations

Basic Definitions. A cross consists of one horizontal and one vertical segment
that share an interior point, called center of the cross. A cross is degenerate
if either its horizontal or its vertical segment has zero length. The center of a
degenerate cross is its midpoint. A point p of a cross c is an end-point (interior
point) of c if it is an end-point (interior point) of the horizontal or vertical seg-
ment of c. Two crosses c1 and c2 touch if they share a point p, called contact,
such that p is an end-point of the vertical (horizontal) segment of c1 and an
interior point of the horizontal (vertical) segment of c2. A cross-contact repre-
sentation (CCR) of a graph G is a drawing γ such that: (i) Every vertex v of G
is represented by a cross c(v); (ii) All intersections of crosses are contacts; and
(iii) Two crosses c(u) and c(v) touch if and only if the edge (u, v) is in G.

We now consider CCRs of digraphs, and define properties that will be useful
to transform a CCR into a 1-bend upward planar drawing with few slopes and
good angular resolution. Let γ be a CCR of a digraph G with maximum vertex-
degree Δ. Let (u, v) be an edge of G oriented from u to v. Let p be the contact
between c(u) and c(v). The point p is an upward contact if the following two
conditions hold: (a) p is an end-point of the vertical segment of one of the two
crosses and an interior point of the other cross, and (b) the center of c(v) is above
the center of c(u). A CCR of a digraph G such that all its contacts are upward is
an upward CCR (UCCR). An UCCR γ is balanced if for every non-degenerate
cross c(u) of γ, we have that |nl(u) − nr(u)| ≤ 1, where nl(u) (nr(u)) is the
number of contacts to the left (right) of the center of c(u). Let {p1, p2, . . . , pδ}
be the δ ≥ 0 contacts along the horizontal segment of c(u), in this order from
the leftmost one (p1) to the rightmost one (pδ). Let t be the intersection point
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between the vertical line passing through pδ and the line with slope π
2 − π

Δ and
passing through p1. Similarly, let t′ be the intersection point between the vertical
line passing through p1 and the line with slope π

2 − π
Δ and passing through pδ.

The safe-region of c(u) is the rectangle having t and t′ as the top-right and
bottom-left corner, respectively. See Fig. 1(b) for an illustration. If δ = 1, the
safe-region degenerates to a point, while it is not defined when δ = 0. An UCCR
γ is well-spaced if no two safe-regions intersect each other.
Drawing Construction. We describe a linear-time algorithm, UCCRDrawer,
that takes as input a reduced SP-digraph G, and computes an UCCR γ of G
that is balanced and well-spaced. The algorithm computes γ through a bottom-
up visit of the decomposition tree T of G. For each node μ of T , it computes an
UCCR γμ of the graph Gμ associated with μ satisfying the following properties:
P1. γμ is balanced; P2. γμ is well-spaced; P3. Let sμ and tμ be the two poles of
Gμ. If μ is not a Q-node, then both c(sμ) and c(tμ) are degenerate, with c(sμ)
at the bottom side of a rectangle Rμ that contains γμ, and c(tμ) at the top side
of Rμ.

Fig. 2. Illustration for UCCRDrawer. The safe-regions are dotted (and not in scale).

For each leaf node μ (which is a Q-node) the associated graph Gμ consists of
a single edge (sμ, tμ). We define two possible types of UCCR, γA

μ (type A) and
γB

μ (type B), of Gμ, which are shown in Fig. 2(a) and (b), respectively. Properties
P1 – P2 trivially hold in this case, while property P3 does not apply.

For each non-leaf node μ of T , UCCRDrawer computes the UCCR γμ by suit-
ably combining the (already) computed UCCRs γν1 and γν2 of the two graphs
associated with the children ν1 and ν2 of μ. If μ is an S-node of T , we distinguish
between the following cases, where tν1 = sν2 is the pole shared by ν1 and ν2.

Case 1. Both ν1 and ν2 are Q-nodes. Then an UCCR of Gμ is computed by
combining γA

ν1
and γB

ν2
as in Fig. 2(c). Properties P1 – P3 trivially hold.
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Case 2. ν1 is a Q-node, while ν2 is not (the case when ν2 is a Q-node and
ν1 is not is symmetric). We combine the drawing γA

ν1
of Gν1 and the drawing

γν2 of Gν2 as in Fig. 2(d). Notice that to combine the two drawings we may
need to scale one of them so that their widths are the same. To ensure P1,
we move the vertical segment of c(tν1) = c(sν2) so that |nl(tν1)−nr(tν1)| ≤ 1.
We may also need to shorten its upper part in order to avoid crossings with
other segments, and to extend its lower part so that c(sν1) is outside the
safe-region of c(tν1) = c(sν2), thus guaranteeing property P2. Property P3
holds by construction.
Case 3. If none of ν1 and ν2 is a Q-node, then we combine γν1 and γν2 as in
Fig. 2(e). We may need to scale one of the two drawings so that their widths
are the same. Property P1 holds, as it holds for γν1 and γν2 . Furthermore, we
ensure P2 by performing the following stretching operation. Let �a and �b be
two horizontal lines slightly above and slightly below the horizontal segment
of c(tν1) = c(sν2), respectively. We extend all the vertical segments intersected
by �a or �b until the safe-region of c(tν1) = c(sν2) does not intersect any other
safe-region. Property P3 holds by construction.

Let μ be a P -node of T , having ν1 and ν2 as children (recall that neither ν1
nor ν2 is a Q-node, since G is a reduced SP-digraph). We combine γν1 and γν2 as
in Fig. 2(f). We may need to scale one of the two drawings so that their heights
are the same. Property P1 holds, as it holds for γν1 and γν2 . To ensure P2, a
stretching operation similar to the one described in Case 3 is possibly performed
by using a horizontal line slightly above (below) the horizontal segment of c(sμ)
(c(tμ)). Property P3 holds by construction.

To deal with the time complexity of algorithm UCCRDrawer, we represent
each cross with the coordinates of its four end-points. To obtain linear time
complexity, for each drawing γμ of a node μ, we avoid moving all the crosses
of its children. Instead, for each child of μ, we only store the offset of the top-
left corner of the bounding box of its drawing. Afterwards, we fix the final
coordinates of each cross through a top-down visit of T . The above discussion
can be summarized as follows.

Lemma 1. Let G be an n-vertex reduced SP-digraph. Algorithm UCCRDrawer

computes a balanced and well-spaced UCCR γ of G in O(n) time.

4 1-Bend Drawings

We start by describing how to transform an UCCR of a reduced SP-digraph into
a 1-bend upward planar drawing that uses the slope-set SΔ. Let γ be an UCCR
of a reduced SP-digraph G and let c(u) be the cross representing a vertex u
of G in γ. Let p1, . . . , pδ (δ ≥ 1) be the contacts along the horizontal segment
of c(u), in this order from the leftmost one (p1) to the rightmost one (pδ). Let
c be either the center of c(u), if c(u) is non-degenerate, or p�δ/2�+1 if c(u) is
degenerate. Consider the set of lines �0, . . . , �Δ−1, such that �i passes through c



128 E. Di Giacomo et al.

Fig. 3. (a)–(b) Transforming an UCCR into a 1-bend drawing. (c) An SP-digraph
requiring at least Δ slopes in any 1-bend upward planar drawing.

and has slope si ∈ SΔ (for i = 0, . . . , Δ − 1). These lines, except for �0, intersect
all the vertical segments forming a contact with the horizontal segment of c(u).
If c(u) is not degenerate, then �0 coincides with the vertical segment, which has
at least one contact. In particular, each quadrant of c(u) contains a number
of lines that is at least the number of vertical segments touching c(u) in that
quadrant. Since γ is well-spaced, these intersections are inside the safe-region of
c(u). Hence we can replace each contact of c(u) with two segments having slope
in SΔ as shown in Fig. 3(a) and (b). More precisely, each contact pi of c(u) is
replaced with two segments that are both in the quadrant of c(u) that contains
the vertical segment defining pi. This guarantees the upwardness of the drawing.
Also, each edge has one bend, since it is represented by a single contact between
a horizontal and a vertical segment and we introduce one bend only when dealing
with the cross containing the horizontal segment. Finally, Γ is planar, because
there is no crossing in γ and each cross is only modified inside its safe-region
which, by the well-spaced property, is disjoint by any other safe-region. Thus,
every reduced SP-digraph admits a 1-bend upward planar drawing with at most
Δ slopes. To deal with a general SP-digraph, we subdivide each transitive edge
and compute a drawing of the obtained reduced SP-digraph. We then modify
this drawing to remove subdivision vertices (see also [7]).

Figure 3(c) shows a family of SP-digraphs such that, for every value of Δ,
there exists a graph in this family with maximum vertex-degree Δ and that
requires at least Δ slopes in any 1-bend upward planar drawing. Namely, if
a digraph G has a source (or a sink) of degree Δ, then it requires at least
Δ − 1 slopes in any upward drawing because each slope, with the only possible
exception of the horizontal one, can be used for a single edge. In the digraph of
Fig. 3(c) however, the edge (s, t) must be either the leftmost or the rightmost
edge of s and t in any upward planar drawing. Therefore, if only Δ − 1 slopes
are allowed, such edge cannot be drawn planarly and with one bend. Thus, the
following theorem holds.

Theorem 1. Every n-vertex SP-digraph G with maximum vertex-degree Δ
admits a 1-bend upward planar drawing Γ with at most Δ slopes and angular
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resolution at least π
Δ . These bounds are worst-case optimal. Also, Γ can be com-

puted in O(n) time.

Since every SP-graph can be oriented to an SP-digraph (by computing a so-
called bipolar orientation [19,20]), the next corollary is implied by Theorem 1
and improves the upper bound of 3

2 (Δ − 1) [16] for the case of SP-graphs.

Corollary 1. The 1-bend planar slope number of SP-graphs with maximum
vertex-degree Δ is at most Δ.

Our drawing technique can be naturally extended to construct 1-bend planar
drawings of two sub-families of biconnected SP-graphs using �Δ

2 � slopes. Intu-
itively, if the drawing does not need to be upward, then for each cross c(u) (see
e.g. Fig. 3(a)), one can use the same slope for two distinct edges incident to u.
Also, the biconnectivity requirement can be dropped by using one more slope.

Theorem 2. Let G be a 2-connected SP-graph with maximum vertex-degree Δ
and n vertices. If G is reduced or flat, then G admits a 1-bend planar drawing
Γ with at most �Δ

2 � slopes and angular resolution at least 2π
Δ . Also, Γ can be

computed in O(n) time.

Corollary 2. Let G be an SP-graph with maximum vertex-degree Δ and n ver-
tices. If G is reduced or flat, then G admits a 1-bend planar drawing Γ with at
most �Δ

2 �+1 slopes and angular resolution at least 2π
Δ+1 . Also, Γ can be computed

in O(n) time.

5 Open Problems

We proved that the 1-bend upward planar slope number of SP-digraphs with
maximum vertex-degree Δ is at most Δ and this is a tight bound. Is the bound
of Corollary 1 also tight? Moreover, can it be extended to any partial 2-tree?
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Abstract. A non-aligned drawing of a graph is a drawing where no two
vertices are in the same row or column. Auber et al. showed that not
all planar graphs have a non-aligned planar straight-line drawing in the
n × n-grid. They also showed that such a drawing exists if up to n − 3
edges may have a bend.

In this paper, we give algorithms for non-aligned planar drawings
that improve on the results by Auber et al. In particular, we give such
drawings in an n× n-grid with at most 2n−5

3
bends, and we study what

grid-size can be achieved if we insist on having straight-line drawings.

1 Introduction

At last year’s GD conference, Auber et al. [2] introduced the concept of rook-
drawings: these are drawings of a graph in an n × n-grid such that no two
vertices are in the same row or the same column (thus, if the vertices were
rooks on a chessboard, then no vertex could beat any other). They showed that
not all planar graphs have a planar straight-line rook-drawing, and then gave a
construction of planar rook-drawings with at most n − 3 bends. From now on,
all drawings are required to be planar.

In this paper, we continue the study of rook-drawings. Note that if a graph has
no straight-line rook-drawing, then we can relax the restrictions in two possible
ways. We could either, as Auber et al. did, allow to use bends for some of the
edges, and try to keep the number of bends small. Or we could increase the
grid-size and ask what size of grid can be achieved for straight-line drawings in
which no two vertices share a row or a column; this type of drawing is known
as non-aligned drawing [1]. A rook-drawing is then a non-aligned drawing on an
n × n-grid.

Existing Results: Apart from the paper by Auber et al., non-aligned drawings
have arisen in a few other contexts. Alamdari and Biedl showed that every
graph that has an inner rectangular drawing also has a non-aligned drawing
[1]. These drawings are so-called rectangle-of-influence drawings and can hence
be assumed to be in an n × n-grid. In particular, every 4-connected planar
graph with at most 3n − 7 edges therefore has a rook-drawing (see Sect. 3.1 for
details). Non-aligned drawings were also created by Di Giacomo et al. [9] in the
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 131–143, 2016.
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context of upward-rightward drawings. They showed that every planar graph
has a non-aligned drawing in an O(n4) × O(n4)-grid. Finally, there have been
studies about drawing graphs with the opposite goal, namely, creating as many
collinear vertices as possible [15].

Our Results: In this paper, we show the following (the bounds listed here are
upper bounds; see the sections for tighter bounds):

– Every planar graph has a non-aligned straight-line drawing in an n2×n2-grid.
This is achieved by taking any weak barycentric representation (for example,
the one by Schnyder [16]), scaling it by a big enough factor, and then moving
vertices slightly so that they have distinct coordinates while maintaining a
weak barycentric representation.

– Every planar graph has a non-aligned straight-line drawing in an n × 1
2n3-

grid. This is achieved by creating drawings with the canonical ordering [11]
in a standard fashion (similar to [8]). However, we pre-compute all the x-
coordinates (and in particular, make them a permutation of {1, . . . , n}), and
then argue that with the standard construction the slopes do not get too big,
and hence the height is quadratic. Modifying the construction a bit, we can
also achieve that all y-coordinates are distinct and that the height is cubic.

– Every planar graph has a rook-drawing with at most 2n−5
3 bends. This is

achieved via creating a so-called rectangle-of-influence drawing of a modifi-
cation of G, and arguing that each modification can be undone while adding
only one bend.

Our bounds are even better for 4-connected planar graphs. In particular,
every 4-connected planar graph has a rook-drawing with at most 1 bend (and
more generally, the number of bends is no more than the number of so-called
filled triangles). We also show that any so-called nested-triangle graph has a
non-aligned straight-line drawing in an n × (43n − 1)-grid.

2 Non-aligned Straight-Line Drawings

In this section, all drawings are required to be straight-line drawings.

2.1 Non-aligned Drawings on an n2 × n2-Grid

We first show how to construct non-aligned drawings in an n2 ×n2-grid by scal-
ing and perturbing a so-called weak barycentric representation (reviewed below).
In the following, a vertex v is assigned to a triplet of non-negative integer coor-
dinates (p0(v), p1(v), p2(v)). For two vertices u, v and i = 0, 1, 2, we say that
pi(u) <lex pi(v) if either pi(u) < pi(v) or pi(u) = pi(v) and pi+1(u) < pi+1(v).
Note that in this section, addition on the subscripts is done modulo 3.

Definition 1 ([16]). A weak barycentric representation of a graph G is an injec-
tive function mapping each v ∈ V (G) to a point (p0(v), p1(v), p2(v)) ∈ N

3
0 such

that:
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– p0(v)+p1(v)+p2(v) = c for every vertex v, where c is a constant independent
of the vertex,

– for each edge (u, v) and each vertex w �= {u, v}, there is some k ∈ {0, 1, 2}
such that pk(u) <lex pk(z) and pk(v) <lex pk(z).

Theorem 1 ([16]). Every planar graph with n vertices has a weak barycentric
representation with c = n − 1. Furthermore, 0 ≤ pi(v) ≤ n − 2 for all vertices
v ∈ V and all i ∈ {0, 1, 2}.

Observe that weak barycentric representations are preserved under scaling,
i.e., if we have a weak barycentric representation P (say with constant c), then
we can scale all assigned coordinates by the same factor N and obtain another
weak barycentric representation (with constant c · N). We need to do slightly
more, namely scale and “twist”, as detailed in the following lemma (not proved
here).

Lemma 1. Let G be a graph with a weak barycentric representations P =(
(p0(v), p1(v), p2(v))v∈V

)
. Let N ≥ 1 + maxv∈V {maxi=0,1,2 pi(v)} be a positive

integer. Define P ′ to be the assignment p′
i(v) := N ·pi(v)+pi+1(v) for i = 0, 1, 2.

Then P ′ is also a weak barycentric representation.

Applying this to Schnyder’s weak barycentric representation, we now have:

Theorem 2. Every planar graph has a non-aligned straight-line planar drawing
in an (n(n − 2)) × (n(n − 2))-grid.

Proof. Let P =
(
(p0(v), p1(v), p2(v))v∈V

)
be the weak barycentric representation

of Theorem 1; we know that 0 ≤ pi(v) ≤ n − 2 for all v and all i. Now apply
Lemma 1 with N = n − 1 to obtain the weak barycentric representation P ′

with p′
i(v) = (n − 1)pi(v) + pi+1(v). Observe that p′

i(v) ≤ (n − 1)(n − 2) +
(n − 2) = n(n − 2). Also, p′

i(v) ≥ 1 since not both pi(v) and pi+1(v) can be 0.
(More precisely, pi(v) = 0 = pi+1(v) would imply pi+2(v) = n − 1, contradicting
pi+2(v) ≤ n − 2.)

As shown by Schnyder [16], mapping each vertex v to point (p′
0(v), p′

1(v))
gives a planar straight-line drawing of G. By the above, this drawing has the
desired grid-size. It remains to show that it is non-aligned, i.e., for any two
vertices u, v and any i ∈ {0, 1}, we have p′

i(u) �= p′
i(v). Assume after possible

renaming that pi(u) ≤ pi(v). We have two cases:

– If pi(u) < pi(v), then pi(u) ≤ pi(v)−1 since P assigns integers. Thus N ·pi(u) ≤
N ·pi(v)−N < N ·pi(v)−pi+1(u)+pi+1(v) since pi+1(u) < N and pi+1(v) ≥ 0.
Therefore p′

i(u) < p′
i(v).

– If pi(u) = pi(v), then pi+1(u) �= pi+1(v) (else the three coordinates of u and v
would be the same, which is impossible since P is an injective function). Then
p′

i(u) = N · pi(u) + pi+1(u) �= N · pi(v) + pi+1(v) = p′
i(v). ��
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2.2 Non-aligned Drawings on an n × f(n)-Grid

We now show how to build non-aligned drawings for which the width is the
minimum-possible n, and the height is ≈ 1

2n3. We use the well-known canonical
ordering for triangulated plane graphs, i.e., graphs for which the planar embed-
ding is fixed and all faces (including the outer-face) are triangles. We hence
assume throughout that G is triangulated; we can achieve this by adding edges
and delete them in the obtained drawing.

The canonical ordering [11] of such a graph is a vertex order v1, . . . , vn such
that {v1, v2, vn} is the outer-face, and for any 3 ≤ k ≤ n, the graph Gk induced
by v1, . . . , vk is 2-connected. This implies that vk has at least 2 predecessors (i.e.,
neighbours in Gk−1), and its predecessors form an interval on the outer-face of
Gk−1. We assume (after possible renaming) that v1 is the neighbor of v2 found in
clockwise order on the outer-face, and enumerate the outer-face of graph Gk−1

in clockwise order as c1, . . . , cL with c1 = v1 and cL = v2. Then the predecessors
of vk consist of c�, . . . , cr for some 1 ≤ � < r ≤ L; we call c� and cr the leftmost
and rightmost predecessor of vk (see also Fig. 1). In this section, x(v) and y(v)
denote the x- and y-coordinates of a vertex v, respectively.

Distinct x-Coordinates. We first give a construction that achieves distinct
x-coordinates in {1, . . . , n} (but y-coordinates may coincide). Let v1, . . . , vn be
a canonical ordering. The goal is to build a straight-line drawing of the graph
Gk induced by v1, . . . , vk using induction on k. The key idea is to define all
x-coordinates beforehand. Define an orientation of the edges of G as follows.
Direct (v1, v2) as v1 → v2. For k ≥ 3, if cr is the rightmost predecessor of vk,
then direct all edges from predecessors of vk towards vk, with the exception of
(vk, cr), which is directed vk → cr.

By induction on k, one easily shows that the orientation of Gk is acyclic, with
unique source v1 and unique sink v2, and the outer-face directed c1 → · · · → cL.
Find a topological order x : V → {1, . . . , n} of the vertices, i.e., if u → v then
x(u) < x(v). We use this topological order as our x-coordinates, and hence
have x(v1) = 1 and x(v2) = n. (We thus use two distinct vertex-orderings: one
defined by the canonical ordering, which is used to compute y-coordinates, and
one defined by the topological ordering derived from the canonical ordering,
which directly gives the x-coordinates.)

Now construct a drawing of Gk that respects these x-coordinates by induction
on k; see also Fig. 1. Start with v1 at (1, 2), v3 at (x(v3), 2) and v2 at (n, 1).

For k ≥ 3, let c� and cr be the leftmost and rightmost predecessor of vk+1.
Notice that x(c�) < · · · < x(cr) due to our orientation. Let y∗ be the smallest
integer value such that any cj , for � ≤ j ≤ r, can “see” the point p = (x(vk+1), y∗)
in the sense that that the line segment from cj to p intersects no other vertices or
edges. Since cj is on the outer-face, then cj can see all points on the ray upward
from cj . Furthermore, by tilting this ray slightly, cj can also see all sufficiently
high points on the vertical line {x = x(vk+1)}. Thus, such a y∗ exists. Placing
vk+1 at (x(vk+1), y∗) hence gives a planar drawing of Gk+1, and we continue
until we get a drawing of Gn = G.
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Fig. 1. (Left) Illustration of a canonical order. (Right) Finding a y-coordinate for vk+1.

To analyze the height of this construction, we bound the slopes.

Lemma 2. Define s(k) := k − 3 for k ≥ 3. All edges on the outer-face of the
constructed drawing of Gk have slope at most s(k) for k ≥ 3.

Proof. (Sketch) In the drawing of Gk, let ρ� be the ray of slope s(k) starting at c�.
Consider the place where this ray intersects the vertical line {x = x(vk+1)}, and
let y′ be the smallest y-coordinate of a grid point vertically above this intersection
point. Hence

y′ ≤ y(c�) + (x(vk+1) − x(c�)) · s(k) + 1. (1)

Since all edges on the outer-face of Gk have slope at most s(k), one can easily
verify that point (x(vk+1), y′) can see all of c�, . . . , cr, so we have y∗ ≤ y′. Also,
the worst new slope among the edges of the outer-face of Gk occurs at edge
(c�, vk+1), which by Eq. (1) has slope at most

y′ − y(c�)
x(vk+1) − x(c�)

≤ s(k)+
1

x(vk+1) − x(c�)
≤ s(k)+1 = s(k + 1). ��

Vertex vn has x-coordinate at most n − 1, and the edge from v1 to vn has
slope at most s(n) = n − 3. This shows that the y-coordinate of vn is at most
2 + (n − 2) · (n − 3). Since triangle {v1, v2, vn} bounds the drawing, this gives:

Theorem 3. Every planar graph has a planar straight-line drawing in an n ×
(2 + (n − 2)(n − 3))-grid such that all vertices have distinct x-coordinates.

While this theorem per se is not useful for non-aligned drawings, we find it
interesting from a didactic point of view: It proves that polynomial coordinates
can be achieved for straight-line drawings of planar graphs, and requires for this
only the canonical ordering, but neither the properties of Schnyder trees [16] nor
the details of how to “shift” that is needed for other methods using the canonical
ordering (e.g. [8,11]). We believe that our bound on the height is much too big,
and that the true height is o(n2) and possibly O(n).
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Non-aligned Drawings. We now modify the above construction slightly to
achieve distinct y-coordinates. Define the exact same x-coordinates and place v1
and v2 as before. To place vertex vk+1, let y∗ be the smallest y-coordinate such
that point (x(vk+1), y∗) can see all predecessors of vk+1, and such that none of
v1, . . . , vk is in row {y = y∗}. Clearly this gives a non-aligned drawing. It remains
to bound how much this increases the height.

Observe that we use y-coordinate 3 for v3, and all slopes in the drawing of G3

are at most 1. All later vertices want to be placed with y-coordinate 3 or higher,
and therefore have no row-conflict with v1 and v2. Thus when placing vk+1,
at most k − 2 previous vertices could occupy rows that we wish to use for y∗.
In consequence, Eq. (1) is now replaced by

y∗ ≤ y(c�) + (x(vk+1) − x(c�)) · s′(k) + (k − 1) (2)

where s′(k) is the bound on the slope of the drawing of Gk. A proof similar to
the one of Lemma 2 now shows:

Lemma 3. Define s′(k) :=
∑k−2

i=1 i = 1
2 (k − 1)(k − 2) for k ≥ 3. All edges on

the outer-face of the constructed non-aligned drawing of Gk have slope at most
s′(k) for k ≥ 3.

The maximal slope is hence at most 1
2 (n−1)(n−2), and if applicable, achieved

at edge (v1, vn). Since x(vn) − x(v1) ≤ n − 2 and y(v1) = 2, therefore the height
is at most 2 + 1

2 (n − 1)(n − 2)2.

Theorem 4. Every planar graph has a non-aligned straight-line drawing in an
n × (

2 + 1
2 (n − 1)(n − 2)2

)
-grid.

Comparing this to Theorem 2, we see that the aspect ratio is much worse,
but the area is smaller. We suspect that the method results in a smaller height
than the proven upper bound: Eq. (2) is generally not tight, and so a smaller
slope-bound (implying a smaller height) is likely to hold.

2.3 The Special Case of Nested Triangles

We now turn to non-aligned drawings of a special graph class. Define a nested-
triangle graph G as follows. G has 3k vertices for some k ≥ 1, say {ui, vi, wi} for
i = 1, . . . , k. Vertices {ui, vi, wi} form a triangle (for i = 1, . . . , k). We also have
paths u1, u2, . . . , uk as well as v1, v2, . . . , vk and w1, w2, . . . , wk. With this the
graph is 3-connected; we assume that its outer-face is {u1, v1, w1}. All interior
faces that are not triangles may or may not have a diagonal in them, and there
are no restrictions on which diagonal (if any). Nested-triangle graphs are of
interest in graph drawing because they are the natural lower-bound graphs for
the area of straight-line drawings [10].

Theorem 5. Any nested-triangle graph with n = 3k vertices has a non-aligned
straight-line drawing in an n × ( 43n − 1)-grid.
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Fig. 2. A non-aligned straight-line drawing of a nested-triangle graph with k = 3 on
an 9 × 11-grid, an RI-drawing satisfying the conditions of Theorem 6, and combining
two RI-drawings if all separating triangles contain (u,w).

Proof. The 4-cycle {wk, vk, vk−1, wk−1} may or may not have a diagonal in it;
after possible exchange of w1, . . . , wk and v1, . . . , vk we assume that there is
no edge between vk−1 and wk. For i = 1, . . . , k, place ui at (i, i), vertex vi

at (3k + 1 − i, k + i), and wi at (k + i, 4k + 1 − 2i) (see Fig. 2). The x- and
y-coordinates are all distinct. The x-coordinates range from 1 to n, and the
maximal y-coordinate is 4k − 1 = 4

3n − 1. It is easy to check that all interior
faces are drawn strictly convex, with the exception of {vk, vk−1, wk−1, wk} which
has a 180◦ angle at vk, but our choice of naming ensured that there is no edge
(vk−1, wk). Thus any diagonal inside these 4-cycles can be drawn without overlap.
Since G is planar, two edges joining vertices of different triangles cannot cross.
Thus G is drawn without crossing in an n × (

4
3n − 1

)
-grid. ��

In particular, notice that the octahedron is a nested-triangle graph (for k = 2)
and this construction gives a non-aligned straight-line drawing in a 6 × 7-grid.
This is clearly optimal since it has no straight-line rook-drawing [2].

We conjecture that this construction gives the minimum-possible height for
nested-triangle graphs among all non-aligned straight-line drawings.

3 Rook-Drawings with Bends

We now construct rook-drawings with bends; as before we do this only for tri-
angulated graphs. The main idea is to find rook-drawings with only 1 bend for
4-connected triangulated graphs. Then convert any graph into a 4-connected tri-
angulated graph by subdividing few edges and re-triangulating, and argue that
the drawing for it, modified suitably, gives a rook-drawing with few bends.

We need a few definitions first. Fix a triangulated graph G. A separating
triangle is a triangle that has vertices both strictly inside and strictly outside
the triangle. G is 4-connected (i.e., cannot be made disconnected by removing 3
vertices) if and only if it has no separating triangle. A filled triangle [5] of G is a
triangle that has vertices strictly inside. Graph G has at least one filled triangle
(namely, the outer-face) and every separating triangle is also a filled triangle.
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We denote by fG the number of filled triangles of the graph G. A rectangle-of-
influence (RI) drawing is a straight-line drawing such that for any edge (u, v),
the minimum axis-aligned rectangle containing u and v is empty in the sense
that it contains no other vertex of the drawing in its relative interior (see Fig. 2).
The following is known:

Theorem 6 ([5]). Let G be a triangulated 4-connected graph and let e be an
edge on the outer-face. Then G − e has a planar RI-drawing. Moreover, the
drawing is non-aligned and on an n × n-grid, the ends of e are at (1, n) and
(n, 1), and the other two vertices on the outer-face are at (2, 2) and (n−1, n−1).

The latter part of this claim is not specifically stated in [5], but can easily be
inferred from the construction (see also a simpler exposition in [4]). RI-drawings
are useful because they can be deformed (within limits) without introducing
crossings. We say that two drawings Γ and Γ ′ of a graph have the same relative
coordinates if for any two vertices v and w, we have xΓ (v) < xΓ (w) if and only
if xΓ ′(v) < xΓ ′(w), and yΓ (v) < yΓ (w) if and only if yΓ ′(v) < yΓ ′(w), where
xΓ (v) denotes the x-coordinate of v in Γ , etc. The following result appears to
be folklore; we sketch a proof for completeness.

Observation 1. Let Γ be an RI-drawing. If Γ ′ is a straight-line drawing with
the same relative coordinates as Γ , then Γ ′ is an RI-drawing, and it is planar if
and only if Γ is.

Proof. The claim on the RI-drawing was shown by Liotta et al. [14]. It remains
to argue planarity. Assume that edge (u, v) crosses edge (w, z) in an RI-drawing.
Since all rectangles-of-influence are empty, this happens if and only if (up to
renaming) we have x(w) ≤ x(u) ≤ x(v) ≤ x(z) and y(u) ≤ y(w) ≤ y(z) ≤ y(v).
This only depends on the relative orders of u, v, w, z, and hence a transformation
that maintains relative coordinates maintains planarity. ��

We need a slight strengthening of Theorem 6.

Lemma 4. Let G be a triangulated graph, let e ∈ E be an edge on the outer-
face, and assume all separating triangles contain e. Then G − e has a planar
RI-drawing. Moreover, the drawing is non-aligned and on an n × n-grid, the
ends of e are at (1, n) and (n, 1), and the other two vertices on the outer-face
are at (2, 2) and (n − 1, n − 1).

Proof. We proceed by induction on the number of separating triangles of G.
In the base case, G is 4-connected and the claim holds by Theorem 6. For the
inductive step, assume that T = {u, x, w} is a separating triangle. By assumption
it contains e, say e = (u,w). Let G1 be the graph consisting of T and all vertices
inside T , and let G2 be the graph obtained from G by removing all vertices
inside T . Apply induction to both graphs. In drawing Γ2 of G2 − e, vertex x is
on the outer-face and hence placed at (2, 2). Now insert a (scaled-down) copy of
the drawing Γ1 of G1, minus vertices u and w, in the square (1, 2] × (1, 2] (see
Fig. 2). Since x was in the top-right corner of Γ1−{u,w}, the two copies of x can
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be identified. One easily verifies that this gives an RI-drawing, because within
each drawing the relative coordinates are unchanged, and the two drawings are
disjoint except at u and w. Finally, re-assign coordinates to the vertices while
keeping relative coordinates intact so that we have an n×n-grid; by Observation 1
this gives a planar RI-drawing. ��

3.1 4-Connected Planar Graphs

Combining Theorem 6 with Observation 1, we immediately obtain:

Theorem 7. Let G be a triangulated 4-connected planar graph. Then G has a
planar rook-drawing with at most one bend.

Proof. Fix an arbitrary edge e on the outer-face, and apply Theorem 6 to obtain
an RI-rook-drawing Γ of G−e (see Fig. 3(a)). It remains to add in edge e = (u, v).
One end u of e is in the top-left corner, and the leftmost column contains no
other vertex. The other end v is in the bottom-right corner, and the bottommost
row contains no other vertex. We can hence route (u, v) by going vertically from
u and horizontally from v, with the bend in the bottom-left corner. ��
Corollary 1. Let G be a 4-connected planar graph. Then G has a rook-drawing
with at most one bend, and with no bend if G is not triangulated.

Proof. If G is triangulated then the result was shown above, so assume G has
at least one face of degree 4 or more. Since G is 4-connected, one can add edges
to G such that the result G′ is triangulated and 4-connected [6]. Pick a face
incident to an added edge e as outer-face of G′, and apply Theorem 6 to obtain
an RI-drawing of G′ − e. Deleting all edges in G′ − G gives the result. ��

Since we have only one bend, and the ends of the edge (u, v) that contain it
are the top-left and bottom-right corner, we can remove the bend by stretching.

Theorem 8. Every 4-connected planar graph has a non-aligned planar drawing
in an n × (n2 − 3n + 4)-grid and in a (2n − 2) × (2n − 2)-grid.

Proof. Let Γ be the RI-drawing of G − (u, v) with u at (1, n) and v at (n, 1).
Relocate u to point (1, n2 − 3n + 4). The resulting drawing is still a planar RI-
drawing by Observation 1. Now y(u) − y(v) = (n − 2)(n − 1) + 1, hence the line
segment from u to v has slope less than −(n − 2), and is therefore above point
(n − 1, n − 1) (and hence above all other vertices of the drawing). So we can
add this edge without violating planarity, and obtain a non-aligned straight-line
drawing of G (see Fig. 3(b)). For the other result, start with the same drawing
Γ . Relocate u to (1, 2n − 2) and v to (2n − 2, 1). The line segment from u to v
has slope −1 and crosses Γ only in the top right grid-square, which was empty.
So we obtain a non-aligned planar straight-line drawing. (see Fig. 3(c)). ��
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Fig. 3. An RI-rook-drawing of G−e, transformation into a non-aligned drawing of G of
width n (where the top-left corner moved sufficiently high), and a second non-aligned
drawing of G.

3.2 Constructing Rook-Drawings with Few Bends

We now explain the construction of a (poly-line) rook-drawing for a triangulated
graph G with at least 5 vertices. We proceed as follows:

1. Find a small independent-filled-hitting set Ef . Here, an independent-filled-
hitting set E′ is a set of edges such that (i) every filled triangle has at least
one edge in E′ (we say that E′ hits all filled triangles), and (ii) every face of
G has at most one edge in E′ (we say that E′ is independent). We can show
the following bound:

Lemma 5. Any triangulated graph G of order n has an independent-filled-
hitting set of size at most

– fG (where fG is the number of filled triangles of G), and it can be found in
O(n) time,

– 2n−5
3 , and it can be found in O((n log n)1.5α(n, n)) time (where α denotes the

inverse Ackermann function) or approximated arbitrarily close in O(n) time.

Proof. (Sketch) Compute a 4-coloring of the planar graph G, defining three
perfect matchings in the dual graph. Let M1,M2,M3 be the corresponding edge
sets in G, and let Ei (for i = 1, 2, 3) be Mi with all edges removed that do not
belong to a filled triangle. Since Mi stems from a 4-coloring, it contains exactly
one edge of each triangle, hence Ei hits all filled triangles and |Ei| ≤ fG. Since
Mi is the dual of a matching, Ei is independent. Cardinal et al. [7] showed that
any planar graph has at most 2n − 7 edges that belong to a separating triangle,
and similarly one can show that at most 2n − 5 edges belong to a filled triangle
(there are 2n−5 interior faces, and we can assign to each edge in a filled triangle
the face on its “interior” side without double-counting faces). Therefore the best
of E1, E2, E3 contains at most (2n−5)/3 edges. To find it, we can either compute
a minimum-weight perfect matching for suitable weights [12], or approximate it
with a linear-time PTAS based on Baker’s technique [3]. ��
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(a) (b) (c) (d)

Fig. 4. (a, b) A separating triangle removed by subdividing and re-triangulating. (c)
The RI-drawing of Fig. 2 reordered such that subdivision vertices (grey) are not at
integer coordinates. (d) The drawing of (c), with subdivison vertices shifted to integer
gridpoints.

2. Since the outer-face is a filled triangle, there exists one edge eo ∈ Ef that
belongs to the outer-face. Define Es := Ef −{eo} and notice that Es contains
no outer-face edges since Ef is independent.

3. As done in some previous papers [7,13], remove separating triangles by sub-
dividing all edges e ∈ Es, and re-triangulate by adding edges from the subdi-
vision vertex (see Fig. 4(a, b)). Let Vx be the new set of vertices, and let G1

be the new graph. Observe that G1 may still have separating triangles, but
all those separating triangles contain eo since Ef hits all filled triangles.

4. By Lemma 4, G1 − eo has a non-aligned RI-drawing Γ where the ends of eo

are at the top-left and bottom-right corner.
5. Transform Γ into drawing Γ ′ so that the relative orders stay intact, the

original vertices (i.e., vertices of G) are on an n × n-grid and the subdivision
vertices (i.e., vertices in Vx) are inbetween.
This can be done by enumerating the vertices in x-order, and assigning new
x-coordinates in this order, increasing to the next integer for each original
vertex and increasing by 1

|Vx|+1 for each subdivision vertex. Similarly update
the y-coordinates (see Fig. 4(c)). Drawing Γ ′ is still a non-aligned RI-drawing,
and the ends of eo are on the top-left and bottom-right corner.

6. Let e be an edge in Es with subdivision vertex xe. Since e is an interior edge
of G, xe is an interior vertex of G1. Now move xe to some integer gridpoint
nearby. This is possible due to the following (not proved here):

Lemma 6. Let Γ be a planar RI-drawing. Let x be an interior vertex of
degree 4 with neighbours u1, u2, u3, u4 that form a 4-cycle. Assume that none
of x, u1, u2, u3, u4 share a grid-line. Then we can move x to a point on grid-lines
of its neighbours and obtain a planar RI-drawing.

Note that the 4-cycle among the neighbours of xe contains no other vertices in
Vx, since Es was independent. So any two subdivision vertices are separated
via such a 4-cycle, and we can apply this operation to any subdivision-vertex
independently.
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7. Now replace each subdivision-vertex xe by a bend, connected to the ends of
e along the corresponding edges from xe, see Fig. 4(d). (Sometimes, as is the
case in the example, we could also simply delete the bend and draw edge e
straight-line.) None of the shifting changed positions for vertices of G, so we
now have a rook-drawing of G− eo with bends. The above shifting of vertices
does not affect outer-face vertices, so the ends of eo are still in the top-left
and bottom-right corner. As the final step draw eo by drawing vertically from
one end and horizontally from the other; these segments are not occupied by
the rook-drawing.

We added one bend for each edge in Ef . By Lemma 5, we can find an Ef

with |Ef | ≤ fG and |Ef | ≤ 2n−5
3 (neither bound is necessarily smaller than the

other), and hence have:

Theorem 9. Any planar graph G of order n has a planar rook-drawing with at
most b bends, with b ≤ min{ 2n−5

3 , fG}.

4 Conclusion

In this paper, we continued the work on planar rook-drawings initiated by Auber
et al. [2]. We constructed planar rook-drawings with at most 2n−5

3 bends; the
number of bends can also be bounded by the number of filled triangles. We also
considered drawings that allow more rows and columns while keeping vertices
on distinct rows and columns; we proved that such non-aligned planar straight-
line drawings always exist and have area O(n4). As for open problems, the most
interesting question is lower bounds. No planar graph is known that needs more
than one bend in a planar rook-drawing, and no planar graph is known that
needs more than 2n+1 grid-lines in a planar non-aligned drawing. The “obvious”
approach of taking multiple copies of the octahedron fails because the property of
having a rook-drawing is not closed under taking subgraphs: if vertices are added,
then they could “use up” extraneous grid-lines in the drawing of a subgraph.
We conjecture that the n × (43n − 1)-grid achieved for nested-triangle graphs is
optimal for planar straight-line non-aligned drawings with width n.
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Abstract. In geographic information systems and in the production of
digital maps for small devices with restricted computational resources
one often wants to round coordinates to a rougher grid. This removes
unnecessary detail and reduces space consumption as well as compu-
tation time. This process is called snapping to the grid and has been
investigated thoroughly from a computational-geometry perspective. In
this paper we investigate the same problem for given drawings of planar
graphs under the restriction that their combinatorial embedding must
be kept and edges are drawn straight-line. We show that the problem
is NP-hard for several objectives and provide an integer linear program-
ming formulation. Given a plane graph G and a positive integer w, our
ILP can also be used to draw G straight-line on a grid of width w and
minimum height (if possible).

1 Introduction

When compressing geographic data, for example in order to ship it to devices
with small memory, small screens and slow CPUs, the main objective is to reduce
unnecessary detail. One way to do this is to round data points to a grid.

In the computational geometry community, a process called snap rounding
has been proposed and has since become well-established: given an arrangement
of line segments, each grid cell that contains vertices or intersections is “hot”.
Then every segment becomes a polygonal chain whose edges (fragments) connect
center points of hot cells, namely those that the original segment (ursegment)
intersects. Guibas and Marimont [7] showed that during snap rounding, vertices
of the arrangement never cross a polygonal chain, so after snapping no two frag-
ments cross. Moreover, the circular order of the fragments around an output
vertex is the same as the order in which the corresponding ursegments inter-
sect the boundary of its grid cell. The resulting arrangement approximates the
original one in the sense that any fragment lies within the Minkowski sum of
the corresponding ursegments and a unit square centered at the origin. However,
the structure of the graph can be affected (vertices merge, faces disappear, edges
bend). Further work in this direction includes that of De Berg et al. [3].

Motivated by the above GIS application, we investigate the problem of mov-
ing the drawing of a graph to a given grid. Since we still want to be able to

The full version of this paper is available at http://arxiv.org/abs/1608.08844.
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recognize the original graph, we do not tolerate new incidences. Then we must
accept the possibility that a vertex does not go to the nearest grid point, but we
still want to minimize change. This can by measured, for example, by the sum
of the distances or the maximum distance in the Euclidean (L2-) or Manhattan
(L1-) metric. Apparently, this problem, which we call Topologically-Safe
Snapping, has not been studied yet. (Note that we carry over the term “snap-
ping,” although we don’t necessarily snap to the nearest grid point.)

From a graph-drawing perspective, restricting to the grid has a (relatively)
long history. Motivated by the fact that Tutte’s barycenter method [15] for draw-
ing planar graphs yields drawings that need precision linear in the size of the
graph, Schnyder [14] and, independently, de Fraysseix et al. [5] have shown that
any planar graph with n vertices admits a straight-line drawing on a grid of size
O(n) × O(n). This is asymptotically optimal in the worst case [5]. Chrobak and
Nakano [2] have investigated drawing planar graphs on grids of smaller width,
at the expense of a larger height. Grid-snapping techniques can be found in any
diagram creation tool. Aesthetic properties of force-directed drawing algorithms
are widely researched, see e.g. Kieffer et al. [8] for grid layouts of diagrams.

Although minimizing the area of straight-line grid drawings has been the
topic of several graph drawing contests, there has been rather little previous
work. It is known that the problem is NP-hard [9], but not even for special cases
exact or approximation algorithms have been proposed.

Our Contribution. We show that optimal snapping is NP-hard, with a reduction
that asks for compressing each coordinate by just a single bit (Sect. 2). The proof
is somewhat similar in concept to the proof of the NP-hardness of Metro-Map
Layout [12,16], but new constructions are required since the snapping problem
does not easily allow the construction of “rigid” gadgets. Second, we give an
integer linear program (ILP) for optimal snapping (Sect. 3). This ILP generalizes
the one for Metro-Map Layout [13]. Where that ILP assumes a constant number
of possible edge directions (namely 8), we have to cope with a number that is
quadratic in the size of the grid. The numbers of variables and constraints of
our ILP are polynomial in grid and graph size, but are quite large in practice. In
fact, on a grid of size k×k, there are Θ(k2) edge directions. Thus, for an n-vertex
planar graph, we must generate O(k2n2) constraints, among others, to preserve
planarity and the cyclic order of edges around the vertices. To ameliorate this, we
apply delayed constraint generation, a technique that adds certain constraints
only when needed. Still, runtime is prohibitive for graphs with more than about
15 vertices. Our techniques can be adapted to draw (small) graphs with minimal
area. This is interesting even for small graphs since minimum-area drawings can
be useful for validating (counter) examples in graph drawing theory.

2 NP-Hardness

We start with a formal definition of TopologicallySafeSnapping – or TSS
for short. To measure the cost of rounding a graph, we utilize Manhattan distance



146 A. Löffler et al.

and the total cost of rounding a graph is the sum over the individual costs of
the vertices. As input we take a plane graph G = (V,E) with vertex positions
and a bounding box [0,Xmax]× [0, Ymax]. The TSS problem is then to minimize
the cost of rounding the vertices of G to the integer grid within the box without
altering the topology with respect to the given plane straight-line drawing of G.

We prove NP-hardness of TSS by considering the decision variant: is there
a rounding that does not exceed a given cost bound c? We reduce from Planar
monotone 3-SAT (which is NP-hard [4]): given a formula F in 3-CNF that is
monotone and whose graph H(F ) is planar, is F satisfiable? The graph H(F ) has
a vertex for each variable and each clause of F and an edge between a variable
vertex vX and a clause vertex vC if X is part of C. We will only consider formulae
whose graphs are planar and that are monotone in the usual sense: for any clause
C, variables in C either are all negated or all unnegated. We can assume that
the graph H(F ) can be laid out as in Fig. 1 (a): all variable vertices lie on the
x-axis, the vertices of all-negated clauses lie above the x-axis, and the vertices
of all-unnegated clauses lie below the x-axis [4].

Theorem 1. TopologicallySafeSnapping is NP-hard.

Proof. For a given monotone, planar 3-CNF formula F , we construct a cost
bound cmin and a plane graph G with vertices at half-integer coordinates. The
sum of all vertex movements induced by rounding G to integer coordinates is
exactly cmin if and only if F is satisfiable. To achieve this, we introduce gadgets
for the elements of H(F ) – variables, clauses, edges and bends – and construct
G and cmin in polynomial time.

For exposition, we consider two types of vertices. Black vertices start on
integer grid points and do not need to be rounded. Moving a black vertex to
another integer grid point is allowed, but we will show that this is not optimal
if F is satisfiable. White vertices start at grid cell centers and thus will always
move at least one unit by rounding. Let W ⊆ V (G) be the set of white vertices.
Now we give the construction of the various gadgets.

First, we introduce the line and bend gadgets. These ensure consistency
between variable and clause gadgets. Every segment of the line gadget con-
sists of four black vertices and two edges forming a tunnel, and a single white
vertex inside; see Fig. 1 (b). The white vertex can be rounded most cheaply to
exactly two possible integer grid points, depicted by the red and blue arrows.
By rounding a white vertex in one direction, we prohibit the neighbor in that
direction to go the opposite way – as both vertices would end up on the same
integer grid point (which violates topological safety). So, if the white vertex at
one end of the line is rounded inward (blue arrow) the white vertex at the other
end of that line must be rounded outward – we say it is pushed. The same holds
for the bend gadgets, as can be seen in Fig. 1 (c).

Next, consider the variable gadget depicted in Fig. 1 (d). It has tunnels for
vertical line gadgets for every negated and unnegated occurrence at the top and
bottom respectively. At the center of this gadget, there is a white vertex that
is connected to the gadget’s walls by two triangles. Call this the assignment
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Fig. 1. (a) Graph H(F ) for formula F = (X∨Y ∨Z)∧(X∨Y )∧(X∨Z), (b) Horizontal
line gadget, (c) Bottom-to-right bend gadget, both with possible roundings, (d) Gadget
for variable with two negated and one unnegated occurrences, (e) All-negated clause
gadget with three negated variables. Inner area of each gadget highlighted gray. (Color
figure online)

vertex and note that it can be rounded up or down, which makes the edges of
the triangles block grid points on the top or bottom tunnels, respectively. The
tunnels of that direction are then all forced to push into the connected clause
gadgets. This represents the truth assignment of the corresponding variable.

Finally, the clause gadget is shown in Fig. 1 (e). We describe the all-negated
degree-3 version; the degree-2 version can be constructed similarly. There is a
white satisfaction vertex that can go to any of three possible integer grid points
at equal cost. These grid points belong to line gadgets and are only available if
the line does not “push”. Then the satisfaction vertex can be rounded at cost
1 if and only if the clause is satisfied. Gadgets for all-unnegated clauses can be
obtained by mirroring the construction of Fig. 1 (e) at a horizontal line.

The rounding cost of G is bounded from below by cmin = |W | since every
white vertex must be rounded at cost at least 1. If F is satisfiable, there is a
rounding that achieves this because then we can round the assignment vertices
such that the satisfaction vertices can be rounded at cost 1. In the other direction,
a satisfying assignment can be read off from the assignment vertices if rounding
occurred at cost cmin.

If none of the three candidate grid points for the satisfaction vertex are
available, a topologically correct rounding must move a black vertex associated
with that clause (of either the clause itself, the connected variables or the edges
and bends connecting them). This adds at least 1 to the rounding cost without
reducing the movement of any white vertex and thus such solutions cost strictly
more than cmin. That is, if cmin is exceeded, then F is unsatisfiable: any rounding
corresponding to a satisfying truth assignment is cheaper. This concludes our
Karp reduction and the claim follows. ��
Corollary 1. TopologicallySafeSnapping is also NP-hard when using
Euclidean distance. In this case it is also NP-hard to minimize the maximum
movement instead of the sum.
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Proof (sketch). The above proof goes through with Euclidean distance and
cmin =

√
0.52 + 0.52 · |W |. For minimizing the maximum movement, observe that

rounding white vertices now costs less, but moving a black vertex still has cost
at least 1: if F is satisfiable, the maximum movement is

√
0.52 + 0.52, otherwise

it is at least 1. ��
This distinction of maximum movement (

√
0.52 + 0.52 ≈ 0.71 versus 1) based

on the satisfiability of F also gives the following.

Corollary 2. Euclidean TopologicallySafeSnapping with the objective to
minimize maximum movement is APX -hard.

3 Exact Solution Using Integer Linear Programming

In this section we provide an ILP-based exact algorithm for TSS. Recall that
an instance is a graph G = (V,E) with vertex coordinates. For all v ∈ V , call
these (Xv, Yv) and introduce integer decision variables 0 ≤ xv ≤ Xmax and
0 ≤ yv ≤ Ymax to represent the “rounded” output position. This leads to the
following objective function.

Minimize
∑

v∈V |xv − Xv| + |yv − Yv| (1)

This formula is itself not linear, but can be made so with standard transforma-
tions [11]. Note that without any further constraints, this would just move every
vertex to the nearest integer grid point. We will now introduce constraints to
ensure topological safety, that is, in the output no two points are on same grid
point, no two edges intersect, and the edges at every node have the same cyclic
order as in the input.

Vertices do not Coincide. This can be ensured by adding the following con-
straints. They too are not linear as stated, but can be readily linearized.

(xv 	= xw) ∨ (yv 	= yw) ∀v, w ∈ V, v 	= w (2)

Possible Directions. The most important departure from the metro-map drawing
ILP is that, clearly, more than eight different directions are allowed. A priori we
have no further constraints than that every rounded vertex lies somewhere within
the given bounding box. Let D be the set of unique directions D = (DX ,DY )
in [−Xmax,Xmax] × [−Ymax, Ymax]. Considering the Farey sequence [6], we know
that |D| is Θ(Xmax · Ymax). In the following, we let the set D be ordered coun-
terclockwise, starting at the positive x-axis, allowing comparison of directions.

No Two Edges Cross. The following constraints ensure that nonincident edges
do not cross. (Incident edges are allowed to touch in the shared vertex.) We will
follow the idea of Nöllenburg and Wolff [13]. While producing octilinear drawings
of metro maps, they ensured planarity by forcing every pair of nonincident edges
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to be separated by at least some distance Dmin in at least one of the eight
octilinear directions. This minimum distance was partly an aesthetic guideline,
but also guarantees planarity. We are only interested in the latter and therefore
pick Dmin such that all planar realizations on the grid are allowed.

The separation distance Dmin has to be small enough to separate any non-
intersecting pair of edges in the output. Here the bounding box leads to a
bound since it bounds the slope of the edges; it suffices to choose Dmin =
1/(max{Xmax, Ymax} + 1).

For every pair of nonincident edges e1, e2 ∈ E and every direction D ∈ D, we
introduce a binary decision variable γD(e1, e2) ∈ {0, 1} indicating that e1 and
e2 are apart by Dmin in direction D. Every such pair must be separated in some
direction (following the idea of [12]).

∑
D∈D γD(e1, e2) = 1 ∀e1, e2 ∈ E, e1, e2 nonincident (3)

Let Lγ = 2 · max{Xmax, Ymax} + 1. Then, for any direction D ∈ D, any pair of
nonincident edges e1, e2 and any v ∈ e1, w ∈ e2, we require the following.

DX · (xv − xw) + DY · (yv − yw) + (1 − γD(e1, e2))Lγ ≥ Dmin (4)

Constraint (3) yields a unique direction D with γD = 1. By choice of Lγ , any
constraint (4) that involves a direction D with γD = 0 is trivially fulfilled.

Determine Direction of Incident Edges. For incident edges e1, e2 ∈ E, we have
to ensure that the directions of e1 and e2 differ. Again, we generalize the metro-
map drawing ILP – dropping the “relative position rule” – allowing edges to
have any direction D ∈ D.

To keep track of this, we introduce a binary decision variable αD(v, w) ∈
{0, 1} for every vertex v ∈ V , every neighbor w ∈ N(v) and every direction
D ∈ D. The meaning of αD(v, w) = 1 is that the direction of edge (v, w) is D.

∑
D∈D αD(v, w) = 1 ∀v ∈ V ∀w ∈ N(v) (5)

For any vertex v ∈ V , any neighbor w ∈ N(v), and any direction D ∈ D,
the following ensures that edge (v, w) indeed has direction D. Let Lα = 2 ·
max{Xmax, Ymax} + 1.

xw · DY + yv · DX − xv · DY ± (1 − αD(v, w))Lα � yw · DX

(1 − αD(v, w))Lα + (xw − xv) · DX + (yw − yv) · DY ≥ 0
(6)

From constraint (5) we get that for every vertex-neighbor pair one α has to be
set to 1. This α again enables one subset—as Lα dominates all other terms—of
constraints from (6), forcing comparison between edge slope and direction. This
gives us the direction of edge (v, w) with the correct sign.
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Preserve Cyclic Order of Outgoing Edges. We use a binary decision variable
β(v, w) ∈ {0, 1} for every vertex-neighbor pair, indicating if w is the “last”
neighbor of v according to the order of D. The following preserves cyclic order.

∑
w∈N(v) β(v, w) = 1 ∀v ∈ V with deg(v) > 1 (7)

αD1(v, wi) ≤ β(v, wi) +
∑

Dw∈D : Dw>D1
αDw

(v, wi+1)

∀D1 ∈ D ∀v ∈ V,N(v) = {w1, w2, . . . , wk} (k = deg v > 1)
(8)

For notational convenience, we let wk+1 = w1, as N(v) is conceptually circular.
For any α set to 0, the inequalities of (8) are trivially satisfied. Otherwise, there
has to be a neighbor whose connecting edge has a later direction (and thus the
corresponding α set to 1), unless it is the last neighbor in the embedding of v.
To ensure that there is only one “last neighbor”-violation of the constraints from
(8), we introduce the constraints of (7). Adding β to every constraint of (8) also
allows for the whole neighborhood of v to be rotated around it. This describes
the full ILP and gives to the following.

Theorem 2. The above ILP solves TopologicallySafeSnapping.

Graph Drawing. Replacing the objective function with Minimize maxv∈V yv, the
ILP computes a straight-line grid drawing with the given embedding, width at
most Xmax, and minimum height. This allows us to find minimum-area drawings
of small graphs.

Delayed Constraint Generation. We can apply a delayed constraint generation
approach (see for example Cinneck [1]) to the above ILP as follows. First we run
the ILP without any constraints, which snaps each vertex to the nearest grid
point. (This takes practically no time.) We then test the result for topological
validity, adding constraints corresponding to any violations. Then we repeat
until no violations occur. This improves the runtime when few iterations suffice
for a particular instance, but the approach should still be considered practically
infeasible, especially for large bounding boxes: the set of possible directions D
still results in a large program. Future work could focus on reducing the brute-
force inclusion of all possible directions. Experimental results are found in the
full version of this paper [10].

Acknowledgments. We thank Gergely Mincsovics for suggesting this problem to us.
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Abstract. Given a planar graph G, what is the maximum number of
collinear vertices in a planar straight-line drawing of G? This problem
resides at the core of several graph drawing problems, including uni-
versal point subsets, untangling, and column planarity. The following
results are known: Every n-vertex planar graph has a planar straight-line
drawingw̃ith Ω(

√
n) collinear vertices; for every n, there is an n-vertex

planar graph whose every planar straight-line drawing has O(n0.986)
collinear vertices; every n-vertex planar graph of treewidth at most
two has a planar straight-line drawing with Θ(n) collinear vertices. We
extend the linear bound to planar graphs of treewidth at most three and
to triconnected cubic planar graphs, partially answering two problems
posed by Ravsky and Verbitsky. Similar results are not possible for all
bounded treewidth or bounded degree planar graphs. For planar graphs
of treewidth at most three, our results also imply asymptotically tight
bounds for all of the other above mentioned graph drawing problems.

1 Introduction

A set S of vertices in a planar graph G is collinear if G has a planar straight-
line drawing where all the vertices in S are collinear. Ravsky and Verbitsky [20]
considered the problem of determining the maximum cardinality of collinear sets
in planar graphs. A collinear set S is free if a total order <S of S exists such that,
for any |S| points on a straight line �, G has a planar straight-line drawing where
the vertices in S are mapped to the |S| points and their order on � matches <S .
Free collinear sets were first used (but not named) by Bose et al. [3] and then
formally introduced by Ravsky and Verbitsky [20]. Collinear and free collinear
sets relate to several graph drawings problems, as will be discussed later.

By exploiting the results in [3], Dujmović [9] showed that every n-vertex
planar graph has a free collinear set with size

√
n/2. Ravsky and Verbitsky [20]

negatively answered the question whether this bound can be improved to linear.
Namely, they noted that if a planar triangulation has a collinear set S, then its
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 152–165, 2016.
DOI: 10.1007/978-3-319-50106-2 13
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dual has a cycle of length Ω(|S|). Since there are m-vertex triconnected cubic
planar graphs whose longest cycle has length O(mσ) [14], then there are n-vertex
planar graphs in which every collinear set has size O(nσ). Here σ is a graph-
theoretic constant called shortness exponent ; it is known that σ < 0.986.

Which classes of planar graphs have (free) collinear sets with linear size?
Goaoc et al. [12] proved (implicitly) that n-vertex outerplanar graphs have free
collinear sets with size (n + 1)/2. Ravsky and Verbitsky [20] proved that n-
vertex planar graphs of treewidth at most two have free collinear sets with size
n/30; they also asked for other classes of graphs with (free) collinear sets with
linear size, calling special attention to planar graphs of bounded treewidth and
to planar graphs of bounded degree. In this paper we prove the following results.

Theorem 1. Every n-vertex planar graph of treewidth at most three has a free
collinear set with size at least �n−3

8 �.
Theorem 2. Every n-vertex triconnected cubic planar graph has a collinear set
with size at least �n

4 �.
Theorem 3. Every planar graph of treewidth k has a collinear set with
size Ω(k2).

Theorem 1 generalizes the result on planar graphs of treewidth 2 [20]. Ravsky
and Verbitsky [21, Corollary 3.5] constructed n-vertex planar graphs of treewidth
8 whose largest collinear set has size o(n); by using the dual of Tutte’s graph
rather than the dual of the Barnette-Bosák-Lederberg’s graph in that construc-
tion, it is readily seen that the sub-linear bound holds true for planar graphs
of treewidth at most 5. Thus, the question whether planar graphs of treewidth
k admit (free) collinear sets with linear size remains open only for k = 4. The-
orem 2 provides the first linear lower bound on the size of collinear sets for a
wide class of bounded-degree planar graphs. The result cannot be extended to
planar graphs of degree at most 7, since there are n-vertex planar triangulations
of maximum degree 7 whose dual graph has a longest cycle of length o(n) [17].
Finally, Theorem3 improves the Ω(

√
n) bound on the size of collinear sets in

general planar graphs for all planar graphs with treewidth ω( 4
√

n). We now dis-
cuss implications of Theorems 1–3 for other graph drawing problems.

A column planar set in a graph G is a set Q ⊆ V (G) satisfying the following
property: there is a function γ : Q → R such that, for any function λ : Q → R,
there is a planar straight-line drawing of G where each vertex v ∈ Q lies at point
(γ(v), λ(v)). Column planar sets were defined by Evans et al. [11] motivated by
applications to partial simultaneous geometric embeddings. They proved that n-
vertex trees have column planar sets of size 14n/17. The bounds in Theorems 1–3
carry over to the size of column planar sets for the corresponding graph classes.

A universal point subset for the family Gn of n-vertex planar graphs is a set P
of points in the plane such that, for every G ∈ Gn, there is a planar straight-line
drawing of G in which |P | vertices lie at the points in P . Universal point subsets
were introduced by Angelini et al. [1]. Every n points in general position form
a universal point subset for the n-vertex outerplanar graphs [2,5,13] and every
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√
n/2 points in the plane form a universal point subset for Gn [9]. By Theorem 1,

we obtain that every �n−3
8 � points in the plane form a universal point subset for

the n-vertex planar graphs of treewidth at most three.
Given a straight-line drawing of a planar graph, possibly with crossings, to

untangle it means to assign new locations to some vertices so that the resulting
straight-line drawing is planar. The goal is to do so while keeping as many
vertices as possible fixed [3,4,7,12,15,18,20]. General n-vertex planar graphs
can be untangled while keeping Ω(n0.25) vertices fixed [3]; this bound cannot be
improved above O(n0.4948) [4]. Asymptotically tight bounds are known for paths
[7], trees [12], outerplanar graphs [12], and planar graphs of treewidth 2 [20]. By
Theorem 1, we obtain that every n-vertex planar graph of treewidth at most 3
can be untangled while keeping Ω(

√
n) vertices fixed. This bound is the best

possible [3] and generalizes most of the mentioned previous results [12,20].
Complete proofs can be found in the full version of the paper [8].

2 Preliminaries

A k-tree is either Kk+1 or can be obtained from a smaller k-tree G by the
insertion of a vertex adjacent to all the vertices in a k-clique of G. The treewidth
of a graph G is the minimum k such that G is a subgraph of a k-tree.

A connected plane graph G is a connected planar graph with a plane embed-
ding – an equivalence class of planar drawings of G, where two drawings are
equivalent if each vertex has the same clockwise order of its incident edges and
the outer faces are delimited by the same walk. We think about any plane graph
G as drawn according to its plane embedding; also, when we talk about a planar
drawing of G, we mean that it respects its plane embedding. The interior of G
is the closure of the union of its internal faces. A subgraph H of G has the plane
embedding obtained from the one of G by deleting vertices and edges not in H.

We denote the degree of a vertex v in a graph G by δG(v). A graph is cubic
(subcubic) if every vertex has degree 3 (resp. at most 3). If U ⊆ V (G), we denote
by G − U the graph (V (G) − U, {(u, v) ∈ E(G)|u, v /∈ U}); the subgraph of
G induced by U is (U, {(u, v) ∈ E(G)|u, v ∈ U}). If H is a subgraph of G and
v ∈ V (G)−V (H), we let H ∪{v} be the graph (V (H)∪{v}, E(H)). An H-bridge
B is either trivial – it is an edge of G not in H with both end-vertices in H – or
non-trivial – it is a connected component of G − V (H) together with the edges
from that component to H. The vertices in V (H)∩V (B) are called attachments.

Let G be a connected graph. If G has no cut-vertex – a vertex whose removal
disconnects G – and it is not an edge, then it is biconnected. A biconnected
component of G is a maximal biconnected subgraph of G. If G is biconnected,
then a separation pair is a pair of vertices {a, b} whose removal disconnects G;
also, an {a, b}-component is either trivial – it is edge (a, b) – or non-trivial – it is
the subgraph of G induced by a, b, and the vertices of a connected component
of G − {a, b}. If G has no separation pair, then it is triconnected.
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3 From a Geometric to a Topological Problem

In this section we show that the problem of determining a large collinear set in
a planar graph, which is geometric by definition, can be turned into a purely
topological problem. This may be useful to obtain bounds for the size of collinear
sets in classes of planar graphs different from the ones we studied in this paper.

An open simple curve λ is good for a planar drawing Γ of a plane graph G
if each edge e of G is either contained in λ or has at most one point in common
with λ (if λ passes through an end-vertex of e, that counts as a common point).
Clearly, the existence of a good curve passing through a certain sequence of
vertices, edges, and faces of G does not depend on the actual drawing Γ , but
only on the plane embedding of G. Hence, we often talk about the existence of
good curves in plane graphs, rather than in their planar drawings. We denote
by RG,λ the only unbounded region of the plane defined by G and λ. Curve λ is
proper if both its end-points are incident to RG,λ. We have the following.

Theorem 4. A plane graph G has a planar straight-line drawing with x collinear
vertices if and only if G has a proper good curve that passes through x vertices.

Fig. 1. (a) A proper good curve for a plane graph G. (b) Augmentation of G.
(c) A planar straight-line drawing of the augmented graph G. (d) Planar polyline
(top) and straight-line (bottom) drawings of the original G.

Proof Sketch. The necessity is readily proved. For the sufficiency, let λ be a
proper good curve through x vertices of G; refer to Fig. 1. Add dummy vertices at
two points d1 and d2 in RG,λ, at the end-points a and b of λ, and at each crossing
between an edge and λ; also, add dummy edges (d1, a), (d1, b), (d2, a), (d2, b) and
between any two consecutive vertices along λ (the latter edges form a path Pλ);
finally, triangulate the internal faces of G with dummy vertices and edges that
do not connect non-consecutive vertices on λ. Let C1 (C2) be the cycle composed
of Pλ and of the edges (d1, a) and (d1, b) (resp. (d2, a) and (d2, b)). Represent C1

(C2) as a convex polygon Q1 (resp. Q2), with Pλ on a horizontal line �; since the
subgraphs of G inside C1 and C2 are triconnected, they have planar straight-line
drawings with C1 and C2 represented by Q1 and Q2, respectively [22]. Removing
the dummy vertices and edges results in a planar drawing Γ of the original graph
G where each edge is y-monotone. A planar straight-line drawing Γ ′ of G in which
the y-coordinate of each vertex is the same as in Γ always exists [10,19]. Then
the x vertices of G curve λ passes through lie on � in Γ ′. 
�
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4 Planar Graphs with Treewidth at Most Three

In this section we prove Theorem 1. We regard a plane 3-cycle as a plane 3-tree;
then every plane graph G with n ≥ 3 vertices and treewidth at most 3 can be
augmented with dummy edges to a plane 3-tree G′ [16] and every free collinear
set in G′ is also a free collinear set in G. Thus, in the following, we assume that
G is a plane 3-tree. We first prove that G has a collinear set with size �n−3

8 �; by
Theorem 4 it suffices to prove that G has a proper good curve through �n−3

8 �
vertices. Let u, v, and z be the external vertices of G. If n = 3, then G is empty.
Otherwise, the central vertex of G is the unique internal vertex w adjacent to
u, v, and z. The plane 3-trees G1, G2, and G3 which are the subgraphs of G
inside cycles (u, v, w), (u, z, w), and (v, z, w) are the children of G and of w.
We associate to each internal vertex x of G a plane 3-tree G(x) as follows. We
associate G to w and we use recursion on the children of G; then x is the central
vertex of G(x). An internal vertex x of G is of type A, B, C, or D if, respectively,
3, 2, 1, or 0 of the children of G(x) are empty (see Fig. 2(a)). Let a(G), b(G),
c(G), and d(G) be the number of internal vertices of G of type A, B, C, and D,
respectively, and let m = n − 3 be the number of internal vertices of G.

Fig. 2. (a) A vertex x of type A (top-left), B (top-right), C (bottom-left), and D
(bottom-right). (b) λu(G) (solid), λv(G) (dotted), and λz(G) (dashed) if m = 0 (top)
and m = 1 (bottom). (c) λu(G), λv(G), and λz(G) if w is of type C or D.

In the following we present an algorithm that computes three proper good
curves λu(G), λv(G), and λz(G) lying in the interior of G. For every edge (x, y)
of G, let pxy be an arbitrary internal point of (x, y). The end-points of λu(G)
are puv and puz, those of λv(G) are puv and pvz, and those of λz(G) are puz

and pvz. Although each of λu(G), λv(G), and λz(G) is a good curve, any two
of these curves might cross each other and pass through the same vertices of G.
Each of these curves passes through all the internal vertices of type A, through
no vertex of type C or D, and through “some” vertices of type B. We will prove
that the total number of internal vertices of G these curves pass through is at
least 3m/8, hence one of them passes through at least �m/8� internal vertices.

The curves λu(G), λv(G), and λz(G) are constructed by induction on m. If
m = 0, then λu(G) traverses the internal face (u, v, z) from puv to puz, while if
m = 1, then λu(G) traverses the internal face (u, v, w) from puv to the central
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vertex w of G and the internal face (u, z, w) from w to puz (see Fig. 2(b)). Curves
λv(G) and λz(G) are defined analogously.

If m > 1, then we distinguish the case in which w is of type C or D from the
one in which w is of type B. In the former case (see Fig. 2(c)), the curves are
constructed by composing the curves inductively constructed for the children of
G. In the latter case (see Fig. 3), a sequence of vertices of type B, called B-chain,
is recovered; its arrangement in G is exploited in order to ensure that λu(G),
λv(G), and λz(G) pass through many vertices of type B.

Assume first that w is of type C or D. Inductively construct curves λu(G1),
λv(G1), and λw(G1) for G1, curves λu(G2), λz(G2), and λw(G2) for G2, and
curves λv(G3), λz(G3), and λw(G3) for G3. Let λu(G) = λv(G1) ∪ λw(G3) ∪
λz(G2), λv(G) = λu(G1) ∪ λw(G2) ∪ λz(G3), and λz(G) = λu(G2) ∪ λw(G1) ∪
λv(G3).

Assume next that w is of type B. Let H0 = G, let w1 = w, and let H1 be
the only non-empty child of G. If cycle (v, w, z) delimits the outer face of H1,
define three paths Pu = (u,w), Pv = (v), and Pz = (z); analogously, if cycle
(u,w, z) delimits the outer face of H1, let Pu = (u), Pv = (v, w), and Pz = (z);
finally, if cycle (u, v, w) delimits the outer face of H1, let Pu = (u), Pv = (v),
and Pz = (z, w).

Now suppose that, for i ≥ 1, a sequence w1, . . . , wi of vertices of type B,
a sequence H0, . . . , Hi of plane 3-trees, and paths Pu, Pv, and Pz have been
defined satisfying the following properties: (1) for 1 ≤ j ≤ i, wj is the central
vertex of Hj−1 and Hj is the only non-empty child of Hj−1; (2) Pu, Pv, and Pz

are vertex-disjoint and each of them is induced in G; and (3) Pu, Pv, and Pz

connect u, v, and z with the three external vertices u′, v′, and z′ of Hi, where
u′ ∈ Pu, v′ ∈ Pv, and z′ ∈ Pz. Properties (1)–(3) are indeed satisfied with i = 1.
Consider the central vertex wi+1 of Hi.

If wi+1 is of type B, then let Hi+1 be the unique non-empty child of Hi. If
cycle (v′, z′, wi+1) delimits the outer face of Hi+1, add edge (u′, wi+1) to Pu and
leave Pv and Pz unaltered; the other cases are analogous. Properties (1)–(3) are
clearly satisfied by this construction.

If wi+1 is not of type B, then we call the sequence w1, . . . , wi a B-chain of G.
Let H = Hi, let Pu = (u = u1, . . . , uU = u′), let Pv = (v = v1, . . . , vV = v′), and
let Pz = (z = z1, . . . , zZ = z′); also, define cycles Cuv = Pu ∪ (u, v)∪Pv ∪ (u′, v′),
Cuz = Pu ∪(u, z)∪Pz ∪(u′, z′), and Cvz = Pv ∪(v, z)∪Pz ∪(v′, z′). Each of these
cycles has no vertex of G inside, and every edge of G inside one of them connects
two vertices on distinct paths among Pu, Pv, and Pz, by Property (2). We are
going to use the following (a similar lemma can be stated for Cuz and Cvz).

Lemma 1. Let p1 and p2 be points on Cuv, possibly coinciding with vertices of
Cuv, and not both on the same edge of G. A good curve exists that connects p1
and p2, that lies inside Cuv, except at p1 and p2, and that intersects each edge
of G inside Cuv at most once.

We now construct λu(G), λv(G), and λz(G). Inductively construct curves
λu′(H), λv′(H), and λz′(H) for H. We distinguish three cases based on how many
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Fig. 3. λu(G), λv(G), and λz(G) if w is of type B. (a) None of Pu, Pv, and Pz is a
single vertex. (b) Only Pz is a single vertex. (c) Pu and Pv are single vertices.

among Pu, Pv, and Pz are single vertices (not all of them are, since w1 �= u, v, z).
We discuss here the case in which none of them is a single vertex, as in Fig. 3(a);
the other cases, which are illustrated in Figs. 3(b)–(c), are similar. We show how
to construct λu(G); the construction of λv(G) and λz(G) is analogous.

If Z > 2, then λu(G) consists of curves λ0
u, . . . , λ4

u; curve λ0
u lies inside Cuz

and connects puz with z2, which is internal to Pz since Z > 2; λ1
u coincides with

path (z2, . . . , zZ−1) (which is a single vertex if Z = 3); λ2
u lies inside Cvz and

connects zZ−1 with pv′z′ ; λ3
u coincides with λv′(H); finally, λ4

u lies inside Cuv and
connects pu′v′ with puv. Curves λ0

u, λ2
u, and λ4

u are constructed as in Lemma 1.
If Z = 2, then λu(G) consists of curves λ1

u, . . . , λ4
u; curve λ1

u lies inside Cuz and
connects puz with pzz′ ; λ2

u lies inside Cvz and connects pzz′ with pv′z′ ; λ3
u and

λ4
u are defined as in the case Z > 2. Curves λ1

u, λ2
u, and λ4

u are constructed as
in Lemma 1. This completes the construction of λu(G), λv(G), and λz(G).

The curves λu(G), λv(G), and λz(G) are clearly proper. Lemmas 2 and 3
prove that they are good and pass through many vertices. We introduce three
parameters for the latter proof: s(G) is the number of vertices the curves pass
through (counting each vertex with a multiplicity equal to the number of curves
that pass through it), x(G) is the number of internal vertices of type B none of
the curves passes through, and h(G) is the number of B-chains of G.

Lemma 2. Curves λu(G), λv(G), and λz(G) are good.

Lemma 3. The following hold true if m ≥ 1: (1) a(G)+b(G)+c(G)+d(G) = m;
(2) a(G) = c(G) + 2d(G) + 1; (3) h(G) ≤ 2c(G) + 3d(G) + 1; (4) x(G) ≤ b(G);
(5) x(G) ≤ 3h(G); and (6) s(G) ≥ 3a(G) + b(G) − x(G).

Proof Sketch. (1) is true since every internal vertex is of one of types A–D.
(4) follows by definition of x(G). (5) is true since every internal vertex of type
B is in a B-chain, and for every B-chain the three curves pass through all but at
most three of its vertices. (2), (3), and (6) can be proved by induction on m, by
distinguishing four cases based on the type of w. In particular, (6) exploits the
fact that, in each case, the three curves contain all the inductively constructed
curves and pass through all but at most three vertices of a B-chain. 
�

We use Lemma 3 as follows. Let k = 1/8. If a(G) ≥ km, then by (4) and
(6) we get s(G) ≥ 3a(G) ≥ 3km. If a(G) < km, by (1) and (6) we get s(G) ≥
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3a(G) + (m − a(G) − c(G) − d(G)) − x(G), which by (5) becomes s(G) ≥ m +
2a(G) − c(G) − d(G) − 3h(G). Using (2) and (3) we get s(G) ≥ m + 2(c(G) +
2d(G)+1)− c(G)−d(G)−3(2c(G)+3d(G)+1) = m−5c(G)−6d(G)−1. Again
by (2) and by hypothesis we get c(G)+2d(G)+1 < km, thus 5c(G)+6d(G)+1 <
5c(G) + 10d(G) + 5 < 5km. Hence, s(G) ≥ m − 5km. Since k = 1/8, we have
s(G) ≥ 3m/8 both if a(G) ≥ m/8 and if a(G) < m/8. Thus one of λu(G), λv(G),
and λz(G) is a proper good curve passing through �n−3

8 � internal vertices of G.
This concludes the proof that G has a collinear set with size �n−3

8 �.
We now strengthen this result by proving that G has a free collinear set with

the same size. This is accomplished by means of the following lemma, which
concludes the proof of Theorem1.

Theorem 5. Every collinear set in a plane 3-tree is also a free collinear set.

Proof Sketch. Let G be a plane 3-tree and Ψ be a planar straight-line drawing
of G with a set S of vertices on a straight line �. Let <Ψ be the order of the
vertices in S along � in Ψ . Our proof shows that, for any set XS of |S| points
on �, there is a planar straight-line drawing Γ of G such that: (1) every vertex is
above, below, or on � in Γ if and only the same holds in Ψ ; and (2) the i-th vertex
in <Ψ is at the i-th point in XS in left-to-right order along �. This is proved by
assuming an arbitrary drawing Δ of (u, v, z), by drawing w so as to split Δ into
three triangles with a suitable number of points of XS in their interior, and by
then using recursion on the children of G. 
�

5 Triconnected Cubic Planar Graphs

In this section we prove Theorem 2. By Theorem 4 it suffices to prove that every
n-vertex triconnected cubic plane graph has a proper good curve λ through �n

4 �
vertices. The proof is by induction on n; Lemma 4 below states our inductive
hypothesis. In order to split the graph into subgraphs on which induction can
be applied, we use a structural decomposition that is derived from a paper by
Chen and Yu [6] and that applies to a class of graphs, called strong circuit graphs
in [6], wider than triconnected cubic plane graphs. We introduce the concept of
well-formed quadruple in order to point out some properties of the graphs in
this class. In particular, the inductive hypothesis handles carefully the set X of
degree-2 vertices of the graph, which have neighbors that are not in the graph at
the current level of the induction; since λ might pass through these neighbors,
it has to avoid the vertices in X, in order to be good. Special conditions are
ensured for two vertices u and v which work as link to the rest of the graph.

We introduce some definitions. Given two external vertices u and v of a bicon-
nected plane graph G, let τuv(G) and βuv(G) be the paths delimiting the outer
face of G in clockwise and counter-clockwise direction from u to v, respectively.
Let π be one of τuv(G) and βuv(G). An intersection point (a proper intersection
point) between an open curve λ and π is a point p belonging to both λ and π
such that, for every ε > 0, the part of λ in the disk centered at p with radius ε
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Fig. 4. (a) Illustration for Lemma 4. The gray region is the interior of G. The vertices
in X are squares, the intersection points between λ and βuv(G) are circles, and u and
v are disks. (b) Illustration for Lemma 5 with k = 3.

contains points not in π (resp. points in the outer face of G); if the end-vertices
of λ are in π, then we regard them as intersection points.

A quadruple (G, u, v,X) is well-formed if: (a) G is a biconnected subcubic
plane graph; (b) u and v are two external vertices of G; (c) δG(u) = δG(v) = 2;
(d) if edge (u, v) exists, it coincides with τuv(G); (e) for every separation pair
{a, b} of G, a and b are external vertices of G and at least one of them is internal
to βuv(G); further, every non-trivial {a, b}-component of G contains an external
vertex of G different from a and b; and (f) X = (x1, . . . , xm) is a (possibly
empty) sequence of degree-2 vertices of G in βuv(G), different from u and v, and
in this order along βuv(G) from u to v. We have the following main lemma.

Lemma 4. Let (G, u, v,X) be a well-formed quadruple. There exists a proper
good curve λ such that (see Fig. 4(a)):

(1) λ starts at u, does not pass through v, and ends at a point z of βuv(G);
(2) z is between xm and v on βuv(G) (if X = ∅, this condition is vacuous);
(3) the intersection points between λ and βuv(G) occur along λ from u to z and

occur along βuv(G) from u to v in the same order u = p1, . . . , p� = z;
(4) the vertices in X are incident to RG,λ and are not on λ; if pi, xj and pi+1

are in this order along βuv(G), then the part of λ between pi and pi+1 is in
the interior of G;

(5) λ and τuv(G) have no proper intersection point; and
(6) let Lλ (Nλ) be the subset of vertices in V (G)−X that are (resp. are not) on

λ; each vertex in Nλ can be charged to a vertex in Lλ so that each vertex in
Lλ is charged with at most 3 vertices and u is charged with at most 1 vertex.

Before proving Lemma 4 we state the following (see Fig. 4(b)).

Lemma 5. Let (G, u, v,X) be a well-formed quadruple and {a, b} be a separation
pair of G with a, b ∈ βuv(G). The {a, b}-component Gab of G containing βab(G)
either coincides with βab(G) or consists of: (i) a path P0 = (a, . . . , u1) (possibly a
single vertex); (ii) for i = 1, . . . , k with k ≥ 1, a biconnected component Gi of Gab

containing vertices ui and vi, where (Gi, ui, vi,Xi) is a well-formed quadruple
with Xi = X ∩V (Gi); (iii) for i = 1, . . . , k−1, a path Pi = (vi, . . . , ui+1), where
ui+1 �= vi; and (iv) a path Pk = (vk, . . . , b) (possibly a single vertex).

We outline the proof of Lemma 4, which is by induction on the size of G.
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Fig. 5. Base case (a) and Case 1 with k = 3 (b) for the proof of Lemma 4.

Base Case: G is a cycle; see Fig. 5(a). By Property (e) of (G, u, v,X), {u, v} is
not a separation pair of G, hence edge (u, v) exists and coincides with τuv(G).
Curve λ starts at u; it then passes through the vertices in V (G)−(X∪{v}) in the
order as they appear along βuv(G) from u to v; if two vertices in V (G)−(X∪{v})
are consecutive in βuv(G), then λ contains the edge between them. If the neighbor
v′ of v in βuv(G) is not in X, then λ ends at v′, otherwise λ ends at a point z in
the interior of edge (v, v′). Finally, charge v to u.

Next we describe the inductive cases. In the description of each case, we
implicitly assume that none of the previously described cases applies.

Case 1: edge (u, v) exists; see Fig. 5(b). By Property (d) of (G, u, v,X), edge
(u, v) coincides with τuv(G). By Property (c), v has a unique neighbor v′ �= u,
hence {u, v′} is a separation pair to which Lemma 5 applies. For i = 1, . . . k,
use induction to construct a proper good curve λi satisfying the properties of
Lemma 4 for the well-formed quadruple (Gi, ui, vi,Xi), defined as in Lemma 5.

Curve λ starts at u and passes through the vertices in V (P0)\X until reaching
u1; this part of λ lies in the internal face of G incident to edge (u, v) and is
constructed similarly to the base case. Curve λ continues with λ1, which ends
at a point z1. Then λ traverses the outer face of G to reach the neighbor v′

1

of v1 in P1 (if v′
1 /∈ X) or a point in the interior of edge (v1, v′

1) (if v′
1 ∈ X);

this part of λ can be drawn without causing self-intersections since λ1 satisfies
Properties (2), (3), and (5) of Lemma 4 – these properties ensure that z1 and
v′
1 are both incident to RG,λ1 . Curve λ continues similarly until a point zk in

βukvk
(Gk) is reached. If the neighbor v′

k of vk in Pk is v, then λ stops at z = zk;
otherwise, it traverses the outer face of G from zk to a point on edge (vk, v′

k)
– this point is v′

k if v′
k /∈ X – and it ends by passing through the vertices in

V (Pk) \ (X ∪ {v}), similarly to the base case. Inductively compute a charge of
the vertices in (Nλ ∩V (Gi)) to the vertices in Lλ ∩V (Gi); finally, charge v to u.

If Case 1 does not apply, by Property (e) of (G, u, v,X), {u, v} is not a
separation pair of G, hence u is not a cut-vertex of graph G − {v}. Let H be
the biconnected component of G − {v} containing u. Graph G is composed of
H, of a trivial H ∪ {v}-bridge B1 = (y1, v), which is an edge in τuv(G), and of
an H ∪{v}-bridge B2 with attachments v and y2, where y1 and y2 are in H. Let
X ′ = {y2} ∪ (X ∩ V (H)). Then (H,u, y1,X

′) is a well-formed quadruple.

Case 2: B2 contains a vertex not in X ∪ {v, y2}. Refer to Fig. 6(a). Curve λ
is composed of curves λ1, λ2, and λ3. Curve λ1 is inductively constructed for
(H,u, y1,X

′). Since y2 ∈ X ′, λ1 ends at a point z0 in βy2y1(H). Curve λ2 lies
in the internal face of G incident to edge (y1, v) and connects z0 with the first
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Fig. 6. (a) Case 2, (b) Case 3, (c) Case 4, and (d) Case 5 of the proof of Lemma 4.

vertex u′ �= y2 not in X encountered when traversing βy2v(G) from y2 to v; u′

exists by the hypothesis of Case 2 and by Property (f) of (G, u, v,X). Properties
(3)–(5) of λ1 ensure that y2 is not on λ1 and is incident to RG,λ1 . Thus, even if u′

is adjacent to y2, still λ intersects (y2, u′) only once. Finally, λ3 connects u′ with
a point z �= y2, v on βy2v(G); since {y2, v} is a separation pair of G, Lemma 5
applies and curve λ3 is constructed as in Case 1. Inductively determine the
charge of the vertices in (Nλ ∩ V (H)) − {y2} to the vertices in Lλ ∩ V (H), and
the charge of the vertices in Nλ in each biconnected component Gi of B2 to the
vertices in Lλ ∩ V (Gi). Finally, charge y2 and v to u′.

If Case 2 does not apply, B2 is a path βy2v whose internal vertices are in X.

Case 3: edge (u, y1) exists. By Property (d) of (H,u, y1,X
′), edge (u, y1) coin-

cides with τuy1(H). Let y′ be the neighbor of y1 in βuy1(H). If H has a vertex not
in X ′ ∪ {u, y1} as in Fig. 6(b) – otherwise λ is easily constructed – then {u, y′}
is a separation pair of H and Lemma 5 applies. Construct a curve λ1 between u
and a point zk �= y1 on βy2y1(H) as in Case 1. Curve λ consists of λ1 and of a
curve λ2 in the internal face of G incident to edge (v, y1) between zk and a point
z on edge (v, v′). Inductively charge the vertices in the biconnected components
on which induction is applied. Charge v to u, and y1 and y2 to the first vertex
u′ �= u not in X ′ encountered when traversing βuy1(H) from u to y1.

If Case 3 does not apply, then u is not a cut-vertex of graph H − {y1}, since
{u, y1} is not a separation pair of H. Graph H is composed of the biconnected
component K of H−{y1} containing u, of a trivial K∪{y1}-bridge D1 = (w1, y1),
and of a K ∪{y1}-bridge D2 with attachments y1 and w2, where w1, w2 ∈ V (K).

Case 4: y2 ∈ K. Refer to Fig. 6(c). Since δG(y2) ≤ 3, y2 and w2 are distinct.
Also, w2 is an internal vertex of G; hence, D2 is a trivial K ∪ {y1}-bridge. Let
X ′′ = (X ∩ V (K)) ∪ {y2, w2}; inductively construct a curve λ1 connecting u
with a point z0 �= w1 in βw2w1(K) for the well-formed quadruple (K,u,w1,X

′′).
Curve λ consists of λ1 and of a curve λ2 from z0 to a point z on edge (v, v′)
passing through y1. Curve λ2 lies in the internal faces of G incident to edges
(w1, y1) and (y1, v). Inductively charge the vertices in (Nλ ∩ V (K)) − {y2, w2}
to the vertices in Lλ ∩ V (K); charge v, y2, and w2 to y1.
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Case 5: y2 /∈ K. Let X ′′ = {w2} ∪ (X ∩ V (K)). Curve λ consists of four curves
λ1, . . . , λ4. Inductively construct λ1 for the well-formed quadruple (K,u,w1,X

′′)
between u and a point z0 �= w1 in βw2w1(K). If D2 has a vertex not in X ′ ∪
{y1, w2}, as in Fig. 6(d) – otherwise λ is constructed similarly to Case 4 – then λ2

connects z0 with the first vertex u′ �= w2 not in X ′ encountered while traversing
βw2y1(H) from w2 to y1; λ2 is in the internal face of G incident to edge (w1, y1).
Curve λ3 connects u′ with a point z′ in βy2y1(H); {w2, y1} is a separation pair of
H, hence Lemma 5 applies and curve λ3 is constructed as in Case 1. Finally, λ4

connects z′ with a point z on edge (v, v′) passing through y1. Inductively charge
the vertices in the biconnected components on which induction is applied. Charge
v, y2, and w2 to y1. This concludes the proof of Lemma 4.

We now prove Theorem 2. Let G be an n-vertex triconnected cubic plane
graph. Let H be the plane graph obtained from G by removing any edge (u, v)
incident to the outer face of G. Then (H,u, v, ∅) is a well-formed quadruple and
H has a proper good curve λ as in Lemma 4. Insert (u, v) in the outer face of H,
restoring the plane embedding of G. By Properties (1)–(5) of λ edge (u, v) does
not intersect λ other than at u, hence λ remains proper and good. By Property
(6) with X = ∅, λ passes through �n

4 � vertices of G. This concludes the proof.

6 Implications for Other Graph Drawing Problems

In this section we present corollaries of our results to other graph drawing prob-
lems. The key tool to establish these connections is a lemma that appeared in [3,
Lemma 1], which we explicitly state here in two more readily applicable versions.

Lemma 6. [3] Let G be a planar graph that has a planar straight-line drawing
Γ with a set S of vertices on the x-axis. For any assignment of y-coordinates to
the vertices in S, there exists a planar straight-line drawing of G such that each
vertex in S has the same x-coordinate as in Γ and has the assigned y-coordinate.

Lemma 7. [3] Let G be a planar graph, S be a free collinear set, and <S be the
total order associated with S. Consider any assignment of x- and y-coordinates
to the vertices in S such that the assigned x-coordinates are distinct and the
order of the vertices in S by increasing or decreasing x-coordinates is <S. There
exists a planar straight-line drawing of G such that each vertex in S has the
assigned x- and y-coordinates.

Lemma 7 and the fact that planar graphs of treewidth at most 3 have free
collinear sets with linear size, established in Theorem 1, imply the following.

Corollary 1. Every set of at most �n−3
8 � points in the plane is a universal point

subset for all n-vertex plane graphs of treewidth at most three.

As noted in [3,20], Lemmas 6 and 7 imply that every straight-line drawing
of a planar graph G with a free collinear set of size x can be untangled while
keeping

√
x vertices fixed. Together with Theorem 1 this implies the following.
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Corollary 2. Any straight-line drawing of an n-vertex planar graph of treewidth
at most three can be untangled while keeping at least

√�(n − 3)/8� vertices fixed.

Finally, Lemma 6 implies that every collinear set is a column planar set. That
and our three main results imply our final corollary.

Corollary 3. Triconnected cubic planar graphs and planar graphs of treewidth
at most three have column planar sets of linear size. Further, planar graphs of
treewidth at least k have column planar sets of size Ω(k2).

7 Conclusions

We studied the problems of determining the maximum cardinality of collinear
sets and free collinear sets in planar graphs; it would be interesting to close the
gap between the best bounds of Ω(n0.5) and O(n0.986) known for these problems.

We proved that triconnected cubic plane graphs have collinear sets with linear
size. Generalizing the bound to subcubic plane graphs seems like a plausible goal.

We proved that plane graphs with treewidth at most 3 have free collinear
sets with linear size. In order to do that, we proved that every collinear set is free
in a plane 3-tree, which brings us to a question posed in [20]: is every collinear
set free, and if not, how close are the sizes of these two sets in a planar graph?

Finally, the maximum number of collinear vertices in any planar straight-
line drawing of a plane 3-tree can be determined by dynamic programming. An
implementation of the algorithm has shown that, for m ≤ 50 and for every plane
3-tree G with m internal vertices, the maximum number of collinear internal
vertices in any planar straight-line drawing of G is at least �m+2

3 � (this bound
is the best possible for every m ≤ 50). Is this the case for every m ≥ 1?
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Abstract. We investigate the problem of drawing graphs in 2D and 3D
such that their edges (or only their vertices) can be covered by few lines
or planes. We insist on straight-line edges and crossing-free drawings.
This problem has many connections to other challenging graph-drawing
problems such as small-area or small-volume drawings, layered or track
drawings, and drawing graphs with low visual complexity. While some
facts about our problem are implicit in previous work, this is the first
treatment of the problem in its full generality. Our contribution is as
follows.

– We show lower and upper bounds for the numbers of lines and planes
needed for covering drawings of graphs in certain graph classes. In
some cases our bounds are asymptotically tight; in some cases we
are able to determine exact values.

– We relate our parameters to standard combinatorial characteris-
tics of graphs (such as the chromatic number, treewidth, maximum
degree, or arboricity) and to parameters that have been studied in
graph drawing (such as the track number or the number of segments
appearing in a drawing).

– We pay special attention to planar graphs. For example, we show
that there are planar graphs that can be drawn in 3-space on a lot
fewer lines than in the plane.

1 Introduction

It is well known that any graph admits a straight-line drawing in 3-space. Sup-
pose that we are allowed to draw edges only on a limited number of planes. How
many planes do we need for a given graph G? For example, K6 needs four planes;

The full version of this paper is available on arXiv [10]. Whenever we refer to the
Appendix, we mean the appendix of arXiV:1607.01196v2
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see Fig. 1. Note that this question is different from the well-known concept of
a book embedding where all vertices lie on one line (the spine) and edges lie on
a limited number of adjacent half-planes (the pages). In contrast, we put no
restriction on the mutual position of planes, the vertices can be located in the
planes arbitrarily, and the edges must be straight-line.

u1

u2

u3

u4

u6

u5

Fig. 1. K6 can be drawn straight-line
and crossing-free on four planes. This
is optimal, that is, ρ2

3(K6) = 4.

Fig. 2. Planar 9-vertex graph G with
π1
3(G) = 3, 3D-drawing on three lines.

In a weaker setting, we require only the vertices to be located on a limited
number of planes (or lines). For example, the graph in Fig. 2 can be drawn in
2D such that its vertices are contained in three lines; we conjecture that it is the
smallest planar graph that needs more than two lines even in 3D. This version of
our problem is related to the well-studied problem of drawing a graph straight-
line in a 3D grid of bounded volume [16,37]: If a graph can be drawn with all
vertices on a grid of volume v, then v1/3 planes and v2/3 lines suffice. We now
formalize the problem.

Definition 1. Let 1 ≤ l < d, and let G be a graph. We define the l-dimensional
affine cover number of G in R

d, denoted by ρl
d(G), as the minimum number

of l-dimensional planes in R
d such that G has a drawing that is contained in

the union of these planes. We define πl
d(G), the weak l-dimensional affine cover

number of G in R
d, similarly to ρl

d(G), but under the weaker restriction that
the vertices (and not necessarily the edges) of G are contained in the union
of the planes. Finally, the parallel affine cover number, π̄l

d(G), is a restricted
version of πl

d(G), in which we insist that the planes are parallel. We consider
only straight-line and crossing-free drawings. Note: ρl

d(G), πl
d(G), and π̄l

d(G) are
only undefined when d = 2 and G is non-planar.

Clearly, for any combination of l and d, it holds that πl
d(G) ≤ π̄l

d(G) and
πl

d(G) ≤ ρl
d(G). Larger values of l and d give us more freedom for drawing

graphs and, therefore, smaller π- and ρ-values. Formally, for any graph G, if
l′ ≤ l and d′ ≤ d then πl

d(G) ≤ πl′
d′(G), ρl

d(G) ≤ ρl′
d′(G), and π̄l

d(G) ≤ π̄l′
d′(G).
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But in most cases this freedom is not essential. For example, it suffices to consider
l ≤ 2 because otherwise ρl

d(G) = 1. More interestingly, we can actually focus
on d ≤ 3 because every graph can be drawn in 3-space as effectively as in high
dimensional spaces, i.e., for any integers 1 ≤ l ≤ d, d ≥ 3, and for any graph
G, it holds that πl

d(G) = πl
3(G), π̄l

d(G) = π̄l
3(G), and ρl

d(G) = ρl
3(G). We prove

this important fact in AppendixA. Thus, our task is to investigate the cases
1 ≤ l < d ≤ 3. We call ρ12(G) and ρ13(G) the line cover numbers in 2D and 3D,
ρ23(G) the plane cover number, and analogously for the weak versions.

Related Work. We have already briefly mentioned 3D graph drawing on the grid,
which has been surveyed by Wood [37] and by Dujmović and Whitesides [16]. For
example, Dujmović [13], improving on a result of Di Battista et al. [4], showed
that any planar graph can be drawn into a 3D-grid of volume O(n log n). It is
well-known that, in 2D, any planar graph admits a plane straight-line drawing
on an O(n)×O(n) grid [20,33] and that the nested-triangles graph Tk = K3×Pk

(see Fig. 4) with 3k vertices needs Ω(k2) area [20].
An interesting variant of our problem is to study drawings whose edge sets

are represented (or covered) by as few objects as possible. The type of objects
that have been used are straight-line segments [14,17] and circular arcs [34]. The
idea behind this objective is to keep the visual complexity of a drawing low for
the observer. For example, Schulz [34] showed how to draw the dodecahedron
by using 10 arcs, which is optimal.

Our Contribution. Our research goes into three directions.
First, we show lower and upper bounds for the numbers of lines and planes

needed for covering drawings of graphs in certain graph classes such as graphs
of bounded degree or subclasses of planar graphs. The most natural graph fam-
ilies to start with are the complete graphs and the complete bipartite graphs.
Most versions of the affine cover numbers of these graphs can be determined
easily. Two cases are much more subtle: We determine ρ23(Kn) and ρ13(Kn,n)
only asymptotically, up to a factor of 2 (see Theorem12 and Example 10). Some
efforts are made to compute the exact values of ρ23(Kn) for small n (see The-
orem 15). As another result in this direction, we prove that ρ13(G) > n/5 for
almost all cubic graphs on n vertices (Theorem 9(b)).

Second, we relate the affine cover numbers to standard combinatorial charac-
teristics of graphs and to parameters that have been studied in graph drawing. In
Sect. 2.1, we characterize π1

3(G) and π2
3(G) in terms of the linear vertex arboricity

and the vertex thickness, respectively. This characterization implies that both
π1
3(G) and π2

3(G) are linearly related to the chromatic number of the graph G.
Along the way, we refine a result of Pach et al. [28] concerning the volume of
3D grid drawings (Theorem 2). We also prove that any graph G has balanced
separators of size at most ρ13(G) and conclude from this that ρ13(G) ≥ tw(G)/3,
where tw(G) denotes the treewidth of G (Theorem 9). In Sect. 3.2, we analyze the
relationship between ρ12(G) and the segment number segm(G) of a graph, which
was introduced by Dujmović et al. [14]. We prove that segm(G) = O(ρ12(G)2)

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.1
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for any connected G and show that this bound is optimal (see Theorem23 and
Example 22).

Third, we pay special attention to planar graphs (Sect. 3). Among other
results, we show examples of planar graphs with a large gap between the para-
meters ρ13(G) and ρ12(G) (see Theorem 24).

We also investigate the parallel affine cover numbers π̄1
2 and π̄1

3 . Observe
that for any graph G, π̄1

3(G) equals the improper track number of G, which was
introduced by Dujmović et al. [15].

Due to lack of space, our results for the parallel affine cover numbers (along
with a survey of known related results) appear in AppendixB. We defer some
other proofs to Appendices C and D and list some open problems in AppendixE.

Remark on the Computational Complexity. In a follow-up paper [9], we inves-
tigate the computational complexity of computing the ρ- and π-numbers. We
argue that it is NP-hard to decide whether a given graph has a π1

3- or π2
3-value

of 2 and that both values are even hard to approximate. This result is based on
Theorems 2 and 4 and Corollaries 3 and 5 in the present paper. While the graphs
with ρ23-value 1 are exactly the planar graphs (and hence, can be recognized in
linear time), it turns out that recognizing graphs with a ρ23-value of 2 is already
NP-hard. In contrast to this, the problems of deciding whether ρ13(G) ≤ k or
ρ12(G) ≤ k are solvable in polynomial time for any fixed k. However, the versions
of these problems with k being part of the input are complete for the complexity
class ∃R which is based on the existential theory of the reals and that plays an
important role in computational geometry [32].

Notation. For a graph G = (V,E), we use n and m to denote the numbers of
vertices and edges of G, respectively. Let Δ(G) = maxv∈V deg(v) denote the
maximum degree of G. Furthermore, we will use the standard notation χ(G) for
the chromatic number, tw(G) for the treewidth, and diam(G) for the diameter
of G. The Cartesian product of graphs G and H is denoted by G × H.

2 The Affine Cover Numbers in R
3

2.1 Placing Vertices on Few Lines or Planes (π1
3 and π2

3)

A linear forest is a forest whose connected components are paths. The linear
vertex arboricity lva(G) of a graph G equals the smallest size r of a partition
V (G) = V1∪· · ·∪Vr such that every Vi induces a linear forest. This notion, which
is an induced version of the fruitful concept of linear arboricity (see Remark 8
below), appears very relevant to our topic. The following result is based on a
construction of Pach et al. [28]; see Appendix C for the proof.

Theorem 2. For any graph G, it holds that π1
3(G) = lva(G). Moreover, any

graph G can be drawn with vertices on r lines in the 3D integer grid of size
r × 4rn × 4r2n, where r = lva(G).

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.2
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.4
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.5
https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=section.A.3
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Corollary 3. χ(G)/2 ≤ π1
3(G) ≤ χ(G).

Corollary 3 readily implies that π1
3(G) ≤ Δ(G) + 1 [7]. This can be consid-

erably improved using a relationship between the linear vertex arboricity and
the maximum degree that is established by Matsumoto [27]. Matsumoto’s result
implies that π1

3(G) ≤ Δ(G)/2 + 1 for any connected graph G. Moreover, if
Δ(G) = 2d, then π1

3(G) = d + 1 if and only if G is a cycle or the complete
graph K2d+1.

We now turn to the weak plane cover numbers. The vertex thickness vt(G)
of a graph G is the smallest size r of a partition V (G) = V1 ∪ · · · ∪ Vr such that
G[V1], . . . , G[Vr] are all planar. We prove the following theorem in AppendixC.

Theorem 4. For any graph G, it holds that π2
3(G) = π̄2

3(G) = vt(G) and that
G can be drawn such that all vertices lie on a 3D integer grid of size vt(G) ×
O(m2) × O(m2), where m is the number of edges of G. Note that this drawing
occupies vt(G) planes.

Corollary 5. χ(G)/4 ≤ π2
3(G) ≤ χ(G).

Example 6. (a) π1
3(Kn) = �n/2�.

(b) π1
3(Kp,q) = 2 for any 1 ≤ p ≤ q; except for π1

3(K1,1) = π1
3(K1,2) = 1.

(c) π2
3(Kn) = �n/4�; therefore, π2

3(G) ≤ �n/4� for every graph G.

2.2 Placing Edges on Few Lines or Planes (ρ1
3 and ρ2

3)

Clearly, Δ(G)/2 ≤ ρ13(G) ≤ m for any graph G. Call a vertex v of a graph G
essential if deg v ≥ 3 or if v belongs to a K3 subgraph of G. Denote the number
of essential vertices in G by es(G).

Lemma 7. (a) ρ13(G) > (1 +
√

1 + 8 es(G))/2.
(b) ρ13(G) >

√
m2/n − m for any graph G with m ≥ n ≥ 1.

Proof. (a) In any drawing of a graph G, any essential vertex is shared by two
edges not lying on the same line. Therefore, each such vertex is an intersec-
tion point of at least two lines, which implies that es(G) ≤ (

ρ1
3(G)
2

)
. Hence,

ρ13(G) ≥ (
1 +

√
1 + 8 es(G)

)
/2 >

√
2 es(G).

(b) Taking into account multiplicity of intersection points (that is, each vertex v
requires at least �deg v/2�(�deg v/2�−1)/2 intersecting line pairs), we obtain
(

ρ1
3(G)

2

)

≥ 1

2

∑

v∈V (G)

⌈
deg v

2

⌉(⌈
deg v

2

⌉

− 1

)

≥
∑ deg v(deg v − 2)

8
=

=
1

8

∑
(deg v)2 − 1

4

∑
deg v ≥ 1

8n

(∑
deg v

)2
− 1

4
2m =

m2

2n
− m

2
.

The last inequality follows by the inequality between arithmetic and
quadratic means. Hence, ρ13(G) >

√
m2/n − m. �	
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Part (a) of Lemma 7 implies that ρ13(G) >
√

2n if a graph G has no vertices
of degree 1 and 2, while Part (b) yields ρ13(G) >

√
m/2 for all such G. Note that

a disjoint union of k cycles can have no essential vertices, but each cycle will
need 3 intersection points of lines, i.e., such a graph has ρ13 ∈ Ω(

√
k). Thus, ρ13

cannot be bounded from above by a function of essential vertices.

Remark 8. The linear arboricity la(G) of a graph G is the minimum number of
linear forests which partition the edge set of G; see [24]. Clearly, we have ρ13(G) ≥
la(G). There is no function of la(G) that is an upper bound for ρ13(G). Indeed,
let G be an arbitrary cubic graph. Akiyama et al. [2] showed that la(G) = 2. On
the other hand, any vertex of G is essential, so ρ13(G) >

√
2n by Lemma 7(a).

Theorem 9 below shows an even larger gap.

We now prove a general lower bound for ρ13(G) in terms of the treewidth of
G. Note for comparison that π1

3(G) ≤ χ(G) ≤ tw(G) + 1 (the last inequality
holds because the graphs of treewidth at most k are exactly partial k-trees and
the construction of a k-tree easily implies that it is k + 1-vertex-chromatic).
The relationship between ρ13(G) and tw(G) follows from the fact that graphs
with low parameter ρ13(G) have small separators. This fact is interesting by
itself and has yet another consequence: Graphs with bounded vertex degree can
have linearly large value of ρ13(G) (hence, the factor of n in the trivial bound
ρ13(G) ≤ m ≤ 1

2 nΔ(G) is best possible).
We need the following definitions. Let W ⊆ V (G). A set of vertices S ⊂ V (G)

is a balanced W-separator of the graph G if |W ∩C| ≤ |W |/2 for every connected
component C of G\S. Moreover, S is a strongly balanced W-separator if there is
a partition W\S = W1 ∪ W2 such that |Wi| ≤ |W |/2 for both i = 1, 2 and there
is no path between W1 and W2 avoiding S. Let sepW (G) (resp. sep∗

W (G)) denote
the minimum k such that G has a (resp. strongly) balanced W-separator S with
|S| = k. Furthermore, let sep(G) = sepV (G)(G) and sep∗(G) = sep∗

V (G)(G). Note
that sepW (G) ≤ sep∗

W (G) for any W and, in particular, sep(G) ≤ sep∗(G).
It is known [19, Theorem 11.17] that sepW (G) ≤ tw(G) + 1 for every W ⊆

V (G). On the other hand, if sepW (G) ≤ k for all W with |W | = 2k + 1, then
tw(G) ≤ 3k.

The bisection width bw(G) of a graph G is the minimum possible number of
edges between two sets of vertices W1 and W2 with |W1| = �n/2� and |W2| =
�n/2� partitioning V (G). Note that sep∗(G) ≤ bw(G) + 1.

Theorem 9. (a) ρ13(G) ≥ bw(G).
(b) ρ13(G) > n/5 for almost all cubic graphs with n vertices.
(c) ρ13(G) ≥ sep∗

W (G) for every W ⊆ V (G).
(d) ρ13(G) ≥ tw(G)/3.

Proof. (a) Fix a drawing of the graph G on r = ρ13(G) lines in R
3. Choose a plane

L that is not parallel to any of the at most
(
n
2

)
lines passing through two

vertices of the drawing. Let us move L along the orthogonal direction until
it separates the vertex set of G into two almost equal parts W1 and W2. The
plane L can intersect at most r edges of G, which implies that bw(G) ≤ r.
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(b) follows from Part (a) and the fact that a random cubic graph on n vertices
has bisection width at least n/4.95 with probability 1−o(1) (Kostochka and
Melnikov [25]).

(c) Given W ⊆ V (G), we have to prove that sep∗
W (G) ≤ ρ13(G). Choose a plane

L as in the proof of Part (a) and move it until it separates W into two equal
parts W ′

1 and W ′
2; if |W | is odd, then L should contain one vertex w of W . If

|W | is even, we can ensure that L does not contain any vertex of G. We now
construct a set S as follows. If L contains a vertex w ∈ W , i.e., |W | is odd,
we put w in S. Let E be the set of those edges which are intersected by L
but are not incident to the vertex w (if it exists). Note that |E| < r if |W | is
odd and |E| ≤ r if |W | is even. Each of the edges in E contributes one of its
incident vertices into S. Note that |S| ≤ r. Set W1 = W ′

1\S and W2 = W ′
2\S

and note that there is no edge between these sets of vertices. Thus, S is a
strongly balanced W-separator.

(d) follows from (c) by the relationship between treewidth and balanced sepa-
rators. �	
On the other hand, note that ρ13(G) cannot be bounded from above by any

function of tw(G). Indeed, by Lemma 7(a) we have ρ13(T ) = Ω(
√

n) for every
caterpillar T with linearly many vertices of degree 3. The best possible relation
in this direction is ρ13(G) ≤ m < n tw(G). The factor n cannot be improved here
(take G = Kn).

Example 10. (a) ρ13(Kn) =
(
n
2

)
for any n ≥ 2.

(b) pq/2 ≤ ρ13(Kp,q) ≤ pq for any 1 ≤ p ≤ q.

We now turn to the plane cover number.

Example 11. For any integers 1 ≤ p ≤ q, it holds that ρ23(Kp,q) = �p/2�.
Determining the parameter ρ23(G) for complete graphs G = Kn is a much

more subtle issue. We are able to determine the asymptotics of ρ23(Kn) up to a
factor of 2.

By a combinatorial cover of a graph G we mean a set of subgraphs {Gi}
such that every edge of G belongs to Gi for some i. A geometric cover of a
crossing-free drawing d : V (Kn) → R

3 of a complete graph Kn is a set L of
planes in R

3 so that for each pair of vertices vi, vj ∈ V (Kn) there is a plane
� ∈ L containing both points d(vi) and d(vj). This geometric cover L induces
a combinatorial cover KL = {G� | � ∈ L} of the graph Kn, where G� is the
subgraph of Kn induced by the set d−1(�). Note that each G� is a Ks subgraph
with s ≤ 4 (because K5 is not planar).

Let c(Kn,Ks) denote the minimum size of a combinatorial cover of Kn by Ks

subgraphs (c(Kn,Ks) = 0 if s > n). The asymptotics of the numbers c(Kn,Ks)
for s = 3, 4 can be determined via the results about Steiner systems by Kirkman
and Hanani [5,23]. This yields the following bounds for ρ23(Kn) (see Appendix C).

Theorem 12. For all n ≥ 3,

(1/2 + o(1)) n2 = c(Kn,K4) ≤ ρ23(Kn) ≤ c(Kn,K3) = (1/6 + o(1)) n2.
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Table 1. Lower and upper bounds for ρ2
3(Kn) for small values of n.

n 4 5 6 7 8 9

≥ 1 3 4 6 6 7

≤ 1 3 4 6 7

Note that we cannot always realize a combinatorial cover of Kn by copies of
K4 geometrically. For example, c(K6,K4) = 3 < 4 = ρ23(K6) (see Theorem 15).

In order to determine ρ23(Kn) for particular values of n, we need some prop-
erties of geometric and combinatorial covers of Kn.

Lemma 13. Let d : V (Kn) → R
3 be a crossing-free drawing of Kn and L a

geometric cover of d. For each 4-vertex graph G� ∈ KL, the set d(G�) not only
belongs to a plane �, but also defines a triangle with an additional vertex in its
interior.

Lemma 14. Let d : V (Kn) → R
3 be a crossing-free drawing of Kn and L a

geometric cover of d. No two different 4-vertex graphs G�, G�′ ∈ KL can have
three common vertices.

Theorem 15. For n ≤ 9, the value of ρ23(Kn) is bounded by the numbers in
Table 1.

Proof. Here, we show only the bounds for n = 6. For the remaining proofs,
see Appendix C. Figure 1 shows that ρ23(K6) ≤ 4. Now we show that ρ23(K6) ≥
4. Assume that ρ23(K6) < 4. Consider a combinatorial cover KL of K6 by its
complete planar subgraphs corresponding to a geometric cover L of its drawing
by 3 planes. Graph K6 has 15 edges, so to cover it by complete planar graphs
we have to use at least two copies of K4 and, additionally, a copy of Kk for
3 ≤ k ≤ 4. But, since each two copies of K4 in K6 have a common edge (and
by Lemma 14 this edge is unique), the cover KL consists of three copies of K4.
Denote these copies by K1

4 , K2
4 , and K3

4 . By Lemma 13, for each i, d(Ki
4) is a

triangle with an additional vertex d(vi) in its interior. Let V0 = {v1, v2, v3}. By
the Krein–Milman theorem [26,36], the convex hull Conv(d(K6)) is the convex
hull Conv(d(V (K6))\d(V0)). If all the vertices vi are mutually distinct then the
set d(V (K6))\d(V0) is a triangle, so the drawing d is planar, a contradiction.
Hence, vi = vj for some i �= j. Let k be the third index that is distinct from
both i and j. Since graphs Ki

4 and Kj
4 have exactly one common edge, this is

an edge (vi, v) for some vertex v of K6 (see Fig. 1 with u4 for vi and u1 for
v). Let V (Ki

4) = {v, vi, v
1
i , v2

i } and V (Kj
4) = {v, vj , v

1
j , v2

j }. Since the union
K1

4 ∪ K2
4 ∪ K3

4 covers all edges of K6, all edges (v1
i , v1

j ), (v1
i , v2

j ), (v2
i , v1

j ), and
(v2

i , v2
j ) belong to Kk

4 . Thus V (Kk
4 ) = {v1

i , v2
i , v1

j , v2
j }. But vertices v1

i , v2
i , v1

j ,
and v2

j are in convex position (see Fig. 1), a contradiction to Lemma 13. �	
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3 The Affine Cover Numbers of Planar Graphs
(R2 and R

3)

3.1 Placing Vertices on Few Lines (π1
2 and π1

3)

Combining Corollary 3 with the 4-color theorem yields π1
3(G) ≤ 4 for planar

graphs. Given that outerplanar graphs are 3-colorable (they are partial 2-trees),
we obtain π1

3(G) ≤ 3 for these graphs. These bounds can be improved using
the equality π1

3(G) = lva(G) of Theorem 2 and known results on the linear
vertex arboricity:

(a) For any planar graph G, it holds that π1
3(G) ≤ 3 [21,29].

(b) There is a planar graph G with π1
3(G) = 3 [11].

(c) For any outerplanar graph G, π1
3(G) ≤ 2 [1,6,35].

According to Chen and He [12], the upper bound lva(G) ≤ 3 for planar
graphs by Poh [29] is constructive and yields a polynomial-time algorithm for
partitioning the vertex set of a given planar graph into three parts, each inducing
a linear forest. By combining this with the construction given in Theorem2, we
obtain a polynomial-time algorithm that draws a given planar graph such that
the vertex set “sits” on three lines.

The example of Chartrand and Kronk [11] is a 21-vertex planar graph whose
vertex arboricity is 3, which means that the vertex set of this graph cannot even
be split into two parts both inducing (not necessarily linear) forests. Raspaud
and Wang [30] showed that all 20-vertex planar graphs have vertex arboricity at
most 2. We now observe that a smaller example of a planar graph attaining the
extremal value π1

3(G) = 3 can be found by examining the linear vertex arboricity.

Example 16. The planar 9-vertex graph G in Fig. 2 has π1
3(G) = lva(G) = 3.

(See a proof in AppendixD.)

Now we show lower bounds for the parameter π1
2(G).

Recall that the circumference of a graph G, denoted by c(G), is the length
of a longest cycle in G. For a planar graph G, let v̄(G) denote the maximum k
such that G has a straight-line plane drawing with k collinear vertices.

Lemma 17. Let G be a planar graph. Then π1
2(G) ≥ n/v̄(G). If G is a trian-

gulation then π1
2(G) ≥ (2n − 4)/c(G∗).

Proof. Since the first claim is obvious, we prove only the second. Let γ(G) denote
the minimum number of cycles in the dual graph G∗ sharing a common vertex
and covering every vertex of G∗ at least twice. Note that, as G is a triangulation,
γ(G) ≥ (4n − 8)/c(G∗), where 2n − 4 is the number of vertices in G∗ (as a
consequence of Euler’s formula). We now show π1

2(G) ≥ γ(G)/2, which implies
the claimed result.

Given a drawing realizing π1
2(G) with line set L, for every line � ∈ L, draw

two parallel lines �′, �′′ sufficiently close to � such that they together intersect
the interiors of all faces touched by � and do not go through any vertex of the
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drawing. Note that �′ and �′′ cross boundaries of faces only via inner points of
edges. Each such crossing corresponds to a transition from one vertex to another
along an edge in the dual graph G∗. Since all the faces of G are triangles, each
of them is visited by each of �′ and �′′ at most once. Therefore, the faces crossed
along �′ and the faces crossed along �′′, among them the outer face of G, each
form a cycle in G∗. It remains to note that every face f of the graph G is crossed
at least twice, because f is intersected by at least two different lines from L and
each of these two lines has a parallel copy that crosses f . �	

An infinite family of triangulations G with v̄(G) ≤ n0.99 is constructed in [31].
By the first part Lemma 17 this implies that there are infinitely many triangu-
lations G with π1

2(G) ≥ n0.01. The second part of Lemma 17 along with an
estimate of Grünbaum and Walther [22] (that was used also in [31]) yields a
stronger result.

Theorem 18. There are infinitely many triangulations G with Δ(G) ≤ 12 and
π1
2(G) ≥ n0.01.

Proof. The shortness exponent σG of a class G of graphs is the infimum of the
set of the reals lim infi→∞ log c(Hi)/log |V (Hi)| for all sequences of Hi ∈ G
such that |V (Hi)| < |V (Hi+1)|. Thus, for each ε > 0, there are infinitely many
graphs H ∈ G with c(H) < |V (H)|σG+ε. The dual graphs of triangulations with
maximum vertex degree at most 12 are exactly the cubic 3-connected planar
graphs with each face incident to at most 12 edges (this parameter is well defined
by the Whitney theorem). Let σ denote the shortness exponent for this class of
graphs. It is known [22] that σ ≤ log 26

log 27 = 0.988 . . .. The theorem follows from
this bound by the second part of Lemma17. �	
Problem 19. Does π1

2(G) = o(n) hold for all planar graphs G?

A track drawing [18] of a graph is a plane drawing for which there are parallel
lines, called tracks, such that every edge either lies on a track or its endpoints
lie on two consecutive tracks. We call a graph track drawable if it has a track
drawing. Let tn(G) be the minimum number of tracks of a track drawing of G.
Note that π1

2(G) ≤ π̄1
2(G) ≤ tn(G).

The following proposition is similar to a lemma of Bannister et al. [3,
Lemma 1] who say it is implicit in the earlier work of Felsner et al. [18].

Theorem 20. (cf. [3,18]). Let G be a track drawable graph. Then π1
2(G) ≤ 2.

Proof. Consider a track drawing of G, which we now transform
to a drawing on two intersecting lines. Put the tracks consecu-
tively along a spiral so that they correspond to disjoint inter-
vals on the half-lines as depicted on the right. Tracks whose
indices are equal modulo 4 are placed on the same half-line; for
more details see Fig. 8 in AppendixD on page 26. (Bannister
et al. [3, Fig. 1] use three half-lines meeting in a point.)

https://arxiv.org/pdf/1607.01196v2.pdf#nameddest=figure.caption.13
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Observe that any tree is track drawable: two vertices are aligned on the same
track iff they are at the same distance from an arbitrarily assigned root. More-
over, any outerplanar graph is track drawable [18]. This yields an improvement
over the bound π1

3(G) ≤ 2 for outerplanar graphs stated in the beginning of this
section.

Corollary 21. For any outerplanar graph G, it holds that π1
2(G) ≤ 2.

3.2 Placing Edges on Few Lines (ρ1
2 and ρ1

3)

The parameter ρ12(G) is related to two parameters introduced by Dujmović et
al. [14]. They define a segment in a straight-line drawing of a graph G as an
inclusion-maximal (connected) path of edges of G lying on a line. A slope is
an inclusion-maximal set of parallel segments. The segment number (resp., slope
number) of a planar graph G is the minimum possible number of segments (resp.,
slopes) in a straight-line drawing of G. We denote these parameters by segm(G)
(resp., slop(G)). Note that slop(G) ≤ ρ12(G) ≤ segm(G).

These parameters can be far away from each other. Figure 4 shows a graph
with slop(G) = O(1) and ρ12(G) = Ω(n) (see the proof of Theorem 24). On the
other hand, note that ρ12(mK2) = 1 while segm(mK2) = m where mK2 denotes
the graph consisting of m isolated edges. The gap between ρ12(G) and segm(G)
can be large even for connected graphs. It is not hard to see that segm(G) is
bounded from below by half the number of odd degree vertices (see [14] for
details). Therefore, if we take a caterpillar G with k vertices of degree 3 and
k+2 leaves, then segm(G) ≥ n/2, while ρ12(G) = O(

√
n) because G can easily be

drawn in a square grid of area O(n). Note that, for the same G, the gap between
slop(G) and ρ12(G) is also large. Indeed, slop(G) = 2 while ρ12(G) >

√
n − 2 by

Lemma 7(a).
It turns out that a large gap between ρ12(G) and segm(G) can be shown also

for 3-connected planar graphs and even for triangulations.

Example 22. There are triangulations with ρ12(G) = O(
√

n) and segm(G) =
Ω(n).1 Note that this gap is the best possible because any 3-connected graph G
has minimum vertex degree 3 and, hence, ρ12(G) ≥ ρ13(G) >

√
2n by Lemma 7(a).

Consider the graph shown in Fig. 3. Its vertices are placed on the standard
orthogonal grid and two slanted grids, which implies that at most O(

√
n) lines

are involved. The pattern can be completed to a triangulation by adding three
vertices around it and connecting them to the vertices on the pattern boundary.
Since the pattern boundary contains O(

√
n) vertices, O(

√
n) new lines suffice

for this. Thus, we have ρ12(G) = O(
√

n) for the resulting triangulation G. Note
that the vertices drawn fat in Fig. 3 have degree 5, and there are linearly many
of them. This implies that segm(G) = Ω(n).

Somewhat surprisingly, the parameter segm(G) can be bounded from above
by a function of ρ12(G) for all connected graphs.
1 A triangulation G with segm(G) = O(

√
n) has been found by Dujmović et al. [14,

Fig. 12].



Drawing Graphs on Few Lines and Few Planes 177

Fig. 3. The main body
of a triangulation G with
ρ1
2(G) = O(

√
n) and segm

(G) = Ω(n).

Fig. 4. The nested-
triangles graph Tk.

Fig. 5. Sketch of the con-
struction in the proof of
Theorem 24(b).

Theorem 23. For any connected planar graph G, segm(G) = O(ρ12(G)2).

Note that Δ(G)/2 ≤ ρ13(G) ≤ ρ12(G) ≤ segm(G) ≤ m for any planar graph G.
For all inequalities here except the second one, we already know that the gap
between the respective pair of parameters can be very large (by considering a
caterpillar with linearly many degree 3 vertices and applying Lemma7(a), by
Example 22, and by considering the path graph Pn, for which segm(Pn) = 1).
Part (b) of the following theorem shows a large gap also between the parameters
ρ13(G) and ρ12(G), that is, some planar graphs can be drawn much more efficiently,
with respect to the line cover number, in 3-space than in the plane.

Theorem 24. (a) There are infinitely many planar graphs with constant maxi-
mum degree, constant treewidth, and linear ρ12-value.

(b) For infinitely many n there is a planar graph G on n vertices with ρ12(G) =
Ω(n) and ρ13(G) = O(n2/3).

Proof. Consider the nested-triangles graph Tk = C3 × Pk shown in Fig. 4. To
prove statements (a) and (b), it suffices to establish the following bounds:

(i) ρ12(Tk) ≥ n/2 and
(ii) ρ13(Tk) = O(n2/3).

To see the linear lower bound (i), note that Tk is 3-connected. Hence, Whitney’s
theorem implies that, in any plane drawing of Tk, there is a sequence of nested
triangles of length at least k/2. The sides of the triangles in this sequence must
belong to pairwise different lines. Therefore, ρ12(Tk) ≥ 3k/2 = n/2.

For the sublinear upper bound (ii), first consider the graph C4 × Pk. We
build wireframe rectangular prisms that are stacks of O( 3

√
n) squares each. These

prisms are placed onto the base plane in an O( 3
√

n) × O( 3
√

n) grid; see Fig. 5. So
far we can place the edges on the O(n2/3) lines of the 3D cubic grid of volume
O(n). Next, we construct a path that traverses all squares by passing through
the prisms from top to bottom (resp., vice versa) and connecting neighboring
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prims. We rotate and move some of the squares at the top (resp., bottom) of the
prisms to be able to draw the edges between neighboring prisms according to
this path. For this “bending” we need O(n2/3) additional lines. In AppendixD
we provide a drawing; see Fig. 11 on page 30. The same approach works for the
graph Tk = C3 × Pk. In addition to the standard 3D grid, here we need also its
slanted, diagonal version (and, again, additional lines for bending in the cubic
box of volume O(n)). The number of lines increases just by a constant factor. �	

We are able to determine the exact values of ρ12(G) for complete bipartite
graphs Kp,q that are planar.

Example 25. ρ12(K1,q) = �m/2� and ρ12(K2,q) = �(3n − 7)/2� = �(3m − 2)/4�.
See AppendixD for details.

Motivated by Example 25, we ask:

Problem 26. What is the smallest c such that ρ12(G) ≤ (c+o(1))m for any planar
graph G? Example 25 shows that c ≥ 3/4. Durocher and Mondal [17], improving
on an earlier bound of Dujmović et al. [14], showed that segm(G) < 7

3n for any
planar graph G. This implies that c ≤ 7/9.

For any binary tree T , it holds that ρ12(T ) = O(
√

n log n). This follows
from the known fact [8] that T has an orthogonal drawing on a grid of size
O(

√
n log n) × O(

√
n log n). For complete binary trees lower and upper bounds

are described in Example 37 in AppendixD.
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Abstract. We study the problem of visualizing phylogenetic networks,
which are extensions of the Tree of Life in biology. We use a space filling
visualization method, called DAGmaps, in order to obtain clear visual-
izations using limited space. In this paper, we restrict our attention to
galled trees and galled networks and present linear time algorithms for
visualizing them as DAGmaps.

1 Introduction

The quest of the Tree of Life arose centuries ago, and one of the first illustrations
of an evolutionary tree was produced by Charles Darwin in 1859, in his book
“The Origin of Species”. Over a century later, evolutionary biologists still used
phylogenetic trees to depict evolution. A phylogenetic tree T on X is obtained
by labeling the leaves of a tree by the set of taxa X = {x1, x2, . . . , xn}. Each
taxon xi represents a species or an organism.

The branches of the phylogenetic trees represent the evolution of species, and
sometimes the length of their edges is scaled in order to represent the time.

As pointed out in [4], molecular phylogeneticists were failing to find the true
tree of life, not because their methods were inadequate or because they had
chosen the wrong genes, but perhaps because the history of life cannot be prop-
erly represented as a tree. Indeed, the mechanisms of horizontal gene transfer,
hybridization and genetic recombination necessitate the use of phylogenetic net-
work models to illustrate them.

