
Advances in Computer Vision and Pattern Recognition

Rogerio Schmidt Feris
Christoph Lampert
Devi Parikh    Editors 

Visual 
Attributes



Advances in Computer Vision and Pattern
Recognition

Founding editor

Sameer Singh, Rail Vision, Castle Donington, UK

Series editor

Sing Bing Kang, Microsoft Research, Redmond, WA, USA

Advisory Board

Horst Bischof, Graz University of Technology, Austria
Richard Bowden, University of Surrey, Guildford, UK
Sven Dickinson, University of Toronto, ON, Canada
Jiaya Jia, The Chinese University of Hong Kong, Hong Kong
Kyoung Mu Lee, Seoul National University, South Korea
Yoichi Sato, The University of Tokyo, Japan
Bernt Schiele, Max Planck Institute for Computer Science, Saarbrücken, Germany
Stan Sclaroff, Boston University, MA, USA



More information about this series at http://www.springer.com/series/4205



Rogerio Schmidt Feris • Christoph Lampert
Devi Parikh
Editors

Visual Attributes

123



Editors
Rogerio Schmidt Feris
IBM T.J. Watson Research Center
Yorktown Heights, NY
USA

Christoph Lampert
Computer Vision and Machine Learning
IST Austria
Klosterneuburg
Austria

Devi Parikh
Georgia Tech
Atlanta, GA
USA

ISSN 2191-6586 ISSN 2191-6594 (electronic)
Advances in Computer Vision and Pattern Recognition
ISBN 978-3-319-50075-1 ISBN 978-3-319-50077-5 (eBook)
DOI 10.1007/978-3-319-50077-5

Library of Congress Control Number: 2016958717

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

Visual attributes are generally defined as mid-level semantic visual concepts or
properties that are shared across categories, e.g., furry, striped, metallic, young.
They have recently gained significant popularity in computer vision, finding
applications in zero-shot classification (where a machine can recognize a concept
even without having seen it before), image ranking and retrieval, fine-grained
categorization, human–machine interaction, and many others.

This book provides an overview of and summarizes recent advances in machine
learning and computer vision related to visual attributes, while exploring the
intersection with other disciplines such as computational linguistics and human–
machine interaction. It contains a collection of chapters written by world-renowned
scientists, covering theoretical aspects of visual attribute learning as well as prac-
tical computer vision applications.

We would like to express our sincere gratitude to all chapter contributors for their
dedication and high-quality work, as well as to Simon Rees andWayneWheeler from
Springer for their support and help throughout the book’s preparation.

Yorktown Heights, NY, USA Rogerio Schmidt Feris
Vienna, Austria Christoph Lampert
Atlanta, GA, USA Devi Parikh
September 2016

v



Contents

1 Introduction to Visual Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Rogerio Schmidt Feris, Christoph Lampert and Devi Parikh

Part I Attribute-Based Recognition

2 An Embarrassingly Simple Approach to Zero-Shot Learning . . . . . 11
Bernardino Romera-Paredes and Philip H. S. Torr

3 In the Era of Deep Convolutional Features: Are Attributes Still
Useful Privileged Data?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Viktoriia Sharmanska and Novi Quadrianto

4 Divide, Share, and Conquer: Multi-task Attribute Learning
with Selective Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Chao-Yeh Chen, Dinesh Jayaraman, Fei Sha and Kristen Grauman

Part II Relative Attributes and Their Application to Image Search

5 Attributes for Image Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Adriana Kovashka and Kristen Grauman

6 Fine-Grained Comparisons with Attributes . . . . . . . . . . . . . . . . . . . . 119
Aron Yu and Kristen Grauman

7 Localizing and Visualizing Relative Attributes . . . . . . . . . . . . . . . . . 155
Fanyi Xiao and Yong Jae Lee

Part III Describing People Based on Attributes

8 Deep Learning Face Attributes for Detection and Alignment . . . . . 181
Chen Change Loy, Ping Luo and Chen Huang

9 Visual Attributes for Fashion Analytics . . . . . . . . . . . . . . . . . . . . . . . 215
Si Liu, Lisa M. Brown, Qiang Chen, Junshi Huang, Luoqi Liu
and Shuicheng Yan

vii



Part IV Defining a Vocabulary of Attributes

10 A Taxonomy of Part and Attribute Discovery Techniques. . . . . . . . 247
Subhransu Maji

11 The SUN Attribute Database: Organizing Scenes
by Affordances, Materials, and Layout . . . . . . . . . . . . . . . . . . . . . . . 269
Genevieve Patterson and James Hays

Part V Attributes and Language

12 Attributes as Semantic Units Between Natural Language
and Visual Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Marcus Rohrbach

13 Grounding the Meaning of Words with Visual Attributes . . . . . . . . 331
Carina Silberer

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

viii Contents



Chapter 1
Introduction to Visual Attributes

Rogerio Schmidt Feris, Christoph Lampert and Devi Parikh

Visual recognition has significantly advanced in recent years, particularly through the
widespread adoption of deep convolutional neural networks [22, 28] as the main tool
for solving computer vision problems. The recognition accuracy recently obtained in
standard benchmark datasets, such as Imagenet [7], has even surpassed human-level
performance [15].

The fuel to power up these neural network models is training data. In fact, current
methods often require at least thousands of manually annotated training examples
for learning robust classifiers for new categories. While it is easy to obtain a large
number of example images for common categories, such as images of vehicles or
dogs, it is not straightforward to obtain annotated training sets for other infrequent
categories, such as a particular vehicle model or a specific dog breed. There are tens
of thousands of basic categories in the world (and significantly more subordinate
categories) [3]. For many of them, only a few or no examples at all are available.

Zero-data or zero-shot classification refers to the problem of recognizing cate-
gories for which no training examples are available [26, 30]. This problem happens
in many practical settings. As an example, for the task of predicting concrete nouns
from neural imaging data [30], many nouns may not have corresponding neural
image examples because of the costly label acquisition process. In the visual surveil-
lance domain, while conducting a criminal investigation, the police may have only

R.S. Feris (B)
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2 R.S. Feris et al.

eyewitness descriptions available for searching a targeted suspect, instead of exam-
ple images [13, 40]. Many fine-grained visual categorization tasks have classes for
which only a few or no training images exist. For instance, the ImageNet dataset has
30 mushroom synsets, each with 1000 images, whereas there are more than ten thou-
sand mushroom species found in nature. The zero-shot classification problem is also
common in other fields. In large vocabulary speech recognition systems, it is infea-
sible to acquire training samples for each word. Recommender systems face issues
when new apps are released without any user ratings (also known as the cold-start
problem [35]).

Visual attributes, which are generally defined asmid-level semantic properties that
are shared across categories (e.g., furry, yellow, four-legged), provide an effective
way of solving the zero-shot classification problem. As initially demonstrated by
Lampert et al. [25, 26], a novel unseen category with an associated description
based on semantic attributes (either provided by experts or mined from language
sources, such asWikipedia [33, 34]) can be recognized by leveraging visual attribute
classifiers, which can be learned using existing training data from known categories.
This process is aligned with human capabilities of identifying objects only based on
descriptions. For example, when given a sentence like “large gray animals with long
trunks,” we can reliably identify elephants [26]. Currently, the highest-performing
methods for zero-shot learning rely on visual attributes, often in connectionwith other
forms of semantic embedding such as distributional word vector representations [1,
2, 14, 33].

Visual attributes are both semantic (human-understandable) and visual (machine-
detectable). In addition to zero-shot learning, they have proven effective in various
other applications. As a communication channel between humans and machines,
attributes have been used for interactive recognition of fine-grained categories [4],
active learning [21], and image search with humans in the loop [20]. Attributes
discretize a high dimensional feature space into a simple and readily interpretable
representation that can be used to explain machine decisions to humans [16] and
predict user annoyance [5]. Conversely, humans can provide rationales to machines
as a stronger form of supervision through visual attributes [10]. Along this direc-
tion, attributes can serve as a form of privileged information [36] for improving
recognition, especially when only a few training examples are available.

Another area inwhich attributes have recently played amajor role is visual analysis
of people. In the visual surveillance domain, state-of-the-art person reidentification
systems [27, 37, 39] benefit from human attributes as features for improving match-
ing of people across cameras. The extraction of face and clothing attributes enable
search for suspects or missing people based on their physical description [13, 40]. In
e-commerce applications, attributes are very effective in improving clothing retrieval
[17] and fashion recommendation [29]. It has also been shown that facial attribute
prediction is helpful as an auxiliary task for improving face detection [42] and face
alignment [43]. Methods for image ranking and retrieval also benefit from attributes
as a compact and semantic image representation [11, 23, 38].

Other applications of visual attributes include describing unfamiliar objects [12],
scene analysis [32], material classification [6], and image virality prediction [8].
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Beyond semantics, attributes have been used for understanding and predicting the
memorability and aesthetics of photographs [9, 18, 19]. Finally, attributes have been
recently used for image editing (e.g., allowing users to adjust the attributes of a scene
to be “snowy” or “sunset”) [24] and for conditional image generation in the context
of generative adversarial networks [41].

This book’s goal is to summarize the main ideas related to visual attributes that
were proposed in the past few years, and to cover recent research efforts related to
this emerging area in an accessible manner to a wider research community. Next, we
provide an overview of the chapters of the book, which comprise both theoretical
aspects of attribute learning and practical applications.

1.1 Overview of the Chapters

Part I: Attribute-Based Recognition

The first part of the book covers attribute-basedmethods for recognition of unseen
classes for which training examples are unavailable (i.e., zero-shot classification),
recognition of seen classes, where attributes are used as privileged information during
the training stage, and methods for multitask attribute learning.

Chapter 2, by Bernardino Romera-Paredes and Philip H.S. Torr, introduces the
problem of zero-shot learning and proposes a general framework that models the
relationships between features, attributes, and classes, so the knowledge learned at
the training stage can be transferred to the inference stage. The method is easily
implemented: one line of code for training and another for inference; yet, it achieves
impressive results on standard benchmark datasets.

In Chap.3, Viktoriia Sharmanska and Novi Quadrianto consider the problem of
visual recognition of categories when their attributes are used as privileged infor-
mation during training time. In particular, they address whether attributes are still
useful privileged data when modern deep convolutional features are used for visual
classification. Their analysis shows that the answer to this question depends on the
classification task’s complexity.

In Chap.4, Chao-Yeh Chen, Dinesh Jayaraman, Fei Sha, and Kristen Grauman
address the problem of multitask attribute learning, exploring when and to what
extent sharing is useful for attribute learning. They introduce the idea of selective
sharing during multitask learning of attributes, using semantic knowledge to decide
what to share and what not to share during learning.

Part II: Relative Attributes and Their Application to Image Search

The second part of the book introduces the concept of relative attributes [31],
which consists of measuring the relative strength of properties (for example, “bears
are furrier than giraffes”) instead of simply determining whether they are present

http://dx.doi.org/10.1007/978-3-319-50077-5_2
http://dx.doi.org/10.1007/978-3-319-50077-5_3
http://dx.doi.org/10.1007/978-3-319-50077-5_4


4 R.S. Feris et al.

or not, and demonstrates the effectiveness of modeling relative attributes in image
search applications.

In Chap.5, AdrianaKovashka andKristenGrauman show how semantic attributes
can be effectively used for interactive image search with user feedback based on rela-
tive attribute comparisons. They present a system called “WhittleSearch,” which can
answer queries such as “showme shoes like these, butmore formal.” This chapter also
covers techniques for actively selecting images for feedback and adapting attribute
models for personalized user queries.

Chapter 6, by Aron Yu and Kristen Grauman, addresses the problem of fine-
grained visual comparisons with attributes, which is valuable for sophisticated image
search systems that may need to distinguish subtle properties between highly similar
images. They develop computational models based on local learning for fine-grained
visual comparisons, where a predictive model is trained on the fly using only the data
most relevant to a given input. They also address the problem of determining when
an image pair is indistinguishable in terms of a given attribute.

In Chap.7, Fanyi Xiao and Yong Jae Lee introduce a weakly supervised method
for automatically discovering the spatial extent of relative attributes in images. This
is achieved by mining a set of local, transitive connections (“visual chains”) that
establish correspondences between the same object parts across images. They show
that the proposed localized approach better models relative attributes than baselines
that either use global appearance features or stronger supervision.

Part III: Describing People Based on Attributes

Automatically describing people based on their fine-grained semantic attributes is
important formany application domains, such as visual surveillance and e-commerce.
The third part of the book covers state-of-the-art methods for estimation of human
attributes and their use in different applications.

Chapter 8, by Chen Change Loy, Ping Luo, and Chen Huang, presents recent
progress and cutting-edge methods based on deep learning for solving problems
in estimating facial attributes such as gender, age, presence of facial hair, eyewear,
hairstyle, and others. They cover approaches for handling class imbalance in attribute
prediction, and demonstrate the use of facial attribute classification as an auxiliary
task for improving face detection and face alignment.

In Chap.9, Si Liu, Lisa Brown, Qiang Chen, Junshi Huang, Luoqi Liu, and
Shuicheng Yan introduce methods that leverage facial and clothing attributes as a
mid-level representation for applications related to fashion. In particular, they show
that modeling attributes is crucial for fashion recommendation systems. In addition,
they show that attributes play a major role in a system for clothing retrieval from
online shopping catalogs.

Part IV: Defining a Vocabulary of Attributes

After covering multiple uses of visual attributes, as described earlier, we address
the problem of discovering them, i.e., how to define a vocabulary of attributes.

http://dx.doi.org/10.1007/978-3-319-50077-5_5
http://dx.doi.org/10.1007/978-3-319-50077-5_6
http://dx.doi.org/10.1007/978-3-319-50077-5_7
http://dx.doi.org/10.1007/978-3-319-50077-5_8
http://dx.doi.org/10.1007/978-3-319-50077-5_9
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In Chap.10, Subhransu Maji surveys recent methods and defines a taxonomy
of techniques for discovering a vocabulary of parts and attributes. The approaches
discussed in this survey consider a vocabulary of attributes defined by experts and
based on discovery methods, such as non-semantic embeddings, text mining, simi-
larity comparisons, and others.

In Chap.11, Genevieve Patterson and James Hays use crowdsourcing to generate
a vocabulary of discriminative scene attributes related to affordances, materials, and
spatial layout. After the attributes are discovered, they annotate more than ten thou-
sand images with individual attribute labels, and show that attribute models derived
from this data serve as an effective intermediate representation for zero-shot learning
and image retrieval tasks.

Part V: Attributes and Language

We conclude our volume with a forward-looking topic: the connection of visual
attributes and natural language.

In Chap.12, Marcus Rohrbach discusses using visual attributes as semantic units
between natural language and visual recognition. In particular, he covers methods for
mining attributes from language resources, generating sentences from images and
video, grounding natural language in visual content, and visual question answering.

InChap.13,CarinaSilberer states that distributionalmodels ofwordmeaninghave
been criticized as “disembodied” in that they are not grounded in perception, and
show that visual attributes predicted from images can be used as a way of physically
grounding word meaning. Silberer introduces a new large-scale dataset of images
annotated with visual attributes and a neural network-based model, which learns
higher-level meaning representations by mapping words and images, represented by
attributes, into a common embedding space.
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Chapter 2
An Embarrassingly Simple Approach
to Zero-Shot Learning

Bernardino Romera-Paredes and Philip H. S. Torr

Abstract Zero-shot learning concerns learning how to recognise new classes from
just a description of them. Many sophisticated approaches have been proposed to
address the challenges this problem comprises. Herewe describe a zero-shot learning
approach that can be implemented in just one line of code, yet it is able to outperform
state-of-the-art approaches on standard datasets. The approach is based on a more
general framework which models the relationships between features, attributes, and
classes as a network with two linear layers, where the weights of the top layer are
not learned but are given by the environment. We further provide a learning bound
on the generalisation error of this kind of approaches, by casting them as domain
adaptation methods. In experiments carried out on three standard real datasets, we
found that our approach is able to perform significantly better than the state of the
art on all of them.

2.1 Introduction

Zero-shot learning (ZSL) is a relatively recent machine learning paradigm that was
introduced in the works [21, 28], and quoting the latter, it aims to tackle the following
question:

Given a semantic encoding of a large set of concept classes, can we build a classifier to
recognise classes that were omitted from the training set?

That is, ZSL consists in recognising new categories of instances without training
examples, by providing a high-level description of the new categories that relate
them to categories previously learned by the machine. This can be done by means of

B. Romera-Paredes (B) · P.H.S. Torr
Department of Engineering Science, University of Oxford, Parks Road,
Oxford OX1 3PJ, UK
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learning an intermediate encoding describing each class, referred to as attributes. In
words of [1]:

Attributes correspond to high-level properties of the objects which are shared across multiple
classes, which can be detected by machines and which can be understood by humans.

One recurrent example that we mention in this chapter is the use of attributes such
as white, strong, furry, and quadrupedal, to describe and learn classes of animals.

Zero-shot learning has attracted considerable attention due to both its wide
applicability to many real- world situations and the singular challenges it presents.
An example of ZSL happens when dealing with an ever growing set of classes, such
as detecting new species of living beings, using attributes such as the ones men-
tioned in the previous example. Another scenario occurs when the granularity of the
description of the categories to be distinguished makes it infeasible to obtain training
instances for each of them, e.g. when a user wants to recognise a particular type of
shoe (we refer to Chap. 9 for more on this topic). The main challenge ZSL poses is to
design a model able to exploit the relations between features, attributes, and classes,
so that the knowledge learned at the training stage can be transferred to the inference
stage, in a similar way as human beings are able to understand a new concept, if
it is described as a combination of previously known attributes or concepts [27].
Hereafter, we use the term signature to refer to this attribute description of a class.

Zero-shot learning is inherently a two-stage process: training and inference. In
the training stage, knowledge about the attributes is captured, and in the inference
stage this knowledge is used to categorise instances among a previously unseen
set of classes. Many efforts have been made to improve the training stage [10, 15,
17], whereas the inference stage has received little attention [16]. For example many
approaches blindly assume that all attributes convey the same amount of information,
and can be predicted with the same accuracy, thus, they are evenly utilised in the
inference rule. However these assumptions rarely hold true in real world cases.

We study a framework that is able to integrate both stages, overcoming the need
to make strong and unrealistic assumptions, as the ones previously described. This
framework, introduced in [1], is based on modelling the relationship between fea-
tures, attributes, and classes as a (linear) model composed of two layers. The first
layer contains the weights that describe the relationship between the features and the
attributes, and is learned at the training stage. The second layer models the relation-
ship between the attributes and the classes and is fixed using the prescribed attribute
signatures of the classes. Given that the seen classes and the unseen classes are
different, this second layer is interchangeable.

The main contributions of this work are:

• Given the framework in [1], we derive a principled choice of the regularizer, which
has three nice properties:

1. It performs comparably or better than the state of the art.
2. It is efficient both at the training and at the inference stages.
3. It is extremely easy to implement: one line of code for training and another one

for inference (without calling any external functions).

http://dx.doi.org/10.1007/978-3-319-50077-5_9
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• We provide a bound on the generalisation error of the approaches comprised in
this framework. This is done by bridging the gap between zero-shot learning and
domain adaptation, and making use of previous results in the latter [4, 5].

The remainder of the chapter is organised as follows. In Sect. 2.2 we briefly review
methods proposed to deal with zero-shot learning. In Sect. 2.3 we describe the above
ZSL framework, and present our method. In Sect. 2.4 we analyse its learning capa-
bilities. In Sect. 2.5 we report the results of our experiments on one synthetic and
three standard real datasets. Finally in Sect. 2.6 we discuss the main contributions of
this work and propose several research lines that can be explored.

2.2 Related Work

Zero-shot learning relies on learning how to recognise several properties or attributes
from objects, so that these learned attributes can be harnessed when used in the
description of new, unseen classes. Indeed, it is attributes learning that drives the
possibility of learning unseen classes based only on their description [27]. Within
the context of machine learning, an antecedent of the notion of attribute learning can
be found in [9] in the form of binary descriptors. The aim was using these binary
descriptors as error-correcting codes, although these did not convey any semantic
meaning. Recently, there has been an increasing interest in attributes learning, par-
tially due to the availability of data containing tags or meta-information. This has
proved to be particularly useful for images [10, 11, 21], as well as videos [13, 24].

Many papers focus on attributes learning, namely the training stage in zero-shot
learningmethods, putting special emphasis on the need to disentangle the correlations
between attributes at the training stage, because these properties may not be present
in the target data [17]. For example in [10] the authors focus on the feature extraction
process with the aim of avoiding confusion in the learning process of attributes that
often appear together in the training set instances.

With regard to the inference stage inwhich the predicted attributes are combined to
infer a class, many approaches are variants of 1-nearest neighbour, or probabilistic
frameworks. Approaches that resemble 1-nearest neighbour consist in looking in
the attribute space for the closest unseen class signature to the predicted attribute
signature of the input instance. It is used in [10], and in [28] the authors study risk
bounds of this approach when using the Hamming distances between the predicted
signature and the signatures of the unseen classes.Whereas 1-nearest neighbour is an
intuitive way for inferring classes from the attributes, it presents several drawbacks.
Namely, it treats equally all dimensions of the attribute space, which may be sub-
optimal, as some attributes aremore important than others for discriminating between
classes, and metrics such as Hamming distance ignore quantitative information in
the prediction of the attributes.
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In [21, 22] the authors propose a two-stage probabilistic framework in which
the predictions obtained in the first stage can be combined to determine the most
likely unseen class. Within this framework two approaches are proposed: directed
attribute prediction (DAP), and indirect attribute prediction (IAP). In DAP a proba-
bilistic classifier (e.g. logistic regression model) is learned at the training stage for
each attribute. At the inference stage, the previous estimators are used to infer among
the unseen classes provided their attributes signatures. In IAP one probabilistic clas-
sifier is learned for each seen class, whereas at the inference stage the predictions
are combined accounting for the signatures of both seen and unseen classes. The
DAP approach has been widely used by many other methods. In [35] the authors
extend DAP by weighting the importance of each attribute, based on its frequency of
appearance. These probabilistic approaches bring a principled way of combining the
attribute predictions of a new instance in order to infer its class. However, in addition
to being unable to estimate the reliability of the predicted attributes, they introduce
a set of independence assumptions that hardly ever hold in real world, for example,
when describing animals the attributes “terrestrial” and “farm” are dependent, but
are treated as independent in these approaches.

Very recently, the authors of [16] proposed an approach that acknowledges uncer-
tainty in the prediction of attributes, havingmechanisms to deal with it. The approach
is based on random forests that classify attribute signatures into the unseen classes,
using a validation partition from the training set. The resultant model empirically
proves to be superior to previous inferencemethods, such asDAP, and it obtains state-
of-the-art results in the benchmark datasets. One of the limitations of this model is
the need to have the attribute signatures of the unseen classes at the training stage.
In other words, the model learned at the training stage is tailored to work with a
predefined set of unseen classes.

The approach we describe in Sect. 2.3 bypasses the limitations of these methods
by expressing a model based on an optimisation problem which relates features,
attributes and classes. There are some works which follow a similar strategy. A
relevant approach is the one described in [1], where the authors propose a model that
implicitly learns the instances and the attributes embeddings onto a common space
where the compatibility between any pair of them can bemeasured. The approach we
describe here is based on the same principle, however we use a different loss function
and regularizer which not only makes the whole process simpler and efficient, but
also leads tomuch better results. Another related approach is proposed in [14], where
the authors use the information regarding the correlations between attributes in both
training and test instances. The main differences are that they focus on attribute
prediction, and they employ a max-margin formulation that leads to a more complex
approach. These approaches [1, 14], as well as the one we propose, can be seen as
particular instances of the general framework described in [37], which unifies a wide
range of multitask learning and multi-domain learning methods.

Other approaches consider the attributes as latent variables to be learned. For
example in [36], an explicit feature map is designed to model the relationships
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between features, attributes and classes. Other approaches, such as [24, 26], con-
sider different schemes where attributes representations are to be learned.

The approach we describe is grounded on the machine learning areas of transfer
learning and domain adaptation. The term transfer learning encompasses several
machine learning problems, and has received several names, such as learning to
learn [23] or inductive transfer [7, 31, 33]. Here, we refer to transfer learning in
the lifelong learning sense, that is, the aim is to extract knowledge from a set of
source tasks, so that it can be applied to learn future tasks more efficiently. Zero-shot
learning problems share the necessity to extrapolate the knowledge gained previously
to tackle a new learning scenario. The main difference is that in transfer learning the
information about the new tasks is given as a set of labelled instances, whereas
in zero-shot learning this information takes the form of descriptions of the unseen
classes. An extensive review of transfer learning methods can be found in [29].

The aim of domain adaptation is to learn a function from data in one domain,
so that it can be successfully applied to data from a different domain [4, 8, 19]. It
resembles transfer learning but there are important differences to note. In transfer
learning the marginal input distribution (domain) in both source and target tasks is
supposed to be the same, whereas each task comprises a different objective predic-
tive function. For example, given a set of journal documents sampled from a fixed
marginal distribution, a source task may consist in classifying documents between
different topics, and the target task could be about classifying each document in terms
of its author. Domain adaptation makes the reverse assumption, that is, the objective
predictive function is the same but the marginal distributions for source and target
tasks are different. Following the previous example, nowwe have a common function
to learn: classifying documents in terms of different topics. However the source and
target tasks receive documents from two different journals, that is, from two differ-
ent marginal distributions. The link between our approach and domain adaptation
becomes clear in Sect. 2.4.1.

2.3 Embarrassingly Simple ZSL

In order to explain our approach, we start by describing a standard linear supervised
learning method, and then extend that model to tackle the ZSL scenario. In the
following, we adopt the convention of using lower-case letters to denote scalars,
lower-cases bold letters to denote vectors, and higher-case bold letters to denote
matrices.

Supervised linear model

Let us denote by X ∈ R
d×m the instances available at the training stage, where d is

the dimensionality of the data, and m is the number of instances. Similarly we use
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Y ∈ {0, 1}m×z to denote the ground truth labels of each training instance belonging
to any of the z classes. In most cases, each row of Y contains only one positive
entry indicating the class it belongs to. Nevertheless, the present framework allows
an instance to belong to several classes simultaneously.

If wewere interested in learning a linear predictor for z classes, wewould optimise
the following problem:

minimise
W∈Rd×z

L
(
X�W,Y

) + Ω (W) , (2.1)

where W contains the parameters to be learned, L is a convex loss function, and Ω

a convex regularizer. Problem (2.1) encompasses several approaches, depending on
the choice of L and Ω . For example if L is the sum of hinge losses, and Ω is the
Frobenius norm, this would lead to a standard support vector machine (SVM), but
one can consider other loss functions such as logistic loss, and other regularizers,
such as the trace norm, leading to multitask learning methods [2, 32].

ZSL model

Quoting [21], the formal definition of the ZSL problem can be described as follows:

Let (x1, y1), . . . , (xm , ym) ⊂ X × Y be training samples where X is an arbitrary feature
space and Y consists of z discrete classes. The task is to learn a classifier f : X −→ Y ′ for
a label set Y ′ of z′ classes, that is disjoint from Y .

In order to accomplish that, we are given the attributes of all classes as additional
information. We assume that each class is described by a known signature composed
of a attributes. We can represent the training signatures in a matrix S ∈ [0, 1]a×z .
This matrix may contain boolean entries, when the description of classes is defined
as a list of attributes, or more generally, it may contain for each attribute any value in
[0, 1] providing a soft link between attributes and classes. Together matrices Y and
S provide enough information so that one can obtain the ground truth attributes for
each instance.

In problem (2.1) the attributes are not used, and therefore, there is no way to
perform knowledge transfer from this set of classes to new classes. One can introduce
the given information about the attributes, S, by introducing a mapping from the
attributes to the feature space, V, such that W = VS, where V ∈ R

d×a . That leads
to the following problem, similar to the one proposed in [1]:

minimise
V∈Rd×a

L
(
X�VS,Y

) + Ω (VS) . (2.2)

At the inference stage, given the features of an instance, x ∈ R
d , wewish to determine

to which class it belongs to, among a new set of z′ unseen classes, Y ′, disjoint from
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the set of seen classes, Y . To do so, we are provided with their attributes signatures,
S′ ∈ [0, 1]a×z′

. The prediction is then given by

argmax
i∈[1,...,z′]

x�Vs′i , (2.3)

where s′i ∈ [0, 1]a denotes the i-th column of matrix S′.
One interpretation of thismodel is provided in [1]. There, each class is represented

in the attribute space by means of its signature. Thus, the learning weights, V, map
any input instance, x, into this attribute space. Given that both classes and instances
are mapped into a common space, one can estimate the compatibility between them.
Thus, at the inference stage, themodel predicts the class inY ′ that is most compatible
with the input instance, by making use of (2.3). Note that if all given signatures are
normalised,

∥∥s′1
∥∥
2 = ∥∥s′2

∥∥
2 = . . .

∥∥s′z′
∥∥
2, then the notion of maximum compatibility

among the signatures corresponds to finding the minimal Euclidean distance with
respect to V�x in the attribute space.

It is important to note the advantage of this model with respect to typical ZSL
approaches reviewed in Sect. 2.2. Recall that these approaches were based on first
estimating the attributes of a given instance, and then finding the class that best
matches the predicted attributes, using some probabilistic or distance measure. In
this way, all attributes are assumed to convey the same amount of information, an
assumption that is likely detrimental, as often some attributes have more discrimina-
tive power than others. On the other hand, the approach in (2.2) is able to learn and
exploit the relative importance of each of the attributes for discriminating between
classes. For example, if the i-th attribute has less discriminative powers than the
others, then the i-th column of the learned weights V should have a smaller norm
than the others, so that it has a smaller contribution in the classification decision.