There are many different types of phylogenetic networks which can be sepa-
rated in two main classes according to [8]: implicit phylogenetic networks that
provide tools to visualize and analyze incompatible phylogenetic signals, such as
split networks [7], and explicit phylogenetic networks that provide explicit sce-
narios of reticulate evolution, such as hybridization networks [16,17], horizontal
gene transfer networks [6] and recombination networks [5,10].

Visualization of phylogenetic trees and networks is an important part of this
area, since most of these graphs are huge. Furthermore, the usual node-link rep-
resentation leads to visual clutter. Thus, alternative visualization of phylogenetic
trees, such as treemaps, may be preferable.
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 183–195, 2016.
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Treemaps [14], a space filling technique for visualizing large hierarchical data
sets, display trees as a set of nested rectangles. The (root of the) tree is the initial
rectangle. Each subtree is assigned to a subrectangle, which is then tiled into
smaller rectangles representing further subtrees. Space filling visualizations, such
as treemaps, have the capacity to display thousands of items legibly in limited
space via a two dimensional map. Treemaps have been used in bioinformatics
to visualize phylogenetic trees [1], gene expression data [18], gene ontologies
[2,20,21], and the Encyclopedia of Life [1]. An extension of treemaps is presented
in [22], which manages to visualize not only trees, but also Directed Acyclic
Graphs (DAGs). As shown in [22], it is not always possible to visualize a DAG
with a DAGmap without having node duplications.

In this paper we present space filling techniques that use DAGmap drawings
for the visualization of two categories of phylogenetic networks, galled trees
and planar galled networks. No node duplications appear in both visualiza-
tion algorithms that we present. In Sect. 2 we introduce an algorithm which
locates the galls of a graph and examines whether this graph is a galled tree or
a galled network. In Sect. 3 we describe how to draw the DAGmaps of galled
trees, and we examine whether the galled trees and galled networks can be one-
dimensionally DAGmap drawn. Finally, in Sect. 4 we present an algorithm for
producing DAGmap drawings of planar galled networks.

2 Preliminaries

Let G = (V,E) be a directed graph (digraph) with n = |V | nodes and m = |V |
edges. If e = (u, v) ∈ E is a directed edge, we say that e is incident from u (or
outgoing from u) and incident to v (or incoming to v); edge u is the origin of e
and node v is the destination of e. A directed acyclic graph (DAG) is a digraph
that contains no cycles. A source of digraph G is a node without incoming edges.
A sink of G is a node without outgoing edges. An internal node of G has both
incoming and outgoing edges.

A drawing of a graph G maps each node v to a distinct point of the plane
and each edge (u, v) to a simple open Jordan curve, with endpoints u and v.
A drawing is planar if no two edges intersect except, possibly, at common end-
points. A graph is planar if it admits a planar drawing. Two planar drawings of
a graph are equivalent if they determine the same circular ordering of the edges
around each node. An equivalence class of planar drawings is a (combinatorial)
embedding of G. An embedded graph is a graph with a specified embedding.
A planar drawing partitions the plane into topologically connected regions that
are called faces.

An upward drawing of a digraph is such that all the edges are represented
by directed curves increasing monotonically in the vertical direction. A digraph
has an upward drawing if and only if it is acyclic. A digraph is upward planar
if it admits a planar upward drawing. Note that a planar acyclic digraph does
not necessarily have a planar upward drawing. A graph is layered planar if it
can be drawn such that the nodes are placed in horizontal rows or layers, the
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edges are drawn as polygonal chains connecting their end nodes, and there are
no edge crossings.

In a phylogenetic network there can be three kind of nodes: root, tree, and
reticulation nodes. A root node has no incoming edges. There is only one root
node in every rooted phylogenetic network. Tree nodes have exactly one ancestor.
Reticulation nodes have more than one ancestors. It is easy to realize that a
phylogenetic tree is a phylogenetic network without reticulation nodes.

In addition, there can be two kind of edges: tree, and reticulation edges. A
tree edge leads to a node that has exactly one incoming edge. A reticulation
edge leads to a node that has more than one incoming edges.

Reticulation cycles are defined as follows. Since there is only one root node in
every rooted phylogenetic network, in the corresponding undirected graph every
reticulation node belongs to a cycle. This cycle, in the directed graph, is called
reticulation cycle.

Fig. 1. The structure of a gall.

A gall is a reticulation cycle in a phylogenetic network that shares no nodes
with any other reticulation cycle. It consists of a beginning node g0, two chains
(the left and the right one) and a reticulation node gk, as shown in Fig. 1. The
beginning node g0 is on level 1 of this subgraph, the reticulation node on level
k + 1, and the chain nodes are on the i levels, i ∈ {2, . . . , k}. Every level i
may contain either one or two chain nodes. Every node gi, i ∈ {0, . . . , k}, of
the gall may have a subtree ti+1 as a descendant. These subtrees do not have
more connections with this gall, because in that case a reticulation cycle would
be created, which would share a node with the gall, and this is not allowed
according to the definition of a gall.
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A galled tree is a phylogenetic network whose reticulation cycles are galls
[5,23]. This is called the galled tree condition. Considering the definition of a
gall, it is easy to realize that the reticulation nodes of a galled tree have indegree
two.

A Galled network is a rooted phylogenetic network in which every reticulation
cycle shares no reticulation nodes with any other reticulation cycle [9]. This is
called the galled network condition.

In contrast to the galled trees, galled networks allow the reticulation cycles
to share nodes, as long as they are not reticulation nodes. These reticulation
cycles are called loose galls. In the rest of the paper, whenever we refer to loose
galls of a galled network, we will use the term galls for simplification.

Galled trees [5,12,19,23] and galled networks [8,9,11,13] have received much
attention in recent years. They are important types of phylogenetic networks
due to their biological significance and their simple, almost treelike, structure. A
galled tree or network may suffice to accurately describe an evolutionary process
when the number of recombination events is limited and most of them have
occurred recently [5].

2.1 The DAGmap Problem

DAGmaps are space filling visualizations of DAGs that generalize treemaps [22].
The main properties of DAGmaps are shown in Fig. 2. In treemaps the rectangle
of a child node is included into the rectangle of its parent node (see Fig. 2(a)).
In DAGmaps the rectangle of a node is included into the union of rectangles of
its ancestors. Also the rectangle of an edge is contained in the intersection of the
rectangles of its source and destination nodes (see Fig. 2(b)).

The DAGmap problem is the problem of deciding whether a graph admits a
DAGmap drawing without node duplications. Deciding whether or not a DAG
admits a DAGmap drawing is NP-complete [22]. Furthermore, the DAGmap
problem remains NP-complete even when the graphs are restricted to be galled
networks:

Fig. 2. (a) A treemap drawing. (b) A DAGmap drawing.
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Theorem 1. The DAGmap problem for galled networks is NP-complete.

Proof. Omitted due to space limitations. ��

2.2 Locating the Galls

The first task is to recognize whether a given phylogenetic network is a galled
tree or a galled network. Since they both contain galls, we will need to locate
the galls of the given phylogenetic network. This will allow us to check whether
our network is a galled tree, a galled network, or none of them. This can be
accomplished by the following algorithm:

Algorithm 1. Locating the galls of a graph
Input: A Graph G.
Output: The set of galls and the characterization of G as a galled tree or a
galled network, or null if the graph is neither of them.

1. Perform a simple graph traversal in order to locate the
reticulation nodes.

2. If a node with more than two incoming edges is found, then
return null.

3. For every reticulation node find its two parents. Each of these
parents belongs to a chain of the gall.

4. For every parent find its parent and assign it to the same
chain. (At each step discover one node from each chain.)

5. Continue this process until a node is found which already
belongs to the other chain. This is the beginning node of the
gall. If no such node is found, return null.

6. After locating all the galls, test the galled tree and the
galled network condition.

7. If the galled tree condition holds then characterize the graph
as a"galled tree".

8. Else if the galled network condition holds then characterize
the graph as a "galled network".

9. Else return null.
10.Return the located galls.

This process will discover all the galls of the graph, since every reticulation
node corresponds to exactly one gall. In addition, every chain node will be visited
a constant number of times if we use a hash table to store the chain nodes. Also,
the property that every gall has exactly one reticulation node guarantees that
this algorithm will neither leave any gall undiscovered, nor claim to discover a
gall that does not exist. Thus, it is straightforward to show that Algorithm 1
runs in O(n + m) time.
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3 DAGmaps for Galled Trees

In this section we present techniques for drawing galled trees as DAGmaps.

3.1 Drawing Galled Trees as DAGmaps

Next, we present a three step algorithm for drawing galled trees as DAGmaps.
First, we transform the input galled tree into a tree by collapsing the two chains
of each gall into a single chain. Then, we use treemap techniques to draw the
tree. Finally, we expand the collapsed galls. Next, we make some interesting
observations:

Fact 1. Any node of a galled tree has indegree at most two.

If there were a node with indegree more than two in a galled tree, then this
node would belong to more than one reticulation cycles, which means that there
would be (more than one) reticulation cycles.

Fact 2. Every galled tree is planar.

This is easy to realize considering that galled trees are almost like trees, but
with some branches being made of two parallel chains, instead of one (see Fig. 3).
Furthermore, this implies that the number of edges of a galled tree is O(n).

We now present an algorithm for constructing a DAGmap of a galled tree:

Fig. 3. Transformation of a galled tree (a) into a tree (b).
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Algorithm 2. DAGmap drawing of galled trees
Input: A galled tree G.
Output: A DAGmap drawing of G.

1. Transform the galled tree G into a tree T, by unifying the two
chains of each gall.

2. Draw the treemap of T, according to the chosen treemap
technique.

3. Split the rectangles, corresponding to the nodes of the
unified chains of the galls, to obtain the initial
parallel chains.

Step 1 of the above algorithm is illustrated in Fig. 3. The parallel chains have
been united, and nodes gil , gir have been replaced by node gi while the subtrees
til and tir remain unchanged, i ∈ {1, . . . , k}.

The treemap of T , in Step 2, is drawn under the constraint that the gi nodes
(which represent the union of nodes gil and gir of the DAG) must always touch
both til and tir , in the same direction. This means that if we choose to place gil
on the left and gir on the right, where i ∈ {1, . . . , k −1}, then we will follow this
convention for every i ∈ {1, . . . , k −1} (see Fig. 4(a)). Drawing the treemap of T
needs O(n) time, if we choose a linear time layout algorithm like the slice and
dice layout.

Slice and dice [14] is a treemap drawing technique, where the initial rectangle
is recursively divided. The direction of each subdivision changes in each level,
from horizontal to vertical.

The output of Step 3 is shown in Fig. 4(b), where the unified nodes are split.
Note that the reticulation node gk lies on both gk−1l and gk−1r . This step needs
O(n) time, because in the worst case it traverses all the nodes of the graph.

From the above we conclude that:

Theorem 2. Every galled tree admits a DAGmap drawing, which can be com-
puted in O(n) time.

In the next section we show that galled trees can be drawn as one-dimensional
DAGmaps.

3.2 Drawing Galled Trees as One-Dimensional DAGmaps

A DAGmap is called one-dimensional if the initial rectangle is sliced only along
the vertical (horizontal) direction. Since the height (width) of all the rectangles
is constant and equal to the height (width) of the initial drawing rectangle, the
problem is one-dimensional.

Next, we show that galled trees can be drawn as one-dimensional DAGmaps.

Theorem 3. Every galled tree can be drawn as a one-dimensional DAGmap.

Sketch of Proof. Let G = (V,E) be a proper layered DAG with vertex parti-
tion V = L1 ∪ L2 ∪ . . . ∪ Lh, where h > 1, such that the source (root) is in Lh
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Fig. 4. (a) The treemap drawing of the tree shown in Fig. 3(b). (b) The DAGmap
drawing of the gall shown in Fig. 3(a).

and the sinks are in L1. Tsiaras et al. [22] have shown that a DAG G admits a
one-dimensional DAGmap if and only if it is layered planar. We will show that
every galled tree is layered planar, using its tree-like structure.

We transform the galled tree G into a tree T , as shown in Fig. 3. We take the
vertex partition of T : VT = L1 ∪L2 ∪ . . .∪Lh, where h > 1, such that the source
(root) is in Lh and the sinks are in L1. Then, we define the vertex partition of
the galled tree VG = L1 ∪ L2 ∪ . . . ∪ Lh, where h > 1, such that every node of T
which also belongs to G remains at the same layer. Moreover, for every node gi
of T which belongs to layer Lj of the partition, and is originated from the union
of the nodes gil and gir of G, it is concluded that gil and gir will belong to layer
Lj of the partition VG.
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Fig. 5. An example of a galled network that does not admit a one-dimensional
DAGmap.

Since every tree is layered planar and we obtained the vertex partition of
G from the vertex partition of T , we conclude that every galled tree admits a
one-dimensional DAGmap. ��

However, not every planar galled network admits a one-dimensional
DAGmap.

Lemma 1. Not every planar galled network admits a one-dimensional
DAGmap.

Sketch of Proof. In Fig. 5 an example of such a planar galled network is shown,
that does not admit a one-dimensional DAGmap. Node 16 will not be able to be
drawn in the line of level 4 without edge crossings. However, as it will be shown
in the next section, this graph can be DAGmap drawn. ��

4 DAGmaps for Galled Networks

In this section we investigate how to draw galled networks as DAGmaps. From
Theorem 1 we have that this problem is NP-complete. Therefore, it is worth
examining the problem of drawing planar galled networks as DAGmaps. In the
following lemma we show that planar galled networks are a subset of the set of
galled networks.

Lemma 2. Not every galled network is planar.

Sketch of Proof. This lemma can be proved by creating a family of galled
networks that contain a subgraph homeomorphic to K5 [15]. Figure 6(a) depicts
a Galled network. This is a non planar galled network since it is topologically
the same as the network shown in Fig. 6 (b), which is homeomorphic to K5. ��

Since planar galled networks represent phylogenetic networks, it is clear that
all edges flow in the same direction monotonically. This means that planar
galled networks are upward (downward) planar graphs. Therefore, we have the
following:
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Fig. 6. An example of a non planar galled network. As we can see the network (a) is
the same with the network (b), which is topologically equivalent to K5.

Fact 3. Planar galled networks are upward planar.

By definition, the phylogenetic networks are single source directed acyclic
graphs. Therefore, we have the following:

Fact 4. Each planar galled network is a single source upward planar directed
acyclic graph.

In order to draw planar galled networks as DAGmaps, without node duplica-
tion, we will relax the rule for drawing DAGmaps, which states that every node
is drawn as a rectangle. Specifically, we will allow nodes to be drawn as rectilin-
ear cohesive polygons. Next, we present an algorithm that produces DAGmaps
of planar galled networks.

Algorithm 3. DAGmap drawing of planar galled networks
Input: A planar galled network G.
Output: A DAGmap drawing of G.

1. Transform the galled network G into a galled tree GT, by
splitting the nodes that belong to more than one galls, so as
no gall shares its nodes with other galls.

2. Order all subtrees of GT such that:
3. The nodes created by the splitting of nodes of G are moved

so that they are adjacent to each other.
4. Draw the DAGmaps of the galls of GT. Nested galls are drawn

recursively.
5. Unify the split nodes and remove unused space.

Step 1 of the above algorithm is illustrated in Fig. 7. As shown, every node u
that participates in k galls (k > 1) is being replaced by k nodes ui, i ∈ {1, . . . , k}.
Each node ui participates in only one gall. Consequently GT is a galled tree
because there is no gall that shares nodes with any other gall. This step needs
O(n) time, because in the worst case it traverses all the nodes of the graph, and
the number of edges of a planar graph is O(n).
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Fig. 7. Transformation of a galled network (a) to a galled tree (b).

In Steps 2 and 3 we define the order of all subtrees of the galled tree GT .
The goal is to find an ordering such that all splitted nodes are neighbors. We
observe that a proper nesting of the galls produces a planar embedding of G.
Thus, given a planar embedding Γ of G, it is easy to find the correct order of
all subtrees. Specifically, the order of the subtrees of GT is determined by the
clockwise order of the incoming and outgoing edges of each node (to be splitted)
in Γ . Bertolazzi et al. [3] have shown that if a single source digraph is upward
planar, then its drawing can be constructed in O(n) time. Thus, given Fact 4, we
can produce an upward planar drawing of a planar galled network in linear time.

The drawings of the DAGmaps of the galls of GT (Step 4) are obtained by
executing Algorithm 2. The running time of this algorithm is O(n). Finally, the
unification of Step 5 needs O(n) time in the worst case, since it is the reverse
procedure of Step 1. The output is shown in Fig. 8.

Generally speaking, the node splitting process triggers the duplication of all
of its out-neighbors. Therefore, the transformation of a DAG into a tree leads to
trees with (potentially exponentially) many more nodes than the original DAG.
However, the node splitting of Step 1 does not have the exponential effects of
the ordinary node duplication, since all the duplicated nodes of this case are
neighbors. From the above, we realise that Algorithm 4 takes O(n) time, and
combining this with Algorithm 3, we conclude that:

Theorem 4. Every planar galled network admits a DAGmap drawing, which
can be computed in O(n) time.
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Fig. 8. The DAGmap drawing of the galled network of Fig. 7(a) produced by
Algorithm 3.

5 Conclusions and Future Work

DAGmaps, an extension of Treemaps, represent an effective space filling visual-
ization method to display and analyze hierarchical data. In this paper we have
presented algorithms that use DAGmap drawings for the visualization of two
categories of phylogenetic networks, galled trees and planar galled networks.
Future work will cover the study of more categories of phylogenetic networks,
in addition to answering the question whether one could minimize the number
of node duplications performed during Step 1 of Algorithm 3 in the case of non
planar galled networks. Furthermore, we intend to develop a visualization tool
for processing phylogenetic networks and displaying them as DAGmaps.

Acknowledgments. We thank Irini Koutaki-Pantermaki who contributed some ideas
in an earlier version of the paper, and Vassilis Tsiaras for useful discussions.
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8. Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation
of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol.
4453, pp. 211–225. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71681-5 15

9. Huson, D.H., Rupp, R., Berry, V., Gambette, P., Paul, C.: Computing galled net-
works from real data. Bioinformatics 25(12), i85–i93 (2009)

10. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algo-
rithms and Applications. Cambridge University Press, Cambridge (2011)

11. Huson, D.H., Scornavacca, C.: A survey of combinatorial methods for phylogenetic
networks. Genome Biol. Evol. 3, 23–35 (2011)

12. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees
by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)

13. Jansson, J., Nguyen, N.B., Sung, W.K.: Algorithms for combining rooted triplets
into a galled phylogenetic network. SIAM J. Comput. 35(5), 1098–1121 (2006)

14. Johnson, B., Shneiderman, B., Tree-Maps : a space-filling approach to the visual-
ization of hierarchical information structures. In: 2nd Conference on Visualization
(Proceedings of the VIS 1991), pp. 284–291. IEEE Computer Society Press (1991)

15. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta
Mathematica 16, 271–283 (1930)

16. Linder, R.C., Rieseberg, L.H.: Reconstructing patterns of reticulate evolution in
plants. Am. J. Bot. 91, 1700–1708 (2004)

17. Maddison, W.P.: Gene trees in species trees. Syst. Biol. 46(3), 523–536 (1997)
18. McConnell, P., Johnson, K., Lin, S.: Applications of tree-maps to hierarchical bio-

logical data. Bioinformatics 18(9), 1278–1279 (2002)
19. Nakhleh, L., Warnow, T., Linder, R.C., Reconstructing reticulate evolution in

species: theory and practice. In: 8th Annual International Conference on Research
in Computational Molecular Biology (Proceedings of the RECOMB 2004), pp.
337–346 (2004)

20. Symeonidis, A., Tollis, I.G., Reczko, M.: Visualization of functional aspects of
microRNA regulatory networks using the gene ontology. In: Maglaveras, N.,
Chouvarda, I., Koutkias, V., Brause, R. (eds.) ISBMDA 2006. LNCS, vol. 4345,
pp. 13–24. Springer, Heidelberg (2006). doi:10.1007/11946465 2

21. Tao, Y., Liu, Y., Friedman, C., Lussier, Y.A.: Information visualization techniques
in bioinformatics during the postgenomic era. Drug Discov. Today BIOSILICO
2(6), 237–245 (2004)

22. Tsiaras, V., Triantafilou, S., Tollis, I.G.: DAGmaps: space filling visualization of
directed acyclic graphs. Graph Algorithms Appl. 13(3), 319–347 (2009)

23. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination.
J. Comput. Biol. 8(1), 69–78 (2001)

http://dx.doi.org/10.1007/978-3-540-71681-5_15
http://dx.doi.org/10.1007/11946465_2


A Generalization of the Directed Graph
Layering Problem
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Abstract. The Directed Layering Problem (DLP) solves a step of the
widely used layer-based approach to automatically draw directed acyclic
graphs. To cater for cyclic graphs, usually a preprocessing step is used
that solves the Feedback Arc Set Problem (FASP) to make the graph
acyclic before a layering is determined.

Here we present the Generalized Layering Problem (GLP), which
solves the combination of DLP and FASP simultaneously, allowing gen-
eral graphs as input. We present an integer programming model and a
heuristic to solve the NP-completeGLP and perform thorough evalua-
tions on different sets of graphs and with different implementations for
the steps of the layer-based approach.

We observe that GLP reduces the number of dummy nodes signif-
icantly, can produce more compact drawings, and improves on graphs
where DLP yields poor aspect ratios.

Keywords: Layer-based layout · Layer assignment · Linear arrange-
ment · Feedback arc set · Integer programming

1 Introduction

The layer-based approach is a well-established and widely used method to auto-
matically draw directed graphs. It is based on the idea to assign nodes to sub-
sequent layers that show the inherent direction of the graph, see Fig. 1a for an
example. The approach was introduced by Sugiyama et al. [20] and remains a
subject of ongoing research.

Given a directed graph, the layer-based approach was originally defined for
acyclic graphs as a pipeline of three phases. However, two additional phases are
necessary to allow practical usage, which are marked with asterisks:

1. Cycle removal*: Eliminate all cycles by reversing a preferably small subset of
the graph’s edges. This phase adds support for cyclic graphs as input.

2. Layer assignment: Assign all nodes to numbered layers such that edges point
from layers of lower index to layers of higher index. Edges connecting nodes
that are not on consecutive layers are split by so-called dummy nodes.

c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 196–208, 2016.
DOI: 10.1007/978-3-319-50106-2 16
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3. Crossing reduction: Find an ordering of the nodes within each layer such that
the number of crossings is minimized.

4. Coordinate assignment: Determine explicit node coordinates with the goal to
minimize the distance of edge endpoints.

5. Edge routing*: Compute bend points for edges, e.g. with an orthogonal style.

While state-of-the-art methods produce drawings that are often satisfying,
there are graph instances where the results show bad compactness and unfavor-
able aspect ratio [8]. In particular, the number of layers is bound from below
by the longest path of the input graph after the first phase. When placing the
layers vertically one above the other, this affects the height of the drawing, see
Fig. 1a. Following these observations, we present new methods to overcome cur-
rent limitations.

Fig. 1. Different drawings of the g.39.29
graph from the North graphs collection [3].
(a) is drawn with known methods [7],
(b) and (c) are results of the methods
presented here. Backward edges are drawn
bold and dashed.

Contributions. The focus of this paper
is on the first two phases stated above.
They determine the initial topology of
the drawing and thus directly impact
the compactness and the aspect ratio
of the drawing.

We introduce a new layer assign-
ment method which is able to han-
dle cyclic graphs and to consider com-
pactness properties for selecting an
edge reversal set. Specifically, (1) it
can overcome the previously men-
tioned lower bound on the number of
layers arising from the longest path
of a graph, (2) it can be flexibly con-
figured to either favor elongated or
narrow drawings, thus improving on
aspect ratio, and (3) compared to pre-
vious methods it is able to reduce
both the number of dummy nodes and
reversed edges for certain graphs. See
Figs. 1 and 2 for examples.

We discuss how to solve the new
method to optimality using an integer
programming model as well as heuris-
tically, and evaluate both.

Outline. The next section presents
related work. We introduce problems and definitions in Sect. 3, and present meth-
ods to solve the newly introduced problems in Sects. 4 and 5. Section 6 discusses
thorough evaluations before we conclude in Sect. 7.
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2 Related Work

The cycle removal phase targets the NP-complete Feedback Arc Set Problem
(FASP). Several approaches have been proposed to solve FASP either to opti-
mality or heuristically [11]. In the context of layered graph drawing, revers-
ing a minimal number of edges does not necessarily yield the best results, and
application-inherent information might make certain edges better candidates to
be reversed [7]. Moreover, the decision which edges to reverse in order to make
a graph acyclic has a big impact on the results of the subsequent layering phase.
Nevertheless the two phases are executed separately until today.

To solve the second phase, i.e. the layer assignment problem, several
approaches with different optimization goals have emerged. Eades and Sugyiama
employ a longest path layering, which requires linear time, and the resulting num-
ber of layers equals the number of nodes of the graph’s longest path [6]. Gansner
et al. solve the layering phase by minimizing the sum of the edge lengths regard-
ing the number of necessary dummy nodes [7]. They show that the problem is
solvable in polynomial time and present a network simplex algorithm which in
turn is not proven to be polynomial, although it runs fast in practice. This app-
roach was found to inherently produce compact drawings and performed best in
comparison to other layering approaches [10].

Fig. 2. A graph drawn with (a) EaGa
(known methods as described in Sect. 2)
and (b) 1-30-GLP (this work). This exam-
ple illustrates that GLP-IP can perform
better in both metrics: reversed edges
(dashed) and dummy nodes.

Healy and Nikolov tackle the prob-
lem of finding a layering subject to
bounds on the number of layers and
the maximum number of nodes in any
layer with consideration of dummy
nodes using an integer linear pro-
gramming approach [10]. The prob-
lem is NP-hard, even without consid-
ering dummy nodes. In a subsequent
paper they present a branch-and-cut
algorithm to solve the problem faster
and for larger graph instances [9].
Later, Nikolov et al. propose and eval-
uate several heuristics to find a lay-
ering with a restricted number of
nodes in each layer [14]. Nachmanson
et al. present an iterative algorithm
to produce drawings with an aspect
ratio close to a previously specified
value [13].

All of the previously mentioned
layering methods have two major
drawbacks. (1) They require the input graph to be acyclic upfront, and (2) they
are bound to a minimum number of layers equal to the longest path of the graph.
In particular this means that the bound on the number of layers in the methods
of Nikolov et al. cannot be smaller than the longest path.
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In the context of force-directed layout, Dwyer and Koren presented a method
that can incorporate constraints enforcing all directed edges to point in the same
direction [4]. They explored the possibility to relax some of the constraints, i.e. let
some of the edges point backwards, and found that this improves the readability
of the drawing. In particular, it reduced the number of edge crossings.

3 Definitions and Problem Classification

Let G = (V,E) denote a graph with a set of nodes V and a set of edges E.
We write an edge between nodes u and v as (u, v) if we care about direction,
as {u, v} otherwise. A layering of a directed graph G is a mapping L : V → N.
A layering L is valid if ∀(u, v) ∈ E: L(v) − L(u) ≥ 1.

Problem 1 (Directed Layering (DLP)). Let G = (V,E) be an acyclic
directed graph. The problem is to find a minimum k and a valid layering L
such that

∑
(v,w)∈E(L(w) − L(v)) = k.

As mentioned in Sect. 2, DLP was originally introduced by Gansner et al. [7].
We extend the idea of a layering for directed acyclic graphs to general graphs,
i.e. graphs that are either directed or undirected and that can possibly be cyclic.
Undirected graphs can be handled by assigning an arbitrary direction to each
edge, thus converting it into a directed one, and by hardly penalizing reversed
edges. We call a layering L of a general graph G feasible if ∀{u, v} ∈ E : |L(u)−
L(v)| ≥ 1.

Problem 2 (Generalized Layering (GLP)). Let G = (V,E) be a possibly
cyclic directed graph and let ωlen, ωrev ∈ N be weighting constants. The problem
is to find a minimum k and a feasible layering L such that

ωlen

⎛

⎝
∑

(v,w)∈E

|L(w) − L(v)|
⎞

⎠ + ωrev |{(v, w) ∈ E : L(v) > L(w)}| = k.

Intuitively, the left part of the sum represents the overall edge length (i.e. the
number of dummy nodes) and the right part represents the number of reversed
edges (i.e. the FAS). After reversing all edges in this FAS, the feasible layer-
ing becomes a valid layering. Compared to the standard cycle removal phase
combined with DLP, the generalized layering problem allows more flexible deci-
sions on which edges to reverse. Also note that GLP with ωlen = 1, ωrev = ∞
is equivalent to DLP for acyclic input graphs and that while DLP is solvable in
polynomial time, both parts of GLP are NP-complete [16].

4 The IP Approach

In the following, we describe how to solve GLP using integer programming. The
rough idea of this model is to assign integer values to the nodes of the given
graph that represents the layer in which a node is to be placed.
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Input and Parameters. Let G = (V,E) be a graph with node set V = {1, . . . , n}.
Let e be the adjacency matrix, i.e. e(u, v) = 1 if (u, v) ∈ E and e(u, v) = 0
otherwise. ωlen and ωrev are weighting constants.

Integer Decision Variables. l(v) takes a value in {1, . . . , n} indicating that node
v is placed in layer l(v), for all v ∈ V .

Boolean Decision Variables. r(u, v) = 1 if and only if edge e = (u, v) ∈ E and e
is reversed, i.e. l(u) > l(v), for all u, v ∈ V . Otherwise, r(u, v) = 0.

Minimize ωlen

∑

(u,v)∈E

|l(u) − l(v)| + ωrev

∑

(u,v)∈E

r(u, v).

The sums represent the edge lengths, i.e. the number of dummy nodes, and
the number of reversed edges, respectively. Constraints are defined as follows:

1 ≤ l(v) ≤ n ∀v ∈ V (A)
|l(u) − l(v)| ≥ 1 ∀(u, v) ∈ E (B)

n · r(u, v) + l(v) ≥ l(u) + 1 ∀(u, v) ∈ E (C)

Constraint (A) restricts the range of possible layers. (B) ensures that the result-
ing layering is feasible. (C) binds the decision variables in r to the layering, i.e.
because r is part of the objective, and ωrev > 0, r(u, v) gets assigned 0 unless
l(v) < l(u), for all (u, v) ∈ E.

Variations. The model can easily be extended to restrict the number of layers
by replacing the n in constraint (1) by a desired bound b ≤ n.

The edge matrix can be extended to contain a weight wu,v for each edge
(u, v) ∈ E. This can be helpful if further semantic information is available, i.e.
about feedback edges that lend themselves well to be reversed.

5 The Heuristic Approach

Interactive modeling tools providing automatic layout facilities require execution
times significantly shorter than one second. As the IP formulation discussed
in the previous section rarely meets this requirement, we present a heuristic
to solve GLP. It proceeds as follows. (1) Leaf nodes are removed iteratively,
since it is trivial to place them with minimum edge length and desired edge
direction. Note that therefore the heuristic is not yet able to improve on trees
that yield a poor compactness. We leave this for future research. (2) For the
(possibly cyclic) input graph an initial feasible layering is constructed which is
used to deduce edge directions yielding an acyclic graph. (3) Using the network
simplex method presented by Gansner et al. [7], a solution with minimal edge
length is created. (4) We execute a greedy improvement procedure after which
we again deduce edge directions and re-attach the leaves. (5) We apply the
network simplex algorithm a second time to get a valid layering with minimal



A Generalization of the Directed Graph Layering Problem 201

Algorithm 1. constructLayering
Input: directed graph G = (V,E)
Data: Sets U , C. For all v ∈ V score[v], incAs[v], outAs[v]
lIndex ← −1, rIndex ← 0
Output: index[v]: feasible layering of G

1 for v ∈ V do
2 score[v] ← |{w | {v, w} ∈ E}|; incAs[v] ← 0; outAs[v] ← 0
3 add v to U

4 remove random v from U
5 c ← v
6 while U not empty do
7 if incAs[c] < outAs[c] then
8 index[c] ← lIndex−−
9 else

10 index[c] ← rIndex++

11 remove c from U and C; cScore ← ∞
12 for v ∈ {w | {c, w} ∈ E ∧ w ∈ U} do
13 add v to C; score[v]−−
14 if (c, v) ∈ E then incAs[v]++ else outAs[v]++

15 for v ∈ C do
16 if score[v] < cScore then cScore ← score[v]; c ← v

edge lengths for the next steps of the layer-based approach. In the following we
will discuss steps 2 and 4 in further detail.

Step 2: Layering Construction. To construct an initial feasible solution we follow
an idea that was first presented by McAllister as part of a greedy heuristic for
the Linear Arrangement Problem (LAP) [12] and later extended by Pantrigo
et al. [15].

Nodes are assigned to distinct indexes, where as a start, a node is selected
randomly, assigned to the first index, and added to a set of assigned nodes. Based
on the set of assigned nodes a candidate list is formed, and the most promising
node is assigned to the next index. As decision criterion we use the difference
between the number of edges incident to unassigned nodes and the number of
edges incident to assigned nodes. This procedure is repeated until all nodes are
assigned to distinct indices (see Algorithm 1).

In contrast to McAllister, for GLP we allow nodes to be added to either side
of the set of assigned nodes, and decide the side based on the number of reversed
edges that would emerge from placing a certain node on that side. For this we
use a decreasing left index variable and an increasing right index variable.

Step 4: Layering Improvement. At this point a feasible layering with a minimum
number of dummy nodes w. r. t. the chosen FAS is given since we execute the net-
work simplex method of Gansner et al. beforehand. Thus we can only improve on
the number of reversed edges. We determine possible moves and decide whether
to take the move based on a profit value. Let a graph G = (V,E) and a feasible
layering L be given. For ease of presentation, we define the following notions.
An example: For a node v, topSuc are the nodes connected to v via an outgoing
edge of v and are currently assigned to a layer with lower index than v’s index.
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Intuitively, topSuc (just as botPre) are nodes connected by an edge pointing into
the “wrong” direction.

v.topSuc = {w : (v, w) ∈ E ∧ L(v) > L(w)} v.botSuc = {w : (v, w) ∈ E ∧ L(v) < L(w)}
v.topPre = {w : (w, v) ∈ E ∧ L(w) < L(v)} v.botPre = {w : (w, v) ∈ E ∧ L(w) > L(v)}
v.topAdj = v.topSuc ∪ v.topPre v.botAdj = v.botSuc ∪ v.botPre

For all these functions we define suffixes that allow to query for a certain set
of nodes before or after a certain index. For instance, for all top successors of v
before index i we write v.topSucBefore(i) = {w : w ∈ v.topSuc ∧ L(w) < i}.

Let move : V 	→ N denote a function assigning to each node a natural value.
The function describes whether it is possible to move a node without violating the
layering’s feasibility as well as how far the node should be moved. For instance,
let for a node v topPre be empty but topSuc be not empty. Thus, we can move v
to an arbitrary layer with lower index than L(v). A good choice would be one
layer before any of v’s topSuc since this would alter the connected edges to point
downwards.

move(v) =

⎧
⎨

⎩

0 if v.topSuc = ∅,
L(v) − min({L(w) : w ∈ v.topSuc}) + 1 if v.topPre = ∅,
L(v) − max({L(w) : w ∈ v.topPre}) − 1 otherwise.

Let profit : V × N × N 	→ Z denote a function assigning a quality score to
each node v if it were moved by m ∈ N to a different layer x, i.e. if it is worth
to increase some edges’ lengths for a subset of them to point downwards. Note
that we reuse ωlen and ωrev here but do not expect them to have an impact as
strong as for the IP. For the rest of the paper we fix them to 1 and 5.

profit(v, m, x) =

⎧
⎨

⎩

0 if m ≤ 1,
ωlen(m|v.topAdjBefore(x)| − m|v.botAdj|)
+ ωrev|v.topSucAfter(x)| otherwise.

As seen in Algorithm 2, the move and profit functions are determined initially
for a given feasible layering. A queue, sorted based on profit values, is then used
to successively perform moves that yield a profit. After a move of node n, both
functions can be updated for all nodes in the adjacency of n.

Time Complexity. Removing leaf nodes requires linear time, O(|V |+ |E|). Algo-
rithm1 is quadratic in the number of nodes, O(|V |2). The while loop has to
assign an index to every node and the two inner for loops are, for a complete
graph, iterated |V |

2 times on average. Determining the next candidate (lines 15–
16) could be accelerated using dedicated data structures. The improvement step
strongly depends on the input graph. The network simplex method runs report-
edly fast in practice [7], although it has not been proven to be polynomial. Our
evaluations showed that the heuristic’s overall execution time is clearly domi-
nated by the network simplex method (cf. Sect. 6).
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Algorithm 2. improveLayering
Input: feasible layering of G = (V,E) in index[v]
Data: priority queue PQ
For all v ∈ V move[v], profit[v]
Output: index[v]: feasible layering of G

1 for v ∈ V do
2 move[v] ← move(v)
3 profit[v] ← profit(v, move[v], index[v] − move[v])
4 if profit[v] > 0 then enqueue v to PQ

5 while PQ not empty do
6 v ← dequeue PQ
7 index[v] −= move[v]
8 for w ∈ {w | {v, w} ∈ E} do
9 update move[w] and profit[w]

10 if profit[w] > 0 then enqueue w to PQ else possibly dequeue w from PQ

6 Evaluation

In this section we evaluate three points: (1) the general feasibility of GLP to
improve the compactness of drawings, (2) the quality of metric estimations for
area and aspect ratio, and (3) the performance of the presented IP and heuristic.
Our main metrics of interest here are height, area, and aspect ratio, as defined
in an earlier paper [8]. Remember that the layer-based approach is defined as
a pipeline of several independent steps. After the layering phase, which is the
focus of our research here, these latter two metrics can only be estimated using
the number of dummy nodes, the number of layers, and the maximal number
of nodes in a layer. Results can be seen in Table 1 and Table 2, which we will
discuss in more detail in the remainder of this section.

Obtaining a Final Drawing. To collect all metrics we desire, we have to create
a final drawing of a graph. Over time numerous strategies have been presented
for each step of the layer-based approach, we thus present several alternatives.
To break cycles we use a popular heuristic by Eades et al. [5]. To determine
a layering we use our newly presented approach GLP (both the IP method
and heuristic, denoted by GLP-IP and GLP-H) and alternatively the network
simplex method presented by Gansner et al. [7]. We denote the combination of
the cycle breaking of Eades et al. and the layering of Gansner et al. as EaGa
and consider it to be an alternative to GLP. Crossings between pairs of layers
are minimized using a layer sweep method in conjunction with the barycenter
heuristic, as originally proposed by Sugiyama et al. [20]. We employ two different
strategies to determine fixed coordinates for nodes within the layers. First, we
consider a method introduced by Buchheim et al. that was extended by Brandes
and Köpf [1,2], which we denote as BK. Second, we use a method inspired by
Sander [18] that we call LS. Edges are routed either using polylines (Poly) or
orthogonal segments (Orth). The orthogonal router is based on the methods
presented by Sander [19]. Overall, this gives twelve setups of the algorithm:
three layering methods, two node placement algorithms, and two edge routing
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Table 1. Average values for different layering strategies employed to the test graphs.
Different weights are used for GLP-IP as specified in the column head and final draw-
ings were created using BK and Poly. For GLP-H∗ no improvement was performed.
A detailed version of these results can be found in [17].

1–10 1–20 1–30 1–40 1–50 EaGa GLP-H GLP-H∗

Reversed edges 3.71 2.89 2.64 2.54 2.44 2.93 8.67 10.36

Dummy nodes 34.45 46.73 52.79 56.14 60.53 72.64 48.48 58.21

Height 843 943 980 1,004 1,025 1,084 930 1,027

Area 631,737 672,717 691,216 700,385 708,361 737,159 656,070 720,798

Aspect ratio 0.77 0.65 0.63 0.61 0.59 0.55 0.67 0.60

(a) Random graphs

1–10 1–20 1–30 1–40 1–50 EaGa GLP-H GLP-H∗

Reversed edges 2.74 1.47 1.02 0.72 0.56 0 7.07 8.55

Dummy nodes 39.91 55.47 65.73 75.66 82.47 141.30 53.53 68.91

Height 1,068 1,224 1,334 1,409 1,469 1,727 1,137 1,216

Area 587,727 622,838 641,581 660,842 695,494 874,374 629,778 691,372

Aspect ratio 0.34 0.28 0.24 0.23 0.22 0.20 0.33 0.32

(b) North graphs

procedures. In the following, let ωlen-ωrev-GLP denote the used weights. If we
do not further qualify GLP, we refer to the IP model.

Test Graphs. Our new approach is intended to improve the drawings of graphs
with a large height and relatively small width, hence unfavorable aspect ratio.
Nevertheless, we also evaluate the generality of the approach using a set of 160
randomly generated graphs with 17 to 60 nodes and an average of 1.5 edges per
node. The graphs were generated by creating a number of nodes, assigning out-
degrees to each node such that the sum of outgoing edges is 1.5 times the nodes,
and finally creating the outgoing edges with a randomly chosen target node.
Unconnected nodes were removed. Second, we filtered the graph set provided by
North1 [3] based on the aspect ratio and selected 146 graphs that have at least
20 nodes and a drawing2 with an aspect ratio below 0.5, i.e. are at least twice as
high as wide. We also removed plain paths, that is, pairs of nodes connected by
exactly one edge, and trees. For these special cases GLP in its current form would
not change the resulting number of reversed edges as all edges can be drawn with
length 1. This is also true for any bipartite graph. Note however that GLP can
easily incorporate a bound on the number of layers which can straightforwardly
be used to force more edges to be reversed, resulting in a drawing with better
aspect ratio.

General Feasibility of GLP. An exemplary result of the GLP approach compared
to EaGa can be seen in Fig. 2. For that specific drawing, GLP produces fewer
reversed edges, fewer dummy nodes, and less area (both in width and height).
For all tested setups the average effective height and area (normalized by the
1 http://www.graphdrawing.org/data/.
2 Created using BK and Poly.

http://www.graphdrawing.org/data/
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Table 2. Results for final drawings of the set of random graphs, when applying different
layout strategies. For GLP-IP ωlen = 1 and ωrev = 30 were used. Area is normalized by
a graph’s node count. The most interesting comparisons are between columns where
EaGa and GLP use the same strategies for the remaining steps. Detailed results can
be found in [17].

Edge routing htrOyloP

Node coord. BK LS BK LS

Layering EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H EaGa GLP-IP GLP-H

Height 1,165 1,043 898 943 824 732 790 711 652 817 746 678
Area 20,194 18,683 15,575 12,383 11,035 10,075 13,582 12,642 11,272 10,666 9,917 9,295
Aspect ratio 0.59 0.67 0.67 0.55 0.64 0.64 0.84 0.96 0.90 0.63 0.70 0.68

number of nodes) of GLP and the heuristic are smaller than EaGa’s, see Table 2.
The average aspect ratios come closer to 1.0. For simplicity, in this paper we
desire aspect ratios closer to 1.0. For a more detailed discussion on this topic see
Gutwenger et al. [8].

Furthermore, we found that by altering the weights ωrev and ωlen a trade-off
between reversed edges and resulting dummy nodes (and thus area and aspect
ratio) can be achieved, which can be seen in Table 1a.

The results for the North graphs are similar. Since the North graphs are
acyclic, the cycle breaking phase is not required and current layering algorithms
cannot improve the height. The GLP approach, however, can freely reverse edges
and hereby change the height and aspect ratio. Results can be seen in Table 2.
Clearly, EaGa has no reversed edges as all graphs are acyclic. 1-10-GLP starts
with an average of 2.7 reversed edges and the value constantly decreases with an
increased weight on reversed edges. The number of dummy nodes on the other
hand constantly decreases from 141.3 for EaGa to 39.9 for 1-10-GLP.

The average height and average area of the final drawings decrease with an
increasing number of reversed edges. For 1-10-GLP the average height and area
are 38.2% and 33.8% smaller than EaGa. The aspect ratio changes from an
average of 0.20 for EaGa to 0.34 for 1-10-GLP.

The results show that for the selected graphs, for which current methods
cannot improve on height, the weights of the new approach allow to find a
satisfying trade-off between reversed edges and dummy nodes. Furthermore, the
improvements in compactness stem solely from the selection of weights, not from
an upper bound on the number of layers. Naturally, such a bound can further
improve the aspect ratio and height.

Metric Estimations. Table 2 presents results that were measured on the final
drawing of a graph. As mentioned earlier, after the layering step these values
are not available and estimations are commonly used to deduce the quality of a
result. For our example graphs, the estimated area reduced from 222.9 (EaGa)
to 187.4 (1-30-GLP) on average. The estimated aspect ratios increase on average
from 0.74 to 0.84. Both tendencies conform to the averaged effective values
in Table 2, i.e.GLP-IP and the GLP-H perform better. However, we observed
that for 64% of the graphs the tendency of the estimated area contradicts the
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tendency of the effective area.3 54% when not considering dummy nodes. In
other words, for a specific graph the estimated area might be decreased for GLP
compared to EaGa but the effective area is increased for GLP (or vice versa).
This clearly indicates that an estimation can be misleading. Besides, node place-
ment and edge routing can have a non-negligible impact on the aspect ratio and
compactness of the final drawing.

Performance of the Heuristic. Results for final drawings using the presented
heuristic are included in Table 2 and are comparable to 1-30-GLP, i.e. the heuris-
tic performs better than EaGa w. r. t. the desired metrics.

Tables 1a and 1b underline this result and show that the improvement step
of the heuristic clearly improves on all measured metrics. Further, more detailed
results, can be found in [17]. Nevertheless, the heuristic yields significantly more
reversed edges. When aiming for compactness, we consider this to be acceptable.

Execution Times. To solve the IP model we used CPLEX 12.6 and executed the
evaluations on a server with an Intel Xeon E5540 CPU and 24 GB memory. The
execution times for GLP-IP vary between 476 ms for a graph with 19 nodes and
541 s for a graph with 58 nodes and exponentially increase with the graph’s node
count. This is impracticable for interactive tools that rely on automatic layout,
but is fast enough to collect optimal results for medium sized graphs.

The execution time of the heuristic is compared to EaGa and was measured
on a laptop with an Intel i7-3537U CPU and 8 GB memory. The reported time
includes only the first two steps of the layer-based approach. It turns out that the
execution time of the heuristic is on average 2.3 times longer than EaGa. This
seems reasonable, as it involves two executions of the network simplex layering
method. For the tested graphs, the construction and improvement steps of the
heuristic hardly contribute to its overall execution time. The effective execution
time ranges between 0.1 ms and 10.0 ms for EaGa and 0.3 ms and 19.7 ms for the
heuristic. Hence, the heuristic is fast enough to be used in interactive tools.

We also ran the algorithm five times for five randomly generated graphs with
1000 nodes and 1500 edges. EaGa required an average of 374 ms, the heuristic
666 ms with about 4 ms for construction an 2 ms for improvement. This shows
that the time contribution of the latter two is negligible even for larger graphs.

7 Conclusion

In this paper we address problems with current methods for the first two phases
of the layer-based layout approach. We argue that separately performing cycle
breaking and layering is disadvantageous when aiming for compactness.

We present a configurable method for the layering phase that, compared
to other state-of-the-art methods, shows on average improved performance on
compactness. That is, the number of dummy nodes is reduced significantly for
most graphs and can never increase. While the number of dummy nodes only
allows for an estimation of the area, the effective area of the final drawing is
3 Using BK and Poly.
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reduced as well. Furthermore, graph instances for which current methods yield
unfavorable aspect ratios can easily be improved. Also, the presented heuristic
clearly improves on the desired metrics. Depending on the application, a slight
increase in the number of reversed edges is often acceptable.

We want to stress that the common practice to determine the quality of meth-
ods developed for certain phases of the layer-based approach based on metrics
that represent estimations of the properties of the final drawing is error-prone.
For instance, estimations of the area and aspect ratio after the layering phase
can vary significantly from the effective values of the final drawing and strongly
depend on the used strategies for computing node and edge coordinates.

Future work will include improving the heuristic, e.g. selecting the initial node
based on a certain criterion instead of randomly in Algorithm1 should improve
the results. We also plan to incorporate hard bounds on the width of a drawing.
It is important that methods support to prevent, or at least to strongly penalize,
the reversal of certain edges, since certain diagram types demand several edges
to be drawn forwards. Also, user studies could help understand which edges are
natural candidates to be reversed from a human’s perspective.

Furthermore, in an accompanying technical report we present a variation of
GLP where we fix the size of the FAS while remaining free in the choice of
which edges to reverse [16], which so far has only been evaluated using integer
programming.
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and Reinhard von Hanxleden2

1 Department of Computer Science, Technische Universität Dortmund,
Dortmund, Germany

{adalat.jabrayilov,petra.mutzel}@tu-dortmund.de
2 Department of Computer Science, Kiel University, Kiel, Germany

{uru,rvh}@informatik.uni-kiel.de
3 Department of Computer Science, Universität zu Köln, Köln, Germany
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Abstract. We consider the problem of layering general directed graphs
under height and possibly also width constraints. Given a directed graph
G = (V, A) and a maximal height, we propose a layering approach that
minimizes a weighted sum of the number of reversed arcs, the arc lengths,
and the width of the drawing. We call this the Compact Generalized Lay-
ering Problem (CGLP). Here, the width of a drawing is defined as the
maximum sum of the number of vertices placed on a layer and the num-
ber of dummy vertices caused by arcs traversing the layer. The CGLP
is NP-hard. We present two MIP models for this problem. The first
one (EXT) is our extension of a natural formulation for directed acyclic
graphs as suggested by Healy and Nikolov. The second one (CGL) is a
new formulation based on partial orderings. Our computational exper-
iments on two benchmark sets show that the CGL formulation can be
solved much faster than EXT using standard commercial MIP solvers.
Moreover, we suggest a variant of CGL, called MML, that can be seen
as a heuristic approach. In our experiments, MML clearly improves on
CGL in terms of running time while it does not considerably increase
the average arc lengths and widths of the layouts although it solves a
slightly different problem where the dummy vertices are not taken into
account.

Keywords: Layer-based layout · Layer assignment · Mixed integer
programming

1 Introduction

A widely used hierarchical drawing style for directed graphs is the method pro-
posed by Sugiyama et al. [11] that involves the following steps in this order:
(i) cycle removal, (ii) layering phase, (iii) crossing minimization, and (iv) coor-
dinate assignment and arc routing. One of the consequences of this workflow is
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 209–221, 2016.
DOI: 10.1007/978-3-319-50106-2 17
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(a) Classic: 0 reversed arcs,
44 dummy vertices

(b) CGL: 3 reversed arcs,
20 dummy vertices

(c) MML: 3 reversed arcs,
37 dummy vertices

Fig. 1. (a) A graph drawn with traditional methods [2,4] where every arc has to point
downwards, resulting in a poor aspect ratio – here emphasized by scaling down the
image to fit with the right ones. The methods CGL and MML, presented in this paper,
are able to impose a bound on the height of the drawing, allowing some arcs to point
upwards. The created drawings (b) and (c) are significantly more compact and improve
readability. Reversed arcs are drawn bold and dashed.

that it is hard to control the aspect ratio of the final layout. Phase (ii) requires
an acyclic graph as input and the height of the produced layering inherently
depends on its longest path. So if phase (i) breaks cycles inappropriately or if
an acyclic graph whose longest path is much larger than its width is already
given as initial input, it is impossible to construct a compact layering. However,
the readability and compactness of a drawing might be considerably improved if
arcs to be reversed are chosen carefully and in an integrated fashion, see Fig. 1
for an example. If it is required that all arcs point downward, then the layering
will have a poor aspect ratio as shown in Fig. 1a. If we allow reversing some arcs
so that they point upward, the aspect ratio can be improved drastically (see
Figs. 1b and 1c).

In order to achieve this, Rüegg et al. [10] suggested to investigate the Gen-
eralized Layering Problem (GLP) that combines the first two interdependent
phases of the Sugiyama approach. As the problem is NP-hard, they proposed
an integer linear programming (ILP) formulation in which the weighted sum
of the number of reversed arcs and the arcs lengths is minimized, and where
also the height of the drawing can be restricted. Their approach improved the
compactness of the derived layouts. However, it permits only limited control over
the width since it does not take the dummy vertices into account that are caused
by arcs connecting vertices on non-adjacent layers. On the other hand, Healy
and Nikolov [5] have considered the layering problem with dummy vertices, but
only for acyclic directed graphs (DAGs) and for the case that both the desired
maximum height and the width of the drawing are given as inputs.

Contributions. The purpose of this paper is to close this gap, i.e., to derive
a model which is capable of computing a layering of a general digraph by
minimizing a weighted sum of the number of reversed arcs, the total arc length,
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and the width W of the resulting drawing taking the dummy vertices into
account. We call this the Compact Generalized Layering Problem (CGLP). The
only input to our approach, besides the graph and the weights for the objective
function, is the desired maximum height H of the drawing. We will discuss how
H can be chosen such that the existence of a feasible layering is always guar-
anteed by our model — which is in contrast to a setting where the user has to
specify both H and W . Nevertheless, an upper bound on W can still be specified.

We present two mixed integer linear programming (MIP) formulations for
the CGLP. The first one (EXT) is a natural extension of the already mentioned
model by Healy and Nikolov for DAGs, and based on assignment variables. The
second one (CGL) is a completely new formulation based on partial orderings.
Our computational experiments on two benchmark sets show that the CGL for-
mulation can be solved much faster than EXT when using a standard commercial
MIP solver (Gurobi1) for both of the models. Moreover, CGL is able to compute
optimal solutions for each of the tested problem instances in less than seven
minutes of computation time on a standard PC while taking only a few seconds
for most of them.

While in general we try to keep edges short, we may want to emphasize
reversed arcs, for example in a flow diagram with cycles, by drawing them rather
long; see also Fig. 1c. For this reason, we propose a variant of CGL, called MML
(Min+Max Length), for the problem of minimizing the weighted sum of reversed
arcs, positive forward arc lengths, negative backward arc lengths, and the maxi-
mum number of real vertices on a layer. Within our experiments, MML is faster
than both EXT and CGL without considerably increasing the average arc lengths
and widths of the layouts.

As mentioned by Rüegg et al., the aspect ratio of a final drawing (i.e. in
pixels) does not only depend on the layering but also on the final phases of the
Sugiyama approach, i.e. coordinate assignment and arc routing. Even more, it
can deviate significantly from the aspect ratio estimated after the layering phase,
as described in [10]. Hence, in practice, there is a high demand for methods that
can be quickly adjusted to the specific graph instance and use case. Here, the
models presented in this paper provide more control over the produced layering
compared to existing approaches to the GLP.

Outline. The paper is organized as follows. First, we discuss related research in
Sect. 2. Definitions, preliminaries and motivations for our studies and models are
given in Sect. 3. Section 4 presents our newly developed MIP models which are
finally evaluated experimentally in Sect. 5. We conclude with Sect. 6.

2 Related Work

Over the years several approaches have been proposed for the layering phase of
the Sugiyama approach. Eades and Sugiyama proposed a method that is known
as longest path layering [3]. This approach guarantees to produce a layering with

1 http://www.gurobi.com/.

http://www.gurobi.com/


212 A. Jabrayilov et al.

a minimum number of layers, i.e. minimum height, but the width can become
arbitrarily large. Gansner et al. [4] use an ILP formulation to create layerings
with minimum total arc length that can be solved efficiently using a network sim-
plex algorithm. The Coffman-Graham algorithm [1] delivers approximate solu-
tions to the precedence-constrained multi-processor scheduling problem that can
be used to calculate a layering with a maximum number of real vertices per layer.
However, dummy vertices are not taken into account but can have a significant
impact on the actual width of the drawing. Still, Nachmanson et al. [8] use
the Coffman-Graham algorithm as part of an iterative heuristic procedure to
produce drawings with a certain aspect ratio.

The layering problem with restricted width and consideration of dummy
vertices has been studied in the literature as well. Healy and Nikolov found that
minimizing the number of dummy vertices during layering inherently produces
compact drawings [6]. Following this observation, they target dummy vertex
minimization with a branch and cut algorithm that is able to incorporate bounds
on both width and height [5]. Nikolov et al. discuss heuristics to find layerings
with small width when considering dummy vertices [9], however, no explicit
bound on the width and height can be used.

Since all of the above methods rely on the input graph to be acyclic, the
minimum height of their layerings directly relates to the longest path of the
graph. Rüegg et al. [10] integrate the first two phases of the Sugiyama approach
to allow arbitrary graphs as input by minimizing a weighted sum of the number
of reversed arcs and the number of dummy vertices. They showed that this
overcomes the previously mentioned problem regarding a graph’s longest path
and also allows more compact drawings in general. Still, they did not consider
hard bounds on the width and height of the drawing and did not consider the
contribution of dummy vertices to the width.

3 Preliminaries

As we are concerned with the layering phase of the layout method suggested by
Sugiyama et al. [11], we briefly recall the definition of layerings of directed graphs
at the beginning of this section. Afterwards, we state our new layering problem
definition and discuss how to guarantee the existence of feasible drawings under
this model.

Layerings of Directed Graphs. A layering of a digraph G = (V,A) with vertex
set V and arc set A is a function � : V → N

+ assigning a layer �(v) to each
vertex v ∈ V . In our context, for a feasible layering, it is necessary that no
two adjacent vertices are placed on the same layer, i.e., �(u) �= �(v) for all
(u, v) ∈ A. The layering determines the height, the width, the arc lengths, and
the number of reversed arcs, which will be defined in the following. The height H
of a layering � is the maximum layer used by �. The width Wk(�) of a layer k in a
layering � is the sum of the number of vertices assigned to layer k and the number
of dummy vertices caused by arcs traversing the layer k. More formally, let
Vk = {v ∈ V | �(v) = k} and Dk = {(u, v) ∈ A | �(u) < k and �(v) > k or �(v) <
k and �(u) > k}. Then Wk(�) = |Vk| + |Dk| and the width of � is defined as
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the maximum width of all layers in �, i.e., W = max1≤k≤H Wk(�). The total arc
length len(�) is the sum of the arc lengths |�(u)−�(v)| of all arcs (u, v) ∈ A in the
layering �. An arc (u, v) ∈ A in a layering � is called a reverse arc if �(u) > �(v)
and the total number of reversed arcs in � is denoted by rev(�). The estimated
aspect ratio of a layering with width W and height H is defined as W/H. In
contrast, the aspect ratio, considers the width and height of a final layout after
all of the Sugiyama phases. So far, we assumed that real as well as dummy
vertices have unit width. Nevertheless, each of our MIP models presented in
Sect. 4 can easily be extended to deal with varying vertex widths.

Asking the user to specify bounds on both the height H and the width W
of a hierarchical drawing a priori can easily lead to infeasible problem settings
or require several iterations to fit the parameters to the graph structure. We
circumvent these issues in our subsequently defined variation of the problem by
requiring only H as an input parameter while making W a subject of optimiza-
tion. We also discuss how H can be chosen safely.

The Compact Generalized Layering Problem (CGLP). As an extension to the
Generalized Layering Problem (GLP) described in [10], we define the Com-
pact Generalized Layering Problem as follows: Given a (not necessarily acyclic)
directed graph G = (V,A) and a maximum layering height H, compute a layer-
ing � such that the end-vertices of each arc are assigned to different layers and
the following objective function is minimized: the weighted sum of the number
of reversed arcs rev(�), the total arc length len(�), and the width W (�).

Lower Bounds on the Height H of Feasible Layerings. Since, in our generalized
setting, the direction of the arcs can be arbitrary, we can think of undirected
graphs to determine a lower bound on H. To assign layers to vertices such that no
two adjacent vertices are on the same layer is an equivalent problem as to assign
colors to vertices such that no two adjacent vertices have the same color. Hence,
the minimum number of layers, i.e., height, necessary for a feasible layering of
an undirected graph G = (V,E) is equal to its chromatic number χ(G).

Since it is NP-hard to compute χ(G), we suggest to approximate it. A valid
upper bound for χ(G) that can be computed in linear time is the maximum
vertex degree maxv∈V deg(v) of G plus one. This bound is tight if G is the com-
plete graph or an odd cycle, otherwise χ(G) ≤ maxv∈V deg(v) for any connected
graph G. A better approximation can be achieved by using the largest eigenvalue
λ∗ of the adjacency matrix of G. Wilf showed that χ(G) ≤ 1+λ∗ [12] and together
with the Perron-Frobenius Theorem we have that 2 |E|

|V | ≤ λ∗ ≤ maxv∈V deg(v).
Summing up, we have H ≥ χ(G) ≤ λ∗ + 1 ≤ maxv∈V deg(v) + 1.

4 Description of the MIP Models

4.1 A Generalization of the Model by Healy and Nikolov (EXT)

As a reference, we consider a natural extension of the model by Healy and
Nikolov [5] that minimizes the total arc length of layered drawings of acyclic
digraphs while restricting the height as well as the width and taking dummy ver-
tices into account. In their model, the height H and the width W are fixed input
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parameters. In our extension for general digraphs G = (V,A), we only require
H as an input, and incorporate the width of the drawing into the optimization
process. The model describes an assignment problem (AP) with variables xv,k

to decide whether vertex v ∈ V is placed on layer 1 ≤ k ≤ H (xv,k = 1) or not
(xv,k = 0). If an arc (u, v) ∈ A is reversed, then this is expressed by a variable
ru,v = 1, otherwise ru,v = 0. The variables zuv,k model whether arc (u, v) causes
a dummy vertex on layer 2 ≤ k ≤ H − 1, which is important to formulate a
proper width constraint. To save extra arc length variables, we exploit the fact
that the length of an arc is exactly the number of dummy vertices it causes plus
one. The full model is:

min
(
ωrev

∑
(u,v)∈A

ru,v
)

+
(
ωlen

∑
(u,v)∈A

H−1∑
k=2

zuv,k
)

+ ωwid W

s.t.
H∑

k=1

xv,k = 1 for all v ∈ V (1)

xu,k + xv,k ≤ 1 for all (u, v) ∈ A, 1 ≤ k ≤ H (2)

xu,k −
H∑
l=k

xv,l ≤ ruv for all (u, v) ∈ A, 1 ≤ k ≤ H (3)
∑
v∈V

xv,k ≤ W for all k ∈ {1,H} (4)

∑
v∈V

xv,k +
∑

(u,v)∈A

zuv,k ≤ W for all 2 ≤ k ≤ H − 1 (5)

∑
l<k

xv,l − ∑
l≤k

xu,l ≤ zuv,k for all (u, v) ∈ A, 2 ≤ k ≤ H − 1 (6)

∑
l<k

xu,l − ∑
l≤k

xv,l ≤ zuv,k for all (u, v) ∈ A, 2 ≤ k ≤ H − 1 (7)

xv,k ∈ {0, 1} for all v ∈ V, 1 ≤ k ≤ H

ru,v ∈ [0, 1] for all (u, v) ∈ A

zuv,k ∈ [0, 1] for all (u, v) ∈ A, 2 ≤ k ≤ H − 1
W ∈ R≥0

The objective function minimizes the weighted sum of the number of reversed
arcs, the total arc length, and the width W of the drawing. Equations (1) ensure
that exactly one layer is assigned to each v ∈ V . Inequalities (2) enforce adjacent
vertices to be placed on different layers. If an arc (u, v) is reversed due to the
positions of its end vertices, then inequality (3) makes sure that ru,v is equal to
1 (otherwise, it will be 0 due to the objective function). The total number of
vertices and dummy vertices assigned to one layer must never exceed W which is
ensured by (4) and (5). Finally, inequalities (6) and (7) enforce a variable zuv,k
to be 1 if �(u) < k and �(v) > k or vice versa. The integrality of all continuous
variables is implied by the integrality of the x-variables due to the constraints
and the objective function. Model EXT has O(|V | · H + |A| · H) variables and
O(|V | + |A| · H) constraints.
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4.2 Our New Ordering-Based MIP Model (CGL)

The CGL model is based on the observation that the layering problem is a
partial ordering problem (POP) in the sense that a vertex u is smaller than v
(i.e., u < v) in the partial order if �(u) < �(v).

Following this idea, we introduce, for each v ∈ V and for each 1 ≤ k ≤ H,
the variables yv,k that are equal to 1 if and only if �(v) < k. Conceptually, we
also have the reverse variables yk,v (equal to 1 if and only if k < �(v)), but we
will see soon that these can be discarded. However, with the reverse variables at
hand, it is easy to see that �(v) = k if and only if yk,v = yv,k = 0. In addition,
the new model also comprises the variables ru,v and zuv,k as already introduced
in Sect. 4.1. The interplay between the y- and the r-variables as described in the
following will lead to the desired partial ordering of V . The full model is:

min
(
ωrev

∑

(u,v)∈A

ru,v
)
+
(
ωlen

∑

(u,v)∈A

H−1∑

k=2
zuv,k

)
+ ωwid W

s.t. yv,1 = 0 for all v ∈ V (8)
yH,v = 0 for all v ∈ V (9)
yk,v + yv,k+1 = 1 for all v ∈ V, 1 ≤ k ≤ H − 1 (10)
yk+1,v − yk,v ≤ 0 for all v ∈ V, 1 ≤ k ≤ H − 2 (11)
−yu,k − yk,v − ru,v ≤ −1 for all (u, v) ∈ A, 1 ≤ k ≤ H (12)
−yk,u − yv,k + ru,v ≤ 0 for all (u, v) ∈ A, 1 ≤ k ≤ H (13)
yk,u + yv,k − zuv,k ≤ 1 for all (u, v) ∈ A, 2 ≤ k ≤ H − 1

(14)
yk,v + yu,k − zuv,k ≤ 1 for all (u, v) ∈ A, 2 ≤ k ≤ H − 1

(15)
∑

u∈V
(1 − yu,k − yk,u) ≤ W for all k ∈ {1, H} (16)

∑

u∈V
(1 − yu,k − yk,u) +

∑

(u,v)∈A

zuv,k ≤ W for all 2 ≤ k ≤ H − 1 (17)

yv,k, yk,v ∈ {0, 1} for all v ∈ V, 1 ≤ k ≤ H

ru,v ∈ [0, 1] for all (u, v) ∈ A

zuv,k ∈ [0, 1] for all (u, v) ∈ A, 2 ≤ k ≤ H − 1

W ∈ R≥0

The switch from an AP to a POP requires a more involved approach to yield
consistency of the model. The first four constraints enforce the graph to be
embedded into the layers 1, . . . , H. Equations (8) and (9) make sure no vertex is
assigned a layer smaller than one or larger than H. For each layer 1 ≤ k ≤ H,
each vertex v is either assigned a layer larger than k (in which case yk,v = 1) or
not (in which case yv,k+1 = 1) as is enforced by (10). These equations can be
used to eliminate one half of the y-variables (and then be eliminated themselves)
as mentioned before. If �(v) > k + 1, then this implies �(v) > k as well and this
is expressed in the transitivity inequalities (11). It remains to show that arc
directions and layer assignments will be consistent and no two adjacent vertices
can be on the same layer. This is achieved by inequalities (12) and (13). Suppose
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that ru,v = 0, i.e., the arc (u, v) ∈ A shall be a forward arc. Then the inequalities
(12) enforce that, for each layer 1 ≤ k ≤ H, either �(u) < k or �(v) > k (or both).
In this case, the inequalities (13) are inactive, but they take the equivalent role
in the reversed-arc case where ru,v = 1 and then inequalities (12) are inactive.

As already discussed for the previous model, a dummy vertex on layer k is
caused by arc (u, v) ∈ A if either �(u) > k and �(v) < k (yk,u + yv,k − 1 = 1), or
vice versa (yk,v + yu,k − 1 = 1). In the first case, inequality (14) will force zuv,k
to be 1, in the second case, inequality (15) will do so. In any other case, the
variable will be zero due to the objective function. Finally, inequalities (16) and
(17) count the vertices and dummy vertices placed on each layer k and make
sure that W is a proper upper bound on the width of the layering. The CGL
formulation has O(|V | · H + |A| · H) variables and constraints.

4.3 A Min+Max Length Variant Without Dummy Vertices (MML)

We shortly describe a variant of CGL, called MML, that can produce appealing
results usually faster when dummy vertices need not be taken into account in
terms of the width. As opposed to W , let Wr be the width of a layering where
only the real vertices are counted.

The idea is to remove the dummy vertex variables zuv,k together with the
constraints (14), (15) and to replace inequalities (16) and (17) simply by:

∑

u∈V

(1 − yu,k − yk,u) ≤ Wr for all 1 ≤ k ≤ H

We now need to count arc lengths in an ordinary fashion. The usual way to
do this is to introduce length variables lu,v ∈ R and the following two inequalities
per arc in order to capture the absolute length depending on the arc direction.

H∑

k=1

(yk,v − yk,u) ≤ lu,v for all (u, v) ∈ A (18)

H∑

k=1

(yk,u − yk,v) ≤ lu,v for all (u, v) ∈ A (19)

However, for certain use cases, e.g., when feedback should be emphasized,
it can be desirable to draw forward arcs as short as possible and maximize the
length of the reversed arcs. Therefore, we propose not to introduce the l-variables
but to directly incorporate the terms used on the left hand side of inequali-
ties (18) into the objective function, which results in the desired minimization
of the backward arcs’ negative lengths. MML’s objective function is:

min
(
ωrev

∑

(u,v)∈A

ru,v
)

+
(
ωlen

∑

(u,v)∈A

H∑

k=1

(yk,v − yk,u)
)

+ ωwid Wr

This model has only O(|V | · H + |A|) variables and O(|V | · H + |A| · H)
constraints.



Compact Layered Drawings of General Directed Graphs 217

5 Evaluation

Setup. The experiments were performed single-threadedly on an Intel Core i7-
4790, 3.6 GHz, with 32 GB of memory and running Ubuntu Linux 14.04. For
solving the MIPs, we used Gurobi 6.5. In our implementation, the CGL model
has been reduced in terms of its variables as is indicated in Sect. 4.2. Further,
in all the models we enforce at least one vertex to be placed on layer k = 1
to eliminate some symmetries. The parameters were set to H = �1.6 ∗ √|V |	,
wrev = |E| · H, wlen = 1, and wwid = 1. This choice of H delivered feasible
problems for all of our instances and emphasizes our target to have a good
aspect ratio and a drawing that adheres to standard forms such as flat screens
following the golden ratio. Due to our choice of wrev, arcs are reversed only if
this is unavoidable due to the specified height or because they are part of a cycle.

We are interested in answering the following questions2:

(H1) Does the POP-oriented CGL model dominate the AP-based EXT model
in terms of running times?

(H2) Is MML a good alternative concerning the running times and the metrics
(arc length, W , and estimated aspect ratio) of the generated layerings?

(H3) How do CGL and MML influence the aspect ratio of the final drawings?

We used two benchmark sets3. The first set ATTar, the same as used by
Rüegg et al. [10], is an extraction of 146 acyclic AT&T graphs with at least
20 vertices having aspect ratio smaller than 0.5 when drawn with the classic
Sugiyama approach. These graphs have between 20 and 99 vertices and between
20 and 168 arcs. Their arc to vertex density is about 1.5 on average but varies
significantly. Especially, the density of some graphs with about 60 vertices is
up to 4.7 which is why the results displayed in our figures and boxplots stand
out for these instances.

The second benchmark set Random consists of 340 randomly generated, not
necessarily acyclic graphs with 17 to 100 vertices, 30 to 158 arcs, and 1.5 arcs
per vertex. We used these graphs in order to analyze our approach also for cyclic
sparse digraphs. First, a number of vertices was created. Afterwards, for each
vertex, a random number of outgoing arcs (with arbitrary target) is created such
that the overall number of arcs is 1.5 times the number of vertices.

(H1): Comparison of CGL and EXT. First, we look at the ATTar instances
and model EXT. While small instances with up to 25 vertices can be solved
within at most seven seconds, there is already one instance with 29 vertices
that cannot be solved within the time limit of 10 minutes of CPU and system
time. In total, eleven of 66 instances with 25 < |V | < 50 time out, while for
the others the running times highly deviate within the full spectrum between a
second and about nine minutes. However, none of the 33 instances with more
2 Additional experimental results and example drawings can be found in [7].
3 Both benchmark sets are available on https://ls11-www.cs.tu-dortmund.de/mutzel/

gdbenchmarks.

https://ls11-www.cs.tu-dortmund.de/mutzel/gdbenchmarks
https://ls11-www.cs.tu-dortmund.de/mutzel/gdbenchmarks
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Fig. 2. Summary of the results of the ATTar graphs. For each of the four metrics the
graphs were binned based on their vertex counts (x axis) and the y axis represents
the metric’s value. For each bin the left box represents CGL’s result and the right box
MML’s result.

than 50 vertices can be solved within the time limit. The picture for the random
instances is similar. The first instance remaining unsolved within the time limit
has 37 vertices and those with 50 or more vertices can be solved only sporadically
(33 of 201).

With the CGL model, however, we were able to solve all the instances (ATTar
and Random) to optimality. The running times are shown in Figs. 2a and 3a.
All but ten of the ATTar instances were solved in less than 10 seconds of CPU
and system time, and the highest running time observed was 30 seconds. Con-
cerning the random instances, we observed that 314 of the 340 instances were
solved within 30 seconds. However, for |V | ≥ 80, a higher dispersion of running
times could be observed. The largest observed running time was 388 seconds
for an instance with 92 vertices. Since both models solve the same problem to
optimality, we can conclude that the EXT model is clearly dominated by the
CGL model when a state-of-the-art commercial MIP solver is used.

(H2): Alternative MML. In Sect. 4.3 we introduced the model MML that, as
opposed to the models EXT and CGL, maximizes the length of reversed arcs
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Fig. 3. Summary of the results of the random graphs. For each of the four metrics,
the graphs were binned based on their vertex counts (x axis) and the y axis represents
the metric’s value. For each bin, the left box represents CGL’s result and the right box
MML’s result. To improve presentation, we removed one outlier in (a) with 92 vertices
that took CGL 388s of computation time.

and does not regard the contribution of dummy vertices to a layer’s width. Our
hope was that MML is much faster than CGL and EXT without sacrificing the
quality of the generated layouts too much.

In Figs. 2a and 3a, one can see that the MML model could almost always
(except for 14 instances in total) be solved much faster than the CGL model
and hence also the EXT model. Especially, with MML all but ten instances of
the ATTar benchmark set were solved within three seconds. The boxplots also
show that the running times for solving the MML model are more robust for
both benchmark sets.

As can be seen in Figs. 2 and 3, the average arc lengths and widths of layerings
created by MML increase only moderately when compared to CGL. On average,
the increase in the total arc lengths is only about 6% and the increase in the
width is about 7% for each of the benchmark sets. The displayed widths of MML
also include dummy vertices. Since MML is significantly faster than CGL, we
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Fig. 4. Comparison of the aspect ratio of the ATTar instances when laid out with tradi-
tional methods [2,4] (box on the left), CGL (middle), and MML (right). It can be seen
that the methods presented here clearly improve the aspect ratio of the final drawing.

can conclude that it is a good alternative to CGL whenever lower running times
are required and long reversed arcs are either desired or negligible.

(H3): Aspect Ratio. Exemplary drawings of an ATTar instance as resulting from
both CGL and MML can be seen in Fig. 1. Whereas the aspect ratio of the
original layout of Fig. 1 is about 0.14, the ratio of the new layouts is about 0.6.
This improvement of the aspect ratio has been achieved by reversing three arcs
(now pointing upwards). The created drawings are significantly more compact.
In Fig. 1c, generated with the MML model, the reversed arcs can be found easily,
since the model tries to maximize their length.

An average of about 3.13 arcs needed to be reversed on the ATTar graphs
and 3.82 on the random graphs to adhere to the selected H. Also the maximum
number of reversed arcs in both benchmark sets is similar; it is 8 for the ATTar
instances and 9 for the random instances. The reversed arcs changed the esti-
mated aspect ratio of the ATTar graphs from an average of 0.51 to an average of
1.36, see Fig. 4a. As mentioned earlier, the estimated aspect ratio must not nec-
essarily coincide with the final drawing’s aspect ratio. To further inspect this, we
produced final drawings using the same strategies of the Sugiyama approach as
discussed in [10]. In Fig. 4b, one can see that the average aspect ratio improves
from 0.22 to about 0.61 for CGL and to about 0.63 for MML. From this we
conclude that both models lead to compact layouts with improved aspect ratio.

6 Conclusion

This paper introduces the CGLP, which can be seen as an extension of the DAG
Layering Problem suggested by Healy and Nikolov [5,6], and the GLP suggested
by Rüegg et al. [10]. The CGLP gives more control over the desired layering by
integrating the reversal of arcs and taking the contribution of dummy vertices
to a layering’s width into account.
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We suggest two MIP models for CGLP, one of which is based on partial
orderings and show that the model can be solved to optimality within a short
computation time for typical instances with up to 100 vertices. In addition, we
suggest an alternative MIP model (MML) for a slightly different problem which
can be solved even faster while the widths and arc lengths of the generated lay-
erings do not increase significantly. Our experiments have shown that using the
CGLP, indeed, the aspect ratio of the generated final drawings can be influenced.

Acknowledgements. This work was supported by the German Research Foundation
under the project Compact Graph Drawing with Port Constraints (ComDraPor, DFG
HA 4407/8-1 and MU 1129/9-1).
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Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 16–30. Springer,
Heidelberg (2002). doi:10.1007/3-540-45848-4 2

7. Jabrayilov, A., Mallach, S., Mutzel, P., Rüegg, U., von Hanxleden, R.: Compact
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Abstract. Canonical orderings serve as the basis for many incremen-
tal planar drawing algorithms. All these techniques, however, have in
common that they are limited to undirected graphs. While st-orderings
do extend to directed graphs, especially planar st-graphs, they do not
offer the same properties as canonical orderings. In this work we extend
the so called bitonic st-orderings to directed graphs. We fully character-
ize planar st-graphs that admit such an ordering and provide a linear-
time algorithm for recognition and ordering. If for a graph no bitonic
st-ordering exists, we show how to find in linear time a minimum set of
edges to split such that the resulting graph admits one. With this new
technique we are able to draw every upward planar graph on n vertices
by using at most one bend per edge, at most n − 3 bends in total and
within quadratic area.

1 Introduction

Drawing directed graphs is a fundamental problem in graph drawing and has
therefore received a considerable amount of attention in the past. Especially the
so called upward planar drawings, a planar drawing in which the curve represent-
ing an edge has to be strictly y-monotone from its source to target. The directed
graphs that admit such a drawing are called the upward planar graphs. Deciding
if a directed graph is upward planar turned out to be NP-complete in the general
case [11], but there exist special cases for which the problem is polynomial-time
solvable [1,2,8,16,19,20]. An important result in our context is from Di Battista
and Tamassia [6]. They show that every upward planar graph is the spanning
subgraph of a planar st-graph, that is, a planar directed acyclic graph with a
single source and a single sink. They also show that every such graph has an
upward planar straight-line drawing [6], but it may require exponential area
which for some graphs cannot be avoided [5,7].

If one allows bends on the edges, then every upward planar graph can be
drawn within quadratic area. Di Battista and Tamassia [6] describe an approach
that is based on the visibility representation of a planar st-graph. Every edge has
at most two bends, therefore, the resulting drawing has at most 6n − 12 bends
with n being the number of vertices. With a more careful choice of the vertex
positions and by employing a special visibility representation, the authors man-
age to improve this bound to (10n − 31)/3. Moreover, the drawing requires only
quadratic area and can be obtained in linear time. Another approach by Di
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 222–235, 2016.
DOI: 10.1007/978-3-319-50106-2 18
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Battista et al. [7] uses an algorithm that creates a straight-line dominance
drawing as an intermediate step. A dominance drawing, however, has much
stronger requirements than an upward planar drawing. Therefore, the presented
algorithm in [7] cannot handle planar st-graphs directly. Instead it requires a
reduced planar st-graph, that is, a planar st-graph without transitive edges. In
order to obtain such a graph, Di Battista et al. [7] split every transitive edge by
replacing it with a path of length two. The result is a reduced planar st-graph for
which a straight-line dominance drawing is obtained that requires only quadratic
area and can be computed in linear time. Then they reverse the procedure of
splitting the edges by using the coordinates of the inserted dummy vertices as
bend points. Since a planar st-graph has at most 2n − 5 transitive edges, the
resulting layout has not more than 2n−5 bends and at most one bend per edge.
To our knowledge, this bound is the best achieved so far.

These techniques are very different to the ones used in the undirected case.
One major reason is the availability of canonical orderings for undirected graphs,
introduced by de Fraysseix et al. [9] to draw every (maximal) planar graph
straight-line within quadratic area. From there on this concept has been further
improved and generalized [15,17,18]. Biedl and Derka [3] discuss various variants
and their relation. Another similar concept that extends to non-planar graphs
is the Mondshein sequence [21]. However, all these orderings have in common
that they do not extend to directed graphs, that is, for every edge (u, v), it holds
that u precedes v in the ordering. An exception are st-orderings. While they are
easy to compute for planar st-graphs, they lack a certain property compared
to canonical orderings. In [13] we introduced for undirected biconnected planar
graphs the bitonic st-ordering, a special st-ordering which has properties similar
to canonical orderings. However, the algorithm in [13] uses canonical orderings
for the triconnected case as a subroutine. Since finding a canonical ordering is
in general not a trivial task, respecting the orientation of edges makes it even
harder. Nevertheless, such an ordering is desirable, since one would be able to
use incremental drawing approaches for directed graphs that are usually limited
to the undirected case.

In this paper we extend the bitonic st-ordering to directed graphs, namely
planar st-graphs. We start by discussing the consequences of having such an
ordering available. Based on the observation that the algorithm of de Fraysseix
et al. [9] can easily be modified to obtain an upward planar straight-line drawing,
we show that for good reasons not every planar st-graph admits such an ordering.
After deriving a full characterization of the planar st-graphs that do admit a
bitonic st-ordering, we provide a linear-time algorithm that recognizes these and
computes a corresponding ordering. For a planar st-graph that does not admit
a bitonic st-ordering, we show that splitting at most n − 3 edges is sufficient to
transform it into one for which then an ordering can be found. Furthermore, a
linear-time algorithm is described that determines the smallest set of edges to
split. By combining these results, we are able to draw every planar st-graph with
at most one bend per edge, n − 3 bends in total within quadratic area in linear
time. This improves the upper bound on the total number of bends considerably.
Some proofs have been omitted and can be found in the full version [12] or in [14].
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2 Preliminaries

In this work we are solely concerned with a special type of directed graph, the
so-called planar st-graph, that is, a planar acyclic directed graph G = (V,E) with
a single source s ∈ V , a single sink t ∈ V and no parallel edges. It should be noted
that some definitions assume that (s, t) ∈ E, we explicitly do not require this
edge to be present. However, we assume a fixed embedding scenario such that
s and t are on the outer face. Under such constraints, planar st-graphs possess
the property of being bimodal, that is, the incoming and outgoing edges appear
as a consecutive sequence around a vertex in the embedding. Given an edge
(u, v) ∈ E, we refer to v as a successor of u and call u a predecessor of v. Similar
to [13], we define for every vertex u ∈ V a list of successors S(u) = {v1, . . . , vm},
ordered by the outgoing edges (u, v1), . . . , (u, vm) of u as they appear in the
embedding clockwise around u. For S(s) we choose v1 and vm such that vm, s, v1
appear clockwise on the outer face. A central problem will be the existence of
paths between vertices. Therefore, we refer to a path from u to v and its existence
with u � v ∈ G. With a few exceptions, G is clear from the context, thus, we
omit it. If there exists no path u � v, we may abbreviate it by writing u �� v.

Let G = (V,E) be a planar st-graph and π : V �→ {1, . . . , |V |} be the rank
of the vertices in an ordering s = v1, . . . , vn = t. π is said to be an st-ordering,
if for all edges (u, v) ∈ E, π(u) < π(v) holds. In case of a (planar) st-graph
such an ordering can be obtained in linear time by using a simple topological
sorting algorithm [4]. We are interested in a special type of st-ordering, the
so called bitonic st-ordering introduced in [13]. We say an ordered sequence
A = {a1, . . . , an} is bitonic increasing, if there exists 1 ≤ h ≤ n such that
a1 ≤ · · · ≤ ah ≥ · · · ≥ an and bitonic decreasing, if a1 ≥ · · · ≥ ah ≤ · · · ≤ an.
Moreover, we say A is bitonic increasing (decreasing) with respect to a function
f , if A′ = {f(a1), . . . , f(an)} is bitonic increasing (decreasing). In the following,
we restrict ourselves to bitonic increasing sequences and abbreviate it by just
referring to it as being bitonic. An st-ordering π for G is a bitonic st-ordering
for G, if at every vertex u ∈ V the ordered sequence of successors S(u) =
{v1, . . . , vm} as implied by the embedding is bitonic with respect to π, that is,
there exists 1 ≤ h ≤ m with π(v1) < · · · < π(vh) > · · · > π(vm). Notice that the
successors of a vertex are distinct and so are their labels in an st-ordering.

3 Upward Planar Straight-Line Drawings and Bitonic
st-orderings

We start by assuming that we are given a planar st-graph G = (V,E) together
with a bitonic st-ordering π. The idea is to use the straight-line algorithm
from [13] which is based on the one in [15] to produce an upward planar straight-
line layout. Due to space constraints, we omit details here and only sketch the
two modifications that are necessary. For a full pseudocode listing, an example
and a detailed description, see the full version [12] or [14]. When using a bitonic
st-ordering to drive the planar straight-line algorithm of de Fraysseix et al. [9],
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Fig. 1. (a) A vertex vk with only one predecessor wi using the vertex wi+1 as second
neighbor. Vertices in grey have not been drawn yet. The two dummy vertices vL, vR
remain the left- and rightmost ones. (b) Example of an upward planar straight-line
drawing on seven vertices.

the only critical case is the one in which a vertex vk must be placed that has
only one neighbor, say wi, in the subgraph drawn so far. In [13] we use the
idea of Harel and Sardas [15] who guarantee with their ordering that the edges
preceding or following (wi, vk) in the embedding around wi have already been
drawn. Hence one may just pretend that vk has a second neighbor either to the
right or left of wi. The idea is illustrated in Fig. 1a where vk uses wi+1, the suc-
cessor of wi on the contour, as second neighbor. The following lemma captures
the required property and shows that a bitonic st-ordering complies with it.

Lemma 1. Let G = (V,E) be an embedded planar st-graph with a corresponding
bitonic st-ordering π. Moreover, let vk be the k-th vertex in π and Gk = (Vk, Ek)
the subgraph induced by v1, . . . , vk. For every 1 < k ≤ |V | the following holds:

1. Gk and G − Gk are connected,
2. vk is in the outer face of Gk−1,
3. For every vertex v ∈ Vk, the neighbors of v that are not in Gk appear consec-

utively in the embedding around v.

Sketch of Proof. The first two properties hold for all st-orderings. For the third,
assume to the contrary, contradicting that S(v) is bitonic with respect to π. �	

Due to the third statement we can always choose a second neighbor either to
the left or right, since otherwise the grey vertices in Fig. 1a would not be con-
secutive in the embedding around wi. The second modification solves a problem
that arises in the initialization phase of the drawing algorithm. Recall that in [9]
the first three vertices are drawn as a triangle. This of course works in the case
of a canonical ordering, but requires extra care when using a bitonic st-ordering.
In order to avoid subcases and keep things simple, we add two isolated dummy
vertices vL and vR that take the roles of the first two vertices and pretend to
form a triangle with v1 = s. This has another side effect: It avoids distinguishing
between subcases when we have to find a second neighbor at the boundary of
the contour, because vL is always the first, and vR always the last vertex on
every contour during the incremental construction. See the example in Fig. 1b.
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Theorem 1. Given an embedded planar st-graph G = (V,E) and a correspond-
ing bitonic st-ordering π for G. An upward planar straight-line drawing for G of
size (2|V | − 2) × (|V | − 1) can be obtained from π in linear time.

Proof. The upward property is obtained by the following observation: The orig-
inal planar straight-line algorithm installs every vertex vk with k > 2 above its
predecessors. Since we start with vL, vR, v1, the drawing is upward. It remains
to bound the area. Notice that the input consists of the two additional ver-
tices vL, vR. The original algorithm, without any area improvements, produces
a drawing with a size of 2((|V |+2)−4)× (|V |+2)−2 = 2|V |× |V |. However, vL
and vR are dummy vertices and can be removed anyway. Moreover, every other
vertex is located above them. Hence, their removal yields a smaller drawing of
size (2|V | − 2) × (|V | − 1). �	

Now the first question that comes to mind is, if we can always find a bitonic
st-ordering. Although every planar st-graph admits an upward planar straight-
line drawing [6], there exist some classes for which it is known that they require
exponential area [5,7]. Since Theorem 1 clearly states that the drawing requires
only polynomial area, these graphs cannot admit a bitonic st-ordering.

Corollary 1. Not every planar st-graph admits a bitonic st-ordering.

While this had to be expected, we now have to solve an additional problem.
Before we think about how to compute a bitonic st-ordering, we must first be
able to recognize planar st-graphs that admit such an ordering.

4 Characterization, Recognition and Ordering

We proceed as follows: As a first step, we identify a necessary condition that a
planar st-graph has to meet for admitting a bitonic st-ordering. Then we exploit
this condition to compute a bitonic st-ordering which proves sufficiency. We start
with an alternative characterization of bitonic sequences. Since we will use the
labels of an st-ordering, we can assume that the elements are pairwise distinct.

Lemma 2. An ordered sequence A = {a1, . . . , an} of pairwise distinct elements
is bitonic increasing if and only if the following holds:

∀1 ≤ i < j < n : ai < ai+1 ∨ aj > aj+1.

Sketch of Proof. For “⇒”, assume to the contrary which yields i ≥ j. For “⇐”,
we choose, if exists, h = min{j | aj > aj+1}, otherwise we set h = n. �	

In general a planar st-graph may have many st-orderings, some of them
being bitonic while others are not. To deal with this in a more formal manner,
we introduce some additional notation. Given an embedded planar st-graph
G = (V,E), we refer with Π(G) to all feasible st-orderings of G, that is,

Π(G) = {π : V �→ {1, . . . , |V |} | π is an st − ordering for G}.
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Fig. 2. (a) A successor list S(u) = {. . . , vi, vi+1, . . . , vj , vj+1, . . .} with i < j and a
forbidden configuration of paths vi+1 � vi and vj � vj+1. (b)–(d) The three cases at
a face between two successors vi and vi+1 of the face-source u: (b) vi+1 is the sink of
the face indicating the existence of a path from vi to vi+1. (c) A path from vi+1 to vi
results in a face having vi as sink. (d) There exists no path between vi and vi+1, if and
only if neither vi nor vi+1 is the face-sink.

Furthermore, let Πb(G) be the subset of Π(G) that contains all bitonic st-
orderings. By definition, we can describe Πb(G) by

Πb(G) = {π ∈ Π(G) | ∀u ∈ V : S(u) is bitonic with respect to π}.

Applying the alternative characterization of bitonicity from Lemma2 to the
bitonic property of the successor lists S(u) yields the following expression for
the existence of a bitonic st-ordering:

∃π ∈ Πb(G) ⇔ ∃π ∈ Π(G) ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : π(vi) < π(vi+1) ∨ π(vj) > π(vj+1).

(1)

Next we translate this expression from st-orderings to the existence of paths.
Consider a path from some vertex u to some other vertex v in G, then for every
π ∈ Π(G), by the definition of st-orderings, π(u) < π(v) holds. Now it is not hard
to imagine that if there exists π ∈ Πb(G), then there must exist configurations
of paths that are forbidden. To clarify this, let us rewrite the last part of the
condition in Eq. 1, that is, π(vi) < π(vi+1) ∨ π(vj) > π(vj+1), using a simple
boolean transformation, which yields ¬(π(vi) > π(vi+1)∧π(vj) < π(vj+1)). So if
there exists a path from vi+1 to vi and one from vj to vj+1 with i < j, then this
expression evaluates to false for every π ∈ Π(G). Therefore, we may refer to the
pair of paths vi+1 � vi and vj � vj+1 with i < j as a forbidden configuration
of paths. See Fig. 2a for an illustration.

We may state now that in case there exists a bitonic st-ordering, the afore-
mentioned configuration of paths cannot exist:

∃π ∈ Πb(G) ⇒ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1.

Conversely, if we find an u with vi and vj in a graph for which these paths exist,
then we can safely reject it as one that does not admit a bitonic st-ordering. The
following well-known property of planar st-graphs will prove itself useful when
it comes to testing for the existence of a path between two vertices.
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Lemma 3. Let F be the subgraph of an embedded planar st-graph G = (V,E)
induced by a face that is not the outer face1, and u, v two vertices of F , that is,
u and v are on the boundary of the face. Then there exists a path from u to v in
G, if and only if there exists such a path in F .

There are several ways to prove this result, one proof can be found in the
work of de Fraysseix et al. [10]. Notice that Lemma 3 is concerned with every pair
of vertices incident to the face. But we are only interested in paths between two
consecutive successors vi and vi+1 of a vertex u. Notice that vi, vi+1 and u share
a common face which is not the outer face and in which u is the face-source.
Figure 2b–d illustrates all three possible cases: vi � vi+1 (b), vi+1 � vi (c), and
no path at all (d). Hence, we can decide the existence of a path based on the
sink of the common face.

To prove that the absence of forbidden configurations is sufficient for the
existence of a bitonic st-ordering, we require the following technical proposition.

Proposition 1. Given an embedded planar st-graph G = (V,E) and a vertex
u ∈ V with successor list S(u) = {v1, . . . , vm}. If it holds that

∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1,

then there exists 1 ≤ h ≤ m such that

(∀ 1 ≤ i < h : vi+1 �� vi) ∧ (∀ h ≤ i < m : vi �� vi+1)

holds. In other words, there exists at least one vh in S(u) whose preceding vertices
in S(u) are only connected by paths in clockwise direction, whereas paths between
following vertices are directed counterclockwise.

Sketch of Proof. If exists, set h = min{i | vi+1 � vi}, otherwise set h = m. �	

Fig. 3. (a) Paths orientations between consecutive successors of u. All of them directed
towards vh as described by Proposition 1. (b) The augmented graph G′ in the proof of
Lemma 4 obtained by adding edges between consecutive successors of u such that they
are oriented towards vh.

1 This restriction is necessary due to the possible absence of the st-edge which is
allowed by our definition of planar st-graphs.
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The idea is now the following: If we have a graph that satisfies our necessary
condition, then we can find for every u ∈ V with u �= t a successor vh with the
property as described in Proposition 1. The intuition behind this property is that
all paths that exist between successors of u, are directed in some way towards vh.
See Fig. 3a for an illustration. The next lemma exploits this property to obtain
a bitonic st-ordering, which proves that this condition is indeed sufficient for the
existence of a bitonic st-ordering.

Lemma 4. Given a planar st-graph G = (V,E) with a fixed embedding. If at
every vertex u ∈ V with successor list S(u) = {v1, . . . , vm} the following holds:

∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1,

then G admits a bitonic st-ordering π ∈ Πb(G).

Proof. To show that there exists π ∈ Πb(G), we augment G into a new graph
G′ by inserting additional edges that we refer to as E′. These edges ensure
that between every pair of consecutive successors in G, there exists a path in
G′ = (V,E ∪ E′). Afterwards, we show that every st-ordering π ∈ Π(G′) for G′

is a bitonic st-ordering for G.
For every vertex u with successor list S(u) = {v1, . . . , vm}, we may assume

by Proposition 1 that there exists 1 ≤ h ≤ m such that for every 1 ≤ i < h
there exists no path from vi+1 to vi, and for every h ≤ i < m no path from vi to
vi+1 in G. Our goal is to add specific edges to fill the gaps such that there exist
two paths in G′, v1 � v2 � · · · � vh ∈ G′ and vm � vm−1 � · · · � vh ∈ G′.
Figure 3b illustrates the idea. More specifically, for every 1 ≤ i < m, there are
three cases to consider: (i) There already exists a path between vi and vi+1 in
G, that is, vi � vi+1 ∈ G or vi+1 � vi ∈ G. Proposition 1 ensures that the
path is directed towards vh, thus, we just skip the pair. (ii) If there exists no
path between vi and vi+1 in G and i < h holds, we add an edge from vi to vi+1.
(iii) When there also exists no path between vi and vi+1, but now h ≤ i < m
holds, we add the reverse edge (vi+1, vi) to E′.

Before we continue, we show that G′ = (V,E ∪ E′) is st-planar. Consider a
single edge in E′ which has been added either by case (ii) or (iii) while traversing
the successors S(u) of some vertex u ∈ V . This edge will be added to a face in
which u is the source, and since every face has only one source, only one edge
will be added to the corresponding face, hence, planarity is preserved. Since case
(ii) and (iii) only apply, when there exists no path between the two vertices,
adding this edge will not generate a cycle. Induction on the number of added
edges yields then st-planarity for G′.

Consider now an st-ordering π ∈ Π(G′). Since clearly E′ ⊆ E ∪ E′ holds,
π is also an st-ordering for G, that is, Π(G′) ⊆ Π(G) holds. Recall that we
constructed G′ such that for every u ∈ V with S(u) = {v1, . . . , vm}, there exists
v1 � v2 � · · · � vh ∈ G′ and vm � vm−1 � · · · � vh ∈ G′. It follows that for
every π ∈ Π(G′)

∀ 1 ≤ i < h : π(vi) < π(vi+1) ∧ ∀ h ≤ i < m : π(vi) > π(vi+1)
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Algorithm 1. Recognition and ordering algorithm for planar-st graphs

input : Embedded planar st-graph G = (V, E) with S(u) for every u ∈ V .
output: If exists, a bitonic st-ordering π for G.
begin

E′ ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

decreasing ← false;
for i = 1 to m − 1 do

w ← faceSink(u, vi, vi+1);
if w = vi+1 and decreasing then return reject;
if w = vi then decreasing ← true;
if vi �= w �= vi+1 then

if decreasing then E′ ← E′ ∪(vi+1, vi) else E′ ← E′ ∪(vi, vi+1);

compute π ∈ Π(V, E ∪ E′);
return π

holds, which implies that S(u) is bitonic with respect to π. Since this holds for all
u ∈ V , it follows that Π(G′) ⊆ Πb(G). Moreover, G′ has at least one st-ordering,
that is, Π(G′) �= ∅, thus, there exists π ∈ Πb(G). �	

Let us summarize the implications of the lemma. The only requirement is
that the graph complies with our necessary condition, that is, the absence of
forbidden configurations. If this is the case, then Lemma4 provides us with a
bitonic st-ordering, which in turn proves that this condition is sufficient.

∃π ∈ Πb(G) ⇔ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 �� vi ∨ vj �� vj+1

With a full characterization now at our disposal and in combination with
Lemma 3, we are able to describe a simple linear-time algorithm (Algorithm 1)
which tests a given graph and in case it admits a bitonic st-ordering, computes
one. We iterate over S(u) and as long as there is no path vi+1 � vi, we assume
i < h and fill possible gaps. Once we encounter a path vi+1 � vi for the first
time, we implicitly set h = i via the flag and continue to add edges, but now the
reverse ones. But in case we find a path vi � vi+1, then it forms with vh+1 � vh
a forbidden configuration and the graph can be rejected. If we succeed in all
successor list, an st-ordering for G′ is computed, which is a bitonic one for G.
Since G′ is st-planar and has the same vertex set as G, we can claim that the
overall runtime is linear. Let us state this as the main result of this section.

Theorem 2. Deciding whether an embedded planar st-graph G admits a bitonic
st-ordering π or not is linear-time solvable. Moreover, if G admits such an order-
ing, π can be found in linear time.

Next we will consider the case in which no bitonic st-ordering exists. Although
our initial motivation was to create upward planar straight-line drawings, we now
allow bends and shift our efforts to upward planar poly-line drawings.
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5 Upward Planar Poly-line Drawings with Few Bends

We start with a simple observation. Consider a forbidden configuration consisting
of two paths vi+1 � vi and vj � vj+1 with i < j between successors of a vertex
u as shown in Fig. 2a. Notice that (u, vi) and (u, vj+1) are transitive edges. Since
a reduced planar st-graph has no transitive edges, we can argue the following.

Corollary 2. Every reduced planar st-graph admits a bitonic st-ordering.

This leads to the idea to use the same transformation as Di Battista et al. [7]
in their dominance-based approach. We can split every transitive edge to obtain
a reduced planar st-graph and draw it upward planar straight-line. Replacing
the dummy vertices with bends results in an upward planar poly-line drawing
with at most 2|V | − 5 bends, at most one bend per edge and quadratic area.

But we can do better using the following idea: If we have a single forbid-
den configuration, it suffices to split only one of the two transitive edges. More
specifically, if we split in Fig. 2a the edge (u, vi) into two new edges (u, v′

i) and
(v′

i, vi) with v′
i being the dummy vertex, then v′

i replaces vi in S(u). But now
there exists no path from vi+1 to v′

i, hence, the forbidden configuration has been
destroyed at the cost of one split. Moreover, a pair of transitive edges does not
necessarily induce a forbidden configuration. At this point the question arises
how such a split affects other successor lists and if it may even create new for-
bidden configurations. The following trivial observation is helpful in this regard.

Lemma 5. Let G′ = (V ′, E′) be the graph obtained from splitting an edge (u, v)
of a graph G = (V,E) by inserting a dummy vertex v′. More specifically, let
V ′ = V ∪ {v′} and E′ = (E − (u, v)) ∪ {(u, v′), (v′, v)}. Then for all w, x ∈ V
there exists a path w � x ∈ G, if and only if there exists a path w � x ∈ G′.

Since a forbidden configuration is solely defined by the existence of paths, we
can argue now with Lemma 5 that a split does not create nor resolves forbidden
configurations in other successor lists. However, one vertex that is not covered
by the lemma is the dummy vertex itself, but it has only one successor which is
insufficient for a forbidden configuration. This locality is of great value, because
it enables us to focus on one successor list, instead of having to deal with a
bigger picture. Next we prove an upper bound on the number of edges to split
in order to resolve all forbidden configurations.

Lemma 6. Every embedded planar st-graph G = (V,E) can be transformed into
a new one that admits a bitonic st-ordering by splitting at most |V | − 3 edges.

Proof. Consider a vertex u and its successor list S(u) = {v1, . . . , vm} that con-
tains multiple forbidden configurations of paths. Instead of arguing by means of
forbidden configurations, we use our second condition from Proposition 1, that
is, the existence of a vertex vh such that every path that exists between two con-
secutive successors vi and vi+1, is directed from vi towards vi+1 for i < h, or from
vi+1 towards vi if i ≤ h holds. Of course h does not exist due to the forbidden
configurations. But we can enforce its existence by splitting some edges.
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Assume that we want vh to be the first successor, that is, h = 1. Then every
path from vi to vi+1 with 1 ≤ i < m is in conflict with this choice. We can
resolve this by splitting every edge (u, vi+1) for which a path vi � vi+1 exists.
Clearly, the maximum number of edges to split is at most m − 1, that is the
case in which for every 1 ≤ i < m, there exists a path from vi to vi+1. However,
there do not exist paths vi � vi+1 and vi+1 � vi at the same time, because
G is acyclic. So, if the number of edges to split is more than m−1

2 , then there
are less than m−1

2 paths of the form vi+1 � vi. In that case, we may choose
in a symmetric manner vh to be the last successor (h = m), instead of being
the first. Or in other words, we choose vh to be the first or the last successor,
depending on the direction of the majority of paths. And as a result, at most
m−1
2 edges have to be split. Notice that the overall length of all successor lists

is exactly the number of edges in the graph. Hence, with m = |S(u)| we get∑
u∈V |S(u)| = |E| ≤ 3|V | − 6, and the claimed upper bound can be derived by

∑

u∈V

|S(u)| − 1
2

≤ 3|V | − 6 − |V |
2

= |V | − 3.

Moreover, the split procedure preserves st-planarity of G. �	

Fig. 4. (a) Example of a graph with |V | − 3 forbidden configurations, each requiring
one split to be resolved. (b) Example for finding the smallest set of edges to split.
The numbers indicate how many splits are necessary when choosing the corresponding
vertex to be vh. For v5, v6, v8 and v9 only two splits are necessary. Choosing h = 6
results in Esplit = {(u, v1), (u, v8)}. The squares indicate the result of the two splits,
whereas the dotted edges represent E′ in Algorithm 1.

One may wonder now if this bound can be improved. Unfortunately, the
graph shown in Fig. 4a is an example that requires |V | − 3 splits, hence, the
bound is tight. It also shows that there exist graphs that can be drawn upward
planar straight-line in polynomial area but do not admit a bitonic st-ordering.
But we will push the idea of splitting edges a bit further from a practical point
of view, and focus on the problem of finding a minimum set of edges to split.

In the following we describe an algorithm that solves this problem in linear
time. To do so, we introduce some more notation. Let u ∈ V be a vertex with
successor list S(u) = {v1, . . . , vm}. We define L(u, h) = |{i < h : vi+1 � vi}|
and R(u, h) = |{i < h : vi � vi+1}|. If we choose now a particular 1 ≤ h ≤ m at
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Algorithm 2. Algorithm for computing the minimum set of edges to split.

input : Embedded planar st-graph G = (V, E) with S(u) for every u ∈ V .
output: Minimum set Esplit ⊂ E to split for admitting a bitonic st-ordering.
begin

Esplit ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

h ← 1;
cmin ← c ← 0;
for i = 2 to m do

w ← faceSink(u, vi−1, vi);
if w = vi−1 then c ← c + 1;
if w = vi then c ← c − 1;
if c < cmin then

cmin ← c;
h ← i;

for i = 1 to h − 1 do
if vi = faceSink(u, vi, vi+1) then Esplit ← Esplit ∪ (u, vi);

for i = h to m − 1 do
if vi+1 = faceSink(u, vi, vi+1) then Esplit ← Esplit ∪ (u, vi+1);

return Esplit

u, then we have to split every edge (u, vi+1) with i < h for which there exists a
path vi+1 � vi, and every edge (u, vi) with h ≤ i for which G contains a path
vi � vi+1, that is, we have to split L(u, h)+R(u,m)−R(u, h) edges. See Fig. 4b
for an example. When now considering all successor lists, the minimum number
of edge splits is

∑

u∈V

(
R(u,m) + min

1≤h≤m
{L(u, h) − R(u, h)}

)
.

Notice that the locality of a split allows us to minimize the number of edge splits
for every successor list independently. From an algorithmic point of view, we are
interested in the value of h and not in the number of splits, hence, we may drop
R(u,m) and consider the problem of finding h for which L(u, h) − R(u, h) is
minimum. Since this is now only a matter of counting paths for which we can
again exploit Lemma 3, a linear-time algorithm becomes straightforward (see
Algorithm 2). And as a result, we may state the following lemma without proof.

Lemma 7. Every embedded planar st-graph G = (V,E) can be transformed into
a planar st-graph that admits a bitonic st-ordering by splitting every edge at most
once. Moreover, the minimum number of edges to split is at most |V | − 3 and
they can be found in linear time.

Now we may use this to create upward planar poly-line drawings with few bends.
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Theorem 3. Every embedded planar st-graph G = (V,E) admits an upward
planar poly-line drawing within quadratic area having at most one bend per edge,
at most |V |−3 bends in total, and such a drawing can be obtained in linear time.

Proof. We use Lemma 7 to obtain a new planar st-graph G′ = (V ′, E′) with
|V ′| ≤ 2|V |−3 and a corresponding bitonic st-ordering π with Algorithm 1. With
Theorem 1, an upward planar straight-line layout of size (2|V ′| − 2) × (|V ′| − 1)
for G′ is computed. Replacement of the dummy vertices by bends, yields an
upward planar poly-line drawing for G of size at most (4|V | − 8) × (2|V | − 4). �	
Recall that every upward planar graph is a spanning subgraph of a planar
st-graph [6]. Therefore, the bound of |V | − 3 translates to all upward planar
graphs.

Corollary 3. Every upward planar graph G = (V,E) admits an upward planar
poly-line drawing within quadratic area having at most one bend per edge and at
most |V | − 3 bends in total.

6 Conclusion

In this work we have introduced the bitonic st-ordering for planar st-graphs.
Although this technique has its limitations, it provides the properties of canonical
orderings for the directed case. We have shown that this concept is viable by
using a classic undirected incremental drawing algorithm for creating upward
planar drawings with few bends.
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Abstract. We consider the recently introduced model of low ply graph
drawing, in which the ply-disks of the vertices do not have many common
overlaps, which results in a good distribution of the vertices in the plane.
The ply-disk of a vertex in a straight-line drawing is the disk centered at
it whose radius is half the length of its longest incident edge. The largest
number of ply-disks having a common overlap is called the ply-number
of the drawing.

We focus on trees. We first consider drawings of trees with constant
ply-number, proving that they may require exponential area, even for
stars, and that they may not even exist for bounded-degree trees. Then,
we turn our attention to drawings with logarithmic ply-number and
show that trees with maximum degree 6 always admit such drawings in
polynomial area.

1 Introduction

Let Γ be a straight-line drawing of a graph G. For a vertex v ∈ G, let the ply-disk
Dv of v be the open disk with center v and radius rv that is half of the length
of the longest incident edge of v. For a point q ∈ R

2 in the plane, denote by Sq

the set of disks with q in their interior, i.e., Sq = {Dv | ‖v − q‖ < rv}.
The ply-number of a straight-line drawing Γ is pn(Γ ) = max

q∈R2
|Sq|. In other

words, it describes the maximum number of ply-disks that have a common non-
empty intersection. The ply-number of a graph G is pn(G) = min

ΓofG
pn(Γ ).

The ply-number is one of the most recent quality measures for graph
layouts [5]. While traditional measures, such as edge crossings [4] and symme-
tries [6], have been studied for decades, the notion of optimizing a graph layout
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so that the spheres of influence of each vertex (see [12] for different variants)
are well distributed is new. Goodrich and Eppstein [7] observed that real-word
geographic networks usually have only constant sphere-of-influence overlap, or
in the terminology of this paper, constant ply-number.

The problem of computing graph drawings with low ply-number is related
to circle-contact representations of graphs, where vertices are interior-disjoint
circles in the plane and two vertices are adjacent if the corresponding pair of
circles touch each other [9,10]. Every maximal planar graph has a circle-contact
representation [11]. A drawback of such representations is that the sizes of the
circles may vary exponentially, making the resulting drawings difficult to read.
In balanced circle packings and circle-contact representations, the ratio of the
maximum and minimum diameters for the set of circles is polynomial in the
number of vertices in the graph. Such drawings could be drawn with polynomial
area, for instance, where the smallest circle determines the minimum resolution.
It is known that trees and planar graphs with bounded tree-depth have bal-
anced circle-contact representation [1]. Breu and Kirkpatrick [3] show that it
is NP-complete to test whether a graph has a perfectly-balanced circle-contact
representation, in which all circles have the same size, i.e., they are unit disks.

Very recently, Di Giacomo et al. [5] showed that binary trees, stars, and
caterpillars have drawings with ply-number 2 (with exponential area, that is,
the ratio of the longest to the shortest edge is exponential in the number of
vertices), while general trees with height h admit drawings with ply-number
h + 1. Also, they showed that the class of graphs with ply-number 1 coincides
with the class of graphs that have a weak contact representation with unit disks,
which makes the recognition problem NP-hard for general graphs [8]. On the
other hand, testing whether an internally triangulated biconnected planar graph
has ply-number 1 can be done in O(n log n) time. This paper left several natural
questions open. Of particular interest are the following two questions:

(i) Is it possible to draw a binary tree, a star, or a caterpillar in polynomial
area with ply-number 2?

(ii) While binary trees have constant ply-number, is this true also for trees with
larger bounded degree?

In this paper we provide answers to the two above questions (Sect. 3). For the
first question, we prove an exponential lower bound on the area requirements of
drawings with constant ply-number of stars, and hence of caterpillars. For the
second question, we prove that there exist trees with maximum degree 11 that
do not have constant ply-number. Motivated by these two negative results, we
consider in Sect. 4 drawings of trees with logarithmic ply-number. In this case, we
present an algorithm to construct a drawing of every tree with maximum degree
6 in polynomial area1. We give preliminary definitions in Sect. 2 and discuss
some open problems in Sect. 5.

1 The area of a drawing is the area of the smallest axis-aligned rectangle containing
it, under the resolution rule that each edge has length at least 1.
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2 Preliminaries

Let G be a graph. We denote by �(e) (by �(u, v)) the length of an edge e ∈ G (an
edge (u, v) ∈ G) in a straight-line drawing of G. Also, for a path P = v1, . . . , vm,
we denote by �(P ) =

∑m−1
i=1 �(vi, vi+1) the total length of its edges. Further, we

denote by Dv the ply-disk in Γ of a vertex v ∈ G and by rv the radius of Dv.
Finally, we call constant-ply drawing (or log-ply drawing) a straight-line drawing
Γ such that pn(Γ ) = O(1) (such that pn(Γ ) = O(log n)).

Let T be a tree rooted at a vertex r. The depth dv of a vertex v ∈ T is the
length of the path between v and r; note that dr = 0. The height h of T is the
maximum depth of a vertex of T .

3 Constant-Ply Drawings of Trees

In this section we provide negative answers to two open questions [5] about
constant-ply drawings of trees. In Subsect. 3.1 we prove that drawings of this
type may require exponential area, even for stars, while in Subsect. 3.2 we prove
that there exist bounded-degree trees not admitting any of such drawings.

3.1 Area Lower Bound for Stars

In the original paper on the topic [5], it has been shown that a star admits a
drawing with ply-number 1 if and only if it has at most six leaves, and that
every star admits a drawing with ply-number 2, independently of the number of
leaves. The algorithm for the latter result is based on a placement of the leaves
at exponentially-increasing distances from the central vertex, which results in
a drawing with exponential area; see Fig. 1a. In this subsection we prove that
this is in fact unavoidable, as we give an exponential lower bound for the area
requirements of any drawing of a star with constant ply-number.

Fig. 1. (a) An exponential-area drawing with ply-number 2 of a star [5]. (b) Illustration
for the proof of Theorem1; two disks belonging to class T3 are entirely contained inside
annuli A3 and A4. The number close to each disk is its radius.
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Theorem 1. Any constant-ply drawing of an n-vertex star has exponential area.

Proof. Let K1,n−1 be an n-vertex star with central vertex v, and let Γ be a
straight-line drawing of K1,n−1 with ply-number p, where p = O(1). We prove
the statement by showing that the ratio of the longest to the shortest edge in
Γ is exponential in n. Assume that the longest edge e of Γ has length �(e) = 2,
after a possible scaling of Γ ; thus, the largest ply-disk in Γ has radius 1.

For any i ∈ N we define Ai to be the annulus delimited by two circles cen-
tered at v with radius 3−i+2 and 3−i+1, respectively. Refer to Fig. 1b. Then, we
partition the ply-disks of the n − 1 leaves of K1,n−1 into the classes T1, . . . , Tk

in such a way that all the disks with radius in (3−j , 3−j+1] belong to Tj , with
1 ≤ j ≤ k. We observe that every disk in class Tj is entirely contained inside the
annulus Aj ∪ Aj+1; see Fig. 1b. However, there can be at most

p|Aj ∪ Aj+1|
minD∈Tj

|D| ≤ p(π3−2j+4 − π3−2j)
π3−2j

= 80p

disks in any Aj ∪Aj+1, and hence at most 80p disks belong to class Tj . Therefore,
n = 1 +

∑k
j=1 |Tj | ≤ 80pk implies that the smallest radius of the ply-disk of a

vertex in a drawing is at most 3−k. This implies that the ratio between the
largest and the smallest ply-disk radii in Γ , and hence between the longest and
the shortest edge, is at least 3k ≥ 3n/(80p). This concludes the proof. ��

3.2 Large Bounded-Degree Trees

In this section we consider the question posed in [5] on whether bounded-
degree trees admit constant-ply drawings. While the answer is positive for binary
trees [5], as they admit drawings with ply-number 2, we prove that this posi-
tive result cannot be extended to all bounded-degree trees, and in particular to
10-ary trees, that is, rooted trees with maximum degree 11.

In the following we denote a complete 10-ary tree of height h by Th
10; note

that Th
10 has 10h leaves and 10d vertices with depth d ≤ h. The root of a tree T

is denoted by root(T ). In the rest of the section we prove the following theorem.

Theorem 2. For every M > 0 there is an integer h > 0 such that pn(Th
10) ≥ M .

A branch of Th
10 is a path in Th

10 connecting the root with a leaf. Let e and f be
two edges of Th

10. Refer to Fig. 2a. We say that e dominates f and write e >D f ,
if e and f lie on a common branch and �(e) ≥ 3s+1�(f), where s is the number of
edges on the path between e and f different from e and f . Observe that on each
branch of Th

10 the relation >D is transitive. We say that e first-hand dominates
f and write e >FD f , if the following three conditions are satisfied: (i) f lies on
the path connecting e with the root of Th

10, (ii) e dominates f , and (iii) no other
edge on the path between e and f dominates f .

Lemma 1. Let P be a path with edges f0, f1, . . . , fp. Suppose that f0 dominates
each of the edges f1, . . . , fp. Let v be the common vertex of the edges f0 and f1.
Then the edges f1, . . . , fp lie entirely inside the ply-disk Dv of v.
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Fig. 2. (a) A path P with �(f0) = 28, �(f1) = 6, �(f2) = 4, and �(f3) = 1. Edge
f0 dominates each of f1, f2, and f3, which in fact lie inside Dv. Also, f0 first-hand
dominates f1 and f2, but does not first-hand dominate f3, since f2 dominates f3. (b)
Illustration for the proof of Lemma 3.

Proof. See Fig. 2a. Since the radius of Dv is at least �(f0)
2 , it suffices to prove

�(f1) + · · · + �(fp) < �(f0)
2 . Let i ∈ {1, . . . , p}. Since f0 dominates fi, we have

�(fi) ≤ �(f0)
3i . Thus, �(f1) + · · · + �(fp) ≤ �(f0)(13 + 1

32 + · · · + 1
3p ) < �(f0)

2 . ��
Lemma 2. Let e1, . . . , eM be M edges in Th

10 such that e1 >FD e2 >FD · · · >FD

eM . Then, pn(Th
10) ≥ M.

Proof. By definition, e1, . . . , eM appear in this order, possibly not consecutively,
along the same branch of Th

10. Let
−→
P be the oriented path that is the subpath

of this branch from e1 to eM . Since ei >FD ei+1, edge ei dominates all the edges
between ei and ei+1. Due to the transitivity of >D, each edge ei dominates all
the edges ei+1, . . . , eM , and hence all the edges appearing after it along

−→
P .

By Lemma 1, the endvertex vM of eM lies inside the ply-disk Dvi
of vi, for

each i = 1, . . . , M , where vi is the last vertex of ei along
−→
P . Thus, the M disks

Dv1 , . . . , DvM
have a non-empty intersection, and the statement follows. ��

Consider a vertex v with depth d in Th
10. We say that a vertex u 
= v is

a descendant of v if the path from root(T10(h)) to u contains v. For any i =
1, . . . , h−d, we denote by T i

10(v) the subtree of Th
10 rooted at v induced by v and

by all the descendants of v with depth d + 1, d + 2, . . . , d + i. Note that T i
10(v)

is a 10-ary tree of height i, thus it has 10i leaves. We have the following.

Lemma 3. Let T ′ be a subtree of a rooted 10-ary tree T and let P be the path
from root(T ) to root(T ′). If every edge of T ′ is dominated by at least one edge
of P , then there exists a vertex v ∈ P such that T ′ lies completely inside Dv.

Consequently, pn(T ) ≥ pn(T ′) + 1.

Proof. Refer to Fig. 2b. Let e0, e1, . . . , et be the edges of P in the order in which
they appear along P , when P is oriented from root(T ) to root(T ′). Let i be
an index maximizing the value of 3i · �(ei). Then ei dominates all the edges
ei+1, ei+2, . . . , et. Also, due to the choice of i and since any edge of T ′ is domi-
nated by some edge of P , any edge of T ′ is dominated by ei. Let v be the root of
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Fig. 3. (a) Illustration for Lemma 4; no edge of T h
10(v) dominates edge (v, v′). (b)

Illustration for Case 2: for each vertex v with depth h′ − h, there exists an edge ev in
T h
10(v) that is not dominated by any edge of path from v to the root of T .

T , if i = 0, or the common vertex of ei−1 and ei otherwise. Then Lemma 1 can
be applied on the path from v to any leaf of T ′ to show that its subpath from
root(T ′) to the leaf lies inside Dv, which proves the statement.

As a consequence, we have pn(T ) ≥ pn(T ′) + 1. ��
Lemma 4. Let h, h′,M be three positive integers such that h′ ≥ h(M − 1) + 1.
If there exists a drawing Γ of Th′

10 that contains no M edges e1, . . . , eM such
that e1 >FD e2 >FD · · · >FD eM , then there exists a vertex v in Th′

10 with depth
1 ≤ dv ≤ h′ − h such that no edge of Th

10(v) in Γ dominates the edge (v, v′),
where v′ is the neighbor of v with depth dv − 1. Refer to Fig. 3a.

Proof. We fix h and proceed by induction on M . If M = 1, then there exists no
drawing Γ of Th′

10 satisfying the conditions of the lemma, and thus the statement
holds. Suppose now that M > 1 and that the lemma holds for M −1. We want to
show that the lemma holds for M . Let h′ ≥ h(M −1)+1. Suppose that a drawing
of Th′

10 contains no M edges e1, . . . , eM such that e1 >FD e2 >FD · · · >FD eM .
Consider the subtree T ′ := Th′−h

10 (root(Th′
10 )) of Th′

10 , with the same root as
Th′
10 , that is induced by the vertices with depth at most h′ − h. If T ′ does not

contain M − 1 edges e1, . . . , eM−1 such that e1 >FD e2 >FD · · · >FD eM−1,
then the required vertex v exists by induction. Otherwise, consider M − 1 edges
e2, . . . , eM in T ′ such that e2 >FD e3 >FD · · · >FD eM . Let d and d + 1, with
d < h′ −h, be the depth of the endvertices v′ and v of e2, respectively, in T ′ (it is
the same depth as they have in Th′

10 ). Consider the subtree Th
10(v) of Th′

10 rooted
at v. Suppose, for a contradiction, that there exists an edge in Th

10(v) dominating
e2. Then, consider the edge e1 in Th

10(v) dominating e2 with the property that
no other edge on the path from e1 to e2 dominates e2, that is, e1 first-hand
dominates e2. Thus, e1 >FD e2 >FD · · · >FD eM , a contradiction. This implies
that no edge of Th

10(v) dominates edge e2, and the statement follows. ��
We are now ready to complete the proof of the main result of the section.

Proof (of Theorem 2). We proceed by induction on M . For M = 1 the statement
trivially holds.
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Suppose now that M > 1 and that for M − 1 there is an h with the required
properties. We need to show that for M there is an h′ with the required proper-
ties. We set h′ := max{h2M,Ch(h + M)}, where C is a (large) constant to be
specified later. We fix a drawing of Th′

10 .
If there are M edges e1, . . . , eM in Th′

10 such that e1 >FD e2 >FD · · · >FD eM ,
then Lemma 2 implies pn(Th′

10 ) ≥ M . Otherwise, due to Lemma 4 there is a rooted
10-ary subtree T of Th′

10 with height h ≥ h′
M such that root(T ) 
= root(Th′

10 ) and
no edge of T dominates the first edge on the path from root(T ) to root(Th′

10 ).
From now on, we focus on the rooted tree T . In particular, in the following we
refer to the depth of a vertex as its depth in T . We distinguish two cases.

In Case 1 there exists a vertex v with depth h − h in T such that every
edge of the tree Th

10(v) is dominated by at least one edge of the path from v
to root(T ). In this case, Lemma 3 (applied on tree Th

10(v)) and the inductive
hypothesis show that pn(Th′

10 ) ≥ pn(Th
10(v)) + 1 ≥ M .

In Case 2 there exists no vertex in T with the above properties. Refer to
Fig. 3b. Thus, for any vertex v with depth h − h in T , the subtree Th

10(v) rooted
at v contains at least one edge that is not dominated by any edge of the path
from v to root(T ); among these edges of Th

10(v) we choose one, denoted by e(v),
whose endvertices have the smallest possible depth. This implies that e(v) is not
dominated by any edge of the path Pv from its endvertex uv to root(T ).

Let g be the first edge from root(T ) to root(Th′
10 ). Note that edges of Pv

dominate neither g nor e(v). W.l.o.g., assume �(g) = 1. Since edges g and e(v)
do not dominate each other, we have 1/3h < �(e(v)) < 3h. Thus, there is a unique
integer k(v) ∈ {−h,−h + 1, . . . , h − 1} such that �(e(v)) ∈ [3k(v), 3k(v)+1).

Let k be a most frequent value of k(v) over all the vertices v with depth
h − h. Since k(v) may have 2h different values, the set Vk of vertices v at level
h − h with k(v) = k has size at least 10h−h/(2h). Consider now a vertex v ∈ Vk

and the path Pv from root(T ) to uv. Since no edge of this path dominates g or
e(v), we have the following two upper bounds on the length of the i-th edge ei

of the path Pv oriented from root(T ) to uv:

�(ei) ≤ 3i and

�(ei) ≤ 3h−i · �(e(v)) < 3h−i+k+1.

For the latter, we use �(e(v)) < 3k+1, which follows from the fact that v ∈ Vk.
The edges ei with i ≤ (h + k)/2 have total length at most

∑�(h+k)/2�
i=0 3i ≤

3(h+k)/2+1, and the total length of the other edges is at most

h∑

i=�(h+k)/2+1�
3h−i+k+1 = 3k+1 ·

h∑

i=�(h+k)/2�+1

3h−i

= 3k+1 ·
h−�(h+k)/2�−1∑

j=0

3j ≤ 3k+1 · 3(h−k)/2+1 = 3(h+k)/2+2.

It follows that the total length of the path Pv is smaller than 12 · 3(h+k)/2.
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Thus all the edges e(v), v ∈ Vk, lie in the disk D of radius 12·3(h+k)/2 centered
at root(T ). The area of D is 122π3h+k. Let v ∈ Vk, and let u′

v be the vertex
of the path Pv adjacent to uv. The ply-disk Du′

v
contains the disk of radius

3k/2 centered at u′
v, which is entirely contained in D. It follows that the region

Du′
v

∩ D has area at least π(3k/2)2 = (π/4)32k. Therefore there is a point of D
lying in at least

|Vk| · (π/4)32k

area(D)
≥ (10h−h/(2h)) · (π/4)32k

122π3h+k
=

(10/3)h/h · 3k

122 · 8 · 10h
≥ (10/9)h/h

122 · 8 · 10h

disks Du′
v
, with v ∈ Vk.

Since h′ ≥ CM(h + log M), we have h ≥ C(h + log M). If C is a sufficiently
large constant then some point of D lies in at least

(10/9)h/h

122 · 8 · 10h
≥ M

disks Du′
v
, with v ∈ Vk, which concludes the proof. ��

4 Log-Ply Drawings of Bounded-Degree Trees
in Polynomial Area

Motivated by the fact that constant-ply drawings of stars may require exponen-
tial area (Theorem 1) and by the fact that not all the bounded-degree trees admit
a constant-ply drawing (Theorem2), in this section we ask whether allowing a
logarithmic ply-number makes it possible to always construct drawings of trees,
possibly in polynomial area. We give a first answer by proving in Theorem3 that
this is true for 5-ary trees, that is, trees with maximum degree 6.

We start with some definitions. A 2-drawing of a path P = v1, . . . , vm is a
straight-line drawing of P in which all the vertices lie along the same straight-
line segment in the same order as they appear in P and for each i = 2, . . . ,m

we have �(vi−1,vi)
2 ≤ �(vi, vi+1) ≤ 2�(vi−1, vi); see Fig. 4a. We have the following.

Fig. 4. (a) A 2-drawing of a path. (b) A ternary tree Tμ and the path μ, represented by
fat edges, that is a node of the heavy-path tree T ; the subtrees Tν1 , . . . , Tν5 obtained
when removing μ are inside shaded region. (c) The portion of T containing nodes μ
and its children ν1, . . . , ν5. The arc of T between μ and a node νi is labeled with the
node of μ that is the anchor of νi.
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Lemma 5. A 2-drawing of a path P = (v1, . . . , vn) has ply-number at most 2.