The method above makes the implicit assumption that for each attribute, its reli-
ability to discriminate between seen classes is similar to its reliability to distinguish
between unseen classes. In order to explain why this assumption is reasonable, let
us recall the example of animals classification, and let us assume that we are given
the attributes it has teeth, and is white. The former attribute may be more difficult
to recognise than the latter, given that some instances of animals may not show the
mouth, whereas the colour of an animal is easy to infer. Hence the importance of the
attribute it has teeth for the final classification decision should be low, independently
of the classes at hand, given that it is more difficult to learn a reliable predictor for
that attribute. This assumption is relevant whenever the reliability on estimating the
attributes remain constant, regardless of the classes considered. The key point of
this framework is that it does not try to minimise explicitly the classification error
of the attributes, which are an intermediate layer that we are not directly interested
in. Instead, it minimises the multiclass error of the final classes, by both learning
implicitly how to recognise attributes, and also pondering the importance of each of
them in the decision of the class.
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There are several points to note from problem (2.2). First, if the regularizer Ω

is of the form Ω(B) = Ψ
(
B�B

)
for an appropriate choice of the function Ψ , then

by using the representer theorem [3], this leads to a kernel version of the problem,
where only inner products between instances are used:

minimise
A∈Rm×a

L (KAS,Y) + Ψ
(
S�A�KAS

)
, (2.4)

where K ∈ R
m×m is the Gram matrix, ki, j = 〈

φ(xi ), φ(x j )
〉
, being φ(x) the repre-

sentation of x in a given feature space. Secondly, problem (2.2) and its equivalent
problem (2.4) are convex, thus its globally optimal solution can be found.

A scheme of this framework is shown in Fig. 2.1. This framework is utilised in
its linear form (Eq.2.2) in [1], for a particular choice of the loss function (based on
the hinge loss function), and the regularizer (based on the Frobenius norm of the
learning weights). In the following, we describe and justify a different choice for
those elements, which leads to a more efficient and effective training model.

2.3.1 Regularisation and Loss Function Choices

Wenow come to the first contribution of this chapter. The framework described above
comprises several approaches, which vary depending on their regularizers and loss
functions. Herewe design a regularizerwhich accomplishes the following desiderata:

• Given any (training) attribute signature, si ∈ [0, 1]a for some i ∈ [1, . . . , z], its
mapping to the d-dimensional feature space is given by Vsi ∈ R

d . This repre-
sentation must be controlled so that ideally the mapping of all signatures on the
feature space have a similar Euclidean norm. This allows fair comparisons between
signatures, and prevents problems that stem from highly unbalanced training sets.

• Conversely, the mapping of each training instance xi , for i ∈ [1, . . . ,m], into the
a-dimensional attribute space is given by V�xi ∈ R

a . Similarly to the previous
point, it would be interesting to bound the Euclidean norm of that term. The aim
here is to map all instances to a common region in the attribute space. In this
way, we can encourage the generalisation of the model to test instances, if their
representation into the attribute space fall into the same region where the training
instances lie.

A regularizer that accomplishes the previous points can be written as follows:

Ω (V;S,X) = γ ‖VS‖2Fro + λ
∥∥X�V

∥∥2

Fro + β ‖V‖2Fro , (2.5)

where the scalars γ, λ, β are the hyper-parameters of this regularizer, and ‖·‖Fro
denotes the Frobenius norm. The first two terms account for the above points, and
we have added one further term consisting in a standard weight decay penalising the
Frobenius norm of the matrix to be learned.
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Fig. 2.1 Summary of the framework described in Sect. 2.3. At the training stage, we use the matrix
of signatures S together with the training instances to learn the matrixV (in grey) which maps from
the feature space to the attribute space. At the inference stage, we use that matrix V, together with
the signatures of the unseen classes, S′, to obtain the final linear modelW′
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Having made these choices, we note that if:

• L (P,Y) = ‖P − Y‖2Fro.
• β = γ λ

then the solution to problem (2.2) can be expressed in closed form:

V = (
XX� + γ I

)−1
XYS� (

SS� + λI
)−1

. (2.6)

This, and the corresponding kernel version that can be derived from (2.4), are the
one-line-of-code solutions we mentioned in the introduction.

2.4 Risk Bounds

In this section we provide some theoretical guarantees about our approach, bounding
the expected error on the inference stage with respect to the training error. In order
to do so, we first transform our problem into a domain adaptation one.

2.4.1 Simple ZSL as a Domain Adaptation Problem

Let us assume that problem (2.2) can be expressed in the following way:

minimise
V∈Rd×a

m∑

i=1

z∑

t=1

�
(
x�
i Vs

�
t , yt,i

) + Ω (V) , (2.7)

where � (·, ·) : R × {−1, 1} −→ [0, 1]. That implies that one instance may be clas-
sified to belong to zero, one, or more than one classes. Such an assumption may be
realistic in some cases, for example when there are some instances in the training set
that do not belong to any seen class. Then, problem (2.7) can be expressed in a more
conventional form:

minimise
v∈Rda

m∑

i=1

T∑

t=1

�
(
x̃�
t,iv, yt,i

) + Ω (v) , (2.8)

where
x̃t,i = vec

(
xi s�t

) ∈ R
da . (2.9)

Note that at the inference time, given a new instance, x, the predicted confi-
dence of it belonging to an unseen class t with attribute signature st , is given by
x̃�
t v =v�vec

(
xs�t

)
. Therefore, even if the original test instances x were sampled

from the same distribution as the training instances, the transformation of them
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using attributes signatures makes the training and test instances come from different
distributions. Note also that in the current settings, we are learning a unique com-
mon function across domains. As a consequence, we are facing a domain adaptation
problem.

2.4.2 Risk Bounds for Domain Adaptation

Domain adaptation has been analysed from a theoretical viewpoint in several works
[4, 5]. Here we apply these developments to our problem.

In a domain adaptation problem we assume that the training instances are sam-
pled from a source distribution D, and the test instances are sampled from a target
distributionD′. Following the definition of [4], a function h is said to be a predictor if
it maps from the feature space to {0, 1}, and f is the ground truth labelling function
for both domains, mapping from the feature space to [0, 1]. Then the expected error
of h with respect to the source distribution is defined as:

ε(h) = Ex∼D [| f (x) − h(x)|] ,

and the expected error of h with respect to the target distribution, ε′(h), is defined
accordingly.

Theorem 2 in [4] states that given a hypothesis space H of VC-dimension d̄,
and sets U , U ′ of m̄ instances sampled i.i.d. from D and D′, respectively, then with
probability at least 1 − δ, for every h ∈ H:

ε′(h) ≤ ε(h) + 4

√
2d̄

m̄

(
log

2m̄

d̄
+ log

4

δ

)
+ α + 1

2
d̂HΔH

(U ,U ′) , (2.10)

where

• α is an upper-bound of inf
h∈H

[
ε(h) + ε′(h)

]
. In particular if the ground truth function

f is contained inH, then α = 0.
• dH

(D,D′) is known as the A-distance between distributions D and D′ over the
subsets defined inH [20]:

dH
(D,D′) = 2sup

h∈H
|PD(h) − PD′(h)| ,

where PD(h) denotes the probability of any event in h, under the distribution D.
This is equivalent to the expected maximal accuracy achieved by a hypothesis in
H separating the instances generated by the two different distributions D and D′.
In a similar vein, d̂H (US,UT ) is defined as the empirical distance between the
samples U and U ′.
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• HΔH is the symmetric difference hypothesis space ofH and it is defined as:
HΔH = {

h(x) ⊕ h′(x) : h, h′ ∈ H}
, ⊕ being the XOR operator. That is, a

hypothesis g is in HΔH, if for a couple of hypothesis h,h′ in H, g(x) is pos-
itive if and only if h(x) �= h′(x) for all x .

In our caseH is the hypothesis space composed of all linear classifiers, m̄ = mz,
and d̄ = da + 1. Let us assume that both train and test instances are sampled from
the same distribution, C. When we do the transformation specified in Eq. (2.9) using
S and S′ for the training and test instances, we end up having two different distribu-
tions, D, and D′ and we are interested in quantifying the A-distance between them
over our symmetric difference hypothesis space, dHΔH

(D,D′). The assumption
about both train and test instances are sampled from the same distribution (before
the transformation) may not hold true in many cases, however it can be a fair approx-
imation in the standard case where the contribution of the differences of training and
test distributions of the feature spaces is negligible in comparison to the differences
between S and S′ when quantifying the distance between distributions D and D′.

We observe two extreme cases. The first one contemplates the trivial scenario
where S = S′, so that both distributions are similar and thus the distance is 0. In
that case, if α = 0, the bound given in Eq. (2.10) becomes equivalent to the Vapnik–
Chervonenkis bound on a standard classifier. The second case arises when each
attribute signature of the seen classes is orthogonal to each attribute signature of the
unseen classes, that is, for each i ∈ {1 . . . z}, j ∈ {

1 . . . z′},
〈
si , s′ j

〉 = 0.
To make the explanation of the latter case clearer let us denote by x ∈ R

d any
training instance in the original feature space, and similarly let x′ ∈ R

d be any test
instance. Then, by applying equation (2.9) using the training signature si , and test
signature s′ j we have

x̃i = vec
(
xs�i

) ∈ R
da

x̃′
j = vec

(
x′s′�j

)
∈ R

da

Note that because of the orthogonality assumption between training and test sig-
natures the following holds true:

〈
x̃i , x̃′

j

〉 = trace
(
xs�i s

′
jx′�

)
= 0. (2.11)

Equation (2.11) implies that in the new feature space any training instance is
orthogonal to any test instance. Because of that, the following lemmabecomes useful.

Lemma 1 Let us consider H be the hypothesis space composed of all linear clas-
sifiers. Then given two orthogonal sets P , Q, in which the element 0 is not in either
of them, there exists a hypothesis g ∈ HΔH which separates them.

Proof Let us consider any couple of points p ∈ P , q ∈ Q with the only condition
that they are not zero. We define

h(x) = sign
(
(p + q)�x

)
, and

h′(x) = sign
(
(p − q)�x

)
.
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For any point p′ ∈ P , h(p′) = h′(p′), given that by definition p′ and q are orthog-
onal. Similarly, for any point q′ ∈ Q, h(q′) = −h′(q′).

Therefore, for any point in Q, g ∈ HΔH associated to functions h, h′ ∈ H will
be positive, and for any point in P , the same function g will be negative. �

As a consequence of Lemma 1, when the orthogonality assumption holds, the
right-hand side term inEq. (2.10) becomes bigger than 1, so that the bound is vacuous.
One illustrative instance of this case happenswhenS = [B, 0a,c, ], andS′ = [

0a,b,C
]

for some non-zero matrices B ∈ R
a×b, C ∈ R

a×c. In that case, the set of attributes
that describe the seen classes are completely different from the ones describing the
unseen classes, thus no transfer can be done.

All real scenarios lay between the previous cases. One interesting question is to
characterise the value dHΔH

(D,D′) as a function of solely S and S′. We leave this
question open.

2.5 Experiments

In order to assess our approach and the validity of the statements we made, we con-
ducted a set of experiments on one synthetic and three real datasets, which comprise
a standard benchmark of evaluation of zero-shot learning methods.1

2.5.1 Synthetic Experiments

First we used synthetically generated data with the aim of both checking the cor-
rectness of the described method, which we refer to as ESZSL (embarrassingly
simple zero-shot learning), and comparing it with the baseline algorithm DAP on
a controlled set-up. All hyper-parameters required by these methods were tuned by
a validation process. This process is based on leaving out one subset of validation
classes, so that the performance of the model is validated against them. In all cases
the range of values tried for the hyper-parameters was 10b, for b = −6,−5, . . . , 5, 6.
This set of valueswas chosen after performing preliminary experimentswhich empir-
ically showed that the optimal performance for both approaches is found within this
interval.

The data were generated as follows. Initially, we created the signatures for the
classes by sampling each element of S from a Bernoulli distribution with 0.5 mean.
We created the ground truth mapping from the attributes to the features,V+ ∈ R

a×d ,
where we have fixed a = 100 and d = 10, by sampling every element of it from a
Gaussian distribution G(0, 1). The value of d is intentionally low so that there appear
correlations between the attributes, as is usually the case in real data. For each class t ,

1The code can be found at http://romera-paredes.com/zsl.

http://romera-paredes.com/zsl
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Fig. 2.2 Multiclass
accuracy obtained by DAP
[21], and ESZSL
(Sect. 2.3.1), when varying
the number of seen classes,
z. Vertical bars indicate ±1
standard deviation
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we created 50 instances by first generating their representation in the attribute space
by adding Gaussian noise, G(0, 0.1) to the attribute signature St , then we brought
them back onto the original feature space by using V+. Following this process, we
generated a training set composed of z seen classes, and a test and validation set
composed of 100 unseen classes each.

In the first experiment, we evaluated how the number of seen classes affected
the performance of the methods on unseen classes. To do so, we varied the number
of seen classes from 50 to 500 in intervals of 50. According to the results shown
in Fig. 2.2, we can see that ESZSL significantly outperforms DAP in all cases. It is
remarkable that the performance of ESZSL with 100 seen classes is superior to the
performance of DAP with 500 seen classes. We also observe that the performance
of ESZSL plateaus when the number of seen classes is above 200, possibly because
there is no further margin of improvement.

In Sect. 2.3 we argue that the described approach should be robust to attributes
having different discriminative capabilities for characterising the classes. In the sec-
ond experiment, we assess how the approaches perform in the extreme case where
some attributes provide no information at all about the classes at hand. The way we
have implemented this is by first, synthesising a dataset just as described above, and
second, by randomly selecting a set of attributes (without replacement) so that their
information in all signatures is corrupted. In particular let us define byA the set of all
attributes, with cardinality |A| = a. From this setAwe randomly sampleψ mislead-
ing attributes, creating the set Ψ ⊆ A, |Ψ | = ψ . The way each of the inputs of the
attributes in Ψ is corrupted is again by sampling from a Bernoulli distribution with
0.5 mean. In this experiment we have tried different values of ψ in the range of 5–45
attributes (out of 100), in intervals of 5. The results, reported in Fig. 2.3, show that our
method significantly outperforms the baseline. For example we observe that when
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Fig. 2.3 Multiclass accuracy
obtained by DAP [21], and
ESZSL (Sect. 2.3.1), when
varying the number of
corrupted attributes, ψ .
Vertical bars indicate ±1
standard deviation
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having 15 misleading attributes, our method achieves a comparable performance as
the baseline with none misleading attributes.

2.5.2 Real Data Experiments

We have tried the same real datasets as the ones reported in [16] which are the
Animals with Attributes dataset (AwA) [21], the SUN scene attributes database
(SUN) [30] described in Chap. 11, and the aPascal/aYahoo objects dataset (aPY)
[10]. These consist of collections of images comprising a varied set of categories in
different scopes: animals, scenes, and objects, respectively. TheAwAdataset contains
attribute-labelled classes, which we will use as S in the model. The datasets aPY and
SUN are attribute-labelled instances datasets, so the attribute signature of each class
is calculated as the average attribute signature of the instances belonging to that class.
The characteristics of each of these datasets are summarised in Table2.1.

Table 2.1 Summary of the real datasets employed in the experimental section

AwA aPY SUN

Attributes 85 65 102

Seen classes 40 20 707

Unseen classes 10 12 10

Instances 30, 475 15, 339 14, 340

http://dx.doi.org/10.1007/978-3-319-50077-5_11
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In the followingwe perform three sets of experiments. In the first one, we compare
our approach with alike methods that also belong to the framework described in
Fig. 2.1. In the second set of experiments, we compare our approach against the
current state of the art. Finally in the last experiment, we compare our approach
and a standard classification method, for attributes prediction. The aim here is to
assess whether the good results in zero-shot learning come at the expense of attribute
prediction performance. In all cases, in order to tune the hyper-parameters of the
methods, we use the following validation procedure. We create the validation set
by grouping all instances belonging to 20% of the classes in the training partition,
chosen at random (without replacement). Once the hyper-parameters are tuned, we
pool the validation set instances together with the training set instances in order to
train the final model. We use the range of values, 10b for b = −3,−2, . . . , 2, 3 to
tune all hyper-parameters.

2.5.2.1 Preliminary Experiments

Here we present an experiment comparing our approach to [1]. We used the recently
provided VGG network features [34], of the AwA dataset. This dataset also provides
both binary and continuous versions of the attributes signatures. Here, we compare
these two scenarios. We utilised the best configuration reported on [1], using dif-
ferent training set sizes of 500, 1000, and 2000 instances. The results are shown in
Table2.2. As expected, both approaches perform better when the attributes signa-
tures are continuous. In any case, our approach clearly outperforms [1] in all cases.
It is also worth mentioning that the approach in [1] took more than 11 hours to run
the scenario with 2000 training instances, whereas ours only took 4.12 s.

2.5.2.2 Comparison with the State of the Art

In order to make our approach easily comparable with the state of the art, we used the
set of standard features provided by the authors of the data [16, 21, 30], including
SIFT [25], and PHOG [6]. We used combined χ2-kernels, one for each feature

Table 2.2 Comparison between the approach in [1] andESZSL, usingVGG features extracted from
the AwA dataset, utilising binary attributes signatures (Left), and continuous attributes signatures
(Right)

Training
instances

Binary attributes Continuous attributes

[1] ESZSL [1] ESZSL

500 33.30% 33.85% 47.31% 51.63%

1000 39.02% 43.16% 49.40% 53.87%

2000 41.02% 46.89% 54.09% 56.99%
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Table 2.3 Multiclass accuracy obtained by DAP [21], ZSRwUA [16], the method described in
Sect. 2.3.1 ESZSL, and its modification ESZSL-AS, on the three real datasets described in Table2.1

Method/Dataset AwA aPY SUN

DAP 40.50 18.12 52.50

ZSRwUA 43.01 ± 0.07 26.02 ± 0.05 56.18 ± 0.27

ESZSL 49.30 ± 0.21 15.11 ± 2.24 65.75 ± 0.51

ESZSL-AS − 27.27 ± 1.62 61.53 ± 1.03

channel,2 following the procedure explained in [16, 21]. In all cases, we used the
same attributes signatures, and the same standard partitions between seen and unseen
classes, as the ones employed in [16].

In these experiments we compare 4 methods: DAP [21], ZSRwUA [16], ESZSL
(Sect. 2.3.1), and a small modification of the latter that we call ESZSLAll Signatures
(ESZSL-AS).

ESZSL-AS can be applied in attribute-labelled instances datasets (aPY and SUN),
and consists in treating each training attribute signature as a class in its own right.
That is effectively done by removing Y in Eq. (2.6), where now S ∈ R

a×m contains as
many signatures as the number of training instances. The inference process remains
the same, and the unseen class signatures are used to predict the category.

For each dataset we ran 20 trials, and we report the mean and the standard devi-
ation of the multiclass accuracy in Table2.3. Overall we notice that the approaches
described in Sect. 2.3 significantly outperform the state of the art.

In the AwA dataset, ESZSL achieves an absolute improvement over 6% over the
state of the art. Even more surprising, this performance is better than state-of-the-
art approaches applied to discovered (non-semantic) attributes, which according to
[16] is 48.7. Let us recall that this dataset contains attribute-labelled classes, and so,
ESZSL-AS cannot be applied here.

Regarding the aPY dataset, the standard ESZSL approach has struggled and it is
not able to outperform the DAP baseline. One hypothesis is that the small number of
classes in comparison to the number of attributes has probably affected negatively
the performance. In contrast we see that ESZSL-AS obtains state-of-the-art results,
achieving a 1.25% of improvement over the previous best approach. Its success
can be explained by reversing the previous reasoning about why standard ESZSL
failed. Indeed, ESZSL-AS effectively considers as many seen classes as the number
of training instances.

Finally, in the SUNdataset bothESZSL approaches obtain extremely good results,
significantly outperforming the current state of the art. ESZSL leads the table, achiev-
ing an improvement of 9.6%. We note that here the number of seen classes is much
bigger than the number of attributes, therefore the advantages obtained byESZSL-AS
in the previous experiment vanish.

2Available at www.ist.ac.at/chl/ABC.

www.ist.ac.at/chl/ABC
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Table 2.4 Comparison between SVM (Learning attributes directly), and ESZSL, for attributes
prediction, using mean average precision as a measure

Mean Average
Precision

AwA aPY SUN

Learning attributes
directly

56.95% 30.78% 79.36%

Using X�V from
ESZSL

50.73% 29.51% 68.53%

2.5.2.3 Attributes Prediction

The focus of our model is on maximising the multiclass accuracy among the classes
at hand. However, as a byproduct of the learning process, we can also use V as a way
to predict attributes. In this experiment we check whether these attribute predictors
are effective, or on the contrary, the gain in zero-shot performance comes at the
expense of attribute prediction. In order to do so, we compare the described option
with a simple approach that learns an SVM for each attribute directly. The results
are reported in Table2.4.

The gain in ZSL performance comes at the expense of attribute prediction. This
may be because our approach tends to neglect the attributes that are unreliable or
useless for class prediction, whereas in attribute prediction all are considered equally
important. These results are in the same vein as the ones reported in [1].

2.6 Discussion

In this work, we have described an extremely simple approach for ZSL that is able
to outperform by a significant margin the current state of the art approaches on
a standard collection of ZSL datasets. It combines a linear model together with a
principled choice of regularizers that allow for a simple and efficient implementation.

We have also made explicit a connection between ZSL and domain adaptation. In
particular, we have expressed the framework described in Sect. 2.3 as a domain adap-
tation problem. As a consequence, we are able to translate theoretical developments
from domain adaptation to ZSL.

Given the simplicity of the approach, there are many different research lines that
can be pursued. In this work we focus on semantically meaningful attributes, but
the development of similar ideas applied to word embeddings as in [12], is both
promising and straightforward within this framework. Another interesting research
line is to study the addition of nonlinearities and more layers into the model, leading
to a deep neural network where the top layer is fixed and interchangeable, and all the
remaining layers are learned. Recent works exploring this direction are [18, 37].
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As a concluding comment, we acknowledge that many problems require complex
solutions, but that does not mean that simple baselines should be ignored. On the
contrary, simple but strong baselines both bring light about which paths to follow in
order to build more sophisticated solutions, and also provide a way to measure the
quality of these solutions.
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Chapter 3
In the Era of Deep Convolutional Features:
Are Attributes Still Useful Privileged Data?

Viktoriia Sharmanska and Novi Quadrianto

Abstract Our answer is, if used for challenging computer vision tasks, attributes
are useful privileged data. We introduce a learning framework called learning using
privileged information (LUPI) to the computer vision field to solve the object recog-
nition task in images. We want computers to be able to learn more efficiently at the
expense of providing extra information during training time. In this chapter, we focus
on semantic attributes as a source of additional information about image data. This
information is privileged to image data as it is not available at test time. Recently,
image features from deep convolutional neural networks (CNNs) have become pri-
mary candidates for many visual recognition tasks. We will therefore analyze the
usefulness of attributes as privileged information in the context of deep CNN fea-
tures as image representation. We explore two maximum-margin LUPI techniques
and provide a kernelized version of them to handle nonlinear binary classification
problems. We interpret LUPI methods as learning to identify easy and hard objects
in the privileged space and transferring this knowledge to train a better classifier in
the original data space. We provide a thorough analysis and comparison of informa-
tion transfer from privileged to the original data spaces for two maximum-margin
LUPImethods and a recently proposed probabilistic LUPImethod based onGaussian
processes. Our experiments show that in a typical recognition task such as deciding
whether an object is “present” or “not present” in an image, attributes do not lead
to improvement in the prediction performance when used as privileged information.
In an ambiguous vision task such as determining how “easy” or “difficult” it is to
spot an object in an image, we show that attribute representation is useful privileged
information for deep CNN image features.
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3.1 Introduction

Image representations in terms of semantic attributes have gained popularity in com-
puter vision, where they were used for a variety of tasks ranging from solving clas-
sification problems based on class descriptions instead of training data (zero-shot
learning) [1, 26], enabling interactivity in image search [22], automatically creating
(textual) descriptions of images [13, 25], to providing additional data representations
to computer vision tasks [18, 32, 42, 44, 53]. In this work, we build on the last aspect
where the semantic attribute representation is considered as a source of privileged
information about image data.

The framework called learning using privileged information (LUPI) was formally
introduced by Vapnik et al. [48, 49], and it has not been recognized in the computer
vision community until very recently. The concept is inspired by human experience
of learning with a teacher, when during learning we have access to training examples
and to an additional source of explanation from the teacher. For example, learning a
new concept in mathematics is faster when the teacher explains it to us rather than
if we only get questions and right answers. After the course, the students should be
able to solve new tasks themselves and not rely on the teacher’s expertise anymore.
Training with a teacher can significantly improve the learning process and ability to
generalize for humans and machines [48].

As a general framework, LUPI has been successfully applied to a variety of learn-
ing scenarios: data clustering [14], facial feature detection [52], facial expression
recognition via boosting [7], metric learning [16], learning to rank [42], Gaussian
Processes classification with privileged noise [18], structured estimation problems
[15], image categorization with privileged Internet data [28, 31], counting with back-
propagation [6], and classification with annotation disagreements [43]. There are
several theoretical studies about LUPI exploring its relation with weighted SVM
[27], distillation [29], and similarity control when learning with a teacher [48].

In the standard learning setting, we are given input–output training pairs about
the task we want to learn, for example, images and category labels for object classi-
fication. In the LUPI setting, we have the input–output training pairs plus additional
information for each training pair that is only available during training. There is no
direct limitation on the form of privileged information, i.e., it could be yet another
feature representation like attributes, or a completely different modality like text in
addition to image data, that is specific for each training instance.

Recently, deep learning techniques, particularly convolutional neural networks,
which rely on large data with rich annotations, have produced state-of-the-art image
feature representations [19, 23]. Earlier work in LUPI for visual data with privileged
semantic attributes information [18, 42, 44] do not use these strong features as an
image representation. This chapter will put the LUPI framework in the perspective of
deep learning features. In a similar vein, [32, 53] use semantic attributes as auxiliary
information for learning deep features and show performance gain in object detection
and face alignment tasks. Our paper is complementary to these works as we do not
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learn original or privileged feature representations, but utilize the best available
feature representations to learn a better classifier in the original space.

Approach and contribution
In order to do LUPI, we have to understand how to make use of the data modality
that is not available at test time. For example, training a classifier on the privileged
data is useless, since there is no way to evaluate the resulting classifier on the test
data. At the core of our work lies the assumption that privileged information allows
us to distinguish between easy and hard examples in the training set. Assuming that
examples that are easy or hard with respect to the privileged information will also be
easy or hard with respect to the original data, we enable information transfer from
the privileged to the original data modality. More specifically, we first define and
identify which samples are easy and which are hard for the classification task, and
then we incorporate the privileged information into the sample weights that encodes
its easiness or hardness.

We formalize the above observation in Sect. 3.3, where we study and compare
two maximum-margin learning techniques for LUPI. The first, SVM+, was origi-
nally described by Vapnik [49], and the second,Margin Transfer, is our contribution.
We analyze the core difference of the information transfer in the proposed methods,
and how this kind of knowledge about the learning problem can guide the training
of an image-based predictor to a better solution. In Sect. 3.4, we present our exper-
iments using semantic attributes as privileged information in two scenarios: object
classification and easy-hard recognition.We end with the discussion and conclusions
in Sect. 3.5.

3.2 Related Work

In computer vision problems, it is common to have access to multiple sources of
information. Sometimes all of them are visual, such as when images are represented
by color features as well as by texture features. Sometimes, the modalities are mixed,
such as for images with text captions. If all modalities are present both at training
and at test time, it is rather straight forward to combine them for better prediction
performance. This is studied, e.g., in the fields ofmultimodal ormulti-view learning.
Methods suggested here range from stacking, where one simply concatenates the
feature vectors of all data modalities, to complex adaptive methods for early or late
data fusions [45], including multiple kernel learning [50] and LP-β [17].

Situationswith an asymmetric distribution of information have also been explored.
Inweakly supervised learning, the annotation available at training time is less detailed
than the output one wants to predict. This situation occurs, e.g., when trying to learn
an image segmentation systemusing only per-image or bounding box annotation [24].
In multiple instance learning, training labels are given not for individual examples,
but collectively for groups of examples [30]. The inverse situation also occurs: for
example in the PASCAL object recognition challenge, it has become a standard
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technique to incorporate strong annotation in the form of bounding boxes or per-pixel
segmentations, even when the goal is just per-image object categorization [11, 37].
Similar to strong and weak supervision, situations in which the data representations
differ between training and testing phase can be distinguished by whether one has
less or more information available at training time than at test time. The first situation
occurs, e.g., in tracking, where temporal continuity can be used at test time that might
not have been available at training time [20]. Similarly, it has been shown that image
metadata (geolocation, capture time) [5] and an auxiliary feature modality [21] can
provide additional information at test time compared to only the image information
available at training time.

The situation we are interested in occurs when at training time we have an addi-
tional data representation compared to test time. Different settings of this kind have
appeared in the computer vision literature, but each was studied in a separate way.
For example, for clustering with multiple image modalities, it has been proposed
to use CCA to learn a shared representation that can be computed from either of
the representations [3]. Similarly the shared representation is also used for cross-
modal retrieval [35]. Alternatively, one can use the training data to learn a mapping
from the image to the privileged modality and use this predictor to fill in the values
missing at test time [8]. Feature vectors made out of semantic attributes have been
used to improve object categorization when very few or no training examples are
available [26, 51]. In [10] it was shown that annotator rationales can act as additional
sources of information during training, as long as the rationales can be expressed in
the same data representation as the original data (e.g., characteristic regions within
the training images). For the special case where multiple datasets are available at
training time, it has been shown how to identify and remove their respective bias,
thereby improving the classification performance also on the individual tasks [46].
In considering attributes as auxiliary information for learning feature representation,
[32] improve object detection accuracy and [53] boost performance of their facial
landmark detection with attributes as an additional supervision. Importantly, [32]
remark that attributes help, but only if they are used in a proper way. Proper in
the sense that attribute mixture types instead of attributes are used as the auxiliary
information for learning deep representations. The conjecture is that attributes are too
complex for the deepmodel to learn meaningful features and directly using attributes
does not consider the correlation between them [32].