Proof. Refer to Fig. 4a. For each vertex vi, we have radius rvi
≤ �(vi, vi+1) and

rvi
≤ �(vi−1, vi), since �(vi−1,vi)

2 ≤ �(vi, vi+1) ≤ 2�(vi−1, vi). This, together with
the fact that all the vertices of P lie along the same straight-line segment, implies
that the ply-disk Dvi

of vi may only intersect with Dvi−1 and with Dvi+1 , but
not with any of the other disks (note that Dvi

may touch Dvi−2 and Dvi+2 in a
single point, namely the one where vertices vi−1 and vi+1 lie, respectively), but
cannot overlap with them. ��

The heavy-path tree T of a rooted tree T is a decomposition tree of T first
defined by Sleator and Tarjan [13] as follows; see Figs. 4b–c. Each node μ ∈ T is
a path in T between a vertex vμ of T and a leaf of the subtree Tμ of T rooted at
vμ. At the first step, vμ is the root of T , Tμ is T , and the path μ we construct is
the root of T . To construct μ, we start from vμ and we always select the child of
the current vertex whose subtree contains the largest number of vertices, until
a leaf of Tμ is reached. Then, we remove all the vertices of μ from Tμ and their
incident edges, hence obtaining a set of subtrees of Tμ. For each of these subtrees
Tν , rooted at a vertex vν , we add a new node ν as a child of μ in T and recursively
construct the corresponding path. Since each subtree Tν has at most half of the
vertices of Tμ, the height of the heavy-path tree T is O(log n).

Let μ = (vμ = v1, . . . , vm) be any node in T and let τ be its parent. The
vertex of τ that is adjacent to vμ is the anchor aμ of μ; in order to have an
anchor aμ also when μ is the root of T , we add a dummy vertex to T that is
only incident to its root. The proof of the main theorem of this section is based
on the following algorithm, which we call DrawPath, to construct a special 2-
drawing of the path P that is the concatenation of edge (aμ, vμ) and of path μ.

Let nμ be the total number of vertices in the subtrees of Tτ whose corre-
sponding paths have aμ as an anchor. Since Tμ is one of these subtrees, we have
that nμ >

∑m
i=1 ni, where ni is the total number of vertices in the subtrees

Tν1 , . . . , Tνh
of Tμ such that paths ν1, . . . , νh have vi as anchor. Also, since μ is

a path in a heavy-path tree, we have ni ≤ nμ/2 for each 1 ≤ i ≤ m.
Algorithm DrawPath starts by initializing �(aμ, v1) = n1 and �(vi, vi+1) =

ni + ni+1, for each i = 1, . . . , m − 1. Then, it visits the edges of P one by one in
decreasing order of their length in the current drawing. When an edge (vi, vi+1),
with 1 ≤ i ≤ m − 1, is visited, set �(vi−1, vi) = max{ �(vi,vi+1)

2 , �(vi−1, vi)} and
�(vi+1, vi+2) = max{ �(vi,vi+1)

2 , �(vi+1, vi+2)}. We have the following.

Lemma 6. Algorithm DrawPath constructs a 2-drawing Γ of P such that
�(aμ, v1) ≥ n1, �(vi, vi+1) ≥ ni+ni+1, for each i = 1, . . . ,m−1, and �(P ) ≤ 6nμ.

Proof. First observe that �(aμ, v1) ≥ n1 and �(vi, vi+1) ≥ ni + ni+1 for each
i = 1, . . . ,m − 1, since this is true already after the initialization and since no
operation performed by the algorithm reduces the length of any edge.

Also, the fact that Γ is a 2-drawing can be derived from the operations that
are performed when an edge is visited. Note that after an edge has been visited
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by DrawPath, its length is not modified any longer, since the edges are visited
in decreasing order of edge lengths and since the length of an edge is modified
only if this edge is shorter than one of its adjacent edges.

For the same reason, if an edge (vi, vi+1), with 1 ≤ i ≤ m − 1, determines
a local maximum in the sequence of edge lengths in Γ (that is, �(vh, vh+1) ≥
�(vh−1, vh) and �(vh, vh+1) ≥ �(vh+1, vh+2)), then �(vi, vi+1) = ni + ni+1. We
use this property to prove that the total length of the edges in Γ is at most 6nμ.

Consider any two edges (vh, vh+1) and (vq, vq+1), with 1 ≤ h < q ≤ m − 1,
such that �(vh, vh+1) = nh + nh+1, �(vq, vq+1) = nq + nq+1, and such that
�(vi, vi+1) > ni + ni+1 for each i = h + 1, . . . , q − 1; namely, (vh, vh+1) and
(vq, vq+1) are two edges that have not been modified by algorithm DrawPath
after the initialization and such that all edges between them have been modified.

Claim. The total length of the edges in the subpath P ′ of Γ between vh and
vq+1 is at most 2(nh + nh+1) + 2(nq + nq+1).

Proof. Note that there exists no edge in P ′ different from (vh, vh+1) and
(vq, vq+1) that determines a local maximum in the sequence of edge lengths,
since this would contradict the fact that �(vi, vi+1) > ni + ni+1 for each i =
h+1, . . . , q−1. Hence, P ′ is composed of a sequence of edges starting at (vh, vh+1)
and ending at an edge (vj−1, vj), with h < j ≤ q−1, with decreasing edge lengths,
and of a sequence of edges starting at (vj , vj+1) and ending at (vq, vq+1) with
increasing edge lengths. We have �(vh, vh+1) = nh +nh+1 and �(vq, vq+1) = nq +
nq+1, by construction. Also,

∑j−1
i=h+1 �(vi, vi+1) =

∑j−1−h
i=1

nh+nh+1
2i < nh+nh+1,

since Γ is a 2-drawing. Analogously,
∑q−1

i=j �(vi, vi+1) < nq + nq+1. ��
Hence, every edge (vh, vh+1) such that �(vh, vh+1) = nh + nh+1, together

with the possible sequence of edges with increasing (decreasing) edge lengths
preceding (following) it, gives a contribution of less than 3(nh + nh+1). Since∑m

i=1(ni + ni+1) < 2nμ, the total edge length is at most 6nμ. ��
We describe an algorithm to construct a log-ply drawing of any rooted n-

vertex 5-ary tree T with polynomial area. To simplify the description, we first
give the algorithm for ternary trees; we discuss later the extension to 5-ary trees.

Construct the heavy-path tree T of T . Then, construct a drawing of T recur-
sively according to a bottom-up traversal of T . At each step of the traversal,
consider a path μ ∈ T . We associate μ with a half-disk Dμ of radius 6h−dμnμ,
where h is the height of T and dμ is the depth of μ. Refer to Fig. 5a. The goal is
to construct a drawing with ply-number at most 2(h − dμ + 1) of the subtree Tμ

rooted at vμ, augmented with the anchor aμ of μ and with edge (aμ, vμ), inside
Dμ in such a way that aμ lies on the center of Dμ and all the vertices of μ lie
along the radius of Dμ that is perpendicular to the diameter delimiting Dμ.

If μ = (v1, . . . , vm) is a leaf of T , place aμ on the center of Dμ and the
vertices of μ along the radius of Dμ perpendicular to the diameter delimiting it,
so that each edge has length 1. This drawing has ply-number 1 and satisfies the
required properties by construction.

If μ = (v1, . . . , vm) is not a leaf, let ν1, . . . , νk be its children. Assume induc-
tively that for each child νj , with j = 1, . . . , k, there exists a drawing with
ply-number at most 2(h−dνj

+1) inside the half-disk Dνj
with radius 6h−dνj nνj
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Fig. 5. (a) The half-disk Dμ associated with μ. (b) Illustration for the algorithm for
ternary trees. Black dotted circles are the disks Di; orange solid circles are the ply-disks.
(c) Using a quarter-disk instead of a half-disk for 5-ary trees. (Color figure online)

with the required properties. We show how to construct a drawing with ply-
number at most 2(h− dμ +1) of Tμ inside the half-disk Dμ with radius 6h−dμnμ

with the required properties; recall that dμ = dνj
− 1, for each j = 1, . . . , k.

Refer to Fig. 5b. First, apply algorithm DrawPath to construct a 2-drawing
of the path P composed of μ and of its anchor aμ such that �(aμ, v1) ≥ n1,
�(vi, vi+1) ≥ ni + ni+1, for i = 1, . . . , m − 1, and the total length of the edges in
P is at most 6nμ. Then, scale the obtained drawing by a factor of 6h−dμ−1nμ,
which implies that the total length of the edges in P is at most 6h−dμnμ. Hence,
it is possible to place the obtained drawing inside Dμ in such a way that aμ lies
on its center and the vertices of μ lie along the radius that is perpendicular to
the diameter delimiting Dμ. Further, for each vertex vi ∈ μ, consider a disk Di

centered at vi of diameter 6h−dμ−1ni. Due to the scaling performed before, no
two disks Di and Dh, with 1 ≤ i, h ≤ m, intersect with each other.

Consider now the at most two children νs and νt of μ whose anchor is vi;
since dμ = dνj

− 1, for each j = 1, . . . , k, and since ni = nνs
+ nνt

, the diameter
of the half-disk Dνs

and the one of the half-disk Dνt
are both not larger than

the diameter of disk Di. Thus, we can plug the drawings of Tνs
and Tνt

lying
inside Dνs

and Dνt
, which exist by induction, so that the centers of Dνs

and
Dνt

coincide with the center of Di, and the diameters delimiting Dνs
and Dνt

lie
along edges (vi−1, vi) and (vi, vi+1); see Fig. 5b. Hence, the constructed drawing
of Tμ lies inside Dμ and satisfies all the required properties.

By Lemma 5, the ply-number of the 2-drawing of μ constructed by algorithm
DrawPath is at most 2, and it remains the same after the scaling. Also, the
ply-disk of any vertex in Tνs

(in Tνt
) entirely lies inside half-disk Dνs

(half-disk
Dνt

) and hence inside disk Di; thus, it does not overlap with the ply-disk of any
vertex in a different subtree. Since the drawing of Tνj

, for each child νj of μ, has
ply-number at most 2(h − dνj

+ 1), the drawing of Tμ has ply-number at most
2 + 2(h − dνj

+ 1) = 2(h − dνj
+ 2) = 2(h − dμ + 1), given that dμ = dνj

+ 1.
At the end of the traversal, when the root ρ of T has been visited, we have

a drawing with ply-number at most 2(h − dρ + 1) ≤ 2 log n of Tρ = T inside
the half-disk Dρ of radius 6h−dρnρ ≤ 6log nn = O(n1+log 6) = O(n3.6), and hence
area O(n7.2).
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In order to extend the algorithm to work for 5-ary trees, we have to be able
to fit inside the ply-disk Di of each vertex vi ∈ μ the drawings of the at most
four subtrees Tνj

whose anchor is vi. Hence, we associate with each node μ a
quarter-disk Dμ (a sector of a disk with internal angle π

2 ; see Fig. 5c) instead of
a half-disk, still with radius 6h−dμnμ, and we draw Tμ inside Dμ in such a way
that the anchor aμ of μ lies on the center of Dμ and all the vertices of μ lie along
the radius of Dμ along the bisector of Dμ. Also in this case, the ply-disk of each
vertex of μ entirely lies inside Dμ. We thus have the following.

Theorem 3. Every n-vertex 5-ary tree has a drawing with ply-number at most
2 log n and O(n7.2) area.

To extend this approach for trees with larger degree, we should use a disk
sector Dμ with an internal angle smaller than π

2 . In this case, however, we could
not guarantee that the ply-disk of each vertex of μ lies inside Dμ, and thus we
could not compute the ply-number of the subtrees independently of each other.

5 Conclusions and Open Problems

In this work we considered drawings of trees with low ply-number. We proved
that requiring the ply-number to be bounded by a constant is often a somewhat
too strong limitation, as these drawings may not exist, even for bounded-degree
trees, or may require exponential area. On the positive side, we showed that
relaxing the requirement on the ply-number, allowing it to be bounded by a
logarithmic function, makes the problem easier, as we gave an algorithm for
constructing polynomial-area drawings with this property for trees with maxi-
mum degree 6. Our work leaves several interesting open questions.

First, while it is known that stars, caterpillars, and binary trees admit
constant-ply drawings in exponential area [5], we were able to prove that this is
unavoidable only for stars and caterpillars; this leaves open the question on the
area-requirements of constant-ply drawings of binary trees.

Second, it would be interesting to reduce the gap between binary trees, which
always admit constant-ply drawings, and 10-ary trees, which may not admit any
of such drawings. More in general, a characterization of the trees admitting these
drawings is a fundamental open question.

Finally, in this paper we provided the first results on log-ply drawings of
trees. It would be worth studying which trees (or other classes of graphs) always
admit this type of drawings, possibly with polynomial area.
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Abstract. We initiate the study of 2.5D box visibility representations
(2.5D-BR) where vertices are mapped to 3D boxes having the bottom
face in the plane z = 0 and edges are unobstructed lines of sight parallel
to the x- or y-axis. We prove that: (i) Every complete bipartite graph
admits a 2.5D-BR; (ii) The complete graph Kn admits a 2.5D-BR if
and only if n � 19; (iii) Every graph with pathwidth at most 7 admits
a 2.5D-BR, which can be computed in linear time. We then turn our
attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-
BRs such that the bottom face of every box is a unit square at integer
coordinates. We show that an n-vertex graph that admits a 2.5D-GBR
has at most 4n − 6

√
n edges and this bound is tight. Finally, we prove

that deciding whether a given graph G admits a 2.5D-GBR with a given
footprint is NP-complete. The footprint of a 2.5D-BR Γ is the set of
bottom faces of the boxes in Γ .

1 Introduction

A visibility representation (VR) of a graph G maps the vertices of G to non-
overlapping geometric objects and the edges of G to visibilities, i.e., segments
that do not intersect any geometric object other than at their end-points.
Depending on the type of geometric objects representing the vertices and on
the rules used for the visibilities, different types of representations have been
studied in computational geometry and graph drawing.
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A bar visibility representation (BVR) maps the vertices to horizontal seg-
ments, called bars, while visibilities are vertical segments. BVRs were introduced
in the 80 s as a modeling tool for VLSI problems [16,27,28,34–36]. The graphs
that admit a BVR are planar and they have been characterized under various
models [16,28,34,36].

Extensions and generalizations of BVRs have been proposed in order to
enlarge the family of representable graphs. In a rectangle visibility represen-
tation (RVR) the vertices are axis-aligned rectangles, while visibilities are both
horizontal or vertical segments [4,5,10,12,13,23,29,31]. RVRs can exist only for
graphs with thickness at most two and with at most 6n − 20 edges [23]. Recog-
nizing these graphs is NP-hard in general [29] and can be done in polynomial
time in some restricted cases [4,31]. Generalizations of RVRs where orthogo-
nal shapes other than rectangles are used to represent the vertices have been
recently proposed [15,26]. Another generalization of BVRs are bar k-visibility
representations (k-BVRs), where each visibility segment can “see” through at
most k bars. Dean et al. [11] proved that the graphs admitting a 1-BVR have
at most 6n − 20 edges. Felsner and Massow [20] showed that there exist graphs
with a 1-BVR whose thickness is three. The relationship between 1-BVRs and
1-planar graphs has also been investigated [1,7,17,32].

RVRs are extended to 3D space by Z-parallel Visibility Representations
(ZPR), where vertices are axis-aligned rectangles belonging to planes parallel
to the xy-plane, while visibilities are parallel to the z-axis. Bose et al. [6] proved
that K22 admits a ZPR, while K56 does not. Štola [30] subsequently reduced the
upper bound on the size of the largest representable complete graph by show-
ing that K51 does not admits a ZPR. Fekete et al. [18] showed that K7 is the
largest complete graph that admits a ZPR if unit squares are used to represent
the vertices. A different extension of RVRs to 3D space are the box visibility
representations (BR) where vertices are 3D boxes, while visibilities are parallel
to the x-, y- and z- axis. This model was studied by Fekete and Meijer [19] who
proved that K56 admits a BR, while K184 does not.

In this paper we introduce 2.5D box visibility representations (2.5D-BR)
where vertices are 3D boxes whose bottom faces lie in the plane z = 0 and
visibilities are parallel to the x- and y-axis. Like the other 3D models that use
the third dimension, 2.5D-BRs overcome some limitations of the 2D models. For
example, graphs with arbitrary thickness can be realized. In addition 2.5D-BRs
seem to be simpler than other 3D models from a visual complexity point of view
and have the advantage that they can be physically realized, for example by
3D printers or by using physical boxes. Furthermore, this type of representation
can be used to model visibility between buildings of a urban area [9]. The main
results of this paper are as follows.

– We show that every complete bipartite graph admits a 2.5D-BR (Sect. 3).
This implies that there exist graphs that admit a 2.5D-BR and have arbitrary
thickness.

– We prove that the complete graph Kn admits a 2.5D-BR if and only if n � 19
(Sect. 3). Thus, every graph with n � 19 vertices admits a 2.5D-BR.
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– We describe a technique to construct a 2.5D-BR of every graph with pathwidth
at most 7, which can be computed in linear time (Sect. 4).

– We then study 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs
such that the bottom face of every box is a unit square with corners at integer
coordinates (Sect. 5). We show that an n-vertex graph that admits a 2.5D-GBR
has at most 4n−6

√
n edges and that this bound is tight. It is worth remarking

that VRs where vertices are represented with a limited number of shapes have
been investigated in the various models of visibility representations. Examples
of these shape-restricted VRs are unit bar VRs [14], unit square VRs [10], and
unit box VRs [19].

– Finally, we prove that deciding whether a given graph G admits a 2.5D-GBR
with a given footprint is NP-complete (Sect. 5). The footprint of a 2.5D-BR Γ
is the set of bottom faces of the boxes in Γ .

For reasons of space, some proofs and details are omitted and can be found in [3].

2 Preliminaries

A box is a six-sided polyhedron of non-zero volume with axis-aligned sides in
a 3D Cartesian coordinate system. In a 2.5D box representation (2.5D-BR) the
vertices are mapped to boxes that lie in the non-negative half space z � 0 and
include one face in the plane z = 0, while each edge is mapped to a visibility
(i.e. a segment whose endpoints lie in faces of distinct boxes and whose inte-
rior does not intersect any box) parallel to the x- or to the y-axis. We remark
that visibilities between non-adjacent objects may exist, i.e., we adopt the so
called weak visibility model (in the strong visibility model each visibility between
two geometric objects corresponds to an edge of the graph). The weak model
seems to be the most effective when representing non-planar graphs and it has
been adopted in several works (see e.g. [4,7,17]). As in many papers on visibil-
ity representations [19,24,31,33,36], we assume the ε-visibility model, where each
segment representing an edge is the axis of a positive-volume cylinder that inter-
sects no box except at its ends; this implies that an intersection point between a
visibility and a box belongs to the interior of a box face. In what follows, when
this leads to no confusion, we shall use the term edge to indicate both an edge
and the corresponding visibility, and the term vertex for both a vertex and the
corresponding geometric object.

Given a box b of a 2.5D-BR, the face that lies in the plane z = 0 is called the
footprint of b. The intersection of the plane z = 0 with a 2.5D-BR Γ is called the
footprint of Γ and is denoted by Γ0. In other words, the footprint of a 2.5D-BR
Γ consists of the footprint of all the boxes in Γ . If Γ is a 2.5D-BR of a complete
graph then its footprint Γ0 satisfies a trivial necessary condition (throughout the
paper we will refer to this condition as NC ): for every pair of boxes b1 and b2 of
Γ , there must exist a line � (in the plane z = 0) such that (i) � passes through
the footprints of b1 and b2, and (ii) � is either parallel to the x-axis or to the
y-axis. A 2.5D grid box representation (2.5D-GBR) is a 2.5D-BR such that every
box has a footprint that is a unit square with corners at integer coordinates.
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Two boxes see each other if there exists a visibility between them; we say
that they see each other above another box b, if there exists a visibility between
them and the projection of this visibility on the plane z = 0 intersects the
interior of the footprint of b. Notice that this implies that the two boxes are
both taller than b. We say that two boxes have a ground visibility or are ground
visible if there exists a visibility between their footprints, i.e. if there exists an
unobstructed axis-aligned line segment connecting their footprints. If two boxes
are ground visible then they see each other regardless of their heights and the
heights of the other boxes. Let G be a graph, let Λ be a collection of boxes each
lying in the non-negative half space z � 0 with one face in the plane z = 0, such
that the boxes of Λ are in bijection with the vertices of G. Note that Λ may not
be a 2.5D-BR of G. For a vertex v of G, Λ(v) denotes the corresponding box in
Λ, while h(Λ(v)), or simply h(v), indicates the height of this box. For a subset
S ⊂ V (G), Λ(S) denotes the subset of boxes associated with S, while Λ0(S)
is the footprint of Λ(S). Let G[S] be the subgraph of G induced by S. We say
that Λ(S) is a 2.5D-BR of G[S] in Λ, if for any edge (u, v) of G[S] there exists a
visibility in Λ between Λ(u) and Λ(v); that is, the visibility is not destroyed by
the presence of the other boxes in Λ.

3 2.5D Box Representations of Complete Graphs

In this section we consider 2.5D-BRs of complete graphs and complete bipartite
graphs.

Theorem 1. Every complete bipartite graph admits a 2.5D-BR.

Proof. Let Km,n be a complete bipartite graph. We represent the m vertices in
the first partite set with m boxes a0, a1, . . . , am−1 such that box ai has a footprint
with corners at (2i, 0, 0), (2i + 1, 0, 0), (2i, 2n − 1, 0) and (2i + 1, 2n − 1, 0) and
height m − i. Then we represent the n vertices in the second partite set with n
boxes b0, b1, . . . , bn−1 such that box bj has a footprint with corners at (2m, 2j, 0),
(2m + 1, 2j, 0), (2m, 2j + 1, 0) and (2m + 1, 2j + 1, 0) and height m. Consider
now a box ai and a box bj . By construction ai and bj see each other above all
boxes al with l > i. ��

A consequence of Theorem 1 is that there exist graphs with unbounded thick-
ness that admit a 2.5D-BR. This contrasts with other models of visibility rep-
resentations (e.g., k-BVRs, and RVRs), which can only represent graphs with
bounded thickness.

We now prove that the largest complete graph that admits a 2.5D-BR is K19.
We first show that given a 2.5D-BR of a complete graph there is one line parallel
to the x-axis and one line parallel to the y-axis whose union intersect all boxes
and such that each of them intersects at most 10 boxes. This implies that there
can be at most 20 boxes in a 2.5D-BR of a complete graph. We then show that
there must be a box that is intersected by both lines, thus lowering this bound to
19. We finally exhibit a 2.5D-BR of K19. We start with some technical lemmas.
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Lemma 1. Let G be an n-vertex graph that admits a 2.5D-BR Γ ′. Then there
exists a 2.5D-BR Γ of G such that every box of Γ has a distinct integer height
in the range [1, n] and the footprint of Γ is the same as that of Γ ′.

The following lemma is proved in [25, Observation 1]. Given an axis-aligned
rectangle r in the plane z = 0, we denote by x(r) the x-extent of r and by y(r)
the y-extent of r, so r = x(r) × y(r).

Lemma 2 [25]. For every arrangement R of n axis-aligned rectangles in the
plane such that for all a, b ∈ R, either x(a) ∩ x(b) �= ∅ or y(a) ∩ y(b) �= ∅, there
exists a vertical and a horizontal line whose union intersects all rectangles in R.

The following lemma is similar to the Erdős–Szekeres lemma and can be
proved in a similar manner [18]. A sequence of distinct integers is unimaximal if
no element of the sequence is smaller than both its predecessor and successor.

Lemma 3 [18]. For all m > 1, in every sequence of
(
m
2

)
+ 1 distinct integers,

there exists at least one unimaximal sequence of length m.

Given a 2.5D-BR Γ and a line � parallel to the x-axis or to the y-axis, we say
that � stabs a set of boxes B of Γ if it intersects the interior of the footprints of
each box in B. Let b1, b2, . . . , bh be the boxes of B in the order they are stabbed
by �. We say that B has a staircase layout, if h(bi) > h(bi−1) for i = 2, 3, . . . , h.

Lemma 4. In a 2.5D-BR of a complete graph no line parallel to the x-axis or
to the y-axis can stab five boxes whose heights, in the order in which the boxes
are stabbed, form a unimaximal sequence.

Proof. Assume, as a contradiction, that there exists a line � parallel to the x-axis
or to the y-axis that stabs 5 boxes b1, . . . , b5 whose heights form a unimaximal
sequence in the order in which the boxes are stabbed by �. Let ri be the footprint
of box bi (with 1 � i � 5). We claim that there exists a ground visibility between
every pair of boxes bi and bj (with 1 � i < j � 5). If j = i+1 this is clearly true.
Suppose then that j �= i + 1. If bi and bj do not have a ground visibility, then
they must see each other above bl with i < l < j, i.e., the height of bi and of bj
must be larger than the height of bl, which is impossible because the sequence
of heights is unimaximal. Thus, for every pair of boxes bi and bj there must be
a ground visibility. Since bi and bj are both stabbed by �, this visibility must
be parallel to �. This implies that the left sides (if � is parallel to the x-axis) or
the bottom sides (if � is parallel to the y-axis) of rectangles r1, r2, r3, r4, r5 form
a bar visibility representation of K5, which is impossible because bar visibility
representations exist only for planar graphs [21]. ��
Lemma 5. In a 2.5D-BR of a complete graph no line parallel to the x-axis or
to the y-axis can stab more than 10 boxes.

Proof. Let Γ be a 2.5D-BR of a complete graph Kn. By Lemma 1 we can assume
that all boxes have distinct integer heights. Suppose, as a contradiction, that
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there exists a line � parallel to the x-axis or to the y-axis that stabs k > 10
boxes. Let h1, h2, . . . , hk be the heights of the stabbed boxes in the order in
which the boxes are stabbed by �. By Lemma 3 this sequence of heights contains
a unimaximal sequence of length 5, but this is impossible by Lemma4. ��
Lemma 6. A complete graph admits a 2.5D-BR only if it has at most 19
vertices.

Proof. Let Γ be a 2.5D-BR of a complete graph Kn (for some n > 0). By
Lemma 1 we can assume that all boxes of Γ have distinct heights. The footprint
Γ0 of Γ is an arrangement of rectangles that satisfies Lemma 2. Thus there exist
a line �h parallel to the x-axis and a line �v parallel to the y-axis that together
stab all boxes of Γ . By Lemma 5, both �h and �v can stab at most 10 boxes each.
This means that the number of boxes (and therefore the number of vertices of
Kn) is at most 20. We now prove that if �h and �v both stab ten boxes, there
must be one box that is stabbed by both �h and �v, which implies that the
number of boxes in Γ is at most 19.

Suppose, for a contradiction, that p = �h ∩ �v does not lie in a box. Refer to
Fig. 1(a) for an illustration. Denote by T the set of boxes stabbed by �v that are
above p and by B be the set of boxes stabbed by �v that are below p. Analogously,
denote by L the set of boxes stabbed by �h that are to the left of p and by R
the set of boxes stabbed by �h that are to the right of p. Each of these sets can
be empty but |T | + |B| = 10 and |L| + |R| = 10. Denote by l1, l2, . . . , l|L| the
set of boxes in L from right to left, i.e., l1 is the box closest to p. Analogously,
denote by r1, r2, . . . , r|R| the boxes of R from left to right (r1 is the closest to
p), by t1, t2, . . . , t|T | the boxes of T from bottom to top (t1 is the closest to p)
and by b1, b2, . . . , b|B| the boxes of B from top to bottom (b1 is the closest to p).
Let fT , fB , fL, and fR be the footprints of t1, b1, l1, and r1, respectively. Let
�X be the line containing the side of fX that is closest to p and let �′

X be the
line containing the opposite side of fX (for every X ∈ {T,B,L,R}).

We first claim that for each fX there exists a line �Y (with X,Y ∈
{T,B,L,R} and Y �= X) that intersects the interior of fX . Suppose, for a
contradiction, that this is not true for at least one fX , say fL; that is, the inte-
rior of fL is not intersected by �T and �B . If so, there must be a line � parallel
to the y-axis that intersects all the rectangles in T ∪ B and fL; otherwise the
necessary condition NC does not hold for T ∪ B ∪ {l1}. But then � would stab
eleven boxes, which is impossible by Lemma 5. Thus, our claim holds and the
four rectangles fX are placed so that �T , �R, �B , and �L stab fR, fB , fL, and fT
(or, symmetrically, fL, fT , fR, and fB , which follows a symmetric argument),
respectively, as in Fig. 1(a).

We consider now the sets T , B, L, and R. For each set there are two possible
configurations. Consider the set B and the line �′

L. If the set B′ = B \ {b1}
contains a box bj whose footprint is completely to the right of �′

L, we say that B
has configuration A (see Fig. 1(b)). In the case of configuration A, the footprint of
all boxes in L′ = L\{l1} must extend below the line �′

B (otherwise the necessary
condition NC does not hold for L′ ∪ {bj}). This implies that y(fB) is contained
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Fig. 1. (a) Placement of the four rectangles fT , fR, fB , and fL. (b) Configuration A
for the boxes of set B. (c) Configuration B for the boxes of set B. The arrow intersects
the boxes that must have a staircase layout.

in y(li) for all i � 2. The only possibility for b1 to see all these boxes is that
L′ has a staircase layout (with l2 being the shortest box) and b1 is taller than
the second tallest one. So, configuration A for the set B implies that L′ has a
staircase layout. If all boxes of B′ have a footprint that extends to the left of �′

L,
we say that B has configuration B (see Fig. 1(c)). In this case, x(fL) is contained
in x(bi) for all i � 2. Again, the only possibility for l1 to see all these boxes is
that B′ has a staircase layout and that l1 is taller than the second tallest one.
So, configuration B for the set B implies that B′ has a staircase layout. The
definitions of configurations A and B for T , L, R are similar to those for B and
arise by considering lines �′

R, �′
T , �′

B , respectively.
For any two sets X and Y that are consecutive in the cyclic order T , R,

B, L, either X ′ or Y ′ has a staircase layout (depending on whether X has
configuration A or B). This implies that either B′ and T ′ have both a staircase
layout or L′ and R′ have both a staircase layout. Suppose that B′ and T ′ have a
staircase layout (the case when L′ and R′ have a staircase layout is analogous).
If either |B′| � 5 or |T ′| � 5, �v stabs at least five boxes whose heights form
a unimaximal sequence, which is impossible by Lemma 4. Thus |B′| = 4 and
|T ′| = 4 (recall that |B′| + |T ′| = 8). Since all boxes of Γ have distinct heights,
either h(b2) < h(t2) or h(t2) < h(b2). In the first case �v stabs the five boxes
t5, t4, t3, t2, b2 whose heights form a unimaximal sequence, which is impossible by
Lemma 4. In the other case �v stabs the five boxes b5, b4, b3, b2, t2 whose heights
form a unimaximal sequence, which is impossible by Lemma 4. ��

We conclude this section by exhibiting a 2.5D-BR of K19, illustrated in Fig. 2.
To prove the correctness of the drawing the idea is to partition the vertex set
of K19 into five subsets (shown in Fig. 2) and prove that all boxes in a given set
see all other boxes. The following theorem holds.

Theorem 2. A complete graph Kn admits a 2.5D-BR if and only if n � 19.
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Fig. 2. Illustration of a 2.5D-BR of K19, the footprint is represented by a 2D drawing
in the plane z = 0, while the heights of boxes are indicated by integer labels. The five
rectangles with thick sides represent the partitioning of V (K19) into five subsets.

4 2.5D Box Representations of Graphs with Pathwidth
at Most 7

A graph G with pathwidth p is a subgraph of a graph that can be constructed
as follows. Start with the complete graph Kp+1 and classify all its vertices as
active. At each step, a vertex is deactivated and a new active vertex is introduced
and joined to all the remaining active vertices. The order in which vertices are
introduced is given by a normalized path decomposition, which can be computed
in linear time for a fixed p [22].

Theorem 3. Every n-vertex graph with pathwidth at most 7 admits a 2.5D-BR,
which can be computed in O(n) time.

Proof. We describe an algorithm to compute a 2.5D-BR of a graph G with
pathwidth 7. The algorithm is based on the use of eight groups of rectangles, a
subset of which will form the footprint of the 2.5D-BR of G. For graphs with
pathwidth p < 7, the same algorithm can be applied by considering only p + 1
groups, arbitrarily chosen.
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Fig. 3. Construction of a 2.5D-BR for a graph with pathwidth 7.

The eight groups are defined in the plane z = 0 and have n rectangles each
denoted as rh,1, rh,2, . . . , rh,n (1 � h � 8). The groups are placed as shown in
Fig. 3. The groups h = 5, 6, 7, 8 will be called central groups. A vertex whose
footprint is rh,k will be called a vertex of group h (1 � h � 8).

Let v1, v2, . . . , vn be the vertices of G in the order given by a normalized path
decomposition. We denote by Gi the subgraph of G induced by {v1, v2, . . . , vi}.
We create a collection of boxes by adding one box per step; at step i we add
a box to represent the next vertex vi to be activated. We denote the collection
of the first i boxes as Λi and we prove that Λi satisfies the following invariant
(I1): Λi is a 2.5D-BR of Gi such that for any pair of boxes of group j and
k (1 � j, k � 8) that represent vertices that are adjacent in Gi, there exists
a visibility whose projection in the plane z = 0 is inside the region αj,k. The
regions αj,k are highlighted in Fig. 3 as dashed regions.
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The initial eight active vertices v1, v2, . . . , v8 are represented by boxes whose
footprints are r1,1, r2,1, . . . , r8,1, respectively. The heights are set as follows:
h(vh) = (h − 1) · n + 1, for h = 1, 2, 3, 4, and h(vh) = 4n + 1 for h = 5, 6, 7, 8.
The initial eight vertices are shown in Fig. 3 as white rectangles whose heights
are shown inside them. Λ8 satisfies invariant I1 thanks to the visibilities shown
in Fig. 3.

Assume now that Λi−1 (i > 8) satisfies invariant I1 and let vj be the vertex to
be deactivated (for some j < i). Assume that vj belongs to group h (1 � h � 8).
Vertex vi is represented as a box with footprint rh,i and height h(vi) = h(vj)+1,
if h ∈ {1, 3, 5, 6, 7, 8}, or h(vi) = h(vj) − 1, if h ∈ {2, 4}. If the group of vi is
a central group, we increase by one unit the height of all the active vertices of
the other central groups. Notice that the heights of the vertices of group h, for
h � 4, are in the range [(h − 1) · n + 1, h · n], while the heights of the remaining
vertices are greater than 4n.

We now prove that Λi satisfies invariant I1 by showing that the addition of vi
does not destroy any existing visibility and that Λi(vi) sees all the other active
vertices inside the appropriate regions. We have different cases depending on the
group h of vi.
– h = 1 or h = 2. The box Λi(vi) only intersects the regions αh′,2, with
h′ �= 2. Thus, the only visibilities that could be destroyed are those inside these
regions. The visibilities in the regions α3,2, α4,2, α5,2, α6,2, α7,2, and α8,2 are
not destroyed by the addition of vi because the boxes representing the vertices
of group 2 are taller than the box representing vi and so are the boxes of any
group h′ with h′ > 2. The existing visibilities in the region α1,2 are not destroyed
because rh,i is short enough (in the x-direction) so that the existing boxes of
groups 1 and 2 can still see each other in region α1,2. So, no visibility is destroyed
for the vertices of group 2. The box Λi(vi) sees the box of the active vertex of
group 1 or 2 via a ground visibility in region α1,2 and it sees the boxes of all
the other active vertices inside the region αh′,1, with h′ > 2, above the boxes of
group 1 (which are all shorter than it).
– h = 3 or h = 4. The proof of this case is omitted.
– h = 5 or h = 6. The box Λi(vi) only intersect the regions αh,h′ , with h′ ∈
{5, 6, 7, 8} and h′ �= h. However, it does not intersect any existing visibility inside
these regions and therefore the addition of Λi(vi) does not destroy any existing
visibility. The box Λi(vi) sees the active vertices of groups 1 and 2 inside αh,k

(with h = 5 or 6, and k = 1, 2) and above the boxes of group 1. The active
vertices of groups 3 and 4 are seen inside αh,k (with h = 5 or 6, and k = 3, 4)
and above the boxes of group 3. Finally, the active vertices of the central groups
are seen inside αh,k (with h = 5 or 6, and k > 4) and above the boxes of group
h. Recall that the active vertices of the central groups have been raised to have
the same height as Λi(vi) (which is larger than the height of any other box in
the central groups).
– h = 7 or h = 8. The proof of this case is omitted.

The above construction can be done in O(n) time. Since the normalized path
decomposition can be computed in O(n) time, the time complexity follows. ��
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5 2.5D Grid Box Representations

Next we give a tight bound on the edge density of graphs admitting a 2.5D-GBR.
The proof is based on the fact that a set of aligned (unit square) boxes induces
an outerplanar graph. A square grid of boxes gives the bound.

Theorem 4. Every n-vertex graph that admits a 2.5D-GBR has at most 4n −
6
√

n edges, and this bound is tight.

In the next theorem we prove that deciding whether a given graph admits
a 2.5D-GBR with a given footprint is NP-complete. We call this problem 2.5D-
GBR-WITH-GIVEN-FOOTPRINT (2.5GBR-WGF). The reduction is from
HAMILTONIAN-PATH-FOR-CUBIC-GRAPHS (HPCG), which is the problem
of deciding whether a given cubic graph admits a Hamiltonian path [2].

Theorem 5. Deciding whether a given graph G admits a 2.5D-GBR with a
given footprint is NP-complete, even if G is a path.

Proof sketch: We first prove that 2.5GBR-WGF is in NP. A candidate solution
consists of a mapping of the vertices of G to the squares of the given footprint
and a choice of the heights of the boxes. By Lemma 1 we can assign to each box
an integer height in the set {1, 2, . . . , n}. Thus the size of a candidate solution
is polynomial in the size of the input graph. Given a candidate solution, we can
test in polynomial time whether all edges of G are realized as visibilities. Thus,
the problem is in NP.

We now describe a reduction from the HPCG problem. Let GH be an instance
of the HPCG problem, i.e. a cubic graph, with nH vertices and mH edges. We
compute an orthogonal grid drawing ΓH of GH such that every edge has exactly
one bend and no two vertices share the same x- or y-coordinate. Such a drawing
always exists and can be computed in polynomial time with the algorithm by
Bruckdorfer et al. [8]. We now use ΓH as a trace to construct an instance 〈G,F 〉
of the 2.5GBR-WGF problem, where G is a path and F a footprint, i.e., a set
of squares. G is a path with 4nH + mH vertices and therefore F will contain
4nH+mH squares. The footprint F is constructed as follows. ΓH is scaled up by a
factor of four. In this way, every two vertices/bends are separated by at least four
grid units. Each vertex v of ΓH is replaced by a set S(v) of four unit squares. In
particular if vertex v has coordinates (4x, 4y) in ΓH , then it is replaced by the
following four unit squares: S1(v) whose bottom-right corner has coordinates
(4x, 4y), S2(v) whose bottom-right corner has coordinates (4x + 2, 4y), S3(v)
whose bottom-right corner has coordinates (4x, 4y−2), and S4(v) whose bottom-
right corner has coordinates (4x + 2, 4y − 2). We associate with each edge e
incident to a vertex v, one of the four squares in S(v). If e enters v from West,
North, South, or East, the square associated with e is S1(v), S2(v), S3(v), or
S4(v), respectively. Let (u, v) be an edge of ΓH and let Si(u) and Sj(v) (1 �
i, j � 4) be the squares associated with (u, v). The bend of e = (u, v) is replaced
by a unit square Se horizontally/vertically aligned with Si(u) and Sj(v). The
set of squares replacing the vertices of ΓH , which will be called vertex squares
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Fig. 4. (a) An orthogonal drawing of a cubic graph. (b) Construction of the footprint.
Black (gray) squares are vertex (edge) squares. (c) The constructed footprint.

in the following, together with the set of squares replacing the bends, which will
be called edge squares in the following, form the footprint F . Figure 4 shows an
orthogonal drawing of a cubic graph and the corresponding footprint F . Observe
that the footprint F is such that any two squares are separated by at least one
unit and in each row/column there are at most three squares. Let F ∗ be a graph
with a vertex for each square in F and an edge between two squares if and only
if the two squares are horizontally or vertically aligned. It can be proved that
GH admits a Hamiltonian path if and only if F ∗ contains a Hamiltonian path.

Consider the instance 〈G,F 〉 of the 2.5GBR-WGF problem, where G is a
path. We prove that G admits a 2.5D-GBR with footprint F if and only if F ∗

admits a Hamiltonian path. Every graph that can be represented by a 2.5D-GBR
with footprint F is a spanning subgraph of F ∗ (because F ∗ has all possible edges
that can be realized as visibilities in a 2.5D-GBR with footprint F ). Thus, if G
admits a 2.5D-GBR with footprint F , then G is a Hamiltonian path of F ∗ (recall
that G is a path). Suppose now that F ∗ has a Hamiltonian path H∗. We show
that we can choose the heights of the squares in F so that the resulting boxes
form a 2.5D-GBR of G. Recall that in each row/column of F there are at most
three squares. If an edge connects two squares that are consecutive along a row
or column, then any choice of the heights is fine. If an edge connects the first and
the last square of a row/column, then the heights of these two squares must be
larger than the height of the square in the middle. We assign the heights to one
square per step, in the order in which they appear along H∗. We assign to the
first square a height equal to the number of squares (i.e., 4nH + mH). Let h be
the height assigned to the current square S and let S′ be the next square along
H∗. If S and S′ are consecutive along a row/column then the height assigned to
S′ is h. If S and S′ are the first and the last square of a row/column then the
height assigned to S′ is h. If S is the first/last square of a row/column and S′

is the middle square of the same row/column, then the height assigned to S′ is
h − 1. If S is the middle square of a row/column and S′ is the first/last square
of the same row/column, then the height assigned to S′ is h+1. It is easy to see
that all heights are positive and that if an edge connects the first and the last
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square of a row/column, then the heights of these two squares are greater than
the height of the square in the middle. This concludes the proof that G admits a
2.5D-GBR with footprint F if and only if F ∗ admits a Hamiltonian path. Since
F ∗ has a Hamiltonian path if and only if GH has a Hamiltonian path, G admits
a 2.5D-GBR with footprint F if and only if GH has a Hamiltonian path, which
implies that the 2.5GBR-WGF problem is NP-hard. ��

6 Open Problems

There are several possible directions for further study of 2.5D-BRs. Among them:
(i) Study the complexity of deciding if a given graph admits a 2.5D-BR. We
remark that deciding if a graph admits an RVR is NP-hard. (ii) Investigate
other classes of graphs that admit a 2.5D-BR. For example, do 1-planar graphs
or partial 5-trees always admit a 2.5D-BR? We remark that there are both
1-planar graphs and partial 5-trees not admitting an RVR. (iii) Study the 2.5D-
BRs under the strong visibility model. For example, which bipartite graphs admit
a strong 2.5D-BR?
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Abstract. For a graph G, a function ψ is called a bar visibility rep-
resentation of G when for each vertex v ∈ V (G), ψ(v) is a horizontal
line segment (bar) and uv ∈ E(G) iff there is an unobstructed, verti-
cal, ε-wide line of sight between ψ(u) and ψ(v). Graphs admitting such
representations are well understood (via simple characterizations) and
recognizable in linear time. For a directed graph G, a bar visibility rep-
resentation ψ of G, additionally, for each directed edge (u, v) of G, puts
the bar ψ(u) strictly below the bar ψ(v). We study a generalization of the
recognition problem where a function ψ′ defined on a subset V ′ of V (G)
is given and the question is whether there is a bar visibility representa-
tion ψ of G with ψ|V ′ = ψ′. We show that for undirected graphs this
problem together with closely related problems are NP-complete, but for
certain cases involving directed graphs it is solvable in polynomial time.

1 Introduction

The concept of a visibility representation of a graph is a classic one in compu-
tational geometry and graph drawing and the first studies on this concept date
back to the early days of these fields (see, e.g. [16,17] and [12] for a recent survey).
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In the most general setting, a visibility representation of a graph is defined as
a collection of disjoint sets from an Euclidean space such that the vertices are
bijectively mapped to the sets and the edges correspond to unobstructed lines of
sight between two such sets. Many different classes of visibility representations
have been studied via restricting the space (e.g., to be the plane), the sets (e.g.,
to be points or line segments) and/or the lines of sight (e.g., to be non-crossing or
axis-parallel). In this work we focus on a classic visibility representation setting
in which the sets are horizontal line segments (bars) in the plane and the lines
of sight are vertical. As such, whenever we refer to a visibility representation,
we mean one of this type. The study of such representations was inspired by
the problems in VLSI design and was conducted by different authors [9,13,14]
under variations of the notion of visibility. Tamassia and Tollis [16] gave an
elegant unification of different definitions and we follow their approach.

A horizontal bar is an open, non-degenerate segment parallel to the x-axis of
the coordinate plane. For a set Γ of pairwise disjoint horizontal bars, a visibility
ray between two bars a and b in Γ is a vertical closed segment spanned between
bars a and b that intersects a, b, and no other bar. A visibility gap between two
bars a and b in Γ is an axis aligned, non-degenerate open rectangle spanned
between bars a and b that intersects no other bar.

For a graph G, a visibility representation ψ is a function that assigns a distinct
horizontal bar to each vertex such that these bars are pairwise disjoint and satisfy
additional visibility constraints. There are three standard visibility models:

– Weak visibility. In this model, for each edge {u, v} of G, there is a visibility
ray between ψ(u) and ψ(v) in ψ(V (G)).

– Strong visibility. In this model, two vertices u, v of G are adjacent if and only
if there is a visibility ray between ψ(u) and ψ(v) in ψ(V (G)).

– Bar visibility. In this model, two vertices u, v of G are adjacent if and only if
there is a visibility gap between ψ(u) and ψ(v) in ψ(V (G)).

The bar visibility model is also known as the ε-visibility model in the literature.
A graph that admits a visibility representation in any of these models is a

planar graph, but the converse does not hold in general. Tamassia and Tollis [16]
characterized the graphs that admit a visibility representation in these models
as follows. A graph admits a weak visibility representation if and only if it is
planar. A graph admits a bar visibility representation if and only if it has a
planar embedding with all cut-points on the boundary of the outer face. For
both of these models, Tamassia and Tollis [16] presented linear time algorithms
for the recognition of representable graphs, and for constructing the appropri-
ate visibility representations. The situation is different for the strong visibility
model. Although the planar graphs admitting a strong visibility representation
are characterized in [16] (via strong st-numberings), Andreae [1] proved that
the recognition of such graphs is NP-complete. Summing up, from a computa-
tional point of view, the problems of recognizing graphs that admit visibility
representations and of constructing such representations are well understood.

Recently, a lot of attention has been paid to the question of extending par-
tial representations of graphs. In this setting a representation of some vertices of
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the graph is already fixed and the task is to find a representation of the whole
graph that extends the given partial representation. Problems of this kind are
often encountered in graph drawing and are sometimes computationally harder
than testing for existence of an unconstrained drawing. The problem of extend-
ing partial drawings of planar graphs is a good illustration of this phenomenon.
On the one hand, by Fáry’s theorem, every planar graph can be drawn in the
plane so that each vertex is represented as a point, and edges are pairwise non-
crossing, straight-line segments joining the corresponding points. Moreover, such
a drawing can be constructed in linear time. On the other hand, testing whether
a partial drawing of this kind (i.e., an assignment of points to some of the
vertices) can be extended to a straight-line drawing of the whole graph is NP-
hard [15]. However, an analogous problem in the model that allows the edges to
be drawn as arbitrary curves instead of straight-line segments has a linear-time
solution [2]. A similar phenomenon occurs when we consider contact represen-
tations of planar graphs. Every planar graph is representable as a disk contact
graph or a triangle contact graph. Every bipartite planar graph is representable
as a contact graph of horizontal and vertical segments in the plane. Although
such representations can be constructed in polynomial time, the problems of
extending partial representations of these kinds are NP-hard [4].

In this paper we initiate the study of extending partial visibility represen-
tations of graphs. From a practical point of view, it may be worth recalling
that visibility representations are not only an appealing way of drawing graphs,
but they are also typically used as an intermediate step towards constructing
visualizations of networks in which all edges are oriented in a common direction
and some vertices are aligned (for example to highlight critical activities in a
PERT diagram). Visibility representations are also used to construct orthogonal
drawings with at most two bends per edge. See, e.g. [6] for more details about
these applications. The partial representation extension problem that we study
in this paper occurs, for example, when we want to use visibility representations
to incrementally draw a large network and we want to preserve the user’s mental
map in a visual exploration that adds a few vertices and edges per time.

Both for weak visibility and for strong visibility, the partial representation
extension problems are easily found to be NP-hard. For weak visibility, the hard-
ness follows from results on contact representations by Chaplick et al. [4]. For
strong visibility, it follows trivially from results by Andreae [1]. Our contribu-
tion is the study of the partial representation extension problem for bar visibility.
Hence, the central problem for this paper is the following:

Bar Visibility Representation Extension:
Input: (G,ψ′); G is a graph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
One of our results is the following.

Theorem 1. The Bar Visibility Representation Extension Problem is
NP-complete.
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The proof is a standard reduction from PlanarMonotone3Sat problem,
which is known to be NP-complete thanks to de Berg and Khosravi [3]. The
reduction uses gadgets that simulate logic gates and constructs a planar boolean
circuit that encodes the given formula. Theorem1 is proven in AppendixD. We
investigate a few natural modifications of the problem. Most notably, we study
the version of the problem for directed graphs. We provide some efficient algo-
rithms for extension problems in this setting. A visibility representation induces
a natural orientation on edges of the graph – each edge is oriented from the lower
bar to the upper one. This leads to the definition of a visibility representation
for a directed graph. The function ψ is a representation of a digraph G if, addi-
tionally to satisfying visibility constraints, for each directed edge (u, v) of G, the
bar ψ(u) is strictly below the bar ψ(v). Note that a planar digraph that admits
a visibility representation also admits an upward planar drawing (see e.g., [10]),
that is, a drawing in which the edges are represented as non-crossing y-monotone
curves.

A planar st-graph is a planar acyclic digraph with exactly one source s and
exactly one sink t which admits a planar embedding such that s and t are on the
outer face. Di Battista and Tamassia [7] proved that a planar digraph admits an
upward planar drawing if and only if it is a subgraph of a planar st-graph if and
only if it admits a weak visibility representation. Garg and Tamassia [11] showed
that the recognition of planar digraphs that admit an upward planar drawing
is NP-complete. It follows that the recognition of planar digraphs that admit
a weak visibility representation is NP-complete, and so is the corresponding
partial representation extension problem. Nevertheless, as is shown in Lemma1
(see Appendix A for the proof), the situation might be different for bar visibility.

Lemma 1. Let st(G) be a graph constructed from a planar digraph G by adding
two vertices s and t, the edge (s, t), an edge (s, v) for each source vertex v of G,
and an edge (v, t) for each sink vertex v of G. A planar digraph G admits a bar
visibility representation if and only if the graph st(G) is a planar st-graph.

As planar st-graphs can be recognized in linear time, the same is true for planar
digraphs that admit a bar visibility representation. The natural problem that
arises is the following:
Bar Visibility Representation Extension for Digraphs:
Input: (G,ψ′); G is a digraph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a bar visibility representation ψ with ψ|V ′ = ψ′?
Although we do not provide a solution for this problem, we present an effi-
cient algorithm for an important variant. A bar visibility representation ψ of a
directed graph G is called rectangular if ψ has a unique bar ψ(s) with the lowest
y-coordinate, a unique bar ψ(t) with the highest y-coordinate, ψ(s) and ψ(t)
span the same x-interval, and all other bars are inside the rectangle spanned
between ψ(s) and ψ(t). See Fig. 1 for an example of a rectangular bar visibility
representation of a planar st-graph.

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.4
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.1
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Fig. 1. A planar st-graph G and a rectangular bar visibility representation ψ of G.

Tamassia and Tollis [16] showed that a planar digraph G admits a rectangular
bar visibility representation if and only if G is a planar st-graph. In Sect. 3 we
give an efficient algorithm for the following problem:
Rectangular Bar Visibility Representation Extension for st-graphs:
Input: (G,ψ′); G is a planar st-graph; ψ′ is a map assigning bars to a V ′ ⊆ V (G).
Question: Does G admit a rectangular bar visibility representation ψ with
ψ|V ′ = ψ′?
The main result in this paper is the following.

Theorem 2. The Rectangular Bar Visibility Representation Extension Problem
for an st-graph with n vertices can be solved in O

(
n log2 n

)
time.

Our algorithm exploits the correspondence between bar visibility representations
and st-orientations of planar graphs, and utilizes the SPQR-decomposition.

The rest of the paper is organized as follows. Section 2 contains the necessary
definitions and description of the necessary tools. Section 3 contains the general
ideas for the proof of Theorem 2. The omitted parts of the proof are reported in
AppendixC together with some figures illustrating the ideas behind the proofs.
Section 4 mentions further results from the full version and open problems.

2 Preliminaries

For a horizontal bar a, functions y(a), l(a), r(a) give respectively the y-coordinate
of a, the x-coordinate of the left end of a, and the x-coordinate of the right end
of a. For any bounded object Q in the plane, we use functions X(Q) and Y (Q)
to denote the smallest possible, possibly degenerate, closed interval containing
the projection of Q on the x-, and on the y-axis respectively. We denote the left
end of X(Q) by l(Q) and the right end of X(Q) by r(Q). Let a and b be two
horizontal bars with y(a) < y(b). We say that Q is spanned between a and b if
X(Q) ⊆ X(a), X(Q) ⊆ X(b), and Y (Q) = [y(a), y(b)].

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.3
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For a graph G, we often describe the visibility representation ψ by providing
the values of functions yψ = y(ψ(v)), lψ = l(ψ(v)), rψ = r(ψ(v)) for any vertex v
of G. We drop the subscripts when the representation is known from the context.

Let G be a planar st-graph. An st-embedding of G is any planar embedding
with s and t on the boundary of the outer face. A planar st-graph together with
an st-embedding is called a plane st-graph. Vertices s and t of a planar (plane)
st-graph are called the poles of G. We abuse notation and we use the term planar
(plane) uv-graph to mean a planar (plane) st-graph with poles u and v. An inner
vertex of G is a vertex of G other than the poles of G. A real valued function ξ
from V (G) is an st-valuation of G if for each edge (u, v) we have ξ(u) < ξ(v).

Tamassia and Tollis [16] showed that the following properties hold for any
plane st-graph:

1. For every inner face f , the boundary of f consists of two directed paths with
a common origin and a common destination.

2. The boundary of the outer face consists of two directed paths, with a common
origin s and a common destination t.

3. For every inner vertex v, edges from v (to v) are consecutive around v.

Let G be a plane st-graph. We introduce two objects associated with
the outer face of G: the left outer face s∗ and the right outer face t∗.
Properties (1)–(3) allow us to introduce the following standard notions: left/right
face of an edge and a vertex, left/right path of a face, and the dual G∗ of G –
a planar st-graph with vertex set consisting of inner faces of G, s∗, and t∗. For
two faces f and g in V (G∗) we say that f is to the left of g, and that g is to the
right of f , if there is a directed path from f to g in G∗. See AppendixB.2 for
the precise definitions which follow the standard definitions given by Tamassia
and Tollis [16].

3 Rectangular Bar Visibility Representations of st-graphs

In this section we provide an efficient algorithm that solves the rectangular bar
visibility representation extension problem for st-graphs. Our algorithm employs
a specific version of the SPQR-decomposition that allows us to describe all st-
embeddings of a planar st-graph. See AppendixB.1 for the exact definition which
follows the one given by Di Battista and Tamassia [8]. In particular, an SPQR-
tree T of a planar st-graph G consists of nodes of four different types: S for series
nodes, P for parallel nodes, Q for edge nodes, and R for rigid nodes. Each node μ
represents a pertinent graph Gμ, a subgraph of G which is an st-graph with poles
sμ and tμ. Additionally, μ has an associated directed multigraph skel(μ) called
the skeleton of μ. The only difference between our definition of the SPQR-tree
and the one given in [8] is that we do not add an additional edge between the
poles of the skeleton of a node. Our definition ensures that we have a one-to-
one correspondence between the edges of skel(μ) and the children of μ in T .
In Sect. 3.1, we use the SPQR-tree T of G to describe how a rectangular bar
visibility representation is composed of rectangular bar visibility representations
of the pertinent graphs of T .

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.2.2
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.2.1
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The skeleton of a rigid node has only two st-embeddings, one being the
flip of the other around the poles of the node. The skeleton of a parallel node
with k children has k! st-embeddings, one for every permutation of the edges
of the skeleton. The skeleton of a series node or an edge node has only one
st-embedding.

Section 3.1 presents structural properties of bar visibility representations in
relation to an SPQR-decomposition. In Sect. 3.2 we present an algorithm that
solves this extension problem in quadratic time. In AppendixC.6 we give a
refined algorithm that works in O

(
n log2 n

)
time for an st-graph with n vertices.

3.1 Structural Properties

Let Γ be a collection of pairwise disjoint bars. For a pair of bars a, b in Γ with
y(a) < y(b) let the set of visibility rectangles R(a, b) be the interior of the set of
points (x, y) in R

2 where:

1. a is the first bar in Γ on a vertical line downwards from (x, y),
2. b is the first bar in Γ on a vertical line upwards from (x, y).

Figure 1 shows (shaded area) the set of visibility rectangles R(s, 5). Note that
there is a visibility gap between a and b in Γ iff R(a, b) is non-empty. If R(a, b)
is non-empty, then it is a union of pairwise disjoint open rectangles spanned
between a and b.

Let G be a planar st-graph and let T be the SPQR-tree for G. Let ψ be a
rectangular bar visibility representation of G. For every node μ of T we define
the set Bψ(μ), called the bounding box of μ with respect to ψ, as the closure of
the following union:

⋃
{R(ψ(u), ψ(v)) : (u, v) is an edge of the pertinent digraph Gμ} .

If ψ is clear from the context, then the set Bψ(μ) is denoted by B(μ) and is called
the bounding box of μ. Let B(ψ) = X(ψ(V (G))) × Y (ψ(V (G))) be the minimal
closed axis-aligned rectangle that contains the representation ψ. It follows that:

1. B(ψ) = Bψ(μ), where μ is the root of T ,
2. each point in B(ψ) is in the closure of at least one set of visibility rectangles

R(ψ(u), ψ(v)) for some edge (u, v) of G,
3. each point in B(ψ) is in at most one set of visibility rectangles.

The following two lemmas describe basic properties of a bounding box.

Lemma 2 (Q-Tiling Lemma). Let μ be a Q-node in T corresponding to an
edge (u, v) of G. For any rectangular bar visibility representation ψ of G we have:

1. B(μ) is a union of pairwise disjoint rectangles spanned between ψ(u) and
ψ(v).

2. If B(μ) is not a single rectangle, then the parent λ of μ in T is a P -node,
and u, v are the poles of the pertinent digraph Gλ.
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The Basic Tiling Lemma presented below describes the relation between the
bounding box of an inner node μ and the bounding boxes of the children of μ in
any rectangular bar visibility representation of G. The next lemma justifies the
name bounding box for B(μ).

Lemma 3 (Basic Tiling Lemma). Let μ be an inner node in T with children
μ1, . . . , μk, k � 2. For a rectangular bar visibility representation ψ of G we have:

1. ψ(v) ⊆ B(μ) for every inner vertex v of Gμ.
2. B(μ) is a rectangle that is spanned between ψ(sμ) and ψ(tμ).
3. The sets B(μ1), . . . , B(μk) tile the rectangle B(μ), i.e., B(μ1), . . . , B(μk)

cover B(μ) and the interiors of B(μ1), . . . , B(μk) are pairwise disjoint.

In the next three lemmas we specialize the Basic Tiling Lemma depending
on whether μ is a P -node, an S-node, or an R-node. These lemmas allow us to
describe all tilings of B(μ) by bounding boxes of μ’s children. For Lemmas 4, 5,
and 7 we let μ1, . . . , μk be μ’s children. The next lemma follows from the Basic
Tiling Lemma and the Q-Tiling Lemma.

Lemma 4 (P-Tiling Lemma). Let μ be a P -node. For any rectangular bar
visibility representation ψ of G we have:

1. If (sμ, tμ) is not an edge of G, then the sets B(μ1), . . . , B(μk) are rectangles
spanned between ψ(sμ) and ψ(tμ).

2. If (sμ, tμ) is an edge of G, then μ has exactly one child that is a Q-node, say
μ1, and:
– For i = 2, . . . , k, B(μi) is a rectangle spanned between ψ(sμ) and ψ(tμ).
– B(μ1) �= ∅ is a union of rectangles spanned between ψ(sμ) and ψ(tμ).

When μ is an S-node or an R-node, then there is no edge (sμ, tμ). By the
Q-Tiling Lemma and by the Basic Tiling Lemma, each set B(μi) is a rectangle
that is spanned between the bars representing the poles of Gμi

.

Lemma 5 (S-Tiling Lemma). Let μ be an S-node. Let c1, . . . , ck−1 be the
cut-vertices of Gμ encountered in this order on a path from sμ to tμ. Let c0 = sμ,
and ck = tμ. For any rectangular bar visibility representation ψ of G, for every
i = 1, . . . , k − 1, we have X(ψ(ci)) = X(B(μ)). For every i = 1, . . . , k, B(μi) is
spanned between ψ(ci−1) and ψ(ci) and X(B(μi)) = X(B(μ)).

The R-Tiling Lemma should describe all possible tilings of the bounding box
of an R-node μ that appear in all representations of G. Since there is a one-to-
one correspondence between the edges of skel(μ) and the children of μ, we abuse
notation and write B(u, v) to denote the bounding box of the child of μ that
corresponds to the edge (u, v). By the Basic Tilling Lemma, B(u, v) is spanned
between the bars representing u and v.

Suppose that ψ is a representation of G. The tiling τ = (Bψ(μ1), . . . , Bψ(μk))
of Bψ(μ) determines a triple (E , ξ, χ), where: E is an sμtμ-embedding of skel(μ),
ξ is an st-valuation of E , and χ is an st-valuation of E∗, that are defined as
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follows. Consider the following planar drawing of the st-graph skel(μ). Draw
every vertex u in the middle of ψ(u), and every edge e = (u, v) as a curve
that starts in the middle of ψ(u), goes a little above ψ(u) towards the rectangle
Bψ(u, v), goes inside Bψ(u, v) towards ψ(v), and a little below ψ(v) to the middle
of ψ(v). This way we obtain a plane st-graph E , which is an st-embedding of
skel(μ). The st-valuation ξ of E is just the restriction of yψ to the vertices from
skel(μ), i.e., ξ = yψ|V (skel(μ)). To define the st-valuation χ of E∗ we use the
following lemma.

Lemma 6 (Face Condition).

1. Let f be a face in V (E∗) different than t∗, and let v0, v1, . . . , vp be the right
path of f . There is a vertical line Lr(f) that contains the left endpoints of
ψ(v1), . . . , ψ(vp−1) and the left sides of Bψ(v0, v1), . . . , Bψ(vp−1, vp).

2. Let f be a face in V (E∗) different than s∗, and let u0, u1, . . . , um be the left
path of f . There is a vertical line Ll(f) that contains the right endpoints of
ψ(u1), . . . , ψ(uq−1) and the right sides of Bψ(u0, u1), . . . , Bψ(uq−1, uq).

3. If f is an inner face of E then Ll(f) = Lr(f).

The above lemma allows us to introduce the notion of a splitting line for
every face f in V (E∗); namely, it is: the line Ll(f) = Lr(f) if f is an inner face
of E , Lr(f) if f is the left outer face of E , and Ll(f) if f is the right outer face of
E . Now, let χ(f) be the x-coordinate of the splitting line for a face f in V (E∗).
To show that χ(f) is an st-valuation of E∗, note that for any edge (f, g) of E∗

there is an edge (u, v) of E that has f on the left side and g on the right side. It
follows that χ(f) = l(Bψ(u, v)) < r(Bψ(u, v)) = χ(g), proving the claim.

The representation ψ of G determines the triple (E , ξ, χ). Note that any other
representation with the same tiling τ = (Bψ(μ1), . . . , Bψ(μk)) of B(μ) gives the
same triple. To emphasize that the triple (E , ξ, χ) is determined by tiling τ , we
write (Eτ , ξτ , χτ ).

Now, assume that E is an st-embedding of skel(μ), ξ is an st-valuation of E ,
and χ is an st-valuation of the dual of E . Consider the function φ that assigns
to every vertex v of skel(μ) the bar φ(u) defined as follows: yφ(v) = ξ(v),
lφ(v) = χ(left face of v), rφ(v) = χ(right face of v). Firstly, Tamassia and Tol-
lis [16] showed that φ is a bar visibility representation of skel(μ) and that
for τ = (Bφ(μ1), . . . , Bφ(μk)), we have (Eτ , ξτ , χτ ) = (E , ξ, χ). Secondly, there
is a representation ψ of G that agrees with τ on skel(μ), i.e., such that
τ = (Bψ(μ1), . . . , Bψ(μk)). To construct such a representation, we take any
representation ψ of G, translate and scale all bars in ψ to get Bψ(μ) = Bφ(μ),
and represent the pertinent digraphs Gμ1 , . . . , Gμk

so that the bounding box of
μi coincides with Bφ(μi) for i = 1, . . . , k. This leads to the next lemma.

Lemma 7 (R-Tiling Lemma). Let μ be an R-node. There is a bijection
between the set {(Bψ(μ1), . . . , Bψ(μk)) : ψ is a rectangular bar visibility rep-
resentation of G} of all possible tilings of the bounding box of μ by the bounding
boxes of μ1, . . . , μk in all representations of G, and the set {(E , ξ, χ) : E is an
st-embedding of skel(μ), ξ is an st-valuation of E, χ is an st-valuation of the
dual of E}.



The Partial Visibility Representation Extension Problem 275

3.2 Algorithm

Let G be an n-vertex planar st-graph and let ψ′ be a partial representation
of G with the set V ′ of fixed vertices. We present a quadratic time algorithm
that tests if there exists a rectangular bar visibility representation ψ of G that
extends ψ′. If such a representation exists, the algorithm can construct it in the
same time.

In the first step, our algorithm calculates yψ. Namely, the algorithm checks
whether yψ′ : V ′ → R is extendable to an st-valuation of G. When such an
extension does not exist, the algorithm rejects the instance (G,ψ′); otherwise
any extension of yψ′ can be used as yψ. The next lemma verifies this step’s
correctness.

Lemma 8. Let ψ be a rectangular bar visibility representation of G that
extends ψ′.

1. The function yψ is an st-valuation of G that extends yψ′ ,
2. If y is an st-valuation of G that extends yψ′ , then a function φ that sends every

vertex v of G into a bar so that yφ(v) = y(v), lφ(v) = lψ(v), rφ(v) = rψ(v) is
also a rectangular bar visibility representation of G that extends ψ′.

Clearly, checking whether yψ′ is extendable to an st-valuation of G, and con-
structing such an extension can be done in O(n) time. In the second step, the
algorithm computes the SPQR-tree T for G, which also takes linear time.

Before we describe the last step in our algorithm, we need some preparation.
For an inner node μ in T we define the sets V ′(μ) and C(μ) as follows:

V ′(μ) = the set of fixed vertices in V (Gµ) � {sµ, tµ},

C(μ) =

{ ∅, if V ′(μ) = ∅;
the smallest closed rectangle containing ψ′(u) for all u ∈ V ′(μ), otherwise.

The set C(μ) is called the core of μ. For a node μ whose core is empty, our
algorithm can represent Gμ in any rectangle spanned between the poles of Gμ.
Thus, we focus our attention on nodes whose core is non-empty.

Assume that μ is a node whose core is non-empty. We describe the ‘possible
shapes’ the bounding box of μ might have in a representation of G that extends
ψ′. The bounding box of μ is a rectangle that is spanned between the bars
corresponding to the poles of Gμ. By the Basic Tiling Lemma, if C(μ) is non-
empty then B(μ) contains C(μ). For our algorithm it is important to distinguish
whether the left (right) side of B(μ) contains the left (right) side of C(μ). This
criterion leads to four types of representations of μ with respect to the core of μ.

The main idea of the algorithm is to decide for each inner node μ whose core
is non-empty, which of the four types of representation of μ are possible and
which are not. The algorithm traverses the tree bottom-up and for each node
and each type of representation it tries to construct the appropriate tiling using
the information about possible representations of its children. The types chosen
for different children need to fit together to obtain a tiling of the parent node.
In what follows, we present our approach in more detail.



276 S. Chaplick et al.

Let μ be an inner node in T . Fix φ′ = ψ′|V ′(μ). Function φ′ gives a partial
representation of the pertinent digraph Gμ obtained by restricting ψ′ to the
inner vertices of Gμ. Let x, x′ be two real values. A rectangular bar visibility
representation φ of Gμ is called an [x, x′]-representation of μ if φ extends φ′ and
X(φ(sμ)) = X(φ(tμ)) = [x, x′]. We say that an [x, x′]-representation of μ is:

– left-loose, right-loose (LL), when x < l(C(μ)) and x′ > r(C(μ)),
– left-loose, right-fixed (LF ), when x < l(C(μ)) and x′ = r(C(μ)),
– left-fixed, right-loose (FL), when x = l(C(μ)) and x′ > r(C(μ)),
– left-fixed, right-fixed (FF ), when x = l(C(μ)) and x′ = r(C(μ)).

The next lemma justifies this categorization of representations. It says that
if a representation of a given type exists, then every representation of the same
type is also realisable.

Lemma 9 (Stretching Lemma). Let μ be an inner node whose core is non-
empty. If μ has an LL-representation, then μ has an [x, x′]-representation for
any x < l(C(μ)) and any x′ > r(C(μ)). If μ has an LF-representation, then μ
has an [x, x′]-representation for any x < l(C(μ)) and x′ = r(C(μ)). If μ has an
FL-representation, then μ has an [x, x′]-representation for x = l(C(μ)) and any
x′ > r(C(μ)).

The main task of the algorithm is to verify which representations are feasible
for nodes that have non-empty cores. We assume that: μ is an inner node whose
core is non-empty; μ1, . . . , μk are the children of μ, k � 2; λ1, . . . , λk′ are the
children of μ with C(λi) �= ∅, 0 � k′ � k; θ(λi) is the set of feasible types of
representations for λi, θ(λi) ⊆ {LL,LF, FL, FF}. We process the tree bottom-
up and assume that θ(λi) is already computed and non-empty.

Let x and x′ be two real numbers such that x � l(C(μ)) and x′ � r(C(μ)).
We provide an algorithm that tests whether an [x, x′]-representation of μ exists.
We use it to find feasible types for μ by calling it 4 times with appropriate values
of x and x′. While searching for an [x, x′]-representation of μ our algorithm tries
to tile the rectangle [x, x′] × [y(sμ), y(tμ)] with B(μ1), . . . , B(μk). The tiling
procedure is determined by the type of μ. Note that as the core of a Q-node is
empty, the algorithm splits into three cases: μ is an S-node, a P -node, and an
R-node. The pseudocode for the algorithms is given in AppendixC.3.

Case S. μ is an S-node. In this case we attempt to align the left and right
side of the bounding box of each child λ of μ to x and x′ respectively. For
example, if the core of λ is strictly contained in [x, x′], then λ must have an LL-
representation. The other cases follow similarly. We also must set the x-intervals
of the bars of the cut vertices of Gμ to [x, x′]. The S-Tiling Lemma and the
Stretching Lemma imply the correctness of this approach.

Case P. μ is a P -node. In this case we attempt to tile the rectangle [x, x′] ×
[y(sμ), y(tμ)] by placing the bounding boxes of the children of μ side by side from
left to right. The order of children whose cores are non-empty is determined by
the position of those cores. We sort λ1, . . . , λk′ by the left ends of their cores.
Let li = l(C(λi)) and ri = r(C(λi)), r0 = x, lk′+1 = x′, and without loss of
generality l1 < . . . < lk′ .
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We need to find enough space to place the bounding boxes of children whose
cores are empty. Additionally, if (sμ, tμ) is an edge of G, then we need to leave at
least one visibility gap in the tiling for that edge. Otherwise, if (sμ, tμ) is not an
edge of G, we need to close all the gaps in the tiling. A more detailed description
of the algorithm follows.

If there are λi, λi+1 such that the interior of the set X(C(λi)) ∩ X(C(λi+1))
is non-empty, then we prove that there is no [x, x′]-representation of Gμ. Indeed,
by the P-Tiling Lemma and by C(λi) ⊆ B(λi), the interior of B(λi) ∩ B(λi+1)
is non-empty and hence tiling of B(μ) with B(μ1), . . . , B(μk) is not possible.
Additionally, if r(C(λi)) = l(C(λi+1)), then neither a right-loose representation
of λi nor a left-loose representation of λi+1 can be used, so we delete such types
of representations from θ(λi) and θ(λi+1). If that leaves some θ(λi) empty, then
an [x, x′]-representation of μ does not exist. These checks take O(k′) time.

Let Qi = [ri, li+1]× [y(sμ), y(tμ)] for i ∈ [0, k′]. We say that Qi is an open gap
(after λi, before λi+1) if Qi has non-empty interior. In particular, if x = r0 < l1
(rk′ < lk′+1 = x′) then there is an open gap before λ1 (after λk′). On the one
hand, if there is an edge (sμ, tμ) or there is at least one μi whose core is empty
then we need at least one open gap to construct an [x, x′]-representation. On
the other hand, if (sμ, tμ) is not an edge of G then we need to close all the gaps
in the tiling. There are two ways to close the gaps. Firstly, the representation of
each child node whose core is empty can be placed so that it closes a gap. The
second way is to use loose representations for children nodes λ1, . . . , λk′ .

Suppose that c is a function that assigns to every λi a feasible type of repre-
sentation from the set θ(λi). Whenever c(λi) is right-loose or c(λi+1) is left-loose,
we can stretch the representation of λi or λi+1, so that it closes the gap Qi. We
describe a simple greedy approach to close the maximum number of gaps in this
way. We processes the λi’s from left to right and for each one: we close both
adjacent gaps if we can (i.e. LL ∈ θ(λi)); otherwise, we prefer to close the left
gap if it is not yet closed rather than the right gap. This is optimal by a simple
greedy exchange argument.

If there are still g > 0 open gaps left and (sμ, tμ) is not an edge of G, then
each open gap needs to be closed by placing in this gap a representation of one
or more of the children whose core is empty. Thus, it is enough to check that
k − k′ � g. The correctness of the described algorithm follows by the P-Tiling
Lemma, and the Stretching Lemma.

Case R. μ is an R-node. The detailed discussion of this case is reported in
AppendixC.4. Here, we sketch our approach. By the R-Tiling Lemma, the set of
possible tilings of B(μ) by B(μ1), . . . , B(μk) is in correspondence with the triples
(E , ξ, χ), where E is a planar embedding of skel(μ), ξ is an st-valuation of E ,
and χ is an st-valuation of E∗. To find an appropriate tiling of B(μ) (that yields
an [x, x′]-representation of μ) we search through the set of such triples. Since
μ is a rigid node, there are only two st-embeddings of skel(μ) and we consider
both of them separately. Let E be one of these planar embeddings. Since the
y-coordinate for each vertex of G is already fixed, the st-valuation ξ is given by
the y-coordinates of the vertices from skel(μ). It remains to find an st-valuation
χ of E∗, i.e., to determine the x-coordinate of the splitting line for every face.
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We claim that the existence of an st-valuation χ is equivalent to checking the
satisfiability of a carefully designed 2-CNF formula. For every child λ of μ whose
core is non-empty, we introduce two boolean variables that indicate which type
(LL, LF, FL, FF) of representation is used for λ. Additionally, for every inner face
f of E we introduce two boolean variables: the first (the second) indicates if the
splitting line of f is set to the leftmost (rightmost) possible position determined
by the bounding boxes of nodes on the left (right) path of f . Now, using those
variables, we can express that: feasible representations of the children nodes are
used, splitting line of a face f agrees with the choice of representation for the
nodes on the boundary of f (see Face Condition Lemma), the choice of splitting
lines gives an st-valuation of E∗.

In Appendix C.4 we present a formula construction that uses a quadratic
number of clauses and results in a quadratic time algorithm. In AppendixC.6,
we present a different, less direct, approach that constructs smaller formulas for
R-nodes and leads to the O

(
n log2 n

)
time algorithm. Therefore, Lemma 8, and

the discussion of cases S, P, and R, together with the results in AppendixC
imply Theorem 2.

4 Concluding Remarks and Open Problems

We considered the representation extension problem for bar visibility repre-
sentations and provided an efficient algorithm for st-graphs and showed NP-
completeness for planar graphs. An important variant of bar visibility represen-
tations is when all bars used in the representation have integral coordinates, i.e.,
grid representations. Any visibility representation can be easily modified into
a grid representation. However, this transformation does not preserve coordi-
nates of the given vertex bars. Indeed, we can show (in AppendixD.3) that the
(Rectangular) Bar Visibility Representation Extension problem is NP-hard on
series-parallel st-graphs when one desires a grid representation.

We conclude with two natural, interesting open problems. The first one is to
decide if there exists a polynomial time algorithm that checks whether a par-
tial representation of a directed planar graph is extendable to a bar visibility
representation of the whole graph. Although we show an efficient algorithm for
an important case of planar st-graphs, it seems that some additional ideas are
needed to resolve this problem in general. The second one is to decide if there is
an efficient algorithm for recognition of digraphs admitting strong visibility rep-
resentation, and for the corresponding partial representation extension problem.
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Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms
11(4), 32:1–32:42 (2015)

https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.3.4
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.3.6
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=section.A.3
https://arxiv.org/pdf/1512.00174v2.pdf#nameddest=subsection.A.4.3


The Partial Visibility Representation Extension Problem 279

3. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai,
M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14031-0 25

4. Chaplick, S., Dorbec, P., Kratochv́ıl, J., Montassier, M., Stacho, J.: Contact repre-
sentations of planar graphs: extending a partial representation is hard. In: Kratsch,
D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 139–151. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-12340-0 12
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Abstract. An ortho-polygon visibility representation of an n-vertex
embedded graph G (OPVR of G) is an embedding preserving drawing of
G that maps every vertex to a distinct orthogonal polygon and each edge
to a vertical or horizontal visibility between its end-vertices. The vertex
complexity of an OPVR of G is the minimum k such that every polygon
has at most k reflex corners. We present polynomial time algorithms that
test whether G has an OPVR and, if so, compute one of minimum ver-
tex complexity. We argue that the existence and the vertex complexity
of an OPVR of G are related to its number of crossings per edge and
to its connectivity. Namely, we prove that if G is 1-plane (i.e., it has
at most one crossing per edge) an OPVR of G always exists while this
may not be the case if two crossings per edge are allowed. Also, if G is a
3-connected 1-plane graph, we can compute in O(n) time an OPVR of
G whose vertex complexity is bounded by a constant. However, if G is a
2-connected 1-plane graph, the vertex complexity of any OPVR of G may
be Ω(n). In contrast, we describe a family of 2-connected 1-plane graphs
for which an embedding that guarantees constant vertex complexity can
be computed. Finally, we present the results of an experimental study
on the vertex complexity of OPVRs of 1-plane graphs.

1 Introduction

Visibility representations are among the oldest and most studied methods to
display graphs. The first papers appeared between the late 70s and the mid 80s,
mostly motivated by VLSI applications (see, e.g., [15,24,25,31,32,34]). These
papers were devoted to bar visibility representations (BVR) of planar graphs
where the vertices are modeled as non-overlapping horizontal segments, called
bars, and the edges correspond to vertical visibilities, i.e. vertical segments that
do not intersect any bar other than at their end points. The study of visibility
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representations of non-planar graphs started about ten years later when rec-
tangle visibility representations (RVR) were introduced in the computational
geometry and graph drawing communities (see e.g., [11,20,21,27]). Every vertex
is represented as an axis-aligned rectangle and two vertices are connected by an
edge using either horizontal or vertical visibilities. Figure 1(a) is an example of
a RVR of the complete graph K5. RVRs are an attractive way to draw a non-
planar graph: Edges are easy to follow because they do not bend and can have
only one of two possible slopes, edge crossings are perpendicular, textual labels
associated with the vertices can be inserted in the rectangles. Motivated by the
NP-hardness of recognizing whether a graph admits an RVR [27], Streinu and
Whitesides [28] initiated the study of RVRs that must respect a set of topologi-
cal constraints. They proved that if a graph G is given together with the cyclic
order of the edges around each vertex, the outer face, and a horizontal/vertical
direction for each edge, then there exists a polynomial-time algorithm to test
whether G admits an RVR that respects these constraints. Biedl et al. [5] have
shown that testing the representability of G is polynomial also with a different
set of constraints, namely when G is given with an embedding that must be pre-
served in the RVR. In these settings, however, even structurally simple “almost
planar” graphs may not admit an RVR. For example, the embedded graph of
Fig. 1(b) is 1-plane (i.e., it has at most one crossing per edge), and it does not
have an embedding-preserving RVR [5].

In this paper we introduce a generalization of RVRs. We study to what extent
such a generalization enlarges the family of graphs that are representable, and
we describe testing and drawing algorithms. Let G be an embedded graph. An
ortho-polygon visibility representation of G (OPVR of G) is an embedding-
preserving drawing of G that maps each vertex to a distinct orthogonal polygon
and each edge to a vertical or horizontal visibility between its end-vertices. For
example, Fig. 1(c) is an embedding-preserving OPVR of the graph of Fig. 1(b). In
Fig. 1(c) all vertices except two are rectangles: The non-rectangular vertices have
a reflex corner each; intuitively, each of them is “away from a rectangle” by one
reflex corner. We say that the OPVR of Fig. 1(c) has vertex complexity one. More
generally, we say that an OPVR has vertex complexity k, if k is the minimum

Fig. 1. (a) An RVR of K5. (b) An embedded graph G that does not admit an embedding
preserving RVR. (c) An embedding preserving OPVR of G with vertex complexity one.
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integer such that any polygon representing a vertex has at most k reflex corners.
We are not only interested in characterizing and testing what graphs admit
an OPVR, but we also aim at computing representations of minimum vertex
complexity (RVRs if possible). The main results in this paper are as follows.

– In Sect. 3 we present a combinatorial characterization of the graphs that admit
an OPVR. This leads to an O(n2)-time algorithm that tests whether an
embedded graph G with n vertices admits an embedding-preserving OPVR.
If so, an embedding-preserving OPVR of G with minimum vertex complex-
ity is computed in O(n

5
2 log

3
2 n) time. An implication of this characteriza-

tion is that any 1-plane graph admits an embedding-preserving OPVR. We
remark that 1-planar graphs have been widely studied in recent years (see, e.g.,
[2,4–6,8,16–18,22,29,33].

– In Sect. 4 we prove that every 3-connected 1-plane graph admits an OPVR
whose vertex complexity is bounded by a constant and that this representation
can be computed in O(n) time. This implies an O(n

7
4
√

log n)-time algorithm
to compute OPVRs of minimum vertex complexity for these graphs. Biedl
et al. [5] proved that not every 3-connected 1-plane graph has a representation
with zero vertex complexity, and we show a lower bound of two for infinitely
many graphs of this family.

– In Sect. 4 we also study 2-connected 1-plane graphs. Not every 2-connected 1-
plane graph can be augmented to become 3-connected (and 1-plane). This has
a strong impact on the vertex complexity of the corresponding OPVRs. We
prove that an embedding-preserving OPVR of a 2-connected 1-plane graph
may require Ω(n) vertex complexity. Also, we show a sufficient condition that
allows to compute an embedding that guarantees constant vertex complexity
in O(n) time.

– In Sect. 5 we discuss the results of an experimental study whose aim is to
estimate both the vertex complexity of these drawings in practice and the
percentage of vertices that are not represented as rectangles.

Some proofs and technicalities are omitted and can be found in [14].

2 Preliminaries

We assume familiarity with basic terminology of graph drawing [13]. We only
consider simple drawings of graphs, i.e., drawings where two edges have at most
one point in common (either a common endpoint or a common interior point
where the two edges properly cross each other). A graph is planar if it admits
a crossing free drawing. Such a drawing subdivides the plane into topologically
connected regions, called faces. The infinite region is the outer face. A planar
embedding of a graph is an equivalence class of planar drawings that define the
same set of faces. A plane graph is a planar graph with a given planar embedding.
Let f be a face of a plane graph G. The number of vertices encountered in the
closed walk along the boundary of f is the degree of f , denoted as deg(f). If G is
not 2-connected a vertex may be encountered more than once, thus contributing
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more than one unit to the degree of the face. The concept of planar embedding
can be extended to non-planar drawings. Given a non-planar drawing, replace
each crossing with a dummy vertex. The resulting planarized drawing has a
planar embedding. An embedding of a graph G is an equivalence class of drawings
of G whose planarized versions have the same planar embedding. An embedded
graph G is a graph with a given embedding: An embedding-preserving drawing
Γ of G is a drawing of G whose embedding coincides with that of G.

A bar visibility representation (BVR) is strong if each visibility between
two bars corresponds to an edge of the graph, while it is weak when visibilities
between non adjacent bars may occur. An orthogonal polygon is a polygon whose
sides are axis-aligned. A corner of an orthogonal polygon is a point of the poly-
gon where a horizontal and a vertical side meet. A corner is a reflex corner if it
forms a 3π

2 angle inside the polygon. An ortho-polygon visibility representation
(OPVR ) of a graph G maps each vertex v of G to a distinct orthogonal polygon
P (v) and each edge (u, v) of G to a vertical or horizontal visibility connecting
P (u) and P (v) and not intersecting any other polygon P (w), for w �∈ {u, v}. The
intersection points between visibilities and polygons are the attachment points.
We adopt the ε-visibility model [21,28,31,34], where the segments represent-
ing the edges can be replaced by strips of non-zero width; this implies that an
attaching point never coincides with a corner of a polygon. An OPVR is on an
integer grid if all its corners and attachment points have integer coordinates.
Given an OPVR, we can extract a drawing from it as follows. For each vertex
v, place a point inside polygon P (v) and connect it to all the attachment points
of the boundary of P (v); this can be done without creating any crossing and
preserving the circular order of the edges around the vertices. Thus, we refer
to an OPVR as a drawing and we extend to OPVRs all the definitions given
for drawings. An OPVR γ of an embedded graph is embedding preserving if the
drawing extracted from γ is embedding preserving. The vertex complexity of an
OPVR is the maximum number of reflex corners in any polygon representing a
vertex. An optimal OPVR is an OPVR with minimum vertex complexity.

3 Test and Optimization for Embedded Graphs

Fig. 2. An embedded
graph with no embedding-
preserving OPVR.

Any embedded graph G that admits an OPVR is
biplanar, i.e., its edge set can be bicolored so that
each color class induces a plane subgraph (use red for
the horizontal and blue for the vertical edges of an
OPVR of G). However, a biplanar graph G may not
have an embedding preserving OPVR. An example is
given in Fig. 2 (thin and bold edges define the two
colors). The boundary of face f in the figure contains
six edge crossings and no vertex. In any OPVR, each
crossing forms a π

2 angle inside f , thus the orthogo-
nal polygon representing f would have six π

2 corners
and no 3π

2 corners in its interior, which is impossible.
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In the following we first describe an algorithm that, given an embedded graph G
that admits an embedding preserving OPVR, computes an optimal OPVR of G
(Lemma 2). Then, we describe a characterization of the embedded graphs that
admit an embedding preserving OPVR (Lemma 3). This leads to an efficient
testing algorithm and it implies that 1-plane graphs always admit an embed-
ding preserving OPVR. Both results extend the topology-shape-metrics (TSM)
framework to handle OPVRs. The TSM approach, briefly recalled below, was
introduced by Tamassia [30] to compute orthogonal drawings (see also [13,19]).

The TSM Framework. In an orthogonal drawing of a degree-4 graph each edge
is a polyline of horizontal and vertical segments. An angle formed by two con-
secutive segments incident to the same vertex is a vertex-angle; an angle at a
bend is a bend-angle. The following basic property holds.

Property 1. Let f be a face of an orthogonal drawing and let Nα(f) be the
number of vertex-angles of value α inside f , with α ∈ {π

2 , 3π
2 , 2π}. Then: Nπ

2
(f)−

N 3π
2

(f)− 2N2π(f) = 4 if f is an internal face and Nπ
2
(f)−N 3π

2
(f)− 2N2π(f) =

−4 if f is the outer face.

Given a degree-4 graph G, the TSM computes, in three steps, an orthogonal
drawing Γ of G with minimum number of bends (see also [13]). The first step,
planarization, computes an embedding of G and replaces crossing points with
dummy vertices. The resulting plane graph G′ has n + c vertices, where n and
c are the number of vertices and crossings of G, respectively. The second step,
orthogonalization, computes an orthogonal representation H of G′, which speci-
fies the values of all vertex-angles and the sequence of bends along each edge. H
is computed by means of a flow network N , where each unit of flow corresponds
to a π

2 angle. Each vertex-node in N corresponds to a vertex of G′ and supplies
4 units of flow; each face-node in N corresponds to a face of G′ and demands an
amount of flow proportional to its degree. Bends along edges correspond to units
of flow transferred across adjacent faces of G′ through the corresponding arcs of
N , and each bend has a unit cost in N . Network N is constructed in O(n + c)
time since it has O(n + c) nodes and arcs. Also, it always admits a feasible flow.
A feasible flow Φ of cost b of N defines an orthogonal representation H of G′ with
b bends, and vice versa. The third step, compaction, computes in O(n + c + b)
time an orthogonal drawing preserving the shape of H on an integer grid of size
O(n + c + b) × O(n + c + b).

Our Approach. To exploit the TSM framework, we define a new plane graph
G obtained from the input embedded graph G as follows (refer to Figs. 3(a)
and (b)). Replace each vertex v with a cycle C(v) of d = deg(v) vertices, so
that each of these vertices is incident to one of the edges formerly incident to v,
preserving the circular order of the edges around v. If d = 1 or d = 2, C(v) is a
self-loop or a pair of parallel edges, respectively. C(v) is the expansion cycle of v;
the vertices and the edges of C(v) are the expansion vertices and the expansion
edges, respectively. Also, replace crossings with dummy vertices. G is called the
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Fig. 3. (a) An embedded graph G and (b) its planarized expansion G. (c) An OPVR
γ of G and (d) the orthogonal drawing Γ obtained from γ.

planarized expansion of G. The edges of G that are not expansion edges are the
original edges. Each expansion vertex has degree 3 and each dummy vertex has
degree 4. The next lemma and properties follow (see also Figs. 3(c) and (d)).

Lemma 1. An embedded graph G admits an embedding preserving OPVR if and
only if G admits an orthogonal representation with the following properties: P1.
Each vertex-angle inside an expansion cycle has value π. P2. Each original edge
has no bend.

Property 2. If G is biplanar, for each face f of G that is not an expansion cycle,
deg(f) ≥ 4.

Property 3. If G admits an embedding preserving OPVR, then for every internal
face f of G consisting only of dummy vertices, deg(f) = 4.

Lemma 2. Let G be an n-vertex embedded graph that admits an embedding pre-
serving OPVR. There exists an O(n

5
2 log

3
2 n)-time algorithm that computes an

embedding preserving optimal OPVR γ of G. Also, γ has the minimum number
of total reflex corners among all embedding preserving optimal OPVRs of G.

Proof. Since G admits an embedding preserving OPVR, it is biplanar. Hence it
has m ≤ 6n−12 edges. By Lemma 1, an OPVR of G can be found by computing
an orthogonal representation that satisfies P1 and P2. This can be done by
computing a feasible flow in the Tamassia’s flow network N associated with G,
subject to these constraints: (i) Every arc of N from a vertex-node to a face-
node has fixed flow 2 if the face-node corresponds to an expansion cycle (which
implies a π angle inside the cycle), and fixed flow 1 otherwise (which implies a
π
2 angle inside the face); (ii) Arcs from two face-nodes such that none of them
corresponds to an expansion cycle of G are removed (to avoid bends on the
original edges). A feasible flow for N may not correspond to an optimal OPVR.
To minimize the vertex complexity we construct a different flow network as
follows. The amount of flow moved from a vertex-node to an adjacent face-node
is fixed a priori, and thus we can construct from N an equivalent flow network
N ′, such that all vertex-nodes are removed and their supplies are transferred onto
the supply of the adjacent face-nodes. Namely, each face-node vf corresponding
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to an expansion cycle f receives 2 deg(f) units of flow, while its demand is
2 deg(f) − 4 by definition. This is equivalent to saying that vf will supply 4
units of flow in N ′. Similarly, each face-node vf corresponding to a face f that
is not an expansion cycle receives deg(f) units of flow, while its demand is
2 deg(f) − 4 (or 2 deg(f) + 4 if f is the outer face). This is equivalent to saying
that vf will demand flow deg(f) − 4 (deg(f) + 4 if f is the outer face) in N ′.
By Property 2, deg(f) ≥ 4 and therefore deg(f) − 4 ≥ 0. We now consider
every face f of G having dummy vertices only (if any), and the corresponding
face-node vf in N ′. Note that vf is an isolated node of N ′. Since G admits an
embedding preserving OPVR, by Property 3, deg(f) = 4; hence, we can remove
vf from N ′ and conclude that f must be drawn as a rectangle. Thus, every
face-node in N ′ corresponds to a face of G with at least one expansion vertex
on its boundary. Since every expansion vertex belongs to at most three faces
of G and there are O(n) expansion vertices, then N ′ has O(n) nodes and arcs.
We also add gadgets to the network N ′ in order to impose an upper bound h
on the number of reflex corners inside the polygons representing the expansion
cycles. Namely, let vf be a node of N ′ corresponding to an expansion cycle f .
We replace vf with two face-nodes: a node vin

f , with zero supply and demand;
and a node vout

f , with the same supply as vf (which is 4). The incoming edges
of vf become incoming edges of vin

f , while the outgoing edges of vf become
outgoing edges of vout

f . Finally, we add an edge (vin
f , vout

f ) with capacity h. Let
N ′′ be the flow network resulting by applying this transformation to all nodes
of N ′ corresponding to expansion cycles. Since each unit of flow entering in vf

(now in vin
f ) corresponds to a 3π

2 angle inside f , a feasible flow of N ′′ defines
an orthogonal representation where each expansion cycle is a polygon with at
most h reflex corners, i.e., such a feasible flow defines an OPVR having vertex
complexity at most h. N ′′ is computed in O(n) time and has O(n) nodes and
arcs, as N ′. In order to guarantee that the OPVR has the minimum number
of reflex corners among those with vertex complexity at most h, we compute a
feasible flow of minimum cost. Namely, we apply the min-cost flow algorithm of
Garg and Tamassia [19], whose complexity is O(χ

3
4 m′′√log n′′), where n′′ and

m′′ are the number of nodes and arcs of N ′′, respectively, and χ is the cost of
the flow1. As already observed, both n′′ and m′′ are O(n). Also, since the value
of the flow is O(n) and in a min-cost flow each unit of flow moved along an
augmenting path can traverse each face-node at most once, we have χ = O(n2).
Hence, a min-cost flow of N ′′ (if any) is computed in O(n

5
2
√

log n) time.
The supplied flow in N ′′ is 4n (four units for each expansion cycle) and each

unit of a min-cost flow can traverse a face-node at most once. Thus, the vertex
complexity of an embedding preserving optimal OPVR of G is k ≤ 4n. We can
find the value of k by performing a binary search in the range [0, 4n], testing, for
each considered value h, if an OPVR with vertex complexity at most h exists.
The number of tests is O(log n) and each test takes O(n

5
2
√

log n) time, with the
algorithm described above. Thus, computing an orthogonal representation H

1 Since N ′′ may not be planar, we cannot use the faster min-cost flow algorithm in [9].
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corresponding to an OPVR with vertex complexity k takes O(n
5
2 log

3
2 n) time.

A drawing of H is computed with the compaction step of the TSM. Since H has
at most k · n bends, this can be done in O((k + 1)n + c) = O(n2) time. ��

We now introduce a new plane graph associated with the planarized expan-
sion G of G. Namely, let G

∗
be the dual graph of G where the dual edges

associated with the original edges are removed. G
∗

has a vertex for each face of
G and an edge between two vertices for every edge of an expansion cycle shared
by the two corresponding faces. We call G

∗
the simplified dual of G. Given a

connected component C of G
∗
, denote by FC the set of faces of G corresponding

to the vertices of C, by F ex
C the subset of FC corresponding to the expansion

cycles, and by Fnex
C the set FC \F ex

C . Finally, let fout be the outer face of G. We
give the following characterization.

Lemma 3. An embedded graph G admits an embedding preserving OPVR if
and only if for each connected component C of G

∗
we have

∑
f∈F nex

C
deg(f) =

4|FC | − 8 · β, where β = 1 if fout ∈ FC and β = 0 otherwise.

Lemma 3 leads to an O(n+c)-time algorithm that tests whether an embedded
graph G with n vertices and c crossings admits an embedding preserving OPVR.
Indeed, the size of G

∗
is O(n + c) and thus the condition of Lemma3 can be

checked in O(n + c) time. If G is biplanar it has at most 6n − 12 edges, and
O(n+c) = O(n2). The next theorem summarizes the contribution of this section.

Theorem 1. Let G be an n-vertex embedded graph. There exists an O(n2)-time
algorithm that tests if G admits an embedding preserving OPVR and, if so, it
computes an embedding preserving optimal OPVR γ in O(n

5
2 log

3
2 n) time. Also,

γ has the minimum number of reflex corners among all embedding preserving
optimal OPVRs of G.

We remark that an alternative algorithm to test whether G admits an embed-
ding preserving OPVR can be derived from the result in [3]. Namely, Alam
et al. [3] showed an algorithm to test whether an n-vertex biconnected plane
graph G admits an orthogonal drawing such that edges have no bends, and
each face f has most kf reflex corners. The time complexity of this algorithm is
O((nk)

3
2 )-time, where k = maxf∈G kf . Thus, one can compute G and split each

expansion edge of G with 4n subdivision vertices (the maximum number of reflex
corners that a face can have). The resulting graph G

′
has O(n2) vertices. Then

one can apply the algorithm by Alam et al. on G
′
with kf = 4n for every face

f of G. However, this would lead to a time complexity O(n
9
2 ). We conclude this

section by observing that the number of crossings per edge is a critical parameter
for the ortho-polygon representability of an embedded graph: Even two crossings
per edge may give rise to a graph that cannot be represented (see Fig. 2). On
the positive side, the following theorem can be proved by applying Lemma3.

Theorem 2. Every 1-plane graph admits an embedding-preserving OPVR.
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4 Bounds and Optimization for 1-Plane Graphs

Motivated by Theorem 2, in this section we study upper and lower bounds on the
vertex complexity of 1-plane graphs. We present a result about partitioning the
edges of a 3-connected 1-plane graph so that each partition set induces a plane
graph and one of these plane graphs has maximum vertex degree six, which is a
tight bound. This result may be of independent interest since it contributes to
recent combinatorial studies about partitioning the edge set of 1-plane graphs
into two plane subgraphs having special properties (see e.g. [1,10,23]). Next,
we use this result to show an upper bound of 12 and a lower bound of 2 on
the vertex complexity of 3-connected 1-plane graphs. Finally, we argue that
the vertex complexity of OPVRs of 1-plane graphs strongly depends on their
connectivity properties; namely, we show that if an n-vertex 1-plane graph G
is 2-connected and it can be augmented to become 3-connected only at the
expenses of loosing its 1-planarity, then the vertex complexity of any OPVR of
G may be Ω(n). Also, for these graphs we show that a 1-planar embedding that
guarantees constant vertex complexity can be computed in O(n) time under the
assumption that they do not have a certain type of crossing configuration.

We shall distinguish between the crossing configurations depicted in Fig. 4.
Figure 4(a) is a B-configuration if the dotted edges are missing, and it is an aug-
mented B-configuration otherwise. The crossing configurations of Figs. 4(b), (c),
and (d) are a kite, a W-configuration, and a T-configuration, respectively [5,33].
Figure 4(e) depicts an augmented T-configuration. In the following we shall also
refer to crossing augmented 1-plane graphs [7]. A 1-plane graph G is crossing
augmented, when for each pair of crossing edges (u, v) and (w, z), the subgraph
of G induced by {u, v, w, z} is a K4. We call cycle edges of (u, v) and (w, z) the
four edges of the K4 different from (u, v) and (w, z) (they form a 4-cycle). Note
that a 1-plane graph can always be made crossing augmented in O(n) time, by
adding the missing cycle edges without introducing any new crossings [2,7,29].

Fig. 4. Crossing configurations of 1-plane graphs.

Edge Partitions. An edge partition of a 1-plane graph G is a coloring of its edges
with one of two colors, red and blue, such that both the red graph GR induced
by the red edges and the blue graph GB induced by the blue edges are plane.

Theorem 3. Let G be a 3-connected 1-plane graph with n vertices. There is
an edge partition of G such that the red graph has maximum vertex degree six
and this bound is worst case optimal. Also, such an edge edge partition can be
computed in O(n) time.
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Proof Sketch: We assume that G is crossing augmented. The proof relies on
claims that describe properties of the cycle edges of G which make it possible to
construct the desired partition of the edges of G.

Claim 1. There are no two cycle edges of G that cross each other.

Claim 2. Any edge of G is the cycle edge of at most two pairs of crossing edges.

Let Gp be the plane graph obtained from G by removing an edge for each pair
of crossing edges. We can arbitrarily choose what edges to remove, provided that
we never remove a cycle edge. Claim 1 ensures that this choice is always feasible.
Let G+

p be a plane graph obtained by edge-augmenting Gp so to become a plane
triangulation. We apply a Schnyder trees decomposition to G+

p , so to find an
orientation of its internal edges such that each internal vertex has exactly three
outgoing edges and the vertices of the outer face have no outgoing edge. Finally,
we arbitrarily orient the edges of the outer face of G+

p .

Claim 3. Let (u, v) and (w, z) be two crossing edges of G. Then either {u, v}
or {w, z} have both an outgoing edge in G+

p , that is a cycle edge of (u, v) and
(w, z).

We use Claim 3 to partition the edge set of G as follows. For each pair of
crossing edges (u, v) and (w, z) of G we color with the red color the edge con-
necting the pair, {u, v} or {w, z}, for which Claim 3 holds. By this choice, each
end-vertex of a red edge has one outgoing edge among the cycle edges of (u, v)
and (w, z). Since every vertex is incident to at most three outgoing edges in
G+

p , and since each edge is the cycle edge of at most two pairs of crossing edges
(Claim 2), by this procedure at most six edges for each vertex get the red color.
The proof that this bound on the vertex degree of GR is tight uses a graph con-
structed as follows: Start with a sufficiently large plane triangulation Gp, and
insert an augmented T-configuration inside every face of Gp. The tightness of the
bound can then be derived by a counting argument based on Euler’s formula.
The linear time complexity follows from the fact that G has O(n) edges (see
e.g. [29]) and that Schnyder trees can be constructed in O(n) time [26]. ��

Fig. 5. (a) An edge partition of a 1-plane graph G; red (blue) edges are dashed (solid).
(b) A strong BVR γB of GB . (c) Insertion of the red edges into γB . (d) An OPVR
of G.
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Vertex Complexity Bounds for 3-Connected 1-Plane Graphs. Theorem 3 can be
used to construct an OPVR of a 3-connected 1-plane graph whose vertex com-
plexity does not depend on the input size. The idea for this construction is as
follows. Let GB and GR be the plane graphs defined by the edge partition of
Theorem 3; see e.g. Fig. 5(a). Under the assumption that G is crossing aug-
mented, it can be proved that GB is 2-connected, which implies that it admits
a strong BVR γB (this can be computed in O(n) time [31]); see e.g. Fig. 5(b).
Assume that two vertices u and v are connected by a red edge and let γB(u)
and γB(v) be the horizontal bars representing them. We attach a vertical bar to
γB(u) and a vertical bar to γB(v) such that each vertical bar shares an end-vertex
with the horizontal bar and the two vertical bars can see each other horizontally.
This makes it possible to draw the horizontal red edge (u, v); see e.g. Fig. 5(c).
Once all red edges have been added to γB , every vertex v is represented as a
“rake”-shaped object consisting of one horizontal bar and at most six vertical
bars (we have a vertical bar for each red edge incident to v and there are at most
six such edges). This “rake”-shaped object can then be used as the skeleton of an
orthogonal polygon that has two reflex corners per vertical bar; see e.g. Fig. 5(d).

Theorem 4. Let G be a 3-connected 1-plane graph with n vertices. There exists
an O(n)-time algorithm that computes an an embedding-preserving OPVR of G
with vertex complexity at most 12, on an integer grid of size O(n) × O(n).

Based on Theorem 4, we can significantly improve the time complexity of an
algorithm that computes an optimal OPVR.

Theorem 5. Let G be a 3-connected 1-plane graph with n vertices. There exists
an O(n

7
4
√

log n)-time algorithm that computes an embedding-preserving optimal
OPVR γ of G, on an integer grid of size O(n) × O(n). Also, γ has the mini-
mum number of total reflex corners among all the embedding preserving optimal
OPVRs of G.

The following lower bound can be proved.

Theorem 6. There is an infinite family G of 3-connected 1-plane graphs such
that for any graph G of G, any embedding preserving OPVR has vertex complexity
at least two.

2-Connected 1-Plane Graphs. The next theorem shows a lower bound on the
vertex complexity of 2-connected 1-planar graphs (and that cannot be augmented
to become 3-connected without losing 1-planarity).

Theorem 7. For every positive integer n, there exists a 2-connected 1-planar
graph G with O(n) vertices such that, for every 1-planar embedding of G, any
embedding preserving OPVR of G has vertex complexity Ω(n).

Proof Sketch: We prove the claim for a fixed 1-planar embedding (the proof
can be easily extended to all 1-planar embeddings of G). Consider the 1-plane
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Fig. 6. Illustration for the proof of Theorem 7.

graph K in Fig. 6(a). It has 2 vertices on its outer face, u and v, plus 6 inner
vertices. We now construct G as follows. Attach n + 1 copies K1, . . . ,Kn+1 of
K all sharing u and v. The copies are attached in parallel without introducing
any further crossing, as shown in Fig. 6(b). Also connect u and v with an edge
on the outer face. The resulting graph G has 8(n + 1) − 2n = 6n + 8 = O(n)
vertices. Also, G is 2-connected and 1-plane by construction, hence it admits an
OPVR by Theorem 2. Consider now an embedding preserving OPVR of G and
the corresponding orthogonal drawing Γ . Between any two consecutive copies
Ki and Ki+1 (i = 1, . . . , n), there is a face fi of G having two expansion vertices
of C(u) (the expansion cycle of u) and two expansion vertices of C(v) on its
boundary, together with two dummy vertices; see Fig. 6(c). Each dummy vertex
forms one π

2 angle inside fi. Each expansion vertex forms one π
2 angle inside fi.

Hence, there are at least six π
2 angles inside fi. Since the original edges of fi have

no bends, by Property 1 the two expansion edges of fi must form (at least) two
3π
2 angles inside fi. In Γ there are n of such faces requiring two angles of 3π

2 each
from an expansion edge. If every vertex of G is represented by a polygon with
vertex complexity at most k, the edges of each expansion cycle form at most
4 + k angles of 3π

2 inside their incident faces (that are not expansion cycles). At
least ten of these angles are inside the outer face of Γ (Property 1), and hence
it must be (4 + k)2 − 10 ≥ 2n, that is k ≥ n + 1. ��

The graphs used to prove Theorem7 contain several W-configurations. For
a contrast, we can show that the absence of W-configurations suffices to find a
1-planar embedding that admits an OPVR with constant vertex complexity.

Theorem 8. Let G be a 2-connected 1-plane graph with n vertices and no W-
configurations. A 1-planar OPVR of G with vertex complexity at most 22 on an
integer grid of size O(n) × O(n) can be computed in O(n) time.

5 Experiments and Open Problems

We implemented the optimization algorithm of Theorem1 using the GDToolkit
library [12]. To evaluate the performance of the algorithm in practice, we tested
it on a large set of 1-plane graphs, which always admit an OPVR (Theorem2).
In addition, we have the following two objectives: (i) Measure the vertex com-
plexity of the computed OPVRs; in particular, for 3-connected 1-plane graphs



292 E. Di Giacomo et al.

we expect values close to the lower bound of 2. (ii) Establishing “how much”
the computed drawings look like RVRs. For every computed OPVR with ver-
tex complexity k, we measure the percentage of polygons with i reflex corners
(i ∈ [0, . . . , k]). Since our optimization algorithm computes the optimal solution
having the minimum number of reflex corners (see Theorem 1), we expect a high
number of rectangles. We generated three different subsets of (simple) 1-plane
graphs, which we call GEN, BIC, and TRIC, respectively. Each subset consists of
170 graph. The number of vertices of each graph ranges from 20 to 100. The
graphs in GEN are general 1-plane graphs, while those in BIC and in TRIC are
2-connected and 3-connected, respectively. All graphs are maximal (no further
edges can be added in their embedding while preserving 1-planarity). The exper-
iments confirmed both our expectations. The optimization algorithm took less
than 15 s for all instances up to 60 vertices, and about 41 s on the largest instance
with 100 vertices on a common laptop. The optimal solutions of all GEN graphs
required vertex complexity 1, except two of them with vertex complexity 0. The
average percentage of rectangles is around 90%, and never below 80% in any
instance. Hence, most of the drawing looks like an RVR. The running times for
BIC and TRIC reflect the behavior observed for GEN (with some more demanding
large instances). For every graph of TRIC we found a drawing with vertex com-
plexity either 1 or 2. Most of the BIC graphs required vertex complexity 2, some
required vertex complexity 3, and only one graph required vertex complexity 4.
The percentage of vertices drawn as rectangles is very high also for BIC and TRIC
(around 80% for BIC and around 75% for TRIC).

The results in this paper naturally raise several interesting open prob-
lems. Among them: (1) Close the gap between the upper bound and the lower
bound on the vertex complexity of OPVRs of 3-connected 1-plane graphs (see
Theorems 5 and 6). (2) We find it interesting to study the problem of computing
OPVRs that maximize the number of rectangular vertices, even at the expenses
of sub-optimal vertex complexity. (3) Theorem 8 constructs 1-planar embeddings
that guarantee constant vertex complexity. What 2-connected 1-plane graphs
admit a 1-planar OPVR with constant vertex complexity?
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Abstract. Obstacle representations of graphs have been investigated
quite intensely over the last few years. We focus on graphs that can be
represented by a single obstacle. Given a (topologically open) non-self-
intersecting polygon C and a finite set P of points in general position in
the complement of C, the visibility graph GC(P ) has a vertex for each
point in P and an edge pq for any two points p and q in P that can see
each other, that is, pq∩C = ∅. We draw GC(P ) straight-line and call this
a visibility drawing. Given a graph G, we want to compute an obstacle
representation of G, that is, an obstacle C and a set of points P such
that G = GC(P ). The complexity of this problem is open, even when the
points are exactly the vertices of a simple polygon and the obstacle is the
complement of the polygon—the simple-polygon visibility graph problem.

There are two types of obstacles; outside obstacles lie in the
unbounded component of the visibility drawing, whereas inside obstacles
lie in the complement of the unbounded component. We show that the
class of graphs with an inside-obstacle representation is incomparable
with the class of graphs that have an outside-obstacle representation.
We further show that any graph with at most seven vertices has an
outside-obstacle representation, which does not hold for a specific graph
with eight vertices. Finally, we show NP-hardness of the outside-obstacle
graph sandwich problem: given graphs G and H on the same vertex set,
is there a graph K such that G ⊆ K ⊆ H and K has an outside-obstacle
representation. Our proof also shows that the simple-polygon visibility
graph sandwich problem, the inside-obstacle graph sandwich problem, and
the single-obstacle graph sandwich problem are all NP-hard.

1 Introduction

Recognizing graphs that have a certain type of geometric representation is a
well-established field of research dealing with, for example, interval graphs, unit
disk graphs, coin graphs (which are exactly the planar graphs), and visibility
graphs. In this paper, we are interested in visibilities of points in the presence of

The full version of this paper is available on arXiv [5]. Whenever we refer to the
Appendix we mean the appendix of arXiV:1607.00278v2.
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a single obstacle. Given a (topologically open) non-self-intersecting polygon C
and a finite set P of points in general position in the complement of C, the
visibility graph GC(P ) has a vertex for each point in P and an edge pq for any
two points p and q in P that can see each other, that is, pq ∩ C = ∅. Given a
graph G, we want to compute a (single-) obstacle representation of G, that is, an
obstacle C and a set of points P such that G = GC(P ) (if such a representation
exists). The complexity of this reconstruction problem is open, even for the case
that the points are exactly the vertices of a simple polygon and the (outside)
obstacle is the complement of the polygon. This special case is called the simple-
polygon visibility graph (reconstruction) problem.

The visibility drawing is a straight-line drawing of the visibility graph. The
visibility drawing allows us to differentiate two types of obstacles: outside obsta-
cles lie in the unbounded component of the visibility drawing, whereas inside
obstacles lie in the complement of the unbounded component.

If we drop the restriction to single obstacles, our problem can be seen as
an optimization problem. For a graph G, let obs(G) be the smallest number
of obstacles that suffices to represent G as a visibility graph. Analogously, let
obsout(G) be the number of obstacles needed to represent G in the presence
of an outside obstacle, and let obsin(G) be the number of obstacles needed to
represent G in the absence of outside obstacles. Specifically, we say that G has
an outside-obstacle representation if G can be represented by a single outside
obstacle (e.g. Fig. 1), and G has an inside-obstacle representation if G can be
represented by a single inside obstacle (e.g. Fig. 3b).

Previous Work. Not only have Alpert et al. [1] introduced the notion of the
obstacle number of a graph, they also characterized the class of graphs that can
be represented by a single simple obstacle, namely a convex polygon. They also
asked many interesting questions, for example, given an integer o, is there a graph
of obstacle number exactly o? If the previous question is true, given an integer
o > 1, what is the smallest number of vertices of a graph with obstacle number o?
Mukkamala et al. [13] showed the first question is true. For the second question,
Alpert et al. [1] found a 12-vertex graph that needs two obstacles, namely K∗

5,7,
where K∗

m,n with m ≤ n is the complete bipartite graph minus a matching of
size m. They also showed that for any m ≤ n, obs(K∗

m,n) ≤ 2. This result was
improved by Pach and Sarıöz [14] who showed that the 10-vertex graph K∗

5,5 also
needs two obstacles. More recently, Berman et al. [3] suggested some necessary
conditions for a graph to have obstacle number 1 which they used to find a
planar 10-vertex graph that cannot be represented by a single obstacle.

Alpert et al. [1] conjectured that every graph of obstacle number 1 has also
outside-obstacle number 1. Berman et al. [3] further conjectured that every graph
of obstacle number o has outside-obstacle number o. Alpert et al. [1] also showed
that outerplanar graphs always have outside-obstacle representations and posed
the question to bound the inside/convex obstacle number of outerplanar/planar
graphs. Fulek et al. [7] partly answered this by showing that five convex obstacles
are sufficient for outerplanar graphs—and that sometimes four are needed.
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For the asymptotic bound on the obstacle number of a graph, it is obvious
that any n-vertex graph has obstacle number O(n2). Balko et al. [2] showed that
the obstacle number of an n-vertex graph is (at most) O(n log n). For the lower
bound, improving on previous results [1,12,13], Dujmović and Morin [6] showed
there are n-vertex graphs whose obstacle number is Ω(n/(log log n)2).

Johnson and Sarıöz [10] investigated the special case where the visibility
graph is required to be plane. They showed (by reduction from PlanarVer-
texCover) that in this case computing the obstacle number is NP-hard. By
reduction to Maxdeg-3 PlanarVertexCover, they showed that the prob-
lem admits a polynomial-time approximation scheme and is fixed-parameter
tractable. Koch et al. [11] also considered the plane case, restricted to outside
obstacles. They gave a(n efficiently checkable) characterization of all biconnected
graphs that admit a plane outside-obstacle representation.

A few years ago, Ghosh and Goswami [8] surveyed visibility graph problems,
among them simple-polygon visibility graph problem. Open Problem 29 in their
survey is the complexity of the recognition problem and Open Problem 33 is
the complexity of the fore-mentioned reconstruction problem. Very recently, this
question has been settled for an interesting variant of the problem where the
points are not only the vertices of the graph but also the obstacles (which are
closed in this case): Cardinal and Hoffmann [4] showed that recognizing point-
visibility graphs is ∃R-complete, that is, as hard as deciding the existence of a real
solution to a system of polynomial inequalities (and hence, at least NP-hard).

The graph sandwich problem has been introduced by Golumbic et al. [9] as
a generalization of the recognition problem. They set up the abstract problem
formulation and gave efficient algorithms for some concrete graph properties—
and hardness results for others.

Preliminaries. In this paper, we consider only finite simple graphs. Whenever
we say cycles, we always mean simple cycles. Let G be a graph and let v, u be its
vertices. The circumference of G, denoted by circ(G), is the length of its longest
cycle. v ∼ u denotes that v and u are adjacent. We call v and u twins if v �= u
and N(v)\{u} = N(u)\{v}. We say v is exposed to the outside if it is on the
boundary of the unbounded component of the straight-line drawing of G given
by the point set. All vertices are exposed to the outside in an exposed outside-
obstacle representation. In all figures (of graphs), unless otherwise stated, edges
are solid and non-edges are dashed.

Our Contribution. We have the following results. (Recall that a co-bipartite
graph is the complement of a bipartite graph.)

– Every graph of circumference at most 6 has an outside-obstacle representation
(Theorem 1).

– Every 7-vertex graph has an outside-obstacle representation (Theorem2).
Moreover, there is an 8-vertex co-bipartite graph that has no single-obstacle
representation (Theorem 5).

– There is an 11-vertex co-bipartite graph with an inside-obstacle representation,
but no outside-obstacle representation (Theorem 4). This resolves the above-
mentioned open problems of Alpert et al. [1] and Berman et al. [3].
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– The Outside-Obstacle Graph Sandwich Problem is NP-hard even for
co-bipartite graphs. The same holds for the Simple-Polygon Visibility Graph
Sandwich Problem. This does not solve, but sheds some light on a long-
standing open problem: the recognition of visibility graphs of simple polygons.
While little is known for the complexity of computing the obstacle number,
the Single-Obstacle Graph Sandwich Problem is shown to be also NP-hard.

Remarks and Open Problems. The recognition of inside- and outside-
obstacle graphs is currently open. We expect that testing either of these cases
is NP-hard. Assuming that this is true, it would be interesting to show fixed-
parameter tractability w.r.t. the number of vertices of the obstacle. We now
know that obsin(G) and obsout(G) are usually different, but can we bound
obsin(G) in terms of obsout(G)? While we have shown that the trivial lower
bound obsout(G) − 1 is tight, an upper bound is only known for outerplanar
graphs [1,7].

2 Graphs with Small Circumference

In this section we will describe how to construct an outside-obstacle represen-
tation for any graph whose circumference is at most 6. To prove this result we
show that for every vertex v of a biconnected graph G with circumference at
most 6, there is an exposed outside-obstacle representation of G with v on the
convex hull of V (G). Lemma 3 makes it easier to describe the outside-obstacle
representation. We then apply Lemmas 1 and 2 to obtain an outside-obstacle
representation of a graph.

We provide an 8-vertex graph of circumference 8 that requires at least two
obstacles in the next section, so the only gap is the circumference-7 case. We
conjecture that every graph of circumference 7 has an outside-obstacle represen-
tation. As a first step towards this conjecture, we show that every 7-vertex graph
has an outside-obstacle representation by providing a list of point sets such that
each 7-vertex graph can be represented by an outside obstacle when the vertices
of the graph are mapped to a point set in our list.

Proofs of Lemmas 1, 2 and 3 are in AppendixA and brief ideas are sketched
here.

Lemma 1. Let G and H be graphs on different vertex sets. If obsout(G) = 1
and obsout(H) = 1, then obsout(G ∪ H) = 1.

Proof (Sketch). Place two graphs far enough and merge outside obstacles. 	

Lemma 2. Let G and H be graphs with exposed outside-obstacle representa-
tions. Let u be a vertex of G, and let v be a vertex of H. Assume that v lies on
the convex hull of V (H). If K is the graph obtained by identifying u and v, then
K also has an exposed outside-obstacle representation.

Proof (Sketch). Make the outside-obstacle representation of H small and narrow
(with respect to v) enough to fit in some circular sector lying inside the obsta-
cle centered at u in the outside-obstacle representation of G. Then replace the
circular sector with above obstacle representation of H. 	


https://arxiv.org/pdf/1607.00278v2.pdf#nameddest=section.A.1
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Lemma 3. Let H be a graph, v be a vertex of H, A be the set of twins of v,
and G = H \ A. If G that has an exposed outside-obstacle representation in
which v lies on the convex hull of V (G), then H has an exposed outside-obstacle
representation in which all vertices in A ∪ {v} lie on the convex hull of V (H).

Proof (Sketch). Place twins close enough since their neighborhoods are same. 	

The following observation helps to restrict the structure of biconnected

graphs of given circumference where indices are taken modulo k.

Observation 1. Let G be a graph of circumference k and let C = v1v2 . . . vk

be a cycle. G doesn’t contain a vi − vi+t path P of length t′ disjoint to viCvi+t

where 0 < t < k and t′ > t, since it would create (k + t′ − t)-cycle. In particular,
if v /∈ {v1, . . . , vk} is adjacent to vi, then v is neither adjacent to vi−1 nor vi+1.

Theorem 1. If the circumference of a graph G is at most 6, then G has an
outside-obstacle representation.

Fig. 1. Graphs of circumfer-
ence 4 and 5 with outside-
obstacle representations
(Color figure online)

Proof If G is disconnected, we give an outside-
obstacle representation for each connected compo-
nent and simply merge them by Lemma 1.

When G is connected, we decompose it into its
biconnected components, i.e., the block decompo-
sition tree of G. Starting in its root, we include rep-
resentations of the children in turn using Lemma2.

Let H be a biconnected component of G. It
suffices to show that H satisfies the condition
for Lemma 2: For each vertex v of H, H has an
exposed outside-obstacle representation such that
v is on the convex hull of V (H).

Case 1: circ(H) = 3
As H is biconnected, H is a triangle and trivially satisfies the condition.

Case 2: circ(H) = 4
Let C = v1v2v3v4 ⊂ H be a 4-cycle. If H contains exactly four vertices,

there is an outside-obstacle representation; see Fig. 1a. Note that we can choose
the (dashed blue) diagonals v1v3 and v2v4 to be edges or non-edges as desired.
Otherwise, without loss of generality, there is a vertex x ∈ H \C with x ∼ v1. As
H is biconnected, there is a path of length at least 2 from v1 to another vertex
of C containing x. Observation 1 implies that x �∼ v2, x ∼ v3, and x �∼ v4. Since
we have another 4-cycle C ′ = v1xv3v4, the same holds for v2, implying v2 �∼ v4.
Hence x is a non-adjacent twin of v2. It follows that any vertex in H \ C is a
non-adjacent twin of one of v1, . . . , v4. Since the vertices in Fig. 1a are in convex
position, we can embed H using Lemma 3.

Case 3: circ(H) = 5
Let C = v1v2v3v4v5 ⊂ H be a 5-cycle. If H contains exactly five vertices,

see Fig. 1b for its outside-obstacle representation. Otherwise, without loss of
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generality, there is a vertex x ∈ H \ C with x ∼ v1. Observation 1 implies
x �∼ v2, v5. As H is biconnected, there is either path v1xv3 or v1xv4. Without
loss of generality, we assume x ∼ v3 and thus x �∼ v4. Then v2 �∼ v4, v5 since
we have another 5-cycle v1xv3v4v5 and can apply the same logic. Hence, x is a
non-adjacent twin of v2. As in the Case 2, we see that every vertex in H \C is a
non-adjacent twin of one of v1, v2, . . . , v5 and we can embed H using Lemma 3.

Case 4: circ(H) = 6 (We postpone this case to AppendixA.) 	

Theorem 2. Any graph with at most 7 vertices has an outside-obstacle repre-
sentation.

Proof (Sketch). By Theorem 1, it suffices to provide an outside-obstacle repre-
sentation of each 7-vertex graph containing C7. In AppendixA, we classify such
graphs into 15 groups and give an outside-obstacle representation of each. 	


3 Co-bipartite Graphs

We now consider obstacle representations of co-bipartite graphs. Recall that a
graph is co-bipartite if its complement is bipartite. Using this seemingly simple
graph class, we settle an open problem posed by Alpert et al. [1] who asked if each
graph with obstacle number 1 has an outside-obstacle representation. Namely,
we provide an 11-vertex graph B11 (see Fig. 3b) where not only is this not the
case, but B11 in fact has an inside-obstacle representation where the obstacle is
the simplest possible shape, i.e., a triangle.1 We also provide a smallest graph
with obstacle number 2; see the 8-vertex graph in Fig. 3c. This improves on the
smallest previously known such graphs (e.g., the 10-vertex graphs of Pach and
Sarıöz [14] and of Berman et al. [3]) and shows that Theorem 2 is tight.

Properties of Outside-Obstacle Representations. We build on the easy
observation (see Observation 2 below) that in every outside-obstacle represen-
tation of a graph, for every clique Z, the convex hull CH(Z) of the point set
of Z cannot be touched by the obstacle. In other words, the obstacle must
occur outside of each such convex hull. Since we focus on co-bipartite graphs,
this observation greatly restricts the ways one may realize an outside repre-
sentation. Additionally, we will use this observation implicitly throughout this
section whenever considering two cliques in a graph with an outside-obstacle
representation.

Observation 2. If G has an outside-obstacle representation (P,C), then for
every clique Z ⊆ V (G), the convex hull CH(Z) of the points corresponding to Z
is disjoint from C, i.e., C ∩ CH(Z) = ∅.

For a graph G containing two cliques Z,Z ′ ⊆ V (G) and outside-obstacle
representation, consider the convex hulls CH(Z) and CH(Z ′). We say that these
convex hulls are k-crossing when CH(Z)\CH(Z ′) consists of k+1 disjoint regions.
1 Note that for topologically closed obstacles, this obstacle could be a line segment.

https://arxiv.org/pdf/1607.00278v2.pdf#nameddest=section.A.1
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Obstructing Visibilities with One Obstacle 301

Note that this condition is symmetric, i.e., when CH(Z) \ CH(Z ′) consists of r
disjoint regions so does CH(Z ′) \ CH(Z). We refer to these disjoint regions of
the difference as the petals of Z (Z ′ respectively).

We now introduce a special 6-vertex graph K∗
6 which is used in the following

technical lemma and our NP-hardness proof. This graph is the result of deleting
a 3-edge matching from a 6-clique; see Fig. 3a.

Lemma 4. Let G be a graph containing two cliques Z,Z ′. For every outside-
obstacle representation of G, the following properties hold.

(a) If CH(Z) and CH(Z ′) are t-crossing, then every vertex in Z has at least t−1
neighbors in Z ′ and vice versa. That is, if Z contains a vertex with only r
neighbors in Z ′, then CH(Z) and CH(Z ′) are at most (r + 1)-crossing.

(b) If G contains K∗
6 (with missing edges z1z

′
1, z2z

′
2, z3z

′
3; see Fig. 3a)

as an induced subgraph, {z1, z2, z3} ⊆ Z, and {z′
1, z

′
2, z

′
3} ⊆ Z ′, then

CH({z1, z2, z3}) and CH({z′
1, z

′
2, z

′
3}) are at least 1-crossing. Furthermore,

CH(Z) and CH(Z ′) are at least 1-crossing.
(c) If G contains a 4-cycle z1z

′
1z

′
2z2 as an induced subgraph, {z1, z2} ⊆ Z,

{z′
1, z

′
2} ⊆ Z ′, CH(Z) and CH(Z ′) intersect, and z1 and z2 are contained

in a petal QZ of Z, then z′
1 and z′

2 are contained in different petals of Z ′

which are both adjacent to QZ . This implies that, if CH(Z) and CH(Z ′) are
1-crossing, then either z1 and z2 or z′

1 and z′
2 are in different petals.