Our work follows a different route than the above approaches. We are not looking
for task-specific solutions applicable to a specific form of privileged information and
we do not pursue learning feature representations (we assume that we have been
given state-of-the-art features). Instead, we aim for a generic method of classifier
learning that is applicable to any form of privileged information that is given as
additional representations of the training data. We show in the following sections
that such frameworks do indeed exist, and in Sect. 3.4 we illustrate how learning
with attribute representations can naturally be expressed in the LUPI framework.
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3.3 Learning Using Privileged Information

In the following we will formalize the LUPI setup for the task of supervised
binary classification. Assume that we are given a set of N training examples, rep-
resented by feature vectors X = {x1, . . . , xN } ⊂ X = R

d , their label annotation,
Y = {y1, . . . , yN } ∈ Y = {+1,−1}, and additional information also in the form of
feature vectors, X∗ = {x∗

1 , . . . , x
∗
N } ⊂ X ∗ = R

d∗
, where x∗

i encodes the additional
information we have about sample xi . Recent progress addresses the setting where
there is no one-to-one correspondence between original and privileged data [41]. In
this chapter, we focus on the setting of LUPI where privileged information is paired
to each data point. In the context of computer vision, we will consider the exam-
ples in X as images and their features being extracted from the image content, for
example, in a form of bag-of-visual-words histograms [9], or more recently using
a deep convolutional neural network (CNN) architecture [23]. We do not make any
specific assumption about the privileged data space X ∗ yet, and keep the general
notation for the feature vectors extracted from visual, verbal or semantic form of
privileged information. We will refer to X and X ∗ as original and privileged data
spaces, accordingly.

The binary classification task is to learn a prediction function f : X → R from a
spaceF of possible functions, e.g., all linear classifiers. The goal of LUPI is to use the
privileged data, X∗, to learn a better classifier in the original data space f : X → R,
than one would learn without it. Since the privileged data is only available during
training time and comes from a different domain, X ∗, than the original space X , it is
not possible, e.g., to apply functions defined on X to X ∗ or vice versa. In this work,
we describe how to use the privileged data to characterize the training samples in
the original data space into easy and hard cases. Knowing this will help us to direct
the learning procedure toward better generalization and to learn a function of higher
prediction quality.

In the following, we explain two maximum-margin methods for learning with
privileged information that fit to this interpretation. The first method was proposed
by Vapnik et al. [49] in 2009, and the second method is our proposed alternative
model for solving LUPI.

3.3.1 Maximum-Margin Model 1: SVM+

The first model for learning with privileged information, SVM+, [33, 49] is based on
a direct observation that a nonlinearly separable (softmargin) support vectormachine
(SVM) can be turned into a linearly separable (hard margin) SVM if one has access
to a so-called slack oracle. For clarity of presentation, here we include both the soft
margin and the hard margin formulations of SVM
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Soft margin SVM

minimize
w∈Rd ,b∈R

ξ1,...,ξN

1

2
‖w‖2 + C

N∑

i=1

ξi

(3.1a)
subject to, for all i = 1, . . . , N ,

yi [〈w, xi 〉 + b] ≥ 1 − ξi , ξi ≥ 0.
(3.1b)

Hard margin SVM

minimize
w∈Rd ,b∈R

1

2
‖w‖2 (3.2a)

subject to, for all i = 1, . . . , N ,

yi [〈w, xi 〉 + b] ≥ 1. (3.2b)

The soft margin SVM classifier is fully characterized by its weight vector w and
bias parameter b. However, in the training phase, N slack variables ξi—one for each
training sample—also need to be estimated. When the number of training examples

increases, soft margin SVM solutions are known to converge with a rate of O
(

1√
N

)

to the optimal classifier [47]. This is in sharp contrast to the hardmargin solutions that
converge with a faster rate of O

(
1
N

)
. Then one could wonder whether it is possible

for the soft margin SVM to have a faster convergence rate, ideally at the same rate
as the hard margin SVM. If the answer is positive, the improved soft-margin SVM
would require fewer training examples to reach a certain prediction accuracy than a
standard one. Intuitively, with O

(
1
N

)
rate, we will only require 100 samples instead

of 10,000 to achieve the same level of predictive performance.
It might not come as a surprise that if we knew the optimal slack values ξi in the

optimization problem (3.1), for example from an oracle, then the formulation can
be reduced to the Oracle SVM that resembles the hard margin case (3.2) with the
convergence rate O

(
1
N

)
:

Oracle SVM

minimize
w∈Rd , b∈R

1

2
‖w‖2 (3.3a)

subject to, for all i = 1, . . . , N ,

yi [〈w, xi 〉 + b] ≥ ri , where ri is known (ri = 1 − ξi ). (3.3b)

Instead of N + d + 1 unknowns which include slack variables, we are now esti-
mating only d + 1 unknowns which are the actual object of interest, our classifying
hyperplane. The interpretation of slack variables is to tell us which training examples
are easy and which are hard. In the above Oracle SVM, we do not have to infer those
variables from the data as they are given by the oracle.

The idea of the SVM+ classifier is to use the privileged information as a proxy
to the oracle. For this we parameterize the slack for i-th sample ξi = 〈w∗, x∗

i 〉 + b∗
with unknown w∗ and b∗, obtaining the SVM+ training problem
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minimize
w∈Rd ,b∈R

w∗∈Rd∗
,b∗∈R

1

2

(
‖w‖2 +γ

∥
∥w∗∥∥2

)
+ C

N∑

i=1

〈w∗, x∗
i 〉 + b∗ (3.4a)

subject to, for all i = 1, . . . , N ,

yi [〈w, xi 〉 + b] ≥ 1 − [〈w∗, x∗
i 〉 + b∗] (3.4b)

and 〈w∗, x∗
i 〉 + b∗ ≥ 0. (3.4c)

The above SVM+ parameterizes the slack variables with a finite hypothesis space
(a scalar and a weight vector with dimension d∗, for example), instead of allowing
them to grow linearly with the number of examples N .

Numerical optimization
The SVM+ optimization problem (3.4) is convex, and can be solved in the dual
representation using a standard quadratic programming (QP) solver. For a medium
size problem (thousands to hundreds of thousands of samples), a general purpose QP
solvermight not suffice, and special purpose algorithms have to be developed to solve
the QP. In [34], suitable sequential minimal optimization (SMO) algorithms were
derived to tackle the problem. However, for the problem size that we are experiment-
ing with (hundreds of samples), we find that using a general purpose QP provided in
the CVXOPT1 package is faster than the specialized SMO solver. Therefore, we use
the CVXOPT-based QP solver for our experiments (Sect. 3.4).

Nonlinear SVM+
Kernelizing and dualizing SVM+ are possible using standard techniques [39]. The
dual space objective of the kernelized SVM+ has the following form:

maximize
αi ,βi∈R,
i=1,...,N

N∑

i=1

αi − 1

2

N∑

i, j=1

αiα j yi y j K (xi , x j )

− 1

2γ

N∑

i, j=1

(αi + βi − C)(α j + β j − C)K (x∗
i , x

∗
j ) (3.5a)

subject to:
N∑

i=1

αi yi = 0 (3.5b)

N∑

i=1

(αi + βi − C) = 0 (3.5c)

αi ≥ 0, βi ≥ 0 for all i = 1, . . . , N . (3.5d)

Here K (xi , x j ) and K (x∗
i , x

∗
j ) are kernels in the original and privileged spaces, αi

and βi are the dual variables. The SVM+ solution in the dual space is defined as
follows:

1http://cvxopt.org.

http://cvxopt.org
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f (x) =
N∑

i=1

αi yi K (xi , x) + b. (3.6)

The bias term can be computed based on equations in Sect. 1.5.1 of Pechyony and
Vapnik [34]. The solution of SVM+ is identical to the solution of SVM trained in
the original space using (X,Y ) if the constraint αi + βi − C = 0 holds for all data
points i = 1, . . . , N .

3.3.2 Maximum-Margin Model 2: Margin Transfer

We propose a second model called Margin Transfer that: (1) can be solved by a
sequence of standard SVM solvers; and (2) explicitly enforces an easy-hard inter-
pretation for transferring information from the privileged to the original space. For
each training example we check whether it is easy to classify or hard to classify
based on the margin distance to the classifying hyperplane in the privileged space.
Subsequently, we transfer this knowledge to the original space. We hypothesize that
knowing a priori which examples are easy to classify and which are hard during
learning should improve the prediction performance. This consideration leads us to
the Margin Transfer method,2 summarized in Algorithm 1.

First, we train an ordinary SVM on X∗. The resulting prediction function f ∗(x∗)
is used to compute the margin distance from the training samples to the classifying
hyperplane in the privileged space3 ρi := yi f ∗(x∗

i ). Examples with a large values of
ρi are considered easy to classify, whereas small or even negative values ofρi indicate
hard or even impossible to classify samples. We then train a standard SVM on X ,
aiming for a data-dependent margin ρi transferred from the privileged space rather
than enforcing a constant margin of 1. The corresponding optimization problem is
as follows:

minimize
w∈Rd+1, ξi∈R

1

2
‖w‖2 + C

N∑

i=1

ξi (3.7a)

subject to, for all i = 1, . . . , N

yi 〈w, xi 〉 ≥ ρi − ξi and ξi ≥ 0. (3.7b)

We omit the explicit computation of the bias term b in the algorithm, assuming it is
implicitly added to the weight vectorw, and all data points are augmented with a unit

2Margin Transfer is an adaptation of the Rank Transfer method [42] proposed for the ranking setup,
where the information about easy to separate and hard to separate pairs of examples was transferred.
3Note that in the standard SVM formulation one would compute the values of slack variables to
know how far the sample is from the hyperplane. As slack variables appear only at the training
phase, we deliberately evaluate the prediction function on the same data it was trained on to identify
easy and hard samples at train time.
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Algorithm 1Margin Transfer from X ∗ to X
Input original data X , privileged data X∗, labels Y , tolerance ε ≥ 0
f ∗ ← SVM (Equation 3.1) trained on (X∗, Y )

ρi = max {yi f ∗(x∗
i ), ε} (per-sample margin)

f ← SVM (Equation 3.7) trained on (X, Y ) using ρi instead of unit margin.
Return f : X → R

element. One can see that examples with small and negative values of ρi have limited
influence on w comparing to the standard SVM, because their slacks ξi can easily
compensate for the inequality constraint. We threshold the negative values of margin
distance ρi at certain tolerance value ε ≥ 0, ρi = max {yi f ∗(x∗

i ), ε}. Our interpre-
tation is that if it was not possible to correctly classify a sample in the privileged
space, it will also be impossible to do so in the, presumably weaker, original space.
Forcing the optimization to solve a hopeless task would only lead to overfitting and
reduced prediction accuracy.

Numerical Optimization
Both learning steps in theMarginTransfermethod are convexoptimization problems.
Furthermore, in contrast to SVM+,we can use standard SVMpackages to solve them,
including efficient methods working in primal representation [4], and solvers based
on stochastic gradient descent [40].

For the SVM with data-dependent margin (3.7a) and (3.7b), we do the following
reparameterization: we divide each constraint (3.7b) by the corresponding ρi , which
is possible after thresholding at the nonnegative tolerance value. For our experiments,
we threshold at ε = 0.1, thereby preventing numeric instabilities and increasing the
computational efficiency of the method. Changing variables from xi to x̂i = xi

ρi
and

from ξi to ξ̂i = ξi
ρi
we obtain the equivalent optimization problem

minimize
w∈Rd , ξ̂i∈R

1

2
‖w‖2 + C

N∑

i=1

ρi ξ̂i (3.8a)

subject to, for all i = 1, . . . , N

yi
〈
w, x̂i

〉 ≥ 1 − ξ̂i and ξ̂i ≥ 0. (3.8b)

This corresponds to standard SVM optimization with training examples x̂i , where
each slack variable has an individual weight Cρi in the objective. Many existing
SVM packages support such per-sample weights, for example, liblinear [12].

Nonlinear Margin Transfer
In the first step, we train a nonlinear SVM classifier f ∗ using privileged data (X∗,Y ).
For each data point, the margin distance is computed the same way as before, ρi =
max {yi f ∗(x∗

i ), ε}. Kernelizing and dualizing the objective of the second step (3.7a)
and (3.7b) is possible using standard techniques [39]. The dual space objective of
the kernelized Margin Transfer has the following form:
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maximize
αi∈R,

i=1,...,N

N∑

i=1

αiρi − 1

2

N∑

i, j=1

αiα j yi y j K (xi , x j ) (3.9a)

subject to:
N∑

i=1

αi yi = 0 (3.9b)

0 ≤ αi ≤ C, for all i = 1, . . . , N . (3.9c)

The Margin Transfer solution in the dual space is defined as follows:

f (x) =
N∑

i=1

αi yi K (xi , x) + b, (3.10)

where bias term b is computed as an average value of yiρi − ∑N
j=1 α j y j K (x j , xi )

for all 0 < αi < C . The solution of kernelized Margin Transfer is identical to the
solution of nonlinear SVM trained in the original space using (X,Y ) if ρi = 1 for all
data points i = 1, . . . , N . In our experiments, we implement the kernelized Margin
Transfer method using the CVXOPT-based QP solver.

3.3.3 How Is Information Being Transferred?

We elaborate on how SVM+ and Margin Transfer instantiate the easy-hard interpre-
tation and how they differ from each other.

Observation 1: Both methods, SVM+ and Margin Transfer, concentrate on
learning easy samples and deemphasizing the hard ones.

Though SVM+ andMargin Transfer aim at the same goal, the way this is achieved
is different in these two methods. Let us illustrate this by using the oracle analogy.
In the SVM+, the oracle gives us the value of the slack function oraclesvm+(xi ) :=
〈w∗, x∗

i 〉 + b∗ for example xi , and in the Margin Transfer, the oracle gives us the
margin distance to the classifying hyperplane oracleMT(xi ) := yi f ∗(x∗

i ).
Supposewe only have two training samples, x1 and x2, andwe ask the oracleswhat

they perceive about the two samples. Say, in case of SVM+,we get back the following
answers: oraclesvm+(x1) = 10.0 and oraclesvm+(x2) = 0.0. This means that the
first sample is hard (its slack variable is high) and the second one is easy (its slack
variable is zero). When we encode this into the optimization problem of SVM+,
we can see that the constraint (3.4b) becomes y1[〈w, x1〉 + b] ≥ −9, (effortless to
satisfy comparing to the unit margin in the standard SVM) for the first sample and
y2[〈w, x2〉 + b] ≥ 1 (effortful to satisfy comparing to the standard SVM) for the
second one. So this means that the optimization task would more or less ignore the
constraint of the first sample (that is hard) and concentrate on satisfying the constraint
about the second sample (that is easy).
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We repeat the questions to the Margin Transfer oracle and say the answers are:
oracleMT(x1) = −5 and oracleMT(x2) = 8. Interpreting the oracle’s answers
lead us to conclude that the first sample is hard (itsmargin distance is zero or negative)
and the second one is easy (its margin distance is positive). When we encode this
into the optimization problem of Margin Transfer, the constraint (3.7b) becomes
y1 〈w, x1〉 ≥ ε − ξ1 (effortless to satisfy) for the first sample and y2 〈w, x2〉 ≥ 8 − ξ2
(effortful to satisfy) for the second one. As before, the optimization taskwould ignore
the constraints of the hard samples and concentrate on learning the easy ones. This
is despite the fact that the SVM+ oracle returns high values for hard samples while
the Margin Transfer oracle returns low values for hard samples, and vice versa for
easy ones.

Observation 2: Classification performance in the privileged space matters
for Margin Transfer but not for SVM+.

At the core of SVM+ lies the idea of imitating the oracle by learning the nonnega-
tive linear regression slack function defined in the privileged space. The information
about labels does not come into play whenmodeling the slack function, so in a sense,
we never validate the classification performance in the privileged space. In contrast,
in the Margin Transfer method, the performance in the privileged space explicitly
guides the training of the predictor in the original data space. Samples that are easy
and hard to classify in the privileged space directly define the margin for the samples
in the original data space.

3.4 Experiments

In our experimental setting we study attribute annotations as a source of privileged
information if these are present at training time but not at test time. We consider
two scenarios when solving a binary classification task with attributes as privileged
information and discuss them in the following subsections.

Methods.We analyze twomax-marginmethods of learning using privileged infor-
mation: the proposed Margin Transfer method, and the SVM+ method [34, 49]. We
compare the results with a standard nonlinear SVM when learning on the original
space X directly. To put our results into a broader perspective, we also analyze two
baselines with a probabilistic approach to binary classification: Gaussian process
classification model (GPC) [36] and its adaptation to LUPI scenario, the GPC+
model [18]. In a probabilistic approach to binary classification, the goal is to model
probabilities of a data point belonging to one of two class labels. GPC model turns
the output of a Gaussian process into a class probability using a nonlinear activation
function. GPC+models the confidence that the Gaussian process has about any train-
ing example by adjusting the slope of the sigmoid-shaped likelihood with respect to
privileged information. Training examples that are easy to classify by means of their
privileged data cause a faster increasing sigmoid, which means the GPC trusts the
training example and tries to fit it well. Examples that are hard to classify result in
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a slowly increase slope, so the GPC considers the training example less reliable and
does not put a lot of effort into fitting its label well.

Model selection. In all methods, we use a Gaussian RBF kernel k(x, x ′) =
exp(− 1

λ
‖x − x ′‖2) with the kernel width parameter λ defined using the median

trick, that is a median distance of ‖xi − x j‖2 over all i, j = 1, . . . , N . For meth-
ods that utilize privileged information, we define two Gaussian RBF kernels in the
original space and in the privileged space accordingly. For maximum-margin LUPI
models we perform a joint cross-validation model selection approach for choosing
the regularization parameters in the original and privileged spaces. In the SVM+
method these are C and γ defined in Eqs. (3.5), and in the Margin Transfer these
are C’s in the two-stage procedure, defined in Eqs. (3.1), (3.9). The nonlinear SVM
baseline has only one regularization parameter C to be cross validated. We select
the parameter C and γ over 5 values linearly spanned in the exponential scale of
the interval {0, . . . , 7} and {−3, . . . , 7} accordingly. In our experiments we use
5× fivefold cross-validation scheme. The best parameter (or pair of parameters)
found is used to retrain the complete training set. Based on our experience, LUPI
methods require very thorough model selection. To couple the modalities of privi-
leged and original data spaces properly, the grid search over both parameter spaces
has to be exploited. For GPC and GPC+, we found the hyperparameters by opti-
mizing type-II maximum likelihood. There are two hyperparameters in GPC, signal
amplitude and noise variance, and five in GPC+, signal amplitude and noise variance
in original and privileged spaces, and the mean of GP in the privileged space.

Evaluationmetric. To evaluate the performance of the methods we use accuracy,
and we report mean and standard error across 10 repeats.

3.4.1 Object Recognition in Images

In this experiment, we use a subset of the Animals with Attributes (AwA) dataset [26]
to perform an object recognition task in images. We focus on the default 10 test
classes: chimpanzee, giant panda, leopard, persian cat, pig, hippopotamus, hump-
back whale, raccoon, rat, and seal that contain 6180 images in total. As privileged
information, we use L2-normalized 85-dimensional predicted attributes that cap-
ture 85 properties of the animals, such as color, texture, shape, body parts, behavior
among others. The values of the predicted attributes are obtained by training the DAP
model [26] and correspond to probability estimates of the binary attributes in the
images of 10 animal classes of interest. Previously, it has been shown that attributes
are informative privileged information to image features such as bag-of-visual-words
representation obtained from SURF descriptors [18, 42, 44]. In this experiment, we
investigate whether the same observation holds when deep CNN features are used
as original image representation. For this we use L2-normalized 4096 dimensional
deepCNN features extracted from the fc7 activation layer in CaffeNet [19] pretrained
on the ImageNet dataset (ILSVRC12) [38]. The deep CNN features are also used for
learning the DAP model.
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Table 3.1 CNNs-Attribute Scenario for object recognition tasks in images. In this scenario, deep
CNN features are used as original image representation and attributes are used as privileged infor-
mation. The numbers are mean and standard error of the accuracy over 10 runs Bold highlighting
indicates difference of at least 0.2% between LUPI and non-LUPI methods. For GPC-based meth-
ods, both approaches perform comparably

SVM-based GPC-based

SVM MT (ours) SVM+ [49] GPC GPC+ [18]

CNNs CNNs + attr CNNs + attr CNNs CNNs + attr

Chimpanzee 94.27 ± 0.28 94.80 ± 0.30 94.49 ± 0.29 94.77 ± 0.28 94.75 ± 0.29

Giant panda 95.66 ± 0.46 95.66 ± 0.40 95.61 ± 0.46 95.98 ± 0.39 95.96 ± 0.38

Leopard 97.35 ± 0.34 97.78 ± 0.30 97.27 ± 0.31 97.55 ± 0.36 97.55 ± 0.36

Persian cat 94.27 ± 0.54 93.84 ± 0.59 94.17 ± 0.61 94.42 ± 0.56 94.44 ± 0.56

Pig 86.01 ± 0.53 85.81 ± 0.63 86.21 ± 0.53 86.04 ± 0.51 85.98 ± 0.49

Hippopotamus 91.11 ± 0.56 90.05 ± 1.00 91.77 ± 0.42 91.57 ± 0.42 91.59 ± 0.42

Humpback
whale

98.16 ± 0.13 97.85 ± 0.08 98.01 ± 0.13 97.98 ± 0.12 97.98 ± 0.12

Raccoon 89.60 ± 0.41 89.49 ± 0.56 89.85 ± 0.46 90.03 ± 0.63 90.03 ± 0.63

Rat 84.17 ± 0.72 84.24 ± 0.87 83.94 ± 0.75 84.32 ± 0.49 84.24 ± 0.47

Seal 85.15 ± 0.78 84.82 ± 0.58 84.97 ± 0.55 84.75 ± 0.65 84.65 ± 0.67

We train 10 binary classifiers, where each task is a binary classification of one class
against the remaining nine classes. We use 36 training and 400 test samples, where
we balance the amount of positive and negative samples and draw equal amount of
negative samples from each of the remaining classes. We report the results of this
experiment in Table3.1.

Results. As we can see from the Table3.1, using attributes as privileged informa-
tion has moderate effect when deep CNN features are used as original image repre-
sentation. This can be explained by the following observations. A positive effect in
Margin Transfer is expected when the classifier performance in the privileged space
is higher than in the original space, as it is in a majority of previously studied LUPI
scenarios [15, 18, 29, 42, 48]. We credit this to the fact that most LUPI methods
including Margin Transfer rely on the performance in the privileged space in order
to explore easiness and hardness of the samples. In this experiment, SVM trained
using deep CNN features has higher accuracy than SVM trained using attribute rep-
resentation, in most cases. Moreover, even with little training data, the performance
using CNNs image representation is significantly higher than using SURF descrip-
tors, indicating that this binary classification problem is relatively easy to solve using
state-of-the-art features. In our next experiment,we explore amore challengingvision
task of distinguishing easy from hard instances of an object class.
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3.4.2 Recognizing Easy from Hard Images

In this experiment, we focus on differentiating between “easy” and “hard” images of
eight classes: chimpanzee, giant panda, leopard, persian cat, hippopotamus, raccoon,
rat and seal. This is a subset of the AwA dataset for which the annotation of easy-hard
scores is publicly available [44]. The easy-hard annotation is collected usingAmazon
MTurk user study. In this study, a worker is shown a set of images of one animal class
and is asked to rank the images from the easiest to the hardest depending on how
difficult it is to spot the animal in the image. Finally, each image gets an easy-hard
score in the range from 1 (hardest) to 16 (easiest) as the average score over all worker
responses across multiple sets of images.

Setup. This task imitates human learning to distinguish between easy and hard
examples of a class. For each animal class, we label half of the images as “easy”(class
label +1) and half of the images as “hard”(class label −1) with respect to the easy-
hard scores, and solve a binary classification problem. We use all available data per
class, ranging from 300 (class rat) to 900 images (class giant panda), to form the
80%/20% train/test split. As our feature representation, we use deep CNN features
in the original space, and predicted attributes in the privileged space, as detailed in the
previous experiment. For completeness we also report the performance when using
L2-normalized 2000-dimensional bag-of-visual-words representationwith SURF [2]
descriptor as original feature space.

Results. As we can see from the Table3.2, utilizing attributes as privileged infor-
mation for easy-hard object recognition task is useful. Overall, the methods that
utilize privileged information, MT, SVM+ and GPC+, outperform their counter-
parts, SVM and GPC, in a majority of cases. There is no clear signal to differentiate
easy from hard images of the class seal, so we exclude this class from our analy-
sis. As expected, the performance gain between LUPI and non-LUPI methods is
more apparent when SURF features are used as original feature space (Table3.3). In

Table 3.2 CNNs-Attribute Scenario Distinguishing easy from hard images with attributes as priv-
ileged information. The numbers are mean and standard error of the accuracy over 10 runs

SVM-based GPC-based

SVM MT (ours) SVM+ [49] GPC GPC+ [18]

CNNs CNNs + attr CNNs+attr CNNs CNNs + attr

Chimpanzee 74.57 ± 0.62 74.43 ± 0.81 75.36 ± 0.84 75.64 ± 0.69 75.43 ± 0.57

Giant panda 81.44 ± 0.69 81.33 ± 0.73 82.45 ± 0.90 81.81 ± 0.65 81.70 ± 0.64

Leopard 82.08 ± 0.65 81.67 ± 0.73 81.00 ± 0.82 82.08 ± 0.83 82.00 ± 0.86

Persian cat 80.35 ± 0.39 79.93 ± 0.89 80.21 ± 0.65 80.49 ± 0.37 80.35 ± 0.48

Hippopotamus 73.33 ± 1.18 73.19 ± 1.29 73.40 ± 1.10 74.10 ± 1.01 74.44 ± 0.97
Raccoon 76.67 ± 0.92 77.54 ± 0.75 78.17 ± 0.68 78.33 ± 0.93 78.65 ± 0.91
Rat 83.33 ± 1.73 83.00 ± 1.45 84.00 ± 1.72 84.50 ± 1.56 84.83 ± 1.55
Seal 48.30 ± 1.39 48.10 ± 1.19 46.70 ± 1.04 49.80 ± 0.19 50.00 ± 0.28
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Table 3.3 SURF-Attribute Scenario Distinguishing easy from hard images with attributes as priv-
ileged information. The numbers are mean and standard error of the accuracy over 10 runs

SVM-based GPC-based

SVM MT (ours) SVM+ [49] GPC GPC+ [18]

SURF SURF + attr SURF + attr SURF SURF + attr

Chimpanzee 65.93 ± 1.06 66.79 ± 0.99 64.93 ± 1.21 65.64 ± 1.43 65.79 ± 1.39

Giant panda 74.26 ± 0.61 75.90 ± 0.62 74.84 ± 0.53 75.11 ± 0.63 75.05 ± 0.74

Leopard 69.58 ± 0.88 70.50 ± 1.06 69.83 ± 1.32 69.42 ± 0.92 70.25 ± 1.08
Persian cat 65.14 ± 1.11 67.61 ± 1.09 65.99 ± 0.96 67.04 ± 1.25 67.18 ± 1.28

Hippopotamus 66.25 ± 0.98 65.90 ± 0.61 66.60 ± 0.95 65.21 ± 0.88 65.56 ± 0.77
Raccoon 65.79 ± 1.03 67.86 ± 0.86 66.83 ± 1.24 66.90 ± 0.87 67.62 ± 0.94
Rat 60.33 ± 1.52 60.33 ± 1.97 60.83 ± 1.65 60.33 ± 1.65 61.00 ± 1.86
Seal 52.60 ± 1.78 51.80 ± 1.33 51.60 ± 1.79 50.00 ± 0.00 50.00 ± 0.00

Table 3.4 Average training time in minutes of the experiments in Sect. 3.4.1 (object recognition)
and Sect. 3.4.2 (easy-hard recognition). For max-margin methods, the reported time includes model
selection via cross-validation procedure. SVM has one hyperparameter, whereas SVM+ and MT
have two hyperparameters to be selected. For Gaussian process methods, the time includes model
selection via the type-II maximum likelihood estimation. GPC has two hyperparameters, while
GPC+ has five hyperparameters to be found

Object recognition Easy-hard recognition

CNNs-Attribute CNNs-Attribute SURF-Attribute

≈36 tr. samples (m) ≈510 tr. samples (m) ≈510 tr. samples (m)

SVM 0.1 2.5 2

MT (ours) 0.6 25 24

SVM+ [49] 0.7 30 24

GPC 6.5 122 50

GPC+ [18] 9.2 380 190

this scenario, the Gaussian process-based methods perform better in comparison to
max-margin methods at the cost of higher running time (Table3.4).

3.5 Conclusion

Previously, when image features were unsupervised, semantic attributes have been
shown as informative privileged information in the context of object recognition. In
this chapter we showed that when deep CNN features are used as original feature
space, attributes embedded in the LUPI framework lead to performance improve-
ment in the challenging easy-hard recognition task, but not so in the standard object
present–absent recognition task. Deep CNNs are inherently supervised features in a
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similar spirit to per-class attribute features considered in this work; both are discrim-
inatively trained classifier outputs, hence, they are similarly informative about the
object recognition task. In the future, we envision several research directions to be
addressed: utilizing per-sample attribute features in challenging vision tasks, such as
easy-hard recognition and object recognition plus localization [32], supplementing
limited number of attributes with other sources of privileged information in the LUPI
framework.
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Chapter 4
Divide, Share, and Conquer: Multi-task
Attribute Learning with Selective Sharing

Chao-Yeh Chen, Dinesh Jayaraman, Fei Sha and Kristen Grauman

Abstract Existing methods to learn visual attributes are plagued by two common
issues: (i) they are prone to confusion by properties that are correlated with the
attribute of interest among training samples and (ii) they often learn generic, impre-
cise “lowest common denominator” attribute models in an attempt to generalize
across classes where a single attribute may have very different visual manifestations.
Yet, many proposed applications of attributes rely on being able to learn the precise
and correct semantic concept corresponding to each attribute. We argue that these
issues are both largely due to indiscriminate “oversharing” amongst attribute clas-
sifiers along two axes—(i) visual features and (ii) classifier parameters. To address
both these issues, we introduce the general idea of selective sharing duringmulti-task
learning of attributes. First, we show how selective sharing helps learn decorrelated
models for each attribute in a vocabulary. Second, we show how selective sharing
permits a new form of transfer learning between attributes, yielding a specialized
attribute model for each individual object category. We validate both these instantia-
tions of our selective sharing idea through extensive experiments onmultiple datasets.
We show how they help preserve semantics in learned attribute models, benefitting
various downstream applications such as image retrieval or zero-shot learning.
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4.1 Introduction

Visual attributes are human-nameable mid-level semantic properties. They include
both holistic descriptors, such as “furry”, “dark”, or “metallic”, as well as localized
parts, such as “has-wheels” or “has-snout”. Because attributes describe object and
scene categories in natural language terms, they can be used to describe an unfamiliar
object class [9], teach a system to recognize new classes by zero-shot learning as
in [25, 32, 36] and in Chap. 2, learn mid-level cues from cross-category images [23],
or provide a useful bridge between low-level image features and high-level entities
like object or scene categories [9, 22, 25].1

All these applications stem from one crucial property of attributes—the fact that
they are shared across object categories. Typically, the idea is that a system can learn
about an attribute from image examples drawn from arbitrary objects, e.g., learning
“furry” from bunnies, dogs, and bears alike. In fact, attributes are usually shared not
only among some limited set of “seen” categories present in the training data, but
among other “unseen” categories too. Thus, it is particularly important to be able to
correctly recognize each attribute manifested in diverse configurations that may or
may not have been previously observed.

The intent to share features and classifiers raises important challenges specific
to attribute learning. On the one hand, as we will soon see, spurious correlated
factors (including other attributes) in training data may easily be mistaken for the
attribute of interest by a learner, which would prevent generalization, especially to
instances of the attribute manifested in unseen classes. Further, even among seen
classes, attributes may have different visual manifestations in each category, making
it difficult for one shared generic attribute classifier to work well on all classes.

Existing methods follow the same standard discriminative learning pipeline that
has been successful in other visual recognition problems, particularly object recog-
nition. Using training images labeled by the attributes they exhibit, low-level image
descriptors are extracted, and used to independently train a discriminative classifier
for each attribute in isolation [5, 9, 22, 23, 25, 32, 33, 36, 38]. A single monolithic
model is trained per attribute, which is shared across all object categories. For exam-
ple, classifiers for “furry” and “dark” attributes may be trained independently with
color, texture, and shape features. Each of these classifiers is expected now to apply
to new instances, agnostic to the category that each instance belongs to, such as “cat”,
“human”, or “tower”. In short, the status quo approach thus uniformly shares both
the low-level features across all attributes as well as the attribute classifier across all
categories.

In this chapter, we explore the following question: when and to what extent is
sharing useful for attribute learning? We show that the standard attribute learning
approach suffers from a problem of indiscriminate sharing along two axes: (i) it
“overshares” features across distinct attribute classifiers and (ii) it overshares classi-
fier parameters for each attribute across distinct categories. See Fig. 4.1 for a visual

1Throughout, we use the term “category” to refer to an object or scene class, whereas an “attribute”
is a visual property describing some such category.

http://dx.doi.org/10.1007/978-3-319-50077-5_2
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Fig. 4.1 Two problems caused by oversharing the features and attribute modes in attribute learning
framework. (i) On the one hand, when attribute models overshare feature supports, it is hard to
disambiguate correlated attributes that are semantically very different, such as “brown” and “fluffy”
in the example depicted on the horizontal axis. (ii) On the other hand, when attribute classifiers are
overshared across object categories, we ignore the fact that the same semantic attribute could have
very different visual appearances in different categories

depiction of this problem. We contend that this oversharing approach ignores inter-
category and inter-attribute distinctions during attribute learning and thus does not
optimally exploit training data.

We propose methods to actively account for the semantic information presented
by these distinctions, which allow the learning of better attribute classifiers using
the same attribute-labeled training data. Our key idea for improving upon existing
attribute learning methods is to make the system “learn the right thing” by avoiding
oversharing, using semantic knowledge to decide what to share and what not to share
during learning.

We implement this general idea in two separate multi-task learning (MTL)
schemes to address each of the two problems enumerated above. Multi-task learning
methods aim to jointly learn multiple tasks. Whereas typically a multi-task learner
strives for greater sharing between tasks, we propose new forms of MTL where the
algorithm is intentionally selective about where to share. We show how the con-
cept of selective sharing helps eliminate two major problems that plague the stan-
dard attribute recognition approach—namely, (i) disambiguating each attribute from
its spurious correlated image properties (Sect. 4.2) and (ii) specializing individual
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attribute classifiers to fit differences in visual manifestations of the same attribute
across different object categories (Sect. 4.3).

Problem #1: Oversharing image features across categories conflates pair(s) of
attributes. In the first main contribution of this chapter, we reconsider the standard
approach of using the same feature representation for all attributes. Even standard
multi-task learning approaches encourage the sharing of features across attributes.
This defect makes these approaches especially prone to learning image properties
that are correlated with the attribute of interest, rather than the attribute itself. In
Sect. 4.2, we propose a multi-task learning method informed by attribute semantics
to disambiguate correlated attributes while learning attribute vocabularies. It encour-
ages different classifiers to rely on signals from disjoint sets of dimensions in the
visual feature space [17].
Problem #2:Oversharing attributes across categories conflates diverse “modes”
of same-namedattributes. In the secondmain contribution of this chapter,we recon-
sider the standard approach of learning one monolithic attribute classifier from train-
ing images pooled from all categories. While the notion of a category-independent
attribute has certain appeal, are attributes really category-independent? For instance,
does fluffiness on a dog look the same as fluffiness on a towel? Are the features
that make a high heeled shoe look formal the same as those that make a sandal
look formal? In such examples (and many others), while the linguistic semantics
are preserved across categories, the visual appearance of the property is transformed
to some degree. That is, some attributes are specialized to the category. This sug-
gests that simply pooling a bunch of training images of any object/scene with the
named attribute and learning a discriminative classifier—the status quo approach—
will weaken the learned model to account for the “least common denominator” of the
attribute’s appearance, and, in some cases, completely fail to generalize. In Sect. 4.3,
we present a method to learn category-sensitive analogous attributes, by exploring
the correlations between different attributes and object categories [6].2

Thus, both of these approaches implement our key idea of selective sharing (of
features and models, respectively) when treating attribute learning as a multi-task
learning problem. In both approaches, we pursue joint learning of a vocabulary of
attributes. Whereas the first approach produces a single attribute model per attribute
word, the second approach further formulates the learning of each attribute itself
as multiple related tasks corresponding to specialized models of the attribute for
each object or scene category. In both cases, easily available semantic information
(attribute semantics and category labels, respectively) is exploited to help guide the
selective sharing.
Roadmap In the rest of this chapter, we will first zoom in, one by one, to study the
two above-listed instantiations of our general idea of selective sharing (as opposed
to indiscriminate “oversharing”) during attribute learning, delving into their tech-
nical approaches and experimental results validating their usefulness. Specifically,
in Sect. 4.2, we will focus on our method for learning decorrelated models for a

2SeeChaps. 12 and 13 for further discussion of the interplay of visual attributes and natural language.

http://dx.doi.org/10.1007/978-3-319-50077-5_12
http://dx.doi.org/10.1007/978-3-319-50077-5_13
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Fig. 4.2 What attribute is present in the first three images, but not the last two? Standard methods
attempting to learn “furry” from such images are prone to learn “brown” instead—or some combi-
nation of correlated properties. We propose a multi-task attribute learning approach that resists the
urge to share features between attributes that are semantically distinct yet often co-occur

vocabulary of visual attributes as described above, and in Sect. 4.3, we will focus on
our method for learning category-specific attribute classifiers. In Sect. 4.4, we will
zoom back out to look at previous work that is relevant to the ideas discussed in this
chapter. Finally, in Sect. 4.5, we will summarize our findings and outline areas for
future work that may build on our ideas.

4.2 Learning Decorrelated Attributes

Many applications of visual attributes such as image search and zero-shot learn-
ing build on learned models for a vocabulary of multiple, diverse attributes, e.g., a
detailed textual query in image searchmight describe various attributes of the desired
target image.3 A key underlying challenge in learning discriminative models of mul-
tiple attributes is that the hypothesis space is very large. The standard discriminative
model can associate an attribute with any direction in the feature space that happens
to separate positive and negative instances in the training dataset, resulting very often
in the learning of properties that are spuriously correlated with the attribute of inter-
est. The issue is exacerbated by the fact that many nameable visual properties will
occupy the same spatial region in an image. For example, a “brown” object might
very well also be “round” and “shiny”. In contrast, when learning object categories,
each pixel is occupied by just one object of interest, decreasing the possibility of
learning incidental classes. Furthermore, even if we attempt stronger training anno-
tations, spatial extent annotation for attributes is harder and more ambiguous than
it is for objects. Consider, for example, how one might mark the spatial extent of
“pointiness” in the images in Fig. 4.2.

But does it even matter if we inadvertently learn a correlated attribute? After
all, weakly supervised object recognition systems have long been known to exploit

3Applications of attributes for zero-shot learning and image search are discussed in Chaps. 2 and 5
of this book, respectively.

http://dx.doi.org/10.1007/978-3-319-50077-5_2
http://dx.doi.org/10.1007/978-3-319-50077-5_5
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correlated background features appearing outside the object of interest that serve as
“context”. For attribute learning, however, it is a problem, on two fronts. First of all,
with the large number of possible combinations of attributes (up to 2k for k binary
attributes), we may see only a fraction of plausible ones during training, making
it risky to treat correlated cues as a useful signal. In fact, semantic attributes are
touted for their extendability to novel object categories, where correlation patterns
may easily deviate from those observed in training data. Second, many attribute
applications—such as image search [20, 22, 38], zero-shot learning [25], and textual
description generation [9]—demand that the named property alignmeaningfullywith
the image content. For example, an image search user querying for “pointy-toed”
shoes would be frustrated if the system (wrongly) conflates pointiness with blackness
due to training data correlations. We contrast this with the object recognition setting,
where object categories themselves may be thought of as co-occurring, correlated
bundles of attributes. Learning to recognize anobject thus implicitly involves learning
these correlations.

Given these issues, our goal for the rest of this section is to decorrelate attributes at
the time of learning, thus learning attribute classifiers that fire only when the correct
semantic property is present. In particular, wewant our classifiers to generalize to test
images where the attribute co-occurrence patterns may differ from those observed in
training. To this end, we propose a multi-task learning framework that encourages
each attribute classifier to use a disjoint set of image features to make its predictions.
This idea of feature competition is central to our approach.

As discussed in Sect. 4.1, whereas conventional models train each attribute clas-
sifier independently, and therefore are prone to reusing image features for correlated
attributes, our multi-task approach resists the urge to share. Instead, it aims to iso-
late distinct low-level features for distinct attributes in a vocabulary by enforcing a
structured sparsity prior over the attributes.Wedesign this prior to leverage side infor-
mation about the attributes’ semantic relatedness, aligning feature sharing patterns
with semantically close attributes and feature competition with semantically distant
ones. In the example in Fig. 4.2, the algorithm might discover that dimensions cor-
responding to color histogram bins should be used to detect “brown”, whereas those
corresponding to texture in the center of the imagemight be reserved to detect “furry”.

4.2.1 Approach

In the following, we first describe the inputs to our algorithm: the semantic relation-
ships among attributes (Sect. 4.2.1.1) and the low-level image descriptors
(Sect. 4.2.1.2). Then we introduce our learning objective and optimization frame-
work (Sect. 4.2.1.3), which outputs a classifier for each attribute in the vocabulary.
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Fig. 4.3 Sketch of our idea. We show weight vectors (absolute value) for attributes learnt by
standard (left) and proposed (right) approaches. The higher the weight (lighter colors) assigned
to a feature dimension, the more the attribute relies on that feature. In this instance, our approach
would help resolve “silky” and “boxy”,which are highly correlated in training data and consequently
conflated by standard learning approaches

4.2.1.1 Semantic Attribute Groups

Suppose we are learning attribute classifiers4 for a vocabulary of M nameable
attributes, indexed by {1, 2, . . . , M} (see Chaps. 10 and 11 for work investigating
ways to develop the attribute vocabulary itself). To represent the attributes’ semantic
relationships, we use L attribute groups, encoded as L sets of indices S1, . . . , SL ,
where each Sl = {m1,m2,m3, . . . } contains the indices of the specific attributes in
that group, and 1 ≤ mi ≤ M .While nothing in our approach restricts attribute groups
to be disjoint, for simplicity in our experiments each attribute appears in one group
only.

If two attributes are in the same group, this reflects that they have some semantic
tie. For instance, in Fig. 4.3, S1 and S2 correspond to texture and shape attributes,
respectively. For attributes describing fine-grained categories, like bird species, a
group can focus on domain-specific aspects inherent to the taxonomy—for exam-
ple, one group for beak shape (hooked, curved, dagger, etc.) and another group for
belly color (red belly, yellow belly, etc.). While such groups could conceivably be
mined automatically (from text data, WordNet, or other sources), we rely on existing
manually defined groups [25, 48] in our experiments (see Fig. 4.6).

As we will see below, group comembership signals to our learning algorithm
that the attributes are more likely to share features. For spatially localized attribute
groups (e.g., beak shape), this could guide the algorithm to concentrate on descriptors
originating from the same-object part; for global attribute groups (e.g., colors), this
could guide the algorithm to focus on a subset of relevant feature channels. There
might be no such thing as a single “optimal” grouping; rather, we expect such partial
side information about semantics to help intelligently decide when to allow sharing.

Our use of attribute label dimension-grouping to exploit relationships among
tasks is distinct from and not to be confused with descriptor dimension-grouping
to represent feature space structure, as in the single-task “group lasso” [55]. While

4We use “attribute”, “classifier”, and “task” interchangeably in this section.

http://dx.doi.org/10.1007/978-3-319-50077-5_10
http://dx.doi.org/10.1007/978-3-319-50077-5_11
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simultaneously exploiting feature space structure could conceivably further improve
our method’s results, we restrict our focus in this paper to modeling and exploiting
task relationships.

4.2.1.2 Image Feature Representation

When designating the low-level image feature space where the classifiers will be
learned, we are mindful of one main criterion: we want to expose to the learning
algorithm spatially localized and channel localized features. By spatially localized,
we mean that the image content within different local regions of the image should
appear as different dimensions in an image’s feature vector. Similarly, by channel
localized, we mean that different types of descriptors (color, texture, etc.) should
occupy different dimensions. This way, the learner can pick and choose a sparse set
of both spatial regions and descriptor types that best discriminate attributes in one
semantic group from another.

To this end, we extract a series of histogram features for multiple feature chan-
nels pooled within grid cells at multiple scales. We reduce the dimension of each
component histogram (corresponding to a specific window+feature type) using Prin-
cipal Component Analysis (PCA). This alleviates gains from trivially discarding
low-variance dimensions and isolates the effect of attribute-specific feature selec-
tion. Since we perform PCA per channel, we retain the desired localized modality
and location associations in the final representation. More dataset-specific details are
in the experiments below in Sect. 4.2.2.

4.2.1.3 Joint Attribute Learning with Feature Sharing and Competition

The input to our learning scheme is (i) the descriptors for N training images, each
represented as a D-dimensional vector xn , (ii) the corresponding (binary) attribute
labels for all attributes, which are indexed by a = 1, . . . , M , and (iii) the semantic
attribute groups S1, . . . , SL . Let XN×D be the matrix composed by stacking the
training image descriptors. We denote the nth row of X as the row vector xn and the
dth column of X as the column vector xd . The scalar xdn denotes the (n, d)th entry
of X. Similarly, the training attribute labels are represented as a matrix YN×M with
all entries ∈ {0, 1}. The rows and columns of Y are denoted yn and ym , respectively.

Because wewish to impose constraints on relationships between attribute models,
we learn all attributes simultaneously in a multi-task learning setting, where each
“task” corresponds to an attribute. The learning method outputs a parameter matrix
WD×M whose columns encode the classifiers corresponding to the M attributes. We
use logistic regression classifiers, with the loss function

L(X,Y;W) =
∑

m,n

log(1 + exp(
(
1 − 2ymn

)
xTnw

m)). (4.1)



4 Divide, Share, and Conquer: Multi-task Attribute Learning … 57

Each classifier has an entry corresponding to the “weight” of each feature dimension
for detecting that attribute.

Note that a row wd of W represents the usage of feature dimension d across all
attributes; a zero in wm

d means that feature d is not used for attribute m.

Formulation
Our method operates on the premise that semantically related attributes tend to be
determined by (some of) the same image features, and that semantically distant
attributes tend to rely on (at least some) distinct features. In this way, the support of an
attribute in the feature space—that is, the set of dimensions with nonzero weight—is
strongly tied to its semantic associations.Our goal is to effectively exploit the supplied
semantic grouping by inducing (i) in-group feature sharing and (ii) between-group
competition for features. We encode this as a structured sparsity problem, where
structure in the output attribute space is represented by the grouping. Figure4.3
illustrates the envisioned effect of our approach.

To set the stage for our method, we next discuss two existing sparse feature
selection approaches, both of which we will use as baselines in Sect. 4.2.2. The
first is a simple adaptation of the single-task lasso method [43]. The original lasso
regularizer applied to learning a single attributem in our setting would be ‖wm‖1. As
is well known, this convex regularizer yields solutions that are a good approximation
to sparse solutions that would have been generated by the count of nonzero entries,
‖wm‖0.

By summing over all tasks, we can extend single-task lasso [43] to the multi-task
setting to yield an “all-competing” lasso minimization objective:

W∗ = arg min
W

L(X,Y;W) + λ
∑

m

‖wm‖1, (4.2)

where λ ∈ R is a scalar regularization parameter balancing sparsity against classifi-
cation loss. Note that the regularizing second term may be rewritten

∑
m ‖wm‖1 =∑

d ‖wd‖1 = ‖W‖1. This highlights how the regularizer is symmetric with respect
to the two dimensions ofW, and may be thought of, respectively, as (i) encouraging
sparsity on each task column wm and (ii) imposing sparsity on each feature row wd .
The latter effectively creates competition among all tasks for the feature dimension d.

In contrast, the “all-sharing” �21 multi-task lasso approach for joint feature selec-
tion [1] promotes sharing among all tasks, by minimizing the following objective
function:

W∗ = arg min
W

L(X,Y;W) + λ
∑

d

‖wd‖2. (4.3)

To see that this encourages feature sharing among all attributes, note that the regu-
larizer may be written as the �1 norm ‖V‖1 = ∑

d ‖wd‖2, where the single-column
matrix V is formed by collapsing the columns of W with the �2 operator, i.e. its
dth entry vd = ‖wd‖2. The �1 norm of V prefers sparse-V solutions, which in turn
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means the individual classifiers must only select features that also are helpful to other
classifiers. That is,W should tend to have rows that are either all-zero or all-nonzero.

Wenowdefineour objective,which is a semantics-informed intermediate approach
that lies between the extremes in Eqs. (4.2) and (4.3) above. Our minimization objec-
tive retains the competition-inducing �1 normof the conventional lasso across groups,
while also applying the �21-type sharing regularizer within every semantic group:

W∗ = arg min
W

L(X,Y;W) + λ

D∑

d=1

L∑

l=1

‖wSl
d ‖2, (4.4)

where wSl
d is a row vector containing a subset of the entries in row wd , namely,

those specified by the indices in semantic group Sl . This regularizer restricts the
column-collapsing effect of the �2 norm to within the semantic groups, so that V is
no longer a single-column vector but a matrix with L columns, one corresponding to
each group. Figure4.4 visualizes the idea. Note how sparsity on this V corresponds
to promoting feature competition across unrelated attributes, while allowing sharing
among semantically grouped attributes.

Our model unifies the previous formulations and represents an intermediate point
between them. With only one group S1 = {1, 2, . . . , M} containing all attributes,
Eq. (4.4) simplifies to Eq. (4.3). Similarly, setting each attribute to belong to its own
singleton group Sm = {m} produces the lasso formulation of Eq. (4.2). Figure4.5
illustrates their respective differences in structured sparsity. While standard lasso
aims to drop asmany features as possible across all tasks, standard “all-sharing” aims
to use only features that can be shared by multiple tasks. In contrast, the proposed
method seeks features shareable among related attributes, while it resists feature
sharing among less related attributes.

Fig. 4.4 “Collapsing” of grouped columns of the feature selection matrix W prior to applying
the lasso penalty

∑
l ‖vl‖1. Nonzero entries in W and V are shaded. Darkness of shading in V

represents how many attributes in that group selected that feature
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Fig. 4.5 A part of the W matrix (thresholded, absolute value) learned by the different structured
sparsity approaches on CUB data. The thin white vertical lines separate attribute groups

As we will show in results, this mitigates the impact of incidentally correlated
attributes. Pushing attribute group supports away from one another helps decorrelate
unrelated attributes within the vocabulary. For example, even if “brown” and “furry”
always co-occur at training time, there is pressure to select distinct features in their
classifiers. Meanwhile, feature sharing within the group essentially pools in-group
labels together for feature selection, mitigating the risk of chance correlations—not
only within the vocabulary, but also with visual properties (nameable or otherwise)
that are not captured in the vocabulary. For example, suppose “hooked beak” and
“brown belly” are attributes that often co-occur; if “brown belly” shares a group
with the easier to learn “yellow belly”, the pressure to latch onto feature dimensions
shareable between brown and yellow belly indirectly leads “hooked beak” toward
disjoint features.

We stress, however, that the groups are only a prior. While our method prefers
sharing for semantically related attributes, it is not a hard constraint, and misclassi-
fication loss also plays an important role in deciding which features are relevant.

4.2.1.4 Optimization

Mixed norm regularizations of the form of Eq. (4.4), while convex, are nonsmooth
and nontrivial to optimize. Such norms appear frequently in the structured learning
literature [1, 3, 19, 55]. As in [19], we reformulate the objective by representing the
2-norm in the regularizer in its dual form, before applying the smoothing proximal
gradient descent [7] method to optimize a smooth approximation of the resulting
objective. More details are in [17].
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4.2.2 Experiments and Results

4.2.2.1 Datasets

We use three datasets with 422 total attributes: (i) CUB-200–2011 (“CUB”) [48],
(ii) Animals with Attributes (“AwA”) [25], and (iii) aPascal/aYahoo (“aPY”) [9].
Dataset statistics are summarized in Table4.1. Following common practice, we sep-
arate the datasets into “seen” and “unseen” classes. The idea is to learn attributes on
one set of seen object classes, and apply them to new unseen objects at test time. This
stress tests the generalization power, since correlation patterns will naturally deviate
in novel objects. The seen and unseen classes for AwA and aPY come prespecified.
For CUB, we randomly select 100 of the 200 classes to be “seen”.

4.2.2.2 Features

Section4.2.1.2 defines the basic feature extraction process. On AwA, we use the
features provided with the dataset (global bag-of-words on four channels, 3-level
pyramid with 4 × 4 + 2 × 2 + 1 = 21 windows on 2 channels). For CUB and aPY,
we compute features with the authors’ code [9]. On aPY, we use a one-level pyramid
with 3 × 2 + 1 = 7 windows on four channels, following [9]. On CUB, we extract
features at the provided annotated part locations. To avoid occluded parts, we restrict
the dataset to instances that have the most common part visibility configuration (all
parts visible except “left leg” and “left eye”).

4.2.2.3 Semantic Groups

To define the semantic groups, we rely largely on existing data. CUB specifies 28
attribute groups [48] (head color, back pattern, etc.). For AwA, the authors suggest
nine groups in [24] (color, texture, shape, etc.). For aPY, which does not have pre-

Table 4.1 Summary of dataset statistics

Categories Attributes Features

Datasets Seen Unseen Num (M) Groups
(L)

#
Windows

D

CUB-200-2011
(CUB) [48]

100 100 312 28 15 375

Animals with Attributes
(AwA) [25]

40 10 85 9 1.21 290

aPascal/aYahoo-
restricted (aPY-25) [9]

20 12 25 3 7 105
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Fig. 4.6 Semantic attribute groups on a CUB, bAwA and c aPY-25 datasets, as used in Sect. 4.2.2.
Attribute groups are enclosed in shaded boxes, and phrases in larger font labeling the boxes indicate
the rationale for the grouping. Additionally, in a, the color and pattern groups, condensed above, are
to be interpreted as follows. Each part on the left, coupledwith the term in themiddle (color/pattern)
represents the title of an attribute group. The predicates on the right applied to each part constitute
the attributes in the its group, e.g., the “belly-color” attribute group has attributes “belly-color-blue”,
“belly-color-brown” etc.

specified attribute groups, we group 25 attributes (of the 64 total) into shape, material
and facial attribute groups guided by suggestions in [24] (“aPY-25”). The full groups
are shown in Fig. 4.6.

As discussed in Sect. 4.2.1.2, our method requires attribute groups and image
descriptors to be mutually compatible. For example, grouping attributes based on
their locations would not be useful if combined with a bag-of-words description that
captures no spatial ordering. However, our results suggest that this compatibility is
easy to satisfy. Our approach successfully exploits prespecified attribute groups with
independently prespecified feature representations.
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4.2.2.4 Baselines

We compare to four methods throughout. Two are single-task learning baselines,
in which each attribute is learned separately: (i) “standard”: �2-regularized logistic
regression and (ii) “classwise”: the object class-label-based feature selection scheme
proposed in [9]. The “classwise” method is, to our knowledge, the only previous
work that attempts to explicitly decorrelate semantic attributes. For each attribute,
the classwisemethod selects discriminative image features for each object class, then
pools the selected features to learn the attribute classifier. For example, it first finds
features good for distinguishing cars with and without “wheel”, then buses with and
without “wheel”, etc. The idea is that examples from the same class help isolate the
attribute of interest. For this baseline, we use logistic regression in the final stage
replacing the SVM, for uniformity with the others. The other two baselines are the
sparse multi-task methods in Sect. 4.2.1: (iii) “lasso” (Eq.4.2), and (iv) “all-sharing”
(Eq.4.3). All methods produce logistic regression classifiers and use the same input
features. All parameters (λ for all methods, plus a second parameter for [9]) are
validated with held out unseen class data.

4.2.2.5 Attribute Detection Accuracy

First, we test basic attribute detection accuracy. For this task, every test image is to be
labeled with a binary label for each attribute in the vocabulary. Attribute models are
trained on a randomly chosen 60% of the “seen” class data and tested on three test
sets: (i) unseen: unseen class instances, (ii) all-seen: other instances of seen classes,
and (iii) hard-seen: a subset of the all-seen set that is designed to consist of outliers
within the seen-class distribution. To create the hard-seen set, we first compute a
binary class-attribute association matrix as the thresholded mean of attribute labels
for instances of each seen class. Then hard sets for each attribute are composed of
instances that violate their class-level label for that attribute in the matrix, e.g. albino
elephants (gray), cats with occluded ears (ear).

Overall Results:Table4.2 shows themeanAP scores over all attributes, per dataset.5

Onall three datasets, ourmethodgeneralizes better than all baselines to unseen classes
and hard-seen data.

While the “classwise” technique of [9] helps decorrelate attributes to some extent,
improving over “standard” on aPY-25 and CUB, it is substantially weaker than the
proposed method. That method assumes that same-object examples help isolate the
attribute; yet, if two attributes always co-vary in the same-object examples (e.g.,
if cars with wheels are always metallic) then the method is still prone to exploit
correlated features. Furthermore, the need for sufficient positive andnegative attribute
exampleswithin each object class can be a practical burden (andmakes it inapplicable
to AwA). In contrast, our idea to jointly learn attributes and diffuse features between

5AwA has only class-level attribute annotations, so (i) the classwise baseline [9] is not applicable
and (ii) the “hard-seen” test set is not defined.
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Table 4.2 Accuracy scores for attribute detection (AP× 100). Higher is better. U, H, and S refer,
respectively, to unseen, hard-seen, and all-seen test sets (Sect. 4.2.2.5). Our approach generally
outperforms existing methods, and especially shines when attribute correlations differ between
train and test data (i.e., the U and H scenarios)

Datasets CUB AwA aPY-25

Methods U H S U S U H S

Lasso 17.83 25.52 22.19 52.74 61.75 27.13 29.25 31.84

All-sharing [1] 17.78 25.46 22.17 53.78 60.21 26.01 29.34 25.60

Classwise [9] 19.09 27.56 24.06 N/A N/A 27.29 27.76 35.95

Standard 18.36 27.06 23.69 53.66 66.87 27.27 28.45 37.72

Proposed 21.14 29.62 26.54 54.97 64.80 29.89 33.18 30.21

Fig. 4.7 Attribute detection results across all datasets (Sect. 4.2.2.5)

them is less susceptible to same-object correlations and does not make such label
requirements. Ourmethod outperforms this state-of-the-art approach on each dataset.