Proof. (a) Suppose CH(Z) and CH(Z ′) are t-crossing for some t ≥ 2. Note that
|Z|, |Z ′| ≥ t + 1 since the convex hull of each must contain at least t + 1 points.
For A ∈ {Z,Z ′}, let QA

0 , . . . , QA
t be the petals of CH(A) in clockwise order

around CH(Z) ∩ CH(Z ′) where, for each i ∈ {0, . . . , t}, QZ
i is between QZ′

i and
QZ′

i+1 and all indices are considered modulo t + 1.
Consider a vertex v ∈ Z (v ∈ Z ′ follows symmetrically). If v is in CH(Z) ∩

CH(Z ′), then we are done since v sees every vertex in Z ′ and |Z ′| ≥ t + 1. So,
suppose v ∈ QZ

1 . Consider the points p1 = QZ′
1 ∩QZ

0 and p2 = QZ′
2 ∩QZ

2 . Define
the subregion R (depicted as the grey region in Fig. 2a) of CH(Z) ∪ CH(Z ′)
whose boundary, in clockwise order, is formed by p1v, vp2, and the polygonal

Fig. 2. Aides for the proof of Lemma 4.
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Fig. 3. Three small graphs: K∗
6 , B11 and B8 (Color figure online)

chain from p2 to p1 along the boundary of CH(Z ′). Note that, for each i ∈
{0, 3, 4, . . . , t}, QZ′

i ⊂ R and R is convex, i.e., for every u ∈ QZ′
i , the line segment

vu is contained in CH(Z) ∪ CH(Z ′). Thus, v has at least t − 1 neighbors in Z ′.
(b) Consider the graph K∗

6 as labeled in Fig. 3a. We first show that the convex
hulls of X = {z1, z2, z3} and Y = {z′

1, z
′
2, z

′
3} are at least 1-crossing.

Suppose that CH(X) and CH(Y ) intersect but are 0-crossing. Since |X| =
|Y | = 3, a vertex in X ∪ Y must be contained in CH(X) ∩ CH(Y ). Hence, this
vertex dominates X ∪ Y , but K∗

6 doesn’t have such a vertex—a contradiction.
Now, suppose that CH(X) and CH(Y ) are disjoint, and let H = CH(X ∪Y ).

Since CH(X) and CH(Y ) are disjoint, the boundary ∂H of H contains at most
two line segments that connect a vertex of X to a vertex of Y , i.e., at most two
non-edges of K∗

6 occur on ∂H. However, we will now see that every non-edge of
K∗

6 must occur on ∂H. Consider the line segment z1z′
1 and suppose it is not on

∂H. This means that there are vertices u and v of K∗
6 \ {z1, z

′
1} where u and v

occur on opposite sides of the line determined by z1z′
1. However, since z1z

′
1 is

the only non-edge incident to either z1 or z′
1, the non-edge z1z

′
1 is enclosed by

uz1, z1v, vz′
1, z′

1u, which provides a contradiction. Thus, every non-edge must
occur on ∂H, which contradicts the fact that at most two line segments spanning
between CH(X) and CH(Y ) can occur on ∂H.

We now know that CH(X) and CH(Y ) are at least 1-crossing. We use this
to observe that CH(Z) and CH(Z ′) must also be at least 1-crossing. Clearly,
if CH(Z) and CH(Z ′) are disjoint, this contradicts CH(X) and CH(Y ) being
at least 1-crossing. So, suppose that CH(Z) and CH(Z ′) intersect but are not
1-crossing. Note that no vertex v of K∗

6 is contained in CH(Z) ∩ CH(Z ′) since
otherwise v would dominate to K∗

6 . In particular, X ⊆ CH(Z) \ CH(Z ′) and
Y ⊆ CH(Z ′) \ CH(Z). However, we again would have CH(X) and CH(Y ) being
disjoint, i.e., a contradiction. Thus, CH(Z) and CH(Z ′) are at least 1-crossing.

(c) Suppose that z′
1 and z′

2 belong to the same petal QZ′
. This petal is

adjacent to QZ , as otherwise z1 would be visible to z′
2 (i.e., providing a con-

tradiction). Now, if the quadrilateral z1z2z
′
2z

′
1 is convex, the non-edge z1z

′
2 is

not accessible from the outside (see Fig. 2b). If the quadrilateral z1z2z
′
2z

′
1 is
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non-convex, either a non-edge z1z
′
2 or a non-edge z2z

′
1 will not be accessible from

the outside. Thus, z1z′
1 and z2z′

2 intersect since CH({z1, z2}) and CH({z′
1, z

′
2})

are disjoint. The edge z1z
′
1 together with the boundary of CH(Z)∪CH(Z ′) split

the plane into at most two bounded and one unbounded region. Then at least one
of the non-edges z1z

′
2 and z′

1z2 lies inside the union of the bounded regions. This
contradicts the fact that all non-edges should be accessible from the outside. For
example, in Fig. 2c, the non-edge z′

1z2 cannot intersect any outside obstacle. 	

Inside- vs. Outside-Obstacle Graphs. We now use Lemma 4 to show that
there is an 11-vertex graph (see B11 in Fig. 3b) that has an inside-obstacle repre-
sentation but no outside-obstacle representation. This resolves an open question
of Alpert et al. [1]. We conjecture that, for any graph G with at most 10 vertices,
obsin(G) = 1 implies obsout(G) = 1.

Theorem 3. There is an 11-vertex graph (e.g., B11 in Fig. 3b) with inside-
obstacle number 1, but outside-obstacle number 2.

Proof. The 11-vertex co-bipartite graph B11 is constructed as follows. We start
with K10 on the vertices z1, . . . , z5, z

′
1, . . . , z

′
5. We then delete a 5-edge matching

{ziz
′
i : i ∈ {1, . . . , 5}} from K10 to obtain K∗

10. Finally, we obtain B11 by adding
a vertex v adjacent to z1, . . . , z5. (Fig. 3b shows an inside-obstacle representation
of B11 with a triangular obstacle.)

It remains to argue that B11 has no outside-obstacle representation. Note that
B11 contains two cliques Z = {z1, . . . , z5, v} and Z ′ = {z′

1, . . . , z
′
5}. Furthermore,

the vertex v ∈ Z has no neighbors in Z ′. Thus, by Lemma 4(a), in any outside-
obstacle representation, CH(Z) and CH(Z ′) are at most 1-crossing. Additionally,
since each zi has a non-neighbor in Z ′, no zi is contained in CH(Z) ∩ CH(Z ′).
In particular, since Z has only two petals, there are three zi’s, say z1, z2, z3,
that are contained in a single petal of Z. Now note that K∗

6 is the subgraph of
B11 induced by {z1, z2, z3, z

′
1, z

′
2, z

′
3}. Since z1, z2, z3 are contained in a petal of

Z, CH({z1, z2, z3}) and CH({z′
1, z

′
2, z

′
3}) are disjoint, contradicting Lemma 4(b).

Thus, B11 has outside-obstacle number 2. 	

Note that a graph with an inside-obstacle representation is either a clique or

contains a cycle since an inside obstacle cannot (by definition) pierce the convex
hull of the point set2. Thus, by Theorem 3 and this fact, we have the following.

Theorem 4. The classes of inside-obstacle representable graphs and outside-
obstacle representable graphs are incomparable.

Obstacle Number 2. We present an 8-vertex graph (see B8 in Fig. 3c) with
obstacle number 2. To prove this result, we first apply Lemma4 to show that B8

has no outside-obstacle representation. In Lemma 5 (proven in AppendixB), we
demonstrate that B8 also has no inside-obstacle representation. In particular,
these lemmas together with Theorem 2 provide the following theorem.
2 In Appendix D, we show that K2,3 is the smallest graph with a cycle and an outside-

obstacle representation but no inside-obstacle representation.

https://arxiv.org/pdf/1607.00278v2.pdf#nameddest=section.A.2
https://arxiv.org/pdf/1607.00278v2.pdf#nameddest=section.A.4


304 S. Chaplick et al.

Theorem 5. The smallest graphs without a single-obstacle representation have
eight vertices, e.g., the co-bipartite graph B8 in Fig. 3c.

Proof. The graph B8 has 8 vertices v1, . . . , v8. It has precisely the following
set of non-edges: v1v6, v2v5, v3v7, v4v5, v4v6, v4v7, v8v1, v8v2, v8v3. Note that
the subgraph induced by {v1, v2, v3, v5, v6, v7} is a K∗

6 . Further, note that Z =
{v1, v2, v3, v4} and Z ′ = {v5, v6, v7, v8} are cliques.

Suppose (for a contradiction) B8 has an outside-obstacle representation. By
Lemma 4(b), CH(Z) and CH(Z ′) are at least 1-crossing. Additionally, since v4
has only one neighbor in Z ′, we know that CH(Z) and CH(Z ′) are at most 2-
crossing. We will consider these two cases separately. Let QZ

0 , QZ
1 , QZ

2 be the
petals of Z and QZ′

0 , QZ′
1 , QZ′

2 be the petals of Z ′ where the cyclic order of the
petals around CH(Z) ∩ CH(Z ′) is QZ′

0 , QZ
0 , QZ′

1 , QZ
1 , QZ′

2 , QZ
2 . Note that every

vertex is contained in one of the petals.

Case 1: CH(Z) and CH(Z ′) are 2-crossing. Suppose v4 ∈ QZ
0 . Since v8 is the

only neighbor of v4 in Z ′, we must have v8 ∈ QZ′
2 , and now the only vertex in

QZ
0 is v4 and the only vertex in QZ′

2 is v8. However, we now have {v1, v2, v3} ⊂
QZ

1 ∪ QZ
2 and {v5, v6, v7} ⊂ QZ′

0 ∪ QZ′
1 , i.e., CH({v1, v2, v3}) and CH({v5, v6, v7}

are disjoint, contradicting Lemma4(b).

Case 2: CH(Z) and CH(Z ′) are 1-crossing. Note that v1, v2, and v3 cannot
belong to the same petal (otherwise, we would contradict Lemma 4(b)). Similarly,
v5, v6, and v7 cannot belong to the same petal. Thus, without loss of generality,
we have v1 and v2 in QZ

0 , v3 in QZ
1 , v5 and v7 in QZ′

0 , and v6 in QZ′
1 . When v4

is in QZ
0 and v8 is in QZ′

0 , the induced 4-cycle v4v2v7v8 contradicts Lemma 4(c).
Similarly, when v4 is in QZ

0 and v8 is in QZ′
1 , we use the induced 4-cycle v4v2v6v8;

when v4 is in QZ
1 and v8 is in QZ′

0 , we use the induced 4-cycle v4v3v5v8; and
when v4 is in QZ

1 and v8 is in QZ′
1 , we use the induced 4-cycle v4v3v6v8.

It remains to show that B8 has no inside-obstacle representation (formalized
in Lemma 5 below). This is proven in AppendixB. 	

Lemma 5. The graph B8 in Fig. 3c has no inside-obstacle representation.

4 NP-Hardness

In this section, we show that the single-obstacle, outside-obstacle, inside-obstacle
graph sandwich problems as well as the simple-polygon visibility graph sand-
wich problem are all NP-hard. Note that the complexity of the obstacle graph
sandwich problem yields an upper bound for the complexity of our (simpler)
recognition problem.

Theorem 6. The outside-obstacle graph sandwich problem is NP-hard. In other
words, given two graphs G and H with the same vertex set and G ⊆ H, it is
NP-hard to decide whether there is a graph K such that G ⊆ K ⊆ H and
obsout(K) = 1. This holds even if G and H are co-bipartite.

https://arxiv.org/pdf/1607.00278v2.pdf#nameddest=section.A.2
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Proof. We reduce from MonotoneNotAllEqual3Sat, which is NP-hard [15].
In this version of 3Sat, all literals are positive, and the task is to decide whether
the given 3Sat formula ϕ admits a truth assignment such that in each clause at
least one and at most two variables are true.

Given ϕ, we build a graph Gϕ with edges, non-edges and “maybe”-edges such
that ϕ is a yes-instance if and only if Gϕ has a subgraph that has an outside-
obstacle representation and contains all edges, no non-edges and an arbitrary
subset of the maybe-edges. (In other words, the set of edges of Gϕ yields G in
the statement of the theorem, and the set of edges and maybe-edges yields H.)
Let {v1, . . . , vn} be the set of variables, and let {C1, . . . , Cm} be the set of clauses
in ϕ. For i = 1, . . . , n, let vij be the j-th occurrence of vi in ϕ.

Now we can construct Gϕ. For each variable, we introduce a variable vertex
(of the same name). These n vertices form a clique. For each occurrence vij of a
variable vi in ϕ, we introduce an occurrence vertex (of the same name). These 3m
vertices also form a clique. In order to restrict how the two cliques intersect, we
add to Gϕ a copy of K∗

6 labeled as in Fig. 3a; vertices z1, z2, z3 participate in the
occurrence-vertex clique, whereas vertices z′

1, z
′
2, z

′
3 participate in the variable-

vertex clique. We add one more vertex u to the occurrence-vertex clique. The
special vertex u is adjacent to z′

3 and has non-edges to all other vertices in the
variable-vertex clique. The edge set of Gϕ depends on ϕ as follows. Each variable
vertex vi has

– an edge to any occurrence vertex vij ,
– a non-edge to any occurrence vertex vk� that represents an occurrence of a

variable vk that co-occurs with vi in some clause of ϕ,
– a maybe-edge to any other occurrence vertex.

Next, we show how to use a feasible truth assignment of ϕ to lay out Gϕ

so that all its non-edges are accessible from the outside. We place the vertices
on the boundary of two intersecting rectangles, one for each clique. Given these
positions, we show that all non-edges intersect the outer face of the union of the
edges. Finally, we bend the sides of the rectangles slightly into very flat circular
arcs such that all of the previous (non-) visibilities remain and the vertices are
in general position.

We take two axis-aligned rectangles R1 and R2 that intersect as a cross; see
Fig. 4. Let X1,X2,X3,X4 be the corners of R1 ∩ R2 in clockwise order, starting
in the lower left corner. We place the variable vertices on the boundary of the
“wide” rectangle R1: the vertices v1, . . . , vp of the true variables are equally
spaced from top to bottom on a segment on the left side, similarly the vertices
vp+1, . . . , vn of the false variables go to a segment on the right side. (In Fig. 4(b),
p = 3.) The two vertical segments are chosen such that they “see” four disjoint
horizontal segments on the top and bottom edge of R2; refer to Fig. 4(a) for the
positions of the six segments in total.

In each clause, we sort the variables in increasing order of index. We place
the occurrence vertices on the horizontal segments of R2. For a true variable vi

(such as v2 in Fig. 4(b)) the first occurrence vertex vi1 has two potential loca-
tions; the bottom location is where the ray from vi through X1 hits the bottom
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Fig. 4. NP-hardness: maybe-edges and the two cliques are not drawn.

right segment, the top location is where the ray from vi trough X2 hits the top
right segment. We place vi1 to its bottom or top location depending on whether
vi1 is the first or second occurrence of a true variable in its clause, respectively.
(Remember that within each clause, at most two variables are true and at most
two are false.) Occurrence vertices vi2 etc. go between the top or bottom loca-
tions of vi1 and vi+1,1, again depending on whether they are the first or second
occurrence of a true variable in their respective clauses. (E.g., in Fig. 4(b), v21
goes to the top, whereas v22 goes to the bottom.)

The special vertex u is placed in the center of the top edge of R2; hence, it
is not visible from any variable vertex; see Fig. 4(a). The vertices of K∗

6 can be
placed such that u sees only z′

3, but neither z′
1 nor z′

2; see Fig. 4(a).
By construction, all edges are inside R1 ∪ R2. It remains to show that all

non-edges (dashed in Fig. 4(b)) go through the complement of R1 ∪ R2. This
is due to the order of the variable vertices and the occurrence vertices along
the boundary of R1 ∪ R2 and due to the order of the variables in each clause.
Suppose that a variable vertex vi has a non-edge with occurrence vertex vk�.
This means that there is an occurrence vij of vi in the same clause as vk�. If vi

and vk have different truth values, then vi cannot see vk�; refer to Fig. 4(a). So
assume that both are true and that i < k. But then vi lies above vk on the left
segment of R1, and vij lies to the left of vk� on the bottom right segment of R2.
Hence, vi cannot see vk�.

It remains to show that an outside-obstacle representation of Gϕ yields a
feasible truth assignment for ϕ. By Lemmas 4(a) and (b), we know that the
convex hulls of the two cliques are at least 1-crossing due to the presence of K∗

6

and at most 2-crossing due to u. To see that these hulls are exactly 1-crossing,
we suppose that Gϕ has a 2-crossing drawing for a contradiction. Consider the
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subgraph H induced by u and the first clause C1 = {vi, vj , vk}, of ϕ i.e., H =
G[{u, vi, vj , vk, vi1, vj1, vk1}]. Let Qu be the petal containing u. Since the only
neighbor of u in the variable-vertex clique is z′

3, no other variable vertices belong
to the petal opposite Qu. Thus, two of {vi, vj , vk}, say vi and vj , occur in one
petal Q′

1 adjacent to Qu, and vk occurs in the other petal Q′
2 which is adjacent

to Qu. Notice that each of vi1, vj1, vk1 cannot belong to the petal opposite Q′
1

since this would make it adjacent to both vi and vj . Similarly, no neither vi1 nor
vj1 can occur in the petal opposite Q′

2 since it would then be adjacent to vk.
Thus, vi1 and vj1 belong to the same petal and this petal is adjacent to Q′

1.
However, this contradicts Lemma 4(c) since {vi, vj , vi1, vj1} induces a 4-cycle.

Now, since the convex hulls are exactly 1-crossing, we have two groups
(petals) of vertices in each of the two cliques. Without loss of generality, the
variable-vertex clique is divided into a left and a right group, and the occurrence-
vertex clique is divided into a top and a bottom group. We set those variables
to true whose vertices lie on the left, the rest to false.

Now suppose that the three variables v1, v2, and v3 of clause C1 lie in the
same group, say, on the left. Then two of their occurrence vertices (say v11
and v21) lie in the same group, say, in the top group. Since v1v21 and v2v11 are
non-edges, v1v11v21v2 is an induced 4-cycle. Now Lemma 4(c), yields the desired
contradiction. Hence, no three variable vertices in a clause can be in the same
(left or right) group. Therefore, our truth assignment is indeed feasible. This
completes the NP-hardness proof. 	


To show hardness for the simple-polygon visibility graph sandwich problem,
we must make sure that any vertex of the obstacle is also a vertex of the graph.
It suffices to add X1,X2,X3,X4 as vertices to Gϕ that lie in both cliques.

Theorem 7. The simple-polygon visibility graph sandwich problem is NP-hard.
In other words, given two graphs G and H with the same vertex set and G ⊆ H,
it is NP-hard to decide whether there is a graph K and a polygon Π such that
G ⊆ K ⊆ H and K = GΠ(V (Π)). This holds even if G and H are co-bipartite.

We can also use the NP-hardness of the outside-obstacle sandwich problem
to show NP-hardness for both the single-obstacle sandwich problem and the
inside-obstacle sandwich problem. The idea is simply to combine a given graph
G with a graph such as B11 which has outside-obstacle number greater than one,
but inside-obstacle number one. The combined graph would then have inside-
obstacle number one if and only if the graph G has outside-obstacle number one.
The details of this are given in AppendixC.
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Abstract. We prove that if an n-vertex graph G can be drawn in the
plane such that each pair of crossing edges is independent and there is a
crossing-free edge that connects their endpoints, then G has O(n) edges.
Graphs that admit such drawings are related to quasi-planar graphs and
to maximal 1-planar and fan-planar graphs.
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planar graphs · 1-planar graphs

1 Introduction

Throughout this paper we consider graphs with no loops or parallel edges.
A topological graph is a graph drawn in the plane with its vertices as distinct
points and its edges as Jordan arcs that connect the corresponding points and
do not contain any other vertex as an interior point. Every pair of edges in a
topological graph has a finite number of intersection points, each of which is
either a vertex that is common to both edges, or a crossing point at which one
edge passes from one side of the other edge to its other side. A topological graph
is simple if every pair of its edges intersect at most once. A geometric graph is a
(simple) topological graph in which every edge is a straight-line segment. If the
vertices of a geometric graph are in convex position, then the graph is a convex
geometric graph.

Call a pair of independent1 and crossing edges e and e′ in a topological
graph G planarly connected if there is a crossing-free edge in G that connects
an endpoint of e and an endpoint of e′. A planarly connected crossing (PCC for
short) topological graph is a topological graph in which every pair of independent
crossing edges is planarly connected. An abstract graph is a PCC graph if it can
be drawn as a topological PCC graph.

1 Two edges are independent if they do not share a vertex. Note that in a simple
topological graph two crossing edges must be independent.
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Our motivation for studying PCC graphs comes from two examples of
topological graphs that satisfy this property: A graph is k-planar if it can be
drawn as a topological graph in which each edge is crossed at most k times (we
call such a topological graph k-plane). Suppose that G is an n-vertex 1-planar
topological graph with the maximum possible number of edges (i.e., there is no
n-vertex 1-planar graph with more edges than G). Now consider a drawing D of
G as a 1-plane topological graph with the least number of crossings. Then it is
easy to see that D is a simple topological graph. Moreover, D is a PCC topo-
logical graph. Indeed, if (u, v) and (w, z) are two independent edges that cross
at a point x and are not planarly connected, then we can draw a crossing-free
edge (u,w) that consists of the (perturbed) segments (u, x) and (w, x) of (u, v)
and (w, z), respectively. This way we either increase the number of edges in the
graph or we are able to replace a crossed edge with a crossing-free edge and get
a 1-plane drawing of G with less crossings.

Another example for PCC topological graphs are certain drawings of fan-
planar graphs. A graph is called fan-planar if it can be drawn as a simple
topological graph such that for every edge e all the edges that cross e share a
common endpoint on the same side of e. As before, it can be shown (see [11,
Corollary 1]) that such an embedding of a maximum fan-planar graph with as
many crossing-free edges as possible admits a PCC topological graph.

Both 1-plane topological graphs and fan-planar graphs are sparse, namely,
their maximum number of edges is 4n − 8 [14] and 5n − 10 [11], respectively
(where n denotes the number of vertices). Our main result shows that simple
PCC topological graphs are always sparse.

Theorem 1. Let G be an n-vertex topological graph such that for every two
crossing edges e and e′ it holds that e and e′ are independent and there is a
crossing-free edge that connects an endpoint of e and an endpoint of e′. Then G
has at most cn edges, where c is an absolute constant.

Note that by definition in a simple topological graph every pair of crossing
edges must be independent, therefore, Theorem1 holds for PCC simple topolog-
ical graphs. We strongly believe that (not necessarily simple) PCC topological
graphs also have linearly many edges, however, our proof currently falls short of
showing that.

It follows from Theorem 1 that 1-plane and fan-planar graphs have linearly
many edges, however, with a much weaker upper bound than the known ones. It
would be interesting to improve our upper bound and to find the exact maximum
size of a PCC (simple) topological graph. We show that this value is at least
9n−O(1) (see Sect. 3), which implies that not every PCC graph is a (maximum)
1-plane or fan-planar graph.

PCC graphs are also related to two other classes of topological graphs. Call a
topological graph k-quasi-plane if it has no k pairwise crossing edges. According
to a well-known and rather old conjecture (see e.g., [6,12]) k-quasi-plane graphs
should have linearly many edges.
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Conjecture 1. For any integer k ≥ 2 there is a constant ck such that every n-
vertex k-quasi-plane graph has at most ckn edges.

It is easy to see that if G is a PCC simple topological graph, then G is 9-quasi-
plane: Suppose for contradiction that G contains a set E′ of 9 pairwise crossing
edges and let V ′ be the set of their endpoints. Since G is a simple topological
graph, no two edges in E′ share an endpoint, therefore |V ′| = 18. Let G′ be
the subgraph of G that is induced by V ′ and let E′′ be the crossing-free edges
of G′. Clearly (V ′, E′′) is a plane graph. Moreover, all the edges in E′ must lie in
the same face f of this plane graph, since they are pairwise crossing. It follows
that f is incident to every vertex in V ′ and therefore (V ′, E′′) is an outerplanar
graph. Thus, |E′′| ≤ 2 · 18 − 3 = 33. On the other hand, since G′ is also PCC
and no two edges in E′ share an endpoint, it follows that |E′′| ≥ (

9
2

)
= 36, a

contradiction.
Therefore, Conjecture 1, if true, would immediately imply Theorem1 for

simple topological graphs. However, this conjecture was only verified for k =
3 [4,5,13], for k = 4 [1], and (for any k) for convex geometric graphs [7]. For
k ≥ 5 the currently best upper bounds on the size of n-vertex k-quasi-plane
graphs are n(log n)O(log k) by Fox and Pach [9,10], and Ok(n log n) for simple
topological graphs by Suk and Walczak [16].

Another conjecture that implies Theorem1 (also for topological graphs that
are not necessarily simple) is related to grids in topological graphs. A k-grid in a
topological graph is a pair of edge subsets E1, E2 such that |E1| = |E2| = k, and
every edge in E1 crosses every edge in E2. Ackerman et al. [2] proved that every
n-vertex topological graph that does not contain a k-grid with distinct vertices
has at most Ok(n log∗ n) edges and conjectured that this upper bound can be
improved to Ok(n). It is not hard to show, as before, that a PCC graph does
not contain an 8-grid with distinct vertices. Therefore, this conjecture, if true,
would also imply Theorem 1.

Outline. We prove Theorem 1 in the following section. In Sect. 3 we give a lower
bound on the maximum size of a PCC simple topological graph, generalize the
notion of planarly connected edges, and conclude with some open problems.

2 Proof of Theorem1

Let G = (V,E) be an n-vertex topological graph such that for every two crossing
edges e and e′ it holds that e and e′ are independent and there is a crossing-free
edge that connects an endpoint of e and an endpoint of e′. Denote by E′ ⊆ E the
set of crossing-free (planar) edges in G, and by E′′ = E \ E′ the set of crossed
edges in G. Since G′ = (V,E′) is a plane graph, we have |E′| ≤ 3n, so it remains
to prove that |E′′| = O(n).

Let G′
1 = (V1, E

′
1), . . . , G

′
k = (Vk, E′

k) be the connected components of the
graph G′, and let E′′

i,j = {(u, v) ∈ E′′ | u ∈ Vi and v ∈ Vj}.

Lemma 1. |E′′
i,i| ≤ 96|Vi| for 1 ≤ i ≤ k.
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Proof. Assume without loss of generality that i = 1 and consider the graph G′
1.

Let f1, . . . , f� be the faces of the plane graph G′
1. For a face fj , let V (fj) be the

vertices that are incident to fj , and let E′′(fj) be the edges in E′′
1,1 that lie within

fj (thus, their endpoints are in V (fj)). Denote by |fj | the size of fj , that is, the
length of the shortest closed walk that visits every edge on the boundary of fj .
Recall that in the Introduction we argued that a PCC simple topological graph
is 9-quasi-plane. For the same arguments we have the following observation.

Observation 2. There are no 9 pairwise crossing edges in E′′(fj).

Proposition 1. |E′′(fj)| ≤ 16|fj |, for 1 ≤ j ≤ �.

Proof. Define first an auxiliary graph Ĝj as follows. When traveling along the
boundary of fj in clockwise direction, we meet every vertex in V (fj) at least
once and possibly several times if the boundary of fj is not a simple cycle.
Let v1, v2, . . . , v|fj | be the list of vertices as they appear along the boundary of
fj , where a new instance of a vertex is introduced whenever a visited vertex is
revisited. The edge set of Ĝj corresponds to E′′(fj), however, we make sure to
pick the “correct” instance of a vertex in v1, v2, . . . , v|fj | for a vertex in V (fj)
that was visited more than once when traveling along the boundary of fj (see
Fig. 1 for an example).

Fig. 1. Illustrations for the proof of Proposition 1.

Let ê1 and ê2 be a pair of crossing edges in Ĝj and let e1 and e2 be their
corresponding edges in G. Clearly, e1 and e2 are crossing edges and therefore
are independent and planarly connected. It follows from Observation 2 that Ĝj

does not contain 9 pairwise crossing edges.
We now realize the underlying abstract graph of Ĝj as a convex geometric

graph: The vertices v1, v2, . . . , v|fj | are the vertices of a convex polygon (in that
order), and the edges of Ĝj are realized as straight-line segments. Suppose that
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two edges (vi1 , vi2) and (vi3 , vi4) cross in this realization. Assume without loss of
generality that i1 < i2, i3 < i4 and i1 < i3. Since these edges are the chords of
a convex polygon it must be that i1 < i3 < i2 < i4. It follows that (vi1 , vi2) and
(vi3 , vi4) also cross in Ĝj . Thus, the realization of Ĝj as a convex geometric graph
does not contain 9 pairwise crossing edges. According to a result of Capoyleas
and Pach [7], an n-vertex convex geometric graph with no k+1 pairwise crossing
edges has at most

(
n
2

)
edges if n ≤ 2k + 1 and at most 2kn − (

2k+1
2

)
edges if

n ≥ 2k + 1. Therefore, |E′′(fj)| ≤ 16|fj |. ��
We now return to proving that |E′′

1,1| = O(|V1|). Using the fact that
∑�

j=1 |fj | = 2|E′
1| ≤ 6|V1|, we have

|E′′
1,1| =

�∑

j=1

E′′(fj) ≤
�∑

j=1

16|fj | ≤ 96|V1|,

which completes the proof of the lemma. ��
It remains to bound the number of edges in E′′ between different connected

components of G′. To this end, we introduce some more notations. For every
j �= i, let Vi,j be the vertices of Vi that are connected to some vertex in Vj , i.e.,
Vi,j = {vi ∈ Vi | (vi, vj) ∈ E′′ for some vj ∈ Vj}. Let H be a simple (abstract)
graph whose vertex set is {u1, . . . , uk} and whose edge set consists of the edges
(ui, uj) such that E′′

i,j �= ∅.

Lemma 3. H is a planar graph.

Proof. For 1 ≤ i ≤ k identify ui with one of the vertices of G′
i and let Ti be a

spanning tree of G′
i. We draw every edge (ui, uj) of H as follows: Pick arbitrarily

a pair vi ∈ Vi and vj ∈ Vj such that (vi, vj) ∈ E′′. The edge (ui, uj) consists of
the unique path in Ti from ui to vi, the edge (vi, vj) and the unique path in Tj

from vj to uj . See Fig. 2 for an example. Note that in the drawing of H that is
obtained this way all the crossing points are inherited from G, however, there are
overlaps between edges. Still, each such (maximal) overlap contains an endpoint
of an edge, and it is not hard to show that the edges in such a drawing can be
slightly perturbed so that all the overlaps are removed and no new crossings are
introduced (see [3, Lemma 2.4]). We denote such a drawing of H by H ′.

The important observation is that if two edges in H ′ cross, then they must
share an endpoint. Indeed, suppose for contradiction that (ua, ub) and (uc, ud)
are two independent and crossing edges. Then it follows that G contains two
independent and crossing edges (va, vb) and (vc, vd), such that va ∈ Va, vb ∈ Vb,
vc ∈ Vc and vd ∈ Vd. Since these two edges are planarly connected, there should
be a crossing-free edge that connects a vertex in {va, vb} with a vertex in {vc, vd}.
However, this is impossible since these four vertices belong to distinct connected
components of G′.

Finally, a graph that can be drawn so that each crossing is between two edges
that share a common vertex is planar: this follows from the strong Hanani-Tutte
Theorem (see, e.g., [8,15,18]). ��
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Fig. 2. Illustrations for the proof of Lemma 3.

Lemma 4. |E′′
i,j | ≤ 8(|Vi,j | + |Vj,i|) for every 1 ≤ i < j ≤ k.

Proof. Since G′
i and G′

j are planar graphs, we can properly color their vertices
with four colors. Denote the colors by 1, 2, 3, 4, and let V c

i,j (resp., V c
j,i) be the

vertices of color c in Vi,j (resp., Vj,i). We claim that the number of edges in E′′
i,j

that connect a vertex from V c
i,j and a vertex from V c′

j,i is at most 2(|V c
i,j |+|V c′

j,i|) for
every c, c′ ∈ {1, 2, 3, 4}. Indeed, denote the graph that consists of these edges by
G∗ and consider its drawing as inherited from G. It is not hard to see that G∗ is a
planar graph: Suppose that two edges in G∗ cross and denote them by (u, v) and
(x, y) such that u, x ∈ V c

i,j and v, y ∈ V c′
j,i. Since u and x are both of color c, there

is no crossing-free edge in G′
i that connects them. Similarly, there is no crossing-

free edge in G′
j that connects v and y. Since there are also no crossing-free edges

in E′′
i,j , it follows that (u, v) and (x, y) are not independent, a contradiction.

Therefore, G∗ is a plane graph. Because G∗ is also bipartite, its number of
edges is at most twice its number of vertices. Thus,

|E′′
i,j | ≤ 2

∑

1≤c≤4

∑

1≤c′≤4

(|V c
i,j | + |V c′

j,i|) = 8(|Vi,j | + |Vj,i|),

and the lemma follows. ��
Lemma 5.

∑
j �=i |Vi,j | ≤ 3(|Vi| + 4degH(ui)) for every 1 ≤ i ≤ k.

Proof. We use again ideas from the proofs of Lemmas 3 and 4. Assume with-
out loss of generality that i = 1 and consider the graph G′

1. Since G′
1 is a
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planar graph, we can properly color its vertices with four colors. Denote the
colors by 1, 2, 3, 4, and let V c

1 (resp., V c
1,j) be the vertices of color c in V1 (resp.,

V1,j). Clearly,
∑k

j=2 |V1,j | =
∑4

c=1

∑k
j=2 |V c

1,j |. Therefore it is enough to consider
∑k

j=2 |V c
1,j | for a fixed color c.

Recall that in the proof of Lemma 3, for 1 ≤ i ≤ k, we have identified ui with
one of the vertices of G′

i and denoted by Ti a spanning tree of G′
i. We define a

graph Hc whose vertex set consists of V c
1 and the vertices uj that are adjacent

to u1 in H. For each such vertex uj and every vertex v1 ∈ V c
1,j pick arbitrarily

an edge (v1, vj) such that vj ∈ Vj (such an edge exists by the definition of V1,j),
and draw an edge (v1, uj) as follows: (v1, uj) consists of the edge (v1, vj) in G
and the unique path in Tj from vj to uj .

Observe that Hc is a simple graph (i.e., it has no parallel edges or loops).
Moreover, in the drawing of Hc that is obtained as above, all the crossing points
are inherited from G, however, there are overlaps between edges. Still, each such
(maximal) overlap contains an endpoint of an edge, and thus, as in the proof of
Lemma 3, the edges of Hc can be slightly perturbed so that all the overlaps are
removed and no new crossings are introduced.

Consider such a drawing of Hc and observe that if two edges cross in this
drawing, then they must share an endpoint. Indeed, suppose for contradic-
tion that (v1, ua) and (v′

1, ub) are two independent and crossing edges. Then
G contains two independent and crossing edges (v1, va) and (v′

1, vb), such that
v1, v

′
1 ∈ V1, va ∈ Va, and vb ∈ Vb. Since these two edges are planarly connected,

there should be a crossing-free edge that connects a vertex in {v1, va} with a
vertex in {v′

1, vb}. However, this is impossible because there is no crossing-free
edge between two vertices from different connected components of G′ and there
is also no crossing-free edge (v1, v′

1) since both v1 and v′
1 are of color c.

This implies that Hc is a planar graph. Observe that
∑k

j=2 |V c
1,j | is precisely

the number of edges in Hc. Thus,
∑k

j=2 |V c
1,j | ≤ 3|V (Hc)| = 3(|V c

1 |+degH(u1)),

and it follows that
∑k

j=2 |V1,j | =
∑4

c=1

∑k
j=2 |V c

1,j | ≤ 3|V1| + 12degH(u1). ��
Recall that it remains to show that |E′′| = O(n):

|E′′| =
∑

1≤i≤k

|E′′
i,i| +

∑

1≤i<j≤k

|E′′
i,j |

≤ 96n + 8
∑

1≤i<j≤k

(|Vi,j | + |Vj,i|)

= 96n + 8
∑

1≤i≤k

∑

j �=i

|Vi,j |

≤ 96n + 24
∑

1≤i≤k

(|Vi| + 4degH(ui))

≤ 96n + 24n + 96 · 2|E(H)| ≤ 120n + 192 · 3n = 696n.

Note that in the last inequality we used the fact that H is a planar graph.
We conclude that |E| = |E′| + |E′′| ≤ 699n. Theorem 1 is proved.
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3 Discussion

Recall that we leave open the question of whether Theorem 1 holds for PCC
topological graphs in which every pair of crossing edges shares a vertex or is
planarly connected.

It would also be interesting to find the maximum size of an n-vertex PCC
simple topological graph. The proof of Theorem1 shows that this quantity is
at most 699n, but we believe that a linear bound with a much smaller multi-
plicative constant holds. Figure 3 describes a construction of an n-vertex PCC
simple topological graph with 9n − O(1) edges. This construction was given by
Géza Tóth [17], and it improves a construction of ours with 6.6n−O(1) edges that
appeared in an earlier version of this paper. It goes as follows: place n−6 points
on the y-axis, say at (0, i) for i = 0, 1, . . . , n − 7; for every i = 0, . . . , n − 8 add
a straight-line edge connecting (0, i) and (0, i + 1) (these edges will be crossing-
free); for every i = 0, . . . , n − 9 add an edge connecting (0, i) and (0, i + 2) that
goes slightly to the left of the y-axis; for every i = 0, . . . , n − 10 add an edge
connecting (0, i) and (0, i + 3) that goes slightly to the right of the y-axis; add
three points with the same x coordinate to the left (resp., right) of the y-axis
and connect each of them by straight-line edges to each of the points on the
y-axis; connect every pair of points to the left (resp., right) of the y-axis by a
crossing-free edge. One can easily verify that the resulting graph is indeed a PCC
simple topological graph and has 9n − O(1) edges.

Fig. 3. A construction of a topological PCC graph with 9n−O(1) edges.

The notion of planarly connected edges can be generalized as follows. For an
integer k ≥ 0, we say that two crossing edges e and e′ in a topological graph G
are k-planarly connected if there is a path of at most k crossing-free edges in G
that connects an endpoint of e with an endpoint of e′. Call a graph k-planarly
connected crossing (k-PCC for short) graph if it can be drawn as a topological
graph in which every pair of crossing edges is k-planarly connected. Thus, PCC
graphs are 1-PCC graphs.
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For k = 0, graphs that can be drawn as topological graphs in which every
pair of crossing edges share a vertex are actually planar graphs, as noted in
the proof of Lemma 3. For k ≥ 2 we can no longer claim that a k-PCC graph is
sparse. Indeed, it is easy to see that Kn is a 2-PCC graph: simply pick a vertex v
and draw it with all of its neighbors as a crossing-free star. Now every remaining
edge can be drawn such that we get a simple topological graph in which for any
two crossing edges there is a path (through v) of two crossing-free edges that
connects their endpoints.

Note that if G is a k-PCC graph and G′ is a subgraph of G, then this does
not imply that G′ is also a k-PCC graph. For example, it is not hard to see that
for any k there is a (sparse) graph that is not k-PCC: simply replace every edge
of K5 (or any non-planar graph) with a path of length k + 1. Call the resulting
graph G′ and observe that any drawing of it must contain two independent and
crossing edges such that there is no path of length at most k between their
endpoints. On the other hand, if k ≥ 2 then clearly G′ is a subgraph of a k-PCC
graph (Kn).

We conclude with a few interesting questions one can ask about the notion of
planarly connected crossings: Is it possible to construct for any n and k a graph
with quadratically many edges which is not k-PCC? Can we recognize (k-)PCC
graphs efficiently? Given that a graph is a (k-)PCC graph, is it possible to find
efficiently such an embedding?
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Abstract. Thomassen characterized some 1-plane embedding as the for-
bidden configuration such that a given 1-plane embedding of a graph is
drawable in straight-lines if and only if it does not contain the configu-
ration [C. Thomassen, Rectilinear drawings of graphs, J. Graph Theory,
10(3), 335–341, 1988].

In this paper, we characterize some 1-plane embedding as the for-
bidden configuration such that a given 1-plane embedding of a graph
can be re-embedded into a straight-line drawable 1-plane embedding of
the same graph if and only if it does not contain the configuration. Re-
embedding of a 1-plane embedding preserves the same set of pairs of
crossing edges. We give a linear-time algorithm for finding a straight-line
drawable 1-plane re-embedding or the forbidden configuration.

1 Introduction

Since the 1930s, a number of researchers have investigated planar graphs. In
particular, a beautiful and classical result, known as Fáry’s Theorem, asserts
that every plane graph admits a straight-line drawing [5]. Indeed, a straight-line
drawing is the most popular drawing convention in Graph Drawing.

More recently, researchers have investigated 1-planar graphs (i.e., graphs that
can be embedded in the plane with at most one crossing per edge), introduced
by Ringel [13]. Subsequently, the structure of 1-planar graphs has been investi-
gated [4,12]. In particular, Pach and Toth [12] proved that a 1-planar graph with
n vertices has at most 4n−8 edges, which is a tight upper bound. Unfortunately,
testing the 1-planarity of a graph is NP-complete [6,11], however linear-time
algorithms are available for special subclasses of 1-planar graphs [1,3,7].

Thomassen [14] proved that every 1-plane graph (i.e., a 1-planar graph
embedded with a given 1-plane embedding) admits a straight-line drawing if
and only if it does not contain any of two special 1-plane graphs, called the
B-configuration or W-configuration, see Fig. 1.

Research supported by ARC Future Fellowship and ARC Discovery Project
DP160104148. This is an extended abstract. For a full version with omitted proofs,
see [9].
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Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 321–334, 2016.
DOI: 10.1007/978-3-319-50106-2 25



322 S.-H. Hong and H. Nagamochi

Fig. 1. (a) B-configuration with three edges u1u2, u2u3 and u3u4 and one crossing c
made by an edge pair {u1u2, u3u4}, where edge u2u3 may have a crossing when the
configuration is part of a 1-plane embedding; (b) W-configuration with four edges u1u2,
u2u3, v1v2 and v2v3 and two crossings c and s made by edge pairs {u1u2, v2v3} and
{u2u3, v1v2}, where possibly u1 = v1 and u3 = v3; (c) Augmenting a crossing c ∈ χ
made by edges u1u3 and u2u4 with a new cycle Qc = (u1, w

c
1, u2, w

c
2, u3, w

c
3, u4, w

c
4)

depicted by gray lines.

Recently, Hong et al. [8] gave an alternative constructive proof, with a linear-
time testing algorithm and a drawing algorithm. They also showed that some
1-planar graphs need an exponential area with straight-line drawing.

We call a 1-plane embedding straight-line drawable (SLD for short) if it
admits a straight-line drawing, i.e., it does not contain a B- or W-configuration
by Thomassen [14]. In this paper, we investigate a problem of “re-embedding”
a given non-SLD 1-plane embedding γ into an SLD 1-plane embedding γ′. For
a given 1-plane embedding γ of a graph G, we call another 1-plane embedding
γ′ of G a cross-preserving embedding of γ if exactly the same set of edge pairs
make the same crossings in γ′.

More specifically, we first characterize the forbidden configuration of 1-plane
embeddings that cannot admit an SLD cross-preserving 1-plane embedding.
Based on the characterization, we present a linear-time algorithm that either
detects the forbidden configuration in γ or computes an SLD cross-preserving
1-plane embedding γ′.

Formally, the main problem considered in this paper is defined as follows.

Re-embedding a 1-Plane Graph into a Straight-line Drawing
Input: A 1-planar graph G and a 1-plane embedding γ of G.
Output: Test whether γ admits an SLD cross-preserving 1-plane embedding
γ′, and construct such an embedding γ′ if one exists, or report the forbidden
configuration.

To design a linear-time implementation of our algorithm in this paper, we
introduce a rooted-forest representation of non-intersecting cycles and an efficient
procedure of flipping subgraphs in a plane graph. Since these data structure and
procedure can be easily implemented, it has advantage over the complicated
decomposition of biconnected graphs into triconnected components [10] or the
SPQR tree [2].
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2 Plane Embeddings and Inclusion Forests

Let U be a set of n elements, and let S be a family of subsets S ⊆ U . We say
that two subsets S, S′ ⊆ U are intersecting if none of S ∩S′, S −S′ and S′ −S is
empty. We call S a laminar if no two subsets in S are intersecting. For a laminar
S, the inclusion-forest of S is defined to be a forest I = (S, E) of a disjoint union
of rooted trees such that (i) the sets in S are regarded as the vertices of I, and
(ii) a set S is an ancestor of a set S′ in I if and only if S′ ⊆ S.

Lemma 1. For a cyclic sequence (u1, u2, . . . , uδ) of δ ≥ 2 elements, define an
interval (i, j) to be the set of elements uk with i ≤ k ≤ j if i ≤ j and (i, j) =
(i, δ) ∪ (1, j) if i > j. Let S be a set of intervals. A pair of two intersecting
intervals in S (when S is not a laminar) or the inclusion-forest of S (when S is
a laminar) can be obtained in O(δ + |S|) time.

Throughout the paper, a graph G = (V,E) stands for a simple undirected
graph. The set of vertices and the set of edges of a graph G are denoted by V (G)
and E(G), respectively. For a vertex v, let E(v) be the set of edges incident to
v, N(v) be the set of neighbors of v, and deg(v) denote the degree |N(v)| of
v. A simple path with end vertices u and v is called a u, v-path. For a subset
X ⊆ V , let G − X denote the graph obtained from G by removing the vertices
in X together with the edges in ∪v∈XE(v).

A drawing D of a graph G is a geometric representation of the graph in the
plane, such that each vertex of G is mapped to a point in the plane, and each
edge of G is drawn as a curve. A drawing D of a graph G = (V,E) is called
planar if there is no edge crossing. A planar drawing D of a graph G divides
the plane into several connected regions, called faces, where a face enclosed by
a closed walk of the graph is called an inner face and the face not enclosed by
any closed walk is called the outer face.

A planar drawing D induces a plane embedding γ of G, which is defined to
be a pair (ρ, ϕ) of the rotation system (i.e., the circular ordering of edges for each
vertex) ρ, and the outer face ϕ whose facial cycle Cϕ gives the outer boundary
of D. Let γ = (ρ, ϕ) be a plane embedding of a graph G = (V,E). We denote by
F (γ) the set of faces in γ, and by Cf the facial cycle determined by a face f ∈ F ,
where we call a subpath of Cf a boundary path of f . For a simple cycle C of G,
the plane is divided by C in two regions, one containing only inner faces and the
other containing the outer area, where we say that the former is enclosed by C
or the interior of C, while the latter is called the exterior of C. We denote by
Fin(C) the set of inner faces in the interior of C, by Ein(C) the set of edges in
E(Cf ) with f ∈ Fin(C), and by Vin(C) the set of end-vertices of edges in Ein(C).
Analogously define Fex(C), Eex(C) and Vex(C) in the exterior of C. Note that
E(C) = Ein(C) ∩ Eex(C) and V (C) = Vin(C) ∩ Vex(C).

For a subgraph H of G, we define the embedding γ|H of γ induced by H to be
a sub-embedding of γ obtained by removing the vertices/edges not in H, keeping
the same rotation system around each of the remaining vertices/crossings and
the same outer face.
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2.1 Inclusion Forests of Inclusive Set of Cycles

In this and next subsections, let (G, γ) stand for a plane embedding of γ = (ρ, ϕ)
of a biconnected simple graph G = (V,E) with n = |V | ≥ 3.

Let C be a simple cycle in G. We define the direction of C to be an ordered
pair (u, v) with uv ∈ E(C) such that the inner faces in Fin(C) appear on the
right hand side when we traverse C in the order that we start u and next visit v.

For simplicity, we say that two simple cycles C and C ′ are intersecting if
Fin(C) and Fin(C ′) are intersecting.

Let C be a set of simple cycles in G. We call C inclusive if no two cycles in
C are intersecting, i.e., {Fin(C) | C ∈ C} is a laminar. When C is inclusive, the
inclusion-forest of C is defined to be a forest I = (C, E) of a disjoint union of
rooted trees such that:

(i) the cycles in C are regarded as the vertices of I, and
(ii) a cycle C is an ancestor of a cycle C ′ in I if and only if Fin(C ′) ⊆ Fin(C).

Let I(C) denote the inclusion-forest of C. For a vertex subset X ⊆ V , let
C(X) denote the set of cycles C ∈ C such that x ∈ V (C) for some vertex x ∈ X,
where we denote C({v}) by C(v) for short.

Lemma 2. For (G, γ), let C be a set of simple cycles of G. Then any of the
following tasks can be executed in O(n +

∑
C∈C |E(C)|) time.

(i) Decision of the directions of all cycles in C;
(ii) Detection of a pair of two intersecting cycles in C when C is not inclusive,

and construction of the inclusion-forests I(C(v)) for all vertices v ∈ V when
C is inclusive; and

(iii) Construction of the inclusion-forest I(C) when C is inclusive.

2.2 Flipping Spindles

A simple cycle C of G is called a spindle (or a u, v-spindle) of γ if there are two
vertices u, v ∈ V (C) such that no vertex in V (C) − {u, v} is adjacent to any
vertex in the exterior of C, where we call vertices u and v the junctions of C.
Note that each of the two subpaths of C between u and v is a boundary path of
some face in F (γ).

Given (G, γ), we denote the rotation system around a vertex v ∈ V by ργ(v).
For a spindle C in γ, let J(C) denote the set of the two junctions of C.

Flipping a u, v-spindle C means to modify the rotation system of vertices in
Vin(C) as follows:

(i) For each vertex w ∈ Vin(C) − J(C), reverse the cyclic order of ργ(w); and
(ii) For each vertex u ∈ J(C), reverse the order of subsequence of ργ(u) that

consists of vertices N(u) ∩ Vin(C).



Re-embedding a 1-Plane Graph into a Straight-Line Drawing 325

Every two distinct spindles C and C ′ in γ are non-intersecting, and they
always satisfy one of Ein(C) ∩ Ein(C ′) = ∅, Ein(C) ⊆ Ein(C ′), and Ein(C ′) ⊆
Ein(C). Let C be a set of spindles in γ, which is always inclusive, and let I(C)
denote the inclusion-forest of C.

When we modify the current embedding γ by flipping each spindle in C, the
resulting embedding γC is the same, independent from the ordering of the flipping
operation to the spindles, since for two spindles C and C ′ which share a common
junction vertex u ∈ J(C)∩J(C ′), the sets N(u)∩Vin(C) and N(u)∩Vin(C ′) do
not intersect, i.e., they are disjoint or one is contained in the other.

Define the depth of a vertex v ∈ V in I to be the number of spindles C ∈ C
such that v ∈ Vin(C) − J(C), and denote by p(v) the parity of depth of vertex
v, i.e., p(v) = 1 if the depth is odd and p(v) = −1 otherwise.

For a vertex v ∈ V , let C[v] denote the set of spindles C ∈ C such that
v ∈ J(C), and let γC[v] be the embedding obtained from γ by flipping all spin-
dles in C[v]. Let rev〈σ〉 mean the reverse of a sequence σ. Then we see that
ργC (v) = ργC[v](v) if p(v) = 1; and ργC (v) = rev〈ργC[v](v)〉 otherwise. To obtain
the embedding γC from the current embedding γ by flipping each spindle in C, it
suffices to show how to compute each of p(v) and ργC[v](v) for all vertices v ∈ V .

Lemma 3. Given (G, γ), let C be a set of spindles of γ. Then any of the fol-
lowing tasks can be executed in O(n +

∑
C∈C |E(C)|) time.

(i) Decision of parity p(v) of all vertices v ∈ V ; and
(ii) Computation of ργC[v](v) for all vertices v ∈ V .

3 Re-embedding 1-Plane Graph and Forbidden
Configuration

A drawing D of a graph G = (V,E) is called a 1-planar drawing if each edge
has at most one crossing. A 1-planar drawing D of graph G induces a 1-plane
embedding γ of G, which is defined to be a tuple (χ, ρ, ϕ) of the crossing system
χ of E, the rotation system ρ of V , and the outer face ϕ of D. The planarization
G(G, γ) of a 1-plane embedding γ of graph G is the plane embedding obtained
from γ by regarding crossings also as graph vertices, called crossing-vertices. The
set of vertices in G(G, γ) is given by V ∪χ. For a notational convenience, we refer
to a subgraph/face of G(G, γ) as a subgraph/face in γ.

Let γ = (χ, ρ, ϕ) be a 1-plane embedding of graph G. We call another 1-plane
embedding γ′ = (χ′, ρ′, ϕ′) of graph G a cross-preserving 1-plane embedding of
γ when the same set of edge pairs makes crossings, i.e., χ = χ′. In other words,
the planarization G(G, γ′) is another plane embedding of G(G, γ) such that the
alternating order of edges incident to each crossing-vertex c ∈ χ is preserved.

To eliminate the additional constraint on the rotation system on each
crossing-vertex c ∈ χ, we introduce “circular instances.” We call an instance
(G, γ) of 1-plane embedding circular when for each crossing c ∈ χ, the four
end-vertices of the two crossing edges u1u3 and u2u4 that create c (where
u1, u2, u3 and u4 appear in the clockwise order around c) are contained in a
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Fig. 2. Circular instances (G, γ) with a cut-vertex u of G, where the crossing edges
are depicted by slightly thicker lines: (a) hard B-cycles C = (u, c, v, s) and C′ =
(u′, c′, v′, s′), (b) hard B-cycle C = (u, c, v, s) and a nega-cycle C′ = (u′, c′, v′, s′) whose
reversal is a hard B-cycle, where vertices u, v, u′, v′ ∈ V and crossings c, s, c′, s′ ∈ χ.

cycle Qc = (u1, w
c
1, u2, w

c
2, u3, w

c
3, u4, w

c
4) of eight crossing-free edges for some

vertices wc
i , i = 1, 2, 3, 4 of degree 2, as shown in Fig. 1(c). By definition, c and

each wc
i not necessarily appear along the same facial cycle in the planarization

G(G, γ). For example, path (v, w, u) is part of such a cycle Qs for the crossing s
in the circular instance in Fig. 2(a), but c and w are not on the same facial cycle
in the planarization.

A given instance can be easily converted into a circular instance by augment-
ing the end-vertices of each pair of crossing edges as follows. In the plane graph,
G(G, γ), for each crossing-vertex c ∈ χ and its neighbors u1, u2, u3 and u4 that
appear in the clockwise order around c, we add a new vertex wc

i , i = 1, 2, 3, 4
and eight new edges uiw

c
i and wc

i ui+1, i = 1, 2, 3, 4 (where u5 means u1) to form
a cycle Qc of length 8 whose interior contains no other vertex than c.

Let H be the resulting graph augmented from G, and let Γ be the resulting
1-plane embedding of H augmented from γ. Note that |V (H)| ≤ |V (G)| + 4|χ|
holds. We easily see that if γ admits an SLD cross-preserving embedding γ′ then
Γ admits an SLD cross-preserving embedding Γ ′. This is because a straight-line
drawing Dγ′ of γ′ can be changed into a straight-line drawing DΓ ′ of some cross-
preserving embedding Γ ′ of Γ by placing the newly introduced vertices wc

i within
the region sufficiently close to the position of c. We here see that cycle Qc can
be drawn by straight-line segments without intersecting with other straight-line
segments in Dγ′ .

Note that the instance (G, γ′) remains circular for any cross-preserving
embedding γ′ of γ. In the rest of paper, let (G, γ) stand for a circular instance
(G = (V,E), γ = (χ, ρ, ϕ)) with n ≥ 3 vertices and let G denote its planariza-
tion G(G, γ). Figure 2 shows examples of circular instances (G, γ), where the
vertex-connectivity of G is 1.

As an important property of a circular instance, the subgraph G(0) with
crossing-free edges is a spanning subgraph of G and the four end-vertices of
any two crossing edges are contained in the same block of the graph G(0). The
biconnectivity is necessary to detect certain types of cycles by applying Lemma 2.
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3.1 Candidate Cycles, B/W Cycle, Posi/Nega Cycle, Hard/Soft
Cycle

For a circular instance (G, γ), finding a cross-preserving embedding of γ is effec-
tively equivalent to finding another plane embedding of G so that all the current
B- and W-configurations are eliminated and no new B- or W-configurations
are introduced. To detect the cycles that can be the boundary of a B- or W-
configuration in changing the plane embedding of G, we categorize cycles con-
taining crossing vertices in G.

A candidate posi-cycle (resp., candidate nega-cycle) in G is defined to be a
cycle C = (u, c, v) or C = (u, c, v, s) in G with u, v ∈ V and c, s ∈ χ such that
the interior (resp., exterior) of C does not contain a crossing-free edge uv ∈ E
and any other crossing vertex c′ adjacent to both u and v.

Fig. 3. Candidate posi- and nega-cycles C = (u, c, v) and C = (u, c, v, s) in G, where
white circles represent vertices in V while black ones represent crossings in χ: (a)
candidate posi-cycle of length 3, (b) candidate posi-cycle of length 4, (c) candidate
nega-cycle of length 3, and (d) candidate nega-cycle of length 4.

Figure 3(a)–(b) and (c)–(d) illustrate candidate posi-cycles and candidate
nega-cycles, respectively. Let Cp and Cn be the sets of candidate posi-cycles and
candidate nega-cycles, respectively. By definition we see that the set Cp ∪ Cn ∪
{Cf | f ∈ F (γ)} is inclusive, and hence |Cp ∪ Cn ∪ {Cf | f ∈ F (γ)}| = O(n).

A candidate posi-cycle C with C = (u, c, v) (resp., C = (u, c, v, s)) is called
a B-cycle if
(a)-(B): the exterior of C contains no vertices in V −{u, v} adjacent to c (resp.,
contains exactly one vertex in V − {u, v} adjacent to c or s).

Note that uv ∈ E when C = (u, c, v) is a B-cycle, as shown in Fig. 4(a).
Figure 4(b) and (d) illustrate the other types of B-cycles.

A candidate posi-cycle C = (u, c, v, s) is called a W-cycle if
(a)-(W): the exterior of C contains no vertices in V − {u, v} adjacent to c or s.

Figure 4(c) and (e) illustrate W-cycles.
Let CW (resp., CB) be the set of W-cycles (resp., B-cycles) in γ. Clearly a W-

cycle (resp., B-cycle) gives rise to a W-configuration (resp., B-configuration). Con-
versely, by choosing a W-configuration (resp., B-configuration) so that the interior
is minimal, we obtain a W-cycle (resp., B-cycle). Hence we observe that the cur-
rent embedding γ admits a straight-line drawing if and only if CW = CB = ∅.
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Fig. 4. Illustration of types of cycles C = (u, c, v) and C = (u, c, v, s) in G, where white
circles represent vertices in V while black ones represent crossings in χ: (a) B-cycle of
length 3, which is always soft, (b) soft B-cycle of length 4, (c) soft W-cycle, (d) hard
B-cycle of length 4, (e) hard W-cycle, (f) nega-cycle whose reversal is a hard B-cycle,
(g) nega-cycle whose reversal is a hard W-cycle, (h) candidate nega-cycle of length 4
that is not a nega-cycle whose reversal is a hard B-cycle, and (i) candidate nega-cycle
of length 4 that is not a nega-cycle whose reversal is a hard W-cycle.

A W- or B-cycle C is called hard if
(b): length of C is 4, and the interior of C = (u, c, v, s) contains no inner face f
whose facial cycle Cf contains both vertices u and v, i.e., some path connects c
and s without passing through u or v.

On the other hand, a W- or B-cycle C = (u, c, v, s) of length 4 that does not
satisfy condition (b) or a B-cycle of length 3 is called soft. We also call a hard
B- or W-cycle a posi-cycle.

Figure 4(d) and (e) illustrate a hard B-cycle and a hard W-cycles, respec-
tively, whereas Fig. 4(a) and (b) (resp., (c)) illustrate soft B-cycles (resp., a soft
W-cycle).

A cycle C = (u, c, v, s) is called a nega-cycle if it becomes a posi-cycle when
an inner face in the interior of C is chosen as the outer face. In other words,
a nega-cycle is a candidate nega-cycle C = (u, c, v, s) of length 4 that satisfies
the following conditions (a’) and (b’), where (a’) (resp., (b’)) is obtained from
the above conditions (a)-(B) and (a)-(W) (resp., (b)) by exchanging the roles of
“interior” and “exterior”:
(a’): the interior of C contains at most one vertex in V − {u, v} adjacent to c
or s; and
(b’): the exterior of C contains no face f whose facial cycle Cf contains both
vertices u and v.

Figure 4(f) and (g) illustrate nega-cycles, whereas Fig. 4(h) and (i) illustrate
candidate nega-cycles that are not nega-cycles.
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Let C+ (resp., C−) denote the set of posi-cycles (resp., nega-cycles) in γ.
By definition, it holds that C+ ⊆ CW ∪ CB ⊆ Cp and C− ⊆ Cn.

3.2 Forbidden Cycle Pairs

We define a forbidden configuration that characterizes 1-plane embeddings,
which cannot be re-embedded into SLD ones. A forbidden cycle pair is defined
to be a pair {C,C ′} of a posi-cycle C = (u, c, v, s) and a posi- or nega-cycle
C ′ = (u′, c′, v′, s′) in G with u, v, u′, v′ ∈ V and c, s, c′, s′ ∈ χ to which G has a
u, u′-path P1 and a v, v′-path P2 such that:

(i) when C ′ ∈ C+, paths P1 and P2 are in the exterior of C and C ′, i.e.,
V (P1)−{u, u′}, V (P2)−{v, v′} ⊆ Vex(C)∩Vex(C ′), where C and C ′ cannot
have any common inner face; and

(ii) when C ′ ∈ C−, paths P1 and P2 are in the exterior of C and the interior
of C ′, i.e., V (P1) − {u, u′}, V (P2) − {v, v′} ⊆ Vex(C) ∩ Vin(C ′), where C is
enclosed by C ′.

In (i) and (ii), P1 and P2 are not necessary disjoint, and possibly one of them
consists of a single vertex, i.e., u = u′ or v = v′.

The pair of cycles C and C ′ in Fig. 5(a) (resp., Fig. 5(b)) is a forbidden cycle
pair, because there is a pair of a u, u′-path P1 = (u, x, z, y, u′) and a v, v′-path
P2 = (v, x′, z, y′, v′) that satisfy the above conditions (i) (resp., (ii)). Note that
the pair of cycles C and C ′ in Fig. 2(a)–(b) is not forbidden cycle pair, because
there are no such paths.

Our main result of this paper is as follows.

Theorem 1. A circular instance (G, γ) admits an SLD cross-preserving embed-
ding if and only if it has no forbidden cycle pair. Finding an SLD cross-preserving
embedding of γ or a forbidden cycle pair in G can be computed in linear time.

Fig. 5. Illustration of circular instances (G, γ) with a cut-vertex z of G, where the
crossing edges are depicted by slightly thicker lines: (a) forbidden cycle pair with
hard B-cycles C = (u, c, v, s) and C′ = (u′, c′, v′, s′) (b) forbidden cycle pair with
a hard B-cycle C = (u, c, v, s) and a nega-cycle C′ = (u′, c′, v′, s′) whose reversal is a
hard B-cycle, where vertices u, v, u′, v′ ∈ V and crossings c, s, c′, s′ ∈ χ.
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Proof of necessity: The necessity of the theorem follows from the next
lemma.

For a cycle C = (u, c, v, s) ∈ C+ (resp., C−) with u, v ∈ V and c, s ∈ χ in
G, we call a vertex z ∈ V an in-factor of C if the exterior of C ∈ C+ (resp.,
the interior of C ∈ C−) has a z, u-path Pz,u and a z, v-path Pz,v, i.e., V (Pz,u −
{u}) ∪ V (Pz,v − {v}) is in Vex(C) (resp., Vin(C)). Paths Pz,u and Pz,v are not
necessarily disjoint.

Lemma 4. Given G = G(G, γ), let γ′ be a cross-preserving embedding of γ.
Then:

(i) Let z ∈ V be an in-factor of a cycle C ∈ C+ ∪ C− in G. Then cycle C is a
posi-cycle (resp., a nega-cycle) in G(G, γ′) if and only if z is in the exterior
(resp., interior) of C in γ′;
(ii) For a forbidden cycle pair {C,C ′}, one of C and C ′ is a posi-cycle in
G(G, γ′) (hence any cross-preserving embedding of γ contains a B- or W-
configuration and (G, γ) admits no SLD cross-preserving embedding).

Proof of sufficiency: In the rest of paper, we prove the sufficiency of
Theorem 1 by designing a linear-time algorithm that constructs an SLD cross-
preserving embedding of an instance without a forbidden cycle pair.

4 Biconnected Case

In this section, (G, γ) stands for a circular instance such that the vertex-
connectivity of the plane graph G is at least 2. In a biconnected graph G, any
two posi-cycles C = (u, c, v, s), C ′ = (u′, c′, v′, s′) ∈ C+with u, v, u′, v′ ∈ V give
a forbidden cycle pair if they do not share an inner face, because there is a pair
of u, u′-path and v, v′-path in the exterior of C and C ′. Analogously any pair of
a posi-cycle C and a nega-cycle C ′ such that C ′ encloses C is also a forbidden
cycle pair in a biconnected graph G.

To detect such a forbidden pair in G in linear time, we first compute the sets
Cp, Cn, CW, CB, C+ and C− in γ in linear time by using the inclusion-forest from
Lemma 2.

Lemma 5. Given (G, γ), the following in (i)–(iv) can be computed in O(n) time.

(i) The sets Cp, Cn and the inclusion-forest I of Cp ∪ Cn ∪ {Cf | f ∈ F (γ)};
(ii) The sets CW and CB;
(iii) The sets C+, C− and the inclusion-forest I∗ of C+ ∪ C−; and
(iv) A set {fC | C ∈ (CW ∪ CB) − C+} such that fC is an inner face in the

interior of a soft B- or W-cycle C with V (Cf ) ⊇ V (C).

Given (G, γ), a face f ∈ F (γ) is called admissible if all posi-cycles enclose f
but no nega-cycle encloses f . Let A(γ) denote the set of all admissible faces in
F (γ).
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Lemma 6. Given (G, γ), it holds A(γ) �= ∅ if and only if no forbidden cycle
pair exists in γ. A forbidden cycle pair, if one exists, and A(γ) can be obtained
in O(n) time.

By the lemma, if (G, γ) has no forbidden cycle pair, i.e., A(γ) �= ∅, then any
new embedding obtained from γ by changing the outer face with a face in A(γ)
is a cross-preserving embedding of γ which has no hard B- or W-cycle.

4.1 Eliminating Soft B- and W-cycles

Suppose that we are given a circular instance (G, γ) such that G is biconnected
and C+ = ∅. We now show how to eliminate all soft B- and W-cycles in G in linear
time using the inclusion-forest from Lemma 2 and the spindles from Lemma 3.

Lemma 7. Given (G, γ) with C+ = ∅, there exists an SLD cross-preserving
embedding γ′ = (χ, ρ′, ϕ′) of γ such that V (Cϕ′) ⊇ V (Cϕ) for the facial cycle
Cϕ (resp., Cϕ′) of the outer face ϕ (resp., ϕ′), which can be constructed in O(n)
time.

Given an instance (G, γ) with a biconnected graph G, we can test whether it
has either a forbidden cycle pair or an admissible face by Lemmas 5 and 6. In the
former, it cannot have an SLD cross-preserving embedding by Lemma 4. In the
latter, we can eliminate all hard B- and W-cycles by choosing an admissible face
as a new outer face, and then eliminate all soft B- and W-cycles by a flipping
procedure based on Lemma 7. All the above can be done in linear time.

To treat the case where the vertex-connectivity of G is 1 in the next section,
we now characterize 1-plane embeddings that can have an SLD cross-preserving
embedding such that a specified vertex appears along the outer boundary. For
a vertex z ∈ V in a graph G, we call a 1-plane embedding γ of G z-exposed if
vertex z appears along the outer boundary of γ. We call (G, γ) z-feasible if it
admits a z-exposed SLD cross-preserving embedding γ′ of γ.

Lemma 8. Given (G, γ) such that A(γ) �= ∅, let z be a vertex in V . Then:

(i) The following conditions are equivalent:
(a) γ admits no z-exposed SLD cross-preserving embedding;
(b) A(γ) contains no face f with z ∈ V (Cf ); and
(c) G has a posi- or nega-cycle C to which z is an in-factor;

(ii) A z-exposed SLD cross-preserving embedding or a posi- or nega-cycle C
to which z is an in-factor can be computed in O(n) time.

5 One-Connected Case

In this section, we prove the sufficiency of Theorem 1 by designing a linear-time
algorithm claimed in the theorem. Given a circular instance (G, γ), where G may
be disconnected, obviously we only need to test each connected component of
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G separately to find a forbidden cycle pair. Thus we first consider a circular
instance (G, γ) such that the vertex-connectivity of G is 1; i.e., G is connected
and has some cut-vertices.

A block B of G is a maximal biconnected subgraph of G. For a biconnected
graph G, we already know how to find a forbidden cycle pair or an SLD cross-
preserving embedding from the previous section. For a trivial block B with
|V (B)| = 2, there is nothing to do. If some block B of G with |V (B)| ≥ 3 con-
tains a forbidden cycle pair, then (G, γ) cannot admit any SLD cross-preserving
embedding by Lemma 4.

We now observe that G may contain a forbidden cycle pair even if no single
block of G has a forbidden cycle pair.

Lemma 9. For a circular instance (G, γ) such that the vertex-connectivity of
G is 1, let B1 and B2 be blocks of G and let P1,2 be a z1, z2-path of G with the
minimum number of edges, where V (Bi) ∩ V (P1,2) = {zi} for each i = 1, 2. If
γ|Bi

has a posi- or nega-cycle Ci to which zi is an in-factor for each i = 1, 2,
then {C1, C2} is a forbidden cycle pair in G.

For a linear-time implementation, we do not apply the lemma for all pairs of
blocks in B. A block of G is called a leaf block if it contains only one cut-vertex
of G, where we denote the cut-vertex in a leaf block B by vB . Without directly
searching for a forbidden cycle pair in G, we use the next lemma to reduce a
given embedding by repeatedly removing leaf blocks.

Lemma 10. For a circular instance (G, γ) such that the vertex-connectivity of
G = G(G, γ) is 1 and a leaf block B of G such that γ|B is vB-feasible, let H =
G−(V (B)−{vB}) be the graph obtained by removing the vertices in V (B)−{vB}.
Then

(i) The instance (H, γ|H) is circular; and
(ii) If (H, γ|H) admits an SLD cross-preserving embedding γ∗

H , then an SLD
cross-preserving embedding γ∗ of γ can be obtained by placing a vB-exposed
SLD cross-preserving embedding γ∗

B of γ|B within a space next to the cut-
vertex vB in γ∗

H .

Given a circular instance (G, γ) such that G = G(G, γ) is connected, an
algorithm Algorithm Re-Embed-1-Plane for Theorem 1 is designed by the
following three steps.

The first step tests whether G has a block B such that γ|B has a forbidden
cycle pair, based on Lemma 8. If one exists, the algorithm outputs a forbidden
cycle pair and halts.

After the first step, no block has a forbidden cycle pair. In the current circular
instance (G, γ), one of the following holds:

(i) the number of blocks in G is at least two and there is at most one leaf block
B such that γ|B is not vB-feasible;

(ii) G has two leaf blocks B and B′ such that γ|B is not vB-feasible and γ|B′ is
not vB′-feasible; and

(iii) the number of blocks in G is at most one.
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In (ii), vB is an in-factor of a cycle C in γ|B and vB′ is an in-factor of a
cycle C ′ in γ|B′ by Lemma 8, and we obtain a forbidden cycle pair {C,C ′} by
Lemma 9. Otherwise if (i) holds, then we can remove all leaf blocks B such that
γ|B is not vB-feasible by Lemma 10. The second step keeps removing all leaf
blocks B such that γ|B is not vB-feasible until (ii) or (iii) holds to the resulting
embedding. If (i) occurs, then the algorithm outputs a forbidden cycle pair and
halts.

When all the blocks of G can be removed successfully, say in an order of
B1, B2, . . . , Bm, the third step constructs an embedding with no B- or W-
cycles by starting with such an SLD embedding of Bm and by adding an SLD
embedding of Bi to the current embedding in the order of i = m−1,m−2, . . . , 1.
By Lemma 10, this results in an SLD cross-preserving embedding of the input
instance (G, γ).

Note that we can obtain an SLD cross-preserving embedding γ∗
H1 of γ in the

third step when the first and second step did not find any forbidden cycle pair.
Thus the algorithm finds either an SLD cross-preserving embedding of γ or a
forbidden cycle pair. This proves the sufficiency of Theorem 1.

By the time complexity result from Lemma 8, we see that the algorithm can
be implemented in linear time.
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Abstract. A graph is 1-planar if it has a drawing where each edge
is crossed at most once. A drawing is RAC (Right Angle Crossing) if
the edges cross only at right angles. The relationships between 1-planar
graphs and RAC drawings have been partially studied in the literature.
It is known that there are both 1-planar graphs that are not straight-line
RAC drawable and graphs that have a straight-line RAC drawing but
that are not 1-planar [22]. Also, straight-line RAC drawings always exist
for IC-planar graphs [9], a subclass of 1-planar graphs. One of the main
questions still open is whether every 1-planar graph has a RAC drawing
with at most one bend per edge. We positively answer this question.

1 Introduction

An emerging research line in Graph Drawing studies families of non-planar
graphs that can be drawn so that crossing edges verify some desired prop-
erties. This topic is informally recognized as “beyond planarity”. Different
types of properties give rise to different families of beyond planar graphs.
Among them, particular attention has been devoted to 1-planar graphs (see,
e.g., [1,2,7–9,17,23,24,29,31,35]) and to RAC (Right Angle Crossing) graphs
(see, e.g., [4,6,13–15,18–21,27,30]). A graph is 1-planar if it has a drawing where
each edge is crossed at most once, while it is RAC if it has a polyline drawing
where the edges cross only at right angles. From an application point of view,
the study of these two families is motivated by several cognitive experiments,
suggesting that the readability of a layout is negatively correlated to the num-
ber of crossings [33,34,38] and that user task performances are not affected too
much if edges cross at large angles [25,26,28]. Also, users often prefer straight-
line drawings or layouts whose edges have few bends [32], and several algorithms
optimize this aesthetic criterion [11]. Note that, every graph admits a polyline
RAC drawing with at most three bends per edge [18].

For the reasons above, it is interesting to study what graphs can be drawn
with at most one crossing per edge, right angle crossings, and few bends per
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edge at the same time. We recall that n-vertex 1-planar graphs have at most
4n − 8 edges [31] and that straight-line 1-planar drawings have at most 4n − 9
edges [17]. Also, straight-line RAC graphs have at most 4n−10 edges [18], while
RAC drawings with at most one bend per edge or two bends per edge, have at
most 6.5n−13 and 74.2n edges, respectively [5]. These results immediately imply
that there are 1-planar graphs not admitting 1-planar drawings with straight-
line edges and 1-planar graphs not admitting straight-line drawings with right
angle crossings. Also, there exist straight-line RAC drawable graphs that are not
1-planar [22]. In this scenario, one of the main questions still open is whether
every 1-plane graph admits a RAC drawing with at most one bend per edge.
This paper positively answers this question, by proving the following result.

Theorem 1. Let G be an n-vertex 1-planar graph. Then G admits a 1-planar
RAC drawing Γ with at most one bend per edge. Also, if a 1-planar embedding
of G is given as part of the input, Γ can be computed in O(n) time.

We remark that a characterization of the 1-planar graphs that can be drawn
with straight-line edges was given by Thomassen in 1988 [37]. The characteriza-
tion is described in terms of the existence of a 1-planar embedding that does not
contain two primitive forbidden configurations. This result immediately implies
that every 1-planar graph admits a 1-planar drawing with at most one bend per
edge (which is not necessarily RAC); it is sufficient to subdivide each crossing
edge of any given 1-planar embedding with a dummy vertex, so to remove any
possible forbidden configuration. Dummy vertices will correspond to bends in
the final drawing. Moreover, Alam et al. [2], proved that every 3-connected 1-
plane graph can be drawn with straight-line edges, except for at most one edge
that may require one bend. We also remark that straight-line RAC drawings
always exist for IC-planar graphs [9], a subclass of 1-planar graphs.

Some proofs and technicalities are omitted and can be found in [16].

2 Preliminaries

We assume familiarity with basic terminology of graph drawing [11]. In the
following we only consider simple drawings of graphs, i.e., drawings where two
edges have at most one point in common (which is either a common endpoint
or a common interior point where the two edges properly cross each other).
A k-bend drawing of a graph is a drawing where each edge is represented as a
polyline with at most k > 0 bends. A graph G is planar if it admits a planar (i.e.,
crossing-free) drawing. Such a drawing subdivides the plane into topologically
connected regions, called faces. The infinite region is the outer face. The number
of vertices encountered in the closed walk along the boundary of a face f is the
degree of f . If G is not 2-connected a vertex may be encountered more than
once, thus contributing with more than one unit to the degree of f . A planar
embedding of G is an equivalence class of planar drawings of G having the same
set of faces. A plane graph is a planar graph with a given planar embedding.
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The concept of planar embedding can be extended to non-planar drawings.
Given a non-planar drawing Γ , interpret every crossing as a vertex. The result-
ing planarized drawing has a planar embedding. An embedding of a (non-planar)
graph G is an equivalence class of drawings whose planarized versions have
the same planar embedding. A 1-plane graph is a 1-planar graph with a given
1-planar embedding, i.e., an embedding where each edge is crossed at most once.
Each face of a 1-planar embedding is composed of both vertices and/or crossings,
and its degree is the number of vertices or crossings encountered in the closed
walk along its boundary. A kite K is a 1-plane graph isomorphic to K4 with
an embedding such that all the vertices are on the boundary of the outer face,
the four edges on the boundary are crossing-free, and the remaining two edges
cross each other. Given a 1-plane graph G and a kite K = {a, b, c, d}, such that
K ⊆ G, we say that K is empty if it does not contain any vertex of G inside
the 4-cycle {a, b, c, d} (it contains only the crossing point). A pair of crossing
edges of G forms an empty kite if their four end-vertices induce an empty kite.
A 1-plane graph G, possibly containing parallel edges, is triangulated if each
face is a triangle, formed by either three vertices or by one crossing and two ver-
tices. Clearly, a triangulated 1-plane graph is 2-connected. The next observation
follows from the definition of a triangulated 1-plane graph.

Observation 1. Let G be a triangulated 1-plane graph. Every pair of crossing
edges of G forms an empty kite, except for at most one pair of crossing edges if
their crossing point is on the outer face of G.

3 1-Bend RAC Drawings of 1-Planar Graphs

To prove Theorem 1 we give an algorithm that takes as input a simple 1-plane
graph G with n vertices (see, e.g., Fig. 1(a)), and computes a 1-bend 1-planar
RAC drawing Γ of G in O(n) time. We assume that G is connected, as otherwise
we can draw independently each connected component. The high-level idea is
as follows. Augment G and modify its embedding to get a triangulated 1-plane
graph, possibly containing parallel edges. Execute a suitable decomposition of
the triangulated 1-plane graph and apply a recursive technique that computes a
1-bend 1-planar RAC drawing. Remove dummy vertices and edges.

(a) G (b) G2 (c) G+

Fig. 1. Illustration for the augmentation step.
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Augmentation. The first step of the algorithm transforms G into a triangulated
1-plane graph G+ by adding edges and vertices. The 1-planar embedding of G+

may be different from that of G for the common part. Let (a, c) and (b, d) be
two edges of G that cross in a point p. Let {a, b, c, d} be the circular order of the
vertices around p. For each such pair of crossing edges, we add an edge (a, b),
and draw1 it such that it follows the curves (a, p) and (p, b). Similarly, we draw
the three edges (b, c), (c, d) and (d, a). This operation ensures that each pair
of crossing edges forms an empty kite. Also, this operation does not introduce
edge crossings but it may create parallel edges. We denote by G1 the resulting
(multi)graph. For each pair of parallel edges e and e′ of G1, such that e ∈ G and
e′ ∈ G1, we remove e from G1. This immediately implies that no parallel edge is
crossed in G1. We then remove one edge for each pair of parallel edges e1 and e2
such that the curve e1 ∪ e2 does not contain any vertex in its interior. We let G2

be the resulting graph, which can be easily computed in O(n) time, since G has
O(n) crossings (see, e.g., [36]). Figure 1(b) shows the graph G2 obtained from the
graph G of Fig. 1(a). We remark that a similar operation has been used by Alam
et al. [2] in order to compute a straight-line drawable 1-planar embedding of a
3-connected 1-planar graph. However, only 3-connected graphs are considered
by Alam et al., and in this case the augmented graph does not contain parallel
edges [2]. We do not have any restriction on the connectivity of G, which poses
additional issues in the construction and in the drawing of a suitable 1-planar
embedding. We transform G2 into a triangulated 1-plane graph. Note that a face
of degree two consists of two parallel edges, thus only the outer face of G2 can
have degree two. In this case, each of the two parallel edges is part of an empty
kite. Thus, we remove one of these two edges to make the degree of the outer
face equal to three (it will be formed by two vertices and one crossing). Let f be
an inner face of G2 that is not a triangle. Such a face contains no crossings on its
boundary, since each crossing is shared by exactly four triangular faces by the
empty kite property. We add an extra vertex vf inside f and connect it to all
vertices (with multiplicity) on the boundary of f . Figure 1(c) shows the graph
G+ obtained from the graph G2 in Fig. 1(b), extra vertices are drawn as squares.
Since G2 has O(n) faces, G+ has O(n) vertices and edges, and it is computed in
O(n) time. The next lemma follows from the above discussion.

Lemma 1. Graph G+ is a triangulated 1-plane (multi)graph.

Decomposition. We define a decomposition of G+ inspired by SPQR-trees [12],
but simpler and more direct for our purposes. The next lemma can be proved.

Lemma 2. Let G be a triangulated 1-plane (multi)graph and let {u, v} be a
separation pair of G. There exist two parallel edges e, e′ incident to u and v such
that {u, v} is not a separation pair for the graph obtained by removing from G
all vertices inside the cycle {e, u, e′, v}.

1 For ease of description, here we are interpreting an embedding as a drawing.
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Fig. 2. Illustration for the decomposition step. Thick edges are thicker (and red). (Color
figure online)

By Lemma 2, for each separation pair {u, v} of G+, there exist k > 1 parallel
edges {e1, . . . , ek} between u and v, such that the cycle {u, e1, v, ek} encloses all
other copies in its interior. We call the inner graph of (u, v) the subgraph Guv of
G+ whose outer face is {u, e1, v, ek}, and an inner component of (u, v) each sub-
graph Ci

uv of Guv whose outer face is {u, ei, v, ei+1}, for i = 1, . . . , k − 1. Let Guv

be an inner graph of G+ that does not contain any inner graph as a subgraph.
Replace Guv with an edge between u and v, called thick edge; the resulting graph
is still a triangulated 1-plane graph. Iterate this procedure until there are no more
inner graphs to be replaced. This is done in O(n) time and results in a simple tri-
angulated 1-plane graph G∗, which is 3-connected by Lemma 2. Figure 2(c) shows
the graph G∗ obtained from the graph G+ in Fig. 2(a), through the intermediate
step in Fig. 2(b). The next lemma follows.

Lemma 3. Graph G∗ is a simple 3-connected triangulated 1-plane graph.

Drawing. The overview of the drawing algorithm is as follows. Start with a
1-bend 1-planar RAC drawing of G∗, and then recursively replace thick edges
with a 1-bend 1-planar RAC drawing of the corresponding inner graphs. Deleting
the edges and vertices added by the augmentation step we get a 1-bend 1-planar
RAC drawing of G. To compute a 1-bend 1-planar RAC drawing of G∗, first
remove from G∗ all pairs of crossing edges and denote by H∗ the resulting plane
graph (see Fig. 3(a)). Note that thick edges are never crossed by construction,
and all faces of H∗ have either degree 3 or degree 4. We can prove the following.

Lemma 4. Graph H∗ is 3-connected.

Compute a planar straight-line drawing γ∗ of H∗ where all faces are strictly
convex and the outer face is a prescribed polygon P ; this can be done by applying
the linear-time algorithm by Chiba et al. [10] (see Fig. 3(b)). If the outer face of
H∗ has degree four, we let P be a trapezoid, else P is a triangle. Since all faces
are either triangles or quadrangles, we can avoid three collinear vertices by slight
perturbations (which cannot cause a face to become non convex). To reinsert the
crossing edges, we distinguish between the inner faces and the outer face of H∗.
Two crossing edges can be easily reinserted in an inner face, just drawing one
of the two with no bend and the other with one bend, such that they cross at
right angles (see, e.g., [3] and Fig. 3(c)). To reinsert two crossing edges e1, e2 in
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Fig. 3. Illustration for the drawing step. (Color figure online)

the outer face of H∗ so that they form a right angle, we can draw e1 and e2
with one bend each. Namely, P is a trapezoid by construction. Assume that the
minor base m and the greater base M of P are aligned with the horizontal axis.
The first segment of e1 is such that its rightmost endpoint p1 coincides with
the rightmost endpoint of m, and its leftmost endpoint q1 is b units above the
leftmost endpoint of m, where b is equal to the length of m. The second segment
of e1 has q1 as rightmost endpoint, and its leftmost endpoint r1 coincides with
the leftmost endpoint of M . Edge e2 is drawn symmetrically.

Consider now a thick edge (u, v) of G∗ and its inner graph Guv. Recall that Guv

consists of k − 1 ≥ 1 inner components C1, . . . , Ck−1. Each Ci (i = 1, . . . , k − 1)
has two parallel edges ei, ei+1 as outer face. Also, analogously to G∗, C−

i =
Ci \ {ei+1} is a simple 3-connected triangulated 1-plane graph (it is a subgraph
of G+ and all its inner graphs have been replaced by thick edges). Remove all
crossing edges of C−

k−1 and let H−
k−1 be the resulting 3-connected plane graph.

Compute a planar straight-line drawing γk−1 of H−
k−1 such that all faces are

strictly convex polygons and the outer face is a prescribed polygon P . If the
outer face of H−

k−1 has degree three, P is a triangle whose side with corners u
and v has length equal to the length of the thick edge (u, v) in Γ ∗, and its height
is small enough so that the thick edge (u, v) can be replaced with P without
introducing crossings. If the outer face of H−

k−1 has degree four, P is a trapezoid
such that its greater base has u and v as corners and the same length as the
thick edge (u, v) in Γ ∗. The height of P is such that the thick edge (u, v) can
be replaced with P without introducing crossings. Also, the minor base of P is
sufficiently short so that the pair of crossing edges on the outer face of H−

k−1

can be reinserted without introducing crossings in Γ ∗, as described for H∗ (see
Fig. 3(d)). By the same argument used for H∗, all pairs of crossing edges can be
reinserted so as to form right angle crossings and have at most one bend each
(see Fig. 3(e)). If k−1 > 1, we iterate this procedure and compute a drawing Γ−

i
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for each C−
i , for i = k−2, . . . , 1. The polygon representing the outer face of each

Γi can be suitably chosen so to fit inside the face containing edge ei+1 of drawing
of Γi+1. The union of all such drawings is a 1-bend 1-planar RAC drawing Γuv of
Guv (see Figs. 3(f) and 3(g)), with the exception of some parallel edges. Namely,
the parallel edges e1, . . . , ek are represented by overlapping segments between u
and v, and for our needs all of them but one can be removed from the drawing.

Repeat this procedure for each thick edge of G∗, and recursively apply the
same technique for each inner graph of G∗; see Figs. 3(h) and 3(i) for a complete
illustration. The resulting drawing Γ is a 1-bend 1-planar RAC drawing of G+

(except for some parallel edges). Removing dummy vertices and edges, we get
the desired drawing of G. In terms of time complexity, each planar straight-line
drawing with (strictly) convex faces is computed in linear time in the size of the
input graph [10], and in linear time we can reinsert the crossing edges. Thus the
whole procedure takes O(n) time. This concludes the proof of Theorem 1.

4 Conclusions and Open Problems

We proved that every 1-planar graph admits a 1-planar RAC drawing with at
most one bend per edge. The proof is constructive and based on a drawing
algorithm, which may produce 1-bend 1-planar RAC drawings with exponential
area: Is this area requirement necessary for some 1-planar graphs? Also, our
algorithm may change the embedding of the input graph: Are there 1-planar
embeddings that are not realizable as 1-bend RAC drawings? Characterizing
straight-line 1-planar RAC drawable graphs is also an interesting problem.
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Abstract. A k-planar graph is a graph that can be drawn in the plane
such that every edge is crossed at most k times. For k ≤ 4, Pach and
Tóth [20] proved a bound of (k + 3)(n− 2) on the total number of edges
of a k-planar graph, which is tight for k = 1, 2. For k = 3, the bound of
6n− 12 has been improved to 11

2
n− 11 in [19] and has been shown to be

optimal up to an additive constant for simple graphs. In this paper, we
prove that the bound of 11

2
n−11 edges also holds for non-simple 3-planar

graphs that admit drawings in which non-homotopic parallel edges and
self-loops are allowed. Based on this result, a characterization of optimal
3-planar graphs (that is, 3-planar graphs with n vertices and exactly
11
2
n − 11 edges) might be possible, as to the best of our knowledge the

densest known simple 3-planar is not known to be optimal.

1 Introduction

Planar graphs play an important role in graph drawing and visualization, as
the avoidance of crossings and occlusions is central objective in almost all
applications [10,18]. The theory of planar graphs [15] could be very nicely applied
and used for developing great layout algorithms [13,22,23] based on the pla-
narity concepts. Unfortunately, real-world graphs are usually not planar despite
of their sparsity. With this background, an initiative has formed in recent years
to develop a suitable theory for nearly planar graphs, that is, graphs with various
restrictions on their crossings, such as limitations on the number of crossings per
edge (e.g., k-planar graphs [21]), avoidance of local crossing configurations (e.g.,
quasi planar graphs [2], fan-crossing free graphs [9], fan-planar graphs [17]) or
restrictions on the crossing angles (e.g., RAC graphs [11], LAC graphs [12]). For
precise definitions, we refer to the literature mentioned above.

The most prominent is clearly the concept of k-planar graphs, namely graphs
that allow drawings in the plane such that each edge is crossed at most k times
by other edges. The simplest case k = 1, i.e., 1-planar graphs [21], has been
subject of intensive research in the past and it is quite well understood, see
e.g. [4,6–8,14,20]. For k ≥ 2, the picture is much less clear. Only few papers on
special cases appeared, see e.g., [3,16].
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Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 344–356, 2016.
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Pach and Tóth’s paper [20] stands out and contributed a lot to the under-
standing of nearly planar graphs. The paper considers the number of edges in
simple k-planar graphs for general k. Note the well-known bound of 3n−6 edges
for planar graphs deducible from Euler’s formula. For small k = 1, 2, 3 and 4,
bounds of 4n − 8, 5n − 10, 6n − 12 and 7n − 14 respectively, are proven which
are tight for k = 1 and k = 2. This sequence seems to suggest a bound of O(kn)
for general k, but Pach and Tóth also gave an upper bound of 4.1208

√
kn. Unfor-

tunately, this bound is still quite large even for medium k (for k = 9, it gives
12.36n). Meanwhile for k = 3 and k = 4, the bounds above have been improved
to 5.5n−11 and 6n−12 in [19] and [1], respectively. In this paper, we prove that
the bound on the number of edges for k = 3 also holds for non-simple 3-planar
graphs that do not contain homotopic parallel edges and homotopic self-loops.
Our extension required substantially different approaches and relies more on
geometric techniques than the more combinatorial ones given in [19] and [1]. We
believe that it might also be central for the characterization of optimal 3-planar
graphs (that is, 3-planar graphs with n vertices and exactly 11

2 n − 11 edges),
since the densest known simple 3-planar graph has only 11n

2 −15 edges and does
not reach the known bound.

The remaining of this paper is structured as follows: Some definitions and
preliminaries are given in Sect. 2. In Sects. 3 and 4, we give significant insights in
structural properties of 3-planar graphs in order to prove that 3-planar graphs
on n vertices cannot have more than 11

2 n−11 edges. We conclude in Sect. 5 with
open problems.

2 Preliminaries

A drawing of a graph G is a representation of G in the plane, where the vertices
of G are represented by distinct points and its edges by Jordan curves joining
the corresponding pairs of points, so that: (i) no edge passes through a vertex
different from its endpoints, (ii) no edge crosses itself and (iii) no two edges
meet tangentially. In the case where G has multi-edges, we will further assume
that both the bounded and the unbounded closed regions defined by any pair of
self-loops or parallel edges of G contain at least one vertex of G in their interior.
Hence, the drawing of G has no homotopic edges. In the following when referring
to 3-planar graphs we will mean that non-homotopic edges are allowed in the
corresponding drawings. We call such graphs non-simple.

Following standard naming conventions, we refer to a 3-planar graph with n
vertices and maximum possible number of edges as optimal 3-planar. Let H be
an optimal 3-planar graph on n vertices together with a corresponding 3-planar
drawing Γ (H). Let also Hp be a subgraph of H with the largest number of edges,
such that in the drawing of Hp (that is inherited from Γ (H)) no two edges cross
each other. We call Hp a maximal planar substructure of H. Among all possible
optimal 3-planar graphs on n vertices, let G = (V,E) be the one with the
following two properties: (a) its maximal planar substructure, say Gp = (V,Ep),
has maximum number of edges among all possible planar substructures of all



346 M.A. Bekos et al.

optimal 3-planar graphs, (b) the number of crossings in the drawing of G is
minimized over all optimal 3-planar graphs subject to (a). We refer to G as
crossing-minimal optimal 3-planar graph.

With slight abuse of notation, let G − Gp be obtained from G by removing
only the edges of Gp and let e be an edge of G − Gp. Since Gp is maximal,
edge e must cross at least one edge of Gp. We refer to the part of e between an
endpoint of e and the nearest crossing with an edge of Gp as stick. The parts of
e between two consecutive crossings with Gp are called middle parts. Clearly, e
consists of exactly 2 sticks and 0, 1, or 2 middle parts. A stick of e lies completely
in a face of Gp and crosses at most two other edges of G − Gp and an edge of
this particular face. A stick of e is called short, if there is a walk along the face
boundary from the endpoint of the stick to the nearest crossing point with Gp,
which contains only one other vertex of the face boundary. Otherwise, the stick
of e is called long ; see Fig. 1a. A middle part of e also lies in a face of Gp. We
say that e passes through a face of Gp, if there exists a middle part of e that
completely lies in the interior of this particular face. We refer to a middle part
of an edge that crosses consecutive edges of a face of Gp as short middle part.
Otherwise, we call it far middle part.

Fig. 1. (a) Illustration of a non-simple face {v1, v2, . . . , v7}; v6 is identified with v4. The
sticks from v1 and v2 are short, while the one from v7 is long. All other edge segments
are middle-parts. (b) The case, where two triangles of type (3, 0, 0) are associated to
the same triangle.

Let Fs = {v1, v2, . . . , vs} be a face of Gp with s ≥ 3. The order of the vertices
(and subsequently the order of the edges) of Fs is determined by a walk around
the boundary of Fs in clockwise direction. Since Fs is not necessarily simple, a
vertex (or an edge, respectively) may appear more than once in this order; see
Fig. 1a. We say that Fs is of type (τ1, τ2, . . . , τs) if for each i = 1, 2, . . . , s vertex
vi is incident to τi sticks of Fs that lie between (vi−1, vi) and (vi, vi+1)1.

Lemma 1 (Pach and Tóth [20]). A triangular face of Gp contains at most 3
sticks.

Proof. Consider a triangular face T of Gp of type (τ1, τ2, τ3). Clearly, τ1, τ2, τ3 ≤
3, as otherwise an edge of Gp has more than three crossings. Since a stick of T
cannot cross more than two other sticks of T , it follows that τ1 + τ2 + τ3 ≤ 3. ��
1 In the remainder of the paper, all indices are subject to (mod s) + 1.
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3 The Density of Non-simple 3-Planar Graphs

Let G = (V,E) be a crossing-minimal optimal 3-planar graph with n vertices
drawn in the plane. Let also Gp = (V,Ep) be the maximal planar substructure
of G. In this section, we will prove that G cannot have more than 11n

2 −11 edges,
assuming that Gp is fully triangulated, i.e., |Ep| = 3n − 6. This assumption will
be proved in Sect. 4. Next, we prove that the number of triangular faces of Gp

with exactly 3 sticks cannot be larger than those with at most 2 sticks.

Lemma 2. We can uniquely associate each triangular face of Gp with 3 sticks
to a neighboring triangular face of Gp with at most 2 sticks.

Proof. Let T = {v1, v2, v3} be a triangular face of Gp. By Lemma 1, we have to
consider three types for T : (3, 0, 0), (2, 1, 0) and (1, 1, 1).

– T is of type (3, 0, 0): Since v1 is incident to 3 sticks of T , edge (v2, v3) is crossed
three times. Let T ′ be the triangular face of Gp neighboring T along (v2, v3).
We have to consider two cases: (a) one of the sticks of T ends at a corner of
T ′, and (b) none of the sticks of T ends at a corner of T ′. In Case (a), the two
remaining sticks of T might use the same or different sides of T ′ to exit it. In
both subcases, it is not difficult to see that T ′ can have at most two sticks. In
Case (b), we again have to consider two subcases, depending on whether all
sticks of T use the same side of T ′ to pass through it or two different ones. In
the former case, it is not difficult to see that T ′ cannot have any stick, while
in the later T ′ can have at most one stick. In all aforementioned cases, we
associate T with T ′.

– T is of type (2, 1, 0): Since v2 is incident to one stick of T , edge (v1, v3)
is crossed at least once. We associate T with the triangular face T ′ of Gp

neighboring T along (v1, v3). Since the stick of T that is incident to v2 has
three crossings in T , T ′ has no sticks emanating from v1 or v3. In particular,
T ′ can have at most one additional stick emanating from its third vertex.

– T is of type (1, 1, 1): This actually cannot occur. Indeed, if T is of type (1, 1, 1),
then all sticks of T have already three crossings each. Hence, the three trian-
gular faces adjacent to T define a 6-gon in Gp, which contains only six interior
edges. So, we can easily remove them and replace them with 8 interior edges
(see, e.g., Fig. 1b), contradicting thus the optimality of G.

Note that our analysis also holds for non-simple triangular faces. We now
show that the assignment is unique. This holds for triangular faces of type
(2, 1, 0), since a triangular face that is associated with one of type (2, 1, 0) cannot
contain two sides each with two crossings, which implies that it cannot be asso-
ciated with another triangular face with three sticks. This leaves only the case
that two (3, 0, 0) triangles are associated with the same triangle T ′ (see, e.g., the
triangle with the gray-colored edges in Fig. 1b). In this case, there exists another
triangular face (bottommost in Fig. 1b), which has exactly two sticks because of
3-planarity. In addition, this face cannot be associated with some other triangu-
lar face. Hence, one of the two type-(3, 0, 0) triangular faces associated with T ′

can be assigned to this triangular face instead resolving the conflict. ��



348 M.A. Bekos et al.

We are now ready to prove the main theorem of this section.

Theorem 1. A 3-planar graph of n vertices has at most 11
2 n − 11 edges, which

is a tight bound.

Proof. Let ti be the number of triangular faces of Gp with exactly i sticks, 0 ≤
i ≤ 3. The argument starts by counting the number of triangular faces of Gp with
exactly 3 sticks. From Lemma 2, we conclude that the number t3 of triangular faces
of Gp with exactly 3 sticks is at most as large as the number of triangular faces
of Gp with 0, 1 or 2 sticks. Hence t3 ≤ t0 + t1 + t2. We conclude that t3 ≤ tp/2,
where tp denotes the number of triangular faces in Gp, since t0 + t1 + t2 + t3 = tp.
Note that by Euler’s formula tp = 2n − 4. Hence, t3 ≤ n − 2. Thus, we have:
|E| − |Ep| = (t1 + 2t2 + 3t3)/2 = (t1 + t2 + t3) + (t3 − t1)/2 = (tp − t0) +
(t3 − t1)/2 ≤ tp + t3/2 ≤ 5tp/4. So, the total number of edges of G is at most:
|E| ≤ |Ep| + 5tp/4 ≤ 3n − 6 + 5(2n − 4)/4 = 11n/2 − 11. In [5] we prove that our
bound is tight by a construction similar to the one of Pach et al. [19]. ��

4 The Density of the Planar Substructure

Let G = (V,E) be a crossing-minimal optimal 3-planar graph with n vertices
drawn in the plane. Let also Gp = (V,Ep) be the maximal planar substructure of
G. In this section, we will prove that Gp is fully triangulated, i.e., |Ep| = 3n − 6
(see Theorem 2). To do so, we will explore several structural properties of Gp

(see Lemmas 3–13), assuming that Gp has at least one non-triangular face, say
Fs = {v1, v2, . . . , vs} with s ≥ 4. In the first observations, we do not require
that Gp is connected. This is proved in Lemma 6. Recall that in general Fs is
not necessarily simple, which means that a vertex may appear more than once
along Fs. Our goal is to contradict either the optimality of G (that is, the fact
that G contains the maximum number of edges among all 3-planar graphs with
n vertices) or the maximality of Gp (that is, the fact that Gp has the maximum
number of edges among all planar substructures of all optimal 3-planar graphs
with n vertices) or the crossing minimality of G (that is, the fact that G has the
minimum number of crossings subject to the size of the planar substructure).

Lemma 3. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is crossed at least once within Fs.

Proof (Sketch). Assume to the contrary that there exists a stick of Fs that is
not crossed within Fs. W.l.o.g. let (v1, v′

1) be the edge containing this stick and
assume that (v1, v′

1) emanates from vertex v1 and leads to vertex v′
1 by crossing

the edge (vi, vi+1) of Fs. We initially prove that i + 1 = s. Next, we show
that there exist two edges e1 and e2 which cross (vi, vi+1) and are not sticks
emanating from v1. The desired contradiction follows from the observation that
we can remove edges e1, e2 and (v1, v′

1) from G and replace them with the chord
(v1, vs−1) and two additional edges that are both sticks either at v1 or at vs. In
this way, a new graph is obtained, whose maximal planar substructure has more
edges than Gp, which contradicts the maximality of Gp. The detailed proof is
given in [5]. ��
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Lemma 4. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each middle part of Fs is short, i.e., it crosses consecutive edges of Fs.

Proof. (Sketch). For a proof by contradiction, assume that (u, u′) is an edge that
defines a middle part of Fs which crosses two non-consecutive edges of Fs, say
w.l.o.g. (v1, v2) and (vi, vi+1), where i �= 2 and i + 1 �= s. We distinguish two
main cases. Either (u, u′) is not involved in crossings in the interior of Fs or
(u, u′) is crossed by an edge, say e, within Fs. In both cases, it is possible to
lead to a contradiction to the maximality of Gp; refer to [5] for more details. ��
Lemma 5. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is short.

Proof. Assume for a contradiction that there exists a far stick. Let
w.l.o.g. (v1, v′

1) be the edge containing this stick and assume that (v1, v′
1)

emanates from vertex v1 and leads to vertex v′
1 by crossing the edge (vi, vi+1)

of Fs, where i �= 2 and i + 1 �= s. If we can replace (v1, v′
1) either with chord

(v1, vi) or with chord (v1, vi+1), then the maximal planar substructure of the
derived graph would have more edges than Gp; contradicting the maximality of
Gp. Thus, there exist two edges, say e1 and e2, that cross (vi, vi+1) to the left
and to the right of (v1, v′

1), respectively; see Fig. 2a. By Lemma 3, edge (v1, v′
1)

is crossed by at least one other edge, say e, inside Fs. Note that by 3-planarity
edge (v1, v′

1) might also be crossed by a second edge, say e′, inside Fs. Suppose
first, that (v1, v′

1) has a single crossing inside Fs. To cope with this case, we
propose two alternatives: (a) replace e1 with chord (v1, vi+1) and make vertex
vi+1 an endpoint of e, or (b) replace e2 with chord (v1, vi) and make vertex vi
an endpoint of both e; see Figs. 2b and c, respectively. Since e and (vi, vi+1) are
not homotopic, it follows that at least one of the two alternatives can be applied,
contradicting the maximality of Gp.

Fig. 2. Different configurations used in the proof of Lemma 5.
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Consider now the case where (v1, v′
1) has two crossings inside Fs, with edges

e and e′. Similarly to the previous case, we propose two alternatives: (a) replace
e1 with chord (v1, vi+1) and make vertex vi+1 an endpoint of both e and e′, or
(b) replace e2 with chord (v1, vi) and make vertex vi an endpoint of both e and
e′; see Figs. 2d and e, respectively. Note that in both alternatives the maximal
planar substructure of the derived graph has more edges than Gp, contradicting
the maximality of Gp. Since e and e′ are not homotopic, it follows that one of the
two alternatives is always applicable, as long as, e and e′ are not simultaneously
sticks from vi and vi+1, respectively; see Fig. 2f. In this scenario, both alternatives
would lead to a situation, where (vi, vi+1) has two homotopic copies. To cope
with this case, we observe that e, e′ and (v1, v′

1) are three mutually crossing
edges inside Fs. We proceed by removing from G edges e1 and e2, which we
replace by (v1, vi) and (v1, vi+1); see Fig. 2g. In the derived graph the maximal
planar substructure contains more edges than Gp (in particular, edges (v1, vi)
and (v1, vi+1)), contradicting its maximality. ��
Lemma 6. The planar substructure Gp of a crossing-minimal optimal 3-planar
graph G is connected.

Proof. Assume to the contrary that the maximum planar substructure Gp of G is
not connected and let G′

p be a connected component of Gp. Since G is connected,
there is an edge of G − Gp that bridges G′

p with Gp − G′
p. By definition, this edge

is either a stick or a passing through edge for the common face of G′
p and G−G′

p.
In both cases, it has to be short (by Lemmas 4 and 5); a contradiction. ��
In the next two lemmas, we consider the case where a non-triangular face Fs =
{v1, v2, . . . , vs}, s ≥ 4 of Gp has no sticks. Let br(Fs) and br(Fs) be the set of
bridges and non-bridges of Fs, respectively (in Fig. 1a, edge (v4, v5) is a bridge).
In the absence of sticks, a passing through edge of Fs originates from one of its
end-vertices, crosses an edge of br(Fs) to enter Fs, passes through Fs (possibly
by defining two middle parts, if it crosses an edge of br(Fs)), crosses another
edge of br(Fs) to exit Fs and terminates to its other end-vertex. We associate
the edge of br(Fs) that is used by the passing through edge to enter (exit) Fs

with the origin (terminal) of this passing through edge. Let sb and sb be the
number of edges in br(Fs) and br(Fs), respectively. Let also ŝb be the number
of edges of br(Fs) that are crossed by no passing through edge of Fs. Clearly,
ŝb ≤ sb and s = sb + 2sb.

Lemma 7. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp

that has no sticks. Then, the number ŝb of non-bridges of Fs that are crossed
by no passing through edge of Fs is strictly less than half the number sb of of
non-bridges of Fs, that is, ŝb < sb

2 .

Proof. For a proof by contradiction assume that ŝb ≥ sb
2 . Since at most sb

2 edges
of Fs can be crossed (each of which at most three times) and each passing through
edge of Fs crosses two edges of br(Fs), it follows that |pt(Fs)| ≤ � 3sb

4 	, where
pt(Fs) denotes the set of passing through edges of Fs. To obtain a contradiction,
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we remove from G all edges that pass through Fs and we introduce 2s− 6 edges
{(v1, vi) : 2 < i < s} ∪ {(vi, vi + 2) : 2 ≤ i ≤ s − 2} that lie completely in the
interior of Fs. This simple operation will lead to a larger graph (and therefore to
a contradiction to the optimality of G) or to a graph of the same size but with
larger planar substructure (and therefore to a contradiction to the maximality
of Gp) as long as s > 4. For s = 4, we need a different argument. By Lemma 4,
we may assume that all three passing through edges of Fs cross two consecutive
edges of Fs, say w.l.o.g. (v1, v2) and (v2, v3). This implies that chord (v1, v3) can
be safely added to G; a contradiction to the optimality of G. ��
Lemma 8. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has at least one stick.

Proof (Sketch). For a proof by contradiction, assume that Fs has no sticks. By
Lemma 7, it follows that there exist at least two incident edges of br(Fs) that are
crossed by passing through edges of Fs, say w.l.o.g. (vs, v1) and (v1, v2). Note
that these two edges are not bridges of Fs. If s + ŝb + 2sb ≥ 6, then as in the
proof of Lemma 7, it is possible to construct a graph that is larger than G or
of equal size as G but with larger planar substructure. The same holds when
s + ŝb + 2sb = 5 (that is, s = 5 and ŝb = sb = 0 or s = 4, ŝb = 1 and sb = 0).
Both cases, contradict either the optimality of G or the maximality of Gp. The
case where s + ŝb + 2sb = 4 is slightly more involved; refer to [5]. ��

Fig. 3. Different configurations used in Lemma 9.

By Lemma 5, all sticks of Fs are short. A stick (vi, v′
i) of Fs is called right, if it

crosses edge (vi+1, vi+2) of Fs. Otherwise, stick (vi, v′
i) is called left. Two sticks

are called opposite, if one is left and the other one is right.

Lemma 9. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has not three mutually crossing sticks.

Proof. Suppose to the contrary that there exist three mutually crossing sticks
of Fs and let ei, for i = 1, 2, 3 be the edges containing these sticks. W.l.o.g. we
assume that at least two of them are right sticks, say e1 and e2. Let e1 = (v1, v′

1).
Then, e2 = (v2, v′

2); see Fig. 3a. Since e1, e2 and e3 mutually cross, e3 can only
contain a left stick. By Lemma 5 its endpoint on Fs is v3 or v4. The first case is
illustrated in Fig. 3b. Observe that (v1, v2) of Fs is only crossed by e3. Indeed,



352 M.A. Bekos et al.

if there was another edge crossing (v1, v2), then it would also cross e1 or e2, both
of which have three crossings. Hence, e3 can be replaced with (v1, v3); see Fig. 3c.
The maximal planar substructure of the derived graph would have more edges
than Gp, contradicting the maximality of Gp. The case where v4 is the endpoint
of e3 on Fs is illustrated in Fig. 3e. Suppose that there exists an edge crossing
(v2, v3) of Fs to the left of e3. This edge should also cross e2 or e3, which is not
possible since both edges have three crossings. So, we can replace e3 with chord
(v2, v4) as in Fig. 3e, contradicting the maximality of Gp. ��
Lemma 10. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, each stick of Fs is crossed exactly once within Fs.

Proof (Sketch). The detailed proof is given in [5]. By Lemma 3, each stick of Fs

is crossed at least once within Fs. So, the proof is given by contradiction either
to the optimality of G or to the maximality of Gp, assuming the existence of a
stick of Fs that is crossed twice within Fs, say by edges e1 and e2. Note that
by 3-planarity a stick of Fs cannot be further crossed within Fs. First, we prove
that e1 and e2 do not cross each other. Then, we show that e1 and e2 cannot
be simultaneously passing through Fs. The desired contradiction is obtained by
considering two main cases: Either e1 passes through Fs (and therefore, e2 is a
stick of Fs) or both e1 and e2 are sticks of Fs. ��
Lemma 11. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, there are no crossings between sticks and middle parts of Fs.

Proof. Assume to the contrary that there exists a stick, say of edge (v1, v′
1) that

emanates from vertex v1 of Fs (towards v′
1), which is crossed by a middle part of

(u, u′) of Fs. By Lemma 10, this stick cannot have another crossing within Fs.
By Lemma 5, we can assume w.l.o.g. that (v1, v′

1) is a right stick, i.e., (v1, v′
1)

crosses (v2, v3). By Lemma 4, edge (u, u′) crosses two consecutive edges of Fs.
We distinguish two cases based on whether (v1, v′

1) crosses (vs, v1) and (v1, v2)
of Fs or (v1, v′

1) crosses (v1, v2) and (v2, v3) of Fs; see Figs. 4a and c respectively.
In the first case, we can assume w.l.o.g. that u is the vertex associated with

(v1, v2), while u′ is the one associated with (vs, v1). Hence, there exists an edge,
say f1, that crosses (v1, v2) to the right of (u, u′), as otherwise we could replace
(u, u′) with stick (v2, u′) and reduce the total number of crossings by one, contra-
dicting the crossing minimality of G. Edge f1 passes through Fs and also crosses

Fig. 4. Different configurations used in Lemma 11.
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edge (v2, v3) above (v1, v′
1). Similarly, there exists an edge f2 that crosses (v2, v3)

below (v1, v′
1), as otherwise replacing (v1, v′

1) with chord (v1, v3) would contra-
dict the maximality of Gp. We proceed by removing edges (u, u′) and f2 from G
and by replacing them with (v3, u) and chord (v1, v3); see Fig. 4b. The maximal
planar substructure of the derived graph is larger than Gp; a contradiction.

In the second case, we assume that u is associated with (v1, v2) and u′ with
(v2, v3); see Fig. 4c. In this scenario, there exists an edge, say f , that crosses
(v2, v3) below (v1, v′

1), as otherwise we could replace (v1, v′
1) with chord (v1, v3),

contradicting the maximality of Gp. If (v1, u′) does not belong to G, then we
remove (u, u′) from G and replace it with stick (v1, u′); see Fig. 4d. In this way,
the derived graph has fewer crossings than G; a contradiction. Note that (v1, v′

1)
and (v1, u′) cannot be homotopic (if v′

1 = u′), as otherwise edge (v1, v′
1) and

(u, u′) would not cross in the initial configuration. Hence, edge (v1, u′) already
exists in G. In this case, f is identified with (v1, u′); see Fig. 4e. But, in this case
f is an uncrossed stick of Fs, contradicting Lemma 3. ��
Lemma 12. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, any stick of Fs is only crossed by some opposite stick of Fs.

Proof. By Lemma 5, each stick of Fs is short. By Lemma 10, each stick of Fs is
crossed exactly once within Fs and this crossing is not with a middle part due
to Lemma 11. For a proof by contradiction, consider two crossing sticks that are
not opposite and assume w.l.o.g. that the first stick emanates from vertex v1
(towards vertex v′

1) and crosses edge (v2, v3), while the second stick emanates
from vertex v2 (towards vertex v′

2) and crosses edge (v3, v4); see Fig. 5a.
If we can replace (v1, v′

1) with the chord (v1, v3), then the maximal planar
substructure of the derived graph would have more edges than Gp; contradicting
the maximality of Gp. Thus, there exists an edge, say e, that crosses (v2, v3)
below (v1, v′

1). By Lemma 11, edge e is passing through Fs. Symmetrically, we
can prove that there exists an edge, say e′, which crosses (v3, v4) right next to
v4, that is, e′ defines the closest crossing point to v4 along (v3, v4). Note that e′

can be either a passing through edge or a stick of Fs. We proceed by removing
from G edges e′ and (v1, v′

1) and by replacing them by the chord (v2, v4) and
edge (v4, v′

1); see Fig. 5b. The maximal planar substructure of the derived graph
has more edges than Gp (in the presence of edge (v2, v4)), a contradiction. ��

Fig. 5. Different configurations used in (a)–(b) Lemma 12 and (c)–(d) Lemma 13.



354 M.A. Bekos et al.

Lemma 13. Let Fs = {v1, v2, . . . , vs}, s ≥ 4 be a non-triangular face of Gp.
Then, Fs has exactly two sticks.

Proof. By Lemmas 8 and 12 there exists at least one pair of opposite crossing
sticks. To prove the uniqueness, assume that Fs has two pairs of crossing opposite
sticks, say (v1, v′

1), (v2, v′
2) and (vi, v′

i), (vi+1, v
′
i+1), 2 < i < s; see Fig. 5c. We

remove edges (v2, v′
2) and (vi, v′

i) and replace them by (v1, vi) and (v2, vi+1); see
Fig. 5d. By Lemmas 4 and 5, the newly introduced edges cannot be involved in
crossings. The maximal planar substructure of the derived graph has more edges
than Gp (in the presence of (v1, vi) or (v2, vi+1)); a contradiction. ��
We are ready to state the main theorem of this section.

Theorem 2. The planar substructure Gp of a crossing-minimal optimal
3-planar graph G is fully triangulated.

Proof. For a proof by contradiction, assume that Gp has a non-triangular face
Fs = {v1, v2, . . . , vs}, s ≥ 4. By Lemmas 10, 12 and 13, face Fs has exactly
two opposite sticks, that cross each other. Assume w.l.o.g. that these two sticks
emanate from v1 and v2 (towards v′

1 and v′
2) and exit Fs by crossing (v2, v3) and

(v1, vs), respectively; recall that by Lemma 5 all sticks are short; see Fig. 6a.
If we can replace (v1, v′

1) with the chord (v1, v3), then the maximal planar
substructure of the derived graph would have more edges than Gp; contradicting
the maximality of Gp. Thus, there exists an edge, say e, that crosses (v2, v3) below
(v1, v′

1). By Lemma 13, edge e is passing through Fs. We consider two cases: (a)
edge (v2, v3) is only crossed by e and (v1, v′

1), (b) there is a third edge, say e′,
that crosses (v2, v3) (which by Lemma 13 is also passing through Fs).

In Case (a), we can remove from G edges e and (v1, v′
1), and replace them

by (v1, v3) and the edge from v2 to the endpoint of e that is below (v3, v4); see
Fig. 6b. In Case (b), there has to be a (passing through) edge, say e′′, surround-
ing v4 (see Fig. 6c), as otherwise we could replace e′ with a stick emanating from
v4 towards the endpoint of e′ that is to the right of (v2, v3), which contradicts
Lemma 13. We proceed by removing from G edges e′′ and (v1, v′

1) and by replac-
ing them by (v2, v4) and the edge from v2 to the endpoint of e′′ that is associated
with (v3, v4); see Fig. 6d. The maximal planar substructure of the derived graph
has more edges than Gp (in the presence of (v1, v2) in Case (a) and (v2, v4) in

Fig. 6. Different configurations used in Theorem 2.
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Case (b)), which contradicts the maximality of Gp. Since Gp is connected, there
cannot exist a face consisting of only two vertices. ��

5 Discussion and Conclusion

This paper establishes a tight upper bound on the number of edges of non-simple
3-planar graphs containing no homotopic parallel edges or self-loops. Our work
is towards a complete characterization of all optimal such graphs. In addition,
we believe that our technique can be used to achieve better bounds for larger
values of k. We demonstrate it for the case where k = 4, where the known bound
for simple graphs is due to Ackerman [1].

If we could prove that a crossing-minimal optimal 4-planar graph G = (V,E)
has always a fully triangulated planar substructure Gp = (V,Ep) (as we proved
in Theorem 2 for the corresponding 3-planar ones), then it is not difficult to prove
a tight bound on the number of edges for 4-planar graphs. Similar to Lemma 1,
we can argue that no triangle of Gp has more than 4 sticks. Then, we associate
each triangle of Gp with 4 sticks to a neighboring triangle with at most 2 sticks.
This would imply t4 ≤ t1 + t2, where ti denotes the number of triangles of Gp

with exactly i sticks. So, we would have |E| − |Ep| = (4t4 + 3t3 + 2t2 + t1)/2 ≤
3(t4 + t3 + t2 + t1)/2 = 3(2n − 4)/2 = 3n − 6. Hence, the number of edges of a
4-planar graph G is at most 6n − 12. We conclude with some open questions.

– A nice consequence of our work would be the complete characterization of
optimal 3-planar graphs, as exactly those graphs that admit drawings where
the set of crossing-free edges form hexagonal faces which contain 8 additional
edges each

– We also believe that for simple 3-planar graphs (i.e., where even non-
homotopic parallel edges are not allowed) the corresponding bound is 5.5n−15.

– We conjecture that the maximum number of edges of 5- and 6-planar graphs
are 19

3 n − O(1) and 7n − 14, respectively.
– More generally, is there a closed function on k which describes the maximum

number of edges of a k-planar graph for k > 3? Recall the general upper bound
of 4.1208

√
kn by Pach and Tóth [20].
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Abstract. Given a graph G, the NP-hard Maximum Planar Subgraph
problem (MPS) asks for a planar subgraph of G with the maximum
number of edges. There are several heuristic, approximative, and exact
algorithms to tackle the problem, but—to the best of our knowledge—
they have never been compared competitively in practice.

We report on an exploratory study on the relative merits of the diverse
approaches, focusing on practical runtime, solution quality, and imple-
mentation complexity. Surprisingly, a seemingly only theoretically strong
approximation forms the building block of the strongest choice.

1 Introduction

We consider the problem of finding a large planar subgraph in a given non-planar
graph G = (V,E); n := |V |, m := |E|. We distinguish between algorithms that
find a large, maximal, or maximum such graph: while the latter (MPS) is one with
largest edge cardinality and NP-hard to find [18], a subgraph is inclusionwise
maximal if it cannot be enlarged by adding any further edge of G. Sometimes,
the inverse question—the skewness of G—is asked: find the smallest number
skew(G) of edges to remove, such that the remaining graph is planar.

The problem is a natural non-trivial graph property, and the probably best
known non-planarity measure next to crossing number. This already may be
reason enough to investigate its computation. Moreover, MPS/skewness arises
at the core of several other applications: E.g., the practically strongest heuristic
to draw G with few crossings—the planarization method [2,7]1—starts with a
large planar subgraph, and then adds the other edges into it.

Recognizing graphs of small skewness also plays a crucial role in parameter-
ized complexity: Many problems become easier when considering a planar graph;
e.g., maximum flow can be computed in O(n log n) time, the Steiner tree prob-
lem allows a PTAS, the maximum cut can be found in polynomial time, etc. It
hence can be a good idea to (in a nutshell) remove a couple of edges to obtain
a planar graph, solve the problem on this subgraph, and then consider suitable
1 In contrast to this meaning, the MPS problem itself is also sometimes called
planarization. We refrain from the latter use to avoid confusion.
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modifications to the solution to accommodate for the previously ignored edges.
E.g., we can compute a maximum flow in time O(skew(G)3 · n log n) [13].

While solving MPS is NP-hard, there are diverse polynomial-time approaches
to compute a large or maximal planar subgraph, ranging from very trivial to
sophisticated. By Euler’s formula we know that already a spanning tree gives a
1/3-approximation for MPS. Hence all reasonable algorithms achieve this ratio.
Only the cactus algorithms (see below) are known to exhibit better ratios. We will
also consider an exact MPS algorithm based on integer linear programs (ILPs).

All algorithms considered in this paper are known (for quite some time, in
fact), and are theory-wise well understood both in terms of worst case solution
quality and running time. To our knowledge, however, they have never been prac-
tically compared. In this paper we are in particular interested in the following
quality measures, and their interplay:

– What is the practical difference in terms of running time?
– What is the practical difference in solution quality (i.e., subgraph density)?
– What is the implementation effort of the various approaches?

Overall, understanding these different quality measures as a multi-criteria set-
ting, we can argue for each of the considered algorithms that it is pareto-optimal.
We are in particular interested in studying a somewhat “blurred” notion of
pareto-optimality: We want to investigate, e.g., in which situations the addi-
tional sophistication of algorithms gives “significant enough” improvements.2

Also the measure of “implementation complexity” is surprisingly hard to con-
cisely define, and even in the field of software-engineers there is no prevailing
notion; “lines of code” are, for example, very unrelated to the intricacies of algo-
rithm implementation. We will hence only argue in terms of direct comparisons
between pairs of algorithms, based on our experience when implementing them.3

As we will see in the next section, there are certain building blocks all algo-
rithms require, e.g., a graph data structure and (except for C, see below) an
efficient planarity test. When discussing implementation complexity, it seems
safe to assume that a programmer will already start off with some kind of graph
library for her basic datastructure needs.4 In the context of the ILP-based app-
roach, we assume that the programmer uses one of the various freely available
(or commercial) frameworks. Writing a competitive branch-and-cut framework
from ground up would require a staggering amount of knowledge, experience,
time, and finesse. The ILP method is simply not an option if the programmer
may not use a preexisting framework.

2 Clearly, there is a systematic weakness, as it may be highly application-dependent
what one considers “significant enough”. We hence cannot universally answer this
question, but aim to give a guideline with which one can come to her own conclusions.

3 This measure is still intrinsically subjective (although we feel that the situation is
quite clear in most cases), and opinions may vary depending on the implementor’s
knowledge, experience, etc. We discuss these issues when they become relevant.

4 Many freely available graph libraries contain linear-time planarity tests. They usually
lack sophisticated algorithms for finding large planar subgraphs.
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In the following section, we discuss our considered algorithms and their imple-
mentation complexity. In Sect. 3, we present our experimental study. We first
consider the pure problem of obtaining a planar subgraph. Thereafter, we inves-
tigate the algorithm choices when solving MPS as a subproblem in a typical
graph drawing setting—the planarization heuristic.

2 Algorithms

Näıve Approach (Nı̈). The algorithmically simplest way to find a maximal planar
subgraph is to start with the empty graph and to insert each edge (in random
order) unless the planarity test fails. Given an O(n) time planarity test (we use
the algorithm by Boyer and Myrvold [3], which is also supposed to be among
the practically fastest), this approach requires O(nm) overall time.5

In our study, we consider a trivial multi-start variant that picks the best solu-
tion after several runs of the algorithm, each with a different randomized order.
The obvious benefit of this approach is the fact that it is trivial to understand
and implement—once one has any planarity test as a black box.

Augmented Planarity Test (BM, BM+). Planarity tests can be modified to allow
the construction of large planar subgraphs. We will briefly sketch these modifi-
cations in the context of the above mentioned O(n) planarity test by Boyer and
Myrvold [3]: In the original test, we start with a DFS tree and build the original
graph bottom-up; we incrementally add a vertex together with its DFS edges to
its children and the backedges from its decendents. The test fails if at least one
backedge cannot be embedded.

We can obtain a large (though in general not maximal) planar subgraph by
ignoring whether some backedges have not been embedded, and continuing with
the algorithm (BM). If we require maximality, we can use Nı̈ as a prostprocessing
to grow the obtained graph further (BM+). While this voids the linear runtime,
it will be faster than the pure näıve approach. Given an implementation of the
planarity testing algorithm, the required modifications are relatively simple per
se—however, they are potentially hard to get right as the implementor needs to
understand side effects within the complex planarity testing implementation.

Alternatively, Hsu [14] showed how to overcome the lack of maximality
directly within the planarity testing algorithm [19] (which is essentially equiva-
lent to [3]), retaining linear runtime. While this approach is the most promising
in terms of running time, it would require the most demanding implementa-
tion of all approaches discussed in this paper (including the next subsection)—it
means to implement a full planarity testing algorithm plus intricate additional
procedures. We know of no implementation of this algorithm.

5 We could speed-up the process in practice by starting with a spanning tree plus three
edges. However, there are instances where the initial inclusion of a spanning tree
prohibits the optimal solution and restricts one to approximation ratios ≤ 2/3 [8].
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Cactus Algorithm (C, C+). The only non-trivial approximation ratios are achieved
by two cactus-based algorithms [4]. Thereby, one starts with the disconnected
vertices of G. To obtain a ratio of 7/18 (C), we iteratively add triangles connect-
ing formerly disconnected components. This process leaves a forest F of tree-like
structures made out of triangles—cactusses. Finally, we make F connected by
adding arbitrary edges of E between disconnected components. Since this sub-
graph will not be maximal in general, we can use Nı̈ to grow it further (C+).

From the implementation point of view, this algorithm is very trivial and—
unless one requires maximality—does not even involve any planarity test. While
a bit more complex than the näıve approach, it does not require modifications
to complex and potentially hard-to-understand planarity testing code like BM.

For the best approximation ratio of 4/9 one seeks not a maximal but a
maximum cactus forest. However, this approach is of mostly theoretical interest
as it requires non-trivial polynomial time matroid algorithms.

ILP Approach (ILP). Finally, we use an integer linear program (ILP) to solve
MPS exactly in reasonable (but formally non-polynomial) time, see [15]. With
binary variables for each edge, specifying whether it is in the solution, we have

max
{∑

e∈E
xe

∣∣∣
∑

e∈K
xe ≤ |K|−1 for all Kuratowski subdivisions K ⊆ G

}
.

Kuratowski’s theorem [17] states that a graph is planar if and only if it does
not contain a K5 or a K3,3 as a subdivision—Kuratowski subdivisions. Hence
we guarantee a planar solution by requiring to remove at least one edge in each
such subgraph K. While the set of these constraints is exponential in size, we
can separate them heuristically within a branch-and-cut framework, see [15]:
after each LP relaxation, we round the fractional solution and try to identify a
Kuratowski subdivision that leads to a violated constraint.

This separation in fact constitutes the central implementation effort. Typ-
ical planarity testing algorithms initially only answer yes or no. In the latter
case, however, all known linear-time algorithms can be extended to extract a
witness of non-planarity in the form of a Kuratowski subdivision in O(n) time.
If the available implementation does not support this additional query, it can be
simulated using O(n) calls to the planarity testing algorithm, by incrementally
removing edges whenever the graph stays non-planar after the removal. Both
methods result in a straight-forward implementation (assuming some familiarity
with ILP frameworks), but an additional tuning step to decide, e.g., on round-
ing thresholds, is necessary. The overall complexity is probably somewhere in-
between C and BM. In our study, we decided to use the effective extraction scheme
described in [10] which gives several Kuratowski subdivions via a single call. We
propose, however, to use this feature only if it is already available in the library:
its implementation effort would otherwise be comparable to a full planarity test,
and in particular for harder instances its benefit is not significant.
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3 Experiments

For an exploratory study we conducted experiments on several benchmark sets.
We summarize the results as follows—observe the inversion between F1 and F2.