The two multi-task baselines (lasso and all-sharing) are typically weakest of all,
verifying that semantics play an important role in deciding when to share. In fact,
we found that the all-sharing/all-competing regularization generally hurt the models,
leading the validated regularization weights λ to remain quite low.

Figure4.7 plots the unseen set results for the individual 422 attributes from all
datasets. Here we show paired comparisons of the three best performing methods:
proposed, classwise [9], and standard. For each plot, attributes are arranged in order
of increasing detectability for one method.6 For nearly all of the 422 attributes, our
method outperforms both the standard learning approach (first plot) and state-of-the-
art classwise method (second plot).

Evidence of “Learning the Right Thing”: Comparing results between the all-seen
and hard-seen cases, we see evidence that our method’s gains are due to its ability to
preserve attribute semantics. On aPY-25 and AwA, our method underperforms the
standard baseline on the all-seen set, whereas it improves performance on the unseen
and hard-seen sets. This matches the behavior we would expect from a method that
successfully resolves correlations in the training data: it generalizes better on novel

6Since “classwise” is inapplicable to AwA, its scores are set to 0 for that dataset (hence the circles
along the x-axis in plots 2 and 3).



64 C.-Y. Chen et al.

Fig. 4.8 a Success cases Annotations shown are our method’s attribute predictions, which match
ground truth. The logistic regression baseline (“standard”) fails on all these cases. b Failure cases
Cases where our predictions (shown) are incorrect and the “standard” baseline succeeds

test sets, sometimes at the cost of mild performance losses on test sets that have
similar correlations (where a learner would benefit by learning the correlations).

In Fig. 4.8a, we present qualitative evidence in the form of cases that were mis-
labeled by the standard baseline but correctly labeled by our approach, e.g., the
wedge-shaped “Flatiron” building (row 2, fourth from left) is correctly marked not
“3D boxy” and the bird in the muck (row 2, end) is correctly marked as not having
“brown underparts” because of the black grime sticking to it. In contrast, the baseline
predicts the attribute based on correlated cues (e.g., city scenes are usually boxy, not
wedge-shaped) and fails on these images.

Figure4.8b shows some failure cases. Common failure cases for our method are
when the image is blurred, the object is very small or information is otherwise
deficient—cases where learning context from co-occurring aspects helps. In the low-
resolution “feather” case, for instance, recognizing bird parts might have helped to
correctly identify “feather”.

Still more qualitative evidence that we preserve semantics comes from studying
the features that influence the decisions of different methods. The part-based repre-
sentation for CUB allows us to visualize the contributions of different bird parts to
determine any given attribute. To find locations on instance number n that contribute
to positive detection of attribute m, we take the absolute value of the elementwise
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Fig. 4.9 Contributions of bird parts (shown as highlights) to the correct detection of specific
attributes. Our method looks in the right places more often than the standard single-task baseline

product of descriptor xn with the attribute weight vector wm—denote this h. Each
feature dimension is mapped onto the bird part it was computed from, in a mapping
f . For each part p, we then compute its weight as l p = ∑

f (i)=p |hi |. These part
weights are visualized as highlights in Fig. 4.9.

Our method focuses on the proper spatial regions associated with the bird parts,
whereas the baseline picks up on correlated features. For example, on the “brown
wing” image,while the baseline focuses on the head, our approach almost exclusively
highlights the wing.

4.2.2.6 Zero-Shot Object Recognition

Next we show the impact of retaining attribute semantics for zero-shot object recog-
nition. Closely following the setting in [25], the goal is to learn object categories
from textual descriptions (e.g., “zebras are striped and four-legged”), but no train-
ing images, making attribute correctness crucial. We input attribute probabilities
from each method’s models to the Direct Attribute Prediction (DAP) framework for
zero-shot learning [25].

Table4.3 shows the results. Our method yields substantial gains in multiclass
accuracy on the two large datasets (CUB and AwA). It is marginally worse than
“standard” and “classwise” on the aPY-25 dataset, despite our significantly better
attribute detection (Sect. 4.2.2.5). We believe that this may be due to recognition
with DAP being less reliable when working with fewer attributes, as in aPY-25 (25
attributes).
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4.2.2.7 Category Discovery with Semantic Attributes

Finally, we demonstrate the impact on category discovery. Cognitive scientists pro-
pose that natural categories are convex regions in conceptual spaces whose axes
correspond to “psychological quality dimensions” [12]. This motivates us to per-
form category discovery with attributes. Treating semantic visual attributes as a
conceptual space for visual categorization, we cluster each method’s attribute pres-
ence probabilities (on unseen class instances) using k-means to discover the convex
clusters. We set k to the true number of classes. We compare each method’s clusters
with the true unseen classes on all three datasets. For CUB, we test against both
the 100 species (CUB-s) as well as the taxonomic families (CUB-f). Performance is
measured using the normalized mutual information (NMI) score which measures the
information shared between a given clustering and the true classes without requiring
hard assignments of clusters to classes.

Table4.4 shows the results. Our method performs significantly better than the
baselines on all tasks. If we were to instead cluster the ground truth attribute signa-
tures, we get a sense of the upper bound (last row). This shows that (i) visual attributes
indeed constitute a plausible “conceptual space” for discovery and (ii) improved
attribute learning models could yield large gains for high-level visual tasks.

Before moving on to the second instantiation of our general idea for multi-task
learning of attributes without oversharing, here is a summary ofwhat we have learned
so far. We have shown how to use semantics to guide attribute learning without over-
sharing across attributes. Through extensive experiments across multiple datasets,

Table 4.3 Scores on zero-shot object recognition (accuracy). Higher is better

Datasets CUB AwA aPY-25

Methods [100 cl] [10 cl] [12 cl]

Lasso 7.35 25.32 9.88

All-sharing [1] 7.34 19.40 6.95

Classwise [9] 9.15 N/A 20.00

Standard 9.67 26.29 20.09

Proposed 10.70 30.64 19.43

Table 4.4 NMI scores for discovery of unseen categories (Sect. 4.2.2.7). Higher is better (0–100)

Methods /
Datasets

CUB-s AwA aPY-25 CUB-f

Lasso 54.85 18.91 19.15 35.03

All-sharing [1] 54.82 18.81 17.17 35.08

Classwise [9] 57.46 N/A 19.73 38.62

Standard 56.97 22.39 17.61 37.19

Proposed 59.44 24.11 24.76 42.81

GT annotations 64.89 100.00 64.29 49.37
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we have verified that: (i) our approach overcomes misleading training data correla-
tions to successfully learn semantic visual attributes and (ii) preserving semantics in
learned attributes is beneficial as an intermediate step in high-level tasks.

4.3 Learning Analogous Category-Sensitive Attributes

In the previous section, we showed how to avoid oversharing features across different
attributes by our proposedmulti-task learning approach. In this section, wewill move
to a different instantiation of our idea for multi-task learning with selective sharing.
Specifically, we will show how to learn analogous category sensitive attributes.
These analogous attributes aim to prevent another aspect of oversharing: using a
single universal attribute model across all object categories.

Intuitively, the conventional approach of universal attribute learning is an over-
simplification. For example, as shown in Fig. 4.10, fluffiness on a dog does not look
the same as fluffiness on a towel. In this case, the attribute “fluffy” refers to different
visual properties in different categories. Whereas above we encourage some features
to be shared within certain attributes and keep some features disjoint between cer-
tain attributes, here we want to build a category-sensitive attribute for each category.
Instead of sharing the attribute across categories, we utilize the correlation between
attributes and categories during training.

What would it mean to have category-sensitive attribute predictions? At a glance
it sounds like the other extreme from the current norm: rather than a single attribute
model for all categories, one would train a single attribute model for each and every
category. Furthermore, to learn accurate category-sensitive attributes, it seems to
require category-sensitive training. For example, we could gather positive exemplar
images for each category+attribute combination (e.g., separate sets of fluffy dog
images, fluffy towel images). If so, this is a disappointment. Not only would learning
attributes in this manner be quite costly in terms of annotations, but it would also
fail to leverage the common semantics of the attributes that remain in spite of their
visual distinctions.

To resolve this problem, we introduce a novel form of transfer learning to infer
category-sensitive attributemodels. Intuitively, even though an attribute’s appearance

Fig. 4.10 Is fluffiness on a dog the same as fluffiness on a towel? Existing approaches assume an
attribute such as “fluffy” can be used across different categories. However, as seen in here, in reality
the same attribute name may refer to different visual properties for different categories
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Fig. 4.11 Having learned a sparse set of object-specific attribute classifiers, our approach infers
analogous attribute classifiers. The inferred models are object-sensitive, despite having no object-
specific labeled images of that attribute during training

may be specialized for a particular object, there likely are latent variables connecting
it to other objects’ manifestations of the property. Plus, some attributes are quite
similar across some class boundaries (e.g., spots look similar on Dalmatian dogs and
Pinto horses). Having learned some category-sensitive attributes, then, we ought to
be able to predict how the attribute might look on a new object, even without labeled
examples depicting that object with the attribute. For example, in Fig. 4.11, suppose
we want to recognize striped dogs, but we have no separate curated set of striped-dog
exemplars. Having learned “spotted”, “brown”, etc., classifiers for dogs, cats, and
equines, the system should leverage those models to infer what “striped” looks like
on a dog. For example, it might infer that stripes on a dog look somewhat like stripes
on a zebra but with shading influenced by the shape dogs share with cats.

Based on this intuition, we show how to infer an analogous attribute—an attribute
classifier that is tailored to a category, even though we lack annotated examples
of that category exhibiting that attribute. Given a sparse set of category-sensitive
attribute classifiers, our approach first discovers the latent structure that connects
them, by factorizing a tensor indexed by categories, attributes, and classifier dimen-
sions. Then, we use the resulting latent factors to complete the tensor, inferring the
“missing” classifier parameters for any object+attribute pairings unobserved during
training. As a result, we can create category-sensitive attributes with only partial
category-sensitive labeled data. Our solution offers a middle ground between com-
pletely category-independent training (the norm today [9, 23, 25, 32, 33, 36]) and
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completely category-sensitive training. We do not need to observe all attributes iso-
lated on each category, and we capitalize on the fact that some categories and some
of their attributes share common parameters.

Analogous attributes can be seen as a form of transfer learning. Existing transfer
learning approaches for object recognition [2, 4, 10, 27, 30, 34, 44, 50, 53] aim
to learn a new object category with few labeled instances by exploiting its similar-
ity to previously learned class(es). While often the source and target classes must
be manually specified [2, 4, 50], some techniques automatically determine which
classes will benefit from transfer [16, 27, 44], or use class co-occurrence statistics
to infer classifier weights to apply to related visual concepts [30]. Different from
them, our goal is to reduce labeled data requirements. More importantly, our idea for
transfer learning jointly in two label spaces is new, and, unlike the prior work, we can
infer new classifiers without training examples. See Sect. 4.4 for further discussion
of related work.

4.3.1 Approach

Given training images labeled by their category and one or more attributes, our
method produces a series of category-sensitive attribute classifiers. Some of those
classifiers are explicitly trained with the labeled data, while the rest are inferred by
our method. We show how to create these analogous attribute classifiers via tensor
completion.

4.3.1.1 Learning Category-Sensitive Attributes

In existing systems, attributes are trained in a category-independent manner [5, 9,
22, 23, 25, 32, 33, 36, 38]. Positive exemplars consist of images from various object
categories, and they are used to train a discriminative model to detect the attribute in
novel images. We will refer to such attributes as universal.

Here we challenge the convention of learning attributes in a completely category-
independent manner. As discussed above, while attributes’ visual cues are often
shared among some objects, the sharing is not universal. It can dilute the learning
process to pool cross-category exemplars indiscriminately.

The naive solution to instead train category-sensitive attributes would be to par-
tition training exemplars by their category labels, and train one attribute per cate-
gory.Were labeled examples of all possible attribute+object combinations abundantly
available, such a strategy might be sufficient. However, in initial experiments with
large-scale datasets, we found that this approach is actually inferior to training a
single universal attribute. We attribute this to two things: (i) even in large-scale col-
lections, the long-tailed distribution of object/scene/attribute occurrences in the real
world means that some label pairs will be undersampled, leaving inadequate exem-
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plars to build a statistically sound model and (ii) this naive approach completely
ignores attributes’ interclass semantic ties.

To overcome these shortcomings, we instead use an importance-weighted support
vector machine (SVM) to train each category-sensitive attribute. Let each training
example (xi , yi ) consist of an image descriptor xi ∈ �D and its binary attribute label
yi ∈ {−1, 1}. Suppose we are learning “furriness” for dogs. We use examples from
all categories (dogs, cats, etc.), but place a higher penalty on violating attribute label
constraints for the same category (the dog instances). This amounts to an SVM
objective for the hyperplane w:

minimize

⎛

⎝1

2
||w||2 + Cs

∑

i

ξi + Co

∑

j

γ j

⎞

⎠ (4.5)

s.t. yiwT xi ≥ 1 − ξi ; ∀i ∈ S
y jwT x j ≥ 1 − γ j ; ∀ j ∈ O
ξi ≥ 0; γ j ≥ 0,

where the sets S and O denote those training instances in the same class (dog) and
other classes (non-dogs), respectively, and Cs and Co are slack penalty constants.
Note, S and O contain both positive and negative examples for the attribute in
consideration.

Instance reweighting is commonly used, e.g., to account for label imbalance
between positives and negatives. Here, by settingCo < Cs , the out-of-class examples
of the attribute serve as a simple prior for which features are relevant. This way we
benefit from more training examples when there are few category-specific examples
of the attribute, but we are inclined to ignore those that deviate too far from the
category-sensitive definition of the property.

4.3.1.2 Object-Attribute Classifier Tensor

Next we define a tensor to capture the structure underlying many such category-
sensitive models. Let m = 1, . . . , M index the M possible attributes in the vocabu-
lary, and let t = 1, . . . , T index the T possible object/scene categories. Let w(t,m)

denote a category-sensitive SVM weight vector trained for the t-th object and m-th
attribute using Eq. (4.5).

We construct a 3D tensor W ∈ �T×M×D using all available category-sensitive
models. Each entry wtm

d contains the value of the d-th dimension of the classifier
w(t,m). For a linear SVM, this value reflects the impact of the d-th dimension of
the feature descriptor x for determining the presence/absence of attribute m for the
object class t .

The resulting tensor is quite sparse. We can only fill entries for which we have
class-specific positive and negative training examples for the attribute of interest. In
today’s most comprehensive attribute datasets [33, 36], including the SUN dataset
discussed in Chap. 11, this means only approximately 25% of the possible object-

http://dx.doi.org/10.1007/978-3-319-50077-5_11
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attribute combinations can be trained in a category-sensitive manner. Rather than
resort to universal models for those “missing” combinations, we propose to use the
latent factors for the observed classifiers to synthesize analogous models for the
unobserved classifiers, as we explain next.

4.3.1.3 Inferring Analogous Attributes

Having learned how certain attributes look for certain object categories, our goal is
to transfer that knowledge to hypothesize how the same attributes will look for other
object categories. In this way, we aim to infer analogous attributes: category-sensitive
attribute classifiers for objects that lack attribute-labeled data. We pose the “missing
classifier” problem as a tensor completion problem.

Matrix (tensor) completion techniques have been used in vision, from bilinear
models for separating style and content [11], to multilinear models separating the
modes of face image formation (e.g., identity vs. expression vs. pose) [46, 47].
While often applied for visualization, the discovered factors can also be used to
impute missing data—for example, to generate images of novel fonts [11] or infer
missing pixels for in-painting tasks [28].

Different from the existing work, we want to use tensor factorization to infer
classifiers, not data instances or labels. This enables a new “zero-shot” transfer
protocol: we leverage the latent factors underlying previously trained models to
create new analogous ones without any labeled instances. Our goal is to recover
the latent factors for the 3D object-attribute tensor W, and use them to impute the
unobserved classifier parameters.

Let O ∈ �K×T , A ∈ �K×M , and C ∈ �K×D denote matrices whose columns are
the K -dimensional latent feature vectors for each object, attribute, and classifier
dimension, respectively. We assume that wtm

d can be expressed as an inner product
of latent factors,

wtm
d ≈ 〈Ot , Am,Cd〉, (4.6)

where a subscript denotes a column of the matrix. In matrix form, we have W ≈∑K
k=1 O

k ◦ Ak ◦ Ck , where a superscript denotes the row in thematrix, and ◦ denotes
the vector outer product.

The latent factors of the tensor W are what affect how the various attributes,
objects, and image descriptors co-vary. What might they correspond to? We expect
some will capture mixtures of two or more attributes, e.g., factors distinguishing how
“spots” appear on something “flat” versus how they appear on something “bumpy”.
The latent factors can also capture useful clusters of objects, or supercategories, that
exhibit attributes in common ways. Some might capture other attributes beyond the
M portrayed in the training images—namely, those that help explain structure in the
objects and other attributes we have observed.

We use Bayesian probabilistic tensor factorization [52] to recover the latent
factors. Using this model, the likelihood for the explicitly trained classifiers
(Sect. 4.3.1.1) is
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p(W|O,A,C, α) = ΠT
t=1Π

M
m=1Π

D
d=1

[N (wtm
d |〈Ot , Am,Cd〉, α−1)

]Itm
,

where N (w|μ, α) denotes a Gaussian with mean μ and precision α, and Itm = 1
if object t has an explicit category-sensitive model for attribute m, and Itm = 0
otherwise. For each of the latent factors Ot , Am , and Cd , we use Gaussian priors.
Let Θ represent all their means and covariances. Following [52], we compute a
distribution for each missing tensor value by integrating out all model parameters
and hyperparameters, given all the observed attribute classifiers:

p(ŵtm
d |W) =

∫
p(ŵtm

d |Ot , Am,Cd , α)p(O,A,C, α,Θ|W) d{O,A,C, α,Θ}.

After initializing with the MAP estimates of the three factor matrices, this distri-
bution is approximated using Markov chain Monte Carlo (MCMC) sampling:

p(ŵtm
d |W) ≈

L∑

l=1

p(ŵtm
d |O(l)

n , A(l)
m ,C (l)

d , α(l)). (4.7)

Each of the L samples {O(l)
t , A(l)

m ,C (l)
d , α(l)} is generated with Gibbs sampling on a

Markov chainwhose stationary distribution is the posterior over themodel parameters
and hyperparameters. We use conjugate distributions as priors for all the Gaussian
hyperparameters to facilitate sampling. See [52] for details.

We use these factors to generate analogous attributes. Suppose we have no labeled
examples showing an object of category t with attributem (or, as is often the case, we
have so few that training a category-sensitive model is problematic). Despite having
no training examples, we can use the tensor to directly infer the classifier parameters

ŵ(t,m) = [ŵtm
1 , . . . , ŵtm

D ], (4.8)

where each ŵtm
d is the mean of the distribution in Eq. (4.7).

4.3.1.4 Discussion

In this approach, we use factorization to infer classifierswithin a tensor representing
two interrelated label spaces. Our idea has two key useful implications. First, it
leverages the interplay of both label spaces to generate new classifiers without seeing
any labeled instances. This is a novel form of transfer learning. Second, by working
directly in the classifier space, we have the advantage of first isolating the low-
level image features that are informative for the observed attributes. This means the
input training images can contain realistic (unannotated) variations. In comparison,
existing data tensor approaches often assume a strict level of alignment; e.g., for faces,



4 Divide, Share, and Conquer: Multi-task Attribute Learning … 73

examples are curated under t specific lighting conditions, m specific expressions,
etc. [46, 47].

Our design also means that the analogous attributes can transfer information
from multiple objects and/or attributes simultaneously. That means, for example,
our model is not restricted to transferring the fluffiness of a dog from the fluffiness
of a cat; rather, its analogous model for dog fluffiness might just as well result from
transferring a mixture of cues from carpet fluffiness, dog spottedness, and cat shape.

In general, transfer learning can only succeed if the source and target classes are
related. Similarly,wewill only find an accurate low-dimensional set of factors if some
common structure exists among the explicitly trained category-sensitive models.
Nonetheless, a nice property of our formulation is that even if the tensor is populated
with a variety of classes—some with no ties—analogous attribute inference can
still succeed. Distinct latent factors can cover the different clusters in the observed
classifiers. For similar reasons, our approach naturally handles the question of “where
to transfer”: sources and targets are never manually specified. Below, we consider the
impact of building the tensor with a large number of semantically diverse categories
versus a smaller number of closely related categories.

4.3.2 Experiments and Results

We evaluate our approach on two datasets: the attribute-labeled portion of Ima-
geNet [36] and SUNAttributes [33]. The latter is presented in detail in Chap.11. See
Fig. 4.12, for example, images of these two datasets. The datasets do not contain data
for all possible category-attribute pairings. Figure4.13 shows which are available:
there are 1,498 and 6,118 pairs in ImageNet and SUN, respectively. The sparsity of
these matrices actually underscores the need for our approach, if one wants to learn
category-sensitive attributes.

4.3.2.1 Category-Sensitive Versus Universal Attributes

First we test whether category-sensitive attributes are even beneficial. We explicitly
train category-sensitive attribute classifiers using importance-weighted SVMs, as
described in Sect. 4.3.1.1. This yields 1,498 and 6,118 classifiers for ImageNet and
SUN, respectively. We compare their predictions to those of universal attributes,
where we train one model for each attribute. When learning an attribute, both models
have access to the exact same images; the universal method ignores the category
labels, while the category-sensitive method puts more emphasis on the in-category
examples.

Table4.5 (“Category-sens.” and “Universal” columns) shows the results, in terms
of mean average precision across all 84 attributes and 664 categories. Among those,
our category-sensitive models meet or exceed the universal approach 76% of the

http://dx.doi.org/10.1007/978-3-319-50077-5_11
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Fig. 4.12 Example images of ImageNet [36] and SUN attributes [33] dataset

Fig. 4.13 Data availability: white entries denote category-attribute pairs that have positive and
negative image exemplars. In ImageNet, most vertical stripes are color attributes, and most hori-
zontal stripes are man-made objects. In SUN, most vertical stripes are attributes that appear across
different scenes, such as vacationing or playing, while horizontal stripes come from scenes with
varied properties, such as airport and park

time. This indicates that the status quo [9, 23, 25, 32, 33, 36] pooling of training
images across categories is indeed detrimental.

4.3.2.2 Inferring Analogous Attributes

The results so far establish that category-sensitive attributes are desirable. However,
the explicit models above are impossible to train for 18,000 of the ∼26,000 pos-
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Table 4.5 Accuracy (mAP) of attribute prediction. Category-sensitive models improve over stan-
dard universal models, and our inferred classifiers nearly match their accuracy with no training
image examples. Traditional forms of transfer (“Adopt similar” and “One-shot” columns) fall short,
showing the advantage of exploiting the 2D label space for transfer, as we propose

Datasets Trained explicitly Trained via transfer

# Categ
(N )

# Attr
(M)

Category-
sens.

Universal Inferred
(Ours)

Adopt
similar

One-
shot

Chance

ImageNet 384 25 0.7304 0.7143 0.7259 0.6194 0.6309 0.5183

SUN 280 59 0.6505 0.6343 0.6429 N/A N/A 0.5408

sible attributes in these datasets. This is where our method comes in. It can infer
all remaining 18,000 attribute models even without class-specific labeled training
examples.

We perform leave-one-out testing: in each round, we remove one observed clas-
sifier (a white entry in Fig. 4.13), and infer it with our tensor factorization approach.
Note that even though we are removing one at a time, the full tensor is always quite
sparse due to the available data. Namely, only 16% (in ImageNet) and 37% (in SUN)
of all possible category-sensitive classifiers can be explicitly trained.

Table4.5 (“Category-sens.”, “Universal”, and “Inferred (Ours)” columns) shows
this key result. In this experiment, the explicitly trained category-sensitive result is
the “upper bound”; it shows how well the model trained with real category-specific
images can do. We see that our inferred analogous attributes (“Inferred (Ours)” col-
umn) are nearly as accurate, yet use zero category-specific labeled images. They
approximate the explicitly trained models well. Most importantly, our inferred mod-
els remain more accurate than the universal approach. Our inferred attributes again
meet or exceed the universal model’s accuracy 79% of the time.

We stress that our method infers models for all missing attributes. That is, using
the explicitly trained attributes, it infers another 8, 064 and 10, 407 classifiers on
ImageNet and SUN, respectively.While the category-sensitivemethodwould require
approximately 160, 000 and 200, 000 labeled examples (20 labeled examples per
classifier) to train those models, our method uses zero.

Table4.5 also compares our approach to conventional transfer learning. The
first transfer baseline infers the missing classifier simply by adopting the category-
sensitive attribute of the category that is semantically closest to it, where semantic
distance is measured via WordNet using [8] (not available for SUN). For exam-
ple, if there are no furry-dog exemplars, we adopt the wolf’s “furriness” classifier.
The second transfer baseline additionally uses one category-specific image example
to perform “one-shot” transfer (e.g., it trains with both the furry-wolf images plus
a furry-dog example). Unlike the transfer baselines, our method uses neither prior
knowledge about semantic distances nor labeled class-specific examples.We see that
our approach is substantially more accurate than both transfer methods. This result
highlights the benefit of our novel approach to transfer, which leverages both label
spaces (categories and their attributes) simultaneously.
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Which attributes does our method transfer? That is, which objects does it find to
be analogous for an attribute? To examine this, we first take a category j and identify
its neighboring categories in the latent feature space, i.e., in terms of Euclidean
distance among the columns of O ∈ �K×T . Then, for each neighbor i , we sort its
attribute classifiers (w(i, :), real or inferred) by their maximal cosine similarity to
any of category j’s attributes w( j, :). The resulting shortlist helps illustrate which
attribute+category pairs our method expects to transfer to category j .

Figure4.14 shows four such examples, with one representative image for each
category. We see neighboring categories in the latent space are often semantically
related (e.g., syrup/bottle) or visually similar (e.g., airplane cabin/conference cen-
ter); although ourmethod receives no explicit side information on semantic distances,
it discovers these ties through the observed attribute classifiers. Some semantically
more distant neighbors (e.g., platypus/rorqual, courtroom/cardroom) are also discov-
ered to be amenable to transfer. Thewords in Fig. 4.14 are the neighboring categories’
top three analogous attributes for the numbered category to their left (not attribute
predictions for those images). It seems quite intuitive that these would be suited for
transfer.

Next we look more closely at where our method succeeds and fails. Figure4.15
shows the top (bottom) five category+attribute combinations for which our inferred
classifiers most increase (decrease) the AP, per dataset. As expected, we see our
method most helps when the visual appearance of the attribute on an object is quite

Fig. 4.14 Analogous attribute examples for ImageNet (top) and SUN (bottom). Words above each
neighbor indicate the three most similar attributes (learned or inferred) between leftmost query
category and its neighboring categories in latent space. For these four examples, [Query cate-
gory]:[Neighbor categories] = (1) [Bottle]:[filter, syrup, bullshot, gerenuk] (2) [Platypus]:[giraffe,
ungulate, rorqual, patas] (3) [Airplane cabin]:[aquarium, boat deck, conference center, art studio]
(4) [Courtroom]: [cardroom, florist shop, performance arena, beach house]
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Fig. 4.15 (Category, attribute) pairs for which our inferred models most improve (left) or hurt
(right) the universal baseline

Fig. 4.16 Test images that our method (top row) and the universal method (bottom row) predicted
most confidently as having the namedattribute (�=positive for the attribute, X =negative, according
to ground truth.)

different from the common case, such as “spots” on the killer whale. On the other
hand, it can detract from the universal model when an attribute is more consistent in
appearance, such as “black”, or where more varied examples help capture a generic
concept, such as “symmetrical”.

Figure4.16 shows qualitative examples that support these findings. We show the
image for each method that was predicted to most confidently exhibit the named
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attribute. By inferring analogous attributes, we better capture object-specific prop-
erties. For example, while our method correctly fires on a “smooth wheel”, the uni-
versal model mistakes a Ferris Wheel as “smooth”, likely due to the smoothness of
the background, which might look like other classes’ instantiations of smoothness.

4.3.2.3 Focusing on Semantically Close Data

In all results so far, we make no attempt to restrict the tensor to ensure semantic
relatedness. The fact our method succeeds in this case indicates that it is capable of
discovering clusters of classifiers for which transfer is possible, and is fairly resistant
to negative transfer.

Still, we are curious whether restricting the tensor to classes that have tight seman-
tic ties could enhance performance. We therefore test two variants: one where we
restrict the tensor to closely related objects (i.e., downsampling the rows), and one
where we restrict it to closely related attributes (i.e., downsampling the columns).
To select a set of closely related objects, we use WordNet to extract sibling synsets
for different types of dogs in ImageNet. This yields 42 categories, such as puppy,
courser, coonhound, corgi. To select a set of closely related attributes, we extract
only the color attributes.

Table4.6 shows the results. We use the same leave-one-out protocol of
Sect. 4.3.2.2, but during inference we only consider category-sensitive classifiers
among the selected categories/attributes. We see that the inferred attributes are
stronger with the category-focused tensor, raising accuracy from 0.7173 to 0.7358,
closer to the upper bound. This suggests that among the entire dataset, attributes
for which categories differ can introduce some noise into the latent factors. On the
other hand, when we ignore attributes unrelated to color, the mAP of the inferred
classifiers remains similar. This may be because color attributes use such a distinct
set of image features compared to others (like stripes, round) that the latent factors
accounting for them are coherent with or without the other classifiers in the mix.
From this preliminary test, we can conclude that when semantic side information is
available, it could boost accuracy, yet our method achieves its main purpose even
when it is not.