F1. C+ yields the best solutions. Choosing a “well-growable” initial subgraph—
in our case a good cactus—is practically important. The better solution of
BM is a weak starting point for BM+; even Nı̈ gives clearly better solutions.

F2. BM gives better solutions than C; both are the by far fastest approaches.
Thus, if runtime is more crucial than maximality, we suggest to use BM.

F3. ILP only works for small graphs. Expander graphs (they are sparse but
well-connected) seem to be among the hardest instances for the approach.

F4. Larger planar subgraphs lead to fewer crossings for the planarization
method. However, this is much less pronounced with modern insertion
methods.

Setup and Instances. All considered algorithms are implemented in C++ (g++
5.3.1, 64bit, -O3) as part of OGDF [5], the ILP is solved via CPLEX 12.6. We
use an Intel Xeon E5-2430 v2, 2.50 GHz running Debian 8; algorithms use singles
cores out of twelve, with a memory limit of 4 GB per process.

We use the non-planar graphs of the established benchmark sets North [12]
(423 instances), Rome [11] (8249), and SteinLib [16] (586), all of which include
real-world instances. In our plots, we group instances according to |V | rounded to
the nearest multiple of 10; for Rome we only consider graph with ≥ 25 vertices.

Additionally, we consider two artificial sets: BaAl [1] are scale-free graphs,
and Regular [20] (implemented as part of the OGDF) are random regular
graphs; they are expander graphs w.h.p. [folklore]. Both sets contain 20 instances
for each combination of |V | ∈ {102, 103, 104} and |E|/|V | ∈ {2, 3, 5, 10, 20}.

Evaluation. Our results confirm the need for heuristic approaches, as ILP solves
less than 25% of the larger graphs of the (comparably simple) Rome set within
10 min. Even deploying strong preprocessing [6] (+PP) and doubling the computa-
tion time does not help significantly, cf. Fig. 1(d). Already 30-vertex graphs with
density 3, generated like Regular, cannot be solved within 48 hours (→F3).

We measure solution quality by the density (edges per vertices) of the com-
puted planar subgraph. Independently of the benchmark set, C+ always achieves
the best solutions, cf. Fig. 1(a), (b) (table) (→F1). We know instances where
Nı̈ is only a 1/3 approximation whereas the worst ratio known for BM+ is 2/3 [8].
Surprisingly, Nı̈ yields distinctly better solutions than BM+ in practice (→F1).

On SteinLib, BaAl, and Regular, both C and BM behave similar w.r.t.
solution quality. For Rome and North, however, BM yields solutions that are 20–
30% better, respectively (→F2). This discrepancy seems to be due the fact that
the found subgraphs are generally very sparse for both algorithms on BaAl and
Regular (average density of 1.1 and 1.2, respectively, for the largest graphs).

Both C and BM are extremly (and similarly) fast; Fig. 1(c) (table) (→F2).
For BM+ and C+, the Nı̈-postprocessing dominates the running time: Nı̈ is worst,
followed by C+ and BM+—a larger initial solution leads to fewer trys for growing.
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(b) North, solution quality relative to ILP
(over instances solved by ILP),
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(c) Rome, running time,
BM ≈ 0, C ≈ 0
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C = 102[61, 173]
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(f) Rome, state-of-the-art planarization
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density, relative to best runtime [s]
SteinLib BaAl Regular SteinLib BaAl Regular

B-E I* S† V† 2 3 4 2 3 4 B-E I* S V 2 3 4 2 3 4
BM .86 .85 .82 .84 .72 .64 .66 .82 .84 .95 .06 .07 .01 .11 .00 .02 1 .00 .02 2
BM+ .90 .90 .88 .86 .85 .74 .73 .89 .89 .97 47.34 8.85 2.70 90.97 .06 10.57 143 .03 4.60 236
C .84 .67 .81 .87 .60 .68 .75 .74 .88 .95 .04 .04 .01 .07 .00 .01 0 .00 .01 1
C+ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 9.19 16.22 3.13 16.35 .06 12.32 152 .04 5.34 217
Nı̈ .92 .98 .91 .91 .96 .94 .92 .92 .91 .97 49.38 28.59 2.43 95.08 .05 7.92 239 .04 4.85 252
†S (= constr. sparse): PUC, SP; V (= VLSI): ALUE, ALUT, LIN, TAQ, DIW, DMXA, GAP, MSM, 1R, 2R

Fig. 1. We may omit algorithms whose values are unsuitable for a plot; instead we give
their average[min, max] in the caption.
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Nonetheless, we observe that the (weaker) solution of C allows for significantly
more successful growing steps that BM (→F1).

Finally, we investigate the importance of the subgraph selection for the pla-
narization method, cf. Fig. 1(e), (f). For the simplest insertion algorithms (iter-
ative edge insertions, fixed embedding, no postprocessing, [2]), a strong sub-
graph method (C+) is important; C leads to very bad solutions. For state-of-the-
art insertion routines (simultaneous edge insertions, variable embedding, strong
postprocessing, [7,9]) the subgraph selection is less important; even C is feasible.
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and Francesco Mambelli1(B)

1 Department of Computer Science, University of Cologne, Cologne, Germany
{gronemann,mjuenger,mambelli}@informatik.uni-koeln.de

2 Department of Mathematics, University of Erlangen-Nürnberg, Erlangen, Germany
frauke.liers@math.uni-erlangen.de

Abstract. A storyline visualization is a layout that represents the tem-
poral dynamics of social interactions along time by the convergence of
chronological lines. Among the criteria oriented at improving aesthetics
and legibility of a representation of this type, a small number of line
crossings is the hardest to achieve. We model the crossing minimization
in the storyline visualization problem as a multi-layer crossing minimiza-
tion problem with tree constraints. Our algorithm can compute a layout
with the minimum number of crossings of the chronological lines. Com-
putational results demonstrate that it can solve instances with more than
100 interactions and with more than 100 chronological lines to optimality.

1 Introduction

Visualizing time-varying relationships between entities using converging and
diverging curves on a timeline has received a considerable amount of interest
recently. The ability to display interactions among entities, while at the same
time being able to put these in a chronological context has found applications
beyond its initial purpose which coined its name. Munroe [26] introduced the
storyline visualization as hand-drawn illustrations in xkcd’s “Movie Narrative
Charts”, where lines represent the characters of various popular movies and
the scenes are ordered chronologically and represented by bundling the lines of
the corresponding characters. This concept has been used to visualize various
spatiotemporal data, like communities in time-varying graphs [25,33], software
projects [28], topic analysis [9], etc.

However, hand crafted or semi-automated methods are limited in their
applicability in a world of ever growing datasets. In order to obtain a story-
line visualization automatically, Tanahashi and Ma [32] discuss various aspects
of a well-designed storyline visualization and present an evolutionary algorithm
that incorporates these in its objective function. They identify three important
criteria that one usually wants to optimize: line crossings, whose number should
be small, line wiggles, that should be avoided by drawing every chronological
line as straight as possible, and space efficiency. Based on these aspects, Liu
et al. [24] describe a technique which further improves the layout and runs sig-
nificantly faster compared to the evolutionary algorithm in [32]. Being able to
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 367–381, 2016.
DOI: 10.1007/978-3-319-50106-2 29
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create storyline visualizations of bigger instances, Tanahashi et al. [31] take this
one step further and show how to create storyline visualizations from streaming
data.

In this paper, we study the crossing minimization problem in storyline visual-
ization from a combinatorial optimization point of view. While most approaches
tackle this problem with heuristics, Kostitsyna et al. [22] recently shed some
light onto its combinatorial properties. Besides noting that the decision problem
is NP-complete (by reduction from bipartite crossing number), they provide a
lower bound for the number of crossings in a restricted variant of the problem
and show that the general problem is fixed-parameter tractable in the number
of characters. But a straightforward implementation of the algorithm is imprac-
tical, even for a small number of characters.

However, the problem is also similar to a few already well-studied problems
in graph-drawing. It may seem that the problem is related to a special case of
metro-line crossing minimization, in particular, the so called two-sided models
in which metro-lines run only from left to right [5,12]. However, all metro-line
crossing minimization problems have in common that they are defined on a rail
network whose embedding is fixed due to its geographical context. This difference
makes a straightforward transformation difficult.

As already observed by Kostitsyna et al. [22], storyline crossing minimization
has a strong relationship to multi-layer crossing minimization (MLCM). Here
each node of the graph is assigned to one of the layers (parallel straight lines) in
such a way that each edge connects two vertices on consecutive layers. The aim is
to find an ordering of the nodes on every layer such that the total number of edge
crossings is minimized. Although the corresponding planarity testing problem is
linear-time solvable [19], the MLCM problem itself remains NP-hard even when
restricted to two layers [13]. This led to the development of various heuristics,
but also to exact approaches [6,8,16,18].

In order to exploit existing techniques for solving MLCM instances, a
straightforward transformation can be sketched as follows. We represent the
characters as paths in an MLCM instance, in which the layers mark important
points in time, e.g., a new bundle has to be created. Of course, a bundle of
lines (paths) requires the corresponding vertices to be consecutive on the layer,
a constraint which is problematic in the general MLCM setting.

But we can borrow ideas from another crossing minimization problem type,
the so called tanglegrams. The general tanglegram problem consists of two trees
and a set of edges connecting the leaves of one tree with the leaves of the other,
i.e., the leaves and the connecting edges form a bipartite graph. The objective
is essentially to perform a bipartite (or two-layer) crossing minimization with
the additional constraint that leaves of the same subtree appear consecutively
on the layers. However, when consulting the literature on tanglegrams, attention
must be paid to the details. Some definitions require the trees to be binary, while
others restrict the edge set to be a perfect matching, or both [7,11,27]. Since
the focus of the paper is not on tanglegrams, we restrict ourselves to the general
case. Here two works are of interest, Baumann et al. [4] describe an ILP-based



Crossing Minimization in Storyline Visualization 369

approach, whereas Wotzlaw et al. [34] employ a SAT-formulation. However, not
only the techniques differ, in [4] only two layers are considered, whereas the SAT
approach in [34] works on multiple layers but requires that the tree constraints
are k-ary with k > 1 fixed.

The related problem of testing level planarity under tree constraints is dis-
cussed by Angelini et al. [1]. They show that if edges are restricted to run between
consecutive layers, then the problem can be solved in quadratic time, whereas if
this restriction does not hold, the problem is NP-complete.

In this paper we solely focus on the crossing minimization problem in sto-
ryline visualization. Therefore, we neglect other design aspects and restrict our-
selves to the combinatorial problem, i.e., determining an ordering of the lines
such that the number of crossings is minimum. We model this problem as a
special variant of the MLCM problem under tree constraints and provide an
ILP formulation for it. Computational results show that we are able to solve
instances of moderate size to optimality within a few seconds. Moreover, we
provide solutions for storyline instances from the literature, some of which have
been solved to optimality for the first time. These are of particular value, since
they offer a reference when comparing the crossing minimization performance of
heuristics.

2 Modelling Storyline Visualization as Multi-layer
Crossing Minimization with Tree Constraints

We begin with a formal definition of the multi-layer crossing minimization prob-
lem with tree constraints (MLCM-TC). The input for MLCM-TC consists of a
graph G = (V,E, T ), where the set of the nodes V =

⋃p
r=1 Vr is partitioned into

p different layers. E =
⋃p−1

r=1 Er is the set of the edges such that Er ⊆ Vr × Vr+1

for every r ∈ {1, 2, . . . , p − 1}, i.e., each edge of Er has one end in Vr and the
other in Vr+1. T = {Tr | r = 1, 2, . . . , p} is a family of rooted trees with at least
one internal node (root node), whose leaves are exactly the nodes of Vr. In the
following, whenever we consider a graph, we implicitly assume that it is of this
type, which is known in the literature as “(proper) T -level graph” [1].

Given an instance G = (V,E, T ) of MLCM-TC, the task is to determine, for
each layer r ∈ {1, 2, . . . , p}, permutations πr = 〈v1, v2, . . . , v|Vr|〉 of the nodes in
Vr such that for each internal node τ of Tr, all t leaves in the subtree rooted at
τ are adjacent in πr, i.e., they form a sub-permutation 〈vi, vi+1, . . . , vi+t−1〉 for
some i ∈ {1, 2, . . . , |Vr| − t + 1}.

An easy reduction of the NP-hard MLCM problem to the MLCM-TC prob-
lem (add a trivial tree with the root as the only internal node to each layer) shows
that MLCM-TC is NP-hard. This justifies the usage of integer programming
techniques in the next section. Now we give a formal description of the storyline
visualization problem in order to support our hypothesis that MLCM-TC cap-
tures its core when the criteria “line wiggle avoidance” and “space efficiency” are
neglected in favour of crossing minimization. A story consists of a set of charac-
ters C = {c1, c2, . . . , cn} and a set of scenes S ⊆ 2C . For each scene s ∈ S, bs and
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es are the points in time when s begins and ends, respectively. The time intervals
[bs1 , es1 ] and [bs2 , es2 ] of two distinct scenes s1 and s2 may have a non-empty
intersection, but if they do, we require s1 ∩ s2 = ∅.

The storyline visualization problem requires depicting each character c ∈ C
by a curve in the Euclidean plane that is strictly monotone on the time axis that
we arbitrarily fix to the horizontal x-axis. The curve begins at the x-coordinate
xb

c = min{bs | c ∈ s} and ends at xe
c = max{es | c ∈ s}. We call the interval

[xb
c, x

e
c] the lifespan of character c.

The curves must be such that for every scene s = {cσ1 , cσ2 , . . . , cσk
} ∈ S the

k corresponding curves in the interval [bs, es] are horizontal parallel lines that
are equally spaced with vertical distance 1. Furthermore, the curves of all c �∈ s
are restricted to y-coordinates that have an absolute difference of at least 2 to
the y-coordinates of the curves cσi

∈ s in the interval [bs, es], and to all curves
for characters that are not members of any scene that intersects with [bs, es]. An
example is given in Fig. 1.

Fig. 1. An example of a story with four scenes and four characters, where characters c3
and c4 enter late, character c2 leaves early, and the time intervals [bs2 , es2 ] and [bs3 , es3 ]
have a non-empty intersection.

Given a story (C,S, {[bs, es] | s ∈ S}), we construct an MLCM-TC instance
G = (V,E, T ) as follows:

1. Sort the points in time {bs | s ∈ S} ∪ {es | s ∈ S} in non-decreasing order,
and let 〈t1, t2, . . . , tp〉 be the sorted sequence.

2. Associate a layer Vr with each tr (r ∈ {1, 2, . . . , p}), create a node vc,r for
each character c for which tr is within its lifespan, i.e., for which tr ∈ [xb

c, x
e
c],

and let Vr = {vc,r | tr ∈ [xb
c, x

e
c]}.

3. Let V =
⋃p

r=1 Vr.
4. Let E =

{{vc,r, vc,r+1} for all c ∈ C such that tr, tr+1 ∈ [xb
c, x

e
c]

}
.

5. For each layer Vr create a tree Tr as follows:
i. For each scene s = {cσ1 , cσ2 , . . . , cσk

} such that tr ∈ [bs, es] create an
internal tree node vs,r and tree edges {vs,r, vcσi

,r} for all i ∈ {1, 2, . . . , k}.
ii. Unless the above results in a rooted tree with all nodes in Vr as leaves,

create a tree root ρr and tree edges connecting ρr to all previously created
internal tree nodes of Tr and to all character nodes in Vr that are not
joined to a previously added internal tree node.
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Fig. 2. The MLCM-TC instance of the story of Fig. 1.

In Fig. 2, we demonstrate the construction for our example instance from Fig. 1.
Notice that the trees in T are all of height up to 2, which means that storyline

visualization instances yield a special subclass of MLCM-TC instances. By con-
struction, an optimal solution of this MLCM-TC instance induces a storyline visu-
alization with the minimum number of crossings, and, conversely, any instance of
this special MLCM-TC subclass with trees of height up to 2 is the result of the given
transformation for some story. Thus, both problems are equivalent. As MLCM can
be reduced to this special subclass, NP-hardness is maintained.

3 Integer Linear Programming Formulation

We present an integer linear programming (ILP) formulation of MLCM-TC.
ILP formulations have already been introduced for the general MLCM problem
[16,18] as well as for MLCM-TC, when restricted to the special case of two layers
only [4]. Both models use quadratic ordering formulations. In this section, we
will extend these formulations to an ILP model for MLCM-TC.

To this end, let G = (V,E, T ) be an instance of MLCM-TC, as described
in Sect. 2. For every layer r ∈ {1, 2, . . . , p}, let V

(2)
r = {(i, j) ∈ Vr × Vr : i < j}

be the set of all the ordered pairs of nodes on the considered layer with the
first index smaller than the second. As the total number of edge crossings is
the sum of all crossings in adjacent layers r and r + 1, summed up for all
r ∈ {1, 2, . . . , p − 1}, let us consider the problem for a pair of adjacent layers
r and r + 1, with r ∈ {1, 2, . . . , p − 1}.

A permutation of the nodes in Vr is characterized by variables xr
ij ∈ {0, 1}

associated with the pairs (i, j) ∈ V
(2)
r as follows:

xr
ij = 1 if and only if i is placed above j on layer r.

Then a pair of edges (i, k), (j, �) ∈ Er crosses if and only if

i is placed above j on layer r and � is placed above k on layer r + 1

or

j is placed above i on layer r and k is placed above � on layer r + 1,

see Fig. 3.
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Fig. 3. An edge pair crosses in two of four cases.

Therefore, if {xr
ij | (i, j) ∈ V

(2)
r } and {xr+1

k� | (k, �) ∈ V
(2)
r+1} describe node

permutations on layers r and r + 1, respectively, we have

cijk� := xr
ij(1 − xr+1

k� ) + (1 − xr
ij)x

r+1
k� ∈ {0, 1}

and cijk� = 1 if and only if the edges (i, k) and (j, �) cross.
It is well known (see, e.g., [14]) that {xr

ij ∈ {0, 1} | (i, j) ∈ V
(2)
r } characterizes

a node permutation on Vr if and only if the transitivity conditions

0 ≤ xr
hi + xr

ij − xr
hj ≤ 1 (h < i < j)

are satisfied for all r ∈ {1, 2, . . . , p}.
It remains to model the tree conditions implied by the elements of T . Given a

layer r ∈ {1, 2, . . . , p} and two nodes i and j in Vr, we denote by P (i, j) the lowest
common ancestor of i and j in Tr. Let V

(3)
r = {(h, i, j) ∈ Vr×Vr×Vr : h < i < j}.

For every r ∈ {1, 2, . . . , p} and every triple (h, i, j) ∈ V
(3)
r , we impose the tree

constraints
xr

hj = xr
ij if P (h, i) �= P (P (h, i), j),

xr
hi = xr

hj if P (i, j) �= P (h, P (i, j)).

The first equation forbids the placement of j between h and i in case j does not
belong to the smallest subtree containing h and i. Similarly, the second equation
forbids the placement of h between i and j in case h is not contained in the
smallest subtree of i and j.

Putting it all together, we obtain the following model for MLCM-TC based
on a combination of [18] for MLCM and [4] for the special case of MLCM-TC
for two layers:

minimize
p−1∑

r=1

∑

(i,j)∈V (2)
r , (k,�)∈V

(2)
r+1

(i,k),(j,�)∈Er

xr
ij(1 − xr+1

k� ) + (1 − xr
ij)x

r+1
k�
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subject to

0 ≤ xr
hi + xr

ij − xr
hj ≤ 1 for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V

(3)
r

xr
hj = xr

ij for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V
(3)
r

if P (h, i) �= P (P (h, i), j)
xr

hi = xr
hj for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V

(3)
r

if P (i, j) �= P (h, P (i, j))
xr

ij ∈ {0, 1} for all r ∈ {1, 2, . . . , p} and (i, j) ∈ V
(2)
r .

This is a quadratic 0–1-programming problem with linear constraints,
namely, the transitivity conditions and the tree conditions. (Without the tree
conditions, the problem is also called a quadratic linear ordering problem.)

When we temporarily ignore the transitivity conditions and the tree con-
ditions, the remaining problem is known as quadratic 0–1-optimization of the
form

minimize zT Qz + qT z
s.t. z ∈ {0, 1}N

for an upper triangular matrix Q ∈ Z
N×N and a vector q ∈ Z

N . A well known
construction of Hammer [15], see also [2,10,23], results in an equivalent formula-
tion as a maximum cut problem on a graph Gmc = (Vmc, Emc) with N +1 nodes,
all but one are identified with the zi, i ∈ {1, 2, . . . , N}. Let us call the additional
node z0, so Vmc = {z0, z1, . . . , zN}. The undirected edges (zi, zj), 1 ≤ i < j ≤ N ,
correspond to the nonzero entries of the matrix Q, and there are additional N
edges (z0, zi) for 1 ≤ i ≤ N , giving the edge set Emc. The edge weights we = wij ,
0 ≤ i < j ≤ N , are easily computed from Q and q. For W ⊆ Vmc the edge set
δ(W ) = {(i, j) ∈ Emc | i ∈ W, j ∈ Vmc \ W} is called a cut in Gmc. Then the
resulting maximum cut problem has the form

max{w(δ(W )) | W ⊆ Vmc}.

By introducing variables ye ∈ {0, 1} for each e ∈ Emc, the maximum cut
problem can be formulated as

maximize
∑

e∈Emc

weye

subject to
∑

e∈F

ye − ∑
e∈C\F

ye ≤ |F | − 1 for all cycles C ⊆ Emc and all F ⊆ C, |F | odd

ye ∈ {0, 1} for all e ∈ Emc ,

see [3]. The constraints are called odd cycle constraints.
Applying this transformation is the key to our algorithm: The edges e ∈ Emc

not incident to z0 correspond to edge pairs (i, k), (j, �) ∈ Er, r ∈ {1, 2, . . . , p − 1}.
The edges e ∈ Emc that are incident to z0 correspond to our variables xr

ij

for r ∈ {1, 2, . . . , p}, i < j. In view of the latter property, we can formulate
MLCM-TC as a maximum cut problem with the additional transitivity and tree
constraints, and we can solve it using a branch and cut approach for the maxi-
mum cut problem like in [2] that additionally enforces these extra constraints.
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4 Implementation

The implementation used to determine the minimum number of crossings in a
storyline visualization consists of two main phases, a preprocessing phase and a
branch and cut phase. During the preprocessing, we first reduce the number of
layers of the problem (if possible), by identifying two consecutive layers r and
r + 1 in case the corresponding trees Tr and Tr+1 are identical and every node
in Vr and Vr+1 is an end of one edge of Er (e.g., layers 4 and 5 of Fig. 2 can be
identified). Then, a variant of the barycenter heuristic proposed by Sugiyama
et al. [29], in which the presence of the trees on layers is taken into account, is
executed in order to obtain an initial feasible solution that defines the indexing
within the layers: In this heuristic, the nodes of the trees are sorted according
to their barycenters. The barycenter of a given leaf t is computed by assigning
to each edge, that has t as end, the relative position of the other end as weight.
The barycenter of each internal node τ is the mean of the barycenters of all the
leaves of the subtree rooted at τ .

During the creation of the maximum cut graph induced by the heuristic
solution, we exploit the fact that the tree constraints force many variables to
assume the same value, so that we can identify them. Moreover, this procedure
reduces also the number of constraints consistently after all variables have been
replaced by their representatives: On the one hand, the tree constraints are
not needed in the formulation anymore; on the other hand, some transitivity
constraints become deactivated or redundant. It is important to point out that,
during this first phase, the problem is initialized without constraints and they
are added according to need during the subsequent branch and cut phase.

The branch and cut phase is realized in C++ using ABACUS [20] and
CPLEX [17]. The initial relaxation consists just of the objective function together
with lower bounds 0 and upper bounds 1 for the variables. Odd cycle constraints
and transitivity constraints are generated via separation, the former with the
same strategy as described in [2], the latter by complete enumeration.

5 Computational Results

Our test-bed consists of:

– three movie instances [30], namely “Inception”, the original trilogy of “Star
Wars” and “The Matrix”;

– three book instances from the Stanford GraphBase database [21], namely
“Adventures of Huckleberry Finn”, “Anna Karenina” and “Les Misérables”.

These instances have been converted to MLCM-TC by using the procedure
described in Sect. 2. In the conversion of the book instances, a slight change is
required: Since these instances do not report time intervals, but just the list of
the characters involved in each scene of each chapter, a layer has been created
for each of these scenes, instead of for each beginning and ending time point.
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The three movie instances have been generated using the raw data set from
[30] in order to compare them with results in the literature. We obtained “Incep-
tion”, “Star Wars” and “The Matrix” following the principles described in
Sect. 2. However, after having solved them, we realized that the number of cross-
ings given by our algorithm for “Inception” was 35, while it was 24 in [31] and
23 in [24]. After a careful study of the layouts provided in [24,31,32], we noticed
that the storylines of “Inception” and “The Matrix” in [24,31,32] differ from
the raw data set provided by [30], and therefore are not comparable with our
instances.

In order to make a comparison possible, “Inception” required three major
modifications. This modified instance is called “Inception-sf” and is generated
by incorporating the following changes that are based on a careful study of the
layouts provided in [24,31,32]. The storyline for the character “Mal” is allowed
to take shortcuts, i.e., in long periods of absence it is drawn as a thin curve that
may cross other storylines without accounting for these crossings (see Fig. 12
in [24]). Moreover, the grouping at the end of the movie does not correspond
to the last scene in the data set. To keep our layout comparable, we enforced
in our new instance the same grouping at the end. The third discrepancy is the
number of characters. In the data from [30] there are ten characters listed in the
corresponding file, whereas the layouts from the literature [24,31,32] contain only
eight storylines, in which “Arch” and “Asian” are missing. A major modification
was also necessary in “The Matrix”, where the storylines for the characters
“Brown”, “Smith” and “Jones” are allowed to take shortcuts as well. We call it
“The Matrix-sf”.

Since the instances “Anna Karenina” and “Les Misérables” are very big, we
have split them into chapters and sequences of chapters. The resulting test-bed
is made of eight chapters, seven pairs of chapters, six triples of chapters and
five quadruples of chapters from “Anna Karenina”, and five chapters, four pairs
of chapters and three triples of chapters from “Les Misérables”, plus the entire
“Adventures of Huckleberry Finn”, “Inception-sf”, “Inception”, “Star Wars”,
“The Matrix-sf”, and “The Matrix”.

To the best of our knowledge, this is the first time in which ILP techniques are
applied to storyline visualizations. Thus comparisons of computational results
are not possible. Runs were performed on one node of the HPC Cluster of the
Computer Science Department of the University of Cologne. The node used
consists of two Intel E5-2690v2 CPUs with ten cores each and 128GB RAM.

While the book instances generated from the Stanford GraphBase database
are introduced here for the first time, the literature provides crossing counts
for the three movie instances (“Inception”, “Star Wars”, and “The Matrix”).
Table 1 shows a comparison of the minimum number of crossings (OPT) from
our approach with the numbers of crossings obtained by the streaming-oriented
approach from Tanahashi et al. [31] (THM), the Storyflow approach from
Liu et al. [24] (LIU), and the evolutionary algorithm from Tanahashi and Ma [32]
(TM). Crossing counts for THM, LIU and TM are taken from Table 3 in [31]. We
can confirm that the best solution reported by Liu et al. [24] for the movie “Incep-
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Table 1. Comparison of the solution of the movies.

OPT THM [31] LIU [24] TM [32]

Inception-sf 23 24 23 99

Star Wars 39 41 48 51

The Matrix-sf 10 22 14 43

tion” is optimal. For “Star Wars” the approach from Tanahashi et al. [31] comes
very close to the optimal solution, even though the instance is the biggest and
has the highest crossing count. One may conclude that the heuristics in [24,31]
deliver solutions with a good crossing count, especially when considering the fact
that they do not optimize the crossing count alone.

In Table 2, we report the information about the solution of the considered
instances: The number of layers (p), of nodes (|V |), of edges (|E|), the minimum

Fig. 4. Storyline visualizations with minimum number of crossings of the three movies
from [30].
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Table 2. Information about the solution of the considered instances.

p |V | |E| cr nvar noddc ntrans nsub nLP s Time

anna1 58 409 368 20 1 944 2 684 60 31 344 13.03

anna2 58 525 489 12 3 689 2 665 1 1 126 0.88

anna3 48 265 219 0 951 0 0 1 1 0.01

anna4 49 364 334 20 2 116 2 231 48 13 159 4.86

anna5 71 615 565 17 3 821 3 182 60 3 197 2.60

anna6 56 522 495 31 3 586 4 368 49 3 150 3.89

anna7 62 467 420 9 2 525 2 278 82 17 191 7.88

anna8 28 192 175 6 1 036 850 1 1 45 0.15

anna1–2 117 1 454 1 397 57 16 433 18 284 89 5 545 196.24

anna2–3 108 1 461 1 394 28 18 763 16 849 29 3 469 48.96

anna3–4 100 1 015 951 34 8 473 8 516 45 3 328 12.66

anna4–5 126 1 808 1 748 78 23 742 26 129 181 3 814 306.32

anna5–6 129 1 760 1 697 76 19 967 23 155 252 3 656 281.26

anna6–7 120 1 445 1 385 79 14 464 32 396 671 5 3 008 1 387.57

anna7–8 90 905 850 32 7 248 8 711 265 3 365 19.16

anna1–3 166 2 948 2 865 [100, 199] 52 072 61 743 631 1 1 155 t.l.

anna2–4 158 2 637 2 557 78 40 789 46 600 351 3 2 042 1 284.03

anna3–5 174 3 100 3 012 [115, 224] 51 814 60 646 366 7 1 391 t.l.

anna4–6 178 3 115 3 044 [124, 298] 50 106 207 148 232 3 1 697 t.l.

anna5–7 191 3 742 3 656 [144, 361] 69 156 77 742 653 1 1 216 t.l.

anna6–8 146 2 205 2 140 [117, 200] 28 767 45 396 864 3 2 052 t.l.

anna1–4 216 4 627 4 534 [115, 339] 98 525 100 149 251 1 1 252 t.l.

anna2–5 232 5 366 5 266 [102, 350] 116 249 111 255 261 1 1 001 t.l.

anna3–6 226 5 262 5 168 [122, 424] 119 573 121 148 180 1 1 345 t.l.

anna4–7 240 5 467 5 375 [117, 504] 119 974 123 020 238 1 1 166 t.l.

anna5–8 217 4 624 4 534 [123, 470] 93 832 97 792 377 1 1 088 t.l.

huck 107 1 059 985 42 7 942 11 024 357 29 1 098 111.31

jean1 95 502 462 10 1 777 1 265 49 3 167 0.90

jean2 59 226 212 6 461 385 0 1 44 0.08

jean3 99 873 838 13 6 559 3 407 801 7 360 6.31

jean4 76 909 876 42 9 219 10 116 177 3 335 22.22

jean5 73 491 471 17 2 608 2 412 4 3 138 1.52

jean1–2 154 1 102 1 055 20 5 823 4 172 111 3 226 3.93

jean2–3 159 1 808 1 767 33 18 882 14 128 1 512 3 732 48.90

jean3–4 176 3 249 3 208 [115, 232] 57 746 66 222 482 1 1 698 t.l.

jean4–5 149 1 943 1 907 96 24 584 32 573 619 3 1 037 1012.44

jean1–3 254 2 853 2 780 53 27 720 20 886 1 991 3 1 177 143.34

jean2–4 235 4 182 4 135 [130, 302] 75 150 81 236 429 1 1 928 t.l.

jean3–5 248 4 429 4 386 [101, 372] 79 208 83 279 503 1 1 529 t.l.

Inception-sf 137 798 787 23 1 401 1 756 7 3 108 0.89

Inception 139 925 915 35 1 784 2 376 6 3 130 2.02

Star Wars 100 940 926 39 2 132 2 441 8 1 168 0.99

The Matrix-sf 82 678 660 10 1 343 1 219 18 3 125 0.72

The Matrix 82 683 669 12 1 388 1 328 45 3 98 0.77
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number of crossings (cr) in boldface or a pair [lower bound, best known number of
crossings], the number of variables (nvar), of odd cycle constraints added during
the separation (noddc), of transitivity constraints added during the separation
(ntrans), of subproblems in the branch and cut tree (nsub), of linear programming
relaxations solved (nLPs), and the runtime expressed in seconds (Time) where
“t.l.” means that the run was aborted due to the time limit of one hour, in which
cases the cr column contains an interval. While 29 of the 42 instances have been
solved to optimality, for the remaining 13 instances the best lower bound for the
number of crossings differs from the best solution found at timeout termination.

When we analyze the behaviour of our algorithm, we have to distinguish
between movie and book instances: Since the original instances from [30] allow
more than one scene per layer, the trees on the layers of the movie instances
restrict consistently the possible permutations of the corresponding nodes and
consequently reduce the number of variables. On the other hand, this is not
the case for the book instances, where only one scene per layer occurs. We can
observe that MLCM-TC for movies tends to be much easier in comparison to a
book instance with similar numbers of layers, nodes, and edges.

The difficulty of a book instance is mainly influenced by the combination
of two parameters: the number of layers p and the number of nodes |V |. If
the number of nodes is fixed, the higher the number of layers is, the easier the
solution is, since the distribution of the nodes on more layers reduces the number
of variables of the problem. On the other hand, if the number of layers is fixed,
the difficulty increases with the number of nodes.

The hardest instance we have been able to solve to optimality is “anna2–4”,
where 2 637 nodes are distributed on only 158 layers which results in 40 789

0

10

Fig. 5. Storyline visualizations of two chapters from “Anna Karenina” and “Les
Misérables” [21].
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variables. The biggest solved instance in terms of number of layers is “jean1–3”
with 254 layers but only 2 853 nodes, which results in 27 720 variables.

We present crossing minimal storyline visualizations of the three movie
instances in Fig. 4 and the two book instances in Fig. 5.

6 Conclusion

In this work we have tackled the crossing minimization problem in storyline visu-
alization via an ILP formulation. Despite being an NP-hard problem, computa-
tional results show that with our approach one can handle instances of medium
size within a reasonable time frame. However, our approach is of purely combina-
torial nature, thus, extending it to automatically generate storyline visualizations
such that other design criteria are taken into account is not straightforward.
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Abstract. Storyline visualizations help visualize encounters of the
characters in a story over time. Each character is represented by an
x-monotone curve that goes from left to right. A meeting is repre-
sented by having the characters that participate in the meeting run close
together for some time. In order to keep the visual complexity low, rather
than just minimizing pairwise crossings of curves, we propose to count
block crossings, that is, pairs of intersecting bundles of lines.

Our main results are as follows. We show that minimizing the num-
ber of block crossings is NP-hard, and we develop, for meetings of
bounded size, a constant-factor approximation. We also present two
fixed-parameter algorithms and, for meetings of size 2, a greedy heuristic
that we evaluate experimentally.

1 Introduction

A storyline visualization is a convenient abstraction for visualizing the complex
narrative of interactions among people, objects, or concepts. The motivation
comes from the setting of a movie, novel, or play where the narrative develops
as a sequence of interconnected scenes, each involving a subset of characters. See
Fig. 1 for an example.

The storyline abstraction of characters and events occurring over time can
be used as a metaphor for visualizing other situations, from physical events
involving groups of people meeting in corporate organizations, political lead-
ers managing global affairs, and groups of scholars collaborating on research to
abstract co-occurrences of “topics” such as a global event being covered on the
front pages of multiple leading news outlets, or different organizations turning
their attention to a common cause.

A storyline visualization maps a set of characters of a story to a set of curves
in the plane and a sequence of meetings between the characters to regions in the

The full version of this paper is available on arXiv [3]. Whenever we refer to the
Appendix we mean the appendix of arXiv:1609.00321v1.

c© Springer International Publishing AG 2016
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Fig. 1. Storyline visualization for Jurassic Park by xkcd [11] with a block crossing
(highlighted by a bold green ellipse). (Color figure online)

plane where the corresponding curves come close to each other. The current form
of storyline visualizations seems to have been invented by Munroe [11] (compare
Fig. 1), who used it to visualize, in a compact way, which subsets of characters
meet over the course of a movie. Each character is shown as an x-monotone
curve. Meetings occur at certain times from left to right. A meeting corresponds
to a point in time where the characters that meet are next to each other with
only small gaps between them. Munroe highlights meetings by underlaying them
with a gray shaded region, while we use a vertical line for that purpose. Hence, a
storyline visualization can be seen as a drawing of a hypergraph whose vertices
are represented by the curves and whose edges come in at specific points in time.

A natural objective for the quality of a storyline visualization is to minimize
unnecessary “crossings” among the character lines. The number of crossings
alone, however, is a poor measure: two blocks of “locally parallel” lines crossing
each other are far less distracting than an equal number of crossings randomly
scattered throughout the drawing. Therefore, instead of pairwise crossings, we
focus on minimizing the number of block crossings, where each block crossing
involves two arbitrarily large sets of parallel lines forming a crossbar, with no
other line in the crossing area; see Fig. 1 for an example.

Previous Work. Kim et al. [6] used storylines to visualize genealogical data;
meetings correspond to marriages and special techniques are used to indicate
child–parent relationships. Tanahashi and Ma [12] computed storyline visualiza-
tions automatically and showed how to adjust the geometry of individual lines
to improve the aesthetics of their visualizations. Muelder et al. [10] visualized
clustered, dynamic graphs as storylines, summarizing the behavior of the local
network surrounding user-selected foci.

Only recently a more theoretical and principled study was initiated by
Kostitsyna et al. [8], who considered the problem of minimizing pairwise (not
block) crossings in storylines. They proved that the problem is NP-hard in gen-
eral, and showed that it is fixed-parameter tractable with respect to the (total)
number of characters. For the special case of 2-character meetings without rep-
etitions, they developed a lower bound on the number of crossings, as well as
as an upper bound of O(k log k) when the meeting graph—whose edges describe
the pairwise meetings of characters—is a tree.
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Our work builds on the problem formulation of Kostitsyna et al. [8] but we
considerably extend their results by designing (approximation) algorithms for
general meetings—for a different optimization goal: we minimize the number of
block crossing rather than the number of pairwise line crossings. Block crossings
were introduced by Fink et al. [5] for visualizing metro maps.

Problem Definition. A storyline S is a pair (C,M) where C = {1, . . . , k} is
a set of characters and M = [m1,m2, . . . ,mn] with mi ⊆ C and |mi| ≥ 2 for
i = 1, 2, . . . , n is a sequence of meetings of at least two characters. We call any set
g ⊆ C of characters that has at least one meeting, a group. We define the group
hypergraph H = (C,Γ ) whose vertices are the characters and whose hyperedges
are the groups that are involved in at least one meeting. The group hypergraph
does not include the temporal aspect of the storyline—it models only the graph-
theoretical structure of groups participating in the storyline meetings; it can be
built by lexicographically sorting the meetings in M in O(nk log n) time.

Note that we do not encode the exact times of the meetings: In a given
visualization, at any time t, there is a unique vertical order π of the charac-
ters. Without changing π by crossings, we can increase or decrease vertical gaps
between lines. If a group g forms a contiguous interval in πt, then we can bring
g’s lines within a short distance δgroup without any crossing, and also make sure
that all other lines are at a larger distance of at least δsep. Since any group must
be supported at a time just before its meeting starts, computing an output draw-
ing consists mainly of changing the permutation of characters over time so that
during a meeting its group is supported by the current permutation. We there-
fore focus on changing the permutation by crossings over time, and only have to
be concerned about the order of meetings; the final drawing can be obtained by
a simple post-processing from this discrete set of permutations.

k

c
b+1

b

a

1

Fig. 2. Block crossing (a, b, c)

If {π1, π2, . . . , πk} = {1, 2, . . . , k}, then 〈π1, π2,
. . . , πk〉 is a permutation of length k of C. For
a ≤ b < c, a block crossing (a, b, c) on the per-
mutation π = 〈1, . . . , k〉 is the exchange of two
consecutive blocks 〈a, . . . , b〉 and 〈b+1, . . . , c〉; see
Fig. 2. A meeting m fits a permutation π (or a per-
mutation π supports a meeting m) if the characters
participating in m form an interval in π. In other
words, there is a permutation of m that is part
of π. If we apply a sequence B of block crossings
to a permutation π in the given order, we denote
the resulting permutation by B(π).

Problem 1 (Storyline Block Crossing Minimization (SBCM)). Given a storyline
instance (C,M) find a solution consisting of a start permutation π0 of C and
a sequence B of (possibly empty) sequences of block crossings B1, B2, . . . , Bn

such that the total number of block crossings is minimized and π1 = B1(π0)
supports m1, π2 = B2(π1) supports m2, etc.
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We also consider d-SBCM, a special case of SBCM where meetings involve
groups of size at most d, for an arbitrary constant d. E.g., 2-SBCM allows only
2-character meetings, a setting that was also studied by Kostitsyna et al. [8].

Our Results. We observe that a storyline has a crossing-free visualization if
and only if its group hypergraph is an interval hypergraph. A hypergraph can
be tested for the interval property in O(n2) time, where n is the number of
hyperedges. We show that 2-SBCM is NP-hard (see Sect. 3) and that SBCM is
fixed-parameter tractable with respect to k (Sect. 4). The latter can be modified
to handle pairwise crossings, where its runtime improves on Kostitsyna et al. [8].

We present a greedy algorithm for 2-SBCM that runs in O(k3n) time for k
characters. We do some preliminary experiments where we compare greedy solu-
tions to optimal solutions; see Sect. 5. One of our main results is a constant-factor
approximation algorithm for d-SBCM for the case that d is bounded and that
meetings cannot be repeated; see Sect. 6. Our algorithm is based on a solution
for the following NP-complete hypergraph problem, which may be of indepen-
dent interest. Given a hypergraph H, we want to delete the minimum number
of hyperedges so that the remainder is an interval hypergraph. We develop a
(d + 1)-approximation algorithm, where d is the maximum size of a hyperedge
in H; see Sect. 7. Finally, we list some open problems in Appendix H.

2 Preliminaries

First, we consider the special case where every meeting consists of two char-
acters. For these restricted instances, every meeting can be realized from any
permutation by a single block crossing. This raises the question whether there
is also an optimal solution that fulfills this condition. The answer is negative—if
we may prescribe the start permutation; see Appendix A for details.

Observation 2. Given an instance of 2-SBCM, there is a solution with at most
one block crossing before each of the meetings. In particular, there is a solution
with at most n block crossings in total.

Detecting Crossing-Free Storylines. If a storyline admits a crossing-free visual-
ization, then the vertical permutation of the character lines remains the same
over time, and all meetings involve groups that form contiguous subsets in that
permutation. (The visualization can be obtained by placing characters along a
vertical line in the correct permutation and for each meeting bringing its lines
together for the duration of the meeting and then separating them apart again.)
In other words, a single permutation supports each group of H = (C,Γ ). This
holds if and only if H is an interval hypergraph. This is the case if there exists a
permutation π = 〈v1, . . . , vk〉 of C such that each hyperedge e ∈ Γ corresponds to
a contiguous block of characters in this permutation. As an anonymous reviewer
pointed out, this is equivalent to the hypergraph having path support [1]. An
interval hypergraph can be visualized by placing all of its vertices on a line,
and drawing each of its hyperedges as an interval that includes all vertices of e

https://arxiv.org/pdf/1609.00321v1.pdf
https://arxiv.org/pdf/1609.00321v1.pdf
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and no vertex of V \ e. Checking whether a k-vertex hypergraph is an interval
hypergraph takes O(k2) time [13]. Recall that we can build H in O(nk log n)
time.

Theorem 3. Given the group hypergraph H of an instance of SBCM with k
characters, we can check in O(k2) time whether a crossing-free solution exists.

For 2-SBCM we only need to check (in O(k) time) whether H is a collection
of vertex-disjoint paths; this is dominated by the time (O(n)) for building H.

3 NP-Completeness of SBCM

In this section we prove that SBCM is NP-complete. This is known for BCM. But
SBCM is not simply a generalization of BCM because in SBCM we can choose
an arbitrary start permutation. Therefore, the idea of our hardness proof is to
force a certain start permutation by adding some characters and meetings. We
reduce from Sorting by Transpositions (SBT), which has also been used
to show the hardness of BCM [5]. In SBT, the problem is to decide whether
there is a sequence of transpositions (which are equivalent to block crossings)
of length at most k that transforms a given permutation π to the identity. SBT
was recently shown NP-hard by Bulteau et al. [2].

We show hardness for 2-SBCM, which also implies that SBCM is NP-hard.
It is easy to see that SBCM is in NP: Obviously, the maximum number of block
crossings needed for any number of characters and meetings is bounded by a
polynomial in k and n. Therefore also the size of the solutions is bounded by a
polynomial. To test the feasibility of a solution efficiently, we simply test whether
the permutations between the block crossings support the meetings in the right
order from left to right. We will use the following obvious fact.

Observation 4. If permutation π needs c block crossings to be sorted, any per-
mutation containing π as subsequence needs at least c block crossings to be sorted.

Theorem 5. 2-SBCM is NP-complete.

Proof. It remains to show the NP-hardness. We reduce from SBT. Given an
instance of SBT, that is, a permutation π of {1, . . . , k}, we show how to use a
hypothetical, efficient algorithm for 2-SBCM to determine the minimum number
of transpositions (i.e., block crossings) that transforms π to the identity ι =
〈1, 2, . . . , k〉. Note that π can be sorted by at most k block crossings. So k is an
upper bound for an optimal solution of instance π of SBT.

We extend the set of characters {1, 2, . . . , k} to C = {1, . . . , k, c1, c2, . . . , c2k}.
Correspondingly, we extend π = 〈π1, π2, . . . , πk〉 to π′ = 〈c1, . . . , c2k, π1, . . . , πk〉
and ι to ι′ = 〈c1, c2, . . . , c2k, 1, 2, . . . , k〉. Let Mπ′ and Mι′ be the sequences of
meetings of all neighboring pairs in π′ and ι′, respectively. Let M1 and M2 be
the concatenations of k + 1 copies of Mπ′ and Mι′ , respectively. By repeating
we get M1 = Mk+1

π′ and M2 = Mk+1
ι′ . This yields the instance S = (C,M) of

2-SBCM, where M is the concatenation of M1 and M2; see Fig. 3.
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We show that the number of block crossings needed for the 2-SBCM
instance S equals the number of block crossings to solve instance π of SBT.

First, let B be a shortest sequence of block crossings to sort π. Then, (π′, B)
is a feasible solution for S. The start permutation π′ supports all meetings in
M1 without any block crossing. Using B, the lines are sorted to ι′, and this
permutation supports all meetings in M2 without any further block crossings;
see Fig. 3. Hence, the number of block crossings in any solution of π is an upper
bound for the minimum number of block crossings needed for S.

Fig. 3. Solution for the 2-SBCM
instance S corresponding to a solution
B of instance π of SBT. The box B
represents the block crossings.

For the other direction, let (π∗, B∗)
be an optimal solution for S. Any solu-
tion of 2-SBCM gives rise to a symmet-
ric solution that is obtained by reversing
the order of the characters. Without loss
of generality, we assume that π′ (rather
than the reverse permutation π′R) occurs
somewhere in M1.

Next, we show that the start permu-
tation π′ occurs somewhere in M1 and
that ι′ occurs somewhere in M2. If there
is a sequence Mπ′ of meetings between
which there is no block crossing, the permutation at this position can only be
the start permutation π′ or its reverse. For a contradiction, assume that π′ does
not occur during M1 in the layout induced by (π∗, B∗). Then there is no such
sequence without any block crossing in it. As this sequence is repeated k + 1
times, the solution would need at least k + 1 block crossings. This contradicts
our upper bound, which is k. Analogously, we can show that the permutation ι′

or its reverse occurs in M2.
We now want to show that the unreversed version of ι′ occurs in M2. For

a contradiction, assume the opposite. We forget about the lines 1, . . . , k and
only consider the sequence π′′ = 〈c1, . . . , c2k〉 in π′ which is reversed to ι′′ =
〈c2k, . . . , c1〉 in ι′R. Eriksson et al. [4] showed that we need �(l + 1)/2	 block
crossings to reverse a permutation of l elements. This implies that we need k +1
block crossings to transform π′′ to ι′′. As π′ and ι′R contain these sequences
as subsequences, Observation 4 implies that the transformation from π′ to ι′R

also needs at least k + 1 block crossings. As the optimal solution uses at most
k block crossings, we know that we cannot reach ι′R and thus the sequence of
permutations contains π′ and ι′.

The sequence of block crossings that transforms π′ to ι′ yields a sequence B
of block crossings of the same length that transforms π to ι. This shows that
the length of a solution for S is an upper bound for the length of an optimal
solution of the corresponding SBT instance π. Thus, the two are equal. 
�

Hardness Without Repetitions. With arbitrarily large meetings, SBCM is hard
even without repeating meetings. We can emulate a repeated sequence of 2-char-
acter meetings by gradually increasing group sizes; see Appendix B.

https://arxiv.org/pdf/1609.00321v1.pdf
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4 Exact Algorithms

We present two exact algorithms. Conceptually, both build up a sequence of
block crossings while keeping track of how many meetings have already been
accomplished. The first uses polynomial space; the second improves the runtime
at the cost of exponential space.

We start with a data structure that keeps track of permutations, block cross-
ings and meetings. It is initialized with a given permutation and has two oper-
ations. The Check operation returns whether a given meeting fits the current
permutation. The BlockMove operation performs a given block crossing on
the permutation and then returns whether the most-recently Checked meeting
now fits. See Appendix C for a detailed description.

Lemma 6. A sequence of arbitrarily interleaved BlockMove and Check
operations can be performed in O(β + μ) time, where β is the number of block
crossings and μ is sum of cardinalities of the meetings given to Check. Space
usage is O(k).

A block crossing can be represented by indices (a, b, c) with 1 ≤ a ≤ b < c ≤ k;
hence, there are k3−k

6 distinct block crossings on a permutation of length k.
Now we provide an output-sensitive algorithm for SBCM whose runtime

depends on the number of block crossings required by the optimum.

Theorem 7. An instance of SBCM can be solved in O(k! · (k3−k
6 )β · (β + μ))

time and O(βk) working space if a solution with β block crossings exists, where
μ =

∑
i∈M |mi|.

Proof. Consider a branching algorithm that starts from a permutation of the
characters and keeps trying all possible block crossings. This has branching factor
k3−k

6 and we can enumerate the children of a node in constant time each by
enumerating triples (a, b, c). While applying block crossings, the algorithm keeps
track of how many meetings fit this sequence of permutations using the data
structure from Lemma 6. We use depth-first iterative-deepening search [7] from
all possible start permutations until we find a sequence of permutations that
fulfills all meetings. Correctness follows from the iterative deepening: we want
an (unweighted) shortest sequence of block crossings. The runtime and space
bounds follow from the standard analysis of iterative-deepening search, observing
that a node uses O(k) space and it takes O(β + μ) time in total to evaluate a
path from root to leaf. 
�
We have that μ is O(kn) since there are n meetings and each consists of at most k
characters. At the cost of exponential space, we can improve the runtime and get
rid of the dependence on β, showing the problem to be fixed parameter linear
for k. We note that the following algorithm can easily be adapted to handle
pairwise crossings rather than block crossings; in this case the runtime improves
upon the original result of Kostisyna et al. [8] by a factor of k!.

https://arxiv.org/pdf/1609.00321v1.pdf
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Theorem 8. An instance of SBCM can be solved in O(k! · k3 · n) time and
O(k! · k · n) space.

Proof. Let f(π, �) be the optimal number of block crossings in a solution to the
given instance when restricted to the first � meetings and to have π as its final
permutation. Note that by definition the solution for the actual instance is given
by minπ∗ f(π∗, n), where the minimum ranges over all possible permutations. As
a base case, f(π, 0) = 0 for all π, since the empty set of meetings is supported
by any permutation. Let π and π′ be permutations that are one block crossing
apart and let 0 ≤ � ≤ �′. If the meetings {m�+1, . . . ,m�′} fit π′, then f(π′, �′) ≤
f(π, �) + 1: if we can support the first � meetings and end on π, then with one
additional block crossing we can support the first �′ meetings and end with π′.

We now model this as a graph. Let G be an unweighted directed graph on
nodes (π, �) and call a node start node if � = 0. There is an arc from (π, �)
to (π′, �′) if and only if π and π′ are one block crossing apart, � ≤ �′, and the
meetings {m�+1, . . . ,m�′} fit π′. Note that we allow � = �′ since we may need
to allow block crossings that do not immediately achieve an additional meeting
(cf. Proposition 18), so G is not acyclic. In the constructed graph, f(π, �) equals
the graph distance from the node (π, �) to the closest start node. Call a path to
a start node that realizes this distance optimal.

In G, consider any path [(π1, �1), (π2, �2), (π3, �3)] with �3 > �2. If meeting
�2 + 1 fits π2, then [(π1, �1), (π2, �2 + 1), (π3, �3)] is also a path. Repeating this
transformation shows that for all π, the node (π, n) has an optimal path in
which every arc maximally increases �. Let G′ be the graph where we drop all
arcs from G that do not maximally increase �. Note that G′ still contains a path
that corresponds to the global optimum.

The graph G′ has O(k! ·n) nodes and each node has outdegree O(k3). Then a
breadth-first search from all start nodes to any node (π∗, n) achieves the claimed
time and space bounds, assuming we can enumerate the outgoing arcs of a node
in constant time each.

For a given node (π, �) we can enumerate all possible block crossings in
constant time each, as before. In G′, we also need to know the maximum �′

such that all meetings � + 1 up to �′ fit π′. Note that �′ only depends on � and
π′. We precompute a table M(π, �) that gives this value. Computing M(π, �) for
given π and all � takes a total of O(kn) time: first compute for every mi whether
it fits π, then compute the implied ‘forward pointers’ using a linear scan. So
using O(k! · k · n) preprocessing time and O(k! · n) space, we have an efficient
implementation of the breadth-first search. The theorem follows. 
�

5 SBCM with Meetings of Two Characters

A Greedy Algorithm. To quickly draw good storyline visualizations for 2-SBCM,
we develop an O(kn)-time greedy algorithm. Given an instance S = (C,M),
we reserve a list B = [ ] that the algorithm will use to store the block cross-
ings. The algorithm starts with an arbitrary permutation π0 of C. In every step
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the algorithm removes all meetings from the beginning of M that fit the cur-
rent permutation πi of the algorithm. Subsequently, the algorithm picks a block
crossing b such that the resulting permutation πi+1 = b(πi) supports the maxi-
mum number of meetings from the beginning of M . Then b is appended to the
list B. This process repeats until M is empty. The algorithm returns (π0, B).

Note that there are at most O(k3) possible block crossings. Thus to find
the appropriate block crossings, the algorithm could simply check all of them.
Many of those, however, will result in permutations that do not even support
the next meeting, which would be a bad choice. Hence, our algorithm considers
only relevant block crossings, i.e., block crossings yielding a permutation that
supports the next meeting. Let {c, c′} be the next meeting in M . If x and y are
the positions of c and c′ in the current permutation, i.e., πi

x = c and πi
y = c′

(without loss of generality, assume x < y), the relevant block crossings are:

{(z, x, y − 1) : 1 ≤ z ≤ x}∪{(x, z, y) : x ≤ z < y}∪{(x+1, y − 1, z) : y ≤ z ≤ k}.

So the number of relevant block crossings in each step is k + 1. Let ni be the
maximum number of meetings at the beginning of M we can achieve by one
of these block crossings. We use the data structure in Lemma 6 and check for
each relevant block crossing how many meetings can be done with this permu-
tation. Hence, we can identify a block crossing achieving the maximum number
in O(kni) time since we have to check k + 1 paths containing up to ni meetings
each. Clearly, the numbers of meetings ni in each iteration of the algorithm sum
up to n and therefore the algorithm runs in O(kn) total time.

The way we described the greedy algorithm, it starts with an arbitrary per-
mutation. Instead, we could start with a permutation that supports the max-
imum number of meetings before the first block crossing needs to be done. In
other words, we want to find a maximal prefix M ′ of M such that (C,M ′) can be
represented without any block crossings. We can find M ′ in O(kn) time: we start
with an empty graph and add the meetings successively. In each step we check
whether the graph is still a collection of paths, which can be done in O(k) time.
It is easy to construct a permutation that supports all meetings in M ′. While
this is a sensible heuristic, we do not prove that this reduces the total number
of block crossings. Indeed, we experimentally observe that while the heuristic is
generally good, this is not always the case; see Fig. 4 for an example that uses
the heuristic start permutation.

Note that the greedy algorithm yields optimal solutions for special cases of
2-SBCM. The proof for the following theorem can be found in Appendix D.

Theorem 9. For k = 3, the greedy algorithm produces optimal solutions.

Experimental Evaluation. In this section, we report on some preliminary exper-
imental results. We only consider 2-SBCM. We generated random instances as
follows. Given n and k, we generate n pairs of characters as meetings, uniformly
at random using rejection sampling to ensure that consecutive meetings are dif-
ferent. (Repeated meetings are not sensible.)

https://arxiv.org/pdf/1609.00321v1.pdf
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Fig. 4. The greedy algorithm is not optimal.

Fig. 5. Left: Runtime of the exact algorithm of Theorem 7 on random instances with
k = 4(�), 5(+), 6(×), 7(•). Each data point is the average of 50 random instances.
Right: Histogram of the number of block crossings used by the greedy algorithm for all
k! different start permutations, on a single random instance with n = 100 and k = 8.

First, we consider the exact algorithm of Theorem 7. As expected, its runtime
depends heavily on k (Fig. 5, left). Perhaps unexpectedly, we observe exponential
runtime in n. This is actually a property of our random instances, in which β
tends to increase linearly with n. Note that this does not invalidate the algorithm
since we may be interested in instances for which β is indeed small.

Since the exact algorithm is feasible only for rather small instances, we now
shift our focus to the greedy algorithm. Recall that it starts with an arbitrary
permutation and proceeds greedily. The histogram in Fig. 5 (right) shows the
number of block crossings used by the greedy algorithm depending on the start
permutation, for a single random instance: this bell curve is typical. We see
that there are “rare” start permutations that do strictly better than almost all
others. Indeed, for the reported instance, a random start permutation does 7.2
block crossings worse in expectation than the best possible start permutation.

We call the best possible result of the greedy algorithm over all start permu-
tations BestGreedy, which we calculate by brute force. Let RandomGreedy
start with a permutation chosen uniformly at random, and let Heuristic-
Greedy start with the heuristic start permutation that we have described
above. The histogram in Fig. 6 (left) shows how many more block crossings
HeuristicGreedy uses than BestGreedy on random instances. This distri-
bution is heaviest near zero, but there are instances where performance is poor.
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Fig. 6. Left: histogram of HeuristicGreedy minus BestGreedy, 200 instances with
with k = 7 and n = 100. Right: histogram of RandomGreedy minus Heuristic-
Greedy, 1000 instances with k = 30 and n = 200.

Note that we do not know how to compute BestGreedy efficiently. Compared
to RandomGreedy, we see that HeuristicGreedy fares well (Fig. 6, right).

Lastly, we compare the greedy algorithm to the optimum, which we can only
do for small k and n. On 1000 random instances with k = 5 and n = 12,
HeuristicGreedy was optimal 56% of the time. It was sometimes off by one
(38%), two (5%), or three (1%), but never worse. This is a promising behavior,
but clearly cannot be extrapolated verbatim to larger instances.

Based on these experiments, we recommend HeuristicGreedy as an effi-
cient, reasonable heuristic.

6 Approximation Algorithm

Fig. 7. Meeting {v1, v2, v3, v4}

We now develop a constant-factor approximation
algorithm for d-SBCM where d is a constant. We
initially assume that each group meeting occurs
exactly once, but later show how to extend our
results to the setting where the same group can
meet a bounded number of times.

Overview. Our approximation algorithm has the following three main steps.

1. Reduce the input group hypergraph H = (C,Γ ) to an interval hypergraph
Hf = (C, Γ \ Γp) by deleting a subset Γp ⊆ Γ of the edges of H.

2. Choose a permutation π0 of the characters that supports all groups of this
interval hypergraph Hf . Thus, π0 is the order of characters at the beginning
of the timeline.

3. Incrementally create support for each deleted meeting of Γp in order of
increasing time, as follows. Suppose that g ∈ Γp is the group meeting to
support. Keep one of the character lines involved in this meeting fixed and
bring, for the duration of the meeting, the remaining (at most d − 1) lines
close to it. Then retract those lines to their original position in π0; see Fig. 7.
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Step 2 is straightforward: Sect. 2 shows how to find a permutation supporting
all the groups for an interval hypergraph. In Step 3, we introduce at most
2(d−1) block crossings for each meeting g ∈ Γp not initially supported. The main
technical parts of the algorithm are Step 1 and an analysis to charge at most a
constant number of block crossings in Step 3 to a block crossing in the optimal
visualization. Step 1 requires solving a hypergraph problem; this is technically
the most challenging part, and consumes the entire Sect. 7.

Bounds and Analysis. We call Γp paid edges, and the remainder Γf = Γ \
Γp free edges. Intuitively, free edges can be realized without block crossings
because Hf is an interval hypergraph, while the edges of Γp must be charged
to block crossings of the optimal drawing. We initialize the drawing by placing
the characters in the vertical order π0, which supports all the groups in Γf .
Now we consider the paid edges in left-to-right order. Suppose that the next
meeting involves a group g′ ∈ Γp. We have |g′| ≤ d. We arbitrarily fix one of
its characters, leaving its line intact, and bring the remaining (d − 1) lines in its
vicinity to realize the meeting. This creates at most (d − 1) block crossings, one
per line. When the meeting is over, we again use up to (d − 1) block crossings
to revert the lines back to their original position prescribed by π0; see Fig. 7.

We do this for each paid hyperedge, giving rise to at most 2(d − 1)|Γp| block
crossings. We now prove that this bound is within a constant factor of opti-
mal. We first establish a lower bound on the optimal number of block crossings
assuming that π0 is the optimal start permutation.

Lemma 10. Let π be a permutation of the characters, let Γf be the groups
supported by π, and let Γp = Γ \ Γf . Any storyline visualization that uses π as
the start permutation has at least 4|Γp|/(3d2) block crossings.

Proof. Let g ∈ Γp. Since g is not supported by π, the optimal drawing does not
contain the characters of g as a contiguous block initially. However, in order to
support this meeting, these characters must eventually become contiguous before
the meeting starts. The order changes only through (block) crossings; we bound
the number of groups that can become supported after each block crossing.

After a block crossing, at most three pairs of lines that were not neighbors
before can become neighbors in the permutation: after the blocks C1, C2 ⊆ C
cross, there is one position in the permutation where a line of C1 is next to a
line of C2, and two positions with a line of C1 (C2, respectively) and a line of
C \ (C1 ∪ C2). Any group that was not supported, but is supported after the
block crossing, must contain one of these pairs. We can describe each such group
in the new permutation by specifying the new pair and the numbers d1 and d2
of characters of the group above and below the new pair in the permutation.
Since the group size is at most d, we have d1 + d2 ≤ d. The product d1(d − d1)
achieves its maximum value for d1 = d2 = d/2, and so there are at most d2/4
possible groups for each new pair. Thus, the total number of newly supported
groups after a block crossing is at most 3d2/4, which shows that the optimal
number of block crossings is at least 4|Γp|/(3d2), completing the proof. 
�
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We now bound the loss of optimality caused by not knowing the initial
permutation used by the optimal solution. The key idea here is to use a constant-
factor approximation for the problem of deleting the minimum number of hyper-
edges from H so that it becomes an interval hypergraph (Interval Hyper-
graph Edge Deletion). We prove the following theorem in Sect. 7.

Theorem 11. We can find a (d + 1)-approximation for Interval Hyper-
graph Edge Deletion on group hypergraphs with n meetings of rank d in
O(n2) time.

Let ΓOPT be the set of paid edges in the optimal solution, and Γp the set
of paid edges in our algorithm. By Theorem11, we have |Γp| ≤ (d + 1)|ΓOPT|.
Let ALG and OPT be the numbers of block crossings for our algorithm and the
optimal solution, respectively. By Lemma10, we have OPT ≥ 4|ΓOPT|/(3d2),
which gives |ΓOPT| ≤ 3d2/4 · OPT. On the other hand, we have ALG ≤
2(d − 1)|Γp| ≤ 2(d − 1)(d + 1)|ΓOPT|. Combining the two inequalities, we get
ALG ≤ 3(d2 − 1)d2/2 · OPT, which establishes our main result.

Theorem 12. d-SBCM admits a (3(d2 − 1)d2/2)-approximation algorithm.

Remark. We assumed that each group meets only once, but we can extend the
result if each group can meet c times, for constant c. Our algorithm then yields a
(c ·3(d2−1)d2/2)-factor approximation; each repetition of a meeting may trigger
a constant number of block crossings not present in the optimal solution.

Runtime Analysis. We have to consider the permutation (of length k) of char-
acters before and after each of the n meetings, as well as after each of the O(n)
block crossings. This results in O(kn) time for the last part of the algorithm, but
this is dominated by the time (O(n2)) needed for finding Γp and for determining
the start permutation.

We can improve the running time to O(kn) by a slight modification: using
the approximation algorithm for Interval Hypergraph Edge Deletion is
only necessary for sparse instances. If H has sufficiently many edges, any start
permutation will yield a good approximation. Since no meeting involves more
than d characters, no start permutation can support more than dk meetings. If
n ≥ 2dk, then even the optimal solution must therefore remove at least half of
the edges. Hence, taking an arbitrary start permutation yields an approximation
factor of at most 2 < d + 1.

We now change the algorithm to use an arbitrary start permutation if n ≥ 2dk
and only use the approximation for Interval Hypergraph Edge Deletion
otherwise, i.e., especially only if there are O(k) edges. Hence, for sparse instances
we have O(n2) = O(k2), and for dense instances, the O(n2) runtime is not
necessary. We get the following improved result. (The runtime is worst-case
optimal since the output complexity is of the same order.)

Theorem 13. d-SBCM admits an O(kn)-time (3(d2 − 1)d2/2)-approximation
algorithm.
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Using some special properties of the 2-character case, we can improve the
approximation factor for 2-SBCM from 18 to 12; see Appendix E.

7 Interval Hypergraph Edge Deletion

We now describe the main missing piece from our approximation algorithm:
how to approximate the minimum number of edges whose deletion reduces a
hypergraph to an interval hypergraph, i.e., how to solve the following problem.

Problem 14 ( Interval Hypergraph Edge Deletion). Given a hypergraph
H = (V, E) find a smallest set Ep ⊆ E such that Hf = (V, E \Ep) is an interval
hypergraph.

Note that a graph contains a Hamiltonian path if and only if one can remove
all but n−1 edges so that only vertex-disjoint paths (here, a single path) remain;
hence, our problem is hard even for graphs.

Theorem 15. Interval Hypergraph Edge Deletion is NP-hard.

We now present a (d + 1)-approximation algorithm for rank-d hypergraphs,
in which each hyperedge has at most d vertices. In this section we give all main
ideas. Detailed proofs can be found in Appendix F; they are mostly not too hard
to obtain, but require the distinction of many cases.

For our algorithm, we use the following characterization: A hypergraph is an
interval hypergraph if and only if it contains none of the hypergraphs shown
in Fig. 8 as a subhypergraph [9,13]. Due to the bounded rank, the families
of Fk and Mk are finite with Fd−2 and Md−1 as largest members. Cycles
are the only arbitrarily large forbidden subhypergraphs in our setting. Let
F = {O1, O2, F1, . . . , Fd−2,M1, . . . ,Md−1, C3, . . . , Cd+1}. A hypergraph is F-
free if it does not contain any hypergraph of F as a subhypergraph. Note that a
cycle in a hypergraph consists of hyperedges e1, . . . , ek so that there are vertices
v1, . . . , vk with vi ∈ ei−1 ∩ ei for 2 ≤ i ≤ k (and v1 ∈ e1 ∩ ek) and no edge ei

contains a vertex of v1, . . . , vk except for vi and vi+1.

Fig. 8. Forbidden subhypergraphs for interval hypergraphs (edges represent pairwise
hyperedges, circles/ellipses show hyperedges of higher cardinality).

https://arxiv.org/pdf/1609.00321v1.pdf
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Our algorithm consists of two steps. First, we search for subhypergraphs
contained in F , and remove all edges involved in these hypergraphs. In the second
step, we break remaining (longer) cycles by removing some more hyperedges after
carefully analyzing the structure of connected components. Subhypergraphs in
F consist of at most d + 1 hyperedges. A given optimal solution must remove
at least one of the hyperedges; removing all of them instead yields a factor of at
most d+1. The second step will not negatively affect this approximation factor.

Intuitively, allowing long cycles, but forbidding subhypergraphs of F , results
in a generalization of interval hypergraphs where the vertices may be placed on
a cycle instead of a vertical line. This is not exactly true, but we will see that
the connected components after the first step have a structure similar to this,
which will help us find a set of edges whose removal destroys all remaining long
cycles.

Lemma 22 (Appendix F) shows that any vertex is contained in at most
three hyperedges of a cycle, where the case of three hyperedges with a common
vertex occurs only if a hyperedge is contained in the union of its two neighbors
in the cycle. Assume that e1, e2, and e3 are consecutive edges of a cycle C. If
all three edges are present in an interval representation, we know that we will
first encounter vertices that are only contained in e1, then vertices that are in
(e1∩e2)\e3, then vertices in e1∩e2∩e3, followed by vertices of (e2∩e3)\e1, and
vertices of e3 \ (e1 ∪ e2). Some of the sets (except for pairwise intersections) may
be empty. We do not know the order of vertices within one set, but we know
the relative order of any pair of vertices of different sets. By generalizing this to
the whole cycle, we get a cyclic order—describing the local order in a possible
interval representation—of sets defined by containment in 1, 2, or 3 hyperedges.
We call these sets cycle-sets and their cyclic order the cycle-order of C.

We can analyze how an edge e /∈ C relates to the order of cycle-sets; e
can contain a cycle-set completely, can be disjoint from it, or can contain only
part of its vertices. We call a consecutive sequence of cycle-sets contained in
edge e—potentially starting and ending with cycle-sets partially contained in
e—an interval of e on C. The following lemma shows that every edge forms only
a single interval on a given cycle.

Lemma 16. If a hyperedge e ∈ E intersects two cycle-sets of a cycle C, then e
fully contains all cycle-sets lying in between in one of the two directions along C.

We now know that by opening the cycle at a single position within a cycle-
set not contained in e, C + e forms an interval hypergraph. Edge e adds further
information: If only part of the vertices of a cycle-set are contained in e and also
vertices of the next cycle-set in one direction, we know that the vertices of e in
the first cycle-set should be next to the second cycle-set. We use this to refine the
cycle-sets to a cyclic order of cells, the cell order (a cell is a set of vertices that
should be contiguous in the cyclic order). Initially, the cells are the cycle-sets.
In each step we refine the cell-order by inserting an edge containing vertices
of more than one cell, possibly splitting two cells into two subcells each. The
following lemma shows that during this process of refinements, as an invariant
each remaining edge forms a single interval on the cell order.

https://arxiv.org/pdf/1609.00321v1.pdf
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Lemma 17. If a hyperedge e ∈ E intersects two cells, then e fully contains all
cells lying in between in one of the two directions along the cyclic order.

After refining cells as long as possible, each edge of the connected component
that we did not insert lies completely within a single cell. Several edges can lie
within the same cell, forming a hypergraph that imposes restrictions on the
order of vertices within the cell. However, the cell contains fewer than d vertices.
Hence, this small hypergraph cannot contain any cycles, since we removed all
short cycles, and must be an interval hypergraph.

With this cell-structure, it is not too hard to show that the following strat-
egy to make the connected component an interval hypergraph is optimal (see
Lemmas 24, 25 and 26 in Appendix F): For each pair of adjacent cells we deter-
mine the number of edges containing both cells, select the pair minimizing that
number, and remove all edges containing both. The cell order then yields an
order of the connected component’s vertices that supports all remaining edges.
Since this last step of the algorithm is done optimally, we do not further change
the approximation ratio, which, overall, is d + 1, because we never remove more
than d + 1 edges for at least one edge that the optimal solution removes.

Runtime. Our algorithm can be implemented to run in O(m2) time for m hyper-
edges. We give the main ideas here and present details in Appendix G. When
searching for forbidden subhypergraphs, we first remove all cycles of length k ≤ d
using a modified breadth-first search in O(m2) time. The remaining types of for-
bidden subhypergraphs each contain an edge that contains all but one (O2 and
Fk), two (Mk), or three (O1) vertices of the subhypergraph. We always start
searching from such an edge and use that all short cycles have already been
removed. In the second phase, we determine the connected components and ini-
tialize the cell order for each of them, in O(n + m) time. Stepwise refinement
requires O(m2) time. Counting hyperedges between adjacent cells, determining
optimal splitting points, and finding the final order can all be done in linear
time.

Theorem 11 We can find a (d + 1)-approximation for Interval Hypergraph
Edge Deletion on hypergraphs with m hyperedges of rank d in O(m2) time.
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Abstract. We study the algorithmic aspect of edge bundling. A bundled
crossing in a drawing of a graph is a group of crossings between two sets
of parallel edges. The bundled crossing number is the minimum number
of bundled crossings that group all crossings in a drawing of the graph.

We show that the bundled crossing number is closely related to the
orientable genus of the graph. If multiple crossings and self-intersections
of edges are allowed, the two values are identical; otherwise, the bundled
crossing number can be higher than the genus.

We then investigate the problem of minimizing the number of bundled
crossings. For circular graph layouts with a fixed order of vertices, we
present a constant-factor approximation algorithm. When the circular
order is not prescribed, we get a 6c

c−2
-approximation for a graph with n

vertices having at least cn edges for c > 2. For general graph layouts,
we develop an algorithm with an approximation factor of 6c

c−3
for graphs

with at least cn edges for c > 3.

1 Introduction

For many real-world networks with substantial numbers of links between objects,
traditional graph drawing algorithms produce visually cluttered and confusing
drawings. Reducing the number of edge crossings is one way to improve the
quality of the drawings. However, minimizing the number of crossings is very
difficult [6,8], and a large number of crossings is sometimes unavoidable. Another
way to alleviate this problem is to employ the edge bundling technique in which
some edge segments running close to each other are collapsed into bundles to
reduce the clutter [9,13,17,20–22,26]. While these methods produce simplified
drawings of graphs and significantly reduce visual clutter, they are typically
heuristics and provide no guarantee on the quality of the result.

We study the algorithmic aspect of edge bundling, which is listed as one of
the open questions in a recent survey on crossing minimization by Schaefer [27].
Our goal is to formalize the underlying geometric problem and design efficient
algorithms with provable theoretical guarantees. In our model, pairwise edge
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 399–412, 2016.
DOI: 10.1007/978-3-319-50106-2 31
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Fig. 1. Circular layout of the Chvátal graph: (a) 28 pairwise edge crossings, (b) 13 bun-
dled crossings.

crossings are merged into bundles of crossings, reducing the number of bundled
crossings, where a bundled crossing is the intersection of two groups of edges;
see Fig. 1. We consider both the general setting, where multiple crossings and
self-intersections of the edges are allowed, and the more natural restricted setting
in which only simple drawings are allowed.

1.1 Our Contribution

We first prove that in the most general setting (when a pair of edges is allowed
to cross multiple times and an edge may be crossed by itself or by an incident
edge) the bundled crossing number coincides with the orientable genus of the
graph (Sect. 2); thus, computing it exactly is NP-hard [30]. In the more natural
setting restricted to simple drawings—without double- and self-crossings—, the
bundled crossing number of some graphs is strictly greater than the genus.

Next, we consider the circular bundled crossing number (Sect. 3), that is, the
minimum number of bundled crossings that can be achieved in a circular graph
layout. For a fixed circular order of vertices, we present a 16-approximation algo-
rithm and a fixed-parameter algorithm with respect to the number of bundled
crossings. For circular layouts without a given vertex order, we develop an algo-
rithm with the approximation factor 6c

c−2 for graphs with n vertices having at
least cn edges for c > 2.

In Sect. 4, we study the bundled crossing number for general drawings. The
algorithm for circular layouts can also be applied for this setting; we show that
it guarantees the approximation factor 6c

c−3 for graphs with at least cn edges
for c > 3. We then suggest an alternative algorithm that produces fewer bundled
crossings for graphs with a large planar subgraph.

Finally, by extending our analysis for circular layouts, we resolve one of the
open problems stated by Fink et al. [16] for an ordering problem of paths on a
graph arising in visualizing metro maps (Sect. 5).

1.2 Related Work

Edge Crossings. Crossing minimization is a rich topic in graph drawing [6] but
still poorly understood from the algorithmic point of view. The best currently
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known algorithm implies an O(n9/10)-approximation for the minimum cross-
ing number on graphs having bounded maximum degree [8]. In contrast, the
problem is NP-hard even for cubic graphs and a hardness of constant-factor
approximation is known [7]. Minimizing crossings in circular layouts is also NP-
hard, and several heuristics have been proposed [4,18]. For graphs with m ≥ 4n,
an O(log2 n)-approximation algorithm exists [29]. Our algorithm guarantees an
O(1)-approximation for bundled crossings under that condition.

Bundled crossings are closely related to the model of degenerate crossings
in which multiple edge crossings at the same point in the plane are counted as
a single crossing if all pairs of edges passing through the point intersect. An
unrestricted variant, called the genus crossing number (gcr(G)), allows for self-
crossings of edges and multiple crossings between pairs of edges. Mohar showed
that the genus crossing number equals the non-orientable genus of a graph [24];
thus, gcr(G) = O(m). This is similar to our result that the bundled crossing
number in this unrestricted setting equals the orientable genus of the graph. If
self-crossings are not allowed, then we obtain the degenerate crossing number
(dcr(G)) [25,28]. It was conjectured by Mohar [24] that the genus crossing num-
ber always equals the degenerate crossing number; Schaefer and Štefankovič show
that dcr(G) ≤ 6 · gcr(G) = O(m). A further restriction of the problem forbids
multiple crossings between a pair of edges. The corresponding simple degenerate
crossing number is Ω(m3/n2) for graphs with m ≥ 4n edges [1]. Thus multiple
crossings between pairs of edges are significant for the corresponding value of the
crossing number. Notice the difference to the bundled crossing number, which is
always O(m), even when no self- and multiple crossings are allowed.

Recently, Fink et al. [15] introduced the bundled crossing number. However,
they only study the bundled crossing number of a given embedding and show
that determining the number is NP-hard. They also present a heuristic that
in some cases, e.g., in circular layouts, yields a constant-factor approximation.
In contrast, we study the variable-embedding setting: minimize the bundled
crossing number over all embeddings of a graph, which is posed as an open
problem in [15].

Edge Bundling. Improving the quality of layouts via edge bundling is related to
the idea of confluent drawings, when a non-planar graph is presented in a planar
way by merging groups of edges [11,12]. The first discussion of bundled edges
in the graph drawing literature appeared in [18], where the authors improve
circular layouts by routing edges either on the outer or on the inner face of a
circle. The hierarchical approach by Holten [20] bundles the edges based on an
additional tree structure, and the method is also applied for circular layouts.
Similar to [12,18,20], we study circular graph layouts. Edge bundling methods
for general graph layouts are suggested in [9,13,17,21,22]. While these methods
create an overview drawing, they allow the edges within a bundle to cross and
overlap each other arbitrarily, making individual edges hard to follow. The issue
is addressed in [5,26], where the edges within a bundle are drawn parallel, as
lines in metro maps. To the best of our knowledge, none of the above works on
edge bundling provides a guarantee on the quality of the result, though they can
be applied in conjunction with our algorithms to provide a better visualization.
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Metro Maps. Crossing minimization has also been studied in the context of
visualizing metro maps. There, a planar graph (the metro network) and a set
of paths in the graph (metro lines) are given. The goal is to order the paths
along the edges of the graph so as to minimize the number of crossings. Fink,
Pupyrev, and Wolff [16] suggest to merge single line crossings into crossings
of blocks of lines minimizing the number of block crossings in the map. They
devise approximation algorithms for several classes of simple underlying networks
(paths, upward trees) and an asymptotically worst-case optimal algorithm for
general networks. While we use some ideas of [16] (Sect. 3.1), bundled crossings
are more general, since the edges are not restricted to be routed along a specified
planar graph. Furthermore, we resolve an open question stated in [16].

2 Bundled Crossings and Graph Genus

Let G = (V,E) with n = |V | and m = |E| be a graph drawn in the plane (with
crossings). A bundled crossing is a subset C of the crossings so that the following
conditions hold:

(i) Every crossing in C belongs to edges e1 ∈ E1 and e2 ∈ E2, for two subsets
E1, E2 ⊆ E (E1 and E2 are the bundles of the bundled crossing), and C
contains a crossing of each edge pair e1, e2, for e1 ∈ E1 and e2 ∈ E2.

(ii) One can find a pseudodisk D—a closed polygonal region crossing every edge
at most twice—that separates C (in its interior) from all remaining crossings
of the embedding. No edge e /∈ E1∪E2 intersects D. The requirement ensures
that the bundled crossing is visually separated from the rest of the drawing.

The bundled crossing number of a drawing is the minimum number of bundled
crossings into which the crossings can be partitioned (with disjoint pseudodisks).
The bundled crossing number bc(G) of G is the minimum number of bundled
crossings in a drawing of G. For a circular layout, we denote the circular bundled
crossing number by bc◦(G). If the circular order π of vertices is prescribed, we
speak of the fixed circular bundled crossing number, bc◦(G, π). Clearly, bc(G) ≤
bc◦(G) ≤ bc◦(G, π).

We now discuss the relation of the bundled crossing number to the orientable
genus of the graph. More specifically, consider the unrestricted drawing style for
graphs in which double crossings of edges are allowed, as well as self intersections
and crossings of adjacent edges. Let bc′(G) be the minimum number of bundled
crossings achievable for G in this unrestricted drawing style. We show that bc′(G)
equals the graph genus.

Theorem 1. For every graph G with genus g(G), it holds that bc′(G) = g(G).

Proof. It is easy to show that g(G) ≤ bc′(G). We take a drawing of G with the
minimum number of bundled crossings, bc′(G), on the sphere. Then, for every
bundled crossing, we add a handle to the sphere, where we route one of the
bundles through the handle and one on top of it. This way we get a crossing-free
drawing of G on a surface of genus bc′(G).
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For the other direction, assume that we have a crossing-free drawing of G on a
surface of genus g = g(G). It is known that such a drawing can be modeled using
the representation of a genus-g surface by a fundamental polygon with 4g sides in
the plane [23]. More precisely, the sides of the polygon are numbered in circular
order a1, b1, a

′
1, b

′
1, . . . , ag, bg, a

′
g, b

′
g; for 1 ≤ k ≤ g, the pairs (ak, a′

k) and (bk, b′
k)

of sides are identified in opposite direction, meaning that an edge leaving side
ak appears on the corresponding position of edge a′

k; see Fig. 2 for an example
showing K6 drawn in a fundamental square that models a drawing on the torus.
Directly transforming a drawing on the surface into the fundamental polygon can
lead to vertices appearing multiple times on the polygon’s boundary; however,
small movements of the vertices on the surface fix this. Thus, we assume that
all vertices lie in the interior of the fundamental polygon, and all edges leave the
polygon only in the relative interior of a side of the polygon; especially, every
point of an edge appears at most twice on the boundary of the fundamental
polygon. (There can be parts of edges connecting two points on different sides
of the polygon without directly touching a vertex as in Fig. 2).

Fig. 2. K6 drawn in a fundamental
square modeling a torus.

ak

a′
k

bk

b′
k

Fig. 3. A single bundled crossing out-
side the fundamental polygon.

Given such a crossing-free representation of the drawing of G via the fun-
damental polygon, we create a new drawing of G in the plane by connecting
parts of the edges outside of the fundamental polygon. For every 1 ≤ k ≤ g, we
connect identified points of edges on ak, a′

k, bk, and b′
k as shown in Fig. 3. It is

easy to see that for every k, only one bundled crossing is necessary; furthermore,
all g tuples of four consecutive sides are independent. Hence, we get a drawing
with g bundled crossing, which proves that bc′(G) ≤ g(G). ��
When creating a drawing as in the second part of the above proof, it may
happen that we introduce (i) double crossings of edges, (ii) crossings between
adjacent edges, or (iii) self intersections of an edge. Certainly, a drawing avoid-
ing such configurations—that is, a simple drawing—is preferred. From now on,
we only consider simple drawings. Let bc(G) denote the minimum number of
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bundled crossings achievable with a simple drawing of G. It turns out that insist-
ing on a simple drawing sometimes makes additional bundled crossing necessary.

Lemma 1. For every graph G = (V,E), bc(G) ≥ g(G), and there are graphs G
for which bc(G) > g(G).

Proof. Since we only restrict the allowed drawings, we clearly have bc(G) ≥
bc′(G) = g(G) and the first claim follows.

For the second part of the lemma, consider the complete graph on six vertices,
K6, with genus g(K6) = 1; there is a crossing-free drawing of K6 on the torus.
Every realization of K6 with only one bundled crossing leads to a drawing on the
torus. Consider such a drawing in the fundamental polygon model of the torus;
in this case, the fundamental polygon can be seen as an axis-aligned square
where edges can go to the upper, lower, left, and right side of the square. If two
edges incident to the same vertex v leave the square to adjacent sides, the edges
cross in the bundled crossing, which is forbidden. Furthermore, no part of an
edge can enter and leave the square on adjacent sides since this would result in a
forbidden self-intersection. Given these constraints, it is not hard but technical
to verify that K6 cannot be embedded on the torus and, therefore, bc(K6) > 1;
see [3] for more details. ��
It is easy to see that g(G) = O(m) by introducing a handle on the sphere for
each edge. Furthermore, for the complete graph Kn, it is known that g(Kn) =
	(n − 3)(n − 4)/12
, that is, g(G) = Θ(m) for some graphs. Clearly, we cannot
do better with bundled crossings, that is, bc(G) = Ω(m) for some graphs. In
Sect. 3.1 we show that O(m) bundled crossings always suffice, even if we are
using a circular layout with a fixed order of vertices. This means that for complete
graphs, all bundled crossing number variants and the genus are within a constant
factor from each other. An interesting question is how large the ratio between
the bundled crossing number and the graph genus can get for general graphs.

It is known that Ω(m3/n2) single crossings are necessary for graphs with n
vertices and m ≥ 4n edges [2]. For dense graphs with m = Θ(n2) edges, Θ(m2)
crossings are required, while the bundled crossing number is O(m). Therefore,
using edge bundles can significantly reduce visual complexity of a drawing.

3 Circular Layouts

Now we consider circular graph layouts. Let G = (V,E) be a graph and let
π = [v1, . . . , vn] be a permutation of its vertices. The goal is to draw G in such
a way that the vertices are placed on the boundary of a disk in the circular
order prescribed by π, all edges are drawn inside the circle, and the number of
bundled crossings, bc◦(G, π), is minimized. We start with a scenario when π is
predefined.

3.1 Circular Layouts with Fixed Order

Since in our model adjacent edges are not allowed to cross and the circular order
of the vertices is fixed, the order of outgoing edges for every vertex is unique for π.
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Hence, we may assume that G is a matching. Note that in this case the circular
layout can be seen as a weak pseudoline arrangement, that is, an arrangement
of pseudolines in which not every pair of pseudolines has to cross [10].

Assume that edges e1 and e2 are parallel, that is, they do not have to cross,
and they start and end as immediate neighbors. Clearly, in any simple drawing,
e1 and e2 do not cross and they are crossed by exactly the same set of other
edges; otherwise we would have a forbidden double crossing. Therefore, we can
remove e2 from the instance, find a drawing for the remaining graph, and then
reintroduce e2 without an additional bundled crossing. To this end, we route e2
parallel to e1 and let it participate in e1’s bundled crossings in the same bundle
as e1. Thus, we may assume that (i) the input contains no parallel pairs of
edges. Additionally, we assume that (ii) every edge of the input graph has to be
crossed by an edge (which can be checked by looking at the given circular order);
otherwise, such an edge is removed from the input and later reinserted without
crossings. In the following we assume that the input satisfied both conditions (i)
and (ii) and such a graph is called simplified.

Next we develop an approximation algorithm for bc◦(G, π) by showing how
to find a solution with only a linear number of bundled crossings, and proving
that every feasible solution, even an optimum one, must have a linear number
of bundled crossings. We start with the lower bound.

Lemma 2. Let G = (V,E) be a simplified graph with fixed circular vertex
order π. Then, bc◦(G, π) ≥ m/16.

Proof. Assume we are given a circular drawing of G with the minimum number
of bundled crossings. Such a drawing is a weak pseudoline arrangement. Let H
be the embedded planar graph that we get by planarizing the drawing, that is, by
replacing each crossing by a crossing vertex and adding the cycle (v1, v2, . . . , vn).
We consider the faces of H. Some faces are bounded by original edges and an
additional edge stemming from the cycle. Next we lower bound the number of
triangles in the pseudoline arrangement and, hence, the triangular faces in H.

Assume that we follow some edge in the drawing and analyze the faces at one
of its sides. If all faces were quadrilaterals, then the edge would be completely
parallel to a neighboring edge, which is not possible in a simplified instance.
Hence, on both sides of the edge we find at least one face that is either a triangle
or a k-gon with k ≥ 5. For k ≥ 3, let fk be the number of faces in the drawing of H
of degree k. Since we see at least 2m sides of such faces and every side only once,
we have 2m ≤ 3f3+

∑
k≥5 kfk. Fink et al. [15] show that f3 = 4+

∑
k≥5(k−4)fk.

Hence, 2m ≤ 3f3+
∑

k≥5(k−4)fk +4
∑

k≥5 fk ≤ 3f3+(f3−4)+4(f3−4) ≤ 8f3,
which implies f3 ≥ m/4. Note that the bound is tight; see [3].

To complete the proof of the lemma, we use a result of Fink et al. [15],
who show that the crossings in a fixed drawing can be partitioned into no less
than f3/4 bundled crossings. Since every drawing has at least m/4 triangles,
bc◦(G, π) ≥ m/16. ��
Note that, as Fink et al. [15] point out, there exist circular drawings whose
crossings can be partitioned into no less than Θ(m2) bundled crossings. However,
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Fig. 4. Finding a circular layout with m − 1 bundled crossings (gray shaded).

we can choose the drawing as long as we follow the cyclic order, π, of vertices.
We use this freedom and show how to construct a solution with O(m) bundled
crossings.

Lemma 3. Let G = (V,E) be a graph with a fixed circular vertex order. We
can find a circular layout with at most m − 1 bundled crossings in O(m2) time.

Proof. Recall that we may assume that the input graph is a matching. Since
only the circular order of the vertices matters for the combinatorial embedding,
we transform the circle into a rectangle with v1, . . . , vn placed on the lower
side from left to right; see Fig. 4. We produce a drawing in which every edge
e = (vi, vj) with i < j consists of two straight-line segments.1 The first segment
leaves vi with a slope α; when the segment is above vj it is followed by a vertical
segment connecting down to vj . Since there are only two slopes, every crossing
is between a vertical segment and a segment of slope α. It is easy to see that
two edges (vi, vj) and (vi′ , vj′) cross if the endvertices are interleaved, that is, if
i < i′ < j < j′ or i′ < i < j′ < j. In that case, the edges have to cross in any
possible embedding and we do not introduce additional crossings.

Finally, we create a single bundled crossing for each edge e consisting of
all crossings of e’s vertical segment. It is easy to see that this yields a feasible
partitioning of all crossings into bundled crossings. Since the edge ending at
vertex vn will not have any crossing on its vertical segment, the number of
bundled crossings is at most m − 1. The drawing is created in O(m) time but
the time needed to produce a combinatorial embedding depends on the number
of crossings; it is bounded by O(m2). ��
The upper bound of m−1 is tight: a matching in which every edge crosses every
other edge requires that many bundled crossings. Combining the algorithm and
the lower bound of Lemma2, we get the following result.

Theorem 2. For a graph G with a fixed circular vertex order, we can find a
16-approximation for the fixed circular bundled crossing number in O(m2) time.

Fixed-Parameter Tractability. We now show that deciding whether a solution
with at most k bundled crossings exists is fixed-parameter tractable with respect
to k. The crucial instruments for achieving this are the graph simplification and

1 We thank an anonymous reviewer for suggesting this simplified proof.
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the lower bound of Lemma 2. If after the simplification, G has more than 16k
edges, we know that bc◦(G, π) > 16k/16 = k and we can reject the instance. Oth-
erwise, if at most k edges remain, we can afford to solve the problem exhaustively.

Theorem 3. Let G = (V,E) be a graph with a fixed circular vertex order π.
Deciding whether bc◦(G, π) ≤ k is fixed-parameter tractable with respect to k

with a running time of O(20.657k2
k128k2

+ m).

Proof. We simplify the graph in O(m) time. Afterwards, we check every combi-
nation of circular order, combinatorial embedding, and partitioning of the cross-
ings into up to k sets. If any such combination yields a feasible partitioning into
bundled crossings, we accept the instance; otherwise, we reject it.

There are at most
(
16k
2

) ≤ 128k2 pairs of edges that need to cross. Hence,
there are up to k128k2

ways to partition the crossings into up to k sets. Since every
pair of edges crosses at most once, the circular embedding can be extended to a
pseudoline arrangement (in which every pair crosses exactly once). Felsner and
Valtr proved [14] that there are at most 20.657k2

arrangements of k pseudolines,
and Yamanaka et al. [31] presented a method that iterates over all pseudoline
arrangements using O(k2) total space and O(1) time per arrangement. For each
pseudoline arrangement, we can check whether an embedding with the prescribed
circular order occurs as a part in O(k3) time; within the same time bound, we
can check whether a given partitioning of the crossings yields feasible bundled
crossings. In total this takes O(20.657k2

k128k2
+ m) time. ��

3.2 Circular Layouts with Free Order

We now study the variant of the problem in which the circular order of the
vertices is not known. How can one find a suitable order? A possible approach
would be finding an order that optimizes some aesthetic criteria (e.g., the total
length of the edges [18] or the number of pairwise crossings [4]) and then applying
the algorithm of Lemma 3. Next we analyze such an approach.

In Sect. 2, we have already seen that bc(G) ≥ g(G). We can use this for
getting a lower bound for the bundled crossing number.

Lemma 4. For every graph G = (V,E) with n vertices and m edges,
bc(G) ≥ (m − (3n − 6)) /6 and bc◦(G) ≥ (m − (2n − 3))/6.

Proof. Assume we have a crossing-free drawing of graph G on a surface of genus
g = g(G). The relation between vertices, edges, and faces is described by the
Euler formula n − m + f = 2 − 2 g. Combining this with 2m ≥ 3f , we get that
bc(G) ≥ g(G) ≥ (m − (3n − 6)) /6.

Now consider a circular drawing with the minimum number k = bc◦(G) of
bundled crossings. All n vertices lie on the outer face. Hence, we can add n − 3
edges triangulating the outer face without introducing new crossings. We get a
new graph G′ with m′ = m + n − 3 edges and a (non-circular) drawing of G′

with k bundled crossings. Hence, k ≥ (
m′ − (3n − 6)

)
/6 =

(
m − (2n − 3)

)
/6.

��



408 M.J. Alam et al.

For dense graphs with more than 2n edges, we can get a constant-factor approx-
imation using the upper bound of m − 1 with an arbitrary order.

Theorem 4. Let G = (V,E) be a graph with m ≥ cn for some c > 2. There
is an O(n2)-time algorithm that computes a solution for the circular bundled
crossing number with an approximation factor of 6c

c−2 .

Proof. Using the algorithm of Lemma 3, we find a solution with at most m − 1
bundled crossings. By Lemma 4, (m − (2n − 3))/6 crossings are required. Then
the approximation factor is m−1

(m−(2n−3))/6 = 6
(
1 + 2n−4

m−2n+3

)
≤ 6

(
1 + 2n

m−2n

)
≤

6
(
1 + 2

c−2

)
= 6c

c−2 , which is constant for every c > 2 and n ≥ 1. ��
For constructing a constant-factor approximation algorithm for sparse graphs
with m ≤ 2n one would need better bounds. We next suggest a possible direction
by improving our algorithm for some input graphs. The idea is to save some
crossings by first drawing an outerplanar subgraph of G.

Lemma 5. Let G = (V,E) be a graph and G� = (V,E�) be a subgraph of G
having m� = |E�| edges that is outerplanar with respect to a vertex order π.
Then bc◦(G) ≤ bc◦(G, π) ≤ 2(m − m�) and we can find such a solution in
O(m2) time.

Proof. The algorithm is similar to the one used in Lemma3 in which every edge
consists of two segments. This time we initialize the embedding by adding the
edges of E� without crossings, each with a segment of slope α. Next, we add the
remaining edges from left to right ordered by their first vertex. When adding
edge e = (vi, vj) with i < j, we route the edge with two vertical segments and
a middle segment of slope α. We start upward from vi so that the first segment
crosses all edges present at x = x(vi) that have to cross e, but no other edge. We
start the middle segment with slope α there and complete with a vertical segment
at x = x(vj). It is easy to see that any edge of E� whose vertical segment could
intersect e must start left of vi. However, our routing of e places the possible
crossing on a vertical segment of e. Hence, all vertical segments of edges of E�

are crossing-free. Creating a bundled crossing for each vertical segment of the
edges of E − E� results, therefore, in at most 2(m − m�) bundled crossings. ��
This bound is asymptotically tight; see [3].

4 General Drawings

We now consider general (non-circular) drawings. Note that Lemma4 provides a
lower bound for the bundled crossing number, and Lemma3 gives an algorithm
that can be applied for general drawings. Combining the lower and the upper
bounds, we get the following result for dense graphs.

Theorem 5. Let G = (V,E) be a graph with m ≥ cn for some c > 3. There
is an O(n2)-time algorithm that computes a solution for the bundled crossing
number with an approximation factor of 6c

c−3 .
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Proof. By Lemma 4, bc(G) ≥ (m−(3n−6))/6, and by Lemma 3, bc(G) ≤ m−1.
Then the approximation factor of the algorithm of Lemma3 is m−1

(m−(3n−6))/6 =

6
(
1 + 3n−7

m−3n+6

)
≤ 6

(
1 + 3n

m−3n

)
≤ 6

(
1 + 3

c−3

)
= 6c

c−3 . ��

Can we improve the algorithm for general drawings? Next we develop an alterna-
tive upper bound based on a planar subgraph G� = (V,E�) of G, which produces
fewer bundled crossings if m� = |E�| > 3m/4.

Lemma 6. Let G = (V,E) be a graph, let G� = (V,E�) be its planar subgraph,
and let m� = |E�|. Then, bc(G) ≤ 4(m − m�).

Proof. We start with a topological book embedding of G�, that is, a planar
embedding with all vertices on the x-axis and the edges composed of circular
arcs whose center is on the x-axis. Giordano et al. [19] show how to construct
such an embedding with at most two circular arcs per edge and all edges being
x-monotone (that is, edges with two circular arcs cannot change the direction).

We add the edges of E′ = E \ E� to get a non-planar topological book
embedding (with up to two circular arcs per edge) and keep the drawing simple,
that is, free of self-intersections, double crossings, and crossings of adjacent edges.
Then we split the drawing at the spine and interpret each half as a circular layout
with fixed order. Using the algorithm of Lemma5, we get an embedding with at
most 2(m − m�) crossings for each side and 4(m − m�) crossings in total.

It remains to show how to add an edge e = (u, v) ∈ E′. Consider all planar
edges incident to u and v. If we can add e as a single circular arc above or below
the spine without crossing any of these edges, we do so. Otherwise, two edges e1
adjacent to u and e2 adjacent to v exist (see Fig. 5), and e must be inserted using
two circular arcs. We consider all these obstructing two-bend edges incident to
u and v and insert e by placing its bend next to the rightmost bend of an edge
incident to u (see Fig. 6), avoiding all intersections with planar edges. Bends of
the edges incident to u are ordered by their endvertex so that they do not cross.

u v

Fig. 5. Adding edge e = (u, v) requires
two circular arcs.

u v

Fig. 6. Inserting edge e = (u, v) with
two circular arcs.
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e1 e2

e′
1

(a) e1 ∈ E′ and e2 ∈ E�

e1 e2

e′
1

e′
2

(b) e1, e2 ∈ E′

Fig. 7. Double crossings of edges are not possible

It is easy to see that there are no self-intersections and no crossings of adjacent
edges. There are also no double crossings: Otherwise, let e1 and e2 be a pair of
edges that cross both above and below the spine. Assume that e1 ∈ E′, e2 ∈ E�.
Since e1 consists of two segments, there must be adjacent planar edges that
caused e1’s shape. We find such an edge e′

1 that crosses with the planar edge
e2, a contradiction; see Fig. 7a. If e1, e2 ∈ E′, we find a planar edge e′

2 causing
the two-arc shape of e2, such that e′

1 and e′
2 cross, another contradiction; see

Fig. 7b. ��

5 Block Crossings in Metro Maps

Our analysis has an interesting application for block crossings in metro maps [16].
The block crossing minimization problem (BCM) asks to order simple paths
(metro lines) along the edges of a plane graph (underlying metro network) so
as to minimize the total number of block crossings. Fink et al. [16] present a
method that uses two block crossings per line on a tree network, and ask whether
a (constant-factor) approximation is possible. With the help of the lower bound
of Lemma 2, we affirmatively answer the question. We provide a sketch of the
proof; see [3] for details.

Theorem 6. There is an O(�2)-time 32-approximation algorithm for BCM,
where � is the number of metro lines and the underlying network is a tree.

Proof. Suppose that we have a solution with k block crossings on the tree. We
can interpret the metro lines as edges in the drawing of a matching—connecting
the respective leaves—in a circular layout. This layout has k bundled crossings,
each stemming from a block crossing. Hence, we could use the lower bound
of Lemma 2. To this end, we simplify the instance and consider the remaining
m lines. Lemma 2 implies that an optimum solution has at least m/16 block
crossings of the metro lines. We apply the method of Fink et al. [16] creating
2m block crossings in O(m2) time, and reinsert the simplified lines. ��

6 Conclusion

We have considered the bundled crossing number problem and devised upper
and lower bounds for general as well as circular layouts with and without fixed
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circular vertex order. We have also shown the relation of the bundled crossing
number to the orientable graph genus and resolved an open problem for block
crossings of metro lines on trees. The setting of bundled crossings still has sev-
eral interesting questions to offer. It seems very likely that the circular bundled
crossing number problem is NP-hard, but a proof is missing. Furthermore, an
approximation or a fixed-parameter algorithm for the version with free circular
vertex order is desirable. Both questions are also interesting for general graph
layouts.
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N.-Holl. Math. Stud. 60, 9–12 (1982)

3. Alam, M.J., Fink, M., Pupyrev, S.: The bundled crossing number. CoRR,
cs.CG/1608.08161 (2016)

4. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
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28. Schaefer, M., Štefankovič, D.: The degenerate crossing number and higher-genus
embeddings. In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp.
63–74. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27261-0 6
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Abstract. A straight-line drawing of a graph G is a mapping which
assigns to each vertex a point in the plane and to each edge a straight-
line segment connecting the corresponding two points. The rectilinear
crossing number of a graph G, cr(G), is the minimum number of pairs of
crossing edges in any straight-line drawing of G. Determining or estimat-
ing cr(G) appears to be a difficult problem, and deciding if cr(G) ≤ k is
known to be NP-hard. In fact, the asymptotic behavior of cr(Kn) is still
unknown.

In this paper, we present a deterministic n2+o(1)-time algorithm that
finds a straight-line drawing of any n-vertex graph G with cr(G)+ o(n4)
pairs of crossing edges. Together with the well-known Crossing Lemma
due to Ajtai et al. and Leighton, this result implies that for any dense
n-vertex graph G, one can efficiently find a straight-line drawing of G
with (1 + o(1))cr(G) pairs of crossing edges.

1 Introduction

A drawing of a graph G is a mapping f that assigns to each vertex a distinct
point in the plane and to each edge uv a continuous arc connecting f(u) and f(v),
not passing through the image of any other vertex. Two edges in a drawing cross
if their interiors have a point in common. The crossing number of G, denoted
by cr(G), is the minimum number of pairs of crossing edges in any drawing of
G. Hence, cr(G) = 0 if and only if G is planar. Determining or estimating the
crossing number of a graph is one of the oldest problems in graph theory, with
over 700 papers written on the subject. We refrain here from attempting to give
an overview of the long history of crossing numbers and their applications in
discrete and computational geometry, and refer the reader to the survey articles
by Pach and Tóth [31], Schaefer [33], and the extensive bibliography maintained
by Vrt’o [40].
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In the present paper, we focus on straight-line drawings of a graph G, that
is, drawings of G where the edges are represented by straight-line segments. We
will assume that in all such drawings, no three vertices are collinear, and no
point lies in the interior of three distinct edges. The rectilinear crossing number
of G, denoted by cr(G), is the minimum number of pairs of crossing edges in any
straight-line drawing of G. Clearly cr(G) ≤ cr(G), and a theorem of Fáry [18]
states that cr(G) = 0 when G is planar. On the other hand, it was shown by
Bienstock and Dean [9] that there are graphs with crossing number four, whose
rectilinear crossing numbers are arbitrarily large.

Determining the rectilinear crossing number of a graph appears to be a diffi-
cult problem. In fact, the asymptotic value of cr(Kn) is still unknown. The exact
values for cr(Kn) are known for n ≤ 27 and n = 30, and for large n, the current
best known bounds are

0.379972
(

n

4

)
< cr(Kn) < 0.380473

(
n

4

)
,

due to Ábrego et al. [1] and Fabila-Monroy and López [17] respectively. For
more details on cr(Kn), including its striking connection to Sylvester’s four-
point problem [37,38], see [2,34].

From an algorithmic point of view, computing cr(G) is known to be NP-hard
[8]. More precisely, it is known to be ∃R-complete, that is, complete for the
existential theory of the reals (see [32,33]). On the other hand, many researchers
have designed polynomial time algorithms for approximating crossing numbers of
sparse graphs. In particular, a seminal result of Hopcroft and Tarjan [25] is that
there is a linear time algorithm for testing planarity of a graph. Kawarabayashi
and Reed [26] generalized their result and established a linear time algorithm
that decides whether cr(G) ≤ k when k is fixed. Leighton and Rao [28] obtained
an efficient algorithm that finds a drawing of any bounded-degree n vertex graph
G with at most O(log4 n)(n + cr(G)) pairs of crossing edges. This was later
improved by Even, Guha, and Schieber [16] to O(log3 n)(n+cr(G)), and further
improved by Arora, Rao, and Vazirani [6] to O(log2 n)(n + cr(G)). For more
results on computing cr(G) for bounded degree graphs, see [14].

For dense graphs G, very little is known about cr(G), and as mentioned
above, not even the asymptotic value of cr(Kn). Our main result is the following.

Theorem 1. There is a deterministic n2+o(1)-time algorithm for constructing
a straight-line drawing of any n-vertex graph G in the plane with

cr(G) + O(n4/(log log n)δ)

crossing pairs of edges, where δ > 0 is an absolute constant.

A classic result of Ajtai et al. [5] and Leighton [27], known as the Crossing
Lemma, implies that the rectilinear crossing number of any n-vertex graph with
e edges is at least e3

64n2 − 4n. Hence all n-vertex graphs G with Ω(n2) edges
satisfy cr(G) ≥ Ω(n4). This implies the following.
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Corollary 1. There is a deterministic n2+o(1)-time algorithm for constructing
a straight-line drawing of any n-vertex graph G with |E(G)| ≥ εn2, where ε > 0
is fixed, such that the drawing has at most (1+o(1))cr(G) crossing pairs of edges.

A sequence (Gn : n = 1, 2, . . .) of graphs with |V (Gn)| = n is called quasi-
random with density p (where 0 < p < 1) if, for all subsets X,Y ⊂ V (Gn),
eGn

(X,Y ) = p|X||Y | + o(n2). An important result of Chung, Graham, and
Wilson [12] shows that being quasi-random with density p is equivalent to many
other properties almost surely satisfied by the random graph G(n, p). Studying
properties of quasi-random graphs has been an important research direction with
numerous applications. In Sect. 5, we prove the following result.

Theorem 2. Fix 0 < p < 1 and let (Gn : n = 1, 2, . . .) be a sequence of graphs
that is quasi-random with density p. Then

cr(Gn) = (1 + o(1))p2 · cr(Kn).

More generally, we show any two edge-weighted graphs which are close in cut-
distance have rectilinear crossing numbers which are close (see Lemma 3). For
results on crossing numbers of random graphs, consult [36].

Organization. In the next section, we collect several geometric results on planar
point sets and give an exponential time algorithm for computing the rectilinear
crossing number of a (small) graph. In Sect. 3, we show that if two graphs are
close in cut-distance, then their rectilinear crossing numbers are approximately
the same. In Sect. 4, we prove Theorem 1. Finally in Sect. 5, we prove Theorem 2.

We omit floor and ceiling signs whenever they are not crucial. All logarithms
are base 2.

2 Order Types and Same-Type Transversals

Let V = (v1, . . . , vn) be an n-element point sequence in R
2 in general position,

that is, no three members of V are collinear. The order type of V is the mapping
χ :

(
V
3

) → {+1,−1} (positive orientation, negative orientation), assigning each
triple of V its orientation. By setting vi = (xi, yi) ∈ R

2, for i1 < i2 < i3,

χ({vi1 , vi2 , vi3}) = sgn det

⎛

⎝
1 1 1

xi1 xi2 xi3

yi1 yi2 yi3

⎞

⎠ .

Therefore, two n-element point sequences V = (v1, . . . , vn) and U = (u1, . . . , un)
have the same order type if they are “combinatorially equivalent”. By lexico-
graphically ranking each triple (i1, i2, i3), where 1 ≤ i1 < i2 < i3 ≤ n, we can
describe each order type χ with the vector (χ1, χ2, . . .) ∈ {−1,+1}(n

3), such that
χj = +1 if and only if χ({vi1 , vi2 , vi3}) > 0 and Rank(i1, i2, i3) = j. We will
call vectors χ∗ ∈ {−1,+1}(n

3) abstract order types, and we say that an abstract
order type χ∗ is realizable if there is a point set V in the plane whose order



416 J. Fox et al.

type realizes χ∗. The concept of order types was introduced by Goodman and
Pollack [23] and has played a crucial role in gathering knowledge about crossing
numbers. See [22,23] for more background on order types.

Given k disjoint subsets V1, . . . , Vk ⊂ V , a transversal of (V1, . . . , Vk) is any
k-element sequence (v1, . . . , vk) such that vi ∈ Vi for all i. We say that the k-
tuple of parts (V1, . . . , Vk) has same-type transversals if all of its transversals
have the same order type. One of the key ingredients in the proof of Theorem1
is the following regularity lemma for same-type transversals established by the
authors in [20]. A partition on a finite set V is called equitable if any two parts
differ in size by at most one.

Theorem 3. There is an absolute constant C such that the following holds. For
each 0 < ε < 1 and for any finite point set V in R

2, there is an equitable partition
V = V1 ∪ V2 ∪ · · · ∪ VK , with 1/ε < K < ε−C , such that all but at most ε

(
K
4

)

quadruples of parts {Vi1 , Vi2 , Vi3 , Vi4} have same-type transversals.

For small graphs G = (V,E) with |V (G)| = K, we can compute cr(G) as fol-
lows. We generate

(
K
3

)
polynomials f1, f2, . . . , f(K

3 ) ∈ R[x1, . . . , xK , y1, . . . , yK ],
where for 1 ≤ i1 < i2 < i3 ≤ K and Rank(i1, i2, i3) = j, we have

fj = det

⎛

⎝
1 1 1

xi1 xi2 xi3

yi1 yi2 yi3

⎞

⎠ .

Fix an abstract order type χ∗ ∈ {+1,−1}(K
3 ), and let j1, . . . , jr be the indices

for which χ∗
j�

= +1, and let j′
1, . . . , j

′
s be the indices for which χ∗

j′
�

= −1. In
order to decide if χ∗ is realizable, we need to see if there are real solutions to
the polynomial system

fj1 > 0, . . . , fjr
> 0 fj′

1
< 0, . . . , fj′

s
< 0.

This is a special case of the satisfiability problem in the existential theory of the
reals (see [10]). By an algorithm of Basu, Pollack, and Roy [7], we can decide if
the polynomial system above has real solutions in 2O(K log K) time. Moreover, if
there are solutions, the algorithm will output a solution (x1, . . . , xK , y1, . . . , yK),
where each coordinate uses at most 2O(K log K) bits. Hence if χ∗ is realizable, we
obtain a point set V = {v1, . . . , vK} in the plane that realizes χ∗, and each point
has at most 2O(K log K) bits.

If we do obtain such a point set V , we then compute the minimum number
of pairs of crossing edges over all straight-line drawings of G which uses V as
its vertex set. This can be done in 2O(K log K) time. By repeating the procedure
above over all 2(K

3 ) abstract order types χ∗, we have the following.

Lemma 1. Given a graph G on K vertices, we can find a straight-line drawing
of G with cr(G) pairs of crossing edges in 2O(K3) time.

See [3,4] for an alternative heuristic method for computing cr(G).
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3 Cut-Distance and the Frieze–Kannan Regularity
Lemma

An edge weighted graph G = (V,E) is a graph with weights wG(uv) ∈ [0, 1]
associated with each edge uv ∈ E(G). For convenience, set wG(uv) = 0 if uv 	∈
E(G). For S, T ⊂ V (G), we define

eG(S, T ) =
∑

u∈S,v∈T

wG(uv).

Note that if the sets S and T have a nonempty intersection, the weights of the
edges running in S ∩ T are counted twice. Let G and G′ be two edge weighted
labeled graphs with the same vertex set V = {v1, . . . , vn}. The cut-distance
between G and G′ is defined as

d(G,G′) = max
S,T⊂V

|eG(S, T ) − eG′(S, T )| .
Hence, the cut-distance between two labeled graphs measures how different the
two graphs are when considering the size of various cuts. This concept has played
a crucial role in the work of Frieze and Kannan [21] on efficient approximation
algorithms for dense graphs. See [11] and the book [29] for more results on cut-
distance.

We generalize the concept of crossing numbers to edge weighted graphs as
follows. Let D be a straight-line drawing of G in the plane, and let XD ⊂ (

E(G)
2

)

denote the set of pairs of crossing edges in the drawing. The rectilinear crossing
number of the edge-weighted graph G is defined as

cr(G) = min
D

∑

(uv,st)∈XD

wG(uv) · wG(st),

where the minimum is taken over all straight-line drawings of G. Thus for any
unweighted graph G = (V,E), we can assign weights wG(uv) = 1 for uv ∈ E(G)
and wG(uv) = 0 for uv 	∈ E(G) so that the definition of cr(G) remains consistent.
By copying the proof of Lemma1 almost verbatim, we have the following lemma.

Lemma 2. Let G be an edge weighted graph on K vertices, where the weight of
each edge uses at most B bits. Then we can find a straight-line drawing of G
with cr(G) weighted edge crossings in 2O(K3)B2 time.

Another key ingredient used in the proof of Theorem1 is a variant of Sze-
merédi’s regularity lemma developed by Frieze and Kannan. Szemerédi’s regu-
larity lemma [39] is one of the most powerful tools in modern combinatorics and
gives a rough structural characterization of all graphs. According to the lemma,
for every ε > 0 there is K = K(ε) such that every graph has an equitable vertex
partition into at most K parts such that all but at most an ε fraction of the pairs
of parts behave “regularly”.1 The dependence of K on 1/ε is notoriously strong.

1 For a pair (Vi, Vj) of vertex subsets, the density d(Vi, Vj) is defined as
eG(Vi,Vj)

|Vi||Vj | . The

pair (Vi, Vj) is called ε-regular if for all V ′
i ⊂ Vi and V ′

j ⊂ Vj with |V ′
i | ≥ ε|Vi| and

|V ′
j | ≥ ε|Vj |, we have |d(V ′

i , V ′
j ) − d(Vi, Vj)| ≤ ε.
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It follows from the proof that K(ε) may be taken to be an exponential tower of
twos of height ε−O(1). Gowers [24] used a probabilistic construction to show that
such an enormous bound is indeed necessary. This is quite unfortunate, because
in algorithmic applications of the regularity lemma this parameter typically has
a negative impact on the efficiency. Consult [13], [35], [19] for other proofs that
improve on various aspects of the result.

Frieze and Kannan [21] developed a weaker notion of regularity which is
sufficient for certain algorithmic applications, and for which the dependence on
the approximation parameter ε is much better. Let ε > 0 and let G = (V,E) be
a graph on n vertices. An equitable partition P : V = V1 ∪ · · · ∪ VK is said to be
ε-Frieze-Kannan-regular if for all subsets S, T ⊂ V (G), we have

∣∣∣∣∣∣
eG(S, T ) −

∑

1≤i,j≤K

eG(Vi, Vj)
|S ∩ Vi||T ∩ Vj |

|Vi||Vj |

∣∣∣∣∣∣
< εn2.

Frieze and Kannan [21] showed that for any ε > 0, every graph G = (V,E) has
an ε-Frieze-Kannan-regular partition with K parts, where 1/ε < K < 2O(ε−2).
Moreover, such a partition can be found in randomized O(n2)-time. For the
algorithm we present in the next section, we will use the following more recent
algorithmic version due to Dellamonica et al.

Theorem 4 [15]. There is an absolute constant c such that the following holds.
For each ε > 0 and for any graph G = (V,E) on n vertices, there is a deter-
ministic algorithm which finds an ε-Frieze-Kannan-regular partition on V with
at most 2ε−c

parts, and runs in 22
ε−c

n2-time.

Given an n-vertex graph G = (V,E), let P : V = V1 ∪ · · · ∪ VK be an ε-
Frieze-Kannan-regular partition obtained from Theorem4. We now define two
edge-weighted graphs G/P and GP as follows. Let G/P be the edge-weighted
graph on the vertex set {1, . . . , K} and with edge weights

wG/P(ij) =
eG(Vi, Vj)
(n/K)2

1 ≤ i 	= j ≤ K.

Let GP be an edge-weighted graph with vertex set V = V (G), and with edge
weights

wGP (uv) =

⎧
⎨

⎩

eG(Vi,Vj)
(n/K)2 ifu ∈ Vi, v ∈ Vj , 1 ≤ i 	= j ≤ K;

0 ifu, v ∈ Vi, 1 ≤ i ≤ K.

Thus, the Frieze–Kannan regularity lemma says that d(G,GP) < εn2, which
implies that G/P is a small graph that gives a good approximation of G. We now
prove the following lemmas which establish a relationship between cr(G), cr(GP),
and cr(G/P).
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Lemma 3. Let ε ∈ (0, 1/2) and let G and G′ be two n-vertex edge-weighted
graphs on the same vertex set V . If d(G,G′) < εn2, then we have

|cr(G) − cr(G′)| ≤ ε
1

4C n4,

where C is an absolute constant from Theorem3.

Proof: Consider a straight-line drawing D of G = (V,E) in the plane such that
if XD ⊂ (

E
2

)
denotes the set of pairs of crossing edges in D, we have

cr(G) =
∑

(e1,e2)∈XD

wG(e1)wG(e2). (1)

With slight abuse of notation, let V be the point set in the plane representing
the vertices of G in the drawing D. We can assume that V is in general position.
With approximation parameter ε1/(4C), we apply Theorem 3 to the point set
V and obtain an equitable partition V = V1 ∪ · · · ∪ VK , where K ≤ ε−1/4,
such that all but at most ε1/(4C)

(
K
4

)
quadruples of parts (Vi1 , Vi2 , Vi3 , Vi4) have

same-type transversals. Let T ⊂ (
[K]
4

)
be the set of quadruples (i1, i2, i3, i4) such

that (Vi1 , Vi2 , Vi3 , Vi4) has same type transversal and every such transversal is
in convex position. Then for each such quadruple, we can order the elements
(i1, i2, i3, i4) ∈ T so that every segment with one endpoint in Vi1 and the other
in Vi2 crosses every segment with one endpoint in Vi3 and the other in Vi4 .
Therefore, we have

cr(G) ≥
∑

(i1,i2,i3,i4)∈T

eG(Vi1 , Vi2)eG(Vi3 , Vi4). (2)

On the other hand, let us consider the drawing D′ of G′ on the same point set
V = V1 ∪ · · · ∪ VK . We say that the quadruple (v1, v2, v3, v4) ∈ (

V
4

)
is bad if

two members lie in a single part Vj , or if all four members lie in distinct parts
Vi1 , Vi2 , Vi3 , Vi4 such that (Vi1 , Vi2 , Vi3 , Vi4) does not have same-type transversals.
By Theorem 3, we have at most

K

(�n/K�
2

)(
n

2

)
+ ε

1
4C

(
K

4

)⌈ n

K

⌉4

≤ n4

4K
+ Kn2 + ε

1
4C

(
n

4

)
≤ 2ε

1
4C

(
n

4

)
,

bad quadruples. Since each edge has weight at most one, we have

cr(G′) ≤
∑

(i1,i2,i3,i4)∈T

eG′(Vi1 , Vi2)eG′(Vi3 , Vi4) + 2ε
1

4C

(
n

4

)
.
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Since d(G,G′) < εn2, and by (2), we have

cr(G′) ≤ ∑
(i1,i2,i3,i4)∈T

eG′(Vi1 , Vi2)eG′(Vi3 , Vi4) + 2ε
1

4C

(
n
4

)

≤ ∑
(i1,i2,i3,i4)∈T

(eG(Vi1 , Vi2) + εn2)(eG(Vi3 , Vi4) + εn2) + 2ε
1

4C

(
n
4

)

≤ cr(G) + ε1/2n4

2 + εn4

4! + 2ε
1

4C

(
n
4

)

≤ cr(G) + ε
1

4C n4.

The last inequality follows from the fact that C is a sufficiently large constant. A
symmetric argument also shows that cr(G) ≤ cr(G′)+ε

1
4C n4, and the statement

follows. �

Let G be an edge-weighted graph on the vertex set V = {1, . . . , K} with weights
wG(i, j). The blow-up G[m] of G is the edge-weighted graph obtained from G
by replacing each vertex i by an independent set Ui of order m, and each edge
between Ui and Uj has weight wG(i, j) for i 	= j.

Lemma 4. Let G and G[m] be described as above. Then

0 ≤ cr(G[m]) − m4cr(G) ≤ K3m4.

Proof: We start by proving the second inequality first. Fix a drawing D of G
such that if X denotes the set of pairs of crossing edges in D, we have

∑

(e1,e2)∈X

wG(e1)wG(e2) = cr(G).

Let V be the point set in the plane representing the vertices of G in the drawing.
We can assume that V is in general position. We draw the blow-up graph G[m]
as follows. For each point v ∈ V in the plane, we choose a very small δ and add
m − 1 points in the disk centered at v with radius δ. These points will represent
Uv. By choosing δ sufficiently small, every quadruple of parts (Ui1 , Ui2 , Ui3 , Ui4)
will have same-type transversals. Moreover, we can do this so that the resulting
point set is in general position. Finally if uv ∈ E(G), we draw all edges between
the point sets Uu and Uv. Let Xm denote the set of pairs of crossing edges in
our drawing of G[m].

Set U = U1 ∪ · · · ∪ UK . We say that the quadruple (u1, u2, u3, u4) of points
in U is bad if two of its members lie in a single part Ui. Hence the number of
bad quadruples in U is at most K

(
m
2

)(
Km
2

)
. Since each edge has weight at most

one, we have
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cr(G[m]) ≤ ∑
(e1,e2)∈Xm

wG[m](e1)wG[m](e2)

≤ m4cr(G) + K
(
m
2

)(
Km
2

)

≤ m4cr(G) + K3m4.

On the other hand, now consider a drawing D′ of G[m] such that if X ′ denotes
the set of pairs of crossing edges in D′, we have

cr(G[m]) =
∑

(e1,e2)∈X′
wG[m](e1)wG[m](e2).

Let V (G[m]) = U1 ∪ · · · ∪ UK . By selecting one point from each Ui, we obtain a
drawing of G which has at least cr(G) weighted pairs of crossing edges. Summing
over all of these mK distinct drawings of G, each weighted crossing appears mK−4

times. Therefore,

cr(G[m]) ≥ cr(G) · mK/mK−4 = m4cr(G).

This completes the proof. �

4 Proof of Theorem1

The Algorithm. Input: Let G be a graph with vertex set V = {v1, v2, . . . , vn}.

1. Set ε = (log log n)
−1
2c , where c is defined in Theorem 4. We apply Theorem 4

to G with approximation parameter ε, and obtain an equitable partition P :
V = V1 ∪ · · · ∪ VK on our vertex set with the desired properties such that
1/ε < K < 2ε−c

= 2
√
log log n. This can be done deterministically in n2+o(1)-

time using the algorithm of Dellamonica et al. [15].
2. Let G/P be the edge-weighted graph on the vertex set {1, . . . , K} with edge

weights wG/P(ij) = eG(Vi,Vj)
|Vi||Vj | . Using Lemma 2, we can find a drawing of G/P

with cr(G/P) weighted pairs of crossing edges. Let U = {u1, . . . , uK} be the
point set for such a drawing where each point uses at most 2O(K log K) bits.
This can be done in 2O(K3) = no(1) time.

3. We draw G = (V,E) as follows. Let L be the set of lines spanned by U , and
let δ be the minimum positive distance2 between the points in U and the
lines in L. Note that δ uses at most 2O(K log K) bits since the line spanned
by any two points in U will have the form y = m0x + b0, where m0 and b0
uses at most 2O(K log K) bits. Therefore, the distance between a point in U
and the line y = m0x + b0 will use at most 2O(K log K) bits. Set D(i, δ/10)
to be the disk centered at ui with radius δ/10. We place the points of Vi in

2 The distance between a point and a line in the plane is the length of the line segment
which joins the point to the line and is perpendicular to the line.
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D(i, δ/10) so that the point set V1 ∪ · · · ∪ VK is in general position, and each
point uses at most 2O(K log K) < O(n) bits. Notice that every quadruple of
parts (Vi1 , Vi2 , Vi3 , Vi4) has same-type transversals. We then draw all edges of
G on this point set. This can be done in O(n2) time.

4. Return: the drawing of G.

The total running time for the algorithm above is n2+o(1).
Let D be the drawing of G = (V,E) obtained from the algorithm above,

where V = {v1, . . . , vn} ⊂ R
2, and let X denote the set of pairs of crossing edges

in D. We say that the quadruple of points {vi1 , vi2 , vi3 , vi4} in V is bad if two
of its members lie in a single disk D(j, δ/10). Hence there are at most n4/(2K)
bad quadruples. Therefore

|X| ≤
( n

K

)4

cr(G/P) +
n4

2K
. (3)

Just as above, let GP be the edge weighted graph with vertex set V (same as
G), with edge weights wGP (uv) = eG(Vi, Vj)/(n/K)2, if u ∈ Vi, v ∈ Vj and
i 	= j, and wGP (uv) = 0 otherwise. Since GP is an (n/K)-blow-up of G/P, by
the proof of Lemma 4, we have

( n

K

)4

cr(G/P) ≤ cr(GP). (4)

Since Theorem 4 implies that the cut-distance between G and GP satisfies
d(G,GP) < εn2, Lemma 3 implies that

cr(GP) ≤ cr(G) + ε
1

4C n4. (5)

Putting together (3), (4), and (5), shows that

|X| < cr(G) + O

(
n4

(log log n)δ

)
,

where δ is an absolute constant. This completes the proof of Theorem 1.

5 The Rectilinear Crossing Number of Quasi-random
Graphs

Proof of Theorem 2. Let D be a straight-line drawing of Gn in the plane with
exactly cr(Gn) edge crossings, and let V = {v1, v2, . . . , vn} be the point set in
the plane that represents the vertices of Gn in the drawing. Without loss of
generality, we can assume no three members of V are collinear, no two members
of V share the same x-coordinate, and V is ordered by increasing x-coordinate.

Set ε = n−1/2C , where C is defined in Theorem 3. By Theorem 3, there is an
equitable partition V = V1 ∪ · · · ∪ VK into K parts, where K ≤ ε−C =

√
n, such

that all but at most ε
(
K
4

)
quadruples (Vi1 , Vi2 , Vi3 , Vi4) of parts have same-type

transversals. Let Q ⊂ (
V
4

)
be the set of quadruples in V that are in convex
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position. We say that a quadruple (vi1 , vi2 , vi3 , vi4) ∈ Q is bad if two of its
members lie in a single part Vj , or if they lie in distinct parts of (Vj1 , Vj2 , Vj3 , Vj4)
the does not have same-type transversals. Hence the number of bad quadruples
in Q is at most

K

(
n/K

2

)(
n

2

)
+ ε

(
K

4

)⌈ n

K

⌉4

≤ n4

4K
+ ε

(
n

4

)
.