Table 4.6 Attribute label prediction mAP when restricting the tensor to semantically close classes.
The explicitly trained category-sensitive classifiers serve as an upper bound

Subset Category-sensitive Inferred (subset) Inferred (all)

Categories (dogs) 0.7478 0.7358 0.7173

Attributes (colors) 0.7665 0.7631 0.7628
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4.4 Related Work

In this section we describe related work in more detail and highlight contrasts and
connections with the two main contributions described above.

4.4.1 Attributes as Semantic Features

A visual attribute is a binary predicate for an image that indicates whether or not
a property is present. The standard approach to learn an attribute is to pool images
regardless of their object category and train a discriminative classifier [5, 9, 22, 23,
25, 26, 32, 33, 36, 38].

While this design is well motivated by the goal of having attributes that transcend
category boundaries, it sacrifices accuracy in practice. We are not aware of any prior
work that learns category-sensitive attributes, though class-specific attribute training
is used as an intermediate feature generation procedure in [9, 51], prior to training
class-independent models.

Recent research focuses on attributes as vehicles of semantics in human–machine
communication. For example, using attributes for image search lets a user specify
precise semantic queries (“find smiling Asian men” [20, 22, 38] or “find shoes more
formal and less shiny than this pair” (Chaps. 5 and6)); using them to augment standard
training labels offers new ways to teach vision systems about objects (“zebras are
striped”, “this bird has a yellow belly”, etc.) [5, 25, 26, 40]; deviations from an
expected configuration of attributes may be used to generate textual descriptions
of what humans would find remarkable [9, 37]. In all such applications, learning
attributes incorrectly (such as by inadvertently learning correlated visual properties)
or imprecisely (such as by learning a “lowest common denominator” model shared
across all categories) is a real problem; the system and user’s interpretations must
align for their communication to be meaningful. However, despite all the attention to
attribute applications, there is very little work on how to learn attributes accurately,
preserving their semantics. The approaches presented in Sects. 4.2 and 4.3 show
promise for such applications that require “learning the right thing” when learning
semantic attributes.

4.4.2 Attribute Correlations

Whilemostmethods learn attributes independently, some initial steps have been taken
toward modeling their relationships. Modeling co-occurrence between attributes
helps ensure predictions follow usual correlations, even if image evidence for a
certain attribute is lacking (e.g., “has-ear” usually implies “has-eye”) [25, 41, 42,
51]. Our goal in decorrelating attributes (Sect. 4.2) is essentially the opposite of these

http://dx.doi.org/10.1007/978-3-319-50077-5_5
http://dx.doi.org/10.1007/978-3-319-50077-5_6
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approaches. Rather than equate co-occurrences with true semantic ties, we argue that
it is often crucial that the learning algorithm avoid conflating pairs of attributes. This
will prevent excessive biasing of the likelihood function toward the training data and
thus deal better with unfamiliar configurations of attributes in novel settings.

While attribute learning is typically considered separately from object category
learning, some recent work explores how to jointly learn attributes and objects,
either to exploit attribute correlations [51], to promote feature sharing [15, 49], or
to discover separable features [39, 54]. Our framework in Sect. 4.3 can be seen as a
new way to jointly learn multiple attributes, leveraging structure in object-attribute
relationships. Unlike any prior work, we use these ties to directly infer category-
sensitive attribute models without labeled exemplars.

In [14], analogies between object categories are used to regularize a semantic
label embedding. Our method also captures beyond-pairwise relationships, but the
similarities end there. In [14], explicit analogies are given as input, and the goal
is to enrich the features used for nearest neighbor object recognition. In contrast,
our approach in Sect. 4.3 implicitly discovers analogical relationships among object-
sensitive attribute classifiers, and our goal is to generate novel category-sensitive
attribute classifiers.

4.4.3 Differentiating Attributes

As discussed above, to our knowledge, the only previous work that attempts to
explicitly decorrelate semantic attributes like we attempt in Sect. 4.2 is the classwise
method of [9]. For each attribute, it selects discriminative image features for each
object class, then pools the selected features to learn the attribute classifier. While
the idea is that examples from the same class help isolate the attribute of interest,
as seen above, this method is susceptible to learning chance correlations among the
reduced number of samples of individual classes. Moreover, it requires expensive
instancewise attribute annotations. Our decorrelating attributes approach (Sect. 4.2)
overcomes these issues, as we demonstrate with experimental comparisons to [9] in
Sect. 4.2.2.

While this is the only prior work on decorrelating semantic attributes, some
unsupervised approaches attempt to diversify discovered (unnamed/non-semantic)
“attributes” [9, 29, 54]—for example, by designing object class splits that yield
uncorrelated features [54] or converting redundant semantic attributes into discrim-
inative ones [29]. In contrast, our focus in Sect. 4.2 is on jointly learning a specified
vocabulary of semantic attributes.
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4.4.4 Multi-task Learning (MTL)

Multi-task learning jointly trains predictive functions for multiple tasks, often by
selecting the feature dimensions (“supports”) each function should use to meet some
criterion.Mostmethods emphasize feature sharing among all classes [1, 19, 31]; e.g.,
feature sharing between objects can yield faster detectors [45], and sharing between
objects and their attributes can isolate features suitable for both tasks [15, 49]. A few
works have begun to explore the value of modeling negative correlations [13, 35, 56,
57]. For example, in a hierarchical classifier, feature competition is encouraged via
disjoint sparsity or “orthogonal transfer”, in order to remove redundancies between
child and parent node classifiers [13, 56]. These methods exploit the inherent mutual
exclusivity among object labels, which does not hold in our attributes setting. Unlike
any of these approaches, in our decorrelating attributes method (Sect. 4.2), we model
semantic structure in the target space using multiple task groups.

While most MTL methods enforce joint learning on all tasks, a few explore ways
to discover groups of tasks that can share features [16, 18, 21]. Our method for
decorrelating attributes (Sect. 4.2) involves grouped tasks, but with two crucial dif-
ferences: (i) we explicitly model between-group competition along with in-group
sharing to achieve intergroup decorrelation and (ii) we treat external knowledge
about semantic groups as supervision to be exploited during learning. In contrast,
the prior methods [16, 18, 21] discover task groups from data, which is prone to
suffer from correlations in the same way as a single-task learner.

In Sect. 4.3, we argue for modeling even single attributes through multiple
category-specific models, all learned in a multi-task learning framework. While the
idea of inferring classifiers for one task from those learned for other tasks is rela-
tively unexplored, [30] recently estimates a classifier for a new class from weighted
linear combinations of heuristically selected related class classifiers with the knowl-
edge of co-occurrence statistics in images. Our approach can be seen as a new form
transfer learning that leverages the interplay of both the category and attribute label
spaces, automatically selecting among and combining previously learned classifiers
to generate new classifiers without seeing any labeled instances.

4.5 Conclusion

In this chapter, we have proposed and discussed two new methods to avoid the
problem of “oversharing” in attribute learning.

First, we showed a method that exploits semantic relationships among attributes
to guide attribute vocabulary learning by selectively sharing features among related
attributes and encouraging disjoint supports for unrelated attributes. Our exten-
sive experiments across three datasets validate two major claims for this method:
(i) it overcomes misleading training data correlations to successfully learn semantic
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visual attributes and (ii) preserving semantics in learned attributes is beneficial as an
intermediate step in high-level tasks.

Next, we proposed a method to learn category-sensitive attributes rather than the
standard monolithic attribute classifier over all categories. To do this, we developed
a new form of transfer learning, in which analogous attributes are inferred using
observed attributes organized according to two interrelated label spaces. Our tensor
factorization approach solves the transfer problem, even when no training examples
are available for the decision task of interest. Once again, our results confirm that our
approach successfully addresses the category-dependence of attributes and improves
attribute recognition accuracy.

The work we have presented suggests a number of possible extensions. The
decorrelating attributes approach of Sect. 4.2 may be extended to automatically mine
attribute groups from web sources, or using distributed word representations, possi-
bly incorporating ideas like those in Chap.12. It may also be interesting to generalize
the approach to settings where tasks cannot easily be clustered into discrete groups,
but, say, pairwise semantic relationships among tasks are known. The analogous
attributes approach would be interesting to consider in a one-shot or few-shot setting
as well. While thus far we have tested it only in the case where no category-specific
labeled examples are available for an attribute we wish to learn, it would be interest-
ing to generalize the model to cases where some image instances are available. For
example, such prior observations could be used to regularize the missing classifier
parameter imputation step. In addition, we are interested in analyzing the impact of
analogous attributes for learning relative properties, such as the fine-grained com-
parison models explored in Chap.6.

Finally, a natural question is how the two “selective sharing” ideas presented in
this chapter might be brought together. For instance, onemight jointly train category-
sensitive attribute classifiers with semantics-informed feature sharing between
attributes, and then use the factorization method to infer classifiers for the category-
attribute pairs for which we lack training examples. Our general idea of controlled
sharing among tasks may also be applicable to many general multi-task learning
problems that have additional sources of information on task relationships.
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to Image Search



Chapter 5
Attributes for Image Retrieval

Adriana Kovashka and Kristen Grauman

Abstract Image retrieval is a computer vision application that people encounter in
their everyday lives. To enable accurate retrieval results, a human user needs to be
able to communicate in a rich and noiselesswaywith the retrieval system.Wepropose
semantic visual attributes as a communication channel for search because they are
commonly used by humans to describe the world around them. We first propose
a new feedback interaction where users can directly comment on how individual
properties of retrieved content should be adjusted to more closely match the desired
visual content. We then show how to ensure this interaction is as informative as
possible, by having the vision system ask those questions that will most increase
its certainty over what content is relevant. To ensure that attribute-based statements
from the user are not misinterpreted by the system, we model the unique ways in
which users employ attribute terms, and develop personalized attribute models. We
discover clusters among users in terms of how they use a given attribute term, and
consequently discover the distinct “shades of meaning” of these attributes. Our work
is a significant step in the direction of bridging the semantic gap between high-level
user intent and low-level visual features. We discuss extensions to further increase
the utility of attributes for practical search applications.

5.1 Introduction

Semantic visual attributes are properties of the world akin to adjectives (e.g. “furry,”
“metallic,” “smiling,” “natural,” etc.) Humans naturally explain the world to each
other with attribute-driven descriptions. For example, a person might say “Give me
the red cup” or “I wanted shoes that were more formal” or “The actor I am thinking
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of is older.” Thus, attributes are meaningful to humans. Importantly, they can also
be captured with computational models. As such, they are an excellent channel for
communication between the user and the system. This property is exploited by a
number of works that apply attributes for semantic image retrieval [7, 26, 30, 45,
50, 55, 60].

Image retrieval is a task in which a human user poses a query using either text or
an image to a search engine, and the engine returns image results. Search is necessary
because there is simply toomuch visual data on the web today, and browsing it to find
relevant content is infeasible.When people perform a search, they usually have a very
specific idea of what they want to retrieve, and this idea cannot be captured by simple
tags or keywords, which are usually category labels. The traditional categories we
use in computer vision are insufficiently descriptive of the user’s information need
because they are too coarse-grained. For example, a user might want to buy shoes
that satisfy certain properties like color, heel height, texture, etc., and these properties
cannot be captured by even the most fine-grained categories that might reasonably
exist in the world. Similarly, the user might search for stock photography to include
in a presentation, and she likely has a very detailed idea of what the photograph she
wants to include should look like. Alternatives to keyword search include asking
the user to point to examples, which is infeasible because when the user’s target is
specific or complex, examples may not be available. Another alternative is to trust
users to draw readily so they can illustrate what they want to find, but unfortunately
this is an unrealistic expectation. Thus, search via some form of language-based
interaction remains a very appealing option.

It is infeasible to pre-assign tags to images that are sufficient to satisfy any future
query. Further, due to the “semantic gap” between the system’s low-level image
representation and the user’s high-level concept, one-shot retrieval performed by
matching images to keywords is unlikely to get the right results. Typically retrieval
systems allow the user to iteratively provide feedback on the results retrieved in each
round. In this interactive form of search, users mark some images as “relevant” and
others as “irrelevant”, and the system adapts its relevance ranking function accord-
ingly [5, 14, 31, 33, 52, 63, 70]. Instead of requesting feedback on some user-chosen
subset of the current results, some methods perform active selection of the images
to display for feedback, by exploiting the uncertainty in the system’s current model
of relevance to find useful exemplars [5, 14, 33, 63, 70].

However, this form of feedback is limited as it forces the retrieval system to
guess what about the images was relevant or irrelevant. For example, when a user
searches for “black shoes”, retrieves a pair of pointy high-heeled black shoes, and
marks them as irrelevant, this might be because she did not want these shoes to
be “pointy”, or because she wanted them to be “flat”. However, the system does
not know which, and this uncertainty will negatively impact the next set of image
results. Furthermore, existing methods which actively select the images for feedback
use an approximation for finding the optimal uncertainty reduction, whether in the
form of uncertainty sampling [63] or by employing sampling or clustering heuristics
[5, 14]. Finally, such methods only consider binary feedback (“this is relevant”/“this
is irrelevant”), which is imprecise.
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Below, we introduce a method for refining image search results via attributes. A
user initiates the search, for instance by providing a set of keywords involving objects
or attributes, and the system retrieves images that satisfy those keywords. After the
initialization, the user performs relevance feedback; the form of this feedback is
where our method’s novelty lies. We propose a new approach which allows the user
to give rich feedback based on relative attributes. For example, she can say “Show
me images like this, but brighter in color.” This descriptive statement allows the
system to adjust the properties of the search results in exactly the way which the
user envisions. Notice this new form of feedback is much more informative than the
“relevant/irrelevant” binary relevance feedback that previous methods allowed.

Attribute-based search has been explored in [30, 50, 55, 60], but while one-shot
attribute-based queries allow a user to more precisely state their goal compared to
category-based queries, the full descriptive power of attributes cannot be utilized
without a way to quantify to what extent they are present and to refine a search after
the query is issued. Furthermore, existing work in attribute-based search [28, 50, 55,
60] assumes one classifier is sufficient to capture all the variability within a given
attribute term, but researchers find there is substantial disagreement between users
regarding attribute labels [6, 13, 23, 46]. We show how to prevent this disagreement
from introducing noise on the user-system communication channel.

Towards the broad goal of interactive search with attributes, we address a number
of technical challenges. First, we use attributes to provide a channel on which the
user can communicate her information need precisely and with as little effort as
possible. We find that, compared to traditional binary relevance feedback, attributes
enable more powerful relevance feedback for image search (Sect. 5.2), and show
how to further select this feedback so it is as informative as possible (Sect. 5.3).
Unlike existing relevance feedback for image retrieval [5, 14, 16, 31, 52, 62, 70],
the attribute-based feedback we propose allows the user to communicate with the
retrieval systemprecisely how a set of results lackwhat the user is looking for.We also
investigate how users use the attribute vocabulary during search, and ensure that the
models learned for each attribute align with how a user employs the attribute name,
which is determinedby theuser’s individual perceptionof this attribute (Sect. 5.4).We
automatically discover and exploit the commonalities that exist in user perceptions
of the same attribute, to reveal the “shades of meaning” of an attribute and learn
more robust models (Sect. 5.5). Due to their computational efficiency, the methods
we develop are highly relevant to practical applications.

5.2 Comparative Relevance Feedback Using Attributes

In [26], we propose a novel mode of feedback where a user directly describes how
high-level properties of image results should be adjusted in order to more closely
match her envisioned target images. Using the relevance feedback paradigm, the
user first initializes the search with some keywords: either the name of the general
class of interest (“shoes”) or somemulti-attribute query (“black high-heeled shoes”).
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Alternatively, the user can provide an image or a sketch [9], and we can use existing
query-by-example approaches [37, 48] to retrieve an initial set of results. The system
ranks the database images with respect to how well they match the text-based or
image-based query. Our system’s job is to refine this initial set of results, through
user-given feedback. If no text-based or image-based initialization is possible, the
search simply begins with a random set of images for feedback.

The top-ranked images are then displayed to the user, and the feedback-refinement
loop begins. For example, when conducting a query on a shopping website, the user
might state: “I want shoes like these, but more formal.” When browsing images of
potential dates on a dating website, she can say: “I am interested in someone who
looks like this, but with longer hair and more smiling.” When searching for stock
photos to fit an ad, she might say: “I need a scene similarly bright as this one and
more urban than that one.” See Fig. 5.1. Using the resulting constraints in the multi-
dimensional attribute space, the system updates its relevance function, re-ranks the
pool of images, and displays to the user the images which are most relevant. In
this way, rather than simply state which images are (ir)relevant, the user employs
semantic terms to say how they are so. We call the approach WhittleSearch, since
it allows users to “whittle away” irrelevant portions of the visual feature space via
precise, intuitive statements of their attribute preferences.

Throughout, letD = {I1, . . . , IN } refer to the pool of N database images that are
ranked by the system using its current scoring function St : Ii → R, where t denotes
the iteration of refinement. St (Ii ) captures the likelihood that image Ii is relevant to
the user’s information need, given all accumulated feedback received in iterations
1, . . . , t − 1. Note that St supplies a (possibly partial) ordering on the images in D.

Query: 
“black shoes”

Feedback: 
“shinier than these”

Feedback: 
“more formal than these”

…

Refined 
top search 

results 

Ini al top 
search 
results 

…

Fig. 5.1 WhittleSearch allows users to refine image search using relative attribute feedback. In this
example, the user initiated the search with the query “black shoes,” retrieved some results, and then
asked the system to show images that are “more formal” than the second result and “shinier” than
the fourth result. The system then refined the set of search results in accordance with the user’s
descriptive feedback. Image reprinted with permission
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At each iteration t , the top L < N ranked images Tt = {It1, . . . , It L} ⊆ D are
displayed to the user for further feedback, where St (It1) ≥ St (It2) ≥ · · · ≥ St (It L).
A user then gives feedback of her choosing on any or all of the L results in Tt . We
refer to Tt interchangeably as the reference set or top-ranked set.

Offline, our system learns a set of ranking functions, each of which predicts the
relative strength of a nameable attribute in an image (e.g. the degree of “shininess,”
“furriness,” etc.). First, we describe how relative attribute models are learned, and
then how we use these models to enable a new mode of relevance feedback.

5.2.1 Learning to Predict Relative Attributes

We assume we are given a vocabulary of M attributes A1, . . . , AM , which may be
generic or domain-specific for the image search problem of interest.1 For example,
a domain-specific vocabulary for shoe shopping could contain attributes such as
“shininess,” “heel height,” “colorfulness,” etc., whereas for scene descriptions it
could contain attributes like “openness,” “naturalness,” and “depth”. It would be too
expensive to manually annotate all images with their attribute strength, so we learn to
extrapolate from a small set of annotations to a prediction function over all database
images as follows.

For each attribute Am , we obtain supervision on a set of image pairs (i, j) in
the training set I. We ask human annotators to judge whether that attribute has a
stronger presence in image i or j , or if it is equally strong in both.2 On each pair we
collect five redundant responses from multiple annotators on Amazon Mechanical
Turk (MTurk), in order to elicit the most common perception of the attribute and
reduce the impact of noisy responses; we use only those responses for which most
labelers agree. This yields a set of ordered image pairs Om = {(i, j)} such that
(i, j) ∈ Om =⇒ i � j , i.e. image i has stronger presence of attribute Am than j .
Note that making comparative judgments is often more natural for annotators than
assigning absolute scores reflecting how much the attribute Am is present [44]. Our
approach extends the learning process proposed in [44] to incorporate image-level
(rather than category-level) relative comparisons, which we show in [27] to more
reliably capture those attributes that do not closely follow category boundaries.

Next, we employ the large-margin formulation of [20] to learn a ranking function
for each attribute that orders images in increasing order of attribute strength. The
function is of the form am(xi ) = wT

mxi , where each image Ii is represented inRd by
a feature vector xi . We seek a vectorwm for eachm = 1, . . . , M that enforces a large
margin between images at nearby ranks, while also allowing themaximumnumber of

1To derive an attribute vocabulary, one could use [43] which automatically generates splits in visual
space and learns from human annotations whether these splits can be described with an attribute;
[46] which shows pairs of images to users on Amazon’s Mechanical Turk platform and aggregates
terms which describe what one image has and the other does not have; or [1, 41] which mine text
to discover attributes for which reliable computer models can be learned.
2The annotations are available at http://vision.cs.utexas.edu/whittlesearch/.

http://vision.cs.utexas.edu/whittlesearch/
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the following constraints to be satisfied: ∀(i, j) ∈ Om : wT
mxi > wT

mx j . The ranking
objective in [20] is reminiscent of standard SVM training and is solved with similar
methods; see [20, 27] for details. We apply the learned functions a1, . . . , aM to an
image’s feature descriptor x, in order to predict the extent to which each attribute is
present in any novel image. Note that this training is a one-time offline process.

The predicted attribute values am(xi ) are what we can observe for image Ii . They
are a function of (but distinct from) the “true” latent attribute strengths Am(Ii ). Using
standard features and kernels, we find that 75%of held-out ground truth comparisons
are preserved by attribute predictors trained with ∼200 pairs.

More sophisticated techniques for learning attribute models can be applied. For
example, multiple attributes can be modeled jointly [3, 66]. Chapter 4 describes
an approach for decorrelating attribute models, Chap.6 proposes a method to learn
fine-grained attribute differences, and [34] proposes to use random forests to improve
relative attributes. In [30], the authors describe how to discover localized attributes
using a pre-defined set of candidate face regions (e.g. mouth, eyes), and the authors of
[54] mine for discriminative object parts. One can also develop a method to directly
learn the spatial support of attributes by capturing human intuition about this support,
or by discoveringwhat image features change smoothly tomake an attribute “appear”
in images [67]. Recent work uses deep networks to predict attributes [11, 42, 57,
58], and to adapt attributes across domains [4, 35].

5.2.2 Relative Attribute Feedback

With the ranking functions learned above, we can now map any image from D into
an M-dimensional space, where each dimension corresponds to the relative rank
prediction for one attribute. It is in this feature space we propose to handle query
refinement from a user’s feedback.

To refine the current search results, the user surveys the L top-ranked images in
the displayed set Tt , and uses some of them as reference images to express her desired
visual result. The feedback is of the form “What I want is more/less m than image
It f ”, where m is an attribute name, and It f is an image in Tt (the subscript t f denotes
it is a reference image at iteration t). Let F = {(It f ,m, r)}K1 denote the set of all
accumulated comparative constraints at each iteration, where r is the user response
r ∈ {“more”, “less”}.3 The conjunction of all such user feedback statements is used
to update the relevance scoring function.

Let Gk,i ∈ {0, 1} be a binary random variable representing whether image Ii sat-
isfies the k-th feedback constraint. For example, if the user’s k-th comparison on
attribute m yields response r = “more”, then Gk,i = 1 if the database image Ii has
attribute m more than the corresponding reference image It f . The estimate of rele-
vance is thus proportional to the probability that any of the |F | feedback comparisons
are satisfied:

3In Sect. 5.3, we extend this approach to also allow “equally” responses.

http://dx.doi.org/10.1007/978-3-319-50077-5_4
http://dx.doi.org/10.1007/978-3-319-50077-5_6
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ST (Ii ) =
|F |∑

k=1

P(Gk,i = 1|Ii ,Fk). (5.1)

Using Iverson bracket notation, we compute the probability that an individual con-
straint is satisfied as:

P(Gk,i = 1|Ii ,Fk) =
{

[am(Ii ) > am(It f )] if r = “more”

[am(Ii ) < am(It f )] if r = “less”.
(5.2)

This simply reflects that images having the appropriate amount of property m are
more relevant than those that do not. In the next iteration, we show at the top of the
results page those images that satisfy all constraints, followed by images satisfying
all but one constraint, etc. The feedback loop is repeated, accepting any additional
feedback on the newly top-ranked images, until the user’s target image is found or the
budget of interaction effort is expended. The final output is a sorting of the database
images in D according to their likelihood of being relevant.

Note that these similarity constraints differ from traditional binary relevance feed-
back, in that they single out an individual attribute. Each attribute feedback statement
carves out a relevant region of the M-dimensional attribute feature space, whittling
away images not meeting the user’s requirements. Further, the proposed form of rela-
tive attribute feedback refines the search inways that a straightforwardmulti-attribute
[30, 55, 60] query cannot. If a user simply stated the attribute labels of interest (“show
me black shoes that are shiny and high-heeled”), one can retrieve the images whose
attribute predictions meet those criteria, but since the user’s description is in absolute
terms, it cannot be refined based on the retrieved images. In contrast, with access
to relative attributes as a mode of communication, for every new set of reference
images returned by the system, the user can further refine his description. Similarly
to multi-attribute queries, faceted browsing—where the retrieval system organizes
documents or products according to several properties (facets) and allows the user
to query with different combinations of the facets [64]—is also a form of keyword
search with fixed values for the attribute properties. However, this form of search
does not suffice when a user’s preferences are very specific and possibly subjective,
i.e. it may be difficult to quantize attributes as multiple-valued facets and determine
what lies within a range of 0.2–0.4 of “pointiness.”

5.2.3 Experimental Validation

We analyze how the proposed relative attribute feedback can enhance image search
compared to classic binary feedback. We use three datasets: the Shoes dataset from
the Attribute Discovery Dataset [1], the Public Figures dataset of human faces [29]
(PubFig), and the Outdoor Scene Recognition dataset of natural scenes [40] (OSR).
The Shoes data contains 14,658 shoe images from like.com, and we use Amazon’s
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Mechanical Turk to annotate the datawith ten relative attributes (“pointy at the front,”
“open,” “bright in color,” “ornamented,” “shiny,” “high at the heel,” “long on the
leg,” “formal,” “sporty,” “feminine”). For PubFig we use the subset from [44], which
contains 772 images from 8 people and 11 attributes (“masculine-looking,” “young,”
“smiling,” “chubby,” “pointy nose,” etc.). OSR consists of 2,688 images from 8
categories and 6 attributes (“natural,” “open,” “close-depth,” etc.); these attributes are
used in [44]. For the image features x, we use GIST [40] and LAB color histograms
for Shoes and PubFig, and GIST alone for OSR, since the scenes do not seem well
characterized by color.

For each query we select a random target image and score how well the search
resultsmatch that target after feedback.This target stands in for a user’smentalmodel;
it allows us to promptmultiple subjects for feedback on awell-defined visual concept,
and to precisely judge how accurate results are. We measure the NDCG@K [21]
correlation between the full ranking computed by St and a ground truth ranking that
reflects the perceived relevance of all images in D.

As a baseline, we use a “binary relevance feedback” approach that is intended to
represent traditional approaches such as [5, 14, 52, 62, 63]. In a binary relevance
feedback model, the user identifies a set of relevant imagesR and a set of irrelevant
images R̄ among the current reference set Tt . In this case, the scoring function Sbt is a
classifier (or some other statistical model), and the binary feedback supplies positive
(the images inR) and negative (the images in R̄) training examples for that classifier.
We employ a support vector machine (SVM) classifier for the binary feedback model
due to its strong performance in practice.

We use two methods to generate feedback statements in order to evaluate our
method and the baseline. First, we gather attribute comparisons fromusers onMTurk.
Second, to allow testing on a larger scale without incurring a large monetary cost,
we also generate feedback automatically, by simulating user responses. For relative
constraints, we randomly sample constraints based on the predicted relative attribute
values, checking how the target image relates to the reference images. For binary
feedback,we analogously sample positive/negative reference examples basedon their
image feature distance to the true target. When scoring rank, we add Gaussian noise
to the predicted attributes (for our method) and the SVM outputs (for the baseline),
to coarsely mimic people’s uncertainty in constraint generation.

In Fig. 5.2, we show the rank correlation for our method and the baseline as a
function of the number of feedback statements, using 100 queries and automatically
generated feedback. A round of feedback consists of a relative attribute constraint
(for our method) or a binary relevance label on one image (for the baseline). For
all datasets, both methods clearly improve with more feedback, but the precision
enabled by attribute feedback yields larger gains in accuracy. The result is intuitive,
since with our method users can better express what about the reference image is
(ir)relevant to them, whereas with binary feedback they cannot.4

4As another point of comparison against existing methods, a multi-attribute query baseline that
ranks images by how many binary attributes they share with the target image achieves NDCG
scores that are 40% weaker on average than our method when using 40 feedback constraints.
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Fig. 5.2 Impact of the amount of feedback: while more feedback enhances both methods, the
proposed attribute feedback yields faster gains per unit of feedback. Image reprintedwith permission

We see similar results when using the feedback generated by real users onMTurk.
Attribute feedback largely outperforms binary feedback, and does similarly well on
OSR. One possible reason is that people seem to have more confusion interpreting
the attribute meanings (e.g. “amount of perspective” on a scene is less intuitive than
“shininess” on shoes). In Sects. 5.4 and 5.5, we propose methods that help account
for these ambiguities and differences in user perception.

In [27], we analyze the performance of our system when rather than a batch of
feedback statements in a single iteration, one statement is given at a time, and the
system iterates.Ourmethod outperforms the binary feedback baseline for all datasets,
but on PubFig our advantage is slight, likely due to the strong category-based nature
of the PubFig data, which makes it more amenable to binary feedback, i.e. adding
positive labels on exemplars of the same person as the target image is quite effective.

Note that while feedback using language (in the form of relative attributes) is
clearly richer and more informative than binary relevance feedback, some aspects of
desired visual contentmaybehard to capture inwords. In such cases, binary feedback,
while imprecise, might offer a more natural alternative. In [26], we propose a hybrid
feedback approach that combines relative attribute and binary feedback. Further, one
could utilize work in modeling perceptual similarity [18, 61] to more accurately
estimate the user’s visual need based on examples that the user identifies.

5.3 Actively Guiding the User’s Relevance Feedback

Having presented the basic system using relative attribute feedback for image search,
we now consider the question of which images ought to receive the user’s feedback.
Notably, the images believed to be most relevant need not be most informative for
reducing the system’s uncertainty. As a result, it might be more beneficial to leave
the choice of reference images on which to seek feedback to the system. Thus, we
next explore how the system can best select the feedback it requests. The method
and results in this section first appeared in [23].