Let T denote the number of quadruples of parts (Vi1 , Vi2 , Vi3 , Vi4), where
each such quadruple (Vi1 , Vi2 , Vi3 , Vi4) has same-type transversals and each such
transversal is in convex position. Then we have

T ·
( n

K

)4

≥ |Q| −
(

n4

4K
+ ε

(
n

4

))
≥ cr(Kn) −

(
n4

4K
+ ε

(
n

4

))
.

Since
cr(Gn) ≥ T

(
p�n/K�2 − o(n2)

)2
= Tp2�n/K�4 − o(n4),

this implies

cr(Gn) ≥ p2cr(Kn) − p2
(

n4

4K
+ ε

(
n

4

))
− o(n4) = p2cr(Kn) − o(n4).

On the other hand, drawing Gn in the plane by placing its vertices on a point
set that minimizes the number of quadruples in convex position, one can follow
the arguments above to show that

cr(Gn) ≤ p2cr(Kn) + o(n4).

This completes the proof of Theorem 2. �

6 Concluding Remarks

Pach et al. [30] introduced the following alternative notion of crossing number.
For any positive integer k ≥ 1, the geometric k-planar crossing number of G,
denoted by crk, is the minimum number of crossings between edges of the same
color over all k-edge-colorings of G and all straight-line drawings of G. By fol-
lowing the proof of Theorem1 almost verbatim, we have the following theorem.
We note that one needs to slightly modify the proof of Lemma3, by coloring
the edges of G′ between parts Vi1 and Vi2 (Vi3 and Vi4), so that the number of
edges in color i between the two parts in G′ is roughly the same as the number
of edges in color i between the two parts in G.

Theorem 5. Let k ≥ 1 be a fixed constant. Given any n-vertex graph G,
there is a deterministic n2+o(1)-time algorithm that finds a straight-line draw-
ing of G in the plane, and a k-coloring of the edges in G, such that the
number of monochromatic pairs of crossing edges in the drawing is at most
crk(G) + O(n4/(log log n)δ), where δ is an absolute constant.
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We suspect that Theorem 1 also holds for other crossing number variants.
Let us also remark that the rectilinear crossing number is a testable para-

meter, which means that there is a constant time randomized algorithm for
approximating the rectilinear crossing number. More precisely, for each ε > 0
there is t = t(ε) > 0 such that the following holds. If G is a graph on n vertices,
by sampling a random induced subgraph H of G on t vertices, we can approxi-
mate with probability of success at least .99 the rectilinear crossing number of
G with error at most εn4. We do this by noting that the random sample H is,
with probability at least .99, close in cut-distance to G (see the Lovász book [29]
for details). By Lemma 3, if they are close in cut-distance, we get that cr(G) is
within εn4 of cr(H)n4

t4 .
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Abstract. Motivated by a problem asked by Richter and by the long
standing Harary-Hill conjecture, we study the relation between the cross-
ing number of a graph G and the crossing number of its cone CG, the
graph obtained from G by adding a new vertex adjacent to all the ver-
tices in G. Simple examples show that the difference cr(CG) − cr(G)
can be arbitrarily large for any fixed k = cr(G). In this work, we are
interested in finding the smallest possible difference, that is, for each
non-negative integer k, find the smallest f(k) for which there exists a
graph with crossing number at least k and cone with crossing number
f(k). For small values of k, we give exact values of f(k) when the prob-
lem is restricted to simple graphs, and show that f(k) = k+Θ(

√
k) when

multiple edges are allowed.

1 Introduction

Little is known on the relation between the crossing number and the chromatic
number. In this sense Albertson’s conjecture (see [1]), that if χ(G) ≥ r, then
cr(G) ≥ cr(Kr), has taken a great interest. Albertson’s conjecture has been
proved [1,3,14] for r ≤ 16. It is related to Hajós’ Conjecture that every r-
chromatic graph contains a subdivision of Kr. If G contains a subdivision of
Kr, then cr(G) ≥ cr(Kr). Thus Albertson’s conjecture is weaker than Hajós’
conjecture, however Hajós’ conjecture is false for any r ≥ 7 [6].

The cone of a graph G is the graph CG obtained from G by adding an apex,
a new vertex that is adjacent to each vertex in G. Many properties of a graph
are automatically transferred to its cone. For example, if G is r-coloring-critical,
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then CG is (r + 1)-coloring-critical. During the Crossing Numbers Workshop in
2013, in an attempt to understand Alberston’s conjecture, Richter proposed the
following problem: Given an integer n ≥ 5 and a graph G with crossing number
at least cr(Kn), does it follow that the crossing number of its cone CG is at least
cr(Kn+1)? There are examples where these two values can differ arbitrarily (for
instance, if G is the disjoint union of K4’s and K5’s). What is less clear is how
close these values can be.

The answer to Richter’s question is positive for the first interesting case when
n = 5: Kuratowski’s theorem implies that the cone of any graph with crossing
number at least cr(K5) = 1 contains a subdivision of CK5 or CK3,3, and each
of these graphs has crossing number at least cr(K6) = 3. Unfortunately, the
answer is negative for the next case, as the graph in Fig. 1 shows. This graph
has crossing number 3, and a cone with crossing number at most 6, and this is
less than cr(K7) = 9. This motivated us to investigate the following question.

Problem 1. For each k ≥ 0, find the smallest integer f(k) for which there is a
graph G with crossing number at least k and its cone has cr(CG) = f(k).

Fig. 1. A counterexample to Richter’s question when n = 6.

Note that f(k) can also be defined as the largest integer such that every
graph with cr(G) ≥ k, has cr(CG) ≥ f(k). An upper bound to the function
f(k) is obtained from the graph in Fig. 1, by changing the multiplicity of each
edge to r. Any drawing of the new graph has at least 3r2 crossings, and its cone
has crossing number 3r2 +3r. This shows that f(k) ≤ k +

√
3k. Our main result

shows that this is close to be best possible.

Theorem 2. Let G be a graph with cr(G) ≥ k. Then cr(CG) ≥ k +
√

k/2.

Thus we have the following:

Corollary 3. For multigraphs we have f(k) = k + Θ(
√

k ).

The paper is organized as follows. Page drawings, a concept intimately related
to drawings of the cone of a graph, are defined in Sect. 2 and used throughout the
subsequent sections. Although, there seems to be a connection between 1-page
drawings and drawings of the cone, their exact relationship is much more subtle.
Our proofs are instructive in this manner and provide further understanding of
these concepts.

The proof of our main result, Theorem 2 is provided in Sect. 3. In Sect. 4, we
restrict Problem 1 to the case of simple graphs. To distinguish between these two
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problems we use fs(k) instead of f(k). Along this paper, a graph is allowed to
have multiple edges but no loops; when our graphs have no multiple edges, then
we refer them as simple graphs. We find the smallest values of fs by showing
that fs(1) = 3, fs(2) = 5, fs(3) = 6, fs(4) = 8 and fs(5) = 10. These initial
values may suggest that fs(k) ≥ 2k. However, in Sect. 5 we show that

fs(k) = k + o(k),

and provide additional justification for a more specific conjecture that

fs(k) = k +
√

2 k3/4(1 + o(1)).

2 Page Drawings

In this section we describe a perspective provided from considering page drawings
of graphs, a concept that has been studied in its own and has interesting appli-
cations. The relation between 1- and 2-page drawings has shown to be handy as
it is used in the proofs of Theorems 2 and 7. A more detailed discussion on the
relevant aspects of this section can be found in [2,5,13].

For an integer k ≥ 1, a k-page book consists of k half planes sharing their
boundary line � (spine). A k-page-drawing is a drawing of a graph in which
vertices are placed in the spine of a k-page book, and each edge arc is contained
in one page. A convenient way to visualize a k-page drawing is by means of the
circular model. In this model each page is represented by a unit 2-dimensional
disk, so that the vertices are arranged identically on each disk boundary and each
edge is drawn entirely in exactly one disk. In this work we are only interested in
1 and 2-page drawings, and, to be more precise, in the following problem.

Problem 4. Given a 1-page drawing of a graph G with k crossings, find an upper
bound on the number of crossings of an optimal 2-page drawing of G while
having the order of vertices of G on the spine unchanged.

In other words, if the drawing of G in the plane is such that all the vertices
are incident to the outer-face (which is equivalent to having a 1-page drawing),
what is the most efficient way to redraw some edges in the outer-face to reduce
the number of crossings? For this purpose, we define the circle graph CD of any
1-page drawing D of G as the graph whose vertices are the edges of G, and any
two elements are adjacent if they cross in D. Note that CD depends only on the
cyclic order of the vertices of G in the spine.

A related problem was previously formulated by Kainen in [11], where he
studied the outerplanar crossing number of a graph as the minimum number of
crossings in any drawing of G so that all its vertices are incident to the same face.
Clearly, the crossing number of CG is at most the outer-planar crossing number
of G. Although, Kainen was interested in finding an n-vertex graph that has
the largest difference between its crossing number and its outer-planar crossing
number, for us it will be useful to consider drawings in which the vertices are
incident to the same face.
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Turning a 1-page drawing into a 2-page drawing is equivalent to finding a
bipartition (X,V (CD)\X) of the vertices of CD, each part representing the set of
edges of G drawn in one of the pages. Minimizing the number of crossings in the
obtained 2-page drawing of G is equivalent to maximize the number edges in CD

between X and V (CD) \X. This last problem is known as the max-cut problem,
and if the considered graph CD has m edges, then, a well-known result of Erdős
[7] states that its maximum edge-cut has size more than m/2. Improvements to
this general bound are known (see [8,9] and a more recent survey [4]). For our
purpose the following bound of Edwards will be useful.

Lemma 5 (Edwards [8,9]). Suppose that G is a graph of order n with m ≥ 1

edges. Then G contains a bipartite subgraph with at least 1
2m+

√
1
8m + 1

64 − 1
8 >

1
2m edges.

In our context, this result translates to the following observation that we will use.

Corollary 6. Let D be a 1-page drawing of a graph G with k ≥ 1 crossings.
Then some edges of G can be redrawn in a new page, obtaining a 2-page drawing

with at most 1
2k −

√
1
8k + 1

64 + 1
8 crossings. Such a drawing can be found in time

O(|E(G)| + k).

The proof of Corollary 6 will be provided in the full version.

3 Lower Bound on the Crossing Number of the Cone

This section contains the proof of our main result.

Proof (of Theorem 2). Let D̂ be an optimal drawing of the cone CG of G with
apex a, and suppose D̂ has less than k +

√
k/2 crossings. We consider D = D̂|G,

the drawing of G induced by D̂. If we let t to be the number of crossings in D,
then we have

k ≤ t < k +
√

k/2. (1)

For each vertex v ∈ V (G) ∪ {a}, let sv be the number of crossings in D̂

involving edges incident with v. Using that cr(D̂) < k +
√

k/2 and the left-hand
side inequality in (1), we obtain that sa <

√
k/2.

Consider x1, . . . , xsa , the crossings involving edges incident with a. Since D̂
is optimal, each of these crossings is between an edge incident to a and an edge
in G. Let e1, . . . , esa be the list of edges in G (we allow repetitions) so that xi is
the crossing between ei and an edge incident with a. We subdivide each edge ei
in D using two points close to the crossing xi, and we remove the edge segment
σi joining these new two vertices, in order to obtain a drawing D0 of a graph G0

with t crossings (see Fig. 2).
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a

̂D
e1

e2

e3

e4
e5

e6D D0

(a) (b) (c)

Fig. 2. A drawing where the crossed edges are cut.

The obtained drawing D0 has all its vertices incident to the face of D0 con-
taining the point corresponding to the apex vertex a of CG in D̂. For simplicity,
we may assume that this is the unbounded face of D0. It follows that there exists
a simple closed curve � in the closure of this face, containing all the vertices of
G0. Thus, D0 gives rise to a 1-page drawing of G0 with spine �.

Now construct a new drawing of G as follows:

1. Start with the 1-page drawing D0. Partition the edges of G0 according to
Corollary 6, and draw the edges of one part in page 2 outside �.

2. Reinsert edge segments σ1, . . . , σsa as they where drawn in D, to obtain a
drawing D1 (of a subdivision) of G. These segments do not cross each other,
but they may cross some of the edges of G0 that we placed in page 2 in step 1.

Now we estimate the number of crossings in D1. According to Corollary 6,
after step 1 we obtain a 2-page drawing D0 with less than t/2 − √

t/8 + 1/8
crossings. After step 2 we gain some new crossings between the added segments
σ1, . . . , σsa and the edges of G0 drawn on page 2 in step 1.

Claim. The number of new crossings between σ1, . . . , σsa and the edges drawn
on page 2 in step 1 is at most (k − 1)/2.

Proof. We may assume that, for each v ∈ V (G), sv <
√

k/2. Otherwise, by
removing v and all the edges incident to v, we obtain a drawing of CG − v
containing a subdrawing of G, in which v is represented as the apex, and this
drawing has less than k crossings, a contradiction.

Let e ∈ E(G) be an edge having ends u, v ∈ V (G). Suppose that ay1,. . .,ayre
are the edges incident to a that cross e in D̂. We may assume that, for every i,
j with 1 ≤ i < j ≤ re, when we traverse e from u to v, the crossing xi = e ∩ ayi
precedes the crossing xj = e ∩ ayj . It is convenient to let x0 = u and xre+1 = v.

The edges of G0 included in D[e] are the segments of D[e] − {σ1, . . . , σsa}.
We enumerate these edges as τe

0 ,. . . ,τe
re , so that τe

i is included in the xixi+1-arc
of D[e]. Note that τe

1 is incident to u, while τre is incident to v.
Let T = {τe

i : e ∈ E(G) and 0 ≤ i ≤ re} be the set of edges of G0. In
Step 1, when we apply Corollary 2.2 to the edges in D0, we obtain a partition
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T1 ∪ T2 of T . Instead of counting how many crossings are between the segments
in σ1, . . . , σsa and the edges in one of the Ti’s when we redraw Ti in page 2,
we estimate the number m of crossings between σ1, . . . , σsa and the edges in T
when we draw all the crossing edges in T in page 2. This will show that one of
the two parts, either T1 or T2, can be drawn in page 2 creating at most m/2
crossings with the segments σ1, . . . , σsa . To show our claim, it suffices to prove
that m ≤ k − 1, and this is what we do next.

For every point p distinct from a and contained in an edge f incident to a,
the depth h(p) of p is the number of crossings in D̂, contained in the open subarc
of f connecting a to p. When we redraw an edge τe

i in page 2, we can draw
it so that it crosses at most h(xi) + h(xi+1) segments in σ1, . . . , σsa . Such new
drawing of τe

i is obtained from letting the segment of τe
i near to xi follow the

same dual path in D that xi follows to reach a via ayi. Likewise the new end
of τe

i near xi+1 is defined. The new τe
i is obtained from connecting the two end

segments of τe
i inside the face of D containing a.

Let X(a) be the set of crossings involving edges incident to a. For every
x ∈ X(a), there are precisely two elements in T , so that when they are redrawn
in page 2, one of its end segments mimics the arc between x and a inside the
edge including x and a. Each v ∈ V (G) is incident to at most sv edges crossing
in D0. Then, for every v ∈ V (G), there are are most sv edges in T , so that when
we redraw them in page 2, one of their ends mimics the dual path followed by
the edge D̂[xa]. These two observations together imply that

m ≤
∑

x∈X(a)

2h(x) +
∑

v∈V

h(v)sv

< 2
∑

v∈V

(1 + 2 + . . . + (h(v) − 1)) +
√

k/2
∑

v∈V

h(v)

≤
∑

v∈V

h(v)2 + (
√

k/2)sa ≤
(

∑

v∈V

h(v)

)2

+ k/2

= s2a + k/2 < k.

Because m is an integer less than k, m ≤ k − 1 as desired. �	
At the end, we obtained a drawing D1 of (a subdivision of) G with less than
t/2 − √

t/8 + 1/8 + (k − 1)/2 crossings. Using (1) it follows that

cr(D1) <
1
2
(k +

√
k/2)−

√
t/8+1/8+k/2−1/2 = k +

√
k/8−

√
t/8−3/8 < k,

contradicting the fact that cr(D1) ≥ cr(G) ≥ k. �	

4 Exact Values of the Crossing Number of the Cone
for Simple Graphs

In this section, we investigate the minimum crossing number of a cone, with the
restriction of only considering simple graphs. We are interested in finding the
smallest integer fs(k) for which there is a simple graph with crossing number at
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least k, whose cone has crossing number fs(k). On one hand, we describe below
a family of simple graphs that shows that fs(k) ≤ 2k. Our best general lower
bound is obtained from Theorem2. The main result in this section, Theorem 7,
help us to obtain exact values on fs(k) for cases when k is small.

Theorem 7. Let G be a simple graph with crossing number k. Then

(1) if k ≥ 2, then cr(CG) ≥ k + 3;
(2) if k ≥ 4, then cr(CG) ≥ k + 4; and
(3) if k ≥ 5, then cr(CG) ≥ k + 5.

Before proving Theorem7, we describe a family of examples that is used to
find an upper bound for fs(k), that is exact for the values k = 3, 4, 5. Given
an integer k ≥ 3, the graph Fk (Fig. 3) is obtained from two disjoint cycles
C1 = x0 . . . xk−1x0 and C2 = y0 . . . y2k−1y0 by adding, for each i = 0, . . . , k − 1,
the edges xiy2i−2, xiy2i−1, xiy2i, xiy2i+1 (where the indices of the vertices yj are
taken modulo 2k). It is not hard to see that Fk has crossing number k: a drawing
with k crossings is shown in Fig. 3. To show that cr(Fk) ≥ k, for i ∈ {0, . . . , k−1},
consider Li, the K4 induced by the vertices in {xi, xi+1, y2i, y2i+1}. Every Li is
a subgraph of a K5 subdivision of Fk, thus, in an optimal drawing of Fk, at least
one of the edges in Li is crossed. This only guarantees that cr(Fk) ≥ k/2, as two
edges from distinct Li’s might be crossed. However, if an edge from Li crosses
an edge ej from some other Lj , then Fk − ej has a K5 subdivision including Li,
exhibiting a new crossing in some edge in Li. Therefore, every Li either has a
crossing not involving an edge in another Lj , or there are least two crossings
involving edges in Li. This shows that cr(Fk) ≥ k.

The graph shown in Fig. 4 has crossing number 2, and its cone has crossing
number 5. This shows that fs(2) ≤ 5. On the other hand, F3, F4, and F5 serve
as examples to show that fs(k) ≤ 2k for k = 3, 4, 5. These bounds are tight for
2 ≤ k ≤ 5 by Theorem 7.

y0

y1

y2

y3

y4

y5

y6

y7

y8

y2k−3

y2k−2

y2k−1

x0

x1

x2
x3

x4

xk−1

Fig. 3. The graph Fk.
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Fig. 4. A graph with crossing number 2 whose cone has crossing number 5.

Proof (Proof of Theorem 7). Suppose G is a graph with cr(G) = k. Let D̂ be an
optimal drawing of the cone CG, D its restriction to G, and Fa be the face of D
containing the apex a. The vertices of G incident to Fa are the planar neighbors
of a.

Assume that k ≥ 2, and suppose D̂ has exactly k + t crossings. Theorem 2
guarantees that t ≥ 1. Since each edge from a to a non-planar-neighbor introduce
at least one crossing, the apex a has either 0, 1, 2, 3 or 4 non-planar neighbors
(if a has more than 4 non-planar neighbours, then any of the items in Theorem7
is satisfied).

We start by assuming that a has no non-planar neighbors. In this case, D is
a 1-page drawing of G. Corollary 6 implies that we can obtain a new drawing of
G with less than (k + t)/2 crossings. Thus (k + t)/2 > cr(G) = k, which implies
that t ≥ k + 1. In any case of the theorem, this implies the conclusion, thus we
may now assume that a has at least one and at most t non-planar neighbors.

(1) Let us now assume that k ≥ 2 and t ≤ 2.
Suppose a has exactly one non-planar neighbor u. Then cr(D) has at most

k + 1 crossings. At least one edge incident to u is crossed in D, otherwise, all
the crossed edges have ends in Fa, and using Corollary 6, we obtain a drawing
of G with less than (k + 1)/2 crossings, contradicting that cr(G) = k. If at least
two crossings in D involve edges incident to u, or if D has k crossings, then by
redrawing u in Fa, and adding all the edges to its neighbors without creating
any crossings, we obtain a drawing of G with less than k crossings. Therefore
D has k + 1 crossings, and exactly k of them involve edges not incident to u.
Again, we apply Corollary 6 to obtain a drawing of G with at most 1

2 (k − 1) < k
crossings (this time we are more careful by setting our two pages in such way
that the edge not incident to u that crosses an edge incident to u is redrawn in
the page contained in Fa).

Finally, suppose a has exactly two distinct non-planar neighbors u and v.
Then, D̂ has k +2 crossings; D has k crossings, and the edges au, av are crossed
exactly once. Notice that any crossed edge in D is incident to either u or v;
otherwise, we can redraw such edge inside Fa, obtaining a drawing of G with less
than k crossings. Redraw v in D̂[a] (where D̂[a] denotes the point representing
a in D̂); draw the edge uv (if it exists in G) as the arc D̂[au], and draw the
edges from v to its neighbors distinct from u, inside Fa without creating new
crossings. Since every crossing in D involves an edge incident with v, we obtain
a drawing of G with at most one crossing, a contradiction.
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(2) Now, suppose that k ≥ 4 and that t = 3.
The case when the apex a has only one non-planar neighbor u is similar to

the above. If at least three crossings in D involve edges incident with u, then
by redrawing u and the edges incident to u in Fa, we obtain a drawing with
less than k crossings, a contradiction. Thus, at most two crossings involve edges
incident to u. We redraw the remaining crossed edges according to Corollary 6
(if there is an edge e that crosses an edge incident to u, in order to remove an
extra crossing, we may choose this new drawing so that e is redrawn in the page
contained in Fa). If 2 crossings involve edges incident to u, then the obtained
drawing has at most k

2 + 1 crossings, where the +1 comes from the fact that
e was drawn in the page contained in Fa. If at most one of the edges at u is
crossed, then the new drawing has at most (k+1)/2 crossings. In any case, since
k ≥ 4, the new drawing has less than k crossings, a contradiction.

Let us now consider the case when the apex has two non-planar neighbors u
and v. In this case, the drawing D has either k or k + 1 crossings, and one of
{au, av}, say au, is crossed only once. Let L be the set of crossed edges in D
that are not incident to u or v. Suppose there are at least two crossings involving
only edges in L. Then, either there are two edges in L that do not cross, or L
has an edge e that crosses two other edges in L. In the former case, we redraw
such pair of edges in Fa; in the latter case, we redraw e in Fa. Any of these
modifications yield a drawing with less than k crossings. Thus, we may assume
that at most one crossing in D involves two edges not incident to u or v. Redraw
v in D̂[a]; draw the edge vu (if such edge exists in G) as D̂[au]; and the remaining
edges from v to its neighbors distinct from u without creating new crossings. The
new drawing of G has at most two crossings: possibly one in D̂[av] and another
between edges in L, a contradiction.

Finally suppose that the apex a has three non-planar neighbors u, v, w.
In this case D has precisely k crossings, and the edges au, av, aw are crossed
exactly once. Observe that any crossed edge in D is incident to one of {u, v, w},
otherwise we can redraw such edge in Fa, obtaining a drawing of G with less
than k crossings.

Let H be the graph induced by {u, v, w}. If, for x ∈ {u, v, w}, dH(x) denotes
the degree of x in H, then at most dH(x) crossings involve edges at x. Otherwise,
by redrawing x in D̂[a]; drawing the edges from x to its neighbors in H by
using the respective edges from a; and, by drawing the remaining edges at x
in Fa without creating new crossings, we obtain a drawing of G with less than
k crossings. So for each vertex x ∈ {u, v, w}, there are at most two crossings
involving edges at x. Hence D has at most three crossings, a contradiction.

(3) The proof will be included in the full version of the paper. �	

5 Asymptotics for Simple Graphs

Lastly, we try to understand the behaviour of fs(k) when k is large. The impor-
tant part is the increase of the crossing number after adding the apex, thus we
define

φs(k) = fs(k) − k.
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We have proved that φ(k) = f(k) − k ≥ 1
2k1/2. The term k1/2 is asymptotically

tight in the case when we allow multiple edges. However, it is unclear how large
φs(k) is. This question is treated next.

Theorem 8. φs(k) = O(k3/4).

Proof. Let us consider a positive integer k and let n be the smallest integer such
that cr(Kn) ≥ k. Then G = Kn has a crossing number at least k and its cone is
Kn+1.

To find an upper bound for cr(Kn+1) in terms of cr(Kn), start with a drawing
of Kn with cr(Kn) crossings. Then clone a vertex, that is, place a new vertex very
close to an original vertex, and draw the new edges along the original edges. Each
edge incident to the new vertex cross O(n2) edges, thus the obtained drawing
has cr(Kn) + O(n3) crossings. Therefore

φs(k) ≤ cr(Kn+1) − cr(Kn) ≤ O(n3).

It is known [12] that
3
10

(
n

4

)
≤ cr(Kn) ≤ 3

8

(
n

4

)
.

(The constant 3/10 in the lower bound has been recently improved to 0.32025,
see [12] for more information.) Then φs(k) = O(n3) = O(k3/4). �	
The Harary-Hill Conjecture [10] states that

cr(Kn) =

{
1
64n(n − 2)2(n − 4), n is even;
1
64 (n − 1)2(n − 3)2, n is odd.

Proposition 9. If the Harary-Hill conjecture holds, then

φs(k) ≤
√

2 k3/4(1 + o(1)).

Proof. As in the proof of Theorem8, but with a slight twist for added precision,
we take n such that cr(Kn−1) < k ≤ cr(Kn). We also take n1 such that for
k1 = k − cr(Kn−1) we have cr(Kn1−1) < k1 ≤ cr(Kn1). Let G = Kn−1 ∪ Kn1 .
Then cr(G) = cr(Kn−1) + cr(Kn1) ≥ k and cr(CG) = cr(Kn) + cr(Kn1+1).
Therefore,

φs(k) ≤ cr(Kn) + cr(Kn1+1) − cr(Kn−1) − cr(Kn1)
≤ cr(Kn) − cr(Kn−1) + cr(Kn1+1) − cr(Kn1−1).

By inserting the values for the crossing number from the Harary-Hill Con-
jecture, we obtain (the calculation given is for odd n and odd n1, it is similar
when n or n1 is even):

cr(Kn)−cr(Kn−1) = 1
64 ((n−1)2(n−3)2−(n−1)(n−3)2(n−5)) = 1

16n3(1+o(1))

and
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cr(Kn1+1) − cr(Kn1−1) = 1
64 ((n1 + 1)(n1 − 1)2(n1 − 3)

−(n1 − 1)(n1 − 3)2(n1 − 5))
= 1

8n3
1(1 + o(1)).

Noticing that k = 1
64n4(1+o(1)) and k1 = 1

64n4
1(1+o(1)) = O(n3) because k1 ≤

cr(Kn) − cr(Kn−1), we conclude that n3
1 = O(n9/4) = o(k3/4) and henceforth

φs(k) ≤ 1
16n3(1 + o(1)) + 1

8n3
1(1 + o(1)) =

√
2 k3/4(1 + o(1)).

�	
The above proof works even under a weaker hypothesis that cr(Kn) = αn4 +
βn3(1 + o(1)), where α and β are constants. This would imply that φs(k) =
O(k3/4). Our conjecture is that (9) gives the precise asymptotics.

Conjecture 10. φs(k) =
√

2 k3/4(1 + o(1)).

A reviewer noted that this asymptotic is matched when the graph we are
considering is dense.

Remark 11. Let G be a graph with n vertices, m edges, cr(G) = k and such that
m ≥ 4n. If m = Ω(n2), then cr(CG) ≥ k + Ω(k3/4).

The details will be provided in the full version.

Summary

To put the results of this paper into context, let us overview some of the motiva-
tion and some of directions for future work. The starting point of this paper was
an attempt to understand Albertson’s conjecture. The results of the paper (and
their proofs) show that the crossing number behavior when adding an apex ver-
tex is intimately related to 1-page drawings, but the exact relationship is quite
subtle. There is some evidence that the minimal increase of the crossing number
when an apex is added should be achieved with very dense graphs, close to the
complete graphs. Our Conjecture 10 entails this problem. Although very dense
graphs have fewer vertices than sparser graphs with the same crossing number
and thus need fewer connections to be made from the apex to their vertices,
their near optimal drawings are far from 1-page drawings and therefore more
crossings are needed. The full understanding of this antinomy would shed new
light on the Harary-Hill conjecture.

Finally, it is worth pointing out that neither exact nor approximation algo-
rithm is known for computing the crossing number of graphs of bounded tree-
width. Adding an apex to a graph increases the tree-width of the graph by 1, thus
understanding the crossing number of the cone is an important special case that
would need to be understood before devising an algorithm for general graphs of
bounded tree-width.
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Abstract. Topological drawings are natural representations of graphs in
the plane, where vertices are represented by points, and edges by curves
connecting the points. We consider a natural class of simple topological
drawings of complete bipartite graphs, in which we require that one side
of the vertex set bipartition lies on the outer boundary of the drawing.
We investigate the combinatorics of such drawings. For this purpose,
we define combinatorial encodings of the drawings by enumerating the
distinct drawings of subgraphs isomorphic to K2,2 and K3,2, and inves-
tigate the constraints they must satisfy. We prove in particular that for
complete bipartite graphs of the form K2,n and K3,n, such an encoding
corresponds to a drawing if and only if it obeys consistency conditions
on triples and quadruples. In the general case of Kk,n with k ≥ 2, we
completely characterize and enumerate drawings in which the order of
the edges around each vertex is the same for vertices on the same side
of the bipartition.

1 Introduction

We consider topological graph drawings, which are drawings of simple undirected
graphs where vertices are represented by points in the plane, and edges are
represented by simple curves that connect the corresponding points. We typically
restrict those drawings to satisfy some natural nondegeneracy conditions. In
particular, we consider simple drawings, in which every pair of edges intersect
at most once. A common vertex counts as an intersection.

While being perhaps the most natural and the most used representations of
graphs, simple drawings are far from being understood from the combinatorial
point of view. For the smallest number of edge crossings in a simple topological
drawing of Kn [1,2,8] or of Kk,n [4,12] there are long standing conjectures but
the actual minimum remains unknown.

In order to cope with the inherent complexity of the drawings, it is useful
to consider combinatorial abstractions. Those abstractions are discrete struc-
tures encoding some features of a drawing. One such abstraction, introduced by
Kratochv́ıl, Lubiw, and Nešetřil, is called abstract topological graphs (AT-
graph) [9]. An AT-graph consists of a graph (V,E) together with a set X ⊆ (

E
2

)
.
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A topological drawing is said to realize an AT-graph if the pairs of edges that
cross are exactly those in X . Another abstraction of a topological drawing is
called the rotation system. The rotation system associates a circular permuta-
tion with every vertex v, which in a realization must correspond to the order in
which the neighbors of v are connected to v. Natural realizability problems are:
given an AT-graph or a rotation system, is it realizable as a topological drawing?
The realizability problem for AT-graphs is known to be NP-complete [10].

For simple topological drawings of complete graphs, the two abstractions are
actually equivalent [11]. It is possible to reconstruct the set of crossing pairs of
edges by looking at the rotation system, and vice-versa. Kynčl recently proved
the remarkable result that a complete AT-graph (an AT-graph for which the
underlying graph is complete) can be realized as a simple topological drawing of
Kn if and only if all the AT-subgraphs on at most 6 vertices are realizable [5,6].
This directly yields a polynomial-time algorithm for the realizability problem.
While this provides a key insight on topological drawings of complete graphs,
similar realizability problems already appear much more difficult when they
involve complete bipartite graphs. In that case, knowing the rotation system is
not sufficient for reconstructing the intersecting pairs of edges.

We propose a fine-grained analysis of simple topological drawings of complete
bipartite graphs. In order to make the analysis more tractable, we introduce a
natural restriction on the drawings, by requiring that one side of the vertex set
bipartition lies on a circle at infinity. This gives rise to meaningful, yet complex
enough, combinatorial structures.

Definitions. We wish to draw the complete bipartite graph Kk,n in the plane
in such a way that:

1. vertices are represented by points,
2. edges are continuous curves that connect those points, and do not contain

any other vertices than their two endpoints,
3. no more than two edges intersect in one point,
4. edges pairwise intersect at most once; in particular, edges incident to the

same vertex intersect only at this vertex,
5. the k vertices of one side of the bipartition lie on the outer boundary of the

drawing.

Properties 1–4 are the usual requirements for simple topological drawings
also known as good drawings. As we will see, property 5 leads to drawings with
interesting combinatorial structures. Throughout this paper, the term drawing
always refers to drawings satisfying the above properties.

The set of vertices of a bipartite graph Kk,n will be denoted by P ∪ V ,
where P and V are the two sides of the bipartition, with |P | = k and |V | = n.
When we consider a given drawing, we will use the word “vertex” and “edge” to
denote both the vertex or edge of the graph, and their representation as points
and curves. Without loss of generality, we can assume that the k outer vertices
p1, . . . , pk lie in clockwise order on the boundary of a disk that contains all
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Fig. 1. Two drawings of K3,5 satisfying the constraints. In both drawings the rotation
system is (12345, 21435, 13254).

the edges, or on the line at infinity. The vertices of V are labeled 1, . . . , n. An
example of such a drawing is given in Fig. 1.

The rotation system of the drawing is a sequence of k permutations on n
elements associated with the vertices of P in clockwise order. For each vertex
of P , its permutation encodes the (say) counterclockwise order in which the n
vertices of V are connected to it. Due to our last constraint on the drawings, the
rotations of the k vertices of P around each vertex of V are fixed and identical,
they reflect the clockwise order of p1, . . . , pk on the boundary.

Unlike for complete graphs, the rotation system of a drawing of a complete
bipartite graph does not completely determine which pairs of edges are inter-
secting. This is exemplified with the two drawings in Fig. 1.

Results. The paper is organized as follows. In Sect. 2, we consider drawings with
a uniform rotation system, in which the k permutations of the vertices of P are all
equal to the identity. In this case, we can state a general structure theorem that
allows us to completely characterize and count drawings of arbitrary bipartite
graphs Kk,n.

In Sect. 3, we consider drawings of K2,n with arbitrary rotation systems.
We consider a natural combinatorial encoding of such drawings, and state two
necessary consistency conditions involving triples and quadruples of points in V .
We show that these conditions are also sufficient, yielding a polynomial-time
algorithm for checking consistency of a drawing.

In Sect. 4, we consider drawings of K3,n and study a complete classification
of all drawings of K3,3. This directly gives a necessary consistency condition
on triples of vertices in V . We also provide an additional necessary condition on
quadruples. A proof that the consistency conditions on triples and quadruples are
sufficient for drawings of K3,n can be found in the long version of the paper [3].

2 Drawings with Uniform Rotation System

We first consider the case where k is arbitrary but the rotation system is uniform,
that is, the permutation around each of the k vertices pi is the same. Without
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a

b

Q4(a)

Q5(a) Q2(a)

Q3(a)

Q6(a)

Q1(a)

p1

p4

p2

p3p5

p6

Fig. 2. Having placed b in Q4(a) the crossing pairs of edges and the order of crossings
on each edge is prescribed. In particular a ∈ Q4(b). On the right a symmetric drawing
of the pair.

loss of generality we assume that this permutation is the identity permutation
on [n].

In a given drawing, each of the n vertices of V splits the plane into k
regions Q1, Q2, . . . , Qk, where each Qi is bounded by the edges from v to pi

and pi+1, with the understanding that pk+1 = p1. We denote by Qi(v) the ith
region defined by vertex v and further on call these regions quadrants. We let
type(a, b) = i, for a, b ∈ V and i ∈ [k], whenever a ∈ Qi(b). This implies that
b ∈ Qi(a), see Fig. 2. Indeed if a < b and j �= i + 1, then edge pi+1b has to
intersect all the edges pja, while edge pjb has to avoid pi+1b until they meet
in b. It follows that none of the edges pjb can intersect pi+1a. This shows that
a ∈ Qi(b).

Observation 1 (Symmetry).
For all a, b in uniform rotation systems: type(a, b) = type(b, a).

For the case k = 2, we have exactly two types of pairs, that we will denote
by A and B. The two types are illustrated on Fig. 3.

The drawings of K2,n with uniform rotations can be viewed as colored pseudo-
line arrangements, where each pseudoline is split into two segments of distinct
colors, and no crossing is monochromatic. This is illustrated on Fig. 4. The
pseudoline of a vertex v ∈ V is denoted by �(v). The left (red) and right
(blue) parts of this pseudoline are denoted by �L(v) and �R(v). Now having
type(a, b) = type(b, a) = A means that b lies above �(a) and a lies above �(b).
While having type(a, b) = type(b, a) = B means that b lies below �(a) and a lies
below �(b).

The Triple Rule.

Lemma 1 (Triple rule).
For uniform rotation systems and three vertices a, b, c ∈ V with a < b < c

type(a, c) ∈ {type(a, b), type(b, c)}.
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a b

b a
BA

Fig. 3. The two types of pairs for drawings of K2,n with uniform rotation systems.
(Color figure online)

1
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1 B B B

2 B A

3 A

4

Fig. 4. Drawing K2,4 as a colored pseudoline arrangement. The type of each pair is
given in the table on the right. (Color figure online)

Proof. Case k = 2. If type(a, b) �= type(b, c) there is nothing to show since
there are only two types. Without loss of generality, suppose that type(a, b) =
type(b, c) = B. This situation is illustrated in the left part of Fig. 5. The pseudo-
line �(c) must cross �(b) on �R(b), otherwise we would have type(b, c) = A. Hence
the point c is on the right of this intersection. Pseudoline �(a) must cross �(b)
on �L(b), and a is left of this intersection. It follows that �(a) and �(c) cross on
�R(a) and �L(c), i.e., type(a, c) = B.

Case k > 2. For the general case assume that type(a, b) = i and type(a, c) = j.
If i = j there is nothing to show. Now suppose i �= j. From c ∈ Qj(a) it follows
that pj+1a and pjc are disjoint. Edges pjb and pjc only share the endpoint pj ,
hence c has to be in the region delimited by pjb and pj+1a, see the right part of
Fig. 5. This region is contained in Qj(b), hence type(b, c) = j. ��

a

c

b

b

ac

b

a c

pj

pj+1

Fig. 5. Illustrations for the k = 2 case of Lemma 1 (left), and the k > 2 case of
Lemma 1 (right).

The Quadruple Rule

Lemma 2. For four vertices a, b, c, d ∈ V with a < b < c < d and X ∈ {A,B}:
if type(a, c) = type(b, c) = type(b, d) = X then type(a, d) = X.
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Proof. Case k = 2. Suppose, without loss of generality, that X = B. Consider
the pseudolines representing b and c with their crossing at �R(b)∩ �L(c). Coming
from the left the edge �L(d) has to avoid �L(c) and therefore intersects �R(b).
On �R(b) the crossing with �L(c) is left of the crossing with �L(d), see Fig. 6.
Symmetrically from the right the edge �R(a) has to intersect �L(c) and this
intersection is left of �R(b) ∩ �L(c). To reach the crossings with �L(c) and �R(b)
edges �R(a) and �L(d) have to intersect, hence, type(a, d) = B.

a

b

c

ad

b

c

d

Fig. 6. Illustration for the k > 2 case of Lemma 1.

Case k > 2. In the general case, we let X = i, and consider the pseudoline
arrangement defined by the two successive vertices pi and pi+1 of P defining the
quadrants Qi. Proving that type(a, d) = i, that is, that a ∈ Qi(d), can be done
as above for k = 2 on the drawing of K2,n induced by {pi, pi+1} and V . ��

Decomposability and Counting

We can now state a general structure theorem for all drawings of Kk,n with
uniform rotation systems.

Theorem 1. Given a type for each pair of vertices in V , there exists a drawing
realizing those types if and only if:

1. there exists s ∈ {2, . . . , n} and X ∈ [k] such that type(a, b) = X for all pairs
a, b with a < s and b ≥ s,

2. the same holds recursively when the interval [1, n] is replaced by any of the
two intervals [1, s − 1] and [s, n].

Proof. (⇒) Let us first show that if there exists a drawing, then the types must
satisfy the above structure. We proceed by induction on n. Pick the smallest
s ∈ {2, . . . , n} such that type(1, b) = type(1, s) for all b ≥ s. Set X := type(1, s).
We claim that type(a, b) = X for all a, b such that 1 ≤ a < s ≤ b ≤ n. For a = 1
this is just the condition on s. Now let 1 < a.

First suppose that type(1, a) �= X. We can apply the triple rule on 1, a, b.
Since type(1, b) ∈ {type(1, a), type(a, b)}, we must have that type(a, b) = X.

Now suppose that type(1, a) = X. We have type(1, s − 1) = Y �= X by
definition. As in the previous case we obtain type(s − 1, b) = X from the triple
rule for 1, s−1, b. Applying the triple rule on 1, a, s−1 yields type(a, s−1) = Y .
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1 2
3 45 {1, 2, 3}

{4, 5}
{1, 2, 3}

{1, 2, 3}

{4, 5}

{4, 5}

Fig. 7. Illustration of the recursive structure of the drawings in the uniform case.

Now apply the quadruple rule on 1, a, s− 1, b. We know that type(1, s− 1) =
type(a, s − 1) = Y , and by definition type(1, b) = X. Hence we must have that
type(a, b) �= Y .

Finally, apply the triple rule on a, s − 1, b. We know that type(a, s − 1) = Y ,
type(s − 1, b) = X. Since type(a, b) �= Y , we must have type(a, b) = X. This
yields the claim.

(⇐) Now given the recursive structure, it is not difficult to construct a draw-
ing. Consider the two subintervals as a single vertex, then recursively blow up
these two vertices. (See Fig. 7 for an illustration). ��
The recursive structure yields a corollary on the number of distinct drawings.

Corollary 1 (Counting drawings with uniform rotation systems). For
every pair of integers k, n > 0 denote by T (k, n) the number of simple topolog-
ical drawings of the complete bipartite graph isomorphic to Kk,n with uniform
rotation systems. Then

T (n + 1, k + 1) =
n∑

j=0

(
n+j
2j

)
Cj kj

where Cj is the jth Catalan number.

3 Drawings with k = 2

In this section we deal with drawings with k = 2 and arbitrary rotation system.
We now have three types of pairs, that we call N , A, and B, as illustrated on
Fig. 8. The type N (for noncrossing) is new, and is forced whenever the pair
corresponds to an inversion in the two permutations.

Recall that a drawing of K2,n, in which no pair is of type N , can be seen as
a colored pseudoline arrangement as defined previously. Similarly, a drawing of
K2,n in which some pairs are of type N can be seen as an arrangement of colored
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a b

b a
BAN

a

b

Fig. 8. The three types of pairs for drawings of K2,n with arbitrary rotation systems.

monotone curves crossing pairwise at most once. We will refer to arrangement of
monotone curves that cross at most once as quasi-pseudoline arrangements. The
pairs of type N correspond to parallel pseudolines. Without loss of generality,
we can suppose that the first permutation in the rotation system, that is, the
order of the pseudolines on the left side, is the identity. We denote by π the
permutation on the right side.

Note that every permutation π is feasible in the sense that there is a drawing
of K2,n such that the rotations are (id, π). To realize this, take the point set
{(i, π(i)) : i ∈ [n]} and consider horizontal and rays starting from each of these
points to the left and upward respectively.

Triples. For a, b, c ∈ V , with a < b < c, we are interested in the triples of types
(type(a, b), type(a, c), type(b, c)) that are possible in a topological drawing of
K2,n, i.e., all possible topological drawings of K2,3. Such triples will be called
legal. We like to display triples in little tables, e.g., the triple type(a, b) = X,

type(a, c) = Y , and type(b, c) = Z is represented as

a X Y

b Z

c

.

Lemma 3 (Decomposable Triples1). A triple with Y ∈ {X,Z} is always
legal. There are 15 triples of this kind.

Lemma 4.

There are exactly two non-decomposable legal triples:

a N A

b B

c and

a A B

b N

c

.

.

The proofs of the two lemmas can be found in [3]. With the two lemmas we
have classified all 17 legal triples.

Observation 2 (Triple Rule). Any three vertices of V in a drawing of K2,n

must induce one of the 17 legal triples of types.

Quadruples. We aim at a characterization of collections of types that corre-
spond to drawings. Already in the case of uniform rotations we had to add
Lemma 2, a condition for quadruples. In the general case the situation is more
complex than in the uniform case, see Fig. 9.

1 These triples of this lemma are decomposable in the sense of Theorem 1.
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Fig. 9. The quadruple rule from Lemma 2 does not hold in the presence of N types.

Reviewing the proof of Lemma 2 we see that in the case discussed there,
where given B types are intended to enforce type(a, d) = B, we need that in π
element a is before b, this is equivalent to type(a, b) �= N . Symmetrically, three
A types enforce type(a, d) = A when d is the last in π, i.e., if type(c, d) �= N .

Lemma 5. Consider four vertices a, b, c, d ∈ V such that a < b < c < d.
If type(a, b) �= N and type(a, c)=type(b, c)=type(b, d)= B then type(a, d) = B.
If type(c, d) �= N and type(a, c)=type(b, c)=type(b, d)= A then type(a, d) = A.

Consistency. With the next theorem we show that consistency on triples and
quadruples is enough to grant the existence of a drawing.

Theorem 2 (Consistency of drawings for k = 2). Given a type for each
pair of vertices in V , there exists a drawing realizing those types if and only if
all triples are legal and the quadruple rule (Lemma 5) is satisfied.

The proof of this result is based on the characterization of local sequences
in pseudoline arrangements. Given an arrangement of n pseudolines, the local
sequences are the permutations αi of [n] \ {i}, i ∈ [n], representing the order in
which the ith pseudoline intersects the n − 1 others.

Lemma 6 (Theorem 6.17 in [7]). The set {αi}i∈[n] is the set of local
sequences of an arrangement of n pseudolines if and only if

ij ∈ inv(αk) ⇔ ik ∈ inv(αj) ⇔ jk ∈ inv(αi),

for all triples i, j, k, where inv(α) is the set of inversions of the permutation α.

Proof (Theorem 2). The necessity of the condition is implied by Observation 2
and Lemma 5.

We proceed by giving an algorithm for constructing an appropriate drawing.
From the proof of Lemma 4, we know that having legal triples implies that the
sets of inversion pairs and its complement, the set of non-inversion pairs, are
both transitive. Hence, there is a well defined permutation π representing the
rotation at p2.

We aim at defining the local sequences αi that allow an application of
Lemma 6. This will yield a pseudoline arrangement. A drawing of K2,n, how-
ever, will only correspond to a quasi-pseudoline arrangement. Therefore, we first
construct a quasi-pseudoline arrangement T for the pair (π, id), i.e., only the
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quasi-pseudolines corresponding to i and j with type(i, j) = N cross in T . The
idea is that appending T on the right side of the quasi-pseudoline arrangement
of the drawing yields a full pseudoline arrangement.

Now fix i ∈ [n]. Depending on i we partition the set [n] \ i into five parts.
For a type X let X<(i) = {j : j < i and type(j, i) = X} and X>(i) = {j :
j > i and type(i, j) = X}, the five relevant parts are A<(i), A>(i), B<(i),
B>(i), and N(i) = N<(i) ∪ N>(i). The pseudoline �i has three parts. The edge
incident to p1 (the red edge) is crossed by pseudolines �j with j ∈ A>(i)∪B<(i).
The edge incident to p2 (the blue edge) is crossed by pseudolines �j with j ∈
A<(i) ∪ B>(i). The part of �i belonging to T is crossed by pseudolines �j with
j ∈ N(i). The order of the crossings in the third part, i.e., the order of crossings
with pseudolines �j with j ∈ N(i), is prescribed by T .

Regarding the order of the crossings on the second part we know that the
lines for j ∈ A<(i) have to cross �i from left to right in order of decreasing
indices and the lines for j ∈ B>(i) have to cross �i from left to right in order
of increasing indices, see Fig. 10. If j ∈ A<(i) and j′ ∈ B>(i), then consistency
of triples implies that type(j, j′) ∈ {A,B}. If type(j, j′) = A, then on �i the
crossing of j′ has to be left of the crossing of j. If type(j, j′) = B, then on �i the
crossing of j has to be left of the crossing of j′.

a

b

c

d e

i B B

BBA

A A

A A B

B

a

d

c

e

b

i

Fig. 10. Crossings on the edge i p2.

The described conditions yield a “left–to–right” relation →i such that for all
x, y ∈ A<(i) ∪ B>(i) one of x →i y and y →i x holds. We have to show that →i

is acyclic. Since →i is a tournament it is enough to show that →i is transitive.
Suppose there is a cycle x →i y →i z →i x. If x, y < i and z > i, then

type(x, i) = type(y, i) = A, moreover, from x →i y we get y < x and from y →i

z →i x we get type(x, z) = A, and type(y, z) = B. Since type(i, z) = B �= N
this is a violation of the second quadruple rule of Lemma 5.

If x < i and y, z > i, then we have type(i, y) = type(i, z) = B. From this
together with y →i z we obtain y < z, and z →i x →i y yields type(x, y) = B,
and type(x, z) = A. This is a violation of the first quadruple rule of Lemma 5.

Adding the corresponding arguments for the order of crossings on the first
part of line �i we conclude that the permutation αi is uniquely determined by
the given types and the choice of T .
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The consistency condition on triples of local sequences needed for the appli-
cation of Lemma 6 is trivially satisfied because legal triples of types correspond
to drawings of K2,3 and each such drawing together with the extensions of the
lines in T consists of three pairwise crossing pseudolines. ��
Since the two rules we enforced only involve at most four vertices of V , we
immediately get the following corollary.

Corollary 2. Consistency on all 4-tuples of V is sufficient and necessary for
drawings of K2,n, yielding an O(n4) time algorithm for checking consistency of
an assignment of types.

4 Drawings with k = 3

At the beginning of the previous section we have seen that any pair of rotations
is feasible for drawings of K2,n. This is not true in the case of k > 2. For k = 4
the system of rotations ([1, 2], [2, 1], [1, 2], [2, 1]) is easily seen to be infeasible. In
the case k = 3 it is less obvious that infeasible systems of rotations exist. We
will show later (Proposition 1) that ([1, 2, 3, 4], [4, 2, 1, 3], [2, 4, 3, 1]) is infeasible.

2
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Fig. 11. The six types of drawings of K3,2. (Color figure online)

Pairs. We again start by looking at the types for pairs, i.e., at all possible draw-
ings of K3,2. We already know that if the rotation system is uniform (id2, id2, id2),
then there are three types of drawings. The other three options (id2, id2, id2),
(id2, id2, id2), and (id2, id2, id2), each have a unique drawing. Figure 11 shows the
six possible types and associates them to the symbols Bα, and Wα, for α = 1, 2, 3.

The three edges emanating from a vertex i ∈ [n] partition the drawing area
into three regions. Define Qα(i) as the region bounded by the two edges i pα+1

and i pα−1 not containing pα When the types have been prescribed for all pairs
of vertices we know which vertices are located in which region of i. Conversely,
if we know the α for which j ∈ Qα(i), then only one B-type and one W -type
remain eligible for the pair (i, j).
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Triples. We now classify the triples, i.e., drawings of K3,3. It turns out that
there are 92 types. A complete description can be found in [3].

Now suppose that rotations (id, π2, π3) are prescribed. We want to decide
whether there is a corresponding drawing. The first step would be to deter-
mine the type of the drawing for each pair of vertices. For all non-uniform pairs
type(i, j) ∈ {W1,W2,W3} is uniquely given by the system.

The type of the remaining pairs is Bα for some α. Beforehand each α ∈
{1, 2, 3} is possible but of course the types of every triple must also correspond
to a drawing, i.e., the types of each triple must be among the 89 drawable types
of the classification. This may force the types of additional pairs.

Before giving a larger example we show that by looking at triples we can
deduce that not all choices (id, π2, π3) of prescribed rotations are feasible, i.e.,
there are choices that have no corresponding drawing.

Proposition 1. The system (id4, [4, 2, 1, 3], [2, 4, 3, 1]) is an infeasible set of
rotations.

Proof. The table of types for the given permutations is shown

on the right. Consider the subtable

W1 W3

Bα corresponding to
{1, 2, 3}. From the classification of triples it follows that the
only feasible one choice for α is α = 2.

1 W1W3W1

2 Bα W2

3 W1

4

The subtable

Bα W2

W1 of {2,3,4} again only allows a unique choice of α which is
α = 3. This shows that there is no drawing for this set of rotations. ��

Quadruples. Let us give a non-realizable example which nevertheless exhibits
triple consistency. Consider for instance the types type(1, 2) = type(1, 4) =
type(3, 4) = B1 and type(1, 3) = type(2, 3) = type(2, 4) = B2. Every triple
is decomposable, i.e., we have consistency on triples, however, the full table is
not decomposable. Since all the rotations/permutations are the identity, ie.e.,
the system is uniform we know from Theorem 1 that there is no corresponding
drawing.

1 W1 B1 B1

2 B1 B2

3 B2

4

The need for a condition on quadruples is not restricted to tables
of uniform systems. The table on the right is consistent on all
triples, still it is not realizable. This can be shown by looking at
the table corresponding to the green-blue K2,n subgraph, which
reveals a bad quadruple. Note that for the table of the green-blue
K2,n the elements have to be sorted according to π3 = (2, 1, 3, 4).

Let T be an assignment of types, e.g., in form of a table. From T we know
the corresponding system (π1, π2, π3) of rotations.
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Definition 1. T is consistent on quadruples if for any four vertices a, b, c, d
and i ∈ {1, 2, 3} the assignment of types from A,B,N induced by the restriction
of πi−1 and πi+1 to a, b, c, d satisfies the condition from Lemma 5.

Note that checking the condition requires sorting a, b, c, d according to πi−1.

4.1 The Consistency Theorem

Theorem 3 (Consistency of drawings for k = 3, see [3]). Given a type
for each pair of vertices in V , there exists a drawing realizing those types if and
only if all triples and quadruples are consistent.
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Abstract. We reprove the strong Hanani–Tutte theorem on the pro-
jective plane. In contrast to the previous proof by Pelsmajer, Schaefer
and Stasi, our method is constructive and does not rely on the char-
acterization of forbidden minors, which gives hope to extend it to other
surfaces. Moreover, our approach can be used to provide an efficient algo-
rithm turning a Hanani–Tutte drawing on the projective plane into an
embedding.

Keywords: Graph drawing · Graph embedding · Hanani–Tutte
theorem · Projective plane · Topological graph theory

1 Introduction

A drawing of a graph on a surface is a Hanani–Tutte drawing (shortly an
HT-drawing) if no two vertex-disjoint edges cross an odd number of times. We
call vertex-disjoint edges independent .

Pelsmajer, Schaefer and Stasi [14] proved the following theorem via consid-
eration of the forbidden minors for the projective plane.

Theorem 1 (Strong Hanani–Tutte for the projective plane, [14]). A
graph G can be embedded into the projective plane if and only if it admits an
HT-drawing on the projective plane.1
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Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 454–467, 2016.
DOI: 10.1007/978-3-319-50106-2 35



A Direct Proof of the Strong Hanani–Tutte Theorem 455

Our main result is a constructive proof of Theorem 1. The need for a
constructive proof is motivated by the strong Hanani–Tutte conjecture, which
states that an analogous result is valid on an arbitrary (closed) surface. This
conjecture is known to be valid only on the sphere (plane) and on the projective
plane. The approach via forbidden minors is relatively simple on the projective
plane; however, this approach does not seem applicable to other surfaces, because
there is no reasonable characterization of forbidden minors for them. (Already
for the torus or the Klein bottle, the exact list is not known.)

On the other hand, our approach reveals a number of difficulties that have to
be overcome in order to obtain a constructive proof. If the conjecture is true, our
approach may serve as a basis for its proof on a general surface. If the conjecture
is not true, then our approach may perhaps help to reveal appropriate structure
needed for a construction of a counterexample.

The Hanani–Tutte Theorem on the Plane and Related Results. Let us now briefly
describe the history of the problem; for complete history and relevant results
we refer to a nice survey by Schaefer [17]. Following the work of Hanani [2],
Tutte [19] made a remarkable observation now known as the (strong) Hanani–
Tutte theorem: a graph is planar if and only if it admits an HT-drawing in the
plane. The theorem has also a parallel history in algebraic topology, where it
follows from the ideas of van Kampen, Flores, Shapiro and Wu [11,20,21].

It is a natural question whether the strong Hanani–Tutte theorem can be
extended to graphs on other surfaces; as we already said before, it has been
confirmed only for the projective plane [14] so far. On general surfaces, only the
weak version [1,16] of the theorem is known to be true: if a graph is drawn on
a surface so that every pair of edges crosses an even number of times2, then
the graph can be embedded into the surface while preserving the cyclic order of
the edges at all vertices. Note that in the strong version we require that only
independent edges cross even number of times, while in the weak version this
condition has to hold for all pairs of edges.

We remark that other variants of the Hanani–Tutte theorem generalizing the
notion of embedding in the plane have also been considered. For instance, the
strong Hanani–Tutte theorem was proved for partially embedded graphs [18] and
both weak and strong Hanani–Tutte theorem were proved also for 2-clustered
graphs [6].

The strong Hanani–Tutte theorem is important from the algorithmic point
of view, since it implies the Trémaux crossing theorem, which is used to prove
de Fraysseix-Rosenstiehl’s planarity criterion [4]. This criterion has been used
to justify the linear time planarity algorithms including the Hopcroft-Tarjan [8]
and the Left-Right [3] algorithms. For more details we again refer to [17].

One of the reasons why the strong Hanani–Tutte theorem is so important is
that it turns planarity question into a system of linear equations. For general
surfaces, the question whether there exists a Hanani–Tutte drawing of G leads to
a system of quadratic equations [11] over Z2. If the strong Hanani–Tutte theorem

2 Including 0 times.
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is true for the surface, any solution to the system then serves as a certificate
that G is embeddable. Moreover, if the proof of the Hanani–Tutte theorem is
constructive, it gives a recipe how to turn the solution into an actual embedding.
Unfortunately, solving systems of quadratic equations is NP-complete.

For completeness we mention that for each surface there exists a polyno-
mial time algorithm that decides whether a graph can be embedded into that
surface [9,12]; however, the hidden constant depends exponentially on the genus.

The original proofs of the strong Hanani–Tutte theorem in the plane
used Kuratowski’s theorem [10], and therefore are non-constructive. In 2007,
Pelsmajer, Schaefer and Štefankovič [15] published a constructive proof. They
showed a sequence of moves that change an HT-drawing into an embedding.

A key step in their proof is their Theorem 2.1. We say that an edge is even
if it crosses every other edge an even number of times (including the adjacent
edges).

Theorem 2 (Theorem 2.1 of [15]). If D is a drawing of a graph G in the
plane, and E0 is the set of even edges in D, then G can be drawn in the plane
so that no edge in E0 is involved in an intersection and there are no new pairs
of edges that intersect an odd number of times.

Unfortunately, an analogous result is simply not true on other surfaces, as
is shown in [16]. In particular, this is an obstacle for a constructive proof of
Theorem 1. The key step of our approach is to provide a suitable replacement
of Theorem 2 on the projective plane. This is provided by Theorem 7 in Sect. 3.

The version of the paper identical to the present one can be found on arXiv:
http://arxiv.org/abs/1608.07855v1. We refer to the full version of this paper in
the subsequent submission on arXiv, which contains many details missing in this
extended abstract.

2 Hanani–Tutte Drawings

In this section, we consider Hanani–Tutte drawings of graphs on the sphere
and on the projective plane. We use the standard notation from graph theory.
Namely, if G is a graph, then V (G) and E(G) denote the set of vertices and the
set of edges of G, respectively. Given a vertex v or an edge e, by G − v or G − e
we denote the graph obtained from G by removing v or e, respectively.

Regarding drawings of graphs, first, let us recall a few standard definitions
considered on an arbitrary surface. We put the standard general position assump-
tions on the drawings. That is, we consider only drawings of graphs on a surface
such that no edge contains a vertex in its interior and every pair of edges meets
only in a finite number of points, where they cross transversally. However, we
allow three or more edges meeting in a single point.3

Let D be a drawing of a graph G on a surface S. Given two distinct edges e
and f of G by cr(e, f) = crD(e, f) we denote the number of crossings between e

3 We do not mind them because we study pairwise interactions of edges only.

http://arxiv.org/abs/1608.07855v1
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and f in D modulo 2. We say that an edge e of G is even if cr(e, f) = 0 for any
f ∈ E(G) distinct from e. We emphasize that we consider the crossing number
as an element of Z2 and all computations throughout the paper involving it are
done in Z2.

HT-Drawings on RP 2. It is convenient for us to set up some conventions for
working with the HT-drawings on the (real) projective plane, RP 2. There are
various ways to represent RP 2. Our convention will be the following: we consider
the sphere S2 and a disk (2-ball) B in it. We remove the interior of B and identify
the opposite points on the boundary ∂B. This way, we obtain a representation
of RP 2. Let γ be the curve coming from ∂B after the identification. We call this
curve a crosscap. It is a homologically (homotopically) non-trivial simple cycle
(loop) in RP 2, and conversely, any homologically (homotopically) nontrivial sim-
ple cycle (loop) may serve as a crosscap up to a self-homeomorphism of RP 2. In
drawings, we use the symbol ⊗ for the crosscap coming from the removal of the
disk ‘inside’ this symbol.

Given an HT-drawing of a graph on RP 2, it can be slightly shifted so that
it meets the crosscap in a finite number of points and only transversally, still
keeping the property that we have an HT-drawing. Therefore, we may add to
our conventions that this is the case for our HT-drawings on RP 2.

Now, we consider a map λ : E(G) → Z2. For an edge e, we let λ(e) be the
number of crossings of e and the crosscap γ modulo 2. We emphasize that λ
depends on the choice of the crosscap.

Given a (graph-theoretic) cycle Z in G, we can distinguish whether Z is drawn
as a homologically nontrivial cycle by checking the value λ(Z) :=

∑
λ(e) ∈ Z2

where the sum is over all edges of Z. The cycle Z is homologically nontrivial if
and only if λ(Z) = 1. In particular, it follows that λ(Z) does not depend on the
choice of the crosscap.

Projective HT-Drawings on S2. Let D be an HT-drawing of a graph G on RP 2. It
is not hard to deduce a drawing D′ of the same graph on S2 such that every pair
(e, f) of independent edges satisfies cr(e, f) = λ(e)λ(f). Indeed, it is sufficient
to ‘undo’ the crosscap, glue back the disk B and then let the edges intersect on
B. See the two leftmost pictures below.

This motivates the following definition.
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Definition 3. Let D be a drawing of a graph G on S2 and λ : E(G) → Z2

be a function. Then the pair (D,λ) is a projective HT-drawing of G on S2 if
cr(e, f) = λ(e)λ(f) for any pair of independent edges e and f of G.

It turns out that a projective HT-drawing on S2 can also be transformed to
an HT-drawing on RP 2.

Proposition 4. A graph G admits a projective HT-drawing on S2 (with respect
to some function λ : E(G) → Z2) if and only if it admits an HT-drawing on RP 2.

The full proof of the missing implication is not too difficult and it is given in the
full version of the paper (see Corollary 5). The core of the proof can be deduced
from the two rightmost pictures above.

The main strength of Proposition 4 relies in the fact that in projective HT-
drawings on S2 we can ignore the actual geometric position of the crosscap and
work in S2 instead, which is simpler. This is especially helpful when we need to
merge two drawings.

In order to distinguish the usual HT-drawings on S2 from the projective HT-
drawings, we will sometimes refer to the former as to the ordinary HT-drawings
on S2.

Nontrivial Walks. Let (D,λ) be a projective HT-drawing of a graph G and ω be
a walk in G. We define λ(ω) :=

∑
e∈E(ω) λ(e) where E(ω) is the multiset of edges

appearing in ω. Equivalently, it is sufficient to consider only the edges appearing
an odd number of times in ω, because 2λ(e) = 0 for any edge e. We say that ω
is trivial if λ(ω) = 0 and nontrivial otherwise. We often use this terminology in
special cases when ω is an edge, a path, or a cycle.

Now let us consider a subgraph P of G such that every cycle in P is trivial.
Then P essentially behaves as a planar subgraph of G, which we make more
precise by the following lemma. For its proof, see Lemma 8 in the full version of
the paper.

Lemma 5. Let (D,λ) be a projective HT-drawing of G on S2 and let P be a
subgraph of G such that every cycle in P is trivial. Then there is a projective
HT-drawing (D′, λ′) of G on S2 such that λ′(e) = 0 for any edge e of E(P ).

3 Separation Theorem

In this section, we state the replacement of Theorem 2 announced in the intro-
duction. First we introduce some terminology; as we see from the definition
below, a simple cycle Z such that every edge of Z is even splits G into two parts.
This fact is analogous to the crucial step in the proof of Theorem 2.

Definition 6. Let G be a graph and D be a drawing of G on S2. Let us assume
that Z is a cycle of G such that every edge of Z is even and it is drawn as a
simple cycle in D. Let S+ and S− be the two components of S2 \ D(Z). We call
a vertex v ∈ V (G) \ V (Z) an inside vertex if it belongs to S+ and an outside
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vertex otherwise. Given an edge e = uv ∈ E(G)\E(Z), we say that e is an inside
edge if either u is an inside vertex or if u ∈ V (Z) and D(e) points locally to S+

next to D(u). Analogously we define an outside edge.4 We let V + and E+ be
the sets of the inside vertices and the inside edges, respectively. Analogously, we
define V − and E−. We also define the graphs G+0 := (V + ∪ V (Z), E+ ∪ E(Z))
and G−0 := (V − ∪ V (Z), E− ∪ E(Z)).

Now, we may formulate our main technical tool—the separation theorem for
projective HT-drawings.

Theorem 7. Let (D,λ) be a projective HT-drawing of a 2-connected graph G on
S2 and Z a cycle of G that is simple in D and such that every edge of Z is even.
Moreover, we assume that every edge e of Z is trivial, that is, λ(e) = 0. Then
there is a projective HT-drawing (D′, λ′) of G on S2 satisfying the following
properties.

– The drawings D and D′ coincide on Z;
– the cycle Z is free of crossings and all of its edges are trivial in D′;
– D′(G+0) is contained in S+ ∪ D′(Z);
– D′(G−0) is contained in S− ∪ D′(Z); and
– either all edges of G+0 or all edges of G−0 are trivial (according to λ′); that is,

at least one of the drawings D′(G+0) or D′(G−0) is an ordinary HT-drawing
on S2.

In the remainder of this section, we describe the main ingredients of the
proof of Theorem 7 and we also derive this theorem from the ingredients. We
will often encounter the setting when G, (D,λ) and Z satisfy the assumptions
of Theorem 7. Therefore, we say that G, (D,λ) and Z satisfy the separation
assumptions if (1) G is a 2-connected graph; (2) (D,λ) is a projective HT-
drawing of G; (3) Z is a cycle in G drawn as a simple cycle in D; (4) every edge
of Z is even in D and trivial.

Arrow Graph. From now on, let us fix G, (D,λ) and Z satisfying the separation
assumptions. This also fixes the distinction between the outside and the inside.

Definition 8. A bridge B of G (with respect to Z) is a subgraph of G that is
either an edge not in Z but with both endpoints in Z (and its endpoints also
belong to B), or a connected component of G − V (Z) together with all edges
(and their endpoints in Z) with one endpoint in that component and the other
endpoint in Z.5

We say that B is an inside bridge if it is a subgraph of G+0, and an outside
bridge if it is a subgraph of G−0 (every bridge is thus either an inside bridge or
an outside bridge).

A walk ω in G is a proper walk if no vertex in ω belongs to V (Z), except
possibly its endpoints, and no edge of ω belongs to E(Z). In particular, each
proper walk belongs to a single bridge.
4 It turns out that every edge e ∈ E(G) \ E(Z) is either an outside edge or an inside

edge, because every edge of Z is even.
5 This is a standard definition; see, e.g., Mohar and Thomassen [13, p. 7].
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Since we assume that G is 2-connected, every inside bridge contains at least
two vertices of Z. The bridges induce partitions of E(G) \ E(Z) and of V (G) \
V (Z).

We want to record which pairs of vertices on V (Z) are connected with a
nontrivial and proper walk inside or outside. For this purpose, we create two new
graphs A+ and A−, possibly with loops but without multiple edges. In order
to distinguish these graphs from G, we draw their edges with double arrows
and we call these graphs an inside arrow graph and an outside arrow graph,
respectively. The edges of these graphs are called the inside/outside arrows. We
set V (A+) = V (A−) = V (Z).

Now we describe the arrows, that is, E(A+) and E(A−). Let u and v be
two vertices of V (Z), not necessarily distinct. By W+

uv we denote the set of
all proper nontrivial walks in G+0 with endpoints u and v. We have an inside
arrow connecting u and v in E(A+) if and only if W+

uv is nonempty. In order
to distinguish the edges of G from the arrows, we denote an arrow by uv = vu.
An arrow which is a loop at a vertex v is denoted by vv. (This convention will
allow us to work with arrows uv without a distinction whether u = v or u �= v.)
Analogously, we define the set W−

uv and the outside arrows. Below, we provide an
example of an unusual HT-drawing of K5 on RP 2, the corresponding projective
HT-drawing on S2 and the corresponding arrow graphs.

Given an inside arrow uv and an inside bridge B, we say that B induces uv
if there is a walk in B which belongs to W+

uv. An inside bridge B is nontrivial if
it induces at least one arrow. Given two inside arrows uv and xy, we say that uv
and xy are induced by different bridges if there are two different inside bridges B
and B′ such that B induces uv and B′ induces xy. As usual, we define analogous
notions for the outside as well.

Possible Configurations of Arrows. Now, we utilize the arrow graph to show that
certain configurations of arrows are not possible.

Lemma 9.

(a) Every inside arrow shares a vertex with every outside arrow.
(b) Let ab and xy be two arrows induced by different inside bridges of G+0. If

the two arrows do not share an endpoint, their endpoints have to interleave
along Z.

(c) There are no three vertices a, b, c on Z, an inside bridge B+, and an outside
bridge B− such that B+ induces the arrows ab and ac (and no other arrows)
and B− induces the arrows ab and bc (and no other arrows).



A Direct Proof of the Strong Hanani–Tutte Theorem 461

For proof, see Lemmas 12, 13 and 14 in the full version of the paper.
Lemma 9 is, of course, also valid if we swap the inside and the outside.

Schematically, the forbidden configurations from Lemma 9 are drawn in the
picture below. The cyclic order in (a) may be arbitrary whereas it is important
in (b) that the arrows there do not interleave. Different dashing of lines in (b)
correspond to arrows induced by different inside bridges. The arrows of the same
colour in (c) are induced by the same bridge.

Now we describe important configurations that may occur.

Definition 10. We say that G forms

(a) an inside fan if there is a vertex common to all inside arrows. (The arrows
may come from various inside bridges.)

(b) an inside square if it contains four vertices a, b, c and d ordered in this
cyclic order along Z and the inside arrows are precisely ab, bc, cd and ad.
In addition, we require that the inside graph G+0 has only one nontrivial
inside bridge.

(c) an inside split triangle if there exist three vertices a, b and c such that the
arrows of G are ab, ac and bc. In addition, we require that every nontrivial
inside bridge induces either the two arrows ab and ac, or just a single arrow.

We have analogous definitions for an outside fan, outside square and outside
split triangle.

More precisely the notions in Definition 10 depend on G, (D,λ) and Z sat-
isfying the separation assumptions.

The picture below shows schematic drawings of the configurations of arrows
from Definition 10. Different dashing of lines correspond to different inside
bridges. The loop in the right drawing in (a) is an inside loop (drawn outside
due to lack of space). The drawing in (c) is only one instance of an inside split
triangle.

A relatively direct case analysis, using Lemma 9, reveals the following fact.



462 É. Colin de Verdière et al.

Proposition 11. Let (D,λ) be a projective HT-drawing on S2 of a graph G and
let Z be a cycle in G satisfying the separation assumptions. Then G forms an
(inside or outside) fan, square, or split triangle.

For proof, see Proposition 16 in the full version of the paper. On the other
hand, any configuration from Definition 10 can be redrawn without using the
crosscap:

Proposition 12. Let (D,λ) be a projective HT-drawing of G+0 on S2 and Z
be a cycle satisfying the separation assumptions. Moreover, let us assume that
D(G+0)∩S− = ∅ (that is, G+0 is fully drawn on S+∪D(Z)). Let us also assume
that G+0 forms an inside fan, an inside square or an inside split triangle. Then
there is an ordinary HT-drawing D′ of G+0 on S2 such that D coincides with
D′ on Z and D′(G+0) ∩ S− = ∅.

For proof, see Proposition 17 in the full version of the paper.
Now we are missing only one tool to finish the proof of Theorem 7. This tool

is the “redrawing procedure” of Pelsmajer, Schaefer and Štefankovič [15]. More
concretely, we need the following variant of Theorem 2. (Note that the theorem
below is not in the setting of projective HT-drawings. However, the notions used
in the statement are still well defined according to Definition 6.)

Theorem 13. Let D be a drawing of a graph G on the sphere S2. Let Z be a
cycle in G such that every edge of Z is even and Z is drawn as a simple cycle.
Then there is a drawing D′′ of G such that

– D′′ coincides with D on Z;
– D′′(G+0) belongs to S+ ∪ D(Z) and D′′(G−0) belongs to S− ∪ D(Z);
– whenever (e, f) is a pair of edges such that both e and f are inside edges or

both e and f are outside edges, then crD′′(e, f) = crD(e, f).

It is easy to check that the proof of Theorem 2 in [15] proves Theorem 13 as
well. Additionally, we note that an alternative proof of Theorem 2 in [7, Lemma 3]
can also be extended to yield Theorem 13. For completeness, we provide its proof
in Sect. 8 of the full version of the paper.

Finally, we prove Theorem 7, assuming the validity of the aforementioned
auxiliary results.

Proof sketch (of Theorem 7). First, we use Theorem 13 to G and D to obtain
a drawing D′′ keeping in mind that all edges of Z are even. By Proposition 11,
G forms one of the redrawable configurations from Definition 10 on one of the
sides. Without loss of generality, it appears inside. It means that D′′ restricted to
G+0 satisfies the assumptions of Proposition 12. Therefore, there is an ordinary
HT-drawing D+ of G+0 satisfying the conclusions of Proposition 12. Finally, we
let D′ be the drawing of G on S2 which coincides with D+ on G+0 and with D′′

on G−0. Both D′′ and D+ coincide with D on Z; therefore, D′ is well defined. We
set λ′ so that λ′(e) := λ(e) for an edge e ∈ E− and λ′(e) := 0 for any other edge.
Now, it is easy to verify that (D′, λ′) is the required projective HT-drawing. The
picture below provides an example of the drawings in the proof. 	
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4 Proof of the Strong Hanani–Tutte Theorem on RP 2

In this section we sketch a proof of Theorem 1 from Theorem 7 and the auxiliary
results from the previous section.

Given a graph G that admits an HT-drawing on the projective plane, we
need to show that G is actually projective-planar. By Proposition 4, we may
assume that G admits a projective HT -drawing (D,λ) on S2. We head for using
Theorem 7. For this, we need that G is 2-connected and contains a suitable trivial
cycle Z that may be redrawn so that it satisfies the assumptions of Theorem 7.
Therefore, we start with auxiliary claims that will bring us to this setting. Many
of them are similar to auxiliary steps in [15] (sometimes they are almost identical,
adapted to a new setting). The proofs are at the beginning of Sect. 4 of the full
version of the paper.

Before we state the next lemma, we recall the well known fact that any graph
admits a (unique) decomposition into blocks of 2-connectivity [5, Chap. 3]. Here,
we also allow the case that G is disconnected.

Lemma 14. If G admits a projective HT-drawing on S2, then at most one block
of 2-connectivity in G is non-planar. Moreover, if all blocks are planar, G is
planar as well.

Observation 15. Let (D,λ) be a drawing of a 2-connected graph. If D does not
contain any trivial cycle, then G is planar.

Lemma 16. Let (D,λ) be a projective HT-drawing on S2 of a graph G and let
Z be a cycle in G. Then G can be redrawn only by local changes next to the
vertices of Z to a projective HT-drawing D′ on S2 so that λ remains unchanged
and crD′(e, f) = λ(e)λ(f), for any pair (e, f) ∈ E(Z) × E(G) of distinct (not
necessarily independent) edges. In particular, if λ(e) = 0 for every edge e of Z,
then every edge of Z becomes even in D′.

Once we know that the edges of a cycle can be made even we also need to
know that such a cycle can be made simple.

Lemma 17. Let (D,λ) be a projective HT-drawing on S2 of a graph G and let
Z be a cycle in G such that each of its edges is even. Then G can be redrawn so
that Z becomes a simple cycle, its edges remain even and the resulting drawing
is still a projective HT-drawing (with λ unchanged).
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Proposition 18 below is our main tool for deriving Theorem 1 from
Theorem 7. It is set up in such a way that it can be inductively proved from
Theorem 7. Then it implies Theorem 1, using the auxiliary lemmas from the
beginning of this section, relatively easily.

Proposition 18. Let (D,λ) be a projective HT-drawing of a 2-connected graph
G on S2 and Z a cycle in G that is completely free of crossings in D and such
that each of its edges is trivial in D. Assume that (V +, E+) or (V −, E−) is
empty. Then G can be embedded into RP 2 so that Z bounds a disk face of the
resulting embedding. If, in addition, D is an ordinary HT-drawing on S2, then
G can be embedded into S2 so that Z bounds a face of the resulting embedding.6

First we prove Theorem 1 assuming the validity of Proposition 18. Then, we
sketch a proof of the proposition. See Proposition 24 in the full version of the
paper for the complete proof.

Proof (of Theorem 1). We prove the result by induction on the number of vertices
of G. We can trivially assume that G has at least three vertices.

If G has at least two blocks of 2-connectivity, G can be written as G1 ∪ G2,
where G1 ∩ G2 is a minimal cut of G, and therefore, has at most one vertex. By
Lemma 14, we may assume that G1 is planar and G2 non-planar. By induction,
there exists an embedding D2 of G2 into RP 2. So G1 is planar, G2 is embeddable
in RP 2, and G1 ∩ G2 has at most one vertex. From these two embeddings, we
easily derive an embedding of G = G1 ∪ G2 in RP 2.

We are left with the case when G is 2-connected. By Observation 15, we may
assume that there is at least one trivial cycle Z in (D,λ). We can also make each
of its edges trivial by Lemma 5 and even by Lemma 16. In addition, we make
Z simple using Lemma 17. Hence G, Z and the current projective HT-drawing
satisfy the separation assumptions.

Then we use Z to redraw G as follows. At first, we apply Theorem 7 to
get a projective HT-drawing (D′, λ′) that separates G+0 and G−0. We define
D+ := D′(G+0) and D− := D′(G−0)—without loss of generality, D− is an
ordinary HT-drawing on S2, while D+ is a projective HT-drawing on S2.

Next, we apply Proposition 18 above to D+ and D− separately. Thus, we
get embeddings of G+0 and G−0—one of them in S2, the other one in RP 2. In
addition, Z bounds a face in both of them; hence, we can easily glue them to
get an embedding of the whole graph G into RP 2. 	

Proof sketch (of Proposition 18). The proof proceeds by induction on the number
of edges of G. The base case is when G is a cycle.

Without loss of generality, we assume that (V −, E−) is empty. That is, G =
G+0. If (V +, E+) is also empty, G consists only of Z and such a graph can
easily be embedded into the plane or projective plane as required. Therefore, we
assume that (V +, E+) is nonempty.

6 We need to consider the case of ordinary HT-drawings in this proposition for a well
working induction.
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We find a path γ in (V (G+0), E(G+0) \ E(Z)) connecting two points x and
y lying on Z. We may choose x, y so that x �= y since G is 2-connected.

Case 1: There exists a trivial γ. We provide only a very brief sketch for this case.
First, we achieve, without redrawing Z, that γ is drawn as a simple path and
every edge of γ is even and trivial. This can be done by steps similar to those
in the proof of Theorem 1. Since γ is inside Z, now it splits the interior of Z
into two disks. Once we carefully identify the two arcs of Z determined by the
endpoints of γ, we get a cycle (in a different graph) separating the two disks.
This way, we achieve essentially the same situation as in the proof of Theorem 1
and we can resolve it using Theorem 7.

Case 2: All choices of γ are nontrivial. Now, we need to resolve the case when
all possible choices of γ are nontrivial. Let A+0 be the graph obtained from the
inside arrow graph A+ by adding the edges of Z (in particular, Z is a subgraph
of A+0). We aim to show that A+0 admits an embedding in RP 2 such that Z
bounds a disk face. As soon as we show this, we aim to replace the embedding
of each arrow of A+0 by an embedding of the inside bridges inducing this arrow
(if there are more such bridges, we embed them in parallel). The key fact that
makes it possible is that each inside bridge meets Z in exactly two points and
induces a single arrow and no loop. (Here, we leave this fact without a proof.)
We also need to check that each of the bridges, together with Z, admits an
embedding. This follows from Proposition 12 for inside fans and from Case 1 of
this proof.

It remains to sketch why A+0 admits the required embedding. We know
that any two disjoint arrows interleave using Lemma 9(b). Let us consider two
concentric closed disks E1 and E2 such that E1 belongs to the interior of E2.
Let us draw Z to the boundary of E2. Let a be the number of arrows of A+ and
let us consider 2a points on the boundary of E1 forming the vertices of a regular
2a-gon. These points will be marked by ordered pairs xy where xy is an inside
arrow. We mark the points so that the cyclic order of the points respects the
cyclic order on Z in the first coordinate (the pairs with the same first coordinate
are consecutive). However, for a fixed x, the pairs xy1, . . . , xyk corresponding to
all arrows emanating from x are ordered in the reverted order when compared
with the order of y1, . . . , yk on Z.

It is not hard to check that the points marked xy and yx are precisely the
opposite points. Now, we get the required drawing in the following way. For any
arrow xy we connect x with the point marked xy and y with yx. We can do all
the connections simultaneously for all arrows without introducing any crossing
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since we have respected the cyclic order in the first coordinate. We remove the
interior of E1 and identify the opposite points on its boundary. This way we
introduce a crosscap. Finally, we glue another disk along its boundary to Z and
we get the required drawing on RP 2. 	


Acknowledgment. We would like to thank Alfredo Hubard for fruitful discussions
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Tóth, G.F., Pach, J. (eds.) Geometry – Intuitive. Discrete, and Convex: A Tribute
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Abstract. A drawing of a graph G is radial if the vertices of G are
placed on concentric circles C1, . . . , Ck with common center c, and edges
are drawn radially: every edge intersects every circle centered at c at
most once. G is radial planar if it has a radial embedding, that is, a
crossing-free radial drawing. If the vertices of G are ordered or partitioned
into ordered levels (as they are for leveled graphs), we require that the
assignment of vertices to circles corresponds to the given ordering or
leveling. A pair of edges e and f in a graph is independent if e and f do
not share a vertex.

We show that a graph G is radial planar if G has a radial drawing
in which every two independent edges cross an even number of times;
the radial embedding has the same leveling as the radial drawing. In
other words, we establish the strong Hanani-Tutte theorem for radial
planarity. This characterization yields a very simple algorithm for radial
planarity testing.

1 Introduction

This paper continues work begun in “Hanani-Tutte for Radial Planarity” [16]
by the same authors; to make the current paper self-contained we repeat some
of the background and terminological exposition from the previous paper.

In a leveled graph every vertex is assigned a level in {1, . . . , k}. A radial
drawing visualizes the leveling of the graph by placing the vertices on concentric
circles corresponding to the levels of G. Edges must be drawn as radial curves:
for any circle concentric with the others, a radial curve intersects the circle at
most once. A leveled graph is radial planar if it admits a radial embedding, that
is, a radial drawing without crossings. The concept of radial planarity generalizes
level planarity [8] in which levels are parallel lines instead of concentric circles
(radially-drawn edges are replaced with x-monotone edges).

A version of the paper containing all proofs is available on arxiv.
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We previously established the weak Hanani-Tutte theorem for radial
planarity: a leveled graph G is radial planar if it has a radial drawing (respect-
ing the leveling) in which every two edges cross an even number of times
[16, Theorem 1]. Our main result is the following strengthening of the weak
Hanani-Tutte theorem for radial planarity, also generalizing the strong Hanani-
Tutte theorem for level-planarity [15]:

Theorem 1. If a leveled graph has a radial drawing in which every two inde-
pendent edges cross an even number of times, then it has a radial embedding.

The weak variant of a Hanani-Tutte theorem makes the stronger assumption
that every two edges cross an even number of times. Often, weak variants lead to
stronger conclusions. For example, it is known that if a graph can be drawn in a
surface so that every two edges cross evenly, then the graph has an embedding on
that surface with the same rotation system, i.e. the cyclic order of ends at each
vertex remains the same [7,20]. This, in a way, is a disadvantage, since it implies
that the original drawing is already an embedding, so that weak Hanani-Tutte
theorems do not help in finding embeddings. On the other hand, strong Hanani-
Tutte theorems are often algorithmic. Theorem 1 yields a very simple algorithm
for radial planarity testing (described in Sect. 5) which is based on solving a
system of linear equations over Z/2Z, see also [22, Sect. 1.4]. Our algorithm runs
in time O(n2ω), where n = |V (G)| and O(nω) is the complexity of multiplication
of two square n×n matrices. Since our linear system is sparse, it is also possible
to use Wiedemann’s randomized algorithm [24], with expected running time
O(n4 log2 n) in our case.

Radial planarity was first studied by Bachmaier et al. [3]. Radial and other
layered layouts are a popular visualization tool (see [4, Sect. 11], [9]); early exam-
ples of radial graph layouts can be found in the literature on sociometry [19].
Bachmaier et al. [3] showed that radial planarity can be tested, and an embed-
ding can be found, in linear time. Their algorithm is based on a variant of PQ-
trees [6] and is rather intricate. It generalizes an earlier linear-time algorithm
for level-planarity testing by Jünger and Leipert [18]. Angelini et al. [2] devised
recently a conceptually simpler algorithm for radial planarity with running time
O(n4) (quadratic if the leveling is proper, that is, edges occur between consec-
utive levels only), by reducing the problem to a tractable case of Simultaneous
PQ-ordering [5].

We prove Theorem 1 by ruling out the existence of a minimal counter-
example. By the weak Hanani-Tutte theorem [16, Theorem 1] a minimal counter-
example must contain a pair of independent edges crossing an odd number of
times. Thus, [16, Theorem 1] serves as the base case in our argument (mirror-
ing the development for level-planarity). In place of Theorem 1 we establish a
stronger version, Theorem 4, which we discuss in Sect. 4.

We refer the reader to [16,21–23] for more background on the family of
Hanani-Tutte theorems, but suffice it to say that strong variants are still rather
rare, so we consider the current result as important evidence that Hanani-Tutte
is a viable route to graph-drawing questions.
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2 Terminology

For the purposes of this paper, graphs may have multiple edges, but no loops.
An ordered graph G = (V,E) is a graph whose vertices are equipped with a total
order v1 < v2 < · · · < vn. We can think of an ordered graph as a special case
of a leveled graph, in which every vertex of G is assigned a level, a number in
{1, . . . , k} for some k. The leveling of the vertices induces a weak ordering of
the vertices.

For convenience we represent radial drawings as drawings on a (standing)
cylinder. Intuitively, imagine placing a cylindrically-shaped mirror in the center
of a radial drawing as described in the introduction.1 The cylinder is C = I ×S

1,
where I is the unit interval [0, 1] and S

1 is the unit circle. Thus, a point on the
cylinder is a pair (i, s), where i ∈ I and s ∈ S

1. The projection to I, or S
1 maps

(i, s) ∈ C to i, or s. We denote the projection of a point or a subset α of I ×S
1 to

I by I(α) and to S
1 by S

1(α). We define a relation to represent relative heights
on the standing cylinder model: for x, y ∈ C, let x ≤ y iff I(x) ≤ I(y). This allows
us to write min I(X) and max I(X) as simply min X and max X (for X ⊂ C),
write min X ≤ x to assert that min I(X) ≤ I(x) (for x ∈ C), etc.

The winding number of a closed curve on a cylinder is the number of times
the projection to S

1 of the curve winds around S
1, i.e., the number of times

the projection passes through an arbitrary point of S1 in the counterclockwise
sense minus the number of times the projection passes through the point in the
clockwise sense. A closed curve (or a closed walk in a graph) on a cylinder is
essential2 if its winding number is odd. A graph drawn on the cylinder is essential
if it contains an essential cycle.

A radial drawing D(G) of an ordered graph G is a drawing of G on the
cylinder in which every edge is radial, that is, its projection to I is injective (it
does not “turn back”), and for every pair of vertices u < v we have I(u) < I(v).
In a radial drawing, an upper (lower) edge at v is an edge incident to v for
which min e = v (max e = v). A vertex v is a sink (source), if v has no upper
(lower) edges. To avoid unnecessary complications, we may assume that I(G) is
contained in the interior of I. We think of D as a function from G (treated as a
topological space) to C. Thus, D(G′), for G′ ⊆ G, is a restriction of G to G′.

The rotation at a vertex in a drawing (on any surface) of a graph is the
cyclic, clockwise order of the ends of edges incident to the vertex in the drawing.
The rotation system is the set of rotations at all the vertices in the drawing.
For radial drawings, we define the upper (lower) rotation at a vertex v to be the
linear order of the ends of the upper (lower) edges in the rotation at v, starting
with the direction corresponding to the clockwise orientation of S1. The rotation
at a vertex in a radial drawing is completely determined by its upper and lower
rotation. The rotation system of a radial drawing is the set of the upper and
lower rotations at all the vertices in the drawing.

1 Search for “cylindrical mirror anamorphoses” on the web for many cool pictures of
this transformation.

2 Note that we define an essential curve slightly differently than usual.



Hanani-Tutte for Radial Planarity II 471

For any closed, possibly self-intersecting, curve in the plane (or cylinder), we
can two-color the complement of the curve so that connected regions each get one
color and crossing the curve switches colors. A point can appear more than once
on the curve, and in such cases the color switches if the closed curve is crossed an
odd number of times. For example, a plane graph (embedding) can have a face
bounded by a closed curve that uses an edge e twice (once in each direction);
crossing e means crossing the boundary walk twice, so the two-coloring will have
the same color on both sides of e. If the closed curve is non-essential, the region
incident to 1×S

1 and all other regions of the same color form the exterior (which
includes the region incident to 0 × S

1); the remaining regions form the interior
of the curve.

Each pair of edges in a graph drawing crosses evenly or oddly according to the
parity of the number of crossings between the two edges. A drawing of a graph
is even if every pair of edges cross evenly. A drawing of a graph is independently
even if every two independent edges in the drawing cross an even number of
times; two edges that share an endpoint may cross oddly or evenly.

For any (non-degenerate) continuous deformation of a drawing of G, the
parity of the number of crossings between pairs of independent edges changes
only when an edge passes through a vertex. We call this event an edge-vertex
switch. When an edge e passes through a vertex v, the crossing-parity changes
between e and every edge incident to v.

3 Weak Hanani-Tutte for Radial Drawings

Let us first recall the weak variant of the result that we want to prove.

Theorem 2 (Fulek, Pelsmajer, Schaefer [16, Theorem 1]). If a leveled
graph has a radial drawing in which every two edges cross an even number of
times, then it has a radial embedding with the same rotation system and leveling.

We need a stronger version of this result that also keeps track of the parity
of winding numbers.

Theorem 3 (Fulek, Pelsmajer, Schaefer [16, Theorem 2]). If an ordered
graph G has an even radial drawing, then it has a radial embedding with the
same ordering, the same rotation system, and so that the winding number parity
of every cycle remains the same.

Theorem 2 follows from Theorem 3 using the construction from [15, Sect. 4.2]
that was used to reduce level-planarity to x-monotonicity.

3.1 Working with Radial Embeddings and Even Drawings

Given a connected graph G with a rotation system, one can define a facial
walk purely combinatorially by following the edges according to the rotation
system (see, for example, [17, Sect. 3.2.6]), by traversing consecutive edges at
each vertex, in clockwise order.
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We need some terminology for embeddings of an ordered graph G with v1 <
v2 < . . . < vn. The maximum (minimum) of a facial walk W in the radial drawing
of G is the maximum (minimum) v that lies on W . A local maximum (local
minimum) of a facial walk W is a vertex v on W so that is larger (smaller) than
both the previous and subsequent vertices on W . (A vertex v might appear more
than once on W ; the previous definition implicitly refers to one such appearance.)

Let e = uv and e′ = vw be two consecutive edges on the facial walk W of a
face f in an embedding E(G) of G. We call (e, v, e′) a wedge at v in f , and we
can identify it with a small neighborhood of v in the interior of f . Intuitively, we
think of wedges as being the corners of a face. Given an even drawing D(G) of G
with the same rotation system as in E(G), we identify the wedge (e, v, e′) with a
small neighborhood of v on the left side of W . A point in the complement of W
in D(G) is in the interior (exterior) of W if it receives the same (opposite) color
as a wedge of W when we two-color the complement of W . Note that in an even
drawing, all the wedges of W have the same color, and hence, the definition is
consistent.

For general (not necessarily facial) walks W , we call (e, v, e′,−) and
(e, v, e′,+) a wedge at v in an oriented walk W , and identify it with a small
neighborhood of v on left and right, respectively, side of W . A wedge of an
essential walk W in a radial drawing is above W if its color in the two-coloring
of the complement of W is the same as the color of the region incident to 1×S

1,
Otherwise, we say the edge is below W ; in that case, it has the same color as the
region incident to 0 × S

1.
At each sink (source) v, the wedge that contains the region directly above

(below) v is called a concave wedge. A facial walk in an even radial drawing is
an upper (lower) facial walk if it contains 1×S

1 (0×S
1) in its interior. An outer

facial walk is an upper or lower facial walk; other facial walks are inner facial
walks. If a radial embedding of G has only one outer facial walk (and one outer
face) then it also has an x-monotone embedding, using the technique described
in Sect. 2.

Let C denote a cycle in an even radial drawing. Let e, f and e′, f ′, respectively,
be edges incident to the maximum v and minimum u of C. Let <v be the lower
rotation at v and let <u be the upper rotation at u. Suppose that e <v f and
suppose that e, e′, f ′, f (we allow e = e′ or f = f ′) appear in this order along C.
Then C is essential if and only if f ′ <u e′. See Fig. 1

Lemma 1. The cycle C is essential if and only if the two paths connecting its
extreme vertices do so in inverse order.

4 Strong Hanani-Tutte for Radial Drawings

Theorem 3 preserves the parity of the winding number of cycles in even radial
drawings of ordered graphs, but there are examples showing that we cannot hope
to do this when the drawings are only independently even. We will make do with
a somewhat weaker property:
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e f

f ′ e′

v

u

Fig. 1. Essential cycle
(ends of path in inv-
erse order at u and v).

Given an ordered graph G with a radial drawings D1

and D2, we say that D2 is supported by D1 if for every
essential cycle C2 in D2, there is an essential cycle C1 in
D1 such that [min C1,max C1] ⊆ [min C2,max C2].

A radial drawing of an ordered connected graph is
weakly essential if every essential cycle in the drawing
passes through v1 or vn (the first or the last vertex). With
this definition we can state the strengthened version of
our main result which we need for the proof.

Theorem 4. Let G be an ordered graph. Suppose that
G has an independently even radial drawing. Then G has a radial embedding.
Moreover, (i) if the given drawing of G is weakly essential then G has an x-
monotone embedding; and (ii) the new embedding is supported by the original
drawing.

Theorem 1 follows from Theorem 4 by the construction from [15, Sect. 4.2].

4.1 Working with Independently Even Radial Drawings

Call an edge drawn on C bounded if its points lie between its endpoints (with
respect to the I-coordinate); that is, u < p < v for every point p in the interior
of edge uv. Call a drawing of G bounded if all edges are bounded.

Lemma 2. If a graph has an (independently) even bounded drawing, then it has
an (independently) even radial drawing with the same rotation system.

We often make use of the following fact.

Lemma 3. Let P be a path and let C be an essential cycle, vertex disjoint from
P , in an independently even radial drawing of a graph. Then I(P ) does not
contain I(C).

If two consecutive edges in the rotation at a vertex v cross oddly, we can make
them cross evenly by a local redrawing: we “flip” the order of the two edges in
the rotation at v, adding a crossing, which makes them cross evenly. For x-
monotonicity it is known [15] that if the edges incident to a vertex cannot be
made to cross evenly using edge flips, then there must be a connected component
H of G \ {v, w} satisfying v ≤ min H < max H ≤ w or a multi-edge vw, but
both cases can be dealt with. An application of the weak Hanani-Tutte theorem
for x-monotonicity completes the proof. We want to use the same approach for
radial drawings, and we already know that the weak Hanani-Tutte theorem holds
for radial drawings. However, for radial drawings there may be a vertex v whose
incident edges cannot be made to cross evenly using flips, but no obstacle like H
exists. However, a closer look reveals that this can only happen when the vertex
v is either the first or the last vertex of the ordered graph. The next lemma helps
us deal with this case.
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Given an ordered graph G with vertices v1 < . . . < vn without the edge v1vn,
let G′ denote the ordered graph obtained by removing v1, vn, and replacing each
edge vvi with i ∈ {1, n} by a “pendant edge” vu where u is a new vertex of
degree one, with u is placed in the order before v2 if i = 1 and after vn−1 if i = n
(and otherwise ordered arbitrarily).

Lemma 4. If G is a connected ordered graph with an (independently) even radial
drawing D(G), then G′ has an (independently) even radial drawing D′(G′) such
that D′(G \ {v1, vn}) = D(G \ {v1, vn}).

Using Lemma 4 we can establish part (i) of Theorem 4.

Lemma 5. Suppose that G has an independently even radial drawing that is
weakly essential. Then G has an x-monotone embedding.

4.2 Components of a Minimal Counterexample

We establish various properties of a minimal counter-example G—first with
respect to vertices, then edges—to Theorem 4 given by an independently even
radial drawing D(G).

Lemma 6. G is connected.

Let v be a vertex and suppose that B is a connected component of G\v with
min B > v. By Lemma 6, there exists at least one edge from v to a vertex in B.

Lemma 7. Let v be a vertex and B be a connected component of G \ v with
min B > v. Then either |V (B)| = 1 (and the vertex of B has just one neighbor,
v) or B is essential.

Lemma 8. Let v be a vertex and B be a connected component of G \ v with
min B > v. If B is essential, then v = v1.

Lemma 9. Suppose that v, w ∈ V and B is a connected component of V \{v, w}
with v < min B, max B < w, and there is at least one edge from B to v and at
least one edge from B to w. Then B is essential.

4.3 Proof of Theorem 4

Let G be a minimal counter-example to the theorem given by an independently
even radial drawing D(G). We already established part (i) of the theorem in
Lemma 5. We also know, by Lemma 6, that G is connected.

If the drawing is even, then Theorem 3 gives us a radial embedding of G,
and part (ii) of the theorem is satisfied since Theorem 3 maintains the parity of
winding numbers of cycles. So there must be two adjacent edges crossing oddly.

Recall that flipping a pair of consecutive edges in an upper or lower rotation
at a vertex changes the parity of crossing between the edges.
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First, we repeatedly flip pairs of consecutive edges that cross oddly in the
upper or lower rotation at a vertex until none remain. Let e, f be an odd pair of
minimum distance in the—without loss of generality—upper rotation of a vertex
v. Then let g be any edge in the upper rotation between e and f , which must
cross both evenly.

Lemma 10. Suppose that in D(G) there exist three paths P,Q and Q′ starting
at v such that {e, f, g} is the set of first edges on those paths, with min P < v =
min Q = min Q′ and V (P ) ∩ V (Q) = V (P ) ∩ V (Q′) = {v}. Then it cannot be
that both max Q > max P and max Q′ > max P .

P
v

Q′

Q

Fig. 2. P , Q, and Q′

from Lemma 10.

The proof of Theorem 4 splits into two cases.
Case 1: Assume that v �= v1, vn. Let Ge, Gf and Gg be
the (not necessarily distinct) components of G \ {v} con-
taining an endpoint of e, f, g respectively. We are inter-
ested in showing that one or more of these intersects
{u ∈ V : u < v}. For each of Ge, Gf and Gg, if it does
not intersect that region, then by Lemma 7, it must be
either (i) a single vertex or (ii) essential. However, case (ii)
is impossible, since then v1 = v by Lemma 8 (contradic-
tion). Suppose that two of them, let’s say Ge and Gf are
single vertices we and wf , respectively, with we > wf . Then remove wf and
the edge vwf from G and apply the minimality of G. Thus, we obtain a radial
embedding of G\wf supported by D(G\wf ). We re-insert vwf into the obtained
embedding of G \ wf without crossings by drawing the edge vwf alongside the
longer edge vwe. Thus, we can assume that at most one of Ge, Gf , Gg is of type
(i) and none is of type (ii), which means that at least one of them must intersect
{u ∈ V : u < v}.

Let P be a path from v through e, f , or g, which ends in the region I < v,
chosen so as to minimize max P , see Fig. 2. Let wP be its vertex of max I-
coordinate. Choose a minimal such P , so that every vertex except its last is in
the region I ≥ v. Let P1 be the initial portion of P , from v to wP , and let P2

be the later portion of P , from wP to the region I < v.
Let H be the subgraph induced by {u ∈ V : v < u < wP }. Let H2 be

the component of H that intersects P2 (empty if P2 has just one edge) and let
He,Hf ,Hg be the (not necessarily distinct) components of H incident to e, f, g,
respectively (empty if the upper endpoint of that edge is in the region I > wP ).
By the choice of P , H2 is disjoint (and distinct) from each of He,Hf ,Hg and
there is no edge from He ∪ Hf ∪ Hg to the region I < v.

Suppose that He is non-empty and that v is the only vertex adjacent to He.
By Lemmas 7 and 8 He is a single vertex. Then its only incident edge is e and
we proceed as follows.

Remove e and its upper endpoint “ve” and apply the minimality of G. Thus,
we obtain a radial embedding E(G \ ve) of G \ ve that is supported by D(G \ ve).
If there is an edge in G \ ve from v to w′ with w′ ≥ wP , simply draw e alongside
that edge in the obtained embedding. So let’s assume that there is no such edge.
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Then P1 contains at least one vertex in the region v < I < wP . Let H1 be
the component of H that intersects P1 and let H ′

1 be the subgraph induced by
V (H1) ∪ {v}. By the choice of P , H1 is not incident to an edge intersecting the
region I < v. The radial embedding E(H ′

1) is non-essential because I(H ′
1) ⊆

I(P2), by Lemma 3. Let H ′′
1 denote the union of H ′

1 with all its incident edges (if
any) intersecting the region I > wP . We can draw e alongside the boundary of
the lower outer face of H ′′

1 in E(H ′′
1 ) so that it is bounded. Hence, we can apply

Lemma 2 to re-embed e without crossings (contradiction).
Thus, if He is non-empty then it must be adjacent to vertices other than v,

which means vertices in either region I < v or I ≥ wP , where the former is ruled
out due to the choice of P . By similar arguments, Hf and Hg have neighbors in
I ≥ wP unless they are empty. Hence, we have the following.

Lemma 11. Every non-empty subgraph He,Hf and Hg is non-essential and
adjacent to a vertex in I ≥ wP . (If He is empty, then max e ≥ wP , and similarly
for Hf and Hg.)

Without loss of generality we suppose that P goes through e, since otherwise
we can redraw near v to flip the relative order of the ends of e, f, g at v so that
P ends at the leftmost edge, renaming it e, renaming the middle one g, and
the right one f—then flipping if needed we recover the earlier crossing parities
between each pair of edges (e, f), (e, g), (f, g).

Consider minimal paths Pf and Pg from v, with first edge f and g, respec-
tively, that end in {u : u < v or u ≥ wP }. (These must exist because if Hf does
not have neighbors in I ≥ wP then Hf must be empty, which means that f is an
edge from v to I ≥ wP and thus we can let Pf be f with its endpoints. Likewise
for Hg to get Pg.)

If neither Pe nor Pf intersects P1, then neither intersects P and both end in
I > wP , which contradicts Lemma 10. Thus, we may assume that there exists a
path from v through f or g to P1 which lies in the region v ≤ I ≤ wP . Hence,
there exists a cycle through e, v, f or e, v, g which lies in the region v ≤ I ≤ wP .

We choose C so as to minimize max C and to be essential if possible. Let w
be the vertex with w = max C. Without loss of generality, we may assume that
f ∈ E(C). Let Be be the component of {u : v < u < w} that is incident to
e, and let B′

e be the graph formed from the union of Be and all incident edges
(including e) with their endpoints. Define Bf , B′

f , Bg, B
′
g similarly, but in the

case that the upper endpoint of g is not in the region v < I < w, let Bg = ∅ and
let B′

g be just g with its endpoints.
By the choice of C we have Be ∩ Bf = Be ∩ Bg = Bf ∩ Bg = ∅. None of Be,

Bf and Bg is joined by an edge with a vertex u < v by the choice of P .
First consider the case that C is not essential. Since g crosses every edge of

C evenly and g is between e and f near v—which is in the interior of C— the
other endpoint of g must be in the interior of C or on C. In the former case,
every vertex of Bg must be in the interior of C because C and Bg are disjoint
so their edges cross evenly. For the same reason Bg cannot be adjacent to any
vertices in the region I > w, so V (B′

g) \ V (Bg) ⊆ {v, w}. By Lemma 11, B′
g
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includes w and w = wP and He is non-essential, but then Bg is essential by
Lemma 9, a contradiction since Bg ⊆ Hg. Hence the upper endpoint of g is in
C. By the choice of C, it must be w; i.e., g = vw. Let C ′ be the cycle formed
from g and either of the paths from v to w in C. since max C ′ = max C, when
we chose C, we could have chosen C ′ instead. Then C ′ must be non-essential.
Thus, the preceding argument all applies with C ′ replacing C, implying that
e = vw or f = vw. The multi-edge vw gives either a direct contradiction if you
want to think of it that way, or else remove one, apply induction, and redraw it
alongside its parallel edge.

Hence, C is essential, and by the choice of C and P , and by Lemma 3 applied
to C and P2 we obtain that wP = w. Thus, Be = He, Bf = Hf and Bg = Hg.
Suppose that g = vw. The union C ∪ g contains two cycles through g one of
which is non-essential in D(G), since otherwise C would not be essential by a
simple parity argument. By applying the argument in the previous paragraph to
the non-essential cycle, it follows that Be = e = vw or Bf = f = vw. Then we
can remove one of the multi-edges vw and obtain a contradiction with the choice
of G. Hence, we assume that g �= vw. By Lemma 11, D(B′

g) intersects the region
I ≥ w = wP . Furthermore, by Lemmas 9 and 11, V (B′

g) �⊆ V (B) ∪ {{v, w},
so D(B′

g) intersects the region I > w. By applying Lemmas 9 and 11 to Be

likewise, the drawing D(B′
e) also intersects the region I > w, unless e = vw.

In what follows we show that the former cannot happen. Then by symmetry
the same applies to f , and hence, we obtain a multi-edge vw contradicting the
minimality of G, which completes the proof. Let Q′ be a shortest path in B′

g

starting at v with g and ending in the region I > w. By assuming that D(B′
e)

intersects the region I > w, we may let Q ⊆ B′
e \ v be a shortest path in B′

e \ v
starting with e′ and ending in the region I > w.

We modify the drawing of e and f near v so that they switch positions in
the rotation at v; then g crosses both e and f oddly, e and f cross evenly, and
the edge g is between e and f . Furthermore, we modify drawings of edges of C
near the vertices of C so that every pair of edges of C cross each other evenly;
this will not affect the upper rotation at v. We correct the lower rotation at w so
that the first edge on P2, let’s say g′, is between the edges e′ ∈ B′

e and f ′ ∈ B′
f

on C. Since C is essential, the edge g′ crosses C evenly since P2 begins and ends
below C. Since G is independently even, g′ crosses both e′ and f ′ either oddly
or evenly. In the next paragraph, we show that the edge g′ crosses e′ oddly.

Let Ce be a cycle consisting of Q′, the part of C between v and w through
B′

e, and a new edge edge from w to the upper endpoint of Q′. For convenience,
we can make the new edge drawn radially, such that it crosses its incident edge
in Q′ evenly (it cannot cross any other edge of C ′). Then every two edges in Ce

cross evenly except for the pair g, e. Consider the two-coloring of the complement
of Ce in C. Because the two paths in Ce from v to w cross each other oddly, the
color immediately to the right (left) of e at v will be the same as the color to
immediately to the left (right) of e′ at w. By Lemma 1 applied to the essential
cycle C, f and g are to the right (left) of e at v if and only if f ′ and g′ are
to the left (right) of e′ at w. Therefore, the upper wedge at v between e and g
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will have the same color as the lower wedge between e′ and g′ at w; the latter
implies that the end of g′ near w will have have that color as well. The entire
region I < v must have the opposite color as the upper wedge at v, and P2 has
an endpoint in this region. Thus, the two ends of P2 have different colors. Then
P2 must cross Ce oddly. Since the drawing of G is independently even, it must
be that g′ crosses e′ oddly (Fig. 3).

e
f

f ′
e′

v

w

g′

g

Fig. 3. Applying
Lemma 10 upside
down.

As shown earlier, if g′ crosses e′ oddly then g′ also
crosses f ′ oddly. Let Q ⊆ B′

e\v be a shortest path in B′
e\v

starting with w, e′ and ending in the region I > wP . Then
we can apply Lemma 10 upside down: the role of “v” in
Lemma 10 is played by w, the role of “P” by Q, “Q” is
P2 and “Q′” is the part of C between v and w through
B′

f (contradiction). Indeed, P2 is internally disjoint from
both Q and C by the choice of P , and Q is internally
disjoint from Bf .
Case 2: Assume that v = v1 or v = vn. We can assume
that G does not contain edge v1vn, since otherwise D(G)
is weakly essential by Lemma 3, and we are done by Lemma 5. We can also
suppose that only pairs of edges at v1 or vn cross an odd number of times.
Otherwise, we end up in the previous case. Turn G into a graph G′ with pendant
edges as described in the paragraph preceding Lemma 4; then Lemma 4 implies
that G′ has an even drawing, so by Theorem 3 it has a radial embedding. We
can redraw pendant edges and identify endpoints to obtain a radial embedding
of G, but we need to do this carefully to satisfy part (ii) of the theorem if
G′ is essential: We “expose” (see Fig. 4) the maximum vertex of the lower face
boundary of G′ so that it remains on the lower face boundary of G (and likewise
for the the minimum vertex of the upper face boundary). Any essential cycle C
in G not present in G′ passes through v1 or vn. In order to satisfy part (ii) we
need an essential cycle C ′ in the embedding of G′ for which [minC ′,max C ′] ⊆
[min C,max C]. However, a lower or upper facial walk of G′ contains such a cycle.

5 Algorithm

Theorem 1 reduces radial planarity testing to a system of linear equations over
Z/2Z. For planarity testing, systems like this were first constructed by Wu and
Tutte [22, Sect. 1.4.2].

Unlike in the case of x-monotone drawings, two drawings of an edge e with
end vertices fixed cannot necessarily be obtained one from another by a continu-
ous deformation during which we keep the drawing of e radial: up to a continuous
deformation, two radial drawings of an edge differ by a certain number of (Dehn)
twists. We perform a twist of e = uv, u < v very close to v, i.e., the twist is car-
ried out by removing a small portion Pe of e such that we have w �∈ I(Pe), for all
vertices w, and reconnecting the severed pieces of e by a curve intersecting every
edge e′, s.t. I(Pe) ⊂ I(e′), exactly once. Observe that with respect to the parity
of crossings between edges performing a twist of e close to v equals performing
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an edge-vertex switch of e with all the vertices w < v (including those for which
w < u). Hence, the orientation of the twist does not matter, and any twist of
e keeping e radial can be simulated by a twist of e very close to v and a set of
edge-vertex switches of e with certain vertices w, for which u < w < v.

v2
v3

v4
v5

v6
v7 v7

v2
v3

v4
v5

v6
v7 v7

v1

Fig. 4. Exposing v6 on the lower outer
face.

By the previous paragraph a lin-
ear system for testing radial planarity
can be constructed as follows. The sys-
tem has a variable xe,v for every edge-
vertex switch (e, v) such that v ∈ I(e),
and a variable xe for every edge twist.
Given an arbitrary radial drawing of G
we denote by cro(e, f) the parity of the
number of crossings between e and f .
In the linear system, for each pair of independent edges (e, f) = (uv,wz), where
u < v, w < z, u < w, and w < v, we require

cr(e, f) ≡
{

xe,w + xe,z + xf mod 2 if z < v, and
xe,w + xf,v + xe mod 2 if z > v.

Then G is radial planar if and only if this linear system has a solution.

6 Open Questions

We conjecture that Theorem 3, and—in light of [14, Sect. 2]—its algorithmic
consequences, extend to bounded drawings [13] on a cylinder, defined as follows.
We are given a pair (G, γ) of a graph G and a map γ : V → N, and consider
cylindrical drawings of G in which (i) u < v whenever γ(u) < γ(v) for u, v ∈ V ,
and (ii) γ(u) ≤ γ(w) ≤ γ(v), where uv ∈ E and γ(u) ≤ γ(v), whenever I(w) ∈
I(uv). By Lemma 2, radial planarity is the special case in which γ is injective.

In the plane, such a result is already known: a weak Hanani-Tutte variant
for bounded embeddings in the plane [12]. (A more general result was proved
by M. Skopenkov in a different context [23, Theorem 1.5].) This together with
a result showing that edges can be made x-monotone [13, Lemma 1] shows that
the corresponding planarity variant coincides with strip planarity [1]. We do
not know whether projections of edges to I can be made injective in bounded
embeddings on the cylinder, though we conjecture that this is the case.

If the previous conjecture holds, bounded embeddings on the cylinder can
be treated as clustered planar embeddings [10,11] where all the clusters are
pairwise nested. The complexity status of this special case of c-planarity is open
to the best of our knowledge. The counter-examples in [14, Sect. 6,8], a Hanani-
Tutte theorem for this setting would be the most general direct extension of the
Hanani-Tutte theorem to clustered planar drawings that we can hope for.
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1 Tübingen University, Tübingen, Germany
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Abstract. In this paper we settle the computational complexity of two
open problems related to the extension of the notion of level planarity
to surfaces different from the plane. Namely, we show that the problems
of testing the existence of a level embedding of a level graph on the sur-
face of the rolling cylinder or on the surface of the torus, respectively
known by the name of Cyclic Level Planarity and Torus Level
Planarity, are polynomial-time solvable.

Moreover, we show a complexity dichotomy for testing the Simulta-
neous Level Planarity of a set of level graphs, with respect to both
the number of level graphs and the number of levels.

1 Introduction and Overview

The study of level drawings of level graphs has spanned a long time; the seminal
paper by Sugiyama et al. on this subject [23] dates back to 1981, well before graph
drawing was recognized as a distinguished research area. This is motivated by
the fact that level graphs naturally model hierarchically organized data sets and
level drawings are a very intuitive way to represent such graphs.

Formally, a level graph (V,E, γ) is a directed graph (V,E) together with a
function γ : V → {1, . . . , k}, with 1 ≤ k ≤ |V |. The set Vi = {v ∈ V : γ(v) = i} is
the i-th level of (V,E, γ). A level graph (V,E, γ) is proper if for each (u, v) ∈ E,
either γ(u) = γ(v) − 1, or γ(u) = k and γ(v) = 1. Let l1, . . . , lk be k horizontal
straight lines on the plane ordered in this way with respect to the y-axis. A level
drawing of (V,E, γ) maps each vertex v ∈ Vi to a point on li and each edge
(u, v) ∈ E to a curve monotonically increasing in the y-direction from u to v.
Note that a level graph (V,E, γ) containing an edge (u, v) ∈ E with γ(u) > γ(v)
does not admit any level drawing. A level graph is level planar if it admits a
level embedding, i.e., a level drawing with no crossing; see Fig. 1(a). The Level
Planarity problem asks to test whether a given level graph is level planar.
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(a) (b) (c) (d)

Fig. 1. Level embeddings (a) on the plane, (b) on the standing cylinder, (c) on the
rolling cylinder, and (d) on the torus.

Problem Level Planarity has been studied for decades [12,15,18,20,22],
starting from a characterization of the single-source level planar graphs [12] and
culminating in a linear-time algorithm for general level graphs [20]. A charac-
terization of level planarity in terms of “minimal” forbidden subgraphs is still
missing [13,17]. The problem has also been studied to take into account a clus-
tering of the vertices (Clustered Level Planarity [2,14]) or consecutivity
constraints for the vertex orderings on the levels (T -level Planarity [2,24]).

Differently from the standard notion of planarity, the concept of level pla-
narity does not immediately extend to representations of level graphs on surfaces
different from the plane1. When considering the surface O of a sphere, level draw-
ings are usually defined as follows: The vertices have to be placed on the k circles
given by the intersection of O with k parallel planes, and each edge is a curve on
O that is monotone in the direction orthogonal to these planes. The notion of
level planarity in this setting goes by the name of Radial Level Planarity
and is known to be decidable in linear time [4]. This setting is equivalent to the
one in which the level graph is embedded on the “standing cylinder”: Here, the
vertices have to be placed on the circles defined by the intersection of the cylin-
der surface S with planes parallel to the cylinder bases, and the edges are curves
on S monotone with respect to the cylinder axis; see [3,4,10] and Fig. 1(b).

Problem Level Planarity has been also studied on the surface R of a
“rolling cylinder”; see [3,5,6,10] and Fig. 1(c). In this setting, k straight lines
l1, . . . , lk parallel to the cylinder axis lie on R, where l1, . . . , lk are seen in this
clockwise order from a point p on one of the cylinder bases, the vertices of
level Vi have to be placed on li, for i = 1, . . . , k, and each edge (u, v) is a
curve λ lying on R and flowing monotonically in clockwise direction from u to
v as seen from p. Within this setting, the problem takes the name of Cyclic
Level Planarity [6]. Note that a level graph (V,E, γ) may now admit a level
embedding even if it contains edges (u, v) with γ(u) > γ(v). Contrary to the
other mentioned settings, the complexity of testing Cyclic Level Planarity
is still unknown, and a polynomial (in fact, linear) time algorithm has been
presented only for strongly connected graphs [5], which are level graphs such
that for each pair of vertices there exists a directed cycle through them.

1 We consider connected orientable surfaces; the genus of a surface is the maximum
number of cuttings along non-intersecting closed curves that do not disconnect it.
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In this paper we settle the computational complexity of Cyclic Level
Planarity by showing a polynomial-time algorithm to test whether a level
graph admits a cyclic level embedding (Theorem 3). In order to obtain this
result, we study a version of level planarity in which the surface T where the
level graphs have to be embedded has genus 1; we call Torus Level Pla-
narity the corresponding decision problem, whose study was suggested in [6].
It is not difficult to note (Lemmata 1 and 2) that the torus surface combines the
representational power of the surfaces of the standing and of the rolling cylin-
der – that is, if a graph admits a level embedding on one of the latter surfaces,
then it also admits a level embedding on the torus surface. Furthermore, both
Radial Level Planarity and Cyclic Level Planarity (and hence Level
Planarity) reduce in linear time to Torus Level Planarity.

The main result of the paper (Theorem 2) is a quadratic-time algorithm for
proper instances of Torus Level Planarity and a quartic-time algorithm
for general instances. Our solution is based on a linear-time reduction (Obser-
vation 1 and Lemmata 3–6) that, starting from any proper instance of Torus
Level Planarity, produces an equivalent instance of the Simultaneous PQ-
Ordering problem [8] that can be solved in quadratic time (Theorem 1).

Motivated by the growing interest in simultaneous embeddings of multiple
planar graphs, which allow to display several relationships on the same set of
entities in a unified representation, we define a new notion of level planarity in
which multiple level graphs are considered and the goal is to find a simulta-
neous level embedding of them. The problem Simultaneous Embedding (see
the seminal paper [11] and a recent survey [7]) takes as input k planar graphs
(V,E1), . . . , (V,Ek) and asks whether they admit planar drawings mapping each
vertex to the same point of the plane. We introduce the problem Simultaneous
Level Planarity, which asks whether k level graphs (V,E1, γ), . . . , (V,Ek, γ)
admit level embeddings mapping each vertex to the same point along the cor-
responding level. As an instance of Simultaneous Level Planarity for two
graphs on two levels is equivalent to one of Cyclic Level Planarity on two
levels (Theorem 5), we can solve Simultaneous Level Planarity in polyno-
mial time in this case. This positive result cannot be extended (unless P=NP),
as the problem becomes NP-complete even for two graphs on three levels and
for three graphs on two levels (Theorem 4). Altogether, this establishes a tight
border of tractability for Simultaneous Level Planarity.

Complete proofs can be found in the full version of the paper [1].

2 Preliminaries

A tree T is a connected acyclic graph. The degree-1 vertices of T are the leaves
of T , denoted by L(T ), while the remaining vertices are the internal vertices.

A digraph G = (V,E) without directed cycles is a directed acyclic graph
(DAG). An edge (u, v) ∈ E directed from u to v is an arc; vertex u is a parent of
v and v is a child of u. A vertex is a source (sink) if it has no parents (children).
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Fig. 2. Levels on (a) S, on (b) R, and on (c) T, respectively.

Embeddings on Levels. An embedding of a graph on a surface Q is a mapping
Γ of each vertex v to a distinct point on Q and of each edge e = (u, v) to a
simple Jordan curve on Q connecting u and v, such that no two curves cross
except at a common endpoint. Let I and S

1 denote the unit interval and the
boundary of the unit disk, respectively. We define the surface S of the standing
cylinder, R of the rolling cylinder, and T of the torus as S = S

1×I, as R = I×S
1,

and as T = S
1 × S

1, respectively. The j-th level of surfaces S, R, and T with k

levels is defined as lj = S
1 × { j−1

k−1}, lj = I× {e2πi j−1
k }, and lj = S

1 × {e2πi j−1
k },

respectively; see Fig. 2. An edge (x, y) on S, on R, or on T is monotone if it
intersects the levels γ(x), γ(x) + 1, . . . , γ(y), where k + 1 = 1, exactly once and
does not intersect any of the other levels.

Problems Radial, Cyclic, and Torus Level Planarity take as input
a level graph G = (V,E, γ) and ask to find an embedding Γ of G on S, on R,
and on T, respectively, in which each vertex v ∈ V lies on lγ(v) and each edge
(u, v) ∈ E is monotone. Embedding Γ is called a radial, a cyclic, and a torus
level embedding of G, respectively. A level graph admitting a radial, cyclic, or
torus level embedding is called radial, cyclic, or torus level planar, respectively.

Lemmata 1 and 2 show that the torus surface combines the power of repre-
sentation of the standing and of the rolling cylinder. To strengthen this fact, we
present a level graph in Fig. 3a that is neither radial nor cyclic level planar, yet
it is torus level planar; note that the underlying (non-level) graph is also planar.

Lemma 1. Every radial level planar graph is also torus level planar. Fur-
ther, Radial Level Planarity reduces in linear time to Torus Level
Planarity.

Lemma 2. Every cyclic level planar graph is also torus level planar. Fur-
ther, Cyclic Level Planarity reduces in linear time to Torus Level
Planarity.

Orderings and PQ-Trees. Let A be a finite set. We call linear ordering any
permutation of A. When considering the first and the last elements of the per-
mutation as consecutive, we talk about circular orderings. Let O be a circular
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l2

l1V1

V2

(a)

l1

c l2

(b)

Fig. 3. (a) A level graph that is neither cyclic nor radial level planar, yet it is torus level
planar. (b) A radial level embedding Γ of a level graph (V1 ∪ V2, E, γ) on two levels.
Colors are used for edges incident to vertices of degree larger than one to illustrate
that the edge ordering on E in Γ is v-consecutive.

ordering on A and let O′ be the circular ordering on A′ ⊆ A obtained by restrict-
ing O to the elements of A′. Then O′ is a suborder of O and O is an extension of
O′. Let A and S be finite sets, let O′ = s1, s2, . . . , s|S| be a circular ordering on
S, let φ : S → A be an injective map, and let A′ ⊆ A be the image of S under
φ; then φ(O′) denotes the circular ordering φ(s1), φ(s2), . . . , φ(s|S|). We also say
that a circular ordering O′ on S is a suborder of a circular ordering O on A (and
O is an extension of O′) if φ(O′) is a suborder of O.

An unrooted PQ-tree T is a tree whose leaves are the elements of a ground
set A. PQ-tree T can be used to represent all and only the circular orderings
O(T ) on A satisfying a given set of consecutivity constraints on A, each of which
specifies that a subset of the elements of A has to appear consecutively in all the
represented circular orderings on A. The internal nodes of T are either P-nodes
or Q-nodes. The orderings in O(T ) are all and only the circular orderings on
the leaves of T obtained by arbitrarily ordering the neighbours of each P-node
and by arbitrarily selecting for each Q-node either a given circular ordering on
its neighbours or its reverse ordering. Note that possibly O(T ) = ∅, if T is the
empty tree, or O(T ) represents all possible circular orderings on A, if T is a star
centered at a P-node. In the latter case, T is the universal PQ-tree on A.

We illustrate three linear-time operations on PQ-trees (see [9,16,19]). Let T
and T ′ be PQ-trees on A and let X ⊆ A: The reduction of T by X builds a new
PQ-tree on A representing the circular orderings in O(T ) in which the elements
of X are consecutive. The projection of T to X, denoted by T |X , builds a new
PQ-tree on X representing the circular orderings on X that are suborders of
circular orderings in O(T ). The intersection of T and T ′, denoted by T ∩ T ′,
builds a new PQ-tree on A representing the circular orderings in O(T ) ∩ O(T ′).

Simultaneous PQ-Ordering. Let D = (N,Z) be a DAG with vertex set
N = {T1, . . . , Tk}, where Ti is a PQ-tree, such that each arc (Ti, Tj ;φ) ∈ Z
consists of a source Ti, of a target Tj , and of an injective map φ : L(Tj) → L(Ti)
from the leaves of Tj to the leaves of Ti. Given an arc a = (Ti, Tj ;φ) ∈ Z and
circular orderings Oi ∈ O(Ti) and Oj ∈ O(Tj), we say that arc a is satisfied
by (Oi,Oj) if Oi extends φ(Oj). The Simultaneous PQ-Ordering problem
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asks to find circular orderings O1 ∈ O(T1), . . . ,Ok ∈ O(Tk) on L(T1), . . . ,L(Tk),
respectively, such that each arc (Ti, Tj ;φ) ∈ Z is satisfied by (Oi,Oj).

Let (Ti, Tj ;φ) be an arc in Z. An internal node μi of Ti is fixed by an internal
node μj of Tj (and μj fixes μi in Ti) if there exist leaves x, y, z ∈ L(Tj) and
φ(x), φ(y), φ(z) ∈ L(Ti) such that (i) removing μj from Tj makes x, y, and z
pairwise disconnected in Tj , and (ii) removing μi from Ti makes φ(x), φ(y), and
φ(z) pairwise disconnected in Ti. Note that by (i) the three paths connecting μj

with x, y, and z in Tj share no node other than μj , while by (ii) those connecting
μi with φ(x), φ(y), and φ(z) in Ti share no node other than μi. Since any ordering
Oj determines a circular ordering around μj of the paths connecting it with x,
y, and z in Tj , any ordering Oi extending φ(Oj) determines the same circular
ordering around μi of the paths connecting it with φ(x), φ(y), and φ(z) in Ti;
this is why we say that μi is fixed by μj .

Theorem 1 below will be a key ingredient in the algorithms of the next
section. However, in order to exploit it, we need to consider normalized instances
of Simultaneous PQ-Ordering, namely instances D = (N,Z) such that,
for each arc (Ti, Tj ;φ) ∈ Z and for each internal node μj ∈ Tj , tree Ti con-
tains exactly one node μi that is fixed by μj . This property can be guaranteed
by an operation, called normalization [8], defined as follows. Consider each arc
(Ti, Tj ;φ) ∈ Z and replace Tj with Ti|φ(L(Tj)) ∩ Tj in D, that is, replace tree Tj

with its intersection with the projection of its parent Ti to the set of leaves of
Ti obtained by applying mapping φ to the leaves L(Tj) of Tj .

Consider a normalized instance D = (N,Z). Let μ be a P-node of a PQ-
tree T with parents T1, . . . , Tr and let μi ∈ Ti be the unique node in Ti, with
1 ≤ i ≤ r, fixed by μ. The fixedness fixed(μ) of μ is defined as fixed(μ) =
ω +

∑r
i=1(fixed(μi) − 1), where ω is the number of children of T fixing μ. A

P-node μ is k-fixed if fixed(μ) ≤ k. Also, instance D is k-fixed if all the P-nodes
of any PQ-tree T ∈ N are k-fixed.

Theorem 1 (Bläsius and Rutter [8], Theorems 3.2 and 3.3). 2-fixed
instances of Simultaneous PQ-Ordering can be tested in quadratic time.

3 Torus Level Planarity

In this section we provide a polynomial-time testing and embedding algorithm
for Torus Level Planarity that is based on the following simple observation.

Observation 1. A proper level graph G = (
⋃k

i=1 Vi, E, γ) is torus level planar
if and only if there exist circular orderings O1, . . . ,Ok on V1, . . . , Vk such that,
for each 1 ≤ i ≤ k with k + 1 = 1, there exists a radial level embedding of the
level graph (Vi ∪ Vi+1, (Vi × Vi+1) ∩ E, γ) in which the circular orderings on Vi

along li and on Vi+1 along li+1 are Oi and Oi+1, respectively.

In view of Observation 1 we focus on a level graph G = (V1 ∪ V2, E, γ) on
two levels l1 and l2. Denote by V +

1 and by V −
2 the subsets of V1 and of V2 that
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are incident to edges in E, respectively. Let Γ be a radial level embedding of
G. Consider a closed curve c separating levels l1 and l2 and intersecting all the
edges in E exactly once. The edge ordering on E in Γ is the circular ordering
in which the edges in E intersect c according to a clockwise orientation of c on
the surface S of the standing cylinder; see Fig. 3b. Further, let O be a circular
ordering on the edge set E. Ordering O is vertex-consecutive (v-consecutive) if
all the edges incident to each vertex in V1 ∪ V2 are consecutive in O.

Let O be a v-consecutive ordering on E. We define orderings O+
1 on V +

1 and
O−

2 on V −
2 induced by O, as follows. Consider the edges in E one by one as they

appear in O. Append the end-vertex in V +
1 of the currently considered edge to

a list L+
1 . Since O is v-consecutive, the occurrences of the same vertex appear

consecutively in L+
1 , regarding such a list as circular. Hence, L+

1 can be turned
into a circular ordering O+

1 on V +
1 by removing repetitions of the same vertex.

Circular ordering O−
2 can be constructed analogously. We have the following.

Lemma 3. Let O be a circular ordering on E and (O1,O2) be a pair of circular
orderings on V1 and V2. There exists a radial level embedding of G whose edge
ordering is O and such that the circular orderings on V1 and V2 along l1 and l2
are O1 and O2, respectively, if and only if O is v-consecutive, and O1 and O2

extend the orderings O+
1 and O−

2 on V +
1 and V −

2 induced by O, respectively.

Proof. The necessity is trivial. For the sufficiency, assume that O is v-consecutive
and that O1 and O2 extend the orderings O+

1 and O−
2 on V +

1 and V −
2 induced by

O, respectively. We construct a radial level embedding Γ of G with the desired
properties, as follows. Let Γ ∗ be a radial level embedding consisting of |E| non-
crossing curves, each connecting a distinct point on l1 and a distinct point on
l2. We associate each curve with a distinct edge in E, so that the edge ordering
of Γ ∗ is O. Note that, since O is v-consecutive, all the occurrences of the same
vertex of V +

1 and of V −
2 appear consecutively along l1 and l2, respectively. Hence,

we can transform Γ ∗ into a radial level embedding Γ ′ of G′ = (V +
1 ∪ V −

2 , E, γ),
by continuously deforming the curves in Γ ∗ incident to occurrences of the same
vertex in V +

1 (in V −
2 ) so that their end-points on l1 (on l2) coincide. Since the

circular orderings on V +
1 and on V −

2 along l1 and l2 are O+
1 and O−

2 , respectively,
we can construct Γ by inserting the isolated vertices in V1 \ V +

1 and V2 \ V −
2 at

suitable points along l1 and l2, so that the circular orderings on V1 and on V2

along l1 and l2 are O1 and O2, respectively. 	

We construct an instance I(G) of Simultaneous PQ-Ordering starting

from a level graph G = (V1 ∪ V2, E, γ) on two levels as follows; refer to Fig. 4,
where I(G) corresponds to the subinstance I(Gi,i+1) in the dashed box. We
define the level trees T1 and T2 as the universal PQ-trees on V1 and V2, respec-
tively. Also, we define the layer tree T1,2 as the PQ-tree on E representing exactly
the edge orderings for which a radial level embedding of G exists, which are the
v-consecutive orderings on E, by Lemma 3. The PQ-tree T1,2 can be constructed
in O(|G|) time [9,19]. We define the consistency trees T+

1 and T−
2 as the univer-

sal PQ-trees on V +
1 and V −

2 , respectively. Instance I(G) contains T1, T2, T1,2,
T+
1 , and T−

2 , together with the arcs (T1, T
+
1 , ι), (T2, T

−
2 , ι), (T1,2, T

+
1 , φ+

1 ), and
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Fig. 4. Instance I∗(G) of Simultaneous PQ-Ordering for a level graph G =
(V, E, γ). Instance I(Gi,i+1) corresponding to the level graph (Vi ∪ Vi+1, (Vi × Vi+1) ∩
E, γ) induced by levels i and i + 1 of G is enclosed in a dashed box.

(T1,2, T
−
2 , φ−

2 ), where ι denotes the identity map and φ+
1 (φ−

2 ) assigns to each
vertex in V +

1 (in V −
2 ) an incident edge in E. We have the following.

Lemma 4. Level graph G admits a radial level embedding in which the circular
ordering on V1 along l1 is O1 and the circular ordering on V2 along l2 is O2 if
and only if instance I(G) of Simultaneous PQ-Ordering admits a solution
in which the circular ordering on L(T1) is O1 and the one on L(T2) is O2.

Proof. We prove the necessity. Let Γ be a radial level embedding of G. We
construct an ordering on the leaves of each tree in I(G) as follows. Let O1, O2,
O+

1 , and O−
2 be the circular orderings on V1 along l1, on V2 along l2, on V +

1

along l1, and on V −
2 along l2 in Γ , respectively. Let O be the edge ordering

on E in Γ . Note that O ∈ O(T1,2) since O is v-consecutive by Lemma 3. The
remaining trees are universal, hence O1 ∈ O(T1), O2 ∈ O(T2), O+

1 ∈ O(T+
1 ),

and O−
2 ∈ O(T−

2 ).
We prove that all arcs of I(G) are satisfied. Arc (T1, T

+
1 , ι) is satisfied if

and only if O1 extends O+
1 . This is the case since ι is the identity map, since

V +
1 ⊆ V1, and since O1 and O+

1 are the circular orderings on V1 and V +
1 along l1.

Analogously, arc (T2, T
−
2 , ι) is satisfied. Arc (T1,2, T

+
1 , φ+

1 ) is satisfied if and only
if O extends O+

1 . This is due to the fact that φ+
1 assigns to each vertex in V +

1 an
incident edge in E and to the fact that, by Lemma 3, ordering O is v-consecutive
and O+

1 is induced by O. Analogously, arc (T1,2, T
−
2 , φ−

2 ) is satisfied.
We prove the sufficiency. Suppose that I(G) is a positive instance of Simul-

taneous PQ-Ordering, that is, there exist orderings O1, O2, O+
1 , O−

2 , and
O of the leaves of the trees T1, T2, T+

1 , T−
2 , and T1,2, respectively, satisfying all

arcs of I(G). Since ι is the identity map and since arcs (T1, T
+
1 , ι) and (T2, T

−
2 , ι)

are satisfied, we have that O+
1 and O−

2 are restrictions of O1 and O2 to V +
1 and

V −
2 , respectively. Also, since (T1,2, T

+
1 , φ+

1 ) and (T1,2, T
−
2 , φ−

2 ) are satisfied, we
have that O extends both O+

1 and O−
2 . By the construction of T1,2, ordering O

is v-consecutive. By Lemma 3, a radial level embedding Γ of G exists in which
the circular ordering on Vi along li is Oi, for i = 1, 2. 	


We now show how to construct an instance I∗(G) of Simultaneous PQ-

Ordering from a proper level graph G = (
⋃k

i=1 Vi, E, γ) on k levels; refer to
Fig. 4. For each i = 1, . . . , k, let I(Gi,i+1) be the instance of Simultaneous
PQ-Ordering constructed as described above starting from the level graph on
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two levels Gi,i+1 = (Vi∪Vi+1, (Vi×Vi+1)∩E, γ) (in the construction Vi takes the
role of V1, Vi+1 takes the role of V2, and k +1 = 1). Any two instances I(Gi−1,i)
and I(Gi,i+1) share exactly the level tree Ti, whereas non-adjacent instances are
disjoint. We define I∪(G) =

⋃k
i=1 I(Gi,i+1) and obtain I∗(G) by normalizing

I∪(G). We now present two lemmata about properties of instance I∗(G).

Lemma 5. I∗(G) is 2-fixed, has O(|G|) size, and can be built in O(|G|) time.

Proof. Every PQ-tree T in I∪(G) is either a source with exactly two children
or a sink with exactly two parents, and the normalization of I∪(G) to obtain
I∗(G) does not alter this property. Thus every P-node in a PQ-tree T in I∗(G)
is at most 2-fixed. In fact, recall that for a P-node μ of a PQ-tree T with parents
T1, . . . , Tr, we have that fixed(μ) = ω +

∑r
i=1(fixed(μi) − 1), where ω is the

number of children of T fixing μ, and μi ∈ Ti is the unique node in Ti, with
1 ≤ i ≤ r, fixed by μ. Hence, if T is a source PQ-tree, it holds ω = 2 and r = 0;
whereas, if T is a sink PQ-tree, it holds ω = 0, r = 2, and fixed(μi) = 2 for
each parent Ti of T . Therefore I∗(G) is 2-fixed.

Since every internal node of a PQ-tree in I∗(G) has degree greater than 2, to
prove the bound on |I∗(G)| it suffices to show that the total number of leaves of
all PQ-trees in I∗(G) is in O(|G|). Since L(Ti) = Vi and L(T−

i ),L(T+
i ) ⊆ Vi, the

number of leaves of all level and consistency trees is at most 3
∑k

i=1 |Vi| ∈ O(|G|).
Also, since L(Ti,i+1) = (Vi × Vi+1) ∩ E, the number of leaves of all layer trees is
at most

∑k
i=1 |(Vi × Vi+1) ∩ E| ∈ O(|G|). Thus |I∗(G)| ∈ O(|G|).

We have already observed that each layer tree Ti,i+1 can be constructed in
O(|Gi,i+1|) time; level and consistency trees are stars, hence they can be con-
structed in linear time in the number of their leaves. Finally, the normalization
of each arc (Ti, Tj ;φ) can be performed in O(|Ti| + |Tj |) time [8]. Hence, the
O(|G|) time bound follows. 	

Lemma 6. Level graph G admits a torus level embedding if and only if I∗(G)
is a positive instance of Simultaneous PQ-Ordering.

Proof. Suppose that G admits a torus level embedding Γ . For i = 1, . . . , k,
let Oi be the circular ordering on Vi along li. By Observation 1, embedding
Γ determines a radial level embedding Γi,i+1 of Gi,i+1. By Lemma 4, for i =
1, . . . , k, there exists a solution for the instance I(Gi,i+1) of Simultaneous PQ-
Ordering in which the circular ordering on L(Ti) (L(Ti+1)) is Oi (resp. Oi+1).
Since the circular ordering on L(Ti) is Oi both in I(Gi−1,i) and I(Gi,i+1) and
since each arc of I∗(G) is satisfied as it belongs to exactly one instance I(Gi,i+1),
which is a positive instance of Simultaneous PQ-Ordering, it follows that the
circular orderings deriving from instances I(Gi,i+1) define a solution for I∗(G).

Suppose that I∗(G) admits a solution. Let O1, . . . ,Ok be the circular order-
ings on the leaves of the level trees T1, . . . , Tk in this solution. By Lemma 4, for
each i = 1, . . . , k with k + 1 = 1, there exists a radial level embedding of level
graph Gi,i+1 in which the circular orderings on Vi along li and Vi+1 along li+1

are Oi and Oi+1, respectively. By Observation 1, G is torus level planar. 	
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We thus get the main result of this paper.

Theorem 2. Torus Level Planarity can be tested in quadratic (quartic)
time for proper (non-proper) instances.

Proof. Consider any instance G of Torus Level Planarity. Assume first that
G is proper. By Lemmata 5 and 6, a 2-fixed instance I∗(G) of Simultaneous
PQ-Ordering equivalent to G can be constructed in linear time with |I∗(G)| ∈
O(|G|). By Theorem 1 instance I∗(G) can be tested in quadratic time.

If G is not proper, then subdivide every edge (u, v) that spans h > 2 levels
with h−2 vertices, assigned to levels γ(u)+1, γ(u)+2, . . . , γ(v)−1. This increases
the size of the graph at most quadratically, and the time bound follows. 	


Theorem 2 and Lemma 2 imply the following result.

Theorem 3. Cyclic Level Planarity can be solved in quadratic (quartic)
time for proper (non-proper) instances.

Our techniques allow us to solve a more general problem, that we call Torus
T -Level Planarity, in which a level graph G = (

⋃k
i=1 Vi, E, γ) is given

together with a set of PQ-trees T = {T 1, . . . , T k} such that L(T i) = Vi, where
each tree T i encodes consecutivity constraints on the ordering on Vi along li.
The goal is then to test the existence of a level embedding of G on T in which the
circular ordering on Vi along li belongs to O(T i). This problem has been stud-
ied in the plane [2,24] under the name of T -Level Planarity; it is NP-hard
in general and polynomial-time solvable for proper instances. While the former
result implies the NP-hardness of Torus T -Level Planarity, the techniques
of this paper show that Torus T -Level Planarity can be solved in polyno-
mial time for proper instances. Namely, in the construction of instance I∗(G) of
Simultaneous PQ-Ordering, it suffices to replace level tree Ti with PQ-tree
T i. Analogous considerations allow us to extend this result to Radial T -Level
Planarity and Cyclic T -Level Planarity.

4 Simultaneous Level Planarity

In this section we prove that Simultaneous Level Planarity is NP-complete
for two graphs on three levels and for three graphs on two levels, while it is
polynomial-time solvable for two graphs on two levels.

Both NP-hardness proofs rely on a reduction from the NP-complete problem
Betweenness [21], which asks for a ground set S and a set X of ordered triplets
of S, with |S| = n and |X| = k, whether a linear order ≺ of S exists such that,
for any (α, β, γ) ∈ X, it holds true that α ≺ β ≺ γ or that γ ≺ β ≺ α. Both
proofs exploit the following gadgets.

The ordering gadget is a pair 〈G1, G2〉 of level graphs on levels l1 and l2, where
l1 contains nk vertices ui,j , with i = 1, . . . , k and j = 1, . . . , n, and l2 contains
n(k − 1) vertices vi,j , with i = 1, . . . , k − 1 and j = 1, . . . , n. For i = 1, . . . , k − 1
and j = 1, . . . , n, G1 contains edge (ui,j , vi,j) and G2 contains edge (ui+1,j , vi,j).
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u1,1 u1,4

v1,1 v1,4

u3,1 u3,4

l2

l1

x1 y1

(a)

u1,1

v1,1 v1,4 l2

l0x1

u1,4 u3,1 u3,4

l1

y1
(b)

Fig. 5. Instances (a) 〈G1, G2, G3〉 and (b) 〈G1, G2〉 corresponding to an instance of
Betweenness with X = {(u1,1, u1,2, u1,4), (u1,2, u1,3, u1,4), (u1,1, u1,3, u1,4)}.

See G1 and G2 in Fig. 5(a). Consider any simultaneous level embedding Γ of
〈G1, G2〉 and assume, w.l.o.g. up to a renaming, that u1,1, . . . , u1,n appear in
this left-to-right order along l1.

Lemma 7. For every i = 1, . . . , k, vertices ui,1, . . . , ui,n appear in this left-to-
right order along l1 in Γ ; also, for every i = 1, . . . , k − 1, vertices vi,1, . . . , vi,n

appear in this left-to-right order along l2 in Γ .

The triplet gadget is a path T = (w1, . . . , w5) on two levels, where w1, w3,
and w5 belong to a level li and w2 and w4 belong to a level lj �= li. See G3 in
Fig. 5(a), with i = 1 and j = 2. We have the following.

Lemma 8. In every level embedding of T , vertex w3 is between w1 and w5

along li.

We are now ready to prove the claimed NP-completeness results.

Theorem 4. Simultaneous Level Planarity is NP-complete even for three
graphs on two levels and for two graphs on three levels.

Proof. Both problems clearly are in NP. We prove the NP-hardness only for
three graphs on two levels (see Fig. 5(a)), as the other proof is analogous (see
Fig. 5(b)). We construct an instance 〈G1(V,E1, γ), G2(V,E2, γ), G3(V,E3, γ)〉 of
Simultaneous Level Planarity from an instance (S = {u1,1, . . . , u1,n},X =
{(u1,ai

, u1,bi , u1,ci) : i = 1, . . . , k}) of Betweenness as follows: Pair 〈G1, G2〉
contains an ordering gadget on levels l1 and l2, where the vertices u1,1, . . . , u1,n

of G1 are (in bijection with) the elements of S. Graph G3 contains k triplet
gadgets Ti(ui,ai

, xi, ui,bi , yi, ui,ci), for i = 1, . . . , k. Vertices x1, y1, . . . , xk, yk are
all distinct and are on l2. Clearly, the construction can be carried out in linear
time. We prove the equivalence of the two instances.

(=⇒) Suppose that a simultaneous level embedding Γ of 〈G1, G2, G3〉 exists.
We claim that the left-to-right order of u1,1, . . . , u1,n along l1 satisfies the
betweenness constraints in X. Suppose, for a contradiction, that there exists
a triplet (u1,ai

, u1,bi , u1,ci) ∈ X with u1,bi not between u1,ai
and u1,ci along l1.

By Lemma 7, ui,bi is not between ui,ai
and ui,ci . By Lemma 8, we have that

Ti(ui,ai
, xi, ui,bi , yi, ui,ci) is not planar in Γ , a contradiction.
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(⇐=) Suppose that (S,X) is a positive instance of Betweenness, and
assume, w.l.o.g. up to a renaming, that ≺:= u1,1, . . . , u1,n is a solution for (S,X).
Construct a straight-line simultaneous level planar drawing of 〈G1, G2, G3〉 with:
(i) vertices u1,1, . . . , u1,n, . . . , uk,1, . . . , uk,n in this left-to-right order along l1, (ii)
vertices v1,1, . . . , v1,n, . . . , vk−1,1, . . . , vk−1,n in this left-to-right order along l2,
(iii) vertices xi and yi to the left of vertices xi+1 and yi+1, for i = 1, . . . , k − 1,
and (iv) vertex xi to the left of vertex yi if and only if u1,ai

≺ u1,ci .
Properties (i) and (ii) guarantee that, for any two edges (ui,j , vi,j) and

(ui′,j′ , vi′,j′), vertex ui,j is to the left of ui′,j′ along l1 if and only if vi,j is to the
left of vi′,j′ along l2, which implies the planarity of G1 in Γ . The planarity of
G2 in Γ is proved analogously. Properties (i) and (iii) imply that no two paths
Ti and Tj cross each other, while Property (iv) guarantees that each path Ti is
planar. Hence, the drawing of G3 in Γ is planar. 	


The graphs in Theorem 4 can be made connected, by adding vertices and
edges, at the expense of using one additional level. Also, the theorem holds true
even if the simultaneous embedding is geometric or with fixed edges (see [7,11]
for definitions).

In contrast to the NP-hardness results, a reduction to a proper instance of
Cyclic Level Planarity allows us to decide in polynomial time instances
composed of two graphs on two levels. Namely, the edges of a graph are directed
from l1 to l2, while those of the other graph are directed from l2 to l1.

Theorem 5. Simultaneous Level Planarity is quadratic-time solvable for
two graphs on two levels.

5 Conclusions and Open Problems

In this paper we have settled the computational complexity of two of the main
open problems in the research topic of level planarity by showing that the
Cyclic Level Planarity and the Torus Level Planarity problems are
polynomial-time solvable. Our algorithms run in quartic time in the graph size;
it is hence an interesting challenge to design new techniques to improve this
time bound. We also introduced a notion of simultaneous level planarity for
level graphs and we established a complexity dichotomy for this problem.

An intriguing research direction
is the one of extending the con-
cept of level planarity to surfaces
with genus larger than one. How-
ever, there seems to be more than
one meaningful way to arrange k levels on a high-genus surface. A reasonable
choice would be the one shown in the figure, in which the levels are arranged
in different sequences between two distinguished levels ls and lt (and edges only
connect vertices on two levels in the same sequence). Radial Level Planarity
and Torus Level Planarity can be regarded as special cases of this setting
(with only one and two paths of levels between ls and lt, respectively).
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Abstract. We show that testing whether a given graph has a 3-track
layout is hard, by characterizing the bipartite 3-track graphs in terms
of leveled planarity. Additionally, we investigate the parameterized com-
plexity of track layouts, showing that past methods used for book lay-
outs do not work to parameterize the problem by treewidth or almost-
tree number but that the problem is (non-uniformly) fixed-parameter
tractable for tree-depth. We also provide several natural classes of bipar-
tite planar graphs, including the bipartite outerplanar graphs, square-
graphs, and dual graphs of arrangements of monotone curves, that always
have 3-track layouts.

1 Introduction

A k-track layout of a graph is a partition of the vertices into k ordered indepen-
dent sets called tracks, and a partition of the edges into non-crossing subsets that
connect pairs of tracks. The track-number of a graph is the minimum k for which
it has a k-track layout. Track layouts are connected with the existence of low-
volume three-dimensional graph drawings: a graph has a three-dimensional draw-
ing in an O(1) × O(1) × O(n) grid if and only if it has track-number O(1) [1,2].

Already in 2004, Dujmović et al. [3] asked whether it is computationally fea-
sible to construct optimal track layouts. A graph has track-number 2 if and only
if it is a forest of caterpillars [3]. So we can efficiently recognize and construct
optimal track layouts for track-number 2 graphs. In this paper we show that the
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answer to the general question is negative: even recognizing the graphs with
3-track layouts is NP-complete. Our proof is based on the known NP-
completeness of level planarity [4], and uses a new characterization of the bipar-
tite graphs with 3-track layouts as being exactly the leveled planar graphs, undi-
rected graphs that can be given a Sugiyama-style layered graph drawing with
no crossings and no dummy vertices.

Additionally, we show that known methods of obtaining fixed-parameter
tractable algorithms for other types of planar embedding, based on Courcelle’s
theorem for treewidth [5], or on kernelization of the 2-core for k-almost-trees [6],
do not generalize to track number. However, for any fixed bound on the tree-
depth of an input graph, the track number can be obtained in linear time.

We also provide several natural classes of bipartite planar graphs, including
the bipartite outerplanar graphs, squaregraphs, and dual graphs of arrangements
of monotone curves, that always have 3-track layouts.

2 Definitions

A track layout of a graph is a partition of its vertices into sequences, called
tracks, such that the vertices in each sequence form an independent set and the
edges between each pair of tracks form a non-crossing set. This means that there
do not exist edges uv and u′v′ such that u is before u′ in one track, but v is after
v′ in another track; such a pair of edges is said to form a crossing. (This ordering
constraint on endpoints of pairs of edges connecting two tracks is the same as
the constraint on the left-to-right ordering within levels on the endpoints of two
edges connecting the same two levels of a layered drawing.)

The track-number of a graph G is the minimum number of tracks in a track
layout of G; this is finite, since the layout in which each vertex forms its own
track is always non-crossing. The set of edges between two tracks form a forest
of caterpillars (a forest in which the non-leaf vertices of each component induce
a path); in particular, the graphs with track-number 1 are the independent sets,
and the graphs with track-number 2 are the forests of caterpillars [7].

A tree-decomposition of a graph G is given by a tree T whose nodes index a
collection (Bx ⊆ V (G) : x ∈ V (T )) of sets of vertices in G called bags, such that:

– For every edge vw of G, some bag Bx contains both v and w, and
– For every vertex v of G, the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty

(connected) subtree of T .

The width of a tree-decomposition is maxx |Bx| − 1, and the treewidth of a
graph G is the minimum width of any tree decomposition of G. Treewidth was
introduced (with a different but equivalent definition) by Halin [8] and tree
decompositions were introduced by Robertson and Seymour [9].

A layering of a graph is a partition of the vertices into a sequence of disjoint
subsets (called layers) such that each edge connects vertices in the same layer
or consecutive layers. One way, but not the only way, to obtain a layering is the
breadth first layering in which we partition the vertices by their distances from
a fixed starting vertex, using breadth-first search [10,11].
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The class of leveled planar graphs was introduced in 1992 by Heath and
Rosenberg [4] in their study of queue layouts of graphs. A leveled planar drawing
of a graph is a planar drawing in which the vertices are placed on a collection
of parallel lines, and each edge must connect vertices in two consecutive parallel
lines. Another equivalent way to state this is that this kind of drawing is a
Sugiyama-style layered drawing [12] that achieves perfect quality according to
two of the most important quality measures for the drawing, the number of edge
crossings [13] and the number of dummy vertices [14].

3 Track Layouts and Leveled Planarity

We begin by demonstrating an equivalence between leveled planarity and bipar-
tite 3-track layout.

Lemma 1 (implicit in [15]). Every leveled planar graph has a 3-track layout.

Proof. Assign the vertices of the graph to tracks according to the number of
their level in the layered drawing, modulo 3, as shown in Fig. 1. Within each
track, order the vertices within each level contiguously, and order the levels by
their positions in the layered drawing. Two edges that connect the same pair of
levels cannot cross because of the chosen vertex ordering within the levels, and
two edges that connect different pairs of levels but are mapped to the same pair
of tracks cannot cross because of the ordering of the levels within the tracks. ��

Lemma 1 can be interpreted as ‘wrapping’ a layered drawing on to 3 tracks;
see [3] for a more general wrapping lemma. As Fig. 1 shows, a 3-track layout
can also be interpreted geometrically, as a planar drawing in which the tracks
are represented as three rays from the origin; it follows from this interpreta-
tion that 3-track graphs have universal point sets of size O(n), consisting of n
points on each ray. However, for more than three tracks, a similar embedding
of the tracks as rays in the plane would not lead to a planar drawing, because
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Fig. 1. Converting a layered drawing to a 3-track layout
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there is no requirement that edges of the graph connect only consecutive rays.
Indeed, all graphs (for example, arbitrarily large complete graphs) have 4-track
subdivisions [16].

Define an arc of an undirected graph G to be a directed edge formed by orient-
ing one of the edges of G. For a graph G with a 3-track layout, define a function
δ from arcs to ±1 as follows: if an arc uv goes from track i to track i+1 (mod 3)
(that is, if it is oriented clockwise in the planar embedding described above), let
δ(uv) = +1; otherwise (if it is oriented counterclockwise), let δ(uv) = −1. For
an oriented cycle C, we define (by abuse of notation) δ(C) =

∑
uv∈C δ(uv).

Lemma 2. Let C be a cycle embedded in a 3-track layout. Cyclically orient the
edges of C. If C is even then δ(C) = 0. If C is odd then |δ(C)| = 3. (Here |x| is
the absolute value of x.)

Proof. We proceed by induction on |C| := |V (C)|. If |C| = 3, then C has one
vertex on each track and δ(C) ∈ {3,−3}. If |C| = 4, then C has two edges
with δ = +1 and two edges with δ = −1, implying δ(C) = 0. Now assume that
|C| ≥ 5. Use the 3-track layout to embed C in the plane as described above, but
with straight edges instead of the curved edges shown in the figure. As a planar
polygon, C has at least two ears, triangles formed by two of its edges that are
empty of other vertices of C (which may be found as the leaf edges in the tree
formed as the dual graph of a triangulation of C). If one ear has the same sign
of δ for both of the edges that form it, these edges must connect pairs of vertices
that are the innermost on their tracks. Therefore, two such ears with same-sign
edges could only exist if C is a triangle. For any longer cycle, let uvw be an
ear for which δ(uv) = −δ(vw); thus edges uv and vw both connect the same
two tracks, and (by the assumption that triangle uvw is empty) u and w are
consecutive in their track. By deleting v and merging uw into a single vertex,
we construct a cycle C ′ with |C ′| = |C| − 2, and a 3-track layout of C ′ with
δ(C ′) = δ(C). The result follows by induction. ��

The previous lemma can be restated in terms of winding number. The winding
number of a closed curve C in the plane around a given point x is the number of
times that C travels counterclockwise around x. Lemma 2 then says that for an
oriented cycle C around the origin in a 3-track representation of C with three
rays (as in Fig. 1), if C is even then the winding number is 0, and if C is odd
then the winding number is 1.

While Lemma 1 shows that a leveled planar drawing can be wrapped on to
three tracks, we now use Lemma 2 to show that a bipartite 3-track layout can
be unwrapped to produce a leveled planar drawing.

Theorem 1. A graph G has a leveled planar drawing if and only if G is bipartite
and has a 3-track layout.

Proof. In one direction, if G has a leveled planar drawing, then it is bipartite
(with a coloring determined by the parity of the level numbers of the drawing)
and has a 3-track layout by Lemma 1.

In the other direction, suppose that G is bipartite and has a 3-track layout.
We may assume without loss of generality that G is connected, for otherwise we



Track Layout Is Hard 503

can draw each connected component of G separately; let T be a spanning tree
of G, and let v be an arbitrary vertex of G. Assign v to level zero of a layered
drawing, and assign each other vertex w to the level given by the sum of the
numbers δ(xy) for the edges xy of the oriented path from v to w in T . (Some
of these level numbers may be negative.) By construction, the endpoints of each
edge of T are assigned to consecutive levels, and by applying Lemma 2 to the
oriented cycle formed by a non-tree edge together with the tree path connecting
its endpoints, the same can be shown to be true of each edge of G − E(T ).

Within each level of the drawing, the vertices all come from the same track,
determined by the value of the level modulo 3. Assign the vertices to positions in
left-to-right order on this level according to their ordering within this track. Then
no two consecutive levels of the drawing can have crossing edges, because such a
crossing would also be a crossing in the track layout. Therefore, this assignment
of vertices to levels and to positions within these levels gives a leveled planar
drawing of G. ��
Theorem 2. Testing whether a given graph has a k-track layout for any con-
stant k ≥ 3 is NP-complete.

Proof. For k = 3 this follows from Theorem 1 and from the known NP-complete-
ness of level planarity, proven by Heath and Rosenberg [4]. For k > 3 this follows
by adding k − 3 additional vertices, adjacent to all other vertices, to a hard
instance of the 3-track layout problem. ��

4 Parameterized Complexity

A fixed-parameter tractable problem is also strongly uniform fixed-parameter
tractable. A problem is uniformly fixed-parameter tractable if there is an algo-
rithm that solves it in polynomial time for any value of the parameter, but we
cannot compute the dependence on the parameter. Lastly a problem is non-
uniformly fixed-parameter tractable if there is a collection of algorithms such
that for each possible value of the parameter one of the algorithms solves the
problem in polynomial time.

4.1 Treewidth

We sketch an argument as to why it is not possible to use Courcelle’s Theorem
(or any automata methods based on tree decompositions) to produce a fixed-
parameter tractable algorithm for leveled planarity with respect to treewidth.
Consider the family of graphs depicted in Fig. 2. These graphs have bounded
treewidth (in fact pathwidth at most 12) and are leveled planar precisely when
p = q. However, since p and q are unbounded it is necessary to carry more than a
finite amount of state between bags in a treewidth decomposition when parsing
the decomposition. Thus, the decompositions corresponding to leveled planar
graphs cannot be recognized by automata or methods using automata such as
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q

p

Fig. 2. A family of graphs with
bounded treewidth demonstrating that
the family of leveled planar graphs is
not finite state.

T�

T�

T�

k

Fig. 3. A family of 2-almost trees for
which the standard kernelization cannot
decide leveled planarity. The subgraphs
T� are complete binary trees of depth �.

Courcelle’s Theorem. This intuitive argument is made formal below using the
Myhill-Nerode Theorem for tree automata below.

Following Downey and Fellows [17], we define a t-boundaried graph to be
a graph G with t designated boundary vertices labeled 1, 2, . . . , t. Given two
t-boundaried graphs G1 and G2 we define their gluing G1⊕G2 by identifying each
boundary vertex of G1 with the boundary vertex of G2 having the same label.

An n-ary t-boundaried operator ⊗ consists of a t-boundaried graph G⊗ =
(V⊗, E⊗) and injections fi : {1, . . . , t} → V⊗ for 1 ≤ i ≤ n. Then for t-boundaried
graphs G1, . . . , Gn we define the t-boundaried graph G1 ⊗ · · · ⊗ Gn by gluing
each Gi to G⊗ after applying fi to the boundary labels of G⊗. After the gluing
the labels of Gi are forgotten.

It can be shown that there exists a standard set of t-boundaried operators
on t-boundaried graphs that can be used to generate the set of all graphs of
treewidth t. Furthermore, it is possible to convert (in linear time) a tree decom-
position of width t into a parse tree that uses these standard operators; see
Theorem 12.7.1 in [17]. Define U small

t to be the small universe of t-boundaried
graphs obtained by parse trees, using these standard operators. Given a family of
graphs F , we define the equivalence relation ∼F on U small

t , such that G1 ∼F G2

if and only if for all H ∈ U small
t , we have G1 ⊕ H ∈ F ⇔ G2 ⊕ H ∈ F .

A family of graphs F is said to be t-finite state if the family of parse trees
for graphs in Ft = F ∩ U small

t is finite state. Equivalently, such a family of parse
trees may be recognized by a finite tree automaton. We can now state the analog
of the Myhill–Nerode Theorem (characterizing recognizability of sets of strings
by finite state machines) for treewidth t graphs in place of strings and finite tree
automata in place of finite state machines.

Lemma 3 (Theorem 12.7.2 of [17]). Let F be a family of graphs. Then F is
t-finite state if and only if ∼F has finite index over Usmall

t .
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Fig. 4. The 6-boundaried graphs Up (left) and Lq (right) from the proof of Theorem 3.

As we now show, leveled planarity is not t-finite state when t is sufficiently
large.

Theorem 3. For all t ≥ 6, the families of leveled planar graphs and of 3-track
graphs are not t-finite state.

Proof. Let F be the family of leveled planar graphs. It suffices to prove the
theorem in the case when t = 6. Consider the 6-boundaried graphs Up and Lq

shown in Fig. 4, and observe that Up ⊕ Lq is leveled planar if and only if p = q.
So Up ∼F U� if and only if p = �, which implies that ∼F6 does not have finite
index and that in turn F is not 6-finite state by Lemma 3. ��

Theorem 3 implies that (when t ≥ 6) the parse trees of leveled planar graphs
with treewidth t are not recognizable by tree automata. Therefore automata-
based methods such as Courcelle’s Theorem cannot be used to show leveled
planarity to be fixed-parameter tractable with respect to treewidth. In particular,
leveled planarity cannot be expressed using the forms of monadic second-order
graph logic to which Courcelle’s Theorem applies.

4.2 Almost-Trees

The cyclomatic number (also called circuit rank) of a graph is defined to be
r = m−n+c where m is the number of edges, n is the number of vertices, and c
is the number of connected components in the graph. We say that a graph G is
a k-almost tree if every biconnected component of G has cyclomatic number at
most k. The problems of 1-page and 2-page crossing minimization and testing
1-planarity were shown to be fixed-parameter tractable with respect to the k-
almost tree parameter, via the kernelization method [6,18].

In these previous papers, the “standard kernelization” used for a k-almost
tree G is constructed by first iteratively removing degree one vertices until no
more remain, leaving what is called the 2-core of G. The 2-core consists of
vertices of degree greater than two and paths of degree two vertices connecting
these high degree vertices. The paths of degree two vertices are then shortened
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to a maximum length whose value is a function of k, with a precise form that
depends on the specific problem.

However, this kernelization cannot be used to produce a fixed-parameter
tractable algorithm for deciding leveled planarity. To see this, consider the graph
in Fig. 3, constructed by drawing K2,3 in the plane, and replacing each of the
three vertices with paths of k vertices, and then rooting a complete binary tree
of depth � at one of the vertices of each of these paths. We note that, as complete
binary trees have unbounded pathwidth, they also require an unbounded number
of layers (depending on �) in any leveled planar drawing. Additionally, depending
on the planar embedding chosen for this graph, at most two of its three trees
can be drawn on the outside face. So this graph is leveled planar precisely when
� is small enough for the remaining tree T� to be drawn within one of the two
bounded faces of the drawing, i.e., the leveled planarity of the graph depends
on the relationship between k and �. Since this relationship is not preserved
in the kernelization it can not be used to produce a fixed-parameter tractable
algorithm for leveled planarity.

4.3 Tree-Depth

The tree-depth of a graph G is the minimum height of a forest of rooted trees
on the same vertex set as G such that edges in G only go from ancestors to
descendants in the forest. It is bounded by pathwidth, and therefore by track-
number: track-number(G) ≤ pathwidth(G) + 1 ≤ tree-depth(G); see [1,19].

Theorem 4. Computing the track-number of a graph G is non-uniformly fixed-
parameter linear in the tree-depth of G.

Proof. Track-number and layered pathwidth are both monotone (cannot
increase) under taking induced subgraphs. The graphs with tree-depth bounded
by a constant are well-quasi-ordered under taking induced subgraphs and so for
any fixed bound on tree-depth and either track-number or layered pathwidth
there exist only a finite number of forbidden induced subgraphs [19]. Since the
track-number and pathwidth are both bounded by the tree-depth, the same is
true for any fixed bound on tree-depth, regardless of track-number or layered
pathwidth.

Because induced subgraph testing is linear time for graphs with tree-depth
bounded by a fixed number d, we can for each t ≤ d test if the graph has any of
the forbidden induced subgraphs to track-number t each in linear time [19]. ��

However, this argument does not tell us how to find the set of forbidden
induced subgraphs, nor what the dependence of the time bound on the tree-
depth is. It would be of interest to replace this existence proof with a more
constructive algorithm.

5 Special Classes of Graphs

We consider here particular graph families such as the outerplanar graphs,
and prove that these families are leveled planar. Our results are based on
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Fig. 5. Examples of graphs with planar breadth-first layerings (start vertex shown in
red, and layering in yellow): left, a bipartite outerplanar graph (Theorem 5); center,
a squaregraph (Theorem 6); and right, the dual graph of an arrangement of doubly-
unbounded monotonic curves (Theorem 7). (Color figure online)

breadth-first layerings; we define a layering of a graph to be planar if there
exists a non-crossing layered drawing of the graph in which the layers of the
drawing are the same as the layers of the layering.

5.1 Bipartite Outerplanar Graphs

Theorem 5 (implicit in [15]). Every bipartite outerplanar graph is leveled
planar and 3-track. Every breadth first layering of such a graph G gives a leveled
planar drawing.

Proof. Let v be the starting vertex of a breadth first layering. Then for each
face cycle C of the outerplanar embedding of G, there must be a unique nearest
neighbor in C to v. For, if v were nearest to distinct vertices u and w in C, then
by bipartiteness these two vertices must be non-adjacent in C. In this case, the
graph formed by C together with the shortest paths from v to u and w would
contain a subdivision of K2,3 (with u and w as the degree three vertices, two
paths between them in C, and one more path between them through the shortest
path tree rooted at v), an impossibility for an outerplanar graph. For the same
reason, the distances in v from this nearest neighbor or pair of nearest neighbors
must increase monotonically in both directions around C until reaching a unique
farthest neighbor, because in the same way any non-monotonicity could be used
to construct a subdivision of K2,3.

Thus, each face cycle of G has a planar breadth first layering. The result
follows from the fact that in a plane graph with an assignment of levels to the
vertices, there is a planar drawing consistent with this level assignment and with
the given embedding of the graph, if and only if every face cycle of the given
graph has a planar drawing consistent with the level assignment [20]. ��
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5.2 Squaregraphs

A squaregraph is defined to be a graph that has a planar embedding in which
each bounded face is a 4-cycle and each vertex either belongs to the unbounded
face or has four or more incident edges. These graphs may also be character-
ized in various other ways, for instance as the dual graphs of hyperbolic line
arrangements with no three mutually-intersecting lines [21].

Theorem 6. Every squaregraph G is leveled planar, and 3-track, with a leveled
planar drawing coming from a breadth first layering.

Proof. Because all their bounded faces are even-sided, squaregraphs are neces-
sarily bipartite, so every choice of a starting vertex gives a valid breadth first
layering. Bandelt et al. [21, Lemma 12.2] prove that, for every choice of a starting
vertex, we can add extra edges to the squaregraph to form a plane multigraph
in which the added edges link each layer into a cycle, and in which these cycles
are all nested within each other.

Now, choose the starting vertex v to be a vertex of the outer face. Then each
cycle added in this augmentation of G contains an edge that separates v from the
unbounded face of the augmented graph. If we remove each such edge from the
augmented graph, we break each cycle into a path in a consistent way, such that
the path ordering within each layer matches the given planar embedding of G.

��

5.3 Dual Graphs of Monotone Curves

Theorem 7. Let A be a collection of finitely many x-monotone curves in the
plane, each of whose projection onto the x-axis covers the entire axis, such that
any two curves intersect at finitely many crossing points. Then the dual graph
of the arrangement of the curves in A is leveled planar and 3-track.

Proof. Each vertex of the dual graph corresponds to a connected component of
the complement of

⋃
A; we call this the region of the vertex. We may assign each

vertex to a layer according to the number of curves in A that pass above it; this
is a breadth first layering starting from the vertex corresponding to the topmost
(unbounded upward) connected component. Because a single curve separates
adjacent regions, vertices in adjacent regions will be assigned to consecutive
regions. No two vertices in the same layer have regions that project to overlapping
subsets of the x-axis, so we may order the vertices within each layer according to
the left-to-right ordering of these projections. This ordering is compatible with
the planar embedding of the dual graph given by placing a representative point
within each region and connecting each two adjacent regions by a curve crossing
their shared boundary. ��

See Fig. 5 for examples of the graphs shown to have planar layerings by
these theorems. Figure 6 gives another example, demonstrating that Theorem 7
cannot be generalized to monotone curves whose projections do not cover the
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Fig. 6. An arrangement of monotone curves whose dual graph has no planar layering

entire axis: it gives a family of monotone curves, all ending within the outer face
of their arrangement, such that the dual graph of the arrangement is not leveled
planar. The dual graph is made of multiple K2,3 subgraphs, each of which must
have the 2-vertex side of its bipartition drawn on two layers with the 3-vertex
side of its bipartition in a single layer between them; thus, up to top-bottom
reflection, there is only a single layering for this graph that could possibly be
planar. However, this layering forced by the planarity of the individual K2,3

subgraphs is not planar globally, because it forces one of the two arms of the
graph (upper and lower right) to collide with the “armpit” where the other arm
meets the body of the graph (left). The graph is drawn without crossings in the
figure, but in a way that does not respect any layering of the graph. The dual
used in Fig. 6 is non-standard; there is a vertex in the outer face for each pair of
consecutive curve endpoints on the outer face. The dual shown can be made as a
subgraph of the more standard dual with one vertex on the outer face by adding
additional curves. This example is also a series-parallel graph, and shows that
Theorem 5 cannot be generalized to series-parallel, treewidth-2, or 2-outerplanar
graphs: none of these classes of graphs is leveled planar.
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11. Dujmović, V., Morin, P., Wood, D.R.: Layered separators in minor-closed graph
classes with applications. Electronic preprint arXiv:1306.1595 (2013)

12. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hier-
archical system structures. IEEE Trans. Syst. Man Cybern. SMC–11, 109–125
(1981)

13. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11, 379–403 (1994)

14. Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: Mutzel, P.,
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Abstract. It is known that every proper minor-closed class of graphs
has bounded stack-number (a.k.a. book thickness and page number).
While this includes notable graph families such as planar graphs and
graphs of bounded genus, many other graph families are not closed under
taking minors. For fixed g and k, we show that every n-vertex graph that
can be embedded on a surface of genus g with at most k crossings per edge
has stack-number O(log n); this includes k-planar graphs. The previously
best known bound for the stack-number of these families was O(

√
n),

except in the case of 1-planar graphs. Analogous results are proved for
map graphs that can be embedded on a surface of fixed genus. None of
these families is closed under taking minors. The main ingredient in the
proof of these results is a construction proving that n-vertex graphs that
admit constant layered separators have O(log n) stack-number.

1 Introduction

A stack layout of a graph G consists of a total order σ of V (G) and a partition
of E(G) into sets (called stacks) such that no two edges in the same stack cross;
that is, there are no edges vw and xy in a single stack with v <σ x <σ w <σ y.
The minimum number of stacks in a stack layout of G is the stack-number of
G. Stack layouts, first defined by Ollmann [22], are ubiquitous structures with a
variety of applications (see [17] for a survey). A stack layout is also called a book
embedding and stack-number is also called book thickness and page number. The
stack-number is known to be bounded for planar graphs [24], bounded genus
graphs [20] and, most generally, all proper minor-closed graph families [4,5].

The purpose of this note is to bring the study of the stack-number beyond the
proper minor-closed graph families. Layered separators are a key tool for proving
our results. They have already led to progress on long-standing open problems
related to 3D graph drawings [11,15] and nonrepetitive graph colourings [13].
A layering {V0, . . . , Vp} of a graph G is a partition of V (G) into layers Vi such
that, for each e ∈ E(G), there is an i such that the endpoints of e are both in
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Vi or one in Vi and one in Vi+1. A graph G has a layered �-separator for a fixed
layering {V0, . . . , Vp} if, for every subgraph G′ of G, there exists a set S ⊆ V (G′)
with at most � vertices in each layer (i.e., Vi ∩ S ≤ �, for i = 0, . . . , p) such that
each connected component of G′ − S has at most |V (G′)|/2 vertices. Our main
technical contribution is the following theorem.

Theorem 1. Every n-vertex graph that has a layered �-separator has stack-
number at most 5� · log2 n.

We discuss the implications of Theorem 1 for two well-known non-minor-
closed classes of graphs. A graph is (g, k)-planar if it can be drawn on a surface
of Euler genus at most g with at most k crossings per edge. Then (0, 0)-planar
graphs are planar graphs, whose stack-number is at most 4 [24]. Further, (0, k)-
planar graphs are k-planar graphs [23]; Bekos et al. [3] have recently proved that
1-planar graphs have bounded stack-number (see Alam et al. [1] for an improved
constant). The family of (g, k)-planar graphs is not closed under taking minors1

even for g = 0, k = 1; thus the result of Blankenship and Oporowski [4,5],
stating that proper minor-closed graph families have bounded stack-number,
does not apply to (g, k)-planar graphs. Dujmović et al. [12] showed that (g, k)-
planar graphs have layered (4g +6)(k +1)-separators2. This and our Theorem 1
imply the following corollary. For all g ≥ 0 and k ≥ 2, the previously best known
bound was O(

√
n), following from the O(

√
m) bound for m-edge graphs [21].

Corollary 1. For any fixed g and k, every n-vertex (g, k)-planar graph has
stack-number O(log n).

A (g, d)-map graph G is defined as follows. Embed a graph H on a surface
of Euler genus g and label some of its faces as “nations” so that any vertex of
H is incident to at most d nations; then the vertices of G are the faces of H
labeled as nations and the edges of G connect nations that share a vertex of H.
The (0, d)-map graphs are the well-known d-map graphs [6–9,18]. The (g, 3)-map
graphs are the graphs of Euler genus at most g [8], thus they are closed under
taking minors. However, for every g ≥ 0 and d ≥ 4, the (g, d)-map graphs are not
closed under taking minors [12], thus the result of Blankenship and Oporowski
[4,5] does not apply to them. The (g, d)-map graphs have layered (2g+3)(2d+1)-
separators [12]. This and our Theorem 1 imply the following corollary. For all
g ≥ 0 and d ≥ 4, the best previously known bound was O(

√
n) [21].

Corollary 2. For any fixed g and d, every n-vertex (g, d)-map graph has stack-
number O(log n).

1 The n×n×2 grid graph is a well-known example of 1-planar graph with an arbitrarily
large complete graph minor. Indeed, contracting the i-th row in the front n × n grid
with the i-th column in the back n × n grid, for 1 ≤ i ≤ n, gives a Kn minor.

2 More precisely, Dujmović et al. [12] proved that (g, k)-planar graphs have layered
treewidth at most (4g + 6)(k + 1) and (g, d)-map graphs have layered treewidth at
most (2g +3)(2d+1). Just as the graphs of treewidth t have (classical) separators of
size t − 1, so do the graphs of layered treewidth � have layered �-separators [15,16].
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A “dual” concept to that of stack layouts are queue layouts. A queue layout
of a graph G consists of a total order σ of V (G) and a partition of E(G) into sets
(called queues), such that no two edges in the same queue nest ; that is, there are
no edges vw and xy in a single queue with v <σ x <σ y <σ w. If v <σ x <σ y <σ

w we say that xy nests inside vw. The minimum number of queues in a queue
layout of G is called the queue-number of G. Queue layouts, like stack layouts,
have been extensively studied. In particular, it is a long standing open problem
to determine if planar graphs have bounded queue-number. Logarithmic upper
bounds have been obtained via layered separators [2,11]. In particular, a result
similar to Theorem 1 is known for the queue-number: Every n-vertex graph that
has layered �-separators has queue-number O(� log n) [11]; this bound was refined
to 3� · log3(2n + 1) − 1 by Bannister et al. [2]. These results were established via
a connection with the track-number of a graph [14]. Together with the fact that
planar graphs have layered 2-separators [13,19], these results imply an O(log n)
bound for the queue-number of planar graphs, improving on a earlier result by
Di Battista et al. [10]. The polylog bound on the queue-number of planar graphs
extends to all proper minor-closed families of graphs [15,16]. Our approach to
prove Theorem 1 also gives a new proof of the following result (without using
track layouts). We include it for completeness.

Theorem 2. Every n-vertex graph that has a layered �-separator has queue-
number at most 3� · log2 n.

2 Proofs of Theorems 1 and 2

Let G be a graph and L = {V0, . . . , Vp} be a layering of G such that G admits a
layered �-separator for layering L. Each edge of G is either an intra-layer edge,
that is, an edge between two vertices in a set Vi, or an inter-layer edge, that is,
an edge between a vertex in a set Vi and a vertex in a set Vi+1.

A total order on a set of vertices R ⊆ V (G) is a vertex ordering of R. The
stack layout construction computes a vertex ordering σs of V (G) satisfying the
layer-by-layer invariant, which is defined as follows: For 0 ≤ i < p, the vertices in
Vi precede the vertices in Vi+1 in σs. Analogously, the queue layout construction
computes a vertex ordering σq of V (G) satisfying the layer-by-layer invariant.

Let S be a layered �-separator for G with respect to L. Let G1, . . . , Gk be
the graphs induced by the vertices in the connected components of G − S (the
vertices of S do not belong to any graph Gj). These graphs are labeled G1, . . . , Gk

arbitrarily. Recall that, by the definition of a layered �-separator for G, we have
|V (Gj)| ≤ n/2, for each 1 ≤ j ≤ k. Let Si = S ∩ Vi and let ρi be an arbitrary
vertex ordering of Si, for i = 0, . . . , p.

Both the stack and the queue layout constructions recursively construct ver-
tex orderings of V (Gj) satisfying the layer-by-layer invariant, for j = 1, . . . , k.
Let σs

j be the vertex ordering of V (Gj) computed by the stack layout construc-
tion; we also denote by σs

j,i the restriction of σs
j to the vertices in layer Vi. Note

that σs
j = σs

j,1, σ
s
j,2, . . . , σ

s
j,p by the layer-by-layer invariant. Vertex orderings σq

j

and σq
j,i are defined analogously for the queue layout construction.
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∈ V1 ∈ V2∈ V0

ρ0 σs
1,0 σs

2,0 σs
k,0 ρ1 σs

k,1 σs
2,1 σs

1,1 ρ2 σs
1,2 σs

2,2 σs
k,2

Fig. 1. Illustration for the stack layout construction. Edges incident to vertices in S
are black and thick. Edges in graphs G1, . . . , Gk are represented by gray regions.

We now show how to combine the recursively constructed vertex orderings to
obtain a vertex ordering of V (G). The way this combination is performed differs
for the stack layout construction and the queue layout construction.

Stack Layout Construction. Vertex ordering σs is defined as (refer to Fig. 1)

ρ0, σ
s
1,0, σ

s
2,0, . . . , σ

s
k−1,0, σ

s
k,0, ρ1, σ

s
k,1, σ

s
k−1,1, . . . , σ

s
2,1, σ

s
1,1,

ρ2, σ
s
1,2, σ

s
2,2, . . . , σ

s
k−1,2, σ

s
k,2, ρ3, σ

s
k,3, σ

s
k−1,3, . . . , σ

s
2,3, σ

s
1,3, . . . .

The vertex ordering σs satisfies the layer-by-layer invariant, given that vertex
ordering σs

j does, for j = 1, . . . , k. Then Theorem 1 is implied by the following.

Lemma 1. G has a stack layout with 5� · log2 n stacks with vertex ordering σs.

Proof: We use distinct sets of stacks for the intra- and the inter-layer edges.

Stacks for the intra-layer edges. We assign each intra-layer edge uv with u ∈ S
or v ∈ S to one of � stacks P1, . . . , P� as follows. Since uv is an intra-layer edge,
{u, v} ⊆ Vi, for some 0 ≤ i ≤ p. Assume w.l.o.g. that u <σs v. Then u ∈ S and
let it be x-th vertex in ρi (recall that ρi contains at most � vertices). Assign uv
to Px. The only intra-layer edges that are not yet assigned to stacks belong to
graphs G1, . . . , Gk. The assignment of these edges to stacks is the one computed
recursively; however, we use the same set of stacks to assign the edges of all
graphs G1, . . . , Gk.

We now prove that no two intra-layer edges in the same stack cross. Let e
and e′ be two intra-layer edges of G and let both the endpoints of e be in Vi

and both the endpoints of e′ be in Vi′ . Assume w.l.o.g. that i ≤ i′. If i < i′,
then, since σs satisfies the layer-by-layer invariant, the endpoints of e precede
those of e′ in σs, hence e and e′ do not cross. Suppose now that i = i′. If e and
e′ are in some stack Px for x ∈ {1, . . . , �}, then they are both incident to the
x-th vertex in ρi, thus they do not cross. If e and e′ are in some stack different
from P1, . . . , P�, then e ∈ E(Gj) and e′ ∈ E(Gj′), for some j, j′ ∈ {1, . . . , k}. If
j = j′, then e and e′ do not cross by induction. Otherwise, both the endpoints of
e precede both the endpoints of e′ or vice versa, since the vertices in σs

min{j,j′},i

precede those in σs
max{j,j′},i in σs or vice versa, depending on whether i is even

or odd; hence e and e′ do not cross.
We now bound the number of stacks we use for the intra-layer edges of G; we

claim that this number is at most � · log2 n. The proof is by induction on n; the
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base case n = 1 is trivial. For any subgraph H of G, let p1(H) be the number
of stacks we use for the intra-layer edges of H, and let p1(n′) = maxH{p1(H)}
over all subgraphs H of G with n′ vertices. As proved above, p1(G) ≤ � +
max{p1(G1), . . . , p1(Gk)}. Since each graph Gj has at most n/2 vertices, we get
that p1(G) ≤ � + p1(n/2). By induction p1(G) ≤ � + � · log2(n/2) = � · log2 n.

Stacks for the inter-layer edges. We use distinct sets of stacks for the even inter-
layer edges – connecting vertices on layers Vi and Vi+1 with i even – and for
the odd inter-layer edges – connecting vertices on layers Vi and Vi+1 with i odd.
We only describe how to assign the even inter-layer edges to 2� · log2 n stacks so
that no two edges in the same stack cross; the assignment for the odd inter-layer
edges is analogous.

We assign each even inter-layer edge uv with u ∈ S or v ∈ S to one of 2�
stacks P ′

1, . . . , P
′
2� as follows. Since uv is an inter-layer edge, u and v respectively

belong to layers Vi and Vi+1, for some 0 ≤ i ≤ p − 1. If u ∈ S, then u is the
x-th vertex in ρi, for some 1 ≤ x ≤ �; assign edge uv to P ′

x. If u /∈ S, then
v ∈ S is the y-th vertex in ρi+1, for some 1 ≤ y ≤ �; assign edge uv to P ′

�+y.
The only even inter-layer edges that are not yet assigned to stacks belong to
graphs G1, . . . , Gk. The assignment of these edges to stacks is the one computed
recursively; however, we use the same set of stacks to assign the edges of all
graphs G1, . . . , Gk.

We prove that no two even inter-layer edges in the same stack cross. Let e and
e′ be two even inter-layer edges of G. Let Vi and Vi+1 be the layers containing
the endpoints of e. Let Vi′ and Vi′+1 be the layers containing the endpoints of e′.
Assume w.l.o.g. that i ≤ i′. If i < i′, then i + 1 < i′, given that both i and i′ are
even. Then, since σs satisfies the layer-by-layer invariant, both the endpoints of
e precede both the endpoints of e′, thus e and e′ do not cross. Suppose now that
i = i′. If e and e′ are in some stack P ′

h for h ∈ {1, . . . , 2�}, then e and e′ are both
incident either to the h-th vertex of ρi or to the (h − �)-th vertex of ρi+1, hence
they do not cross. If e and e′ are in some stack different from P ′

1, . . . , P
′
2�, then

e ∈ E(Gj) and e′ ∈ E(Gj′), for j, j′ ∈ {1, . . . , k}. If j = j′, then e and e′ do not
cross by induction. Otherwise, j �= j′ and then e nests inside e′ or vice versa,
since the vertices in σs

min{j,j′},i precede those in σs
max{j,j′},i and the vertices in

σs
max{j,j′},i+1 precede those in σs

min{j,j′},i+1 in σs; hence e and e′ do not cross.
We now bound the number of stacks we use for the even inter-layer edges of G;

we claim that this number is at most 2�·log2 n. The proof is by induction on n; the
base case n = 1 is trivial. For any subgraph H of G, let p2(H) be the number of
stacks we use for the even inter-layer edges of H, and let p2(n′) = maxH{p2(H)}
over all subgraphs H of G with n′ vertices. As proved above, p2(G) ≤ 2� +
max{p2(G1), . . . , p2(Gk)}. Since each graph Gj has at most n/2 vertices, we get
that p2(G) ≤ 2�+p2(n/2). By induction p2(G) ≤ 2�+2� · log2(n/2) = 2� · log2 n.

The described stack layout uses � · log2 n stacks for the intra-layer edges,
2� · log2 n stacks for the even inter-layer edges, and 2� · log2 n stacks for the odd
inter-layer edges, thus 5� · log2 n stacks in total. This concludes the proof. 	
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ρ2

∈ V1 ∈ V2∈ V0

ρ0 ρ1σq
1,0 σq

2,0 σq
k,0 σq

1,1 σq
2,1 σq

k,1 σq
1,2 σq

2,2 σq
k,2

Fig. 2. Illustration for the queue layout construction.

Queue Layout Construction. Vertex ordering σq is defined as (refer to Fig. 2)
ρ0, σ

q
1,0, σ

q
2,0, . . . , σ

q
k,0, ρ1, σ

q
1,1, σ

q
2,1, . . . , σ

q
k,1, . . . , ρp, σ

q
1,p, σ

q
2,p, . . . , σ

q
k,p.

The vertex ordering σq satisfies the layer-by-layer invariant, given that vertex
ordering σq

j does, for j = 1, . . . , k. Then Theorem 2 is implied by the following.

Lemma 2. G has a queue layout with 3� · log2 n queues with vertex ordering σq.

Proof: We use distinct sets of queues for the intra- and the inter-layer edges.

Queues for the intra-layer edges. We assign each intra-layer edge uv with u ∈ S
or v ∈ S to one of � queues Q1, . . . , Q� as follows. Since uv is an intra-layer edge,
{u, v} ⊆ Vi, for some 0 ≤ i ≤ p. Assume w.l.o.g. that u <σq v. Then u ∈ S and
let it be the x-th vertex of ρi. Assign uv to Qx. The only intra-layer edges that
are not yet assigned to queues belong to graphs G1, . . . , Gk. The assignment of
these edges to queues is the one computed recursively; however, we use the same
set of queues to assign the edges of all graphs G1, . . . , Gk.

The proof that no two intra-layer edges in the same queue nest is the same
as the proof no two intra-layer edges in the same stack cross in Lemma 1 (with
the word “nest” replacing “cross” and with σq replacing σs). The proof that the
number of queues we use for the intra-layer edges is at most � · log2 n is also the
same as the proof that the number of stacks we use for the intra-layer edges is
at most � · log2 n in Lemma 1.

Queues for the inter-layer edges. We assign each inter-layer edge uv with u ∈ S
or v ∈ S to one of 2� queues Q′

1, . . . , Q
′
2� as follows. Since uv is an inter-layer

edge, u and v respectively belong to layers Vi and Vi+1, for some 0 ≤ i ≤ p − 1.
If u ∈ S, then u is the x-th vertex in ρi, for some 1 ≤ x ≤ �; assign edge uv
to Q′

x. If u /∈ S, then v ∈ S is the y-th vertex in ρi+1, for some 1 ≤ y ≤ �;
assign edge uv to Q′

�+y. The only inter-layer edges that are not yet assigned to
queues belong to graphs G1, . . . , Gk. The assignment of these edges to queues is
the one computed recursively; however, we use the same set of queues to assign
the edges of all graphs G1, . . . , Gk.

We prove that no two inter-layer edges e and e′ in the same queue nest. Let
Vi and Vi+1 be the layers containing the endpoints of e. Let Vi′ and Vi′+1 be
the layers containing the endpoints of e′. Assume w.l.o.g. that i ≤ i′. If i < i′,
then both endpoints of e precede the endpoint of e′ in Vi′+1 (hence e′ is not
nested inside e) and both endpoints of e′ follow the endpoint of e in Vi (hence e
is not nested inside e′), since σq satisfies the layer-by-layer invariant; thus e and
e′ do not nest. Suppose now that i = i′. If e and e′ are in some queue Q′

h for
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h ∈ {1, . . . , 2�}, then e and e′ are both incident either to the h-th vertex of ρi or to
the (h−�)-th vertex of ρi+1, hence they do not nest. If e and e′ are in some queue
different from Q′

1, . . . , Q
′
2�, then e ∈ E(Gj) and e′ ∈ E(Gj′), for j, j′ ∈ {1, . . . , k}.

If j = j′, then e and e′ do not nest by induction. Otherwise, j �= j′ and then the
endpoints of e alternate with those of e′ in σq, since the vertices in σq

min{j,j′},i

precede those in σq
max{j,j′},i and the vertices in σq

min{j,j′},i+1 precede those in
σq
max{j,j′},i+1 in σq; hence e and e′ do not nest.

We now bound the number of queues we use for the inter-layer edges of G;
we claim that this number is at most 2� · log2 n. The proof is by induction on n;
the base case n = 1 is trivial. For any subgraph H of G, let q(H) be the number
of queues we use for the inter-layer edges of H, and let q(n′) = maxH{q(H)}
over all subgraphs H of G with n′ vertices. As proved above, q(G) ≤ 2� +
max{q(G1), . . . , q(Gk)}. Since each graph Gj has at most n/2 vertices, we get
that q(G) ≤ 2� + q(n/2). By induction q(G) ≤ 2� + 2� · log2(n/2) = 2� · log2 n.

Thus, the described queue layout uses �·log2 n queues for the intra-layer edges
and 2� · log2 n queues for the inter-layer edges, thus 3� · log2 n queues in total.
This concludes the proof. 	
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Abstract. A geometric graph is angle-monotone if every pair of ver-
tices has a path between them that—after some rotation—is x- and
y-monotone. Angle-monotone graphs are

√
2-spanners and they are

increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced
angle-monotone graphs in 2014 and proved that Gabriel triangula-
tions are angle-monotone graphs. We give a polynomial time algo-
rithm to recognize angle-monotone geometric graphs. We prove that
every point set has a plane geometric graph that is generalized angle-
monotone—specifically, we prove that the half-θ6-graph is generalized
angle-monotone. We give a local routing algorithm for Gabriel triangu-
lations that finds a path from any vertex s to any vertex t whose length is
within 1+

√
2 times the Euclidean distance from s to t. Finally, we prove

some lower bounds and limits on local routing algorithms on Gabriel
triangulations.

1 Introduction

A geometric graph has vertices that are points in the plane, and edges that are
drawn as straight-line segments, with the weight of an edge being its Euclidean
length. A geometric graph need not be planar. Geometric graphs that have
relatively short paths are relevant in many applications for routing and network
design, and have been a subject of intense research. A main scenario is that we
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are given a point set and must construct a sparse geometric graph on that point
set with good shortest path properties.

If the shortest path between every pair of points has length at most t times
the Euclidean distance between the points, then the geometric graph is called
a t-spanner, and the minimum such t is called the spanning ratio. Since their
introduction by Paul Chew in 1986 [10], spanners have been heavily studied [18].

Besides the existence of short paths, another issue is routing—how to find
short paths in a geometric graph. One goal is to find paths using local routing
where the path is found one vertex at a time using only local information about
the neighbours of the current vertex plus the coordinates of the destination.
A main example of such a method is greedy routing : from the current vertex
u take any edge to a vertex v that is closer (in Euclidean distance) to the
destination than u is. The geometric graphs for which greedy routing succeeds
in finding a path are called greedy drawings. These have received considerable
attention because of their potential ability to replace routing tables for network
routing, and because of the noted conjecture of Papadimitriou and Ratajczak [19]
(proved in [5,16]) that every 3-connected planar graph has a greedy drawing. One
drawback is that a path found by greedy routing may be very long compared to
the Euclidean distance between the endpoints. Of course this is inevitable if the
geometric graph has large spanning ratio.

When a geometric graph is a t-spanner, we can ideally hope for a local routing
algorithm that finds a path whose length is at most k times the Euclidean
distance between the endpoints, for some k, where, of necessity, k ≥ t. The
maximum ratio, k, of path length to Euclidean distance is called the routing ratio.
For example, the Delaunay triangulation, which is a t-spanner for t ≤ 1.998 [21],
permits local routing with routing ratio k ≤ 5.90 [7]. It is an open question
whether the spanning ratio and routing ratio are equal, though there is a provable
gap for L1-Delaunay triangulations [7] and TD-Delaunay triangulations [9].
Other “good” Paths. Recently, a number of other notions of “good” paths
in geometric graphs have been investigated. Alamdari et al. [2] introduced
self-approaching graphs, where any two vertices s and t are joined by a self-
approaching path—a path such that a point moving continuously along the path
from s to any intermediate destination r on the path always gets closer to r in
Euclidean distance. In an increasing-chord graph, this property also holds for the
reverse path from t to s. The self-approaching path property is stronger than the
greedy path property in two ways: it applies to every intermediate destination
r, and it requires that continuous motion (not just the vertices) along the path
to r always gets closer to r. The significance of the stronger property is that
self-approaching and increasing-chord graphs have bounded spanning ratios of
5.333 [15] and 2.094 [20], respectively. An important characterization is that a
path is self-approaching if and only if at each point on the path, there is a 90◦

wedge that contains the rest of the path [15].
Angelini et al. [4] introduced monotone drawings, where any two vertices s

and t are joined by a path that is monotone in some direction. This is a natural
desirable property, but not enough to guarantee a bounded spanning ratio.



Gabriel Triangulations and Angle-Monotone Graphs 521

Angle-Monotone Paths. In this paper we explore properties of another class
of geometric graphs with good path properties. These are the angle-monotone
graphs which were first introduced by Dehkordi, Frati, and Gudmundsson [12] as
a tool to investigate increasing-chord graphs. (We note that Dehkordi et al. [12]
did not give a name to their graph class.)

A polygonal path with vertices v0, v1, . . . , vn is β-monotone for some angle
β if the vector of every edge (vi, vi+1) lies in the closed 90◦ wedge between
β − 45◦ and β +45◦. (In the terminology of Dehkordi et al. [12] this is a θ-path.)
In particular, an x-y-monotone path (where x and y coordinates are both non-
decreasing along the path) is a β-monotone path for β = 45◦ (measured from the
positive x-axis). A path is angle-monotone if there is some angle β for which it is
β-monotone. To visualize this, note that a path is angle-monotone if and only if
it can be rotated to be x-y-monotone. An angle-monotone path is a special case
of a self-approaching path where the wedges containing the rest of the path all
have the same orientation. See Fig. 1. This implies that an angle-monotone path
is also angle-monotone when traversed in the other direction, and thus, has the
increasing-chord property. Observe that angle-monotone paths have spanning
ratio

√
2—this is because x-y-monotone paths do.

s t s

t

β

Fig. 1. The difference between a self-approaching st path (left) with 90◦ wedges each
containing the rest of the path, and an angle-monotone path (right) where the 90◦

wedges all have the same orientation β.

A geometric graph is angle-monotone if for every pair of vertices u, v, there is
an angle-monotone path from u to v. Note that the angle β may be different for
different pairs u, v. Dehkhori et al. [12] introduced angle-monotone graphs, and
proved that they include the class of Gabriel triangulations (triangulations with
no obtuse angle). Their main goal was to prove that any set of n points in the
plane has a planar increasing-chord graph with O(n) Steiner points and O(n)
edges. Given their result that Gabriel graphs are increasing chord, this follows
from a result of Bern et al. [6] that any point set can be augmented with O(n)
points to a point set whose Delaunay triangulation is Gabriel.

The notion of angle-monotone graphs can be generalized to wedges of angle
γ different from 90◦. (A precise definition is given below.) We call these angle-
monotone graphs with width γ, or generalized angle-monotone graphs. For γ <
180◦, they still have bounded spanning ratios.
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Results. The main themes we explore are: Which geometric graphs are angle-
monotone? Can we create a sparse (generalized) angle-monotone graph on any
given point set? Do angle-monotone graphs permit local routing?

Our first main result is a polynomial time algorithm to test if a geometric
graph is angle-monotone. This is significant because it is not known whether
increasing chord graphs can be recognized in polynomial time (or whether the
problem is NP-hard). Our algorithm extends to generalized angle-monotone
graphs for any width γ < 180◦.

Our next result is that for any point set in the plane, there is a plane geometric
graph on that point set that is angle-monotone with width 120◦. In particular,
we prove that the half-θ6-graph has this property. Width 90◦ cannot always
be achieved because it would imply spanning ratio

√
2 which is known to be

impossible for some point sets, as discussed below under Further Background.
The rest of the paper is about local routing algorithms, where we concentrate

on a subclass of angle-monotone graphs, namely the Gabriel triangulations. We
give a local routing algorithm for Gabriel triangulations that achieves routing
ratio 1+

√
2 ≈ 2.41. This is better than the best known routing ratio for Delaunay

triangulations of 5.90 [7]. Also, our algorithm is simpler. The algorithm succeeds,
i.e. finds a path to the destination, for any triangulation, and we prove that the
algorithm has a bounded routing ratio for triangulations with maximum angle
less than 120◦. For Delaunay triangulations, we prove a lower bound on the
routing ratio of 5.07, but leave as an open question whether the algorithm ever
does worse. Finally, we give some lower bounds on the routing ratio of local
routing algorithms on Gabriel triangulations, and we prove that no local routing
algorithm on Gabriel triangulations can find self-approaching paths.

As is clear from this outline, we leave many interesting open questions, some
of which are listed in the Conclusions section.

Further Background. The standard Delaunay triangulation is not self-
approaching in general [2], and therefore not angle-monotone.

The Gabriel graph of point set P is a graph in which for every edge (u, v)
the circle with diameter uv contains no points of P . A Gabriel graph that is
a triangulation is called a Gabriel triangulation. Any Gabriel triangulation is a
Delaunay triangulation. Observe that a triangulation is Gabriel if and only if it
has no obtuse angles. Not every point set has a Gabriel triangulation, e.g. three
points forming an obtuse triangle.

There are several results on constructing self-approaching/increasing-chord
graphs on a given set of points. Alamdari et al. [2] constructed an increas-
ing chord network of linear size using Steiner points, and Dehkordi et al. [12]
improved this to a plane network. It is an open question whether every point set
admits a plane increasing-chord graph without adding Steiner points. However,
for the more restrictive case of angle-monotone graphs, the answer is no: any
angle-monotone graph has spanning ratio

√
2 but there is a point set (specifi-

cally, the vertices of a regular 23-gon) for which any planar geometric graph has
spanning ratio at least 1.4308 [13]. An earlier example was given by Mulzer [17].
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Preliminaries and Definitions. A polygonal path with vertices v0, v1, . . . , vn

is β-monotone with width γ for some angles β and γ with γ < 180◦ if the
vector of every edge (vi, vi+1) lies in the closed wedge of angle γ between
β − γ

2 and β + γ
2 . When we have no need to specify β, we say that the path is

angle-monotone with width γ, or “generalized angle-monotone”. A path that is
generalized angle-monotone is a generalized self-approaching path [1] and thus
has bounded spanning ratio depending on γ [1]. But in fact, we can do better:

Observation 1 [proof in long version]. The spanning ratio of an angle-monotone
path with width γ < 180◦ is at most 1/ cos γ

2 .
A geometric graph is angle-monotone with width γ if for every pair of vertices

u, v, there is an angle-monotone path with width γ from u to v. When we have
no need to specify γ, we say that the graph is “generalized angle-monotone”.

Note that in an angle-monotone path (with width 90◦) the distances from
v0 to later vertices form an increasing sequence. Furthermore, any β-monotone
path from u to v lies in a rectangle with u and v at opposite corners and with
two sides at angles β±45◦, and the union of such rectangles over all β ∈ [0, 360◦)
forms the disc with diameter uv. (See Figure in long version.) This implies:

Lemma 1. Any angle-monotone path from u to v lies inside the disc with diam-
eter uv.

2 Recognizing Angle-Monotone Graphs

In this section we give an O(nm2) time algorithm to test if a geometric graph
with n vertices and m edges is angle-monotone. The idea is to look for angle-
monotone paths from a node s to all other nodes, and then repeat over all choices
of s. For a given source vertex s, the algorithm explores nodes u in non-decreasing
order of their distance from s. At each vertex u we store information to capture
all the possible angles β for which there is a β-monotone path from s to u. We
show how to propagate this information along an edge from u to v.

We begin with some notation. We will measure angles counterclockwise from
the positive x-axis, modulo 360◦. To any ordered pair u, v of vertices (points) of
our geometric graph we associate the vector v − u and we denote its angle by
α(u, v). If S is a set of angles that lie within a wedge of angle less than 180◦, then
we define the minimum of S to be the most clockwise angle, and the maximum
of S to be the most counter-clockwise angle. More formally, α is the minimum
of S if for any other β ∈ S, β − α ∈ [0, 180◦), and similarly for maximum.

Although there may be exponentially many angle-monotone paths from s
to u, each such path has two extreme edges. More precisely, if P is an angle-
monotone path from s to u, then the angles, α(e), e ∈ P , lie in a 90◦ wedge, and
so this set has a minimum and maximum that differ by at most 90◦. We will
store a list of all such min-max pairs with vertex u. Each pair defines a wedge
of at most 90◦. Since each pair is defined by two edges, there are at most O(m2)
such pairs (though we will show below that we only need to store O(m) of them).
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The algorithm starts off by looking at every edge (s, u) and adding the pair
(α(s, u), α(s, u)) to u’s list. Then the algorithm explores vertices u �= s in non-
decreasing order of their distance from s. To explore vertex u, consider each edge
(u, v) and each pair (α(e), α(f)) stored with u, and update the list of pairs for
vertex v as follows. If α(u, v) is within 90◦ of α(e) and within 90◦ of α(f) then
add to v’s list the pair (min{α(u, v), α(e)},max{α(u, v), α(f)}).

If ever the algorithm tries to explore a vertex that has no pairs stored with
it, then halt—the graph is not angle-monotone. To justify correctness we prove:

Lemma 2. When the algorithm has explored all the vertices closer to s than v,
then there exists an angle-monotone path from s to v with extreme edges e and
f if and only if the pair (α(e), α(f)) is in v’s list.

Proof. The proof is by induction on the distance from s to v.
For the “only if” direction, let P be an angle-monotone path from s to v with

extreme edges e and f , and let u be the penultimate vertex of P . The subpath
of P from s to u is an angle-monotone path. Suppose its extreme edges are e′

and f ′ where e = e′ or f = f ′ or both. Now, u is closer to s so by induction the
pair (α(e′), α(f ′)) is in u’s list. Because P is angle-monotone, α(u, v) is within
90◦ of α(e′) and α(f ′). Thus the update step applies. During the update step we
add the angle α(u, v) to the pair (α(e′), α(f ′)), which gives the pair (α(e), α(f)).
Thus we add the pair (α(e), α(f)) to v’s list.

For the “if” direction, suppose that the pair (α(e), α(f)) is in v’s list. This
pair was added to v’s list because of an update from some vertex u closer to
s applied to some pair (α(e′), α(f ′)) in u’s list. By induction, there exists an
angle-monotone path P from s to u with extreme edges e′ and f ′, and because
the update is only performed when α(u, v) is within 90◦ degrees of α(e′) and
α(f ′) therefore the edge (u, v) can be added to P to produce an angle-monotone
path with extreme edges e and f . ��

To improve the efficiency of the algorithm we observe that it is redundant
to store at a vertex v a pair whose wedge contains the wedge of another pair.
Therefore, we only need to store O(m) pairs at each vertex, at most one pair
whose first element is α(e) for each edge e. We can simply keep with each vertex
v a vector indexed by edges e, in which we store the minimal pair (α(e), α(f))
(if any) associated with v so far. Finally, observe that during the course of
the algorithm, each edge (u, v) is handled once in an update step. With the
refinement just mentioned, handling an edge costs O(m). Therefore the algorithm
runs in time O(m2) for a single choice of s, and in time O(nm2) overall.

The algorithm can be generalized to recognize angle-monotone graphs of
width γ for fixed γ < 180◦. It is no longer legitimate to explore vertices in order
of distance from s, since a generalized angle-monotone path will not necessarily
respect this ordering. However, we can run the algorithm in phases, where phase
i captures all the angle-monotone paths of width γ that start at s and have at
most i edges. Since no angle-monotone path can repeat a vertex, there are at
most n − 1 edges in any angle-monotone path. Thus we need n − 1 phases. In
each phase, for each directed edge (u, v) we update each pair (α(e), α(f)) stored
at u as follows. If α(u, v) is within γ of α(e) and within γ of α(f) then add to
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v’s list the pair (min{α(u, v), α(e)},max{α(u, v), α(f)}). In this way, each of the
n − 1 phases takes time O(m2), so the total run-time of the algorithm over all
choices of s becomes O(n2m2).

3 A Class of Generalized Angle-Monotone Graphs

In this section we show that every point set in the plane has a plane geometric
graph that is angle-monotone with width 120◦. In particular, we will prove that
the half-θ6-graph has this property. As noted in the Introduction, there are point
sets for which no plane graph is angle-monotone with width 90◦. It is an open
question to narrow this gap and find the minimum angle γ for which every point
set has a plane graph that is angle-monotone with width γ (and thus spanning
ratio 1/ cos γ

2 ).
We first define the half-θ6-graph. For each point u ∈ P , partition the plane

into 60◦ cones with apex u, with each cone defined by two rays at consecutive
multiples of 60◦ from the positive x-axis. Label the cones C0, C1, C2, C3, C4, and
C5 in clockwise order around u, starting from the cone containing the positive
y-axis. See Fig. 2(a).

For two vertices u and v the canonical triangle Tuv is the triangle bounded
by: the cone of u that contains v; and the line through v perpendicular to the
bisector of that cone. See Fig. 2(b). Notice that if v is in an even cone of u, then
u is in an odd cone of v. We build the half-θ6-graph as follows. For each vertex u
and each even i = 0, 2, 4, add the edge uv provided that v is in the Ci cone of u
and Tuv is empty. We call v the Ci-neighbour of u. For simplicity, we assume that
no two points lie on a line parallel to a cone boundary, guaranteeing that each
vertex connects to exactly one vertex in each even cone. Hence the graph has
at most 3n edges in total. The half-θ6-graph is a type of Delaunay triangulation
where the empty region is an equilateral triangle in a fixed orientation as opposed
to a disk [8]. It can be computed in O(n log n) time [18].

To prove angle-monotonicity properties of the half-θ6-graph, we use an idea
like the one used by Angelini [3]. His goal was to show that every abstract
triangulation has an embedding that is monotone, i.e. angle-monotone with

C0

C1

C3

C4

C5

u
C2

u

v

(a) (b)

u

v

(c)

T uv
u

v

x

Fig. 2. (a) 6 cones originating from point u, (b) Canonical triangle Tuv, (c) path σu

(solid) with its empty canonical triangles shaded, path σv (dashed) and their common
vertex x.
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width 180◦. (The same result was obtained in [14] with a different proof.)
Angelini did this by showing that the Schnyder drawing of any triangulation
is monotone, and in fact, upon careful reading, his proof shows that any Schny-
der drawing is angle-monotone with the smaller width 120◦. Schnyder drawings
are a special case of half-θ6-graphs [8] so it is not surprising that Angelini’s proof
idea extends to the half-θ6-graph in general.

Theorem 1. The half-θ6-graph is angle-monotone with width 120◦.

Proof. We must prove that for any points u and v, there is an angle-monotone
path from u to v of width 120◦. Assume without loss of generality that v is in
the C0 cone of u. See Fig. 2(b).

Our path from u to v will be the union of two paths, each of which is angle-
monotone of width 60◦. We begin by constructing a path σu from u in which
each vertex is joined to its C0 neighbour. This is a β-monotone path of width
60◦ for β = 90◦. If the path contains v we are done, so assume otherwise. Let u′

be the last vertex of the path that lies in Tuv. Note that v cannot lie in the C0

cone of u′. Let S be the subpath of σu from u to u′, together with the C0 cone
of u′. Then S separates Tuv into two parts. Suppose that v lies in the right-hand
part (the other case is symmetric). See Fig. 2(c).

Next, construct a path σv from v in which each vertex is joined to its C4

neighbour. This is a β-monotone path of width 60◦ for β = 210◦.
We now claim that σu and σv have a common vertex x. Then as our final

path from u to v we take the portion of σu from u to x followed by the portion
of σv backwards from x to v. Since the reverse of σv is β-monotone with width
60◦ for β = 30◦, the final path is β-monotone with width 120◦ for β = 60◦.

It remains to prove that x exists. Let v′ be the last vertex of σv that lies
strictly to the right of S. Let u′′ be the last vertex of σu that lies below v′. We
claim that u′′ is the C4 neighbour of v′, and thus that u′′ provides our vertex x.
Let T be the empty canonical triangle from u′′ to its C0-neighbour (or the empty
C0 cone of u′′ in case u′′ has no C0-neighbour). First note that u′′ is in the C4

cone of v′—otherwise v′ would be in T . Next note that Tv′u′′ is empty—otherwise
v would have a C4-neighbour that is in T or is to the right of S. ��

Theorem 1 implies that the spanning ratio of the half-θ6-graph is 2, which
was already known [11]. The best routing ratio achievable for the half-θ6-graph is
5/

√
3 ≈ 2.887 [9]. (This was the first proved separation between spanning ratio

and routing ratio.) Since angle-monotone paths of width 120◦ have spanning
ratio 2, this implies that no local routing algorithm can compute angle-monotone
paths with width 120◦ on the half-θ6-graph.

4 Local Routing in Gabriel Triangulations

In this section we give a simple local “angle” routing algorithm that finds a path
from s to t in any triangulation. Like previous algorithms, the path walks only
along edges of triangles that intersect the line segment st. The novelty is that
the next edge of the path is chosen based on angles relative to the vector st.
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The details of the algorithm are in Sect. 4.1. In Sect. 4.2 we prove that the
algorithm has routing ratio 1 +

√
2 on Gabriel graphs, and discuss its behaviour

on Delaunay triangulations. In Sect. 4.3 we give lower bounds on the routing and
competitive ratios of local routing algorithms on Gabriel graphs.

4.1 Local Angle Routing

Our algorithm is simple to describe: Suppose we want a route from s to t in
a triangulation. Orient st horizontally, t to the right. Suppose we have reached
vertex p. Consider the last (rightmost) triangle that is incident to p and intersects
the line segment st. The triangle has two edges incident to p. Of these two
edges, take the one that has the minimum angle to the horizontal ray from p
to the right. See Fig. 3. Pseudo-code can be found below in Algorithm1. Note
that in the pseudo-code, the angle test is equivalently replaced by two tests,
identifying steps of type A and B for easier case analysis. For an example of a
path computed by the algorithm, see Fig. 4. Observe that the algorithm always
succeeds in finding a route from s to t because it always advances rightward in
the sequence of triangles that intersect line segment st.

s t

p

a

b

s t

p
a

b

r
r

Fig. 3. Local routing from s to t. At vertex p, with pab being the rightmost triangle
incident to p that intersects line segment st, we route from p to a because the (unsigned)
angle apr is less than angle bpr. A step of type A is shown on the left and a step of
type B on the right.

Algorithm 1. Local angle routing
1 p ← s
2 while p �= t do
3 Let T = pab be the rightmost triangle containing p that intersects segment

st, with p and a on the same side of line st.
4 if a is closer to line st than p then /* step of type A */

5 p ← a
6 else /* step of type B */

7 if |slope(pa)| ≤ |slope(pb)| then
8 p ← a
9 else

10 p ← b
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s t

p1

q2

p2

p3

p4

q4

q5

p5q3q1

Fig. 4. Example of route computed by Algorithm 1 (heavy blue path). In dotted red,
a longer route obtained by replacing each segment of the route by the most extreme
angle. Both routes are within (1 +

√
2) of ||st||. (Color figure online)

4.2 Analysis of the Algorithm

In this section we will prove that the above algorithm has routing ratio exactly
1 +

√
2 on Gabriel triangulations, which have maximum angle at most 90◦. In

the last part of the section we generalize the analysis to triangulations with a
larger maximum angle, and we show that the routing ratio is at least 5.07 on
Delaunay triangulations.

The intuition for bounding the routing ratio on Gabriel triangulations is
to replace each segment of the route by the most extreme segment possible.
See Fig. 4. Any step of type B is replaced by a 45◦ segment plus a horizontal
segment. Any step of type A is replaced by a vertical segment plus a horizontal
segment. Vertical segments are the bad ones, but each vertical must be preceded
by 45◦ segments, which means that instead of travelling 1 unit horizontally (the
optimum route) we have travelled

√
2 along a 45◦ segment plus 1 vertically,

giving us the 1 +
√

2 ratio. We now give a more formal proof.
For each edge e = (pi, pi+1) of the path, let dx(e) = ||x(pi) − x(qp+1)|| and

dy(e) = ||y(pi)− y(pi+1)||. Let A (resp. B) be the set of edges of the path where
the algorithm makes a step of type A (resp. type B). (Context will distinguish
edge sets from steps.) Let xB =

∑
e∈B dx(e) and xA =

∑
e∈A dx(e).

Lemma 3. On any Gabriel triangulation the path computed by Algorithm1 is
x-increasing.

Proof. Let us show that each step is x-increasing. Consider a step from p, with
a and b as defined in Algorithm 1. Assume without loss of generality that p and
a are above line st and b is below. Since T is the last triangle incident to p that
intersects st, the clockwise ordering of T is pab. Refer to Fig. 3.

If the algorithm takes a step of type B then a is above p (in y coordinate)
and b is below p. Since ∠bpa ≤ 90◦, thus x(a) and x(b) are greater than x(p). If
the algorithm takes a step of type A then since b is below st and a is above st
and ∠bap ≤ 90◦, thus x(a) is greater than x(p). ��
Theorem 2. On any Gabriel triangulation, Algorithm1 has a routing ratio of
1 +

√
2 and this bound is tight.
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Proof. We first bound
∑

e∈B ||e||. Observe that each edge in B forms an angle
with the horizontal line through p that is at most 45◦. Thus

∑
e∈B dy(e) ≤ xB

and
∑

e∈B ||e|| ≤ √
2xB.

We next bound
∑

e∈A ||e||. Observe that edges in A move us closer to the line
st, and must be balanced by previous steps (of type B) that moved us farther
from the line st. This implies that

∑
e∈A dy(e) ≤ ∑

e∈B dy(e) ≤ xB (where the
last step comes from the first observation). Since ||e|| ≤ dx(e) + dy(e), thus∑

e∈A ||e|| ≤ xA +
∑

e∈A dy(e) ≤ xA + xB .
Putting these together, the length of the path is bounded by

∑
e∈A ||e|| +∑

e∈B ||e|| ≤ xA + xB +
√

2xB ≤ (1 +
√

2)(xA + xB). Finally, by Lemma 3,
xA + xB = ||st||, so this proves that the routing ratio is at most (1 +

√
2).

An example to show that this analysis is tight is given in the full version. ��
We conclude this section with two results on the behaviour of the routing

algorithm on other triangulations. Proofs can be found in the full version.

Theorem 3. In a triangulation with maximum angle α < 120◦ Algorithm1 has
a routing ratio of (sin α + sin α

2 )/ sin 3α
2 and this bound is tight.

Theorem 4. The routing ratio of Algorithm1 on Delaunay triangulation is
greater than 5.07.

We believe that the routing ratio of Algorithm1 on Delaunay triangulations
is close to 5.07, but leave that as an open question. We remark that Algorithm1
is different from the generalization of Chew’s Routing Algorithm for Delaunay
triangulations [10] (cf. the algorithm described in [7]).

4.3 Limits of Local Routing Algorithms on Gabriel Triangulations

In this section we prove some limits on local routing on Gabriel triangulations.
Proofs are deferred to the full version.

A routing algorithm on a geometric graph G has a competitive ratio of c
if the length of the path produced by the algorithm from any vertex s to any
vertex t is at most c times the length of the shortest path from s to t in G, and
c is the minimum such value. (Recall that the routing ratio compares the length
of the path produced by the algorithm to the Euclidean distance between the
endpoints. Thus the competitive ratio is less than or equal to the routing ratio).

A routing algorithm is k-local (for some integer constant k > 0) if it makes
forwarding decisions based on: (1) the k-neighborhood in G of the current posi-
tion of the message; and (2) limited information stored in the message header.

Theorem 5. Any k-local routing algorithm on Gabriel triangulations has rout-
ing ratio at least 1.4966 and competitive ratio at least 1.2687.

Although Gabriel triangulations are angle-monotone [12], Theorem 5 shows
that no local routing algorithm can compute angle-monotone paths since that
would give routing ratio

√
2. The following theorem tells us that even less con-

strained paths cannot be computed locally:
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Theorem 6. There is no k-local routing algorithm on Gabriel triangulations
that always finds self-approaching paths.

5 Conclusions

We conclude this paper with some open questions.

1. What is the minimum angle γ for which every point set has a plane geometric
graph that is angle-monotone with width γ (and thus has spanning ratio
1/ cos γ

2 )? We proved γ ≤ 120◦, and it is known that γ > 90◦.
2. Is there a local routing algorithm with bounded routing ratio for any angle-

monotone graph? Any increasing-chord graph?
3. We bounded the routing ratio of our local routing algorithm on triangula-

tions based on the maximum angle in the triangulation, but how does this
relate to the property of being generalized angle-monotone? If a triangula-
tion has bounded maximum angle, is it generalized angle-monotone? The only
thing known is that maximum angle 90◦ implies angle-monotone with width
90◦ [12].

4. Is the standard Delaunay triangulation generalized angle-monotone? In par-
ticular, proving that the Delaunay triangulation is angle-monotone with width
strictly less than 120◦ would provide a different proof that the Delaunay tri-
angulation has spanning ratio less than 2 [21]. It is known that the Delaunay
triangulation is not angle-monotone with width 90◦ (see Sect. 1).

5. How does our local routing algorithm behave on standard Delaunay triangu-
lations? We proved a lower bound of 5.07 on the routing ratio. We believe
the routing ratio is close to this value, but have no upper bound.
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angelini@informatik.uni-tuebingen.de

2 Universität Würzburg, Würzburg, Germany
{steven.chaplick,fabian.lipp}@uni-wuerzburg.de

3 Universität Konstanz, Konstanz, Germany
sabine.cornelsen@uni-konstanz.de
4 Roma Tre University, Rome, Italy
{dalozzo,gdb}@dia.uniroma3.it

5 The University of Sydney, Sydney, Australia
peter@it.usyd.edu.au

6 FernUniversität in Hagen, Hagen, Germany
philipp.kindermann@fernuni-hagen.de

7 Charles University, Prague, Czech Republic
honza@kam.mff.cuni.cz

8 Karlsruhe Institute of Technology, Karlsruhe, Germany
rutter@kit.edu

Abstract. We introduce and study the OrthoSEFE-k problem:
Given k planar graphs each with maximum degree 4 and the same ver-
tex set, do they admit an OrthoSEFE, that is, is there an assignment
of the vertices to grid points and of the edges to paths on the grid such
that the same edges in distinct graphs are assigned the same path and
such that the assignment induces a planar orthogonal drawing of each
of the k graphs? We show that the problem is NP-complete for k ≥ 3
even if the shared graph is a Hamiltonian cycle and has sunflower inter-
section and for k ≥ 2 even if the shared graph consists of a cycle and of
isolated vertices. Whereas the problem is polynomial-time solvable for
k = 2 when the union graph has maximum degree five and the shared
graph is biconnected. Further, when the shared graph is biconnected and
has sunflower intersection, we show that every positive instance has an
OrthoSEFE with at most three bends per edge.

1 Introduction

The input of a simultaneous embedding problem consists of several graphs G1 =
(V,E1), . . . , Gk = (V,Ek) on the same vertex set. For a fixed drawing style S, the
simultaneous embedding problem asks whether there exist drawings Γ1, . . . , Γk
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of G1, . . . , Gk, respectively, in drawing style S such that for any i and j the
restrictions of Γi and Γj to Gi ∩ Gj = (V,Ei ∩ Ej) coincide.

The problem has been most widely studied in the setting of topological planar
drawings, where vertices are represented as points and edges are represented as
pairwise interior-disjoint Jordan arcs between their endpoints. This problem is
called Simultaneous Embedding with Fixed Edges or SEFE-k for short,
where k is the number of input graphs. It is known that SEFE-k is NP-complete
for k ≥ 3, even in the restricted case of sunflower instances [25], where every
pair of graphs shares the same set of edges, and even if such a set induces a
star [3]. On the other hand, the complexity for k = 2 is still open. Recently,
efficient algorithms for restricted instances have been presented, namely when
(i) the shared graph G∩ = G1 ∩ G2 is biconnected [4,18] or a star-graph [4], (ii)
G∩ is a collection of disjoint cycles [12], (iii) every connected component of G∩ is
either subcubic or biconnected [10,25], (iv) G1 and G2 are biconnected and G∩
is connected [13], and (v) G∩ is connected and the input graphs have maximum
degree 5 [13]; see the survey by Bläsius et al. [11] for an overview.

For planar straight-line drawings, the simultaneous embedding problem is
called Simultaneous Geometric Embedding and it is known to be NP-hard
even for two graphs [17]. Besides simultaneous intersection representation for,
e.g., interval graphs [13,19] and permutation and chordal graphs [20], it is only
recently that the simultaneous embedding paradigm has been applied to other
fundamental planarity-related drawing styles, namely simultaneous level planar
drawings [2] and RAC drawings [5,7].

We continue this line of research by studying simultaneous embeddings in the
planar orthogonal drawing style, where vertices are assigned to grid points and
edges to paths on the grid connecting their endpoints [28]. In accordance with the
existing naming scheme, we define OrthoSEFE-k to be the problem of testing
whether k input graphs 〈G1, . . . , Gk〉 admit a simultaneous planar orthogonal
drawing. If such a drawing exists, we call it an OrthoSEFE of 〈G1, . . . , Gk〉.
Note that it is a necessary condition that each Gi has maximum degree 4 in
order to obtain planar orthogonal drawings. Hence, in the remainder of the
paper we assume that all instances have this property. For instances with this
property, at least when the shared graph is connected, the problem SEFE-2 can
be solved efficiently [13]. However, there are instances of OrthoSEFE-2 that
admit a SEFE but not an OrthoSEFE; see Fig. 1(a).

Unless mentioned otherwise, all instances of OrthoSEFE-k and SEFE-k we
consider are sunflower. Notice that instances with k = 2 are always sunflower.
Let 〈G1 = (V,E1), G2 = (V,E2)〉 be an instance of OrthoSEFE-2. We define
the shared graph (resp. the union graph) to be the graph G∩ = (V,E1 ∩ E2)
(resp. G∪ = (V,E1 ∪ E2)) with the same vertex set as G1 and G2, whose edge
set is the intersection (resp. the union) of the ones of G1 and G2. Also, we call
the edges in E1 ∩ E2 the shared edges and we call the edges in E1 \ E2 and in
E2 \ E1 the exclusive edges. The definitions of shared graph, shared edges, and
exclusive edges naturally extend to sunflower instances for any value of k.
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u

v

C

(a)

v3 v4 v5

(b)

Fig. 1. (a) A negative instance of OrthoSEFE-2. Shared edges are black, while exclu-
sive edges are red and blue. The red edges require 270◦ angles on different sides of C.
Thus, the blue edge (u, v) cannot be drawn. Note that the given drawing is a SEFE-2.
(b) Examples of side assignments for the exclusive edges incident to degree-2 vertices
of G∩: orthogonality constraints are satisfied at v4 and v5, while they are violated at v3.
(Color figure online)

One main issue is to decide how degree-2 vertices of the shared graph are
represented. Note that, in planar topological drawings, degree-2 vertices do not
require any decisions as there exists only a single cyclic order of their incident
edges. In the case of orthogonal drawings there are, however, two choices for a
degree-2 vertex: It can either be drawn straight, i.e., it is incident to two angles
of 180◦, or bent, i.e., it is incident to one angle of 90◦ and to one angle of 270◦.
If v is a degree-2 vertex of the shared graph with neighbors u and w, and two
exclusive edges e, e′, say of G1, are incident to v and are embedded on the same
side of the path uvw, then v must be bent, which in turn implies that also every
exclusive edge of G2 incident to v has to be embedded on the same side of uvw
as e and e′. In this way, the two input graphs of OrthoSEFE-2 interact via the
degree-2 vertices. It is the difficulty of controlling this interaction that marks the
main difference between SEFE-k and OrthoSEFE-k. To study this interaction
in isolation, we focus on instances of OrthoSEFE-2 where the shared graph is
a cycle for most of the paper. Note that such instances are trivial yes-instances
of SEFE-k (provided the input graphs are all planar).

Contributions and Outline. In Sect. 2, we provide our notation and we show
that the existence of an OrthoSEFE of an instance of OrthoSEFE-k can
be described as a combinatorial embedding problem. In Sect. 3, we show that
OrthoSEFE-3 is NP-complete even if the shared graph is a cycle, and that
OrthoSEFE-2 is NP-complete even if the shared graph consists of a cycle plus
some isolated vertices. This contrasts the situation of SEFE-k where these cases
are polynomially solvable [4,9,18,25]. In Sect. 4, we show that OrthoSEFE-2
is efficiently solvable if the shared graph is a cycle and the union graph has max-
imum degree 5. Finally, in Sect. 5, we extend this result to the case where the
shared graph is biconnected (and the union graph still has maximum degree 5).
Moreover, we show that any positive instance of OrthoSEFE-k whose shared
graph is biconnected admits an OrthoSEFE with at most three bends per edge.
We close with some concluding remarks and open questions in Sect. 6.

Complete proofs can be found in the full version of the paper [1].
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2 Preliminaries

We will extensively make use of the Not-All-Equal 3-Sat (Nae3Sat)
problem [24, p.187]. An instance of Nae3Sat consists of a 3-CNF formula φ
with variables x1, . . . , xn and clauses c1, . . . , cm. The task is to find a Nae truth
assignment, i.e., a truth assignment such that each clause contains both a true
and a false literal. Nae3Sat is known to be NP-complete [26]. The variable–
clause graph is the bipartite graph whose vertices are the variables and the
clauses, and whose edges represent the membership of a variable in a clause.
The problem Planar Nae3Sat is the restriction of Nae3Sat to instances
whose variable–clause graph is planar. Planar Nae3Sat can be solved effi-
ciently [22,27].

Embedding Constraints. Let 〈G1, . . . , Gk〉 be an OrthoSEFE-k instance.
A SEFE is a collection of embeddings Ei for the Gi such that their restrictions
on G∩ are the same. Note that in the literature, a SEFE is often defined as a
collection of drawings rather than a collection of embeddings. However, the two
definitions are equivalent [21]. For a SEFE to be realizable as an OrthoSEFE it
needs to satisfy two additional conditions. First, let v be a vertex of degree 2
in G∩ with neighbors u and w. If in any embedding Ei there exist two exclusive
edges incident to v that are embedded on the same side of the path uvw, then
any exclusive edge incident to v in any of the Ej �= Ei must be embedded on
the same side of the path uvw. Second, let v be a vertex of degree 3 in G∩. All
exclusive edges incident to v must appear between the same two edges of G∩
around v. We call these the orthogonality constraints. See Fig. 1(b).

Theorem 1. An instance 〈G1, . . . , Gk〉 of OrthoSEFE-k has an OrthoSEFE
if and only if it admits a SEFE satisfying the orthogonality constraints.

For the case in which the shared graph is a cycle C, we give a simpler version
of the constraints in Theorem 1, which will prove useful in the remainder of the
paper. By the Jordan curve theorem, a planar drawing of cycle C divides the
plane into a bounded and an unbounded region – the inside and the outside of
C, which we call the sides of C. Now the problem is to assign the exclusive edges
to either of the two sides of C so that the following two conditions are fulfilled.

Planarity Constraints. Two exclusive edges of the same graph must be drawn
on different sides of C if their endvertices alternate along C.

Orthogonality Constraints. Let v ∈ V be a vertex that is adjacent to two exclusive
edges ei and e′

i of the same graph Gi, i ∈ {1, . . . , k}. If ei and e′
i are on the same

side of C, then all exclusive edges incident to v of all graphs G1, . . . , Gk must be
on the same side as ei and e′

i.
Note that this is a reformulation of the general orthogonality constraints.

Further, the orthogonality constraints also imply that if ei and e′
i are on different

sides of C, then for each graph Gj that contains two exclusive edges ej and e′
j

incident to v, with j ∈ {1, . . . , k}, ej and e′
j must be on different sides of C.
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The next theorem follows from Theorem 1 and from the following two
observations. First, for a sunflower instance 〈G1, . . . , Gk〉 whose shared graph is
a cycle, any collection of embeddings is a SEFE [21]. Second, the planarity con-
straints are necessary and sufficient for the existence of an embedding of Gi [6].

Theorem 2. An instance of OrthoSEFE-k whose shared graph is a cycle C
has an OrthoSEFE if and only if there exists an assignment of the exclusive edges
to the two sides of C satisfying the planarity and orthogonality constraints.

3 Hardness Results

We show that OrthoSEFE-k is NP-complete for k ≥ 3 for instances with
sunflower intersection even if the shared graph is a cycle, and for k = 2 even if
the shared graph consists of a cycle and isolated vertices.

Theorem 3. OrthoSEFE-k with k ≥ 3 is NP-complete, even for instances
with sunflower intersection in which (i) the shared graph is a cycle and (ii) k−1
of the input graphs are outerplanar and have maximum degree 3.

Proof sketch. The membership in NP directly follows from Theorem 2. To prove
the NP-hardness, we show a polynomial-time reduction from the NP-complete
problem Positive Exactly-Three Nae3Sat [23], which is the variant of
Nae3Sat in which each clause consists of exactly three unnegated literals.

Let x1, x2, . . . , xn be the variables and let c1, c2, . . . , cm be the clauses of a
3-CNF formula φ of Positive Exactly-Three Nae3Sat. We show how to
construct an equivalent instance 〈G1, G2, G3〉 of OrthoSEFE-3 such that G1

and G2 are outerplanar graphs of maximum degree 3. We refer to the exclusive
edges in G1, G2, and G3 as red, blue, and green, respectively; refer to Fig. 2.

Fig. 2. (a) A clause gadget Cj (top) and a variable-clause gadget V j
i (bottom); solid

edges belong to the gadgets, dotted edges are optional, and dashed edges are trans-
mission edges. (b) Illustration of instance 〈G1, G2, G3〉, focused on a clause c4. Black
edges belong to the shared graph G∩. The red, blue, and green edges are the exclusive
edges of G1, G2, and G3, respectively. (Color figure online)
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For each clause cj , j = 1, . . . ,m, we create a clause gadget Cj as in Fig. 2(a)
(top). For each variable xi, i = 1, . . . , n, and each clause cj , j = 1, . . . ,m, we
create a variable-clause gadget V j

i as in Fig. 2(a) (bottom). Observe that the
(dotted) green edge {wj

i , r
j
i } in a variable-clause gadget is only part of V j

i if xi

does not occur in cj . Otherwise, there is a green edge {wj
i , y

j
x} connecting wj

i to
one of the three vertices yj

a, yj
b , or yj

c (dashed stubs) in the clause gadget. Observe
that these three variable-clause edges per clause can be realized in such a way
that there exist no planarity constraints between pairs of them. In Fig. 2(b),
the variable-clause gadgets V 4

1 , V 4
3 , V 4

4 are incident to variable-clause edges,
while V 4

2 and V 4
5 contain edges {w4

2, r
4
2} and {w4

5, r
4
5}, respectively.

The gadgets are ordered as indicated in Fig. 2(b). The variable-clause gad-
gets V j

i , with i = 1, . . . , n, always precede the clause gadget V j , for any
j = 1, . . . , m. Further, if j is odd, then the gadgets V j

1 , . . . , V j
n appear in this

order, otherwise they appear in reversed order V j
n , . . . , V j

1 . Finally, V j
i and V j+1

i ,
for i = 1, . . . , n and j = 1, . . . , m−1, are connected by an edge {wj

i , w
j+1
i }, which

is blue if j is odd and red if j is even. We call these edges transmission edges.
Assume 〈G1, G2, G3〉 admits an OrthoSEFE. Planarity constraints and

orthogonality constraints guarantee three properties: (i) If the edge {uj
i , v

j
i } is

inside C, then so is {uj+1
i , vj+1

i }, i = 1, . . . , n, j = 1, . . . ,m − 1. This is due to
the fact that, by the planarity constraints, the two green edges incident to wj

i

lie on the same side of C and hence, by the orthogonality constraints, the two
transmission edges incident to wj

i also lie on this side. We call {u1
i , v

1
i } the truth

edge of variable xi. (ii) Not all the three green edges a = {αj , βj}, b = {βj , γj},
and c = {γj , δj} lie on the same side of C. Namely, the two red edges of the
clause gadget Cj must lie on opposite sides of C because of the interplay between
the planarity and the orthogonality constraints in the subgraph of Cj induced
by the vertices between βj and γj . Hence, if edges a, b, and c lie on the same side
of C, then the orthogonality constraints at either βj or γj are not satisfied. (iii)
For each clause cj = (xa, xb, xc), edge a = {αj , βj} lies on the same side of C
as the truth edge of xa. This is due to the planarity constraints between each
of these two edges and the variable-clause edge {wj

a, yj
a}. Analogously, edge b

(edge c) lies on the same side as the truth edge of xb (of xc). Hence, setting
xi = true (xi = false) if the truth edge of xi is inside C (outside C) yields a
Nae3Sat truth assignment that satisfies φ.

The proof for the other direction is based on the fact that assigning the truth
edges to either of the two sides of C according to the Nae3Sat assignment of φ
also implies a unique side assignment for the remaining exclusive edges that
satisfies all the orthogonality and the planarity constraints.

It is easy to see that G1 and G2 are outerplanar graphs with maximum
degree 3, and that the reduction can be extended to any k > 3. 	

In the following, we describe how to modify the construction in Theorem3
to show hardness of OrthoSEFE-2. We keep only the edges of G1 and G3.
Variable-clause gadgets and clause gadgets remain the same, as they are com-
posed only of edges belonging to these two graphs. We replace each transmission
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edge in G2 by a transmission path composed of alternating green and red edges,
starting and ending with a red edge. This transformation allows these paths
to traverse the transmission edges of G1 and the variable-clause edges of G3

without introducing crossings between edges of the same color. It is easy to see
that the properties described in the proof of Theorem3 on the assignments of
the exclusive edges to the two sides of C also hold in the constructed instance,
where transmission paths take the role of the transmission edges.

Theorem 4. OrthoSEFE-2 is NP-complete, even for instances 〈G1, G2〉 in
which the shared graph consists of a cycle and a set of isolated vertices.

4 Shared Graph is a Cycle

In this section, we give a polynomial-time algorithm for instances of
OrthoSEFE-2 whose shared graph is a cycle and whose union graph has maxi-
mum degree 5 (Theorem 5). In order to obtain this result, we present an efficient
algorithm for more restricted instances (Lemma 1) and give a series of transfor-
mations (Lemmas 2–3) to reduce any instance with the above properties to one
that can be solved by the algorithm in Lemma 1.

Lemma 1. OrthoSEFE-2 is in P for instances 〈G1, G2〉 such that the shared
graph C is a cycle and G1 is an outerplanar graph with maximum degree 3.

Proof. The algorithm is based on a reduction to Planar Nae3Sat, which is
in P [22,27]. First note that, since G1 is outerplanar, there exist no two edges
in E1 alternating along C. Hence, there are no planarity constraints for G1.

We now define an auxiliary graph H with vertex set E2 \ E1 and edges
corresponding to pairs of edges alternating along C; see Fig. 3(a). W.l.o.g. we may
assume that H is bipartite, since G2 would not meet the planarity constraints
otherwise [6]. Let B be the set of connected components of H, and for each
component B ∈ B, fix a partition B1, B2 of B into independent sets (possibly

Fig. 3. (a) Instance 〈G1, G2〉 satisfying the properties of Lemma 1, where the edges
in E2 belonging to the components α, β, γ, and δ of H have different line styles.
(b) Polygons for the components of H. (c) Graph G̃. (d) Variable–clause graph Gφ.
(Color figure online)
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B2 = ∅ in case of a singleton B). Note that in any inside/outside assignment of
the exclusive edges of G2 that meets the planarity constraints, for every B ∈ B,
all edges of B1 lie on one side of C and all edges of B2 lie on the other side.

Draw the cycle C as a circle in the plane. For a component B ∈ B, let PB be
the polygon inscribed into C whose corners are the endvertices in V of the edges
in E2 corresponding to the vertices of B; refer to Fig. 3(b). If B only contains
one vertex (i.e., one edge of G2), we consider the digon PB as the straight-line
segment connecting the vertices of this edge. If B has at least two vertices, we let
PB be open along its sides, i.e., it will contain the corners and all inner points
(in Fig. 3(b) we depict this by making the sides of PB slightly concave). One
can easily show that, for any two components B,D ∈ B, their polygons PB, PD

may share only some of their corners, but no inner points. Hence, the graph G̃
obtained by placing a vertex xB inside the polygon PB , for B ∈ B, making xB

adjacent to each corner of PB and adding the edges E1, is planar; see Fig. 3(c).
We construct a formula φ with variables xB, B ∈ B, such that φ is Nae-

satisfiable if and only if 〈G1, G2〉 admits an inside/outside assignment meeting all
planarity and orthogonality constraints. The encoding of the truth assignment
will be such that xB is true when the edges of B1 are inside C and the edges
of B2 are outside, and xB is false if the reverse holds. Every assignment satisfying
the planarity constraints for G2 defines a truth-assignment in the above sense.

Let e = (v, w) be an exclusive edge of E1 and let e1v, e2v (e1w, e2w) be the
exclusive edges of E2 incident to v (to w, respectively); we assume that all
such four edges of E2 exist, the other cases being simpler. Let B(u, i) be the
component containing the edge ei

u, for u ∈ {v, w} and i ∈ {1, 2}. Define the
literal �i

u to be xB(u,i) if ei
u ∈ B1(u, i) and ¬xB(u,i) if ei

u ∈ B2(u, i). With our
interpretation of the truth assignment, an edge ei

u is inside C if and only if �i
u is

true. Now, for the assignment to meet the orthogonality constraints, if �1v = �2v,
say both are true, then e must be assigned inside C as well, which would cause
a problem if and only if �1w = �2w = false. Hence, the orthogonality constraints
are described by Nae-satisfiability of the clauses ce = (�1v, �2v,¬�1w,¬�2w), for
each e ∈ E1. To reduce to Nae3Sat, we introduce a new variable xe for each
edge e ∈ E1 \ E2 and replace the clause ce by two clauses c′

e = (�1v, �2v, xe) and
c′′
e = (¬xe,¬�1w,¬�2w). A planar drawing of the variable–clause graph Gφ of the

resulting formula φ is obtained from the planar drawing Γ̃ of G̃ (see Figs. 3(c)
and 3(d)) by (i) placing each variable xB, with B ∈ B, on the point where
vertex xB lies in Γ̃ , (ii) placing each variable xe, with e ∈ E1, on any point of
edge e in Γ̃ , (iii) placing clauses c′

e and c′′
e , for each edge e = (v, w) ∈ E1, on the

points where vertices v and w lie in Γ̃ , respectively, and (iv) drawing the edges
of Gφ as the corresponding edges in Γ̃ . This implies that Gφ is planar and hence
we can test the Nae-satisfiability of φ in polynomial time [22,27]. 	

The next two lemmas show that we can use Lemma 1 to test in polynomial time
any instance of OrthoSEFE-2 such that G∩ is a cycle and each vertex v ∈ V
has degree at most 3 in either G1 or G2.
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Fig. 4. Instances (left) 〈G1, G2〉 and (right) 〈G′
1, G

′
2〉 for the proof of Lemma 2. Edges

of G∩ (G′
∩) are black. Exclusive edges of G1 (G′

1) are red and those of G2 (G′
2) are blue.

(Color figure online)

Lemma 2. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
is a cycle and such that G1 has maximum degree 3. It is possible to construct in
polynomial time an equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 whose shared

graph is a cycle and such that G∗
1 is outerplanar and has maximum degree 3.

Proof sketch. We construct an equivalent instance 〈G′
1, G

′
2〉 of OrthoSEFE-2

such that G′
∩ is a cycle, G′

1 has maximum degree 3, and the number of pairs of
edges in G′

1 that alternate along G′
∩ is smaller than the number of pairs of edges

in G1 that alternate along G∩. Repeatedly applying this transformation yields
an equivalent instance 〈G∗

1, G
∗
2〉 satisfying the requirements of the lemma.

Consider two edges e = (u, v) and f = (w, z) of G1 such that u,w, v, z appear
in this order along cycle G∩ and such that the path Pu,z in G∩ between u and z
that contains v and w has minimal length. If G1 is not outerplanar, then the
edges e and f always exist. Figure 4 illustrates the construction of 〈G′

1, G
′
2〉.

By the choice of e and f , and by the fact that G1 has maximum degree 3,
there is no exclusive edge in G1 with one endpoint in the set H2 of vertices
between w and v, and the other one not in H2. Further, observe that in an
OrthoSEFE of 〈G′

1, G
′
2〉 edges f and f ′ (edges e and e′) must be on the same

side. Further, e and f must be in different sides of G′
∩. It can be concluded that

〈G′
1, G

′
2〉 has an OrthoSEFE if and only if 〈G1, G2〉 has an OrthoSEFE. 	


The proof of the next lemma is based on the replacement illustrated in Fig. 5.
Afterwards, we combine these results to present the main result of the section.

Fig. 5. Illustration of the transformation for the proof of Lemma 3 to reduce the number
of vertices incident to two exclusive edges in G1. Edges e′, f ′ of G2 and h′ of G1 (right)
take the role of edges e, f of G1 and h of G2 (left), respectively. Thus, the orthogonality
constraints at v′ are equivalent to those at v. (Color figure online)
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Lemma 3. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph is
a cycle and whose union graph has maximum degree 5. It is possible to construct
in polynomial time an equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 whose

shared graph is a cycle and such that graph G∗
1 has maximum degree 3.

Theorem 5. OrthoSEFE-2 can be solved in polynomial time for instances
whose shared graph is a cycle and whose union graph has maximum degree 5.

5 Shared Graph is Biconnected

We now study OrthoSEFE-k for instances whose shared graph is biconnected.
In Theorem 6, we give a polynomial-time Turing reduction from instances of
OrthoSEFE-2 whose shared graph is biconnected to instances whose shared
graph is a cycle. In Theorem 7, we give an algorithm that, given a positive
instance of OrthoSEFE-k such that the shared graph is biconnected together
with a SEFE satisfying the orthogonality constraints, constructs an OrthoSEFE
with at most three bends per edge.

We start with the Turing reduction, i.e., we develop an algorithm that takes as
input an instance 〈G1, G2〉 of OrthoSEFE-2 whose shared graph G∩ = G1∩G2

is biconnected and produces a set of O(n) instances 〈G1
1, G

1
2〉,. . . ,〈Gh

1 , Gh
2 〉 of

OrthoSEFE-2 whose shared graphs are cycles. The output is such that 〈G1, G2〉
is a positive instance if and only if all instances 〈Gi

1, G
i
2〉, i = 1, . . . , h, are

positive. The reduction is based on the SEFE testing algorithm for instances
whose shared graph is biconnected by Bläsius et al. [9,10], which can be seen as
a generalized and unrooted version of the one by Angelini et al. [4].

We first describe a preprocessing step. Afterwards, we give an outline of the
approach of Bläsius et al. [10] and present the Turing reduction in two steps. We
assume familiarity with SPQR-trees [15,16]; for formal definitions, see [1].

Lemma 4. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph is
biconnected. It is possible to construct in polynomial time an equivalent instance
〈G∗

1, G
∗
2〉 whose shared graph is biconnected and such that each endpoint of an

exclusive edge has degree 2 in the shared graph.

We continue with a brief outline of the algorithm by Bläsius et al. [10]. First,
the algorithm computes the SPQR-tree T of the shared graph. To avoid special
cases, T is augmented by adding S-nodes with only two virtual edges such that
each P-node and each R-node is adjacent only to S-nodes and Q-nodes. Then,
necessary conditions on the embeddings of P-nodes and R-nodes are fixed up to
a flip following some necessary conditions. Afterwards, by traversing all S-nodes,
a global 2SAT formula is produced whose satisfying assignments correspond to
choices of the flips that result in a SEFE. We refine this approach and show that
we can choose the flips independently for each S-node, which allows us to reduce
each of them to a separate instance, whose shared graph is a cycle.

We now describe the algorithm of Bläsius et al. [10] in more detail. Consider
a node μ of T . A part of skel(μ) is either a vertex of skel(μ) or a virtual edge of
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skel(μ), which represents a subgraph of G. An exclusive edge e has an attachment
in a part x of skel(μ) if x is a vertex that is an endpoint of e or if x is a virtual edge
whose corresponding subgraph contains an endpoint of e. An exclusive edge e
of G1 or of G2 is important for μ if its endpoints are in different parts of skel(μ).
It is not hard to see that, to obtain a SEFE, the embedding of the skeleton
skel(μ) of each node μ has to be chosen such that for each exclusive edge e the
parts containing the attachments of e share a face. It can be shown that any
embedding choice for P-nodes and R-nodes that satisfies these conditions can,
after possibly flipping it, be used to obtain a SEFE [4, Theorem 1]. The proof
does not modify the order of exclusive edges around degree-2 vertices of G∩, and
therefore applies to OrthoSEFE-2 as well.

Now, let μ be an S-node. Let ε be a virtual edge of skel(μ), Gε be the
subgraph represented by ε, and ν be the corresponding neighbor of μ in the
SPQR-tree of G. An attachment of ν with respect to μ is an interior vertex
of Gε that is incident to an important edge e for μ. If ν has such an attachment,
then it is a P- or R-node. It is a necessary condition on the embedding of Gε

that each attachment x with respect to μ must be incident to a face incident
to the virtual edge twin(ε) of skel(ν) representing μ, and that their clockwise
circular order together with the poles of ε is fixed up to reversal [10, Lemma 8].

For the purpose of avoiding crossings in skel(μ), we can thus replace each
virtual edge ε that does not represent a Q-node by a cycle Cε containing the
attachments of ε with respect to μ and the poles of ε in the order Oε. We keep
only the important edges of μ. Altogether, this results in an instance 〈Gμ

1 , Gμ
2 〉

of SEFE modeling the requirements for skel(μ); see Figs. 6(a) and 6(b).

Lemma 5. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
is biconnected. Then 〈G1, G2〉 admits an OrthoSEFE if and only if all instances
〈Gμ

1 , Gμ
2 〉 admit an OrthoSEFE.

Next, we transform a given instance 〈Gμ
1 , Gμ

2 〉 of OrthoSEFE-2 as above
into an equivalent instance 〈Gμ

1 , Gμ
2 〉 whose shared graph is a cycle. Let Cεi

be
the cycles corresponding to the neighbor νi, i = 1, . . . , k of μ in 〈Gμ

1 , Gμ
2 〉. To

Fig. 6. (a) Skeleton of an S-node μ in which the R-node ν corresponding to the virtual
edge ε = (u, v) is expanded to show its skeleton. (b) Replacing ε with cycle Cε. (c)
Replacing Cε with path Pε; vertices a1, a2, x1, . . . , x4, b1, b2 are green boxes. (Color
figure online)
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obtain the instance 〈Gμ
1 , Gμ

2 〉, we replace each cycle Cεi
with poles u and v by

a path Pεi
from u to v that first contains two special vertices a1, a2 followed

by the clockwise path from u to v (excluding the endpoints), then four special
vertices x1, . . . , x4, then the counterclockwise path from u to v (excluding the
endpoints), and finally two special vertices b1, b2 followed by v. In addition to the
existing exclusive edges (note that we do not remove any vertices), we add to G1

the exclusive edges (a2, x3), (x1, x3), (x2, x4), (x2, b1), and to G2 the exclusive
edges (a1, x3) and (x2, b2) to G2; see Fig. 6(c).

The above reduction together with the next lemma implies the main result.

Lemma 6. 〈Gμ
1 , Gμ

2 〉 admits an OrthoSEFE if and only if 〈Gμ
1 , Gμ

2 〉 does.

Theorem 6. OrthoSEFE-2 when the shared graph is biconnected is polynomial-
time Turing reducible to OrthoSEFE-2 when the shared graph is a cycle. Also,
the reduction does not increase the maximum degree of the union graph.

Corollary 1. OrthoSEFE-2 can be solved in polynomial time for instances
whose shared graph is biconnected and whose union graph has maximum degree 5.

Observe that, from the previous results, it is not hard to also obtain a SEFE
satisfying the orthogonality constraints, if it exists. We show how to construct
an orthogonal geometric realizations of such a SEFE.

Theorem 7. Let 〈G1, . . . , Gk〉 be a positive instance of OrthoSEFE-k whose
shared graph is biconnected. Then, there exists an OrthoSEFE 〈Γ1, Γ2, . . . , Γk〉
of 〈G1, . . . , Gk〉 in which every edge has at most three bends.

Proof sketch. We assume that a SEFE satisfying the orthogonality constraints
is given. We adopt the method of Biedl and Kant [8]. We draw the vertices with
increasing y-coordinates with respect to an s-t-ordering [14] v1, . . . , vn on the
shared graph. We choose the face to the left of (v1, vn) as the outer face of the
union graph. The edges will bend at most on y-coordinates near their incident
vertices and are drawn vertically otherwise. Figure 7 indicates how the ports are
assigned. We make sure that an edge may only leave a vertex to the bottom if
it is incident to vn or to a neighbor with a lower index. Thus, there are exactly
three bends on {v1, vn}. Any other edge {vi, vj}, 1 ≤ i < j ≤ n has at most one
bend around vi and at most two bends around vj . 	


Fig. 7. Constructing a drawing with at most three bends per edge. (Color figure online)
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6 Conclusions and Future Work

In this work, we introduced and studied the problem OrthoSEFE-k of realizing
a SEFE in the orthogonal drawing style. While the problem is already NP-hard
even for instances that can be efficiently tested for a SEFE, we presented a
polynomial-time testing algorithm for instances consisting of two graphs whose
shared graph is biconnected and whose union graph has maximum degree 5. We
have also shown that any positive instance whose shared graph is biconnected
can be realized with at most three bends per edge.

We conclude the paper by presenting a lemma that, together with Theorem6,
shows that it suffices to only focus on a restricted family of instances to solve
the problem for all instances whose shared graph is biconnected.

Lemma 7. Let 〈G1, G2〉 be an instance of OrthoSEFE-2 whose shared graph
G∩ is a cycle. An equivalent instance 〈G∗

1, G
∗
2〉 of OrthoSEFE-2 such that (i)

the shared graph G∗
∩ is a cycle, (ii) graph G∗

1 is outerplanar, and (iii) no two
degree-4 vertices in G∗

1 are adjacent, can be constructed in polynomial time.
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Beyond level planarity. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol.
9801, pp. 482–495. Springer, Heidelberg (2016)

3. Angelini, P., Da Lozzo, G., Neuwirth, D.: Advancements on SEFE and partitioned
book embedding problems. Theoret. Comput. Sci. 575, 71–89 (2015)

4. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the
simultaneous embeddability of two graphs whose intersection is a biconnected or
a connected graph. J. Discrete Algorithms 14, 150–172 (2012)

5. Argyriou, E.N., Bekos, M.A., Kaufmann, M., Symvonis, A.: Geometric RAC simul-
taneous drawings of graphs. J. Graph Algorithms Appl. 17(1), 11–34 (2013)

6. Auslander, L., Parter, S.V.: On embedding graphs in the sphere. J. Math. Mech.
10(3), 517–523 (1961)

7. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing
of planar graphs with right-angle crossings and few bends. J. Graph Algorithms
Appl. 20(1), 133–158 (2016)

8. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

9. Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: edge orderings, rela-
tive positions, cutvertices. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol.
8242, pp. 220–231. Springer, Heidelberg (2013). doi:10.1007/978-3-319-03841-4 20

10. Bläsius, T., Karrer, A., Rutter, I.: Simultaneous embedding: Edge orderings, rela-
tive positions, cutvertices. ArXiv e-prints, abs/1506.05715 (2015)

11. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R., (ed.) Handbook of Graph Drawing and Visualization. CRC Press
(2013)

http://dx.doi.org/10.1007/978-3-319-03841-4_20


Simultaneous Orthogonal Planarity 545

12. Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous
embeddings. Comput. Geom. 48(6), 459–478 (2015)

13. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. ACM Trans. Algorithms 12(2), 16 (2016)

14. Brandes, U.: Eager st-ordering. In: Möhring, R., Raman, R. (eds.) ESA
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17. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-77537-9 28

18. Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the
common graph is 2-connected. J. Graph Algorithms Appl. 17(3), 147–171 (2013)

19. Jampani, K.R., Lubiw, A.: Simultaneous interval graphs. In: Cheong, O., Chwa,
K.-Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 206–217. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-17517-6 20

20. Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal,
comparability and permutation graphs. J. Graph Algorithms Appl. 16(2), 283–315
(2012)
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Abstract. We study the following problem: Given k paths that share
the same vertex set, is there a simultaneous geometric embedding of these
paths such that each individual drawing is monotone in some direction?
We prove that, for any dimension d, there is a set of d + 1 paths that
does not admit a monotone simultaneous geometric embedding.

1 Introduction

Monotone drawings and simultaneous embeddings are well studied topics in
graph drawing. Monotone drawings, introduced by Angelini et al. [2], are planar
drawings of connected graphs such that, for every pair of vertices, there is a
path between them that monotonically increases with respect to some direction.
Monotone drawings of planar graphs have been studied both in the fixed and
in the variable embedding settings and both with straight-line edges and with
bends allowed along edges; recent papers on these topics include [3,10,12,13].

The simultaneous (geometric) embedding problem was first described in a
paper by Braß et al. [7]. The input is a set of planar graphs that share the same
labeled vertex set (but the set of edges differs from one graph to another); the
output is a mapping of the vertex set to a point set such that each graph admits
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a crossing-free drawing with the given mapping. The simultaneous embedding
problem has also been studied by restricting/relaxing some geometric require-
ments; for example, while every pair of planar graphs sharing the same labeled
vertex set admits a simultaneous embedding where each edge has at most two
bends (see, e.g., [9,11]), not even a tree and a path always admit a geometric
simultaneous embedding (such that the edges are straight-line segments) [4]).
See the book chapter on simultaneous embeddings by Bläsius et al. [6] for an
extensive list of references on the problem and its variants.