The goal of actively selecting images for feedback is to solicit feedback on those
exemplars that would most improve the system’s notion of relevance. Many existing
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methods exploit classifier uncertainty to find useful exemplars (e.g. [33, 63, 70]),
but they have two limitations. First, they elicit traditional binary feedback which is
imprecise, as discussed above. This makes it ambiguous how to extrapolate rele-
vance predictions to other images, which in turn clouds the active selection criterion.
Second, since ideally they must scan all database images to find the most informa-
tive exemplars, they are computationally expensive and often resort to sampling or
clustering heuristics [5, 14, 51] or to the over-simplified uncertainty sampling [63]
which does not guarantee global uncertainty reduction over the full dataset.

Building on the WhittleSearch concept we introduced above, we next introduce
a novel approach that addresses these shortcomings. As before, we assume the user
initiates a search and the goal of ourmethod is to then refine the results.We propose to
actively guide the user through a coarse-to-fine search using a relative attribute image
representation. At each iteration of feedback, the user provides a visual comparison
between the attribute in her envisioned target and a “pivot” exemplar, where a pivot
separates all database images into two balanced sets. Instead of asking the user to
choose both the image and attribute for feedback, in this approach we ask the system
to make this choice, so the user is presented with a single image and a single attribute
and simply has to provide the value of the comparison (“more”, “less”, or “equally”).
In other words, the system interacts with the user through multiple-choice questions
of the form: “Is the image you are looking for more, less, (or equally) A than image
I?”, where A is a semantic attribute and I is an exemplar from the database being
searched. The system actively determines along which of multiple attributes the
user’s comparison should next be requested, based on the expected information gain
that would result. We show how to limit the scan for candidate questions to just one
image (the pivot) per attribute. Thus, the active selection method is efficient both
for the system (which analyzes a small number of candidates per iteration) and the
user (who locates his content via a small number of well-chosen interactions). See
Fig. 5.3.

? 
More 

Less 

Are the shoes you seek 
 more or less feminine than               ? 

… more or less bright than              ? 

Fig. 5.3 The active version of WhittleSearch requests feedback in the form of visual attribute
comparisons between the user’s target and images selected by the system. To formulate the optimal
questions, it unifies an entropy reduction criterion with binary search trees in attribute space. Image
reprinted with permission
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5.3.1 Attribute Binary Search Trees

We use the same notation as in Sect. 5.2. Am(Ii ) denotes the true strength and am(Ii )
the predicted strength of an attribute m in image Ii . We construct one binary search
tree for each attribute m = 1, . . . , M . The tree recursively partitions all database
images into two balanced sets, where the key at a given node is the median relative
attribute value within the set of images passed to that node. To build them-th attribute
tree, we start at the root with all database images, sort them by their attribute values
am(I1), . . . , am(IN ), and identify the median value. Let Ip denote the “pivot” image
(the one that has the median attribute strength). The images Ii for which am(Ii ) ≤
am(Ip) are passed to the left child, and those for which am(Ii ) > am(Ip) are passed
to the right child. The splitting repeats recursively, each time storing the next pivot
image and its relative attribute value at the appropriate node. Note that the relative
attribute ranker training and search tree construction are offline procedures.

One could devise a search procedure that requests a comparison to the pivot at
each level of a single attribute tree and eliminates the appropriate portion of the
database depending on the user’s response. However, such pruning is error-prone
because (1) the attribute predictions may not be identical to the attribute strengths
a user will perceive, and (2) such pruning ignores the information gain that could
result by intelligently choosing the attribute along which a comparison is requested.
Instead, we will show how to use comparisons to the pivots in our binary search trees,
in order to probabilistically refine the system’s prediction of the relevance/irrelevance
of database images to the user’s goal.

5.3.2 Predicting the Relevance of an Image

The output of our search system will be a sorting of the database images Ii ∈ D
according to their probability of relevance, given the image content and all user
feedback. As before, F = {(Ipm , r)}Tk=1 denotes the set of comparative constraints
accumulated in the T rounds of feedback so far. The k-th item in F consists of a
pivot image Ipm for attributem, and a user response r ∈ {“more”, “less”, “equally”}.
Gk,i ∈ {0, 1} is a binary random variable representing whether image Ii satisfies
the k-th feedback constraint. Let yi ∈ {1, 0} denote the binary label for image Ii ,
which reflects whether it is relevant to the user (matches her target), or not. The
probability of relevance is the probability that all T feedback comparisons in F are
satisfied, and for numerical stability, we use a sum of log probabilities: log P(yi =
1|Ii ,F) = ∑T

k=1 log P(Gk,i = 1|Ii ,Fk). This equation is similar to the definition of
ST (Ii ) in Sect. 5.2, but we now use a soft score denoting whether an image satisfies
a constraint, in order to account for the fact that predicted attributes can deviate from
true perceived attribute strengths. The probability that the k-th individual constraint
is satisfied given that the user’s response was r for pivot Ipm is:
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P(Gk,i = 1|Ii ,Fk) =

⎧
⎪⎨

⎪⎩

P(Am(Ii ) > Am(Ip)) if r = “more”

P(Am(Ii ) < Am(Ip)) if r = “less”

P(Am(Ii ) = Am(Ip)) if r = “equally”.

(5.3)

To estimate these probabilities, we map the differences of attribute predictions,
i.e. am(Ii ) − am(Ip) (or |am(Ii ) − am(Ip)| for “equally”) to probabilistic outputs,
using Platt’s method [47].

5.3.3 Actively Selecting an Informative Comparison

Our system maintains a set of M current pivot images (one per attribute tree) at each
iteration, denoted P = {Ip1 , . . . , IpM }. Given the feedback history F , we want to
predict the information gain across all N database images that would result from
asking the user how her target image compares to each of the current pivots inP . We
will request a comparison for the pivot that minimizes the expected entropy when
used to augment the current set of feedback constraints. Note that selecting a pivot
corresponds to selecting both an image as well as an attribute along which we want
it to be compared; Ipm refers to the pivot for attribute m.

The entropy given feedback F is:

H(F) = −
N∑

i=1

∑

�

P(yi = �|Ii ,F) log P(yi = �|Ii ,F), (5.4)

where � ∈ {0, 1}. Let R be a random variable denoting the user’s response, R ∈
{“more”, “less”, “equally”}. We select the next pivot for comparison as:

I ∗
p = arg min

Ipm ∈P

∑

r

P(R = r |Ipm ,F) H(F ∪ (Ipm , r)). (5.5)

Optimizing Eq.5.5 requires estimating the likelihood of each of the three possible
user responses to a question we have not issued yet. In [23], we describe and evaluate
three strategies to estimate it; here we describe one. We use cues from the available
feedback history to form a “proxy” for the user, essentially borrowing the probability
that a new constraint is satisfied frompreviously seen feedback. Let Ib be the database
imagewhich the systemcurrently ranks highest, i.e. the image thatmaximizes P(yi =
1|Ii ,F). We can use this image as a proxy for the target, and compute:

P(R = r |Ipm ,F) = P(Gc,b = 1|Ib,Fc), (5.6)

where c indexes the candidate new feedback for a (yet unknown) user response R.
At each iteration, we present the user with the pivot selected with Eq.5.5 and

request the specified attribute comparison. Using the resulting feedback, we first
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update F with the user’s new image-attribute-response constraint. Then we either
replace the pivot in P for that attribute with its appropriate child pivot (i.e. the left or
right child in the binary search tree if the response is “less” or “more”, respectively)
or terminate the exploration of this tree (if the response is “equally”). The approach
iterates until the user is satisfiedwith the top-ranked results, or until all of the attribute
trees have bottomed out to an “equally” response from the user.

The cost of our selection method per round of feedback is O(MN ), where M is
the size of the attribute vocabulary, N is the database size, and M  N . For each
of O(M) pivots which can be used to complement the feedback set, we need to
evaluate expected entropy for all N images. In contrast, a traditional information
gain approach would scan all database items paired with all attributes, requiring
O(MN 2) time. In comparison to other error reduction methods [2, 5, 14, 25, 39,
51], our method can exploit the structure of rankable visual properties for substantial
computational savings.

5.3.4 Experimental Validation

We use the same data and experimental setup as in Sect. 5.2, but now we measure
the percentile rank each method assigns to the target at each iteration. We compare
our method Active attribute pivots against:

• Attribute pivots, a version of our method that cycles through pivots in a round-
robin fashion;

• Active attribute exhaustive, which uses entropy to select questions like our
method, but evaluates all possible MxN candidate questions;

• Top, which selects the image that has the current highest probability of relevance
and pairs it with a random attribute;

• Passive, which selects a random (image, attribute) pair;
• Active binary feedback, which asks the user whether the exemplar is similar
to the target, and chooses the image with decision value closest to 0, as in [63];
and

• Passive binary feedback, which works as above, but randomly selects the
images for feedback.

To thoroughly test the methods, we conduct experiments where we simulate the
user’s responses, similar to Sect. 5.2. Figure5.4 shows that our method finds the
target image more efficiently than any of the baselines. Consistent with results in the
previous section, our method significantly outperforms binary relevance feedback.
Interestingly, we find that Passive binary feedback is stronger than its active
counterpart, likely because images near the decision boundary were often negative,
whereas the passive approach samples more diverse instances. Our method substan-
tially improves over the Top approach, which shows that relative attribute feedback
alone does not offer the most efficient search if uninformative feedback is given; and
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Fig. 5.4 Comparison to existing interactive search methods (higher and steeper curves early on are
better). Image reprinted with permission

over Attribute pivots, which indicates that actively interleaving the trees allows
us to focus on attributes that better distinguish the relevant images. It also outper-
formsActive attribute exhaustive5 likely because the attribute trees serve as a
form of regularization, helping our method focus on those comparisons that a priori
may be most informative. The active exhaustive approach considers entropy reduc-
tion resulting from feedback on each possible database image in turn, and can be
misled by outliers that seem to have high expected information gain. Furthermore,
our method is orders of magnitude faster. On the Shoes, OSR and PubFig datasets,
our method only requires 0.05, 0.01 and 0.01 s respectively to make its choice in
a single iteration. In contrast, the exhaustive methods requires 656.27, 28.20 and
3.42 s.

We present live experiments with real MTurk users in [23]. In those experiments,
we achieve a 100–200 raw rank improvement on two datasets, and a negligible 0–
10 raw rank loss on PubFig, compared to the strongest baseline, Top. This is very
encouraging given the noise in MTurk responses and the difficulty of predicting all
attributes reliably. Our information gain predictions on PubFig are imprecise since
the facial attributes are difficult for both the system and people to compare reliably
(e.g. it is hard to say who among two white people is whiter).

In [27], we show a comparison of the active pivots method presented in this
section, and the passive WhittleSearch method presented in the previous section.
Overall we find that the pivots method saves users more time, but also asks harder
questions, which results in less confident responses from users, and in turn this could
lead to erroneous search results. However, our pivots approach reduces the entropy
of the system over the relevance of database images faster than the passive method
from Sect. 5.2. The choice of which method to use for a given application can be
made depending on how long it takes to browse a page of image results, as shown
in [27].

5The exhaustive baseline was too expensive to run on all 14K Shoes. On a 1000-image subset, it
does similarly as on the other datasets.
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Our system actively guides the search based on visual comparisons, helping a
user navigate the image database via relative semantic properties. We experimen-
tally demonstrate the utility of this approach. However, there are several possible
improvements that can further increase utility as well as the search experience of a
user. First, two measures of confidence can be incorporated into the active selection
formulation: the confidence of attributemodels, and the confidence of user responses.
The first would ensure that our selection is not mislead by noisy attribute predictions,
while the second would allow the down-weighing of user responses which may be
erroneous. Further, we could allow the user to give different weight to responses
about different attributes, if these attributes are more important to the search task
than others. In this way, information gain would be higher for attributes that have
accurate models and are key to the user’s search goal.

Further, we could define amixed-initiative framework for search where we are not
forced to choose between the user having control over the feedback (as in Sect. 5.2)
or the system having this control (as in this section), but can rather alternate between
these two options, depending on whether the user or system can provide a more
meaningful next feedback statement. For example, if the system’s estimate of what
the user’s response should be is incorrect for three consecutive iterations, or if the
best potential information gain is lower than some threshold, perhaps the system
should relinquish control. On the other hand, if the user does not see any reference
images that seem particularly useful for feedback, she should give up control.

5.4 Accounting for Differing User Perceptions of Attributes

In the previous sections, we described the power of relative attribute statements as
a form of relevance feedback for search. However, no matter what potential power
of feedback we offer a user, search efficiency will suffer if there is noise on the
communication channel between the user and the system, i.e. if the user says “A”
and the system understands “B”.

Researchers collecting attribute-labeled datasets report significant disagreement
among human annotators over the “true” attribute labels [10, 13, 46]. The differences
may stem from several factors: the words for attributes are imprecise (when is the cat
“overweight” vs. “chubby”?), and their meanings often depend on context (the shoe
appears “comfortable” for a wedding, but not for running) and even cultures (lan-
guages have differing numbers of color words, ranging from two to eleven). Further,
they often stretch to refer to quite distinct object categories (e.g. “pointy” pencil vs.
“pointy” shoes). For all such reasons, people inevitably craft their own definitions
for visual attributes. Failing to account for user-specific notions of attributes will
lead to discrepancies between the user’s precise intent and the message received by
the system.

Existing methods learn only a single “mainstream” view of each attribute, forc-
ing a consensus through majority voting. This is the case whether using binary
[13, 15, 32] or relative [44] attributes. For binary properties, one takes the majority
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vote on the attribute present/absent label. For relative properties, one takes a major-
ity vote on the attribute more/less label. Note that using relative attributes does not
resolve the ambiguity problem. The point in relative attributes is that people may
agree best on comparisons or strengths, not binary labels, but relative attributes too
assume that there is some single, common interpretation of the property and hence
a single ordering of images from least to most [attribute] is possible.

In this section, we propose to model attributes in a user-specific way, in order to
capture the inherent differences in perception. The most straightforward approach
for doing so is to learn one function per attribute and per user, from scratch, but
this is not scalable. Instead, we pose user-specific attribute learning as an adaptation
problem. We leverage any commonalities in perception to learn a generic prediction
function, then use a small number of user-labeled examples to adapt that model
into a user-specific prediction function. In technical terms, this amounts to imposing
regularizers on the learning objective favoring user-specific model parameters that
are similar to the generic ones,while still satisfying the user-specific label constraints.
In this fashion, the system can learn the user’s perception with fewer labels than if it
used a given user’s data alone.

Adaptation [17, 68] requires that the source and target tasks be related, such that
it is meaningful to constrain the target parameters to be close to the source’s. In our
setting the assumption naturally holds: an attribute is semantically meaningful to all
annotators, just with (usually slight) perceptual variations among them.

5.4.1 Adapting Attributes

As before, we learn each attribute of interest separately (i.e. one classifier for “white”,
another for “pointy”). An adapted function is user-specific, with one distinct function
for each user. Let D′ denote the set of images labeled by majority vote that are used
to learn the generic model. We assume the labeled examples originate from a pool of
many annotators who collectively represent the “common denominator” in attribute
perception. We train a generic attribute model f ′(xi ) from D′. Let D denote the set
of user-labeled images, which is typically disjoint from D′. Our adaptive learning
objective will take a D and f ′ as input, and produce an adapted attribute f as output.
In this section, we describe how to adapt binary attributes; see [22] for an analogous
formulation for adapting relative attributes.

The generic data D′ = {x′
i , y

′
i }N ′
i=1 consists of N ′ labeled images, with y′

i ∈
{−1,+1}. Let f ′ denote the generic binary attribute classifier trained with D′. For
a linear support vector machine (SVM), we have f ′(x) = xTw′. To adapt the para-
meters w′ to account for user-specific data D = {xi , yi }Ni=1, we use the Adaptive
SVM [68] objective function:
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min
w

1

2
‖w − w′‖2 + C

N∑

i=1

ξi , (5.7)

subject to yi xT
i w ≥ 1 − ξi ,∀i, ξi ≥ 0,

wherew denotes the desired user-specific hyperplane, andC is a constant controlling
the tradeoff between misclassification on the user-specific training examples and the
regularizer. Note that the objective expands the usual large-margin regularizer ‖w‖2
to additionally prefer that w be similar to w′. In this way, the generic attribute serves
as a prior for the user-specific attribute, such that even with small amounts of user-
labeled data we can learn an accurate predictor.

The optimal w is found by solving a quadratic program to maximize the Lagrange
dual objective function. This yields the Adaptive SVM decision function: f (x) =
f ′(x) + ∑N

i=1 αi yi xT xi , where α denotes the Lagrange multipliers that define w.
Hence, the adapted attribute prediction is a combination of the generic model’s
prediction and similarities between the novel input x and (selected) user-specific
instances xi . Intuitively, a larger weight on a user-specific support vector xi is more
likely when the generic model f ′ mispredicts xi . Thus, user-specific instances that
deviate from the generic model will have more impact on f . For example, suppose a
user mostly agrees with the generic notion of “formal” shoes, but, unlike the average
annotator, is also inclined to call loafers “formal”. Then the adapted classifier will
likely exploit some user-labeled loafer image(s) with nonzero αi when predicting
whether a shoe would be perceived as formal by that user.

The adaptation strategy promotes efficiency in twoways. First, the human labeling
cost is low, since the effort of the extensive label collection required to train the
generic models is distributed among many users. Meanwhile, each user only needs
to provide a small amount of labeled data. In experiments, we see substantial gains
with as few as 12 user-labeled examples. Second, training time is substantially lower
than training each user model from scratch by pooling the generic and user-specific
data. The cost of training the “big” generic SVM is amortized across all user-specific
functions. The efficiency is especially valuable for personalized search.

We obtain the user-specific labeled data D in two ways: by explicitly asking
annotators to label informative images (either an uncertain or diverse pool), and by
implicitly mining for such data in a user’s history. See [22] for details.

We use the adapted attributes to personalize image search results. Compared to
using generic attributes, the personalized results should more closely align with the
user’s perception, leading to more precise retrieval of relevant images. For binary
attributes, we use the user-specific classifiers to retrieve images that match a multi-
attribute query, e.g. “I want images with attributes X , Y , and not Z”. For relative
attributes, we use the adapted rankers to retrieve images that agree with comparative
relevance feedback, similar to Sects. 5.2 and 5.3. In both cases, the system sorts the
database images according to how confidently the adapted attribute predictions agree
with the attribute constraints mentioned in the query or feedback. Note that one can
directly incorporate our adapted attributes into any existing attribute-search method
[26, 30, 55, 60].
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5.4.2 Experimental Validation

Weconduct experimentswith 75 unique users on two large datasets: the Shoes dataset
and 12 attributes from the SUNAttributes dataset [46], which contains 14,340 scenes.
To form descriptors x for Shoes, we use the GIST and color histograms as before.
For SUN, we concatenate features provided by [46]: GIST, color, and base HOG
and self-similarity. We cross-validate C for all models, per attribute and user. We
compare our User- adaptive approach to three methods:

• Generic, which learns a model from the generic majority vote data D′ only;
• Generic+, which adds more generic data to D′ (one generic label for each user-
specific label our method uses); and

• User- exclusive, which uses the sameuser-specific data as ourmethod, but learns
a user-specific model from scratch, without the generic model.

We evaluate generalization accuracy: will adapted attributes better agree with a
user’s perception in novel images? To form a generic model for each dataset, we use
100–200 images (or pairs, in the case of relative Shoes attributes) labeled bymajority
vote. We collect user-specific labels on 60 images/pairs, from each of 10 (Shoes) or
5 (SUN) workers on MTurk. We reserve 10 random user-labeled images per user as
a test set in each run. We measure accuracy across 300 random splits.

In Fig. 5.5, we show representative results for individual attributes and individ-
ual users. We plot test accuracy as a function of the amount of additional training
data beyond the generic pool D′. Generic remains flat, as it gets no additional data.
For binary attributes, chance is 50%; for relative it is 33%, since there are three
possible responses (“more”, “less”, “equally”). Overall, our method more accurately
predicts the labels on the held-out user-specific images than any of the baselines. The
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advantage of adapted attributes over the generic model supports our main claim: we
need to account for users’ individual perception when learning attributes. Further,
the advantage over the user-exclusive model shows that our approach successfully
leverages “universal” perception as a prior; learning from scratch is inferior, particu-
larly if very few user-specific labels are available (see the leftmost point of all plots).
With more user-specific labels, the non-adaptive approach can sometimes catch up
(see “sporty” in column (a)), but at the expense of a much higher burden on each
user. Finally, the Generic+ baseline confirms that our method’s advantage is not
simply a matter of having more data available. Generic+ usually gives Generic a
bump, but much less than User- adaptive. For example, on “bright in color”, our
method improves accuracy by up to 26%, whereas Generic+ only gains 14%.

We do see some failure cases though, as shown in columns (e) and (f). The failures
are by definition rather hard to analyze. That’s because by focusing on user-specific
perception, we lose any ability to filter noisy label responses (e.g. with voting). So,
when a user-adapted model misclassifies, we cannot rule out the possibility that
the worker herself was inconsistent with her personal perception of the attribute in
that test case. Nonetheless, we do see a trend in the failure cases—weaker User-
exclusive classifiers. As a result, our model can start to underperform Generic,
pulled down by (what are possibly inconsistent) user responses, as seen by a number
of cases whereUser- exclusive remains close to chance. Another reason for failure
(with respect to the user-exclusivemodel) are user responses whichwere the opposite
of generic responses, where the generic prior can cause negative transfer for our
method (see “high at the heel” in column (e)). Note that the success of adaptation
depends not just on the attribute being learned, but also on individual users, e.g. “high
at the heel” in columns (d, e) and “open area” in columns (a, e). One could devise a
method that automatically determines when the generic model should be used as a
prior.

We find that user-adapted attributes are often strongest when test cases are hardest.
See [22] for details. We also show that correctly capturing attribute perception is
important for accurate search. Search is a key application where adapted attributes
can alleviate inconsistencies between what the user says, and what the (traditionally
majority-vote-trained)machine understands. Thegeneralization power of the adapted
attributes translates into the search setting: our method is substantially better at
finding the images relevant to the user. This result demonstrates how our idea can
benefit a number of prior binary attribute search systems [30, 55, 60] and our relative
attribute relevance feedback search.

5.5 Discovering Attribute Shades of Meaning

So far, we have discussed generic attribute models, which assume that all users
perceive the attribute in the same way; and user-specific models, which assume that
each user’s perception is unique.However,while users differ in how they perceive and
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Fig. 5.6 Our attribute shade discovery method uses the crowd to discover factors responsible for
an attribute’s presence, then learns predictive models based on these visual cues. For example, for
the attribute open, the method will discover shades of meaning, e.g. peep-toed (open at toe) versus
slip-on (open at heel) versus sandal-like (open at toe and heel), which are three visual definitions
of openness. Since these shades are not coherent in terms of their global descriptors, they would be
difficult to discover using traditional image clustering

use attributes, it is likely that there are some commonalities or groupings between
them in terms of how they interpret and utilize the attribute vocabulary. We find
evidence for this in work on linguistic relativity [12], which examines how culture
influences how we describe objects, shape properties of animals, colors, etc. For
example, Russian has twowords forwhatwould be shades of “blue” in English, while
other languages do not strongly distinguish “blue” and “green”. In other words, if
asked whether an object in some image is “blue” or not, people of different countries
might be grouped around different answers. We refer to such groupings of users as
“schools of thought”.

We can use the groupings of users to discover the “shades of meaning” of an
attribute, since users in the same “school” likely subscribe to the same interpretation
of the attribute.6 An attribute “shade” is a visual interpretation of an attribute name
that one or more people apply when judging whether that attribute is present in
an image. For example, for the attribute “open” in Fig. 5.6, we might discover that
some users have peep-toed shoes in mind when they say “open”, while others have
flip-flops in mind when they use the same word. Note that for many attributes, such
ambiguities in language use cannot be resolved by adjusting the attribute definitions,
since people use the same definition differently.

In order to discover schools, we first collect a set of sparse annotations from a large
pool of users. We then perform matrix factorization over these labels, and obtain a
description of each user that captures the underlying latent factors contributing to
the user’s annotations. We cluster users in this latent factor space, and each cluster
becomes a “school.”

After we discover the schools of users, we personalize each attribute model
towards these schools, rather than towards individual users. Focusing on the com-
monalities between users allows the system to learn the important biases that users
have in interpreting the attribute, as opposed to minor differences in labeling which
may stem from factors other than a truly different interpretation.

6Below we use the terms “school” and “shade” interchangeably.
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5.5.1 Collecting Personal Labels and Label Explanations

We build a Mechanical Turk interface to gather the labels. We use 12 attributes from
the Shoes and SUNAttributes datasets that can be defined concisely in language, yet
may vary in their visual instantiations. We sample 250–1000 images per attribute.
Workers are shown definitions of the attributes from aweb dictionary, but no example
images. Then, given an image, the worker must provide a binary label, i.e. she must
state whether the image does or does not possess a specified attribute. Additionally,
for a random set of 5 images, the worker must explain her label in free-form text,
and state which image most has the attribute and why. These questions both slow the
worker down, helping quality control, and also provide valuable ground truth data
for evaluation. To help ensure self-consistency in the labels, we exclude workers who
fail to consistently answer 3 repeated questions sprinkled among the 50. This yields
annotations from 195 workers per attribute on average.

5.5.2 Discovering Schools and Training Per-School
Adapted Models

We use the label data to discover latent factors, which are needed to recover the
shades of meaning, separately for each attribute. We retain each worker’s ID, the
indices of images she labeled, and how she labeled them. Let M denote the number
of unique annotators and N the number of images seen by at least one annotator.
Let L be the M × N label matrix, where Li j ∈ {0, 1, ?} is a binary attribute label for
image j by annotator i . A ? denotes an unlabeled example (on average only 20% of
the possible image-worker pairs are labeled).

We suppose there is a small number D of unobserved factors that influence the
annotators’ labels. This reflects that their decisions are driven by some mid-level
visual cues. For example, when deciding whether a shoe looks “ornate”, the latent
factors might include presence of buckles, amount of patterned textures, material
type, color, and heel height. Assuming a linear factor model, the label matrix L can
be factored as the product of anM × D annotator latent factormatrixAT and aD × N
image latent factor matrix I: L = AT I. We use the probabilistic matrix factorization
algorithm (PMF) [53] to factor this partially observed matrix, by finding the best
rank-D approximation. We fix D = 50, then use the default parameter settings.

We represent each annotator i in terms of her association with each discovered
factor, i.e. the “latent feature vector” for annotator i is Ai ∈ �D , the i-th column
of A. It represents how much each of the D factors influences that annotator when
she decides if the named attribute is present. We pose shade discovery as a grouping
problem in the space of these latent features. We apply K -means to the columns of
A to obtain clusters {S1, . . . ,SK }. We set K automatically per attribute based on
the optimal silhouette coefficient within K = {2, . . . , 15}. By clustering in the low-
dimensional latent space, the method identifies the “schools of thought” underlying
the discrete set of labels the annotators provided.
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Finally, we use the positive exemplars in each school to train a predictive model,
which can then detect when the particular attribute shade is present in novel images.
We train school-specific classifiers that adapt the consensus model. Each school Sk

is represented by the total pool of images that its annotators labeled as positive.
Several annotators in the cluster may have labeled the same image, and their labels
need not agree. Thus, we perform majority vote (over just the annotators in Sk) to
decide whether an image is positive or negative for the shade. We use the images
to train a discriminative classifier, using the adaptive SVM objective of Yang et
al. [68] to regularize its parameters to be similar to those of the consensus model,
as in Sect. 5.4. In other words, we are now personalizing to schools of users, as
opposed to individual users. When we need to predict how a user will judge the
presence/absence of an attribute, e.g. during image search, we apply the adapted
shade model for the school to which the user belongs. Compared to user-adaptive
models, each shade model typically leverages more training data than a single user
provides. This lets us effectively “borrow” labeled instances from the user’s neighbors
in the crowd. Further, the within-school majority vote can be seen as a form of quality
control, where we assume consistency within the group. This helps reduce noise in
an individual user’s labeling.

The imageswithin a shade can be visually diverse from the point of view of typical
global image descriptors, since annotators attuned to that shade’s latent factors could
have focused on arbitrarily small parts of the images, or arbitrary subsets of feature
modalities (e.g. color, shape, texture). For example, one shade for “open” might
focus on shoe toes, while another focuses on shoe heels. Similarly, one shade for
“formal” capturing the notion that dark-colored shoes are formal would rely on color
alone, while another capturing the notion that shoes with excessively high heels are
not formal would rely on shape alone. An approach that attempts to discover shades
based on image clustering, as well as non-semantic attribute discovery approaches
[8, 38, 43, 49, 59, 69], would be susceptible to the more obvious splits in the
feature space which need not directly support the semantic attribute of interest, and
would not be able to group images according to these perceived, possibly subtle,
cues. Furthermore, discovery methods would be biased by the choice of features,
e.g. the set of salient splits in color histogram space would be quite different than
those discovered in a dense SIFT feature space. In contrast, our method partitions
the images semantically, so even though the training images may be visually diverse,
standard discriminative learning methods let us isolate the informative features.

Note that it would be challenging to manually enumerate the attribute shades with
words. For example, when asked to explain why an image is “ornamented”, an anno-
tator might comment on the “buckle” or “bow”; yet the latent shade of “ornamented”
underlying many users’ labels is more abstract and encompasses combinations of
such concrete mid-level cues. Our method uses the structure in the labels to auto-
matically discover these shades.
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5.5.3 Experimental Validation

We demonstrate shades’ utility for improving attribute prediction. We compare to
the methods from Sect. 5.4, as well as two alternative shade formation baselines—
Attribute discovery, wherewe cluster images in the attribute space discovered by
a state-of-the-art non-semantic attribute discovery method [49], and Image clus-
ters, an image clustering approach inspired by [36].We run 30 trials, sampling 20%
of the available labels to obtain on average 10 labels per user.