In this paper, we combine the two topics of simultaneous embeddings and
monotone drawings1. Namely, we are interested in computing geometric simul-
taneous embeddings of paths such that each path is monotone in some direction.
Let V = 1, 2, . . . , n be a labeled set of vertices and let Π = {π1, π2, . . . , πk} be a
set of k distinct paths each having the same set V of vertices. We want to com-
pute a labeled set of points P = {p1, p2, . . . , pn} such that point pi represents
vertex i and for each path πi ∈ Π (1 � i � k) there exists some direction for
which the drawing of πi is monotone.

It is already known that any two paths on the same vertex set admit a
monotone simultaneous geometric embedding in 2D, while there exist three paths
on the same vertex set for which a simultaneous geometric embedding does not
exist even if we drop the monotonicity requirement [7]. An example of three
paths that do not have a monotone simultaneous geometric embedding in 2D
can also be derived from a paper of Asinowski on suballowable sequences [5]. On
the other hand, it is immediate to see that in 3D any number of paths sharing
the same vertex set admits a simultaneous geometric embedding: Namely, by
suitably placing the points in generic position (no 4 coplanar), the complete
graph has a straight-line crossing-free drawing; however, the drawing of each
path may not be monotone. This motivates the following question: Given a set
of paths sharing the same vertex set, does the set admit a monotone simultaneous
geometric embedding in d-dimensional space for d � 3?

Our main result is that for any dimension d � 2, there exists
a set of d + 1 paths that does not admit a monotone simultane-
ous geometric embedding in d-dimensional space. Our proof exploits
the relationship between monotone simultaneous geometric embeddings in
d-dimensional space and their corresponding representation in the dual space.
Our approach extends to d dimensions the primal-dual technique described in
a recent paper by Aichholzer et al. [1] on simultaneous embeddings of upward
planar digraphs in 2D.

2 Definitions

Let �v be a vector in R
d and let G be a directed acyclic graph with vertex set

V . An embedding Γ of the vertex set V in R
d is called �v-monotone for G if

the vectors in R
d corresponding to oriented edges of G have a positive scalar

product with �v. Let V = {�v1, . . . , �vk} be a set of k > 1 vectors in R
d and let

1 We reference the reader to [8] for the full version of this paper.
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G = {G1, G2, . . . , Gk} be a set of k distinct acyclic digraphs on the same vertex
set V . A V-monotone simultaneous embedding of G in R

d is an embedding Γ of
V that is �vi-monotone for Gi for any i. A monotone simultaneous embedding of
G is a V-monotone simultaneous embedding for some set V of vectors.

If a graph is a path on n (labeled) vertices, it can be trivially identified with a
permutation of [1, n]. We look at the monotone simultaneous embedding problem
in the dual space, by mapping points representing vertices to hyperplanes in
R

d. The dual formulation of monotone simultaneous embeddings is as follows
(the equivalence of these formulations is shown in the next section). Let Π =
{π1, π2, . . . , πk} be a set of k permutations of [1, n]. A parallel simultaneous
embedding of Π in R

d is a set of n hyperplanes H1,H2, . . . , Hn and k vertical
lines L1, L2, . . . , Lk such that the set of n points Lj ∩ Hπj(1), . . . , Lj ∩ Hπj(n) is
linearly ordered from bottom to top along Lj , for all j.

3 The Dual Problem and Non-existence Results

The first two lemmas give duality results between monotone simultaneous
embeddings and parallel simultaneous embeddings.

Lemma 1. If a set of k permutations of [1, n] admits a parallel simultaneous
embedding in d dimensions, it also admits a monotone simultaneous embedding
in d dimensions.

Proof. Consider the following duality between points and hyperplanes, where we
denote by H� the dual of a non-vertical hyperplane H:

H : xd =
(∑d−1

i=1 αixi

)
− α0, H� = (α1, . . . , αd−1, α0).

This duality maps parallel hyperplanes to points that are vertically aligned
(and vice-versa). Let (Hi)1�i�n, (Lj)1�j�k be a parallel simultaneous embed-
ding and refer to Fig. 1 By definition, line Lj crosses hyperplanes H1, . . . ,Hn

in the order Hπj(1),Hπj(2), . . . , Hπj(n). The intersection points Lj ∩ Hπj(1), Lj ∩

Fig. 1. Duality between monotone simultaneous embeddings and parallel simultaneous
embeddings for k = n = 4 and d = 2.
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Hπj(2), . . . , Lj ∩Hπj(n) are collinear and therefore represent parallel hyperplanes
in the dual plane. Consider the vector line �vj perpendicular to these hyperplanes
and pointing downward. This line crosses them in the order (Lj ∩Hπj(1))

�, (Lj ∩
Hπj(2))

�, . . . , (Lj ∩Hπj(n))
�. Since point H�

i lies in hyperplane (Lj ∩Hi)�, points
Hi

�, 1 � i � n, project on �vj in the order H�
πj(1)

,H�
πj(2)

, . . . ,H�
πj(n)

. Therefore
(H�

i )1�i�n is an embedding such that path πj is �vj-monotone, for all j. ��
Lemma 2. If a set (πj)1�j�k of k permutations of [1, n] admits a monotone
simultaneous embedding in d dimensions, there is a set (π′

j)1�j�k that admits a
parallel simultaneous embedding in R

d where, for every j, π′
j is either equal to

πj or to its reverse.

Proof. As in the proof of Lemma 1, we consider point-hyperplane duality. Let
(pi)1�i�n be an embedding �vj-monotone for πj , and (p�

i )1�i�n the corresponding
set of dual hyperplanes. Let Hj be a hyperplane with normal vector �vj , 1 � j � n.
Define Lj to be the vertical line through point H�

j . By construction, the points(
Lj ∩ p�

πj(i)

)

i
appear in order on Lj for one of the two possible orientations of

Lj . In particular, when �vj points downward, Lj lists the points Lj ∩ p�
πj(i)

from
bottom to top and vice versa. ��
We now prove results of existence and non-existence of parallel simultaneous
embeddings, starting with a very simple result of existence.

Proposition 1. Any set of d permutations on n vertices admits a monotone
simultaneous embedding and a parallel simultaneous embedding in d dimensions.

Proof. Choose d points in general position in the hyperplane xd = 0 and draw a
vertical line through each of these points. For each vertical line, choose a permu-
tation and place on the line n points numbered according to the permutation.
Fit a hyperplane through all the points with the same number. By construc-
tion, this set of hyperplanes is a parallel simultaneous embedding. Going to the
dual, by Lemma 1, gives a monotone simultaneous embedding. Alternatively, the
monotone embedding can be seen directly by considering the rank in the i-th
permutation as the i-th coordinate. ��
We now turn our attention to non-existence. For proving that there exists
k = d + 1 permutations that do not admit a parallel simultaneous embed-
ding in d dimensions, observe that we can consider any generic placement of
the d first lines Lj since all such placements are equivalent through affine trans-
formations. We then construct permutations for n big enough that cannot be
realized with any placement of Ld+1. Similarly, constructing k = d+1 permuta-
tions that cannot be realized even up to inversion, yields the non-existence of a
monotone simultaneous embedding in d dimensions by Lemma 2. We start with
dimension 2, then move to dimension 3 and only then, generalize our results to
arbitrary dimension. Observe that 2D results also follow from [5, Lemma 1 and
Prop. 8], but we still present our proofs as a warm up for higher dimensions.
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Fig. 2. Non-existence of two-dimensional parallel simultaneous embeddings.

Lemma 3. There exists a set of 3 permutations on {0, 1, 2} that does not admit
a parallel simultaneous embedding in 2D.

Proof. Let L1 and L2 be two vertical lines, H1 and H2 two other lines, and let
τ1 = (1, 2) and τ2 = (2, 1) be two permutations of {1, 2}. As in Fig. 2-left, if L1 is
left of L2 and the intersections of H1 and H2 with Lj are ordered according to τi,
we can deduce that H1 ∩H2 is between L1 and L2. It follows that a vertical line
crossing H1 below H2 is to the left of that intersection point and thus to the left
of L2. Similarly, a vertical line crossing H1 above H2 is to the right of L1. If we
now consider τ1 = τ2 = (1, 2) we have that a vertical line crossing H1 above H2 is
not between L1 and L2 (Fig. 2-center). Consider now π1 = (1, 0, 2), π2 = (2, 1, 0)
and π3 = (0, 2, 1). Restricting the permutations to {1, 2} gives that L3 must be
right of L1, restricting to {0, 2} gives that L3 must be left of L2, and restricting
to {0, 1} gives that L3 cannot be between L1 and L2 (Fig. 2-right). We deduce
that no placement for L3 can realize π3. Notice that the reverse order (1, 2, 0)
can be realized and thus the dual of this construction is not a counterexample
to simultaneous monotone embeddings. ��

Lemma 4. There exists a set of 3 permutations on 6 vertices that does not
admit a monotone simultaneous embedding in 2D.

Proof. Let π1 = (f, b, d, e, a, c), π2 = (d, f, c, b, e, a), and π3 = (f, a, d, c, e, b).
The sub-permutations of π1, π2 and π3 on {a, b, c} are (by matching (a, b, c) to
(0, 1, 2)) the 3 permutations that do not admit a parallel simultaneous embedding
in the proof of Lemma3. The same is obtained by reversing only π1 (resp. π2,
π3) and considering sub-permutations on {a, c, d} (resp. {d, b, e}, {b, f, d}). Other
possibilities are symmetric and Lemma 2 yields the result. ��
Lemma 5. There exists a set of 4 permutations on 5 vertices that does not
admit a parallel simultaneous embedding in 3D.

Proof. As in the proof of Lemma 1 we consider 3 points �1, �2, �3 in general posi-
tion in the hyperplane x3 = 0 and the 3 vertical lines L1, L2, L3 going through
these points. Let L be a vertical line (candidate position for L4) and � its inter-
section with x3 = 0. We consider the 3 permutations τ1 = (1, 2, 3), τ2 = (2, 3, 1),
τ3 = (3, 1, 2) defining the vertical order of the intersections of L1, L2, L3 with
hyperplanes (Hi)1�i�3. We denote by hi,j the projection of the line Hi ∩ Hj ,
1 � i �= j � 3, onto the plane x3 = 0. Since the three planes Hi, 1 � i � 3 meet
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Fig. 3. Non-existence of three-dimensional parallel simultaneous embeddings for 5 ver-
tices.

in one point, the lines h1,2, h2,3 and h1,3 meet at the projection of that point
onto the plane x3 = 0.

Refer to Fig. 3. For L to cut H2 below H1, � must be in the half-plane limited
by h1,2 and containing �2, and, similarly, for L to cut H3 below H2, � must be
in the half-plane limited by h2,3 and containing �3. Thus, � must be in a wedge
with apex h1,2∩h2,3 (Fig. 3-left). Since h1,2 separates �2 from �1 and �3, and h2,3

separates �3 from �1 and �2, the union of all wedges, for all possible positions
of h1,2 and h2,3, is the union, R, of triangle �1�2�3 and the half-plane limited
by �2�3 and not containing �1 (Fig. 3-center). To summarize, if τ1 = (1, 2, 3),
τ2 = (2, 3, 1), τ3 = (3, 1, 2), and τ4 = (3, 2, 1) then �4 (the intersection point of
L4 with the hyperplane x3 = 0) must lie in this region R.

Next, we build the permutations π1, π2, π3 and π4 by repeating this example
as follows: π1 = (0, 1, 2, 3, 4), π2 = (2, 3, 4, 0, 1), π3 = (3, 4, 0, 1, 2), and π4 =
(1, 3, 2, 0, 4). The restriction of these permutations to {0, 2, 3} yields that �4
must be in the triangle or in the half-plane limited by �2�3 and not containing
�1. The restriction to {1, 2, 3} yields that �4 must be in the triangle or in the
half-plane limited by �1�3 and not containing �2. The restriction to {0, 2, 4}
yields that �4 must be in the triangle or in the half-plane limited by �1�2 and
not containing �3. Finally, considering {0, 1} yields that �4 must be outside the
triangle (Fig. 3-right). Thus there is no possibility for placing L4. ��

Lemma 6. There exists a set of 4 permutations on 40 vertices that does not
admit a monotone simultaneous embedding in 3D.

Sketch of Proof. The idea is to concatenate several versions of the counterexample
of the previous lemma to cover all possibilities of reversing permutations. Note
that the number of 40 vertices is not tight. ��
Lemma 7. There exists a set of d + 1 permutations on 3 · 2d vertices that does
not admit a parallel simultaneous embedding in d dimensions.

Sketch of Proof. As in Lemma 5, the idea is to consider the simplex (�j)1�j�d

and to construct the permutations for the Li in order to prevent all possibilities
for placing �d+1. ��
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To get a result in the dual, the difficulty is that we have to prevent not only
some permutations but also their reverse versions.

Theorem 1. There exists a set of d + 1 permutations on 3 · 22d vertices that
does not admit a monotone simultaneous embedding in d dimensions.

Sketch of Proof. As for Lemma 6 we concatenate several versions of previous
counter-example to cover all possibilities of reversing permutations. ��
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Abstract. Several techniques for visualization of dynamic graphs are
based on different spatial arrangements of a temporal sequence of node-
link diagrams. Many studies in the literature have investigated the
importance of maintaining the user’s mental map across this tempo-
ral sequence, but usually each layout is considered as a static graph
drawing and the effect of user interaction is disregarded. We conducted
a task-based controlled experiment to assess the effectiveness of two
basic interaction techniques: the adjustment of the layout stability and
the highlighting of adjacent nodes and edges. We found that generally
both interaction techniques increase accuracy, sometimes at the cost of
longer completion times, and that the highlighting outclasses the stabil-
ity adjustment for many tasks except the most complex ones.

Keywords: Network visualization · Dynamic graphs · Interaction ·
Evaluation · User-study · Time-oriented data

1 Introduction

Dynamic graphs can be used to model different complex real-word phenomena
and, therefore, are collected and analysed in various disciplines. Visualization
is an indispensable mean to make sense of this type of time-oriented data and
gain valuable insights about the phenomena they represent. In recent years,
the research about visualization of dynamic graphs has seen a rapid growth,
with many novel approaches, techniques, and systems, as surveyed by recent
reviews. Likewise, many evaluation studies have investigated those visualiza-
tions, to understand which are the key design factors, how they are perceived
by users, and how they can support users in analysing data and solving their
tasks. The evaluation of dynamic graph visualization has focused mainly on
two aspects: comparing animation versus static views, and assessing the impor-
tance of the mental map preservation. These studies have often found conflict-
ing results, or a high variability of results depending on different tasks. The
use of interaction, in order to control the amount of mental map preservation,
or to switch from animation to static views, has been proposed as a means to
increase the applicability of a given visualization to diverse tasks. Nevertheless,
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 557–571, 2016.
DOI: 10.1007/978-3-319-50106-2 43
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few evaluation studies have focused on the role of interaction in dynamic graph
visualization: usually static views are considered as noninteractive, while for ani-
mated views the most contemplated interaction is the playback control. To fill
this gap, we focused on the mental map preservation and its interactive control,
which we empirically evaluated in comparison with another common interac-
tion such as highlighting. Thus, the contribution of this paper is a controlled
task-based experiment to quantitatively evaluate two interaction techniques for
dynamic graph visualization, namely the interactive control of the mental map
and the interactive highlighting of adjacent nodes and links. In the following, we
review the related work; list the hypotheses, the design, and the settings of our
study; present the results and discuss their implications.

2 Related Work

Herman et al. [23] provide an early survey on graphs in information visualization,
focusing on layout algorithms for both the general case and special subclasses
(e.g., planar graphs, trees) as well as on techniques for interactive navigation,
in particular focus+context and clustering. The state of the art report by von
Landesberger et al. [41] offers an updated and extensive review of the field; it
has a particular focus on issues and solutions for large scale graphs, but contains
sections on dynamic graphs as well as interactions. Kerracher et al. [25] explore,
and outline a structure of, the design space of dynamic graph visualization.
Archambault et al. [3] also review the field, discussing in particular multivari-
ate and temporal aspects of networks. A comprehensive survey on visualizing
dynamic graphs is found in Beck et al. [10].

The Layout Stability. Many existing algorithms for drawing dynamic graphs
ensure the layout stability in order to preserve the user’s mental map of the
graph [30]. This stability can be seen as an additional aesthetic criterion for
dynamic graphs, prescribing that the placement of nodes should change as little
as possible [16]. The utility of this dynamic aesthetics has been highly disputed in
literature and several evaluations have been conducted, from both the algorith-
mic and the perceptual perspective. As for the algorithmic evaluation, Brandes
and Mader [14] compare three approaches: aggregation (fixed nodes positions
are obtained from the layout of an aggregate of all graphs in the sequence,
achieving maximum stability), anchoring (nodes are attracted by reference posi-
tions), and linking (nodes are attracted by instances of themselves in adjacent
time slices of the sequence). Their results suggest that the generally preferable
approach is linking, that is also the most computationally demanding; a faster
alternative is anchoring to an aggregate layout initialized with the previous one
in the sequence. Many user studies have been performed to empirically assess
the importance of mental map preservation for readability, memorability, or
interpretability of dynamic graphs. Archambault and Purchase [6] review many
of them. In an early study about readability of direct acyclic graphs (DAGs),
Purchase et al. [34] found that the layout stability is beneficial for several tasks.
Conversely, a similar study about readability of DAGs by Zaman et al. [46] found
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no significant effect of the layout stability. Purchase and Samra [35] tested several
interpretation tasks for directed graphs and found that extremes (no stability
or maximum stability) are better than a medium stability. Conversely, Saffrey
and Purchase [37], by investigating readability and interpretability of directed
graphs, found that the layout stability does not provide any advantage and can
be even harmful for certain tasks. While all the evaluations mentioned so far
were conducted on timeline based visualization, Ghani et al. [20] studied the
effects of layout stability in readability of animated node-link diagrams, finding
that a fixed layout (maximum stability) outperforms a force-directed layout with
no stability. Analogously, by studying the memorability of animated node-link
diagrams, Archambault and Purchase [5] found that maximum layout stability
was the best condition.

User Interaction in Dynamic Graph Visualization. User interaction is,
by definition, a crucial aspect of Information Visualization [15, page 6]. Various
motivated calls have been issued to establish a “Science of Interaction” to com-
plement Information Visualization [32]. Yi et al. [45] propose a taxonomy of inter-
action in Information Visualization based on the notion of user intent; Lam [27]
introduces a theoretical framework to understand and possibly reduce the costs
of interaction. Nevertheless, the importance of user interaction in dynamic graph
visualization is generally underestimated in literature [10]; timeline approaches
are generally considered as sequences of static (i.e., non interactive) drawings,
while the most discussed interaction for animation approaches deals with ani-
mation control (e.g., play/pause, or time seeker). Wybrow et al. [44] review
interaction techniques for multivariate graphs and propose a classification based
on the Information Visualization Reference Model [15], distinguishing among
view level, visual-representation level, and data level. Notable examples include
a technique for selecting and manipulating subgraphs [29] or a network-aware
navigation integrating “Link sliding” (guided panning when dragging along a vis-
ible link) and “Bring and Go” (bringing adjacent nodes nearby when pointing
to a node), with the latter having the best performance [31]. Another example
of evaluating interaction in dynamic graph visualization is provided by Rey and
Diehl [36], who investigate the effects of two interaction techniques for animated
visualization: interactive control of the animation speed and a tooltip showing
details on demand. They found that the speed control does not provide a sig-
nificant benefit, and the tooltip is outperformed by a visualization having labels
always visible.

Given the high variability in the importance of the mental map (depending on
tasks, user preferences, and possibly other factors), some scholars have proposed
an interactive control of the layout stability, to let the user fine-tune it [8,19].
According to the taxonomy of interaction by Yi et al. [45], interactive control of
stability can be understood as a Reconfigure interaction, corresponding to the
user’s intent: “Show me a different spatial arrangement”. It falls into the class
of user-controlled adjustments of the layout, which are very common visual-level
interactions for graphs [44]. Bach et al. [8] evaluated this stability slider in the
context of a specific technique (GraphDiaries) featuring staged animations of
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node-link diagrams, but they did not consider it as an independent factor in the
study design. Smuc et al. [38] also evaluated a graph visualization featuring a
stability slider, but without a specific focus on it.

Layout stability has been also described as a form of spatial highlighting,
where position is used to identify different instances of the same node over
time [7]. Highlighting, in the stricter sense, is a brushing interaction technique,
originally developed for scatter plots [11], and then extended and applied to
other visualization techniques. Brushing is a “change in the encoding of one or
more items essentially immediately following, and in response to, an interaction
with another item” [39, p. 235]. In particular, in the case of highlighting, the
change may affect hue, brightness, or color. Brushing operates within a view
or across multiple views; in the latter case, the interaction technique is better
known as linking and brushing [24]. Highlighting makes some information stand
out from other information; it effectively exploits pre-attentive processing [42],
which is the human capability to process visual information prior to, or in the
early stage of, focusing conscious attention. Linking and brushing techniques
support two user’s intents: Select, i.e., “Mark something as interesting” and
Connect, i.e., “Show me related items”, according to the interaction taxonomy
by Yi et al. [45]. In the context of graph visualization, highlighting of adjacent
nodes upon selection of a certain node (for example, by mouse hovering) is a
common interaction technique, also known as connectivity highlighting [21]. An
experiment by Ware and Bobrow has shown that interactive highlighting can
efficiently support visual queries on graphs [43]. In the case of timeline visual-
ization of dynamic graphs, the highlighting technique can be extended in order
to fulfil the need of visually linking and synchronizing multiple instances of the
same graph entities in different time slices [10], by considering adjacency not
only across the graph structure, but also along the time dimension.

Evaluation of Other Aspects in Graph Visualization. Besides the impor-
tance of preserving the mental map in node-link diagrams, another issue which
attracts the interest of scholars is the comparison between animation approaches
and timeline approaches, the latter being usually based on small multiples
in a juxtaposition arrangement. The controlled experiment by Farrugia and
Quigley [17] found that static drawings outperform animation in terms of task
completion time. Archambault et al. [4], in an analogous user study, found that
small multiples are generally faster, but more error-prone for certain tasks; more-
over, mental map preservation has little influence on both response time and
error rate. Boyandin et al. [13] also conducted a comparative evaluation of ani-
mation versus small multiples in the context of flow maps. They found that with
animation there were more findings of changes in adjacent time slices, where
with small multiples there were more findings about longer time periods. More-
over, they suggest that switching from one view to the other might lead to an
increase in the numbers of findings; we see this consideration in analogy with
the mental map case, where the introduction of a stability slider might allow the
user to adapt the layout to a particular task and possibly increase the overall
visualization effectiveness.
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Task Taxonomies. A profound understanding of analytical tasks is a necessary
prerequisite to design novel visualization techniques as well as evaluate existing
ones. Ahn et al. [1] propose a task taxonomy for dynamic graphs along three
different axes: graph entities, temporal features, and properties (structural and
domain-specific). According to Bach et al. [8], each task can be understood as
a question containing references to two dimensions and requiring an answer in
the third one. In this way, they distinguish between topological tasks, tempo-
ral tasks, and behavioural tasks. Archambault and Purchase [3] structure their
taxonomy along two dimension, mostly aiming at assessing the importance of
the mental map. They distinguish between local and global tasks, and between
distinguishable and undistinguishable tasks (depending on whether graph enti-
ties need to be distinguished from each other or can be aggregated). A task
taxonomy for multivariate networks can be found in [33].

Open Challenges. Summarizing our review of related work on visualization of
dynamic graphs, we can observe that many techniques have been designed and
evaluated, but the research community lacks final and well-established results
about highly disputed issues, such as the importance of the layout stability, or
the comparison between animation and timeline approaches. In both cases, it
has been suggested that enabling users to interactively switch between different
views might broaden the number of tasks that they can efficiently solve. Hence,
there is a commonly recognised need of understanding the role of interaction in
the context of dynamic graph visualization, but only few studies have specifically
focused on the evaluation of interaction techniques.

3 Our Evaluation

Addressing the aforementioned need, we performed a user study to explore inter-
action in the context of dynamic graphs visualization. In particular, we con-
sidered a timeline visualization with the juxtaposition approach, where several
node-link diagrams are arranged along a horizontal timeline (Fig. 1). We eval-
uated two interaction techniques. The first one is the interactive control of the
layout stability, which is executed by the means of a slider control (thus, for the
sake of brevity, we will refer to it as the Slider). The second interaction is the
highlighting of adjacent nodes, adapted for dynamic graphs (in the following,
Highlighting). In this section we detail the study design, the stimuli, the tasks,
and the settings of our empirical experiment.

Study Design. We designed our user study as a quantitative controlled task-
based evaluation, with two observed dependent variables: time and error. We
considered two factors, i.e. independent variables: the presence of the Slider
interaction (2 levels: off/on), and the presence of the Highlighting interaction
(2 levels: off/on). In other words, we considered four different interfaces: no-
interaction, only Slider, only Highlighting, and both interactions. We chose this
design in order to compare the two interaction with each other and with the non-
interactive baseline, and also to assess how the two interactions work together.
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Fig. 1. The remote evaluation software displays stimuli, provides instructions, and
measures time and error.

We tested 6 task types. The full factorial design led to a total amount of
N = Task×Slider×Highlighting = 6×2×2 = 24 conditions. To mitigate the
effects of personal skills and preferences, we chose a within-subject design; each
subject tested 24 conditions, by solving a different task for each of the six task
type and for each of the four interfaces. In order to lower the cognitive effort
of switching between different interfaces, we grouped conditions by interface. To
mitigate the effects of learning and fatigue, we used a Latin square arrangement
of the interfaces and we randomized the order of the tasks within each interface.
Moreover, we randomized the initial slider position.

Stimuli. We selected as baseline a spring-embedder layout as implemented in the
Prefuse visualization toolkit [22] (Fig. 1). According to the linking approach [14],
we added inter-time links to the graph in order to ensure layout stability. The
Slider controls the amount of stability by interactively changing the relaxed
lengths of inter-time springs. In the implementation of the Highlighting technique
used for our experiment, when the user moves the mouse pointer over a node, a
different combination of fill and stroke colors is used to highlight each different
type of “adjacent” graph item, as shown in Fig. 2.

For the experiment we used real-world datasets: the dynamic graphs of social
relationship between university freshmen collected by van Duijn, consisting of
38 nodes and 5 time points, and the one collected by van de Bunt, consisting of
49 nodes and 7 time points [40]. Through a threshold mechanism we derived two
dynamic unweighted (i.e., binary) graphs from the original dynamic weighted
graphs. Each task involved only subsets of 3 time slices.

Tasks. We selected six different types of tasks (Table 1). As a criterion for
the selection of the tasks, we considered existing studies on the importance
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A node X (mouse hover in timeslice t2)

node connected to node X both in timeslice t2 and in the current timeslice

node connected to node X in timeslice t2, but not in the current timeslice

node connected to node X in the current timeslice, but not in timeslice t2

any other node

Legend:

Fig. 2. A: a dynamic graph over three time slices; B: the same graph highlighted on a
mouse-over event.

of layout stability and tried to elicit a set of similar tasks, in order to have
comparable results. Furthermore, we considered the task taxonomy by Ahn et
al. [1] in order to have a meaningful and representative set of tasks along its three
axes. As for the graph entities, we included tasks referring to all the levels: the
entity level (nodes, links), the group level (paths, components), and the graph
level (the entire graph). As for the properties, we disregarded tasks referring to
domain properties and only considered tasks referring to structural properties,
which are specific aspects for graphs. As for the temporal features, we included
tasks referring to individual events and contraction & growth, scoping out more
complex tasks, which can be investigated in a follow-up study. In order to better
describe the nature of our tasks and to enable a better interpretation of results,
we also categorized our tasks according to other existing taxonomies [6,8], as
shown in Table 1.

Table 1. Task types, examples, and classifications

Task Description by [1] [6] [8]

1.NO Node occurence Event/Node Local/Distinguishable When

e.g., When is the first appearance of node 27?

2.LO Link occurence Event/Link Local/Distinguishable When

e.g., When is the last appearance of link 6–9?

3.ND Node degree Event/Group Local/Indistinguishable When

e.g., When does the smallest degree (number of connections) of node 10 occur?

4.SP Shortest path Event/Group Local/Distinguishable When

e.g., When does the largest geodesic distance between node 7 and node 9 occur?

5.CC Connected components Growth/Graph Global/Indistinguishable What

e.g., Is the number of connected components increasing, decreasing, or stable?

6.AL All links Growth/Graph Global/Indistinguishable What

e.g., Is the total number of edges increasing, decreasing, or stable?

Subjects’ Pool and Study Settings. We conducted the experiment remotely
by using the Evalbench toolkit [2] (Fig. 1). In order to assess the technical setup,
the estimated overall length of the evaluation session, and the understandability
of textual descriptions of our tasks, we performed two pilot tests with direct
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observation of subjects, and then we implemented small adjustments before the
main remote study. For the main study we recruited 64 volunteer subjects among
undergraduate students at the fifth semester of a bachelor programme in Visual
Computing. All the subjects had normal or corrected vision. Right after the
recruiting, we instructed the subjects with a 15 minute briefing, describing the
visualization and the interactions to be evaluated, and recalling the necessary
concepts from graph theory (e.g., the notion of geodesic distance as shortest path,
or the notion of connected components). The subjects were instructed to be fast
and accurate in solving the tasks, without assigning any priority between speed
and accuracy. The evaluation software included a training session for each of the
four interfaces. During the training sessions, the software does not collect data;
it shows the correct answer after completion of each task and allows repetitions
until the subject feels confident of having understood the task types and the
interface. The test, including the training sessions, had an average duration of
20 min.

Hypotheses. We designed our experiment to test three hypotheses: (A) the
Slider reduces error rates at the cost of longer completion times, in comparison
with the non-interactive interface; (B) the Highlighting reduces error rates at the
cost of longer completion times, in comparison with the non-interactive interface;
(C) the Highlighting outperforms the Slider.

We hypothesize that each interaction reduces error rates in comparison with
the non-interactive interface, because both interactions comply with the rule of
self-evidence and address the adjacency task. The rule of self-evidence for mul-
tiple views prescribes the use of “perceptual cues to make relationships among
multiple views more apparent to the user” [9]. The Highlighting complies with
this rule, by drawing attention to different instances of the same node across dif-
ferent time slices; the Slideralso complies with this rule, by allowing the user to
select the maximum stability and fix node positions across different time slices.
The adjacency task (i.e., “Given a node, find its adjacent nodes”) has been iden-
tified as the only graph-specific task [28]. The Highlighting obviously addresses
this task, as well as the Slider does, by allowing the user to select the mini-
mum stability and exploit the proximity Gestalt principle [12]. Conversely, we
hypothesize that both interactions increase the task completion time in compar-
ison with the non-interactive interface. We make this hypothesis in analogy with
the existing comparative evaluations between animation and (static) timeline
views [4,17], while we consider interactive timeline views as a middle way. More
specifically, in terms of interaction costs [27], the Highlighting might increase the
completion time because of the physical-motion cost of tracking elements with
the mouse, while the Slider might imply view-change costs of reinterpreting the
perception when the layout rearranges. For both techniques, there might be the
decision costs of forming goals, such as deciding whether the available interaction
is useful to solve the given task, and how. Moreover, the simple fact that the
GUI provides an interactive option might lead users to explore its use, in order
to form a solving strategy before solving a task, or to possibly increase the con-
fidence about the solution afterwards. Furthermore, we hypothesize that the
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Highlighting will have better performance than the Slider. We derive this
hypothesis from the observation that the Highlighting is a common and rela-
tively simple interaction, which at least partially exploits pre-attentive process-
ing, while the Slider is based on a novel and complex concept. In other
words, while the Highlighting directly addresses the issue of connecting entities
along two dimensions (time and graph structure), the Slider implicitly intro-
duces another dimension, since the stability lies in the parameter space of the
layout algorithm.

4 Analysis

We preprocessed data collected from 64 subjects in order to assess whether they
were eligible for analysis and we had to discard one subject whose logs were cor-
rupted. The analysis was then performed on data from 63 subjects, consisting
of 3024 samples in total. We checked the completion times for normality with
the Shapiro-Wilk goodness-of-fit test but the check failed. We then applied a
logarithmic transformation to the completion times and checked again the nor-
mality with a positive result. The verification of the Gaussian condition assured
the applicability of parametric tests; we could perform the analysis of variance
through an ANOVA with the subject as a random variable. When the ANOVA
found a factor to have a statistically significant effect, we compared the two levels
of that factor with a pairwise post-hoc Student’s t test; when the ANOVA found
the interaction between factors to be statistically significant, we performed an
all-pairs Tukey’s honestly significant difference (HSD) post-hoc test. The error
can be understood as a dichotomous (i.e. binary) variable, since there are only
two possible outcomes for each data sample (correct, not correct). Hence, we
analysed the error by logistic regression as a generalized linear model (GLM)
with a binomial distribution and a logit transformation as the link function,
computing likelihood ratio statistics. When a factor was found to be a signif-
icant effect, we analysed the contrast between its levels in terms of pairwise
comparisons between estimated marginal means.

5 Results and Discussion

Figure 3 shows time and error by Highlighting and Slider, grouped by Task ; time
is represented by box-plots with first, second (median), and third quartile, while
error is represented by bars (mean) and error bars (standard error). Figure 4
shows statistically significant differences. In light of these results, we can verify
our hypotheses.

Hypothesis A is partially confirmed. The Slider decreases the error rate for all
tasks but the easiest one (1.NO), and it increases the completion time for tasks
3.ND and 4.SP only.

Hypothesis B is partially confirmed. The Highlighting decreases the error rate
for all tasks but the most difficult one (6.AL); it increases completion times for
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Fig. 3. Time (left-hand side, as box plots) and error (right-hand side, as bars repre-
senting means and error bars representing standard error) by Highlighting and Slider,
grouped by Task. � H0S0 � H0S1 � H1S0 � H1S1

Fig. 4. Statistically significant differences for time and error, by Task. An arrow means
that the source is faster or, respectively, more accurate than the destination, with the
reported probability. Lines represent all-pairs comparisons between factor combina-
tions (� H0S0, � H0S1, � H1S0, and � H1S1), as well as pairwise comparisons by
Highlighting (H0–H1, top) and Slider (S0–S1, left).
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tasks 4.SP and 5.CC, but it reduces it for task 2.LO, and does not affect the
remaining tasks.

Hypothesis C is partially confirmed. The Highlighting outperforms the Slider
for tasks 1.NO, 2.LO, and 3.ND. For task 4.SP, the Highlighting and the Slider
score equally: each of them decreases the error rate (by the same amount) and
also increases the completion time if used alone, but when used together they
do not increase the completion time, showing a desirable effect interaction. For
task 5.CC, both factors reduce the error rate, but the Highlighting also increases
the completion time when used alone. For task 6.AL, the only significant effect
is that the Slider reduces the error rate.

Besides the verification of our hypothesis, which are mostly confirmed, our
user study provides interesting insights about the differences between tasks. First
of all, we observe that the differences in error rate and completion time among
the tasks are significant, hence we can confirm that in general our tasks have
different levels of difficulty. Secondly, we observe that the effectiveness of the
tested interaction techniques varies with the levels of difficulty of the tasks. In a
very brief but accurate summary we can say that, for easier tasks, the Highlight-
ing decreases error rates and in some cases even decreases completion times;
conversely, for more difficult tasks, it is the Slider that decreases error rates.
Moreover, for tasks 3.ND, 4.SP and 5.CC, one technique increases completion
times if used alone, but it does not if used in combination with the other one.
Looking back at the classification of our tasks (Table 1), we can also identify the
relevant aspects. We can observe that, for those tasks involving simpler temporal
features of distinguishable single entities (1.NO and 2.LO), or indistinguishable
groups (3.ND), the Highlighting is more effective. For those tasks that refer to
more complex temporal features at the graph level, even if indistinguishable
(5.CC and 6.AL), the Slider is more effective. Task 4.SP is about the changes of
the geodesic distance between two nodes and requires the distinct identification
of several nodes and links along the shortest path. In this case both techniques
are equally accurate; if (and only if) they are used together, they do not even
slow down the analysis. We can conjecture (by also considering our observations
during the pilot experiments) that during the completion of a such complex task,
the Slider can be used to switch back and forth between the minimum stability
(to guess geodesic distances and shortest paths based on Euclidean distances)
and the maximum stability (to identify instances of nodes and links across dif-
ferent time slices), while the Highlighting helps with tracking objects. As for task
6.AL, the Slider resulted to be effective; we hypothesize (by also considering our
pilot observations) that subjects simply set the minimum stability and looked at
the total graph area as an estimator of the density. We would have expected the
Highlighting to be also effective, since the analysis of the degree a few central
nodes might provide a good estimator of the graph density, given the power-law
distribution of real-world networks. The results show that the test subjects did
not exploit this expert strategy.

Design Implications. Both the Slider and the Highlighting are effective
interaction techniques for dynamic graph visualization, and their use generally
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improves user performances. In those circumstances where it might be not pos-
sible to include them both (for example, if the color channel is employed to
encode attributes of multivariate graphs, or if the GUI is already overloaded
with many controls), our evaluation provides an indication to designers accord-
ing to the user tasks to be supported. Our results suggest that the Highlighting
is indicated for tasks involving temporal features of distinguishable single enti-
ties or indistinguishable groups, while the Slider is indicated for tasks involving
complex temporal behaviours at the graph level. The joint use of both interac-
tions is beneficial for the most complex task involving temporal behaviours of
connectivity paths.

6 Conclusion

We have presented an evaluation of two interaction techniques for dynamic graph
visualization, namely the interactive control of the layout stability and the inter-
active highlighting of adjacent nodes and links. The results mostly confirm our
hypotheses: both interactions decrease the error rate, in some cases at the cost
of a longer completion time. We observed significant differences between tasks,
with the highlighting performing better for some tasks, and the stability control
performing better for others. We acknowledge the limitations of our experiment,
whose findings might not be directly generalizable to large-scale datasets. The
highlighting interaction for dynamic graphs is much more complex then the
standard connectivity highlighting for static graphs, and may require training to
be understood and used effectively. The stability control might have a different
effect when combined with 3D visualization and interaction techniques (e.g., the
vertigo zoom [18]). However, our study provides preliminary clues for visualiza-
tion designers who need to choose the most appropriate interaction technique
for their users’ tasks. Further studies are needed to obtain a comprehensive
understanding of the role of interaction in visualization of dynamic graphs.
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Abstract. While the algorithmic drawing of static trees is well-under-
stood and well-supported by software tools, creating animations depict-
ing how a tree changes over time is currently difficult: software support,
if available at all, is not integrated into a document production workflow
and algorithmic approaches only rarely take temporal information into
consideration. During the production of a presentation or a paper, most
users will visualize how, say, a search tree evolves over time by manually
drawing a sequence of trees. We present an extension of the popular TEX
typesetting system that allows users to specify dynamic trees inside their
documents, together with a new algorithm for drawing them. Running
TEX on the documents then results in documents in the svg format with
visually pleasing embedded animations. Our algorithm produces anima-
tions that satisfy a set of natural aesthetic criteria when possible. On
the negative side, we show that one cannot always satisfy all criteria
simultaneously and that minimizing their violations is NP-complete.

1 Introduction

Trees are undoubtedly among the most extensively studied graph structures in
the field of graph drawing; algorithms for drawing trees date back to the origins
of the field [26,40]. However, the extensive, ongoing research on how trees can be
drawn efficiently, succinctly, and pleasingly focuses on either drawing a single,
“static” tree or on interactive drawings of “dynamic” trees [11,12,27], which are
trees that change over time. In contrast, the problem of drawing dynamic trees
noninteractively in an offline fashion has received less attention.

It is this problem that lies at the heart of our paper.
Consider how an author could explain, in a paper or in a presentation, how

a tree-based data structure such as a search tree works. In order to explain
the dynamic behavior, our author might wish to show how the data structure
evolves for a sequence of update operations. A typical drawing of the evolving

Animations in this document will only be rendered in the SVG version [32], see
Sect. 2.3 for a discussion of the reasons.
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Fig. 1. A “manually” created drawing of a dynamic tree: each tree in the sequence has
been drawn using the Reingold–Tilford [29] algorithm.
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Fig. 2. The dynamic tree from Fig. 1, redrawn by drawing a “supergraph” (the union
of all trees in the sequence) and then using the positions of nodes in this supergraph
for the individual drawings.

sequence might look as in Fig. 1, which has been created “manually” by running
the Reingold–Tilford algorithm [29] on each tree in the sequence independently.
While the result is satisfactory, there are (at least) two shortcomings:
First Shortcoming: Flawed Layout. In the first step, the layout of the root’s
children changes (their horizontal distance decreases) even though there is no
structural change at the root. While in the present graph the effect is small, one
can construct examples where a single node removal causes a change in distances
on all levels, obscuring where the actual structural change occurred. Since the
whole sequence of trees (the whole “dynamic tree”) is given by the author, the
problem can be addressed by not running the Reingold–Tilford algorithm on
each tree individually, but by running it on the “supergraph” resulting from
uniting all trees in the sequence, resulting in the visualization in Fig. 2.

Unfortunately, this simple supergraph approach introduces new problems:
First, the nodes “2” and “7” are unnecessarily far apart – the nodes “3” and “6”
could use the same space since they are never both members of the same tree.
Second, it is easy to construct sequences of trees whose union is not a tree itself.

We address these problems in Sect. 3, where we present a new algorithm
for computing layouts of dynamic trees that addresses the above problems. For
dynamic trees whose supergraphs are trees or at least acyclic, the algorithm finds
an optimal layout (with respect to natural aesthetic criteria) of the dynamic tree
in linear time. For cyclic supergraphs, which are also important in practice since
they arise for instance from the rotations necessary to balance search trees in
data structures such as avl trees [1], we show that one has to break the cycles
in order to layout the graph according to the criteria we develop. While we show



574 M. Skambath and T. Tantau

that it is NP-complete to find a minimal set of break points, a simple greedy
heuristic for finding breakpoints turns out to produce visually pleasing results.

Second Shortcoming: Presentation as a Sequence of Snapshots. In order to depict
the evolving nature of her dynamic tree, our author depicted different “snap-
shots” of the tree at different times and arranged these snapshots in a sequence.
While the temporal dimension needs to be turned into something else when
our medium of communication is printed paper, for documents presented using
appropriate electronic devices we can visualize dynamic trees using animations.
Such an animation needs much less space on a page and, perhaps more impor-
tantly, our visual system is much better at spotting movement than at identifying
structural changes between adjacent objects.

In Sect. 2 we present a system for creating animations on-the-fly during a run
of the TEX program on a text document: First, we have augmented the popular
TikZ graphic package [37] (a macro package for TEX for creating graphics) by
commands that compute and embed animations in the output files. Due to the
way the system works, these commands have almost no overhead regarding com-
pilation speed or resulting file size. Second, we have implemented a prototype of
our algorithm from Sect. 3 for drawing dynamic trees that uses these animation
commands. In result, when an author specifies the above dynamic graph appro-
priately in a TEX document and then runs TEX on it to convert it, the resulting
file will contain the normal text and graphics as well as an embedded animation
of the dynamic tree. When the document is viewed on electronic devices with a
modern browser, the animation runs right inside the document.

Related Work. Approaches to drawing static trees date back to the early 1970s,
namely to the work of Knuth, Wetherell and Shannon, and Sweet [26,35,40].
A standard algorithm still in use today is due to Reingold and Tilford [29], see
also [38]. They suggested that symmetric tree structures should be drawn sym-
metrically and provided an algorithm that supports this objective well and runs
in linear time. Instead of visualizing trees as node-link diagrams, one can also use
tree maps [25], three dimensional cone trees [30], or sunburst visualizations [33].

Approaches to drawing general dynamic graphs are more recent. The sequen-
ce-of-snapshot visualizations sketched before as well as animations are standard
ways of visualizing them [19]. One can also generally treat time as another spacial
dimension, which turns nodes into tubes through space [23]. There are many
further techniques that are not restricted to node-link diagrams [8,9,22,28]; for
an extensive overview of the whole state of the art including a taxonomy of
different visualization techniques see Beck et al. [5], or [21] for a more tree-
specific overview. Diehl, Görg and Kerren [14,15] introduced a general concept,
called foresighted layout, for drawing dynamic graphs offline. They propose to
collapse nodes in the supergraph that never exist at the same time and to then
draw the supergraph. While this approach produces poor results for trees, the
results are better for hierarchical graphs [20].

Approaches tailored specifically to drawing dynamic trees are currently
almost always online approaches. The algorithms, which expect a sequence of
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update operation as input [12,27], are integrated into interactive software and
create or adjust the layout for each change. An early algorithm designed for
dynamic trees was developed by Moen [27]. Later Cohen et al. [11,12] presented
algorithms for different families of graphs the includes trees.

Concerning the integration of tree drawing algorithms into text processing
software, first implementations for the typesetting system TEX date back to
Eppstein [18] and Brüggemann and Wood [6]. A more recent implementation of
the Reingold–Tilford algorithm by the second author is now part of the graph
drawing engine in TikZ [36].

Organisation of This Paper. This paper is structured into two parts: In the first
part, Sect. 2, we present the system we have developed for generating animations
of dynamic graphs that are embedded into documents. Our core argument is
that the system’s seamless integration into a widely used system such as TEX
is crucial for its applicability in practice. In the second part, Sect. 3, partly as
a case study, partly as a study of independent interest, we investigate how a
dynamic tree can be drawn using animations. We derive aesthetic criteria that
animations and even image sequences of dynamic trees should meet and present
an algorithm that does meet them. Full proofs and pseudo-code can be found in
the appendix of the full version, which also contains a gallery of dynamic trees
drawn using our prototype.

2 Dynamic Trees in Documents

The problem for which we wish to develop a practical solution in the rest of this
paper is the following: Visualize one or more dynamic trees inside a document
created by an author from some manuscript. To make the terminology precise, by
dynamic graph we refer to a sequence (G1, . . . , Gn), where each Gi = (Vi, Ei, φi)
is a directed, annotated graph with vertex set Vi, edge set Ei, and an annotation
function φi : Vi ∪ Ei → A that assigns additional information to each node and
edge from some set A of annotations like ordering or size information. A dynamic
tree is a dynamic graph where each Ti is a tree with the edges pointing away
from the root. A manuscript is a plain text written by an author that can be
transformed by a program into an (output) document, a typically multi-page
text document with embedded graphics or embedded animations. Note that the
problem is an offline problem since the manuscript contains a full description of
the dynamic graph and algorithms have full access to it. In rest of this section
we explain how the practical obstacles arising from the problem are solved by
the system we have developed, in Sect. 3 we investigate algorithmic questions.

In the introduction we saw an example of how a dynamic tree can be visu-
alized using a series of “snapshots” shown in a row. While this way of depicting
a dynamic tree is a sensible, traditional way of solving the problem (drawings
on printed paper “cannot change over time”), documents are now commonly
also read on electronic devices that are capable of displaying changing content
and, in particular, animations. We claim that using an animation instead of a
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sequence of snapshots has two major advantages: First, sequences of snapshots
need a lot of space on a page even for medium-sized examples. We did a cur-
sory survey of standard textbooks on computer science and found that typically
only three to four snapshots are shown and that the individual trees are often
rather small. For an animation, the length of the sequence is only limited by
the (presumed) attention span of the reader and not by page size. Second, our
visual system is much better at spotting movement than at identifying structural
changes between adjacent objects. When operations on trees such as adding or
deleting a leaf or moving whole subtrees are visualized using movements, readers
can identify and focus on these operations on a subconscious level.

Given the advantages offered by animations, it is surprisingly difficult to
integrate animations into documents. Of course, there is a lot of specialized
software for creating animations and graphics output formats like pdf or svg
allow the inclusion of movie files in documents. However, this requires authors
to use – apart from their main text processor like TEX or Word – one or more
programs for generating animations and they then have to somehow “link” the
(often very large) outputs of these different programs together. The resulting
workflows are typically so complicated that authors rarely employ them. Even
when they are willing to use and integrate multiple tools into their workflow,
authors face the problem that using different tools makes it next to impossible
to keep a visually consistent appearance of the document [36]. Very few, if any,
animation software will be able to render for instance TEX formulas inside to-
be-animated nodes correctly and take the sizes of these formulas into account.

We have developed a system that addresses the above problems; more pre-
cisely, we have augmented an existing system that is in wide-spread use – TEX –
by facilities for specifying dynamic trees, for computing layouts for them, and for
generating animations that are embedded into the output files. Our extensions
are build on top of TikZ’s graph drawing engine [36], which has been part of
standard TEX distributions since 2014.

Authors first specify the dynamic trees they wish to draw inside TEX manu-
scripts using a special syntax, which we describe in Sect. 2.1 (conceptually, this
is similar to specifying for instance formulas inside the TEX manuscripts). Next,
authors apply a graph drawing algorithm to the specified dynamic graph by
adding an appropriate option to the specification and then running the TEX
program as explained in Sect. 2.2. Lastly, in Sect. 2.3, we discuss which output
formats are supported by our system, how the output can be viewed on electronic
devices, and how a fallback for printed paper can be generated.

2.1 The Input: Specifying Dynamic Trees

In order to make dynamic trees accessible to graph drawing algorithms, we first
have to specify them. For dynamic graphs and, in particular, for dynamic trees,
there are basically two different methods available to us: We can specify each
graph or tree in the dynamic graph sequence explicitly. Alternatively, we can
specify a sequence of update operations that transform one graph into the next
such as, for the dynamic trees of search trees, the sequence of insert and delete



Offline Drawing of Dynamic Trees: Algorithmics and Document Integration 577

operations that give rise to the individual trees. Besides being easy and natural to
use, the second method also provides algorithms with rich semantic information
concerning the change from one graph to the next in the sequence.

Despite the fact that the second method is more natural in several contexts
and more semantically rich, for our prototype we use the first method: Authors
specify dynamic graphs by explicitly specifying the sequence of graphs that make
up the dynamic graph. We have two reasons for this choice: First, specifying
the sequence of graphs explicitly imposes the least restrictions on what kind
of dynamic graphs can be drawn, in principle. In contrast, the set of update
operations necessary to describe the changes occurring just for the standard
data structures balanced search trees, heaps, and union–find trees is large and
hard to standardize. For instance, should the root rotation occurring in avl
trees be considered a standard update operation or not? Second, it easy to
convert a sequence of update operations into a sequence of graphs, while the
reverse direction is harder and, sometimes, not possible. Our system can easily
be extended to accept different sequences of update operations as input and
convert them on-the-fly into a sequence of graphs that is then processed further.

There are different possible formats for specifying individual graphs and, in
particular, trees of graph sequences, including graphml, an xml-based markup
language; the dot format, used by graphviz [17]; the gml format, used by the
Open Graph Drawing Framework [10]; or the format of the \graph command
of TikZ [37], which is similar to the dot format. As argued in [36], it is not
purely a matter of taste, which format is used; rather, good formats make it
easy for humans to notate all information about a graph that is available to
them. For instance, for static graphs the order in which vertices are specified is
almost never random, but reflects information about them that the author had
and that algorithms should take into account.

Since the algorithm and system we have implemented are build on top of the
graph drawing engine of TikZ [36], we can use all of the different syntax flavors
offered by this system, but authors will typically use the \graph command. Each
graph in the sequence of graphs is surrounded by curly braces and, following the
opening brace, we say [when=i] to indicate that we now specify the ith graph
in the sequence. The graph is then specified by listing the edges, please see [36]
and [37] for details on the syntax and its use in TikZ. The result is a specification
of the dynamic graph such as the following for the example graph from Figs. 1
and 2:

\tikz \graph { {[when=1] 10->{ 5->{ 2, 7->6 }, 15->12 } },

{[when=2] 10->{ 5->{ 2, 7->6 }, 15 } },

{[when=3] 10->{ 5->{ 2, 7 }, 15 } },

{[when=4] 10->{ 5->{ 2->{ , 3 }, 7 }, 15 } } };

2.2 Document Processing and Algorithm Invocation

Once a dynamic graph has been specified as part of a larger TEX document,
we need to process it. This involves both running a dynamic graph drawing
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algorithm to determine the positions of the nodes and the routing of the edges
as well as producing commands that create the desired animation.

The framework provided by the graph drawing engine [36] of TikZ is well-
suited for the first task. All the author has to do is to load an appropriate graph
drawing library and then use a special key with the \tikz command:
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\tikz [animated binary tree layout]

\graph { {[when=1] 10->{ ... } };

{[when=2] 10->{ ... } },

{[when=3] 10->{ ... } },

{[when=4] 10->{ ... } } };

The key animated binary tree layout causes the graph drawing engine to
process the dynamic graph. It will parse the dynamic graph, convert it to an
object-oriented model, and pass it to an algorithm from the evolving library,
which is written in the Lua programming language [24].1 The framework also
handles the later rendering of the nodes and edges and their correct scaling and
embedding into the output document. Thus, the algorithm’s implementation
only needs to address the problem of computing node positions from an object-
oriented model of the dynamic graph. The implementation need not (indeed,
cannot) produce or process graphical output and primitives.

Once the algorithm has computed the positions for nodes and edges of the
graphs in the sequence, actual animations need to be generated. For this, TikZ
itself was extended by a new animation subsystem, which can be used inde-
pendently of the graph drawing engine and allows users to specify and embed
arbitrary animations in their documents. The animation subsystem adds anima-
tion annotations to the output file, which are statements like “move this graphics
group by 1 cm to the right within 2 s” or “change the opacity of this node from
opaque to transparent within 200 ms.” More formally, they are xml elements
in the Synchronized Multimedia Integration Language [7]. For the animation of
dynamic graphs, the graph drawing engine can now map the computed posi-
tions of the nodes at different times to TikZ commands that add appropriate
movement and opacity-change annotations to the output.

2.3 The Output: Scalable Vector Graphics

The annotation-based way of producing animations has two important conse-
quences: Firstly, adding the annotations to the output does not have a noticeable
effect on the speed of compilation (computing the necessary xml statements is
quite easy) nor on the file size (annotations are small). However, secondly, the
job of rendering the graph animations with, say, 30 frames per second does not

1 When the algorithm is also implemented in the Lua language, it can be used directly
by TEX without special configurations or runtime linking, but it can also be imple-
mented in C or C++ at the cost of a more complicated deployment.
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lie with TEX, but with the viewer application and we need both a format and
viewer applications that support this.

Currently, there is only one graphics format that supports these annotation-
based animations: The Scalable Vector Graphics (svg) format [13], which is
a general purpose graphics language that is in wide-spread use. All modern
browsers support it, including the parsing and rendering of svg animations.
The dvisvgm program, which is part of standard TEX distributions, transforms
arbitrary TEX documents into svg files that, when viewed in a browser, are
visually indistinguishable from pdf files produced by TEX – except, of course,
for the animations of the dynamic graphs.

While we argued that animations are a superior way of visualizing dynamic
graphs, there are situations where they are not feasible: First, documents are
still often printed on paper. Second, the popular pdf format does not support
annotation-based animations and, thus, is not able to display TikZ’s animations.
Third, it is sometimes desirable or necessary to display “stills” or “snapshots” of
animations at interesting time steps alongside the animation. In these situations,
authors can say make snapshot of=t to replace the animation by a static picture
of what the animated graphic would look like at time t. Since the computation of
the snapshot graphic is done by TEX and since no animation code is inserted into
the output, this method works with arbitrary output formats, including pdf.

3 Algorithmic Aspects of Drawing Dynamic Trees

Given a dynamic tree T = (T1, . . . , Tk) consisting of a sequence of trees
Ti = (Vi, Ei, φi), we saw in the introduction that neither drawing each tree
independently and then “morphing” the subsequent drawings to create an ani-
mation nor laying out just the supergraph super(T ) = (

⋃
i Vi,

⋃
i Ei) and then

animating just the opacity of the nodes and edges will lead to satisfactory draw-
ings of dynamic trees. Our aim is to devise a new algorithm that addresses the
shortcomings of these approaches and that meets a number of sensible aesthetic
criteria that we formulate in Sect. 3.1. The algorithm, presented in Sect. 3.2, has
been implemented as a prototype [31] and we have used it to create the anima-
tions of dynamic trees in the present paper. While the prototype implementation
does not even run in linear time (as would be possible by Theorem3.2), it only
needs fractions of a second for the example graphs from this paper.

3.1 Aesthetic Criteria for Drawing Dynamic Trees

Already in 1979, Wetherell and Shannon [40] explicitly defined aesthetic criteria
for the layout of trees. Two years later Reingold and Tilford [29] refined these
static criteria towards more symmetric drawings in which isomorphic subtrees
must have the same layout. While the criteria were originally formulated for
binary trees only, one can allow any number of children when there is an ordering
on the children of each node.
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Criterion (Ranking). The vertical position of a node equals its topological
distance from the root.

Criterion (Ordering). The horizontal positions of a node’s children respect
their topological order in the tree.

Criterion (Centering). Nodes are horizontally centered between their leftmost
and rightmost child if there are at least two children.

Criterion (Symmetry). All topologically order-isomorphic subtrees are drawn
identically. Topologically mirrored subtrees are drawn horizontally mirrored.

As numerous applications show, these rather sensible criteria lead to aesthet-
ically pleasing drawings of static trees. We extend these criteria to the dynamic
case. Ideally, we would like to keep all of the above criteria, but will see in a
moment that this is not always possible.

nTi :

c

nTi+1 :

c

Our first dynamic criterion forbids the unnec-
essary movement of nodes in drawings like the
one shown on the right, which shows the same
problem as the example in the introduction did:
The horizontal offset between n and c changes
from Ti to Ti+1 even though there is no struc-
tural change at n. (Note that when a node disappears in the step from Ti to
Ti+1 and then reappears in Ti+2, the stability criterion does no require it to
appear at the same position as before.)

Criterion (Stability). The horizontal offset between a node n and a child c
may not change between the layouts of trees Ti and Ti+1 if c does not change its
position in the ordering of the children of n.

While the stability criterion forbids relative movements of connected nodes, it
allows whole subtrees to move without changing their inner layout. This empha-
sizes the important parts of changes since multiple objects moving with the
same speed are percieved as one connected group [4,39]. The criterion reduces
movements and draws common structures identically, thereby reducing errors
in understanding [2] and making it easier for viewers to correctly recognize the
changes in the tree sequence [3].

While all of the above criteria are reasonable, unfortunately, there is no way
of meeting all of them simultaneously, see the appendix for the proof:

Lemma 3.1. No drawing of the dynamic tree T = (T1, T2) from Fig. 3 meets all
of the criteria Ranking, Ordering, Centering, Symmetry, and Stability.

In view of the lemma, we will need to weaken one or more of our criteria,
while still trying to meet them at least in “less problematic” cases than the
dynamic tree from Fig. 3. Furthermore, even when the criteria can be met, this
may not always be desirable.
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Fig. 3. A “problematic” dynamic tree. Already the dynamic tree T = (T1, T2) cannot
be drawn while meeting all of the criteria Ranking, Ordering, Centering, Symmetry, and
Stability, as shown in Lemma 3.1. The whole dynamic tree T = (T1, T2, T3) cannot even
be drawn when the Symmetry Criterion is replaced by the Weak Symmetry Criterion,
see Lemma 3.3.
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Consider the right example, which seems
like a “reasonable” drawing of a dynamic
tree. The Stability Criterion enforces the
large distance between b and c already in
T1, but the Symmetry Criterion would now
actually enforce the same distance between
2 and 3, which seems undesirable here. As
a replacement of the Symmetry Criterion we
propose a Weak Symmetry Criterion that our
algorithm will be able to meet in many important cases, including the trouble-
some example from Lemma 3.1. Nevertheless, there are still dynamic trees that
cannot be drawn in this way, see Lemma 3.3, which also turn out to be the
algorithmically difficult cases.

Criterion (Weak Symmetry). Let n and n′ be nodes such that for all i ∈
{1, . . . , n} the subtrees rooted at n and at n′ in Ti are order-isomorphic (or all
mirrored). Then in all drawings of the Ti the subtrees rooted at n and n′ must
all be drawn identically (or all mirrored).

3.2 An Algorithm for Drawing Arbitrary Dynamic Trees

Our starting point for an algorithm that meets the aesthetic criteria just formu-
lated is the classical Reingold–Tilford algorithm [29]. It will be useful to review
this algorithm briefly, formulated in a “bottom-up” fashion: While there is a
node that has not yet been processed, pick a node n whose children c1, . . . , cm

have all already been processed (this is immediately the case for all leafs, where
m = 0). For each child cr a layout L(cr) will have been computed for the subtree
T (cr) of T rooted at cr. The algorithm now shifts the L(cr) vertically so that all
cr lie on the same horizontal line (Ranking Criterion), then shifts them horizon-
tally so that the c1 comes first, followed by c2, and so on (Ordering Criterion),



582 M. Skambath and T. Tantau

such that no overlap of the L(cr) occurs. Finally, n is centered above its children
(Centering Criterion). The Symmetry Criterion is satisfied automatically by this
algorithm since the same shifts occur for symmetric subtrees. Using appropriate
data structures, the algorithm can be implemented in linear time.

Our Algorithm A.1, see the appendix for pseudo-code, uses the same basic
idea as the Reingold–Tilford algorithm, but introduces two new ideas.

tighten

Idea 1: Treat Nodes as Three-Dimen-
sional Objects. In our algorithm, we treat
nodes and subtrees as “three dimensional”
objects with time as the third dimension.
Given a dynamic tree T = (T1, . . . , Tk),
the algorithm does not process the Ti one
at a time (as online algorithms have to
do), but instead considers for each node n
of the supergraph super(T ) the sequence
(T1(n), . . . , Tk(n)) of trees rooted at n in the different Ti and computes a whole
sequence of layouts (L1(n), . . . , Lk(n)) for these trees: The core operation of the
Reingold–Tilford algorithm, the shifting of a layout L(cr) until it almost touches
the previous layout L(cr−1), is replaced by a shifting of the whole sequence
(L1(cr1), . . . , Lk(crk)), where cij denotes the ith child of n in Tj , until at least
one layout Lj(crj) (one of the gray layouts in the example) almost touches its
sibling’s layout Lj(cr−1

j ) (one of the dark layouts).
Idea 2: Processing the Supergraph Using a Topological Ordering. For static

trees, there is a clear order in which the nodes should be processed by the
Reingold–Tilford algorithm: from the leafs upwards. For a dynamic tree, this
order is no longer clear – just consider the example from Fig. 3: Should we first
process node 1 or node a? Our algorithm address this ordering problem as follows:
We compute the supergraph super(T ) and then check whether it is acyclic. If
so, it computes a topological ordering of super(T ) and then processes the nodes
in this order. Observe that this guarantees that whenever a node is processed,
complete layouts for its children will already have been computed.

Theorem 3.2. Let T be a dynamic tree whose supergraph is acyclic. Then Algo-
rithmA.1 draws T in linear time such that all of the criteria Ranking, Ordering,
Centering, Weak Symmetry, and Stability are met.

Theorem 3.2 settles the problem of drawing dynamic trees with acyclic super-
graphs nicely. In contrast, for a cyclic supergraph, things get much harder:

Lemma 3.3. No drawing of T = (T1, T2, T3) from Fig. 3 meets all of the criteria
Ranking, Ordering, Centering, Weak Symmetry, and Stability.

The lemma tempts us to just “give up” on cyclic supergraphs. However,
these arise naturally in prune-and-regraft operations and from rotations in search
trees – which are operations that we would like to visualize. We could also
just completely ignore the temporal criteria and return to drawing each tree
individually in such cases – but we might be able to draw everything nicely
except for a single “small” cycle “somewhere” in the supergraph.

https://arxiv.org/pdf/1608.08385v1.pdf#page=17
https://arxiv.org/pdf/1608.08385v1.pdf#page=17
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We propose to deal with the cycle problem by “cutting” the cycles with as few
“temporal cuts” as possible. These are defined as follows: Let G = (G1, . . . , Gk)
be a dynamic graph and let n be a node of the supergraph super(G) and let
i ∈ {1, . . . , k − 1}. The temporal cut of G at n and i is a new dynamic graph G′

that is identical to G, except that for all j ∈ {i + 1, . . . , k} in which Gj contains
the node n, this node is replaced by the same new node n′ (and all edges to or
from n are replaced by edges to or from n′).

Temporal cuts can be used to remove cycles from the supergraph of a dynamic
graph, which allows us to then run our AlgorithmA.1 on the resulting graph;
indeed, simply “cutting everything at all times” turns every supergraph into a
(clearly acyclic) collection of non-adjacent edges and isolated nodes. However,
we wish to minimize the number of temporal cuts since, when we visualize G′

using an animation, the different locations that may be assigned to n and n′ will
result in a movement of the node n to the new position of n′.

By the above discussion, we would like to find an algorithm that solves the
following problem temporal-cut-minimization: Given a dynamic tree T , find
a minimal number of temporal cuts, such that the resulting dynamic tree T ′ has
an acyclic supergraph. Unfortunately, this problem turns out to be difficult:

Theorem 3.4. The decision version of temporal-cut-minimization is NP-
complete.

In light of the above theorem, we have developed and implemented a simple
greedy heuristic, Algorithm A.2, for finding temporal cuts that make the super-
graph acyclic, which our prototype runs prior to invoking AlgorithmA.1: Given
a dynamic tree, the heuristic simply adds the trees Ti and their edges incremen-
tally to the supergraph. However, whenever adding an edge e = (v, w) of Ti to
the supergraph creates a cycle, we cut w at i − 1.

4 Conclusion and Outlook

We have presented a system for offline drawings of
dynamic trees using animations that are embedded
in (text) documents. The system has been imple-
mented [31] as an extension of the popular TEX sys-
tem and will become part of future version of TikZ.2

The generated animation are light-weight both in
terms of file size and generation time, but require
that the documents (or, at least, the graphic files)
are stored in the svg format. Our new algorithm is a natural extension of the
Reingold–Tilford algorithm to the dynamic case, but while the original algo-
rithm runs in linear time on all trees, we showed that the dynamic case leads to
NP-complete problems. Fortunately, in practice, the hard subproblems can be
solved satisfactorily using a greedy strategy – at least, that has been our finding

2 Currently available in the development version at http://pgf.cvs.sourceforge.net.

https://arxiv.org/pdf/1608.08385v1.pdf#page=17
https://arxiv.org/pdf/1608.08385v1.pdf#page=18
https://arxiv.org/pdf/1608.08385v1.pdf#page=17
http://pgf.cvs.sourceforge.net
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for a limited number of examples such as the above animation; a perceptual
study of animated drawings of dynamic graphs has not (yet) been conducted.

We see our algorithm as a first step towards a general set of algorithms for
drawing dynamic graphs using animations, which we believe to have a great (and
not yet fully realized) potential as parts of text documents. A next logical step
would be a transferal of the Sugiyama method [16,34] to the dynamic offline
case.
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Abstract. This report describes the 23rd Annual Graph Drawing Con-
test, held in conjunction with the 24th International Symposium on
Graph Drawing (GD’16) in Athens, Greece. The purpose of the contest is
to monitor and challenge the current state of graph-drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into two parts: the creative
topics and the live challenge.

The creative topics had two graphs: the first one was a graph about country
relations in the Panama papers, and the second one was a family tree of figures in
Greek mythology. The data sets for the creative topics were published months in
advance, and contestants could solve and submit their results before the conference
started.Thesubmitteddrawingswereevaluatedaccordingtoaestheticappearance,
domain-specific requirements, and how well the data was visually represented.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to minimize the number of crossings in book layouts with a fixed
number of pages.

Overall, we received 15 submissions: 6 submissions for the creative topics and
9 submissions for the live challenge.

2 Creative Topics

The two creative topics for this year were a graph about the Panama papers,
and a Greek mythology family tree. The goal was to visualize each graph with
complete artistic freedom, and with the aim of communicating the data in the
graph as well as possible.

We received 2 submissions for the first topic, and 4 for the second. For each
topic, we selected up to three contenders for the prize, which were printed on
large poster boards and presented at the Graph Drawing Symposium. Finally,
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 589–595, 2016.
DOI: 10.1007/978-3-319-50106-2 45
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out of those contenders, we selected the winning submission. We will now review
the top three submissions for each topic (for a complete list of submissions, refer
to http://www.graphdrawing.de/contest2016/results.html).

2.1 Panama Papers

The International Consortium of Investigative Journalists (ICIJ)1 is a global
network of more than 190 investigative journalists in more than 65 countries
who collaborate on in-depth investigative stories. Recently, the ICIJ released an
Offshore Leaks Database2 of almost 320,000 offshore companies and trusts from
the Panama papers and the Offshore Leaks investigations.

For the first creative topic, we processed the database to create a weighted
directed graph that shows the relationships between countries. A directed edge
from country A to country B with weight w means that there are w Offshore
Entities in country B that are linked to a company in country A.

The resulting layout of the graph should contain the names of the countries
and should give a good overview on their correlation.

Runner-Up: EvmorfiaArgyriou, Anne Eberle, andMartin Siebenhaller
(yWorks). The committee likes the combination of clustering with radial layouts
and organic edges, and a circular layout for the clusters that are connected with
bundled edges. The representation of edge weights and (weighted) in-degrees via
edge thickness and node sizes help a lot to grasp the underlying data.

1 https://www.icij.org/.
2 https://offshoreleaks.icij.org/.

http://www.graphdrawing.de/contest2016/results.html
https://www.icij.org/
https://offshoreleaks.icij.org/
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Winner: Fabian Klute (TU Wien). The committee likes the approach of
this submission that derivates severely from standard approaches. The drawing is
split into two parts. On the left, a highly connected subgraph consisting of eleven
nodes is represented with different drawing styles depending on whether an edge
exists in both directions or only in one. On the right, nodes without incoming
edges are placed in treemaps that also represent vertices and are connected by
various edge styles. The problem of label sizes was solved by using three-letter
country codes and a different color for each country.

2.2 Greek Mythology Family Tree

The following data comes from the Greek Mythic Genealogy Project3.

Greek myth contains a large amount of genealogical information. Various
characters are related to each other in ways that are difficult for the non-
specialist to keep track of, if for no other reason than that there are such
a large number of gods, heroes, and other characters who appear in the
various myths, epics, lyrics, legends, comedies, and other material. The
Greek Mythic Genealogy Project is a fragmentary attempt to keep track
of some of these relationships.

For the second creative topic, participants were asked to draw a family “tree”
of popular characters in Greek Mythology. We created a subgraph of the large
database by extracting only the most popular (by the number of Google results)
names and their parents. This reduced the number of nodes to 118.

3 http://patrickbrianmooney.nfshost.com/∼patrick/greek-myth/greek-genealogy.
html.

http://patrickbrianmooney.nfshost.com/~patrick/greek-myth/greek-genealogy.html
http://patrickbrianmooney.nfshost.com/~patrick/greek-myth/greek-genealogy.html
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Runner-Up: Thom Castermans, Tim Ophelders, and Willem Sonke
(TU Eindhoven). The first runner-up used a very interesting strategy to lay
out siblings in order to reduce the complexity of the drawing: instead of drawing
one edge from a parent to each of its children, a single (bundled) path is used
that connects the childrin with the parent; in some cases (e.g., if there are too
many children), more than one bundled path was used. The edges are colored by
with the same color as the parent, which makes it easy to find the relationship
between two nodes. The committee especially likes the metro map style of the
drawing and the non-standard way of visualizing siblings.

Runner-Up: Mereke van Garderen
(University Konstanz). The second
runner-up drew the graph completely
manually without using existing algo-
rithms. The vertices are nicely layed out
and both keep the number of crossings
small and keep immediate family mem-
bers close together. The edges are drawn
with a mix of straight lines (with few
slopes) and splines. In order to still show
the hierarchical layout of the graph, the
nodes and edges are colored by their gen-
eration with respect to the goddess Chaos.
The committee finds the visual appear-
ance, the colors, and the edge styles very
appealing.
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Winner: Jonathan Klawitter and Tamara Mchedlidze (Karlsruhe
Institute of Technology). The committee was impressed by the aesthetic
appeal of this submission. The layout is very nicely done and clearly shows the
hierarchy in the family tree. The nodes are carefully placed on several circular
arcs and the edges are drawn as curves; in order to represent families, the father–
children and the mother–children edges form bundles. The committee especially
liked the coloring of the vertices that represent different types of entities in
the Greek myth, such as titans, sea gods, or muses. Similar types are grouped
closely together. For the twelve Olympian gods (and some other important fig-
ures), the authors also added their symbols inside the nodes. Below the drawing
of the whole graph, there is a second drawing that only shows the partners and
children of Zeus.

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to solve the graphs using a supplied
tool), or in the automatic category (in which they could use their own software
to solve the graphs). At the same time, remote participants could also take part
in the automatic category.
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The challenge focused on minimizing the number of crossings in a book
embedding with k pages. The input graphs are arbitrary undirected graphs and
a maximum number of pages that may be used.

A book with k pages consists of k half-spaces, the pages, that share a single
line, the spine of the book. A k-page book embedding of a graph is an embedding
of a graph into a book with k pages such that all the vertices lie at distinct
positions of the spine and every edge is drawn in one of the pages such that only
its endpoints touch the spine.

Note that edges may only cross if they are assigned to the same page. We
are looking for drawings that minimize the number of crossings. The results are
judged solely with respect to the number of crossings; other aesthetic criteria
are not taken into account. This allows an objective way to evaluate a drawing.

3.1 Manual Category

In the manual category, participants were presented with five graphs. These were
arranged from small to large and chosen to highlight different types of graphs
and graph structures. For illustration, we include the first graph in its initial
state and the best manual solution we received (by team JetLagged). For the
complete set of graphs and submissions, refer to the contest website.

We are happy to present the full list of scores for all teams. The numbers listed
are the number of crossings in each graph; the horizontal bars visualize the
corresponding scores.

The winning team is team noname, consisting of Michael Bekos, Thanasis
Lianeas, and Chrysanthi Raftopoulou!
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3.2 Automatic Category

In the automatic category, participants had to solve the same five graphs as in
the manual category, and in addition another five—much larger—graphs. Again,
the graphs were constructed to have different structure.

Once more, for illustration, we include the best solution (by team Ruhrpott)
of the first large graph as it looks in the tool. The graphs themselves can be
found on the contest website.

The winning team is team Johan de Ruiter, consisting of Johan de Ruiter!

I used a Simulated Annealing approach with a collection of K 2D Fenwick
trees as the underlying data structure in which the edges of the graph
were stored according to their assigned pages in the book embedding.
This allowed for logarithmic time counting of the number of crossings
per edge, edge insertion and edge removal. Swapping two vertices, and
moving a vertex into an empty spot, were realized by removing and
reinserting all the incident edges.
Johan de Ruiter

Acknowledgments. The contest committee would like to thank the generous spon-
sors of the symposium, Dennis van der Wals for programming most of the tool for the
manual category, and all the contestants for their participation. Further details includ-
ing all submitted drawings and challenge graphs can be found at the contest website:
http://www.graphdrawing.de/contest2016/results.html.

http://www.graphdrawing.de/contest2016/results.html
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Following the recent tradition of previous Symposia, the Organizing Committee
of the 24th International Symposium on Graph Drawing and Network Visual-
ization hosted a Ph.D. School on Visualization Software. The Ph.D. School was
held at the National Technical University of Athens campus, September 22–23,
2016, and was attended by 16 participants.

The Ph.D. School on Visualization Software consisted of two one-day tuto-
rials on Tom Sawyer’s Perspectives graph and data visualization system and
yWorks’ yFiles for Java diagramming software. Tom Sawyer Software and
yWorks are two of the longstanding sponsors of the Graph Drawing Symposia.

On September 22, 2016, Brendan Madden, Chief Executive Officer and
Founder of Tom Sawyer Software, gave an in-depth introduction to Tom Sawyer
Software’s research and practical work on graph drawing software. He demon-
strated the broad capabilities of Tom Sawyer Perspectives graph and data visual-
ization system and discussed how their software is now used in numerous indus-
tries including the public sector, in finance and fraud detection, IT, energy,
telecommunications and networking, and in aerospace and manufacturing.

On September 23, 2016, Christian Brunnermeier and Jasper Möller, Software
Developers at yWorks, gave an overview over the yFiles product family, its main
features and the underlying architecture. Some of the most prominent layout
algorithms were presented, including their customization options to optimize the
layout result and typical challenges when a theoretical algorithm meets real-life
requirements. In a tutored practical session the participants worked in groups
to fill a given demo application with life, building upon the presented topics
e.g. finding a good layout for a given data set, presenting the business data
in an appealing way and reducing visual complexity to make the data more
approachable.

We thank the National Technical University of Athens and the School of
Applied Mathematical and Physical Sciences for their support. We also thank
the speakers, Brendan Madden, Christian Brunnermeier and Jasper Möller, as
well as all participants who turned the Ph.D. School on Visualization Software
into a successful event.

c© Springer International Publishing AG 2016
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A Simple Quasi-planar Drawing of K10
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Abstract. We show that the complete graph on ten vertices K10 is a
simple quasi-planar graph, which answers a question of Ackerman and
Tardos [E. Ackerman and G. Tardos, On the maximum number of edges
in quasi-planar graphs, J. Comb. Theory, Series A 114 (2007) 563–571]
and shows that the bound 6.5n − 20 on the maximum number of edges
of simple quasi-planar graphs is tight for n = 10.

A graph is k-quasi-planar if it can be drawn in the plane so that there are no
k pairwise crossing edges. A k-quasi-planar graph is simple if each pair of edges
meets at most once, either at a common endpoint or at a crossing point, and
is geometric if each edge is drawn as a straight line segment. 3-quasi-planar
graphs are called quasi-planar. Quasi-planar graphs were introduced by Agarwal
et al. [2] and have intensively been studied since then, with a focus on Turán-
type problems. Do k-quasi-planar graphs have at most a linear number of edges?
Which is the maximum complete quasi-planar graph?

Ackerman and Tardos [1] proved that simple quasi-planar graphs have at
most 6.5n − 20 edges and this bound is tight up to a constant. There are no
simple quasi-planar graphs with exactly 6.5n− 20 edges. In consequence, K11 is
not a simple quasi-planar graph. It is known that K9 is a quasi-planar geometric
graph whereas K10 is not a quasi-planar geometric graph [3]. Here, we draw K10

so that each pair of edges meets at most once and three edges do not pairwise
cross (Fig. 1), and thereby solve the open problem on K10.

We partition K10 into two K5 which are each drawn as an encircled pen-
tagram (with solid black and dotted blue edges). Let U = {u1, . . . , u5} (V =
{v1, . . . , v5}) be the vertices of the outer (inner) K5 in clockwise order. The
remaining K5,5 is drawn so that the edges {ui, vi−1}, {ui, vi} and {ui, vi+1} in
circular order are drawn straight-line. Finally, (pink) edges {ui, vi+2} go around
ui+1 in the outer face, and (red) edges {ui, vi−2} traverse the inner circle. The
drawing is simple quasi-planar, since no three edges cross pairwise. For an inspec-
tion, first observe that the (dashed black) edges {ui, vi} and the (black) edges on
the circles of U and V are crossed at most once. Figure 2(a) shows K10 after their
removal. Thereafter, the edges {vi, ui+1} (thick and green) are crossed by two
edges which do not cross pairwise, and similarly for {vi, ui−1} (cyan). Finally, in
the remainder, each red edge crosses a pink, two red and two dotted blue edges,
which do not cross mutually, and similarly for the pink edges. Alternatively,
consider the edge intersection graph which is triangle-free.

Supported by the Deutsche Forschungsgemeinschaft (DFG), grant Br835/18-2.
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Fig. 1. A quasi-planar drawing of K10

Fig. 2. Inspection of K10 after the removal of (a) black edges, (b) green and cyan edges,
and (c) red and pink edges
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Introduction

Given a set of n rectangles embedded in the Euclidian plane, we consider the
problem of modifying the layout to avoid intersections of the rectangles. The
objective is to minimize the total displacement under the additional constraint
that the orthogonal order of the rectangles must be preserved. We call this prob-
lem minimum-displacement overlap removal (mdor). We define the total
displacement in the new layout as the sum of the Euclidian distances between
the initial position (x, y) and the final position (x′, y′) of the centers of all rec-
tangles. A layout adjustment is orthogonal-order preserving if the order of the
rectangles with respect to the x- and the y-axis does not change. More formally,
the order is preserved if and only if for any pair of rectangles ri and rj it holds
that xi ≤ xj ⇒ x′

i ≤ x′
j and that yi ≤ yj ⇒ y′

i ≤ y′
j .

Motivation

Our interest in this problem is motivated by the application of displaying meta-
data of archaeological sites. The most popular way of representing data of this
kind is to use a symbol map, where each site is represented by a symbol that con-
veys (a selection of) the metadata about the site, and these symbols are placed
on the map at the site’s geographical coordinates. Overlap needs to be removed
so all symbols are visible, but the symbols need to stay close to the correspond-
ing sites, and because cardinal relations between sites are often important the
orthogonal order should be maintained. Many GIS packages commonly used
in archaeology do offer automated map production, but when it comes to the
arrangement and scaling of objects they generally perform poorly [1]. Figure 1
shows examples as published in [2] (left) and [4] (right).

Contribution

mdor is closely related to minimum-area layout adjustment (mala), which
is known to be NP-hard [3]. The difference is that the objective in mala is to
minimize the area of the drawing, rather than the total node displacement. We
show by reduction from monotone one-in-three sat that mdor is NP-hard.

Theorem 1. minimum-displacement overlap removal is NP-hard, even
for equal-size squares at integer coordinates.

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-50106-2
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Fig. 1. Archaeological symbol maps produced by commonly used GIS software.

Because mdor is NP-hard, we turn to heuristic approaches to find a feasible
solution to our problem. The objectives of existing overlap removal algorithms
are not ideal for our application, therefore we present a new heuristic for solving
the problem. The core of this algorithm is a loop that contains three steps:

1. Compute all pairs of overlapping nodes using a sweep line
2. Remove the overlap for each pair with local minimum displacement
3. Repair the orthogonal order using a variation of MergeSort

These three steps are repeated until there are no more overlapping pairs (Fig. 2).

Fig. 2. Input (a) and result (b) of the heuristic for a dataset of 70 cultural heritage
sites on St. Kitts. In (b), the island map is distorted to fit the new bounding box.
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1 Introduction

An aesthetic property prevalent in Lombardi’s art work is that he tends to place
many vertices on consecutive stretches of linear or circular segments that go
across the whole drawings. This creates a metaphor of a “visual flow” across a
drawing. Inspired by this property, we study the following problems for orthog-
onal drawings of planar graphs (see Fig. 1)1:

1. A minimum segment orthogonal drawing, or MSO-drawing, of a planar graph
G is an orthogonal drawing of G with the minimum number of segments.

2. A minimum segment cover orthogonal drawing, or MSCO-drawing, of G is
one with the smallest set of segments covering all vertices of G.
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Fig. 1. (a) A planar graph G, (b) an MSO-drawing, (c) an MSCO-drawing of G.

There is a lot of prior work on minimizing the number of segments in straight-
line drawings and on minimizing the number of circular arcs in planar drawings.
However to the best of our knowledge, this problem has never been studied
before in the context of orthogonal drawings.

1 This article reports on work supported by DARPA under agreement no. AFRL
FA8750-15-2-0092. The views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.
This work was also supported in part by the NSF under grants 1228639 and 1526631.
We thank Timothy Johnson and Michael Bekos for several helpful discussions.
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A recent empirical study [4] concluded that orthogonal layouts generated by
traditional algorithms focusing primarily on bend minimization lack aesthetic
qualities compared to manual drawings. The study suggests that, like in the
works by Lombardi, humans prefer drawings with linear “flow” that connect
chains of adjacent vertices. Our specific interest here is to study such “Lombardi
flow” for orthogonal graph drawings.

We present the following results.

– We give a polynomial-time algorithm for the MSO-drawing of an embedded
plane graph, using the network-flow algorithms [2, 3, 5] for minimizing bends.

– We show that finding MSCO-drawing is NP-hard even for degree-3 graphs.
– For trees and series-parallel graphs with maximum degree 3, we provide
polynomial-time algorithms for upward orthogonal drawings with the mini-
mum number of segments covering the vertices.

2 Detailed List of Main Results

In this section, we give a detailed list of our main results; please see the full
version of the paper [1] for proofs. Recall that the 2-factor of a graph G is
obtained by repeatively identifying each degree-2 vertex to one of its neighbors.

Lemma 1. Let G be a plane graph with maximum degree 4 and let G′ be the
2-factor of G. Then G′ has an orthogonal drawing with b bends if and only if
G has an orthogonal drawing with b + k/2 segments, where k is the number of
odd-degree vertices in G.

We find an MSO-drawing of G by computing a minimum-bend drawing of the
2-factor, using the O(n1.5)-time algorithm by Cornelsen and Karrenbauer [2].

Theorem 1. For an embedded n-vertex planar graph G, with maximum degree
4, an MSO-drawing of G can be computed in O(n1.5) time.

Let Γ be an orthogonal drawing for a planar graph G with maximum degree
4. A set of segments S in Γ is said to cover G, if each vertex in G is on some
segments in S. The segment-cover number of Γ is the minimum cardinality of
a set of segments covering G. Given a planar graph G, with maximum degree
4, a minimum segment cover orthogonal drawing or MSCO-drawing of G is an
orthogonal drawing with the minimum segment cover number.

Theorem 2. Finding a minimum segment cover orthogonal drawing for a pla-
nar graph G is NP-hard, even if G is a planar graph with maximum degree 3.

Theorem 3. Let G be a series-parallel graph with maximum degree 3 with the
SPQ-tree T and let #(P ∗) be the number of P -nodes in T with at least two
S-nodes as children. If the root of T is a P -node with three S-nodes as children,
then #(P ∗) + 2 segments are necessary and sufficient to cover all vertices of
G in any upward orthogonal drawing of G; otherwise #(P ∗) + 1 segments are
necessary and sufficient.
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Algorithm for Rooted Trees. Let T be a rooted tree. Take two copies T1, T2

of T . Identify the two copies of each leaf, to obtain a series-parallel graph with
the maximum degree 3. An upward orthogonal drawing of this graph by the
above algorithm also gives an upward drawing of T with optimal segment-cover.
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1 Introduction

We describe a tool, the JVM abstracting abstract machine (Jaam) Visualizer,
or “J-Viz” for short, which is intended for use by security analysts to perform
such searches through the exploration of graphs derived from Java bytecode.
The workflow for our tool involves taking a given program, specified in Java
bytecode, and constructing a control-flow graph of the possible execution paths
for this software, using a framework known as control flow analysis (CFA) [6].
Our tool then provides a human analyst with an interactive view of this graph,
including heuristics for aiding the identification of the suspicious parts.

One of the main components of our J-Viz tool involves visualizing control-flow
graphs in a canonical way based on a novel vertex numbering scheme that we
call the sibling-first recursive numbering. This numbering scheme is essentially a
hybrid between the well-known breadth-first and depth-first numbering schemes,
but differs from both in a way that appears to be more useful for visualizing
control-flow graphs. In particular, this tends to highlight areas in software where
code is repeated and it also allows us this tends to highlight areas in software
where code is repeated and allows us to provide visual highlights of code that is
contained in deeply nested loops. We had the following goals in mind:

– We want users to recognize patterns in source code from our visualization;
similar code sections should produce similar subgraphs, drawn similar way.

– We want to use a hierarchical visualization, in which users can collapse or
expand sections of the graph to different levels of detail. But we also want to
preserve a consistent mental model of the graph. Thus, drawings should not
drastically shift the vertex positions when sections are collapsed or expanded.

– No matter what sequence of actions the user performs, drawings should be
consistent. That is, the same view of a graph, in which the same set of nodes
are collapsed and expanded, should always be drawn in the same way.

– Our system should rank sections of the graph by how likely they are to produce
vulnerabilities, and display this information visually to the user.

We believe that J-Viz makes substantial progress in achieving these goals, and
we provide several case studies in this paper that support this conclusion. Please
see the full version of the paper [1] for more details.
c© Springer International Publishing AG 2016
Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 611–612, 2016.
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Related Work and Main Contributions. Visualization tools have also pre-
viously been applied to source code. Doxygen [5], a tool for automatically gen-
erating documentation, can produce various kinds of diagrams for visualizing
code, including call graphs. It is generally configured to use the dot [4] tool from
GraphViz to draw these graphs hierarchically. Similarly, Visual Studio can visu-
alize call graphs to aid programmers in debugging applications [3]. In contrast
with these systems, our J-Viz tool provides four main features that these tools
do not provide. First, J-Viz shows a greater level of detail, since it analyzes code
at the level of individual instructions rather than methods. Second, J-Viz allows
the user to interact with a graph and produce multiple views of the same Java
bytecode. Third, the layout algorithm used in J-Viz is designed to draw simi-
lar code fragments in the same (canonical) way, so as to highlight portions of
repeated code. Fourth, J-Viz guides the user to potential security vulnerabilities,
by highlighting nodes that are believed to be risky based on algorithmic complex-
ity (or other factors), whereas these other systems were not focused on software
security. Another tool, Jinsight [2], can be used to profile a Java program to
provide various views of resource usage, such as highlighting which instances of
a class have taken the most time or used the most memory. This tool does not
provide a full graph of the program’s possible execution paths, however, which
we believe to be essential for detecting security vulnerabilities.

Acknowledgements. This reports on work supported by DARPA under agree-
ment AFRL FA8750-15-2-0092. The views expressed are those of the authors and do
not reflect the official policy or position of the Department of Defense or the U.S. Gov-
ernment. This work was also supported NSF grants 1228639 and 1526631. We also
thank David Eppstein, Matthew Might, William Byrd, Michael Adams, and Guannan
Wei for helpful discussions.
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Abstract. While a visual unconstrained tree structure planar layout
design is easy to implement, a visualization of a tree with constraints on
node ranks and their ordering within ranks leads to a difficult combina-
torial problem. A genealogical graph can be taken as an example of such
a case. We propose a new method of tree-driven graph node layout.

1 Introduction

Graph visualization can help to form an overview of relational patterns and detect
data structure much faster than data in a tabular form [10, 18]. Working with
genealogical graphs is no exception in this sense. Tree based drawing methods of
genealogical graphs have been among the standard techniques for centuries [10,
24, 25]. Ancestor trees, descendant trees and Hourglass charts belong to a set of
traditional tools implemented by a majority of freeware, shareware, or commer-
cial tools [1–3, 14]. These tools provide a clear description of a situation when
the user needs to investigate direct ancestors and/or descendants of a given per-
son (often referred to as the main person). There are other more space-efficient
representations such as fan charts or H-charts [4, 15, 26, 28]. However, such tree-
based representations miss a broader context of relationships and do not allow the
quick assessment of several interlinked families together. The situation with fam-
ily members grouping changes significantly if the assumptions of one main person
and direct ancestors/descendants are dropped. In a number of cases it is highly
beneficial if the entire network of families, or at least a significant part, can be dis-
played in one layout. Then we face issues with challenges linked with edge cross-
ing and preferences on node clustering [22, 23, 27]. Therefore, the standard tech-
niques for planar graph layouts [5, 12, 13, 16, 20, 21] are not suitable in all cases.
It is possible to group children or their parents (but not both). We support an
approach that results in siblings of one family being clustered tightly while part-
nerships/parents might be mixed. Unfortunately, even state of art directed hier-
archical drawing methods, such as those implemented in Graphviz [9], result in
layouts with mixed generations and groups mixing several families. Recently, it
was demonstrated using two simple propagated node order constraints that node
layouts of such graphs can be improved significantly [17]. In this paper, we propose
an even better technique using undirected tree structure properties.

Sponsored by the project for GAČR, No. 16-072105: Complex network methods
applied to ancient Egypt data in the Old Kingdom (2700–2180 BC).
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Y. Hu and M. Nöllenburg (Eds.): GD 2016, LNCS 9801, pp. 613–616, 2016.
DOI: 10.1007/978-3-319-50106-2



614 R. Mař́ık

2 The Proposed Method

A genealogical graph is an acyclic bipartite directed graph G(VP , VM , E) with
two sorts of nodes, people VP and marriages/partnerships VM . The edges E
are directed from parent nodes to marriage nodes and from marriage nodes to
children nodes. Without loss of generality we can assume that the index of the
generation layer (ranks) of parents is lower than the index of their marriage
node, and further that the index of the marriage node is lower than the index
of children nodes. The node rank can be computed easily using two DFS scans
of the graph [17]. As cases when two individuals share two and more distinct
subtrees are very rare in reality (just 4 cases in our database of 2100 individuals),
we can transform the graph into an undirected tree by removing a few edges. We
select suitable edges using blocks (biconnected components [7]) in linear time [11,
19]. These edges are drawn but not used by the node ordering algorithm. In the
following algorithm we assume that the undirected processed graph is a tree.

Fig. 1. A visualization of the author’s private
family tree with 2117 people and 742 mar-
riages created from the rank and node order
constraints proposed in this contribution only.
An ideal layout would result in edges creating
“waves” only.

The problem of a layout design
might then be reduced to a deter-
mination of the order of people
belonging to one generation. We
propose that children belonging to
a single family are ordered by their
birth dates. Subtrees of the child
descendants, including descendant
marriage nodes, hold this order.
In the opposite direction, i.e. from
a marriage node to its spouses,
the order of spouses can be deter-
mined according to birthdates of
spouses. Starting from a node with
the lowest rank we assign both
time-stamps to each node using the
DFS scanning [6]. Using the post
order we can determine the min-
imum node rank of any subtree
inside its time-stamp interval (O(N)). Again starting from the node with the
lowest rank we assign nodes of time-stamp interval subtrees into rank arrays
(initially empty for each rank). First, subtrees with a minimum rank higher
than the rank of the current node are processed, then the remaining subtrees
are processed according to their increasing size to minimize edge crossing.

A generated layout with uniformly placed nodes and family subtrees empha-
sized by colors is shown in Fig. 1. Experiments with families with up to 50 family
members of the Egyptian database of 3057 people from 4th, 5th, and 6th dynasty
created by Egyptologists [8] did not exhibit any layout deficiencies.

The experiments indicate the results provided by the state of the art tools
are quite far from the optimum layout, at least for special sorts of graphs such
as genealogical ones.
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Introduction. Let Γ be a straight-line drawing of a graph. For each v ∈ Γ , let Cv

be the open disk centered at v whose radius is half the length of the longest
edge incident to v. Denote by Sq the set of disks sharing a point q ∈ R

2.

Fig. 1. Two drawings of the same graph with ply number 3
(left) and 12 (right).

The ply number of Γ
is defined as pn(Γ ) =
maxq|Sq|. Based on
the observation that
real-world road net-
works have low ply
number [5], this para-
meter has been
recently proposed as
a new quality mea-
sure of a graph lay-
out [3] (see, e.g.,
Fig. 1). While theo-
retical results about computing drawings with low ply number have already
appeared [1, 3], this work aims at experimentally assessing whether some of
the most popular graph drawing methods actually compute drawings with low
ply number. In addition, we want to experimentally study the theoretical gaps
between upper and lower bounds of the ply number that have been established
for some graph families [1, 3].

Experimental Questions. We address the following experimental questions:

Q1. How good are the layouts computed by different drawing algorithms in terms
of ply number? We compare six force-directed algorithms (FM3 [9], FR [7],
GEM [6], KK [10], SM [8], and LL [12]) and, for planar graphs, we also consider
a canonical order based algorithm [2].

Q2. How close is the ply number of drawings produced by existing algorithms to
the ply number of the input graph (i.e., to the optimum value)? For some graph
families (e.g., paths, cycles, binary trees, caterpillars), the worst-case optimum

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001.
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value of ply number is known. For these families, we evaluate the gap between
the ply number of drawings computed by exiting algorithms and the optimum.

Q3. Does ply number correlate with some other commonly used quality metrics?
We focus on three popular quality metrics that apparently have some theoreti-
cal connection with ply number: stress, edge-length uniformity, and number of
crossings. For example, in a drawing with ply number one all edges have the
same length, while the ply number can be sometimes reduced at the expenses of
edge crossings [3]. Stress is an “energy” function of a graph layout, commonly
adopted to establish how much the geometric distances between pairs of vertices
reflect their theoretic distances in the graph; it implicitly assumes that all edges
have about the same length (see, e.g., [4, 11]).

Q4. Can we establish empirical upper bounds on the ply number of k-ary trees?
Every binary tree has ply number at most two [3] while the ply number of 10-ary
trees is not bounded by a constant [1]. Hence, it is natural to ask what happens
for k-ary trees whit k ∈ [3, 9]. We aim to shed more light on this problem.

Findings. To answer Q1–Q3 we conducted experiments on 288 graph instances of
different families (trees, planar graphs, general random graphs, scale-free graphs,
paths, cycles, caterpillars, binary trees), and with number of nodes ranging from
50 to 200. To answer Q4, we generated 66 k-ary trees with nodes ranging from
100 to 4000 and with k ∈ {3, 6, 9}. The experimental results (partially) answer
our questions and raise interesting new questions. These are the main findings:

F1. About Q1, algorithms designed to minimize stress and edge-length unifor-
mity compute drawings with smaller values of ply number. In particular, we
observed good performances for SM and KK. This finding is in favor of the intu-
ition that low ply number is related to stress and edge uniformity optimization
(see also F3). We also observed good performance of FM3. We suspect that this
is a consequence of its coarsening technique, which indirectly tends to evenly dis-
tribute the nodes in the plane, thus producing drawings with good edge length
uniformity, independently of the original placement of the nodes.

F2. Concerning Q2, the best performing algorithms in terms of ply number very
often generate drawings whose ply number is close to the worst-case optimum
for several graph families, such as paths, cycles, caterpillars, and binary trees.

F3. The experiments executed for answering Q3 show a clear correlation between
ply, stress, and edge-length uniformity. For planar graphs and low density graphs,
the correlation between ply and crossings is also observed, while ply number is
definitely non-correlated with the number of edge crossings on denser graphs
and, in particular, on scale-free graphs. We remark that the correlation between
ply number and stress does not imply that low ply number equals low stress.

F4. About Q4, we computed, for each instance, the ply number of a single draw-
ing produced with the SM algorithm (the best performing algorithm for ply
number, according to F1). We could not observe any asymptotic trend of the ply
number towards a constant upper bound for k-ary trees, where k ∈ [3, 9]. This
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indicates that the ply number for such graphs is likely unbounded, which should
be formally confirmed by a theoretical proof.
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Nöllenburg, M., (eds.) GD 2016. LNCS, vol. 9801, pp. 236–248. Springer Interna-
tional Publishing, Switzerland (2016)

2. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int.
J. Comput. Geom. Appl. 07(03), 211–223 (1997)

3. Di Giacomo, E., Didimo, W., Hong, S.-H., Kaufmann, M., Kobourov, S.G., Liotta,
G., Misue, K., Symvonis, A., Yen, H.-C.: Low ply graph drawing. In: IISA 2015 - 6th
International Conference on Information, Intelligence, Systems and Applications,
pp. 1–6. IEEE (2015)

4. Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G.G., North,
C.: A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis.
Comput. Graph. 15(6), 961–968 (2009)

5. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an
algorithmic lens. In: GIS 2008, 16th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 1–10. ACM (2008)

6. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G.
(eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). doi:10.
1007/3-540-58950-3 393

7. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Experience 21(11), 1129–1164 (1991)

8. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-31843-9 25
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Edge bundling is a well-known technique to reduce visual clutter in node-link
diagrams by having different links share the same path through the diagram
[1–4]. Dataflow diagrams consist of functional blocks (nodes) that transfer data
through channels (links or edges, usually routed orthogonally) that connect
the blocks through dedicated connection points (ports). A natural concept of
dataflow diagrams which is similar to edge bundling is the usage of hyperedges
which can connect more than two nodes. Here we show how edge bundles can
sensibly be incorporated into dataflow diagrams and how they compare to and
can coexist with hyperedges. We briefly discuss methods to compute edge bun-
dles as part of the layer-based approach to layout [7].

Edge Bundles vs. Hyperedges. Hyperedges are part of the diagram’s structure and
distribute the same data between the connected ports. Edge bundles on the other
hand are a means of presentation and are formed by combining edges suitably.
They abstract from port connections and instead emphasize which nodes are

Fig. 1. (a) A dataflow diagram with a hyperedge between the top-left node and every
other node. (b) The same diagram but with snuggling edge bundles.
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Fig. 2. Coexistence of edge bundles and hyperedges: four possible drawing styles.

connected, which is meant to reduce visual clutter possibly losing the more
detailed port connectivity information. In the context of dataflow diagrams, we
want to restrict this loss by putting constraints on which edges can be bundled:
two edges can only be bundled if they connect the same nodes. An edge bundle
then illustrates that some data is exchanged between these nodes, with the exact
data not being further specified (Fig. 1).

Visual Representation. Hyperedges share as much of their path as possible and
junction points are often emphasized using markers, e.g. little circles. As illus-
trated in Fig. 2, we propose four possibilities when drawing dataflow diagrams
with edge bundles. We first distinguish between keeping hyperedges and edge
bundles separate or combining them. Within each of these cases, we further dis-
tinguish whether to slightly separate the edges in each edge bundle (thus drawing
them in a “snuggling” fashion), or to combine them. Separating hyperedges and
edge bundles while drawing the bundles in a snuggling fashion retains the original
connectivity information; the other drawing styles do not necessarily do so.

Methods. Given a finished drawing, we pursue two use cases: (a) Edges are bun-
dled without moving the nodes, which preserves the mental map of a user and
allows regular and bundled edge routing in the same diagram. The user can
interactively switch between the routing styles or “un-bundle” a single bundle
to see the explicit connections. Nevertheless, care has to be taken not to produce
unfortunate edge overlaps in the latter case. (b) Node positions are allowed to be
altered to produce smaller drawings by leveraging the space freed by combining
edges.

The initial drawing can be computed using an existing layer-based method
supporting ports and orthogonal edges [6]. An orthogonal edge consists of verti-
cal and horizontal segments, the former of which are always placed in between
layers and ordered to reduce edge crossings. For a bundle of edges a common
route can directly be derived from the horizontal and vertical segments of the
individual edges. A weighted shortest-path on an auxiliary graph determines the
best suiting horizontal segments which induce the required height of the vertical
segments. The order of (bundled) vertical segments between layers should be
recomputed since the crossing number may change (we count a crossing with a
bundle only once, even for snuggling bundles). Alternatively, a constraint graph
can be formed from nodes and vertical segments and one-dimensional compaction
techniques can be used to obtain a more compact drawing [5]. Appropriate imple-
mentations of the suggested methods are fast enough for interactive applications.
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A triangle contact system T is a finite system of triangles in the plane such that
two triangles intersect in at most one point. Moreover such an intersection point
has to be a corner of exactly one of the two involved triangles. We define G∗(T )
as the graph that has a vertex for every triangle of T and for every triangle
contact an edge between the involved triangles. For a given plane graph G and
a triangle contact system T with G∗(T ) = G we say that T is a triangle contact
representation of G.

Our main contribution is a novel proof of the following theorem:

Theorem 1. Let G be a 4-connected triangulation. Then there is a triangle con-
tact representation of G by homothetic triangles.

This theorem has already been proved in [3]. There they make use of the
Convex Packing Theorem by Schramm [5] which states that for a given triangu-
lation G and for each vertex v ∈ V (G) a given non-trivial convex set Pv in the
plane there exists a contact representation of G where each vertex v ∈ V (G) is
represented by a homothetic copy of Pv.

Our approach, however, makes use of the combinatorial structure of triangle
contact representations in terms of Schnyder Woods. This approach has been
mentioned in [1, 2] and studied in [4]. Felsner and Francis [2] even explicitly ask
for a proof of Theorem 1 by this approach.

The crucial point is that we consider a larger class of triangle contact rep-
resentations than the class of contact representations by homothetic triangles.
A right triangle contact representation is a triangle contact representation by
right triangles with a horizontal edge at the bottom and a vertical edge at the
right hand side. The aspect ratio of such a triangle is the quotient of the lengths
of its vertical and its horizontal edge. And the aspect ratio vector of a right
triangle contact representation is the vector of the aspect ratios of its triangles
(we assume the vertices of G have a fixed numbering 1, . . . , n). See Fig. 1 for an
example of a right triangle contact representation. Instead of directly proving
Theorem 1 we prove the following generalization:

Theorem 2. Let G be a 4-connected triangulation and r̃ ∈ R
n
>0. Then there is

a right triangle contact representation of G with aspect ratio vector r̃.

Since the case r̃ = (1, . . . , 1) of Theorem 2 is equivalent to Theorem 1, it is
indeed a generalization.

We will now give a sketch of the proof of Theorem 2. Each right triangle
contact representation T of G induces a Schnyder Wood S of G. If r is the aspect
c© Springer International Publishing AG 2016
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Fig. 1. Two right triangle contact representations of the same graph with aspect ratio
vectors (2, 1

2
, 1, 1, 1, 1) and ( 1

2
, 2, 1, 1, 1, 1)

ratio vector of T we then say that S realizes r. On the other hand, if we are
given a Schnyder Wood S of G and an aspect ratio vector r ∈ R

n
>0, we can derive

the edge lengths of the triangles of a right triangle contact representation with
aspect ratio vector r that induces the Schnyder Wood S via a system of linear
equations. This system is uniquely solvable, but the solution can contain negative
variables. Thus our goal is to find a Schnyder Wood S such that the solution of
the system corresponding to S and r̃ only contains nonnegative variables.

We start with an arbitrary pair of a Schnyder Wood S1 and an aspect ratio
vector r̂ such that S1 realizes r̂, and examine the line segment {rt := (1−t)r̂+tr̃ :
0 ≤ t ≤ 1} of aspect ratio vectors. By studying the system of linear equations,
we see that S1 realizes a subsegment {rt : 0 ≤ t ≤ t1} and that there is a
Schnyder Wood S2 realizing a subsegment {rt : t1 ≤ t ≤ t2}, and so on (in
fact, we sometimes have to perturb the starting point r̂). Then we show that a
line segment can only be divided into a bounded number of subsegments in this
manner. Thus r̃ has to be reached at some point and that completes the proof.

This new proof might be useful in addressing two open questions: (1) Can
homothetic triangle contact representations be computed efficiently? (2) Are
homothetic triangle contact representations unique?
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Motivation

The visualization of graphs using classical node-link diagrams works well up
to the point where the number of nodes exceeds the capacity of the display.
To overcome this limitation Zinsmaier et al. [5] proposed a rendering technique
which aggregates nodes based on their spatial distribution, thereby allowing for
visual exploration of large graphs. Since the rendering is done on the graphics
processing unit (GPU) this process is reasonably fast. However, the connection
between input graph and visual image is partially lost, which makes it harder,
for instance, to process weights and labels of the input graph.

Fig. 1. Level-of-Detail rendering of the US air-traffic dataset.

We reproduce their approach with the goal of establishing a flexible structure
to improve the connection between input data and visualization. Additionally,
we control the layout features in a more direct way. For example, contour lines
are explicitly drawn in order to remove fuzziness of the density visualization.
Though the proposed CPU-based approach cannot render at interactive rates, it
can be computed as a preprocessing step and then interactively explored given
some predefined resolution constraints.

We would like to thank the German Research Foundation (DFG) for financial sup-
port within project B02 of SFB/Transregio 161.
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Approach

The visualization consists of two main parts: the construction of the terrain and
the aggregation of the edges depending on the underlying terrain. Our terrain
is a triangulation, where the triangle corners consist of the nodes of the graph.
The node clutter is reduced by a density visualization where each node gets a
height assigned and the resulting terrain is visualized.

The heights of the nodes are computed by a kernel density estimation (KDE),
which approximates unknown density distributions by overlaying kernel func-
tions at different positions. The density of a particular point is the sum over all
kernel functions evaluated at that point. We use the Improved Fast Gaussian
Transform (IFGT) [4], which takes on average O(N) time for N sources and N
evaluations.

We use a Delaunay triangulation to create a triangulated irregular network in
O(N logN) time [1]. Each node of the TIN has a height assigned by the KDE and
we assume a linear interpolation between two nodes on the TIN. Large triangles
can lead to a false depiction of the graph of the terrain. For instance, let us
assume that two neighboring nodes in the Delaunay triangulation represent a
hilltop with a valley between them. Without an additional point between the
hilltops the edge between them represent a ridge. Therefore, Ruppert’s Delaunay
refinement algorithm [2] is used to insert points in the circumcenter of triangles
which have a minimum angle of 15◦ or triangles which are particularly large.
Additionally, a convex hull is created around the input to prevent confusing
non-closing contour lines.

A contour line represents all points with a specific height and is often used
to visualize the 3D terrain of topographic maps. We extract equidistant con-
tour lines with van Kreveld’s find-isolines algorithm [3]. The contour lines are
polylines because of the TIN and get smoothed with splines to be more visual
pleasing. The contour lines form a hierarchy, which is used to aggregate the
edges: A contour tree (i.e. a hierarchical representation of the contour lines,
where a parent has a child if the child is completely contained in the parent) is
constructed and only edges between leaves of the contour tree are created.

In practice many of the contour trees are degenerated and consist of list-like
substructures. Nevertheless, there could be nodes that are not represented by the
edge visualization and therefore, edges of the non-represented nodes are moved
to the nearest (in Euclidean distance) leaf of the contour tree. Additionally, the
aggregated edges are scaled in width and opacity depending on the sum of the
weights of the original edges.

In our implementation of this approach, graphs with up to 42 thousand nodes
and 1.5 million edges (e.g., the net150 graph from the University of Florida sparse
matrix collection1) can be handled in less than 10 s.

1 http://www.cise.ufl.edu/research/sparse/matrices/Andrianov/net150.html.

http://www.cise.ufl.edu/research/sparse/matrices/Andrianov/net150.html


Flexible Level-of-Detail Rendering for Large Graphs 627

References

1. Lee, D.T., Schachter, B.J.: Two algorithms for constructing a delaunay triangula-
tion. Int. J. Comput. Inf. Sci. 9(3), 219–242 (1980)

2. Ruppert, J.: A delaunay refinement algorithm for quality 2-dimensional mesh gen-
eration. J. Algorithms 18(3), 548–585 (1995)

3. Van Kreveld, M.: Efficient methods for isoline extraction from a TIN. Int. J. Geogr.
Inf. Syst. 10(5), 523–540 (1996)

4. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast gauss trans-
form and efficient kernel density estimation. In: Proceedings of the Ninth IEEE
International Conference on Computer Vision, vol. 1, pp. 664–671 (2003)

5. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 2486–2495
(2012)



A Hexagon-Shaped Stable Kissing
Unit Disk Tree
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1 Introduction

A disk contact graph is a graph that can be represented by a set of interior-
disjoint disks in the plane, where each disk represents a vertex and an edge
between two disks exists if and only if the disks touch (or kiss). Many studies
have been conducted to classify the types of graphs that can be represented as
disk contact graphs as well as to design algorithms to find a set of disks that
represent the graph (or to determine if this is even possible). A fundamental
results in this area is Koebe’s theorem, which states that every planar graph can
be represented as a contact graph of disks [5].

The same question can be asked for unit disk graphs (or coin graphs). Breu and
Kirkpatrick show that recognizing unit disk graphs is NP-hard [2]. Bowen et al.
[1] study the problem of recognizing unit disk trees, and show that it is NP-hard
to determine if a given tree can be represented as a unit-disk contact graph with a
given embedding—that is, given the cyclic order of neighbors around each vertex.
They claim the main obstacle in proving NP-hardness of unit disk tree recognition
is creating a stable tree for which all embeddings are similar so the embedding can
be used as a building block for an NP-hardness reduction.

A graph G is ε-stable if for any two embeddings of G as contact graphs of
unit disks, there is a rigid transformation of one such that there is a matching
between the resulting embeddings where the distance between matched disks
is at most ε. Note that although each disk represents a tree-node, its matched
node may not be the same node in the tree. Here, we show that arbitrarily large
ε-stable trees exist.

2 The Construction

Since the embedding is free, our strategy will be to create a configuration that
is stable because of its density: the circles will be so tightly packed, that there
is simply no room to significantly change the embedding.
c© Springer International Publishing AG 2016
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Tóth proved that a hexagonal lattice is the densest of all possible plane
packings [6] (see also Chang and Wang [3]). This suggests that a hexagon-shaped
graph, consisting of a central hub and six “feathers” growing out of it, would
be very stable. However, we cannot use it, because its dual would not be a tree.
We need enough room to move the disks slightly such as to make sure the dual
graph is a tree.

To do this, we place two disks (the hubs) at distance d from each other,
and center two hexagonal circle packings around them. If we choose d to be an
integer which is slightly larger than an integer multiple of

√
3, the two packings

will almost, but not quite, fit each other. Then we connect the hubs with a
straight path to make sure they cannot drift further than d from each other. We
then fill the space in the heart of the construction with as many disks as fit.

Concretely, we choose d = 7. Our construction (see above) consists of:

– two hubs: vertices of degree 5, connected each other by a spine of length 7;
– two times four feathers, connected to the hubs;
– two arms: paths of length k, connected to the 2nd and 5th spine-vertex;
– two stubs: paths of length 3, also connected to the 2nd and 5th spine-vertex.

Here, a feather consists of a shaft of length k: a path of mostly degree 4
vertices, with two barbs connected to each vertex of the shaft. A barb is a path
of degree 2 vertices ending in a degree 1 vertex; the lengths of the barbs may
vary. Due to space constraints, we sketch the main steps of the proof of stability.

– We show that it is possible to perturb the disks slightly so that their contact
graph is indeed the correct tree.

– We show that the hubs must be placed at distance at least 4
√

3 (otherwise,
there is not enough space to fit all the disks).

– We show that in any valid embedding of G, all shaft vertices must be straight:
they must have their barbs attached on opposite sides.

– We show that we cannot make enough room for any path to be compressed
by “zigzagging” (because 7 − 4

√
3 is smaller than 1 − 1

2

√
3).

We expect the ε-stable trees can be used to create a so-called logic engine [4]
to show NP-hardness of unit disk tree recognition.
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of simply connected polygonal linkages and recognition of unit disk contact trees. In:
Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 447–459. Springer
International Publishing, Cham (2015). doi:10.1007/978-3-319-27261-0 37

2. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is np-hard. Comput. Geom.
9, 3–24 (1998)

3. Chang, H.-C., Wang, L.-C.: A simple proof of thue’s theorem on circle packing
(2010). arXiv:1009.4322v1

4. Eades, P., Whitesides, S.: The logic engine and the realization problem for nearest.
Theor. Comput. Sci. 169(1), 23–37 (1996)

5. Koebe, P.: Kontaktprobleme der konformen abbildung. Ber. Sächs. Akad. Wiss.
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Introduction. A book with k pages consists of a line (the spine) and k half-planes
(the pages), each with the spine as boundary. In a k-page book drawing of a graph
the vertices lie on the spine, and each edge is drawn as a circular arc in one of the
k pages. The minimum number of edge crossings in a k-page book drawing of a
graph is called its k-page crossing number, which, in general, is NP-hard to deter-
mine [1]. Multiple heuristic approaches to compute a k-page drawing with a small
number of crossings are available in the literature. On a very high level, they can
be categorized as simple heuristics, those that consist of a single run, and complex
ones, based on neural networks [6, 8, 13, 16], simulated annealing and evolution-
ary techniques [2, 5, 9, 14, 15]. Notice that a book drawing consists of two ingre-
dients, an order of the vertices on the spine, and a distribution of the edges to the
pages. Simple heuristics, given in literature, create vertex order and edge distrib-
ution independently. A complete book drawing is constructed by either applying
a combination of a vertex order and an edge distribution heuristic, or by applying
the mentioned above complex approaches that use simple heuristics as basis. As
a result, the performance of the complex approaches depends on the performance
of the applied simple heuristics. Up to our knowledge, every attempt to compare
the performance of the existing simple heuristics is limited in some sense. These
experiments are either limited to very few of them [15], or use very specific graph
classes as benchmarks, or limit the experiments to one or two pages [6, 10, 11].
One of the goals of this work is to extend these experiments. Observe that complex
heuristics, using advanced search patterns, almost always outperform the simple
heuristics [6, 15]. But, since they use simple heuristics in their base, we believe that
it is necessary to understand the relevant performance of the simple heuristics first.
Thus, this work focuses on simple heuristics only. In particular the content of the
poster is as follows: 1. We present several new heuristics and among them several
full drawing heuristics, that create vertex order and edge distribution at the same
time. 2. We present results of our extensive experimental study. The general target
of the experiment was to provide an easy way to access the following information:
given a graph class and the number of pages, which is the best combination of sim-
ple vertex order and edge distribution heuristics? Based on the experiments in the
literature, our experimentation and intuition, we have chosen the most promising
7 heuristics from the literature, implemented them, as well as the new heuristics,
and compared their performance based on the number of crossings they produce
and the running time (complete experiment can be found in [12]).

Heuristics. We start with the vertex order heuristics. The heuristics randDFS
[2] and smlDgrDFS [7] compute a vertex order based on a DFS traversal choosing
c© Springer International Publishing AG 2016
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the next vertex randomly and the one with the smallest degree, respectively. We
introduce the heuristic treeBFS, which orders the vertices based on a crossing-
free 1-page book drawing of a computed BFS spanning tree. The heuristic conCro
[3] at each step selects the vertex with the most already placed neighbors and
places it on one of the two ends of the current spine where it introduces the
fewest new crossings. As an extension of this heuristic, we introduce conGreedy
which considers not only the two ends of the spine but any position on it.

The edge distribution heuristics eLen [4], ceilFloor and circ [15] sort edges
in some particular order and distribute them greedily to the page where they
create fewest crossings. eLen and ceilFloor sort them by decreasing length in
linear and circular spine, respectively. circ considers the order inspired by the
construction of the book embeddings of complete graphs on their pagenumber.
slope [11] considers a circular drawing and places the edges with similar slope
to the same page. We introduce the heuristic earDecomp, which constructs the
conflict graph of the edges in a circular drawing, and an ear decomposition of the
conflict graph, and then alternates the vertices of each ear (edges of the original
graph) between two or three pages.

Following the idea by He et al. [10], we extended the vertex order heuris-
tics randDFS, smlDgrDFS, conGreedy to full heuristics randDFS+, smlDgrDFS+,
conGreedy+, respectively, which distribute an edge to the best page greedily as
soon as it gets closed, i.e. at the moment its second end-vertex appears on the
spine. In contrast to smlDgrDFS+ and randDFS+, conGreedy+ decides for the
position of a vertex based on the number of new crossings, and thus the order
it computes is different from conGreedy. Thus, conGreedy+ can also be used as
an improved vertex order heuristic by discarding the edge distribution.

Experiment and Discussion. We tested the heuristics on graphs of different
classes, size n and number of pages p. Among others our test suite includes
random graphs of different densities, planar and 1-planar graphs, k-trees, cycle
products and hypercubes. In each case we used 200 instances and measured the
average number of crossings. A digest is given in the poster. The maximal used
number of pages was determined either by the pagenumber of the graph, or when
the best heuristic produced no more than 1 crossing on average.

From our experiments we concluded that the best heuristic combination
depends not only on the density of the graphs, but remarkably also on the
structural properties of the graphs. For example, the combination conGreedy+-
ceilFloor performs best on planar and 1-planar graphs, while conGreedy+ , as
full drawing heuristic, performs best on random graphs with the same density.

In general, we observe that the extension of conCro to conGreedy as well as
the full drawing heuristic conGreedy+ often construct book drawings with fewer
crossings, however, with the cost of higher running time, which was also clearly
noticeable in the experiments.

Furthermore, we could observe that conGreedy+-ceilFloor/eLen achieved
crossing-free book drawings of hypercubes Qd when p = pagenumber (tested
up to d = 10).
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Galán-Maŕın, G.: K-pages graph drawing with multivalued neural networks. In:
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Edge bundling [4, 7] is a powerful tool used in information visualization to avoid
visual clutter. In fact, when the edge-density of the network is too high, the
traditional techniques of graph layouts and flow maps become unusable. In this
case, grouping together parts of edges that flow parallel to each other into a
single bundle allows to reduce the clutter and improve readability.

We make a first attempt to combine edge bundling with previous theoretical
considerations from the area of nearly-planar graphs, where in addition to a pla-
nar graph-structure some crossings may be allowed, if they are limited in locally-
defined configurations. Examples include 1-planarity [6] and fan-planarity [5].

In a fan-planar drawing [1–3, 5] an edge is allowed to cross a set of edges
if they belong to the same fan, that is, if they are all incident to the same
vertex; refer to Fig. 1(a). The idea is that edges incident to the same vertex are
somehow close to each other, and thus having an edge crossing all of them does
not affect readability too much. In other words, edges of a fan can be grouped
into a bundle, so that the crossings between an edge and all the edges of the
fan become a single crossing between this edge and the corresponding bundle.
However, the original definition of fan-planar drawings does not always allow for
this type of bundling, as in the case of graph K4,n−4, for large n (Fig. 1(a)).

We thus introduce 1-fan-bundle-planar drawings, in which edges of a fan can
be bundled and crossings between bundles are allowed as long as each bundle is

2-sided
fan-planar

K4,n−4

∃G or ∅ ?1-sided
2-planar

K8

1-planar

(a) (b) (c)

Fig. 1. (a) Relationships between classes; bundles are solid and non-bundled edge-parts
dashed (uncrossed edges are black). (b) A 2-sided outer-1-fan-bundle-planar drawing
of K6. (c) A 1-sided 2-layer 1-fan-bundle-planar drawing.
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Table 1. Maximum number of edges of graphs in the considered classes

2-layer Outer General

1-sided |E| ≤ (5|V | − 7)/3 |E| ≤ (8|V | − 13)/3 |E| ≤ (13|V | − 26)/3

2-sided |E| ≤ 2|V | − 4 |E| ≤ 4|V | − 7 |E| ≤ 56|V | − 114

crossed by at most one other bundle; see Fig. 1(a). This “1-planarity” restriction
prevents an edge to cross edges of several fans, which is not allowed in a fan-
planar drawing. However, to avoid that two bundle-parts of an edge are crossed
by edges of different fans, we require that an edge is bundled with other edges
only on one of its two endvertices. A drawing with this property is 1-sided,
otherwise it is 2-sided. We remark that bundles are not allowed to branch into
different sub-bundles, that is, each bundle has exactly two end-points: at one of
them there is the vertex that is originating the fan, while at the other one all the
edges in the fan are separated from each other to reach their other end-vertex.

We first discuss inclusion relationships with some relevant classes of nearly-
planar graphs; Fig. 1(a) summarizes our findings. Relationships with 1-planar, 2-
planar, and fan-planar graphs follow from definitions. The 2-sided 1-fan-bundle-
planar graph K8 is too dense to be fan-planar or 2-planar (they both have at
most 5n−10 edges [5]). The fan-planar graph K4,n−4 is not 2-sided 1-fan-bundle-
planar (for n ≤ 18 it is). Also, there exist 2-planar graphs that are not fan-planar
[3] (and thus 1-sided 1-fan-bundle-planar). Finally, a tiling of pentagons with four
edges in each face is 1-sided 1-fan-bundle-planar but not 1-planar. We are not
aware of 1-sided 1-fan-bundle-planar graphs that are not 2-planar.

Then, we ask how dense these graphs may be. We study both the general
case and two restricted cases that have been also studied for fan-planarity: In
an outer-1-fan-bundle-planar drawing [1, 3], all vertices must be incident to the
outer face (Fig. 1(b)), while in a 2-layer 1-fan-bundle-planar drawing [2] vertices
are placed on two parallel lines (Fig. 1(c)). Our results are summarized in Table 1.
All the provided bounds are tight, except for the one for 2-sided 1-fan-bundle-
planar graphs, for which we could only construct a graph with 7n−18 edges, by
merging two maximally-dense outer-1-fan-bundle-planar graphs.

Finally, we prove that recognizing 1-fan-bundle-planar graphs is NP-
complete, both in the 1-sided model and in the 2-sided model. On the other
hand, we provide linear-time recognition algorithms for several classes of 2-layer
and of outer-1-fan-bundle-planar graphs, in both models. Among the others, we
remark a linear-time algorithm for recognizing maximal 1-sided 2-layer 1-fan-
bundle-planar graphs.
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Inspired by the GD2016 challenge1 to draw a subset of the Greek gods ancestry
graph we looked into the problem of drawing complex genealogies. Such graphs
have still a hierarchical structure, but intermarriage and cross layer edges make
it hard to use existing methods. We present a three step approach which is robust
against these features. In the first phase we augment the graph, then an initial
layout is calculated with Sugiyama’s framework [5] and in the final phase we
route the edges orthogonally and make them confluent wherever possible.

We can only give a short description of the genealogy graphs we are interested
in. A proper characterization and study of genealogy graphs in general was done
by McGuffin et al. [3]. Let G = (V,E) be a directed acyclic graph. The central
structure of any genealogy graph is a family. A set of nodes F ⊆ V is called a
family if and only if we can split F into a parent set P and a children set C such
that all outgoing edges from nodes in C point to nodes in P and every node in
C has an edge going to every node in P .

In contrast to normal genealogy graphs we allow the set of parents to be
of arbitrary size, but nonempty. This means children can have more than two
parents. Additionally we often find that parents are siblings. Layer-crossing edges
are created by allowing parents from the same set to be in different layers. This
especially enables parents and children to again have children of their own.

Before we turn to the algorithm lets describe what a good genealogy drawing
is to us. The most central part is the relationship between family members.
Consequently parents and children should be drawn close to each other. Further
it is important to identify which nodes belong to which parent or children set.
Here confluence can help by merging the edges after they leave the children or
splitting them just before they enter the parents. Finally long edges need to be
routed such that they only draw attention in their source and target layer.

Augmentation. As a first step the graph is augmented with a method taken from
McGuffin et al. [3]. For every family we introduce one virtual family node. The
node is then connected to its children and parents such that edges point from
the children to the family node and from the family node to the parents.

The second type of virtual node is introduced to split edges crossing multiple
layers. Since the hierarchy of the nodes is not altered anymore we can compute
the layer in the Sugiyama framework at this point in time. Given an edge with
target and source node on non-neighboring layers we then add one node for every
layer it crosses, constructing a long path. Afterwards all edges run only between
nodes in neighboring layers.

1 http://graphdrawing.de/contest2016/topics.html.
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Using the augmentation with drawing methods described by McGuffin et al.
[3] leads to problems with more complex graphs since the algorithms are not
designed to work with edges spanning multiple layers or with a lot of intermar-
riage.

Sugiyama. We use the Sugiyama framework as implemented in the OGDF library
[2] to produce a straight-line drawing of the augmented graph. Especially the
in-layer order of the nodes is fixed after this step. The drawings generated by
Sugiyama with the augmentation are already good in respect to the closeness of
family members, but the straight-line edges make it very hard to track which
parents and children belong to one family or which children are (half-)siblings.

Edge Routing. The edge routing consists of two steps. First we straighten long
paths of nodes, then we route the edges orthogonally with two bends and calcu-
late their confluent parts. For the path straightening we move nodes which are
part of a long path, such that the nodes are on the same x-coordinate whenever
possible. We do this from source towards target by moving the nodes in their
layer without changing the node order. This method gets rid of long zig-zag
paths and small bends introduced by Sugiyama.

The bends are calculated with a linear program, making it easy to extend
this base method. Incidentally the result gives us the position of the confluent
edge parts as well. Pupyrev et al. [4] present an edge-bundling approach which
results in similar sets of confluent edges, but our algorithm is much simpler since
we won’t have to think about the x-position of the confluent parts. Bannister
et al. [1] studied a more general concept of confluence in layered graph drawings
without the need of prior graph augmentation. Again this approach is broader
than necessary for our restricted case. Here we give just a rough sketch of the
idea. On the poster more explanations on the created constraints can be found.

For every edge e ∈ E one continuous variable Y (e) ∈ [0.1, 0.9] is added.
This variable encodes the y-coordinate of the bends, while the x-coordinates
are already fixed by the incident nodes of the edge. Allowing only two bends
restricts every edge to the same bounding box as in the case of a straight line,
which prevents new crossings between far away edges in a layer.

The constraints we use are always between two edges e, f ∈ E. For every pair
of edges there is maximum of one constraint. Either it is an equality constraint
Y (e) = Y (f) or it is an inequality of the form Y (e) − Y (f) > c with c being a
small constant appropriately chosen for the height of the layer. There are two
main cases. In the first one edges share a common node. We then have to think
about what this common node means for their relation and how we want this to
be represented in the drawing. The second case contains edges with no common
node. Here we have to sort them such that no unnecessary crossings are created.
The condition under which a crossing between two edges is unavoidable is still
the same as in the straight-line drawing.

In the future a formal study of the crossing number of the presented drawings
would be interesting, as well as an improvement to the straightening step and
the incorporation of more cross-layer criteria.



Robust Genealogy Drawings 639

References

1. Bannister, M.J., Brown, D.A., Eppstein, D.: Confluent Orthogonal Drawings of
Syntax Diagrams. Springer International Publishing, Cham (2015)
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