Table5.1 shows the results. Our shade discovery is more reliable than Generic,
which is the status quo attribute learning approach. For “open”, we achieve an 8-point
gain over Generic and User- exclusive, which indicates both how different user
perceptions of this attribute are, as well as how useful it is to rely on schools rather
than individual users.Shades also outperformourUser- adaptive approach.While
that method learns personalized models, shades leverage common perceptions and
thereby avoid overfitting to a user’s few labeled instances. Finally, neither alternative
shade formationmethod is competitive with our approach. These results demonstrate
that for all attributes evaluated,mapping aperson’s useof an attribute to a shade allows
us to predict attribute presence more accurately. This is achieved at no additional
expense for the user.

Figure5.7 visualizes two shades each, for four of the attributes (see [24] formore).
The images are those most frequently labeled as positive by annotators in a shade Sk .
The (stemmed) words are those that appear most frequently in the annotator expla-
nations for that shade, after we remove words that overlap between the two shades.
We see the shades capture nuanced visual sub-definitions of the attribute words. For
example, for the attribute “ornate,” one shade focuses on straps/buckles (top shade),
while another focuses on texture/print/patterns (bottom shade). For “open,” one shade
includes open-heeled shoes, while another includes sandals which are open at the

Table 5.1 Accuracy of predicting perceived attributes, with standard error in parentheses

Attribute Shades Generic User- exc User- adp Attr disc Img clust

Pointy 76.3 (0.3) 74.0 (0.4) 67.8 (0.2) 74.8 (0.3) 74.5 (0.4) 74.3 (0.4)

Open 74.6 (0.4) 66.5 (0.5) 65.8 (0.2) 71.6 (0.3) 68.5 (0.4) 68.3 (0.4)

Ornate 62.8 (0.7) 56.4 (1.1) 59.6 (0.5) 61.1 (0.6) 58.3 (0.8) 58.6 (0.7)

Comfortable 77.3 (0.6) 75.0 (0.7) 68.7 (0.5) 75.5 (0.6) 76.0 (0.7) 75.4 (0.6)

Formal 78.8 (0.5) 76.2 (0.7) 69.6 (0.4) 77.1 (0.4) 77.4 (0.6) 77.0 (0.6)

Brown 70.9 (1.0) 69.5 (1.2) 61.9 (0.5) 68.5 (0.9) 69.3 (1.2) 69.8 (1.2)

Fashionable 62.2 (0.9) 58.5 (1.4) 60.5 (1.3) 62.0 (1.4) 61.2 (1.4) 61.5 (1.1)

Cluttered 64.5 (0.3) 60.5 (0.5) 58.8 (0.2) 63.1 (0.4) 60.4 (0.7) 60.8 (0.7)

Soothing 62.5 (0.4) 61.0 (0.5) 55.2 (0.2) 61.5 (0.4) 61.1 (0.4) 61.0 (0.5)

Open area 64.6 (0.6) 62.9 (1.0) 57.9 (0.4) 63.5 (0.5) 63.5 (0.8) 62.8 (0.9)

Modern 57.3 (0.8) 51.2 (0.9) 56.2 (0.7) 56.2 (1.1) 52.5 (0.9) 52.0 (1.1)

Rustic 67.4 (0.6) 66.7 (0.5) 63.4 (0.5) 67.0 (0.5) 67.2 (0.5) 67.2 (0.5)
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Fig. 5.7 Top words and images for two shades per attribute (top and bottom for each attribute)

front and back. In SUN, the “open area” attribute can be either outside (top) or
inside (bottom). For “soothing,” one shade emphasizes scenes conducive to relaxing
activities, while another focuses on the aesthetics of the scene.

See [24] for results that demonstrate the advantage of using shades for attribute-
based search and for an analysis of the purity of the discovered shades. These results
show the importance of our shade discovery approach for interactive search: for a
user to reliably find “formal” shoes, the system must correctly estimate “formal”
in the database images. If the wrong attribute shade is predicted, the wrong image
is retrieved. In general, detecting shades is key whenever linguistic attributes are
required, which includes applications beyond image search as well (e.g. zero-shot
recognition).

In our experiments, we assume that the pool of annotators is fixed, so we can map
annotators to schools or shades during the matrix factorization procedure. However,
newusers could join after that procedure has takenplace, so howcanwemap suchnew
users to a shade?Of course, a usermust provide at least some attribute labels to benefit
from the shade models, since we need to know which shade to apply. One approach
is to add the user to the user-image label matrix L and re-factor. Alternatively, we
can use the more efficient folding-in heuristic [19]. We can appropriately copy the
user’s image labels into a 1 × N vector u, where we fill in missing label values by the
most common response (0 or 1) for that image from already known users, similarly
to an idea used by [44]. We can then compute the product of u and the image latent
factor matrix I, resulting in a representation of this new user in the latent factor space.
After finding this representation, we use the existing set of cluster centers, and find
the closest cluster center for the new user. We can then perform the personalization
approach for this user as before, and thus any new user can also receive the benefit
from our school discovery. We leave as future work the task of testing our system
with late-comer new users.
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5.6 Discussion and Conclusion

In this chapter, we proposed an effective new formof feedback for image search using
relative attributes. In contrast to traditional binary relevance feedback which restricts
the user’s input to labeling images as “relevant” or “not relevant”, our approach allows
the user to precisely indicate how the results compare with her mental model. Next,
we studied how to select the reference images used for feedback so the provided
feedback is as informative to the retrieval system as possible. Today’s visual search
systems place the burden on the user to initiate useful feedback by labeling images
as relevant, and often prioritize showing the user pleasing results over striving to
obtain useful feedback. In contrast, we guide the user through a coarse-to-fine search
via visual comparisons, and demonstrate this enables accurate results to be retrieved
faster. Further, we showed how to bridge the human and machine perception of
attributes by accounting for the variability in user attribute perceptions. While exist-
ing work assumes that users agree on the attribute values of images and thus build a
single monolithic model per attribute, we develop personalized attribute models. Our
results on two compelling datasets indicate that (1) people do indeed have varying
shades of attribute meaning, (2) transferring generic models makes learning those
shades more cost-effective than learning from scratch, and (3) accounting for the dif-
ferences in user perception is essential in image search applications. Finally, we show
how to discover people’s shared biases in perception, then exploit them with visual
classifiers that can generalize to new images. The discovered shades of attribute
meaning allow us to tailor attribute predictions to the user’s “school of thought,”
boosting the accuracy of detecting attributes.

While attributes are an excellent channel for interactive image retrieval, several
issues remain to be solved in order to unleash attributes’ full power for practical
applications. First, the accuracy of attribute-based search is still far from satisfactory,
and it is not acceptable for real users. For example, in [23], after 5 iterations of
feedback, the viewer still has to browse between 9 and 14% of the full dataset
in order to find the exact image she is looking for. (In contrast, in our simulated
experiment using perfect attribute models with added noise, only between 2 and 5%
of the dataset needs to be browsed.) To address this problem,we need to developmore
accurate attribute models. Deep learning methods might enable us to make better use
of existing annotations, but an orthogonal solution is to learn richer annotations, by
involving humans more directly in training models that truly understand what these
attributes mean.7 We also need ways to visualize attributes, similar to visualizing
object detection models [65], to ensure that the model aligns with the meaning that a
human ascribes to the attribute, rather than a property correlated with the attribute.

A second problem with existing attribute-based work is that users are confined
to using a small vocabulary of attributes to describe the world. We need to enable
users to define new attributes on the fly during search, and propose techniques for

7Note that non-semantic attributes [49, 56, 69] are not readily applicable for applications that
require human-machine communication as they do not have human-interpretable names.
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efficiently learning models for these newly defined attributes. One approach for the
latter is to utilize existing models for related attributes as a prior for learning new
attribute models.
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Chapter 6
Fine-Grained Comparisons with Attributes

Aron Yu and Kristen Grauman

Abstract Given two images, we want to predict which exhibits a particular visual
attribute more than the other—evenwhen the two images are quite similar. For exam-
ple, given two beach scenes, which looks more calm? Given two high-heeled shoes,
which is more ornate? Existing relative attribute methods rely on global ranking
functions. However, rarely will the visual cues relevant to a comparison be con-
stant for all data, nor will humans’ perception of the attribute necessarily permit a
global ordering. At the same time, not every image pair is even orderable for a given
attribute. Attempting to map relative attribute ranks to “equality” predictions is non-
trivial, particularly since the span of indistinguishable pairs in attribute space may
vary in different parts of the feature space. To address these issues, we introduce local
learning approaches for fine-grained visual comparisons, where a predictive model
is trained on the fly using only the data most relevant to the novel input. In particular,
given a novel pair of images, we develop local learning methods to (1) infer their rel-
ative attribute ordering with a ranking function trained using only analogous labeled
image pairs, (2) infer the optimal “neighborhood,” i.e., the subset of the training
instances most relevant for training a given local model, and (3) infer whether the
pair is even distinguishable, based on a local model for just noticeable differences
in attributes. Our methods outperform state-of-the-art methods for relative attribute
prediction on challenging datasets, including a large newly curated shoe dataset for
fine-grained comparisons. We find that for fine-grained comparisons, more labeled
data is not necessarily preferable to isolating the right data.
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6.1 Introduction

Attributes are visual properties describable in words, capturing anything from mate-
rial properties (metallic, furry), shapes (flat, boxy), expressions (smiling, surprised),
to functions (sittable, drinkable). Since their introduction to the recognition commu-
nity [19, 35, 37], attributes have inspired a number of useful applications in image
search [32, 34, 35, 50], biometrics [11, 45], and language-based supervision for
recognition [6, 37, 43, 49].

Existing attribute models come in one of two forms: categorical or relative.
Whereas categorical attributes are suited only for clear-cut predicates, such as male
or wooden, relative attributes can represent “real-valued” properties that inherently
exhibit a spectrum of strengths, such as serious or sporty. These spectra allow a
computer vision system to go beyond recognition into comparison. For example,
with a model for the relative attribute brightness, a system could judge which of two
images is brighter than the other, as opposed to simply labeling them as bright/not
bright.

Attribute comparisons open up a number of interesting possibilities. In biometrics,
the system could interpret descriptions like, “the suspect is taller than him” [45].
In image search, the user could supply semantic feedback to pinpoint his desired
content: “the shoes I want to buy are like these butmoremasculine” [34], as discussed
in Chap.5 of this book. For object recognition, human supervisors could teach the
system by relating new objects to previously learned ones, e.g., “a mule has a tail
longer than a donkey’s” [6, 43, 49]. For subjective visual tasks, users could teach the
system their personal perception, e.g., about which human faces are more attractive
than others [1].

One typically learns a relative attribute in a learning-to-rank setting; training data
is ordered (e.g., we are told image A has it more than B), and a ranking function
is optimized to preserve those orderings. Given a new image, the function returns
a score conveying how strongly the attribute is present [1, 10, 14, 18, 34, 38, 41,
43, 46, 47]. While a promising direction, the standard ranking approach tends to
fail when faced with fine-grained visual comparisons. In particular, the standard
approach falls short on two fronts: (1) it cannot reliably predict comparisons when
the novel pair of images exhibits subtle visual differences, and (2) it does not permit
equality predictions, meaning it is unable to detect when a novel pair of images are so
similar that their difference is indistinguishable. The former scenario includes both
the case where the images are globally similar, making all distinctions fine-grained,
as well as the case where the images are very similar only in terms of the attribute
of interest.

Why do existing global ranking functions experience difficulties making fine-
grained attribute comparisons? The problem is that while a single learned function
tends to accommodate the gross visual differences that govern the attribute’s spec-
trum, it cannot simultaneously account for the many fine-grained differences among
closely related examples, each of which may be due to a distinct set of visual cues.
For example, what makes a slipper appear more comfortable than a high heel is

http://dx.doi.org/10.1007/978-3-319-50077-5_5
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Fig. 6.1 A global ranking function may be suitable for coarse ranking tasks, but fine-grained
ranking tasks require attention to subtle details—and which details are important may vary in
different parts of the feature space. We propose a local learning approach to train comparative
attributes based on fine-grained analogous pairs

different than what makes one high heel appear more comfortable than another;
what makes a mountain scene appear more natural than a highway is different than
what makes a suburb more natural than a downtown skyscraper (Fig. 6.1).

Furthermore, at some point, fine-grained differences become so subtle that they
become indistinguishable. However, existing attribute models assume that all images
are orderable. In particular, they assume that at test time, the system can and should
always distinguish which image in a pair exhibits the attribute more. Imagine you are
given a pile of images of Barack Obama, and you must sort them according to where
he looks most to least serious. Can you do it? Surely there will be some obvious ones
where he is more serious or less serious. There will even be image pairs where the
distinction is quite subtle, yet still perceptible, thus fine-grained. However, you are
likely to conclude that forcing a total order is meaningless: while the images exhibit
different degrees of the attribute seriousness, at some point the differences become
indistinguishable. It is not that the pixel patterns in indistinguishable image pairs are
literally the same—they just cannot be characterized consistently as anything other
than “equally serious” (Fig. 6.2). As we discuss in detail in Sect. 6.5, computational
models for indistinguishability of attributes present substantial challenges.

We contend that such fine-grained comparisons are critical to get right, since
this is where modeling relative attributes ought to have great power. Otherwise, we
could just learn coarse categories of appearance (“bright scenes,” “dark scenes”) and
manually define their ordering. In particular, fine-grained visual comparisons are
valuable for sophisticated image search and browsing applications, such as distin-
guishing subtle properties between products in an online catalog, as well as analysis
tasks involving nuanced perception, such as detecting slight shades of human facial
expressions or distinguishing the identifying traits betweenotherwise similar-looking
people.

In light of these challenges, we introduce local learning algorithms for fine-
grained visual comparisons. Local learning is an instance of “lazy learning,” where
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Fig. 6.2 At what point is the strength of an attribute indistinguishable between two images? While
existing relative attribute methods are restricted to inferring a total order, in reality there are images
that look different but where the attribute is nonetheless perceived as “equally strong.” For example,
in the fourth and fifth images ofObama, is the difference in seriousness noticeable enough towarrant
a relative comparison?

one defers processing of the training data until test time. Rather than estimate a single
global model from all training data, local learning methods instead focus on a subset
of the data most relevant to the particular test instance. This helps learn fine-grained
models tailored to the new input, and makes it possible to adjust the capacity of
the learning algorithm to the local properties of the data [7]. Local methods include
classic nearest neighbor classification as well as various novel formulations that
use only nearby points to either train a model [2, 3, 7, 24, 57] or learn a feature
transformation [16, 17, 25, 51] that caters to the novel input.

The local learning methods we develop in this chapter address the questions of
(1) how to compare an attribute in highly similar images as well as (2) how to deter-
minewhen such a comparison is not possible. To learn fine-grained ranking functions
for attributes, given a novel test pair of images, we first identify analogous training
pairs using a learned attribute-specific metric. Then we train a ranking function on
the fly using only those pairs [54]. Building on this framework, we further explore
how to predict the local neighborhood itself—essentially answering the “how local”
question. Whereas existing local learning work assumes a fixed number of proximal
training instances are most relevant, our approach infers the relevant set as a whole,
both in terms of its size and composition [55]. Finally, to decide when a novel pair is
indistinguishable in terms of a given attribute, we develop a Bayesian approach that
relies on local statistics of orderability to learn a model of just noticeable difference
(JND) [56].

Roadmap The rest of the chapter proceeds as follows. In Sect. 6.2, we discuss
related work in the areas of relative attributes, local learning, and fine-grained visual
learning. In Sect. 6.3, we provide a brief overview of the relative attributes rank-
ing framework. In Sects. 6.4 and 6.5, we discuss in detail our proposed approaches
for fine-grained visual comparisons and equality prediction using JND. Finally,
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we conclude in Sects. 6.6 and 6.7 with further discussion and future work. The
work described in this chapter originally was presented in our previous conference
papers [54–56].

6.2 Related Work

Attribute Comparison Attribute comparison has gained attention in the last sev-
eral years. The original “relative attributes” approach learns a global linear ranking
function for each attribute [43]. Pairwise supervision is used for training: a set of
pairs ordered according to their perceived attribute strength is obtained from human
annotators, and a ranking function that preserves those orderings is learned. Given
a novel pair of images, the ranker indicates which image has the attribute more. It
is extended to nonlinear ranking functions in [38] by training a hierarchy of rankers
with different subsets of data, then normalizing predictions at the leaf nodes. In [14],
rankers trained for each feature descriptor (color, shape, texture) are combined to pro-
duce a single global ranking function. In [47], part-based representations weighted
specifically for each attribute are used instead of global features.

Aside from learning to rank formulations, researchers have applied the Elo rating
system for biometrics [45], and regression over “cumulative attributes” for age and
crowd density estimation [11].

All the prior methods produce a single global function for each attribute, whereas
we propose to learn local functions tailored to the comparison at hand. While some
implementations (including [43]) augment the training pool with “equal” pairs to
facilitate learning, notably no existing work attempts to discern distinguishable from
indistinguishable pairs at test time. As we will see below, doing so is nontrivial.

Fine-Grained Visual Tasks Work on fine-grained visual categorization aims to
recognize objects in a single domain, e.g., bird species [9, 20]. While such prob-
lems also require making distinctions among visually close instances, our goal is to
compare attributes, not categorize objects.

In the facial attractiveness ranking method of [10], the authors train a hierarchy
of SVM classifiers to recursively push a image into buckets of more/less attractive
faces. The leaf nodes contain images “unrankable” by the human subject, which
can be seen as indistinguishability for the specific attribute of human attractiveness.
Nonetheless, the proposedmethod is not applicable to our problem. It learns a ranking
model specific to a single human subject, whereas we learn a subject-independent
model. Furthermore, the training procedure [10] has limited scalability, since the
subject must rank all training images into a partial order; the results focus on train-
ing sets of 24 images for this reason. In our domains of interest, where thousands
or more training instances are standard, getting a reliable global partial order on all
images remains an open challenge.
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Variability in Visual Perception The fact that humans exhibit inconsistencies in
their comparisons is well known in social choice theory and preference learning [8].
In existing global models [1, 10, 14, 18, 34, 38, 41, 43, 47], intransitive constraints
would be unaccounted for and treated as noise.While the HodgeRank algorithm [28]
also takes a global ranking approach, it estimates how much it suffers from cyclic
inconsistencies, which is valuable to know how much to trust the final ranking func-
tion. However, that approach does not address the fact that the features relevant to a
comparison are not uniform across a dataset, which we find is critical for fine-grained
comparisons.

We are interested in modeling attributes where there is consensus about com-
parisons, only they are subtle. Rather than personalize a model toward an observer
[1, 10, 31], we want to discover the (implicit) map of where the consensus for JND
boundaries in attributes exists. The attribute calibrationmethodof [48] post-processes
attribute classifier outputs so they can be fused formulti-attribute search. Ourmethod
is also conscious that differences in attribute outputs taken at “face value” can be
misleading, but our goal and approach are entirely different.

Local Learning In terms of learning algorithms, lazy local learning methods are
relevant to our work. Existing methods primarily vary in how they exploit the labeled
instances nearest to a test point.One strategy is to identify a fixed number of neighbors
most similar to the test point, then train a model with only those examples (e.g., a
neural network [7], SVM [57], ranking function [3, 24], or linear regression [2]).
Alternatively, the nearest training points can be used to learn a transformation of the
feature space (e.g., Linear Discriminant Analysis); after projecting the data into the
new space, themodel is better tailored to the query’s neighborhood properties [16, 17,
25, 51]. In local selectionmethods, strictly the subset of nearby data is used, whereas
in locally weighted methods, all training points are used but weighted according
to their distance [2]. For all these prior methods, a test case is a new data point,
and its neighboring examples are identified by nearest neighbor search (e.g., with
Euclidean distance). In contrast, we propose to learn local ranking functions for
comparisons, which requires identifying analogous neighbor pairs in the training
data. Furthermore, we also explore how to predict the variable-size set of training
instances that will produce an effective discriminativemodel for a given test instance.

In information retrieval, local learning methods have been developed to sort doc-
uments by their relevance to query keywords [3, 17, 24, 39]. They take strategies
quite similar to the above, e.g., building a local model for each cluster in the training
data [39], projecting training data onto a subspace determined by the test data distri-
bution [17], or building a model with only the query’s neighbors [3, 24]. Though a
form of ranking, the problem setting in all these methods is quite different from ours.
There, the training examples consist of queries and their respective sets of ground
truth “relevant” and “irrelevant” documents, and the goal is to learn a function to rank
a keyword query’s relevant documents higher than its irrelevant ones. In contrast,
we have training data comprised of paired comparisons, and the goal is to learn a
function to compare a novel query pair.
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Fig. 6.3 Illustration of a learned linear ranking function trained from ordered pairs. The goal is to
learn a ranking function RA(x) that satisfies both the ordered and unordered pairwise constraints.
Given a novel test pair, the real-valued ranking scores of the images are compared to determine
their relative ordering

Metric Learning The question “what is relevant to a test point?” also brings to mind
the metric learning problem. Metric learning methods optimize the parameters of
a distance function so as to best satisfy known (dis)similarity constraints between
training data [4]. Most relevant to our work are those that learn local metrics; rather
than learn a single global parameterization, the metric varies in different regions of
the feature space. For example, to improve nearest neighbor classification, in [22]
a set of feature weights is learned for each individual training example, while in
[52, 53] separate metrics are trained for clusters discovered in the training data.
Such methods are valuable when the data is multimodal and thus ill-suited by a
single global metric. In contrast to our approach, however, they learn local models
offline on the basis of the fixed training set, whereas our approaches dynamically
train new models as a function of the novel queries (Fig. 6.3).

6.3 Ranking Functions for Relative Attributes

First we describe how attribute comparisons can be addressed with a learning to rank
approach, as originally proposed by Parikh and Grauman [43]. Ranking functions
will also play a role in our solution, and the specific model we introduce next will
further serve as the representative traditional “global” approach in our experiments.
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Our approach addresses the relative comparison problem on a per attribute basis.1

As training data for the attribute of interest A (e.g., comfortable), we are given a
pool of ground truth comparisons on pairs of images. Then, given a novel pair of
images, our method predicts which exhibits the attribute more, that is, which of the
two images appears more comfortable, or if the images are equal, or in other words,
totally indistinguishable. We first present a brief overview of Relative Attributes [43]
as it sets the foundation as a baseline global ranking approach.

The Relative Attributes approach treats the attribute comparison task as a learning
to rank problem. The idea is to use ordered pairs (and optionally “equal” pairs) of
training images to train a ranking function that will generalize to new images. Com-
pared to learning a regression function, the ranking framework has the advantage that
training instances are themselves expressed comparatively, as opposed to requiring
a rating of the absolute strength of the attribute per training image.

For each attributeA to be learned, we take as input two sets of annotated training
image pairs. The first set consists of ordered pairs, Po = {(i, j)}, for which humans
perceive image i to have the attribute more than image j . That is, each pair in Po

has a “noticeable difference”. The second set consists of unordered, or “equal” pairs,
Pe = {(m, n)}, for which humans cannot perceive a difference in attribute strength.
See Sect. 6.4.3 for discussion on how such human-annotated data can be reliably
collected.

Let xi ∈ R
d denote the d-dimensional image descriptor for image i , such as a

GIST descriptor or a color histogram, and let RA be a linear ranking function:

RA(x) = wT
Ax . (6.1)

Using a large-margin approach based on the SVM-Rank framework [29], the goal for
a global relative attribute is to learn the parameters wA ∈ R

d that optimize the rank
function parameters to preserve the orderings in Po, maintaining a margin between
them in the 1D output space, while also minimizing the separation between the
unordered pairs in Pe. By itself, the problem is NP-hard, but [29] introduces slack
variables and a large-margin regularizer to approximately solve it. The learning
objective is:

minimize
(
1
2 ||wA||22 + C

(∑
ξ 2
i j + ∑

γ 2
m,n

))
(6.2)

s.t. wT
A(xi − x j ) ≥ 1 − ξi j ; ∀(i, j) ∈ Po

|wT
A(xm − xn)| ≤ γpq; ∀(m, n) ∈ Pe

ξi j ≥ 0; γmn ≥ 0,

where the constant C balances the regularizer and ordering constraints, and γpq and
ξi j denote slack variables. By projecting images onto the resulting hyperplane wA,
we obtain a 1D global ranking for that attribute, e.g., from least to most comfortable.

1See Chap.4 for discussion on methods for jointly training multiple attributes.

http://dx.doi.org/10.1007/978-3-319-50077-5_4
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Given a test pair (xr , xs), if RA(xr ) > RA(xs), then image r exhibits the attribute
more than image s, and vice versa. While [43] uses this linear formulation, it is also
kernelizable and so can produce nonlinear ranking functions.

Our local approach defined next draws on this particular ranking formulation,
which is also used in both [43] and in the hierarchy of [38] to produce state-of-
the-art results. Note however that our local learning idea would apply similarly to
alternative ranking methods.

6.4 Fine-Grained Visual Comparisons

Existing methods train a global ranking function using all available constraints Po

(and sometimes Pe), with the implicit assumption that more training data should
only help better learn the target concept. While such an approach tends to capture
the coarse visual comparisons, it can be difficult to derive a single set of model
parameters that adequately represents both these big-picture contrasts and more
subtle fine-grained comparisons (recall Fig. 6.1). For example, for a dataset of shoes,
it will map all the sneakers on one end of the formal spectrum, and all the high
heels on the other, but the ordering among closely related high heels will not show
a clear pattern. This suggests there is an interplay between the model capacity and
the density of available training examples, prompting us to explore local learning
solutions.

In the following, we next introduce our local ranking approach (Sect. 6.4.1) and
the mechanism to selecting fine-grained neighboring pairs with attribute-specific
metric learning (Sect. 6.4.2). On three challenging datasets from distinct domains,
including a newly curated large dataset of 50,000 Zappos shoe images that focuses
on fine-grained attribute comparisons (Sect. 6.4.3), we show our approach improves
the state-of-the-art in relative attribute predictions (Sect. 6.4.4). After the results,
we briefly overview an extension of the local attribute learning idea that learns the
neighborhood of relevant training data that ought to be used to train a model on the
fly (Sect. 6.4.5).

6.4.1 Local Learning for Visual Comparisons

The solution to overcoming the shortcomings of existing methods discussed above
is not simply a matter of using a higher capacity learning algorithm. While a low
capacity model can perform poorly in well-sampled areas, unable to sufficiently
exploit the dense training data, a high capacity model can produce unreliable (yet
highly confident) decisions in poorly sampled areas of the feature space [7]. Different
properties are required in different areas of the feature space. Furthermore, in our
visual ranking domain, we can expect that as the amount of available training data
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increases, more human subjectiveness and ordering inconsistencies will emerge,
further straining the validity of a single global function.

Our idea is to explore a local learning approach for attribute ranking. The idea is
to train a ranking function tailored to each novel pair of images Xq = (xr , xs) that
we wish to compare. We train the custom function using only a subset of all labeled
training pairs, exploiting the data statistics in the neighborhood of the test pair. In
particular, we sort all training pairsPA by their similarity to (xr , xs), then compose a
local training setP ′

A consisting of the top K neighboring pairs,P ′
A = {(xk1, xk2)}Kk=1.

We explain in the next section howwe define similarity between pairs. Then, we train
a ranking function using Eq.6.2 on the fly, and apply it to compare the test images.
Thus, while the capacity of the trained models will be fixed throughout the feature
space, crucially, the composition of their training sets and the resulting models will
vary.

While simple, our framework directly addresses the flaws that hinder existing
methods. By restricting training pairs to those visually similar to the test pair, the
learner can zero in on features most important for that kind of comparison. Such a
fine-grained approach helps to eliminate ordering constraints that are irrelevant to the
test pair. For instance, when evaluatingwhether a high-topped athletic shoe ismore or
less sporty than a similar-looking low-topped one, our method will exploit pairs with
similar visual differences, as opposed to trying to accommodate in a single global
function the contrasting sportiness of sneakers, high heels, and sandals (Fig. 6.4).

6.4.2 Selecting Fine-Grained Neighboring Pairs

A key factor to the success of the local rank learning approach is how we judge
similarity between pairs. Intuitively, we would like to gather training pairs that are
somehow analogous to the test pair, so that the ranker focuses on the fine-grained
visual differences that dictate their comparison. This means that not only should
individual members of the pairs have visual similarity, but also the visual contrasts
between the two test pair images should mimic the visual contrasts between the
two training pair images. In addition, we must account for the fact that we seek
comparisons along a particular attribute, which means only certain aspects of the
image appearance are relevant; in other words, Euclidean distance between their
global image descriptors is likely inadequate.

To fulfill these desiderata, we define a paired distance function that incorporates
attribute-specific metric learning. Let Xq = (xr , xs) be the test pair, and let Xt =
(xu, xv) be a labeled training pair for which (u, v) ∈ PA. We define their distance
as:

DA
(
Xq , Xt

) = min
(
D′

A ((xr , xs), (xu, xv)) , D′
A ((xr , xs), (xv, xu))

)
, (6.3)

where D′
A is the product of the two items’ distances:
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Fig. 6.4 Given a novel test pair (blue �) in a learned metric space, our local approach a selects
only the most relevant neighbors (green �) for training, which leads to ranking test image 2 over 1
in terms of sporty. In contrast, the standard global approach defined in Sect. 6.3 b uses all training
data (green � and red ×) for training; the unrelated training pairs dilute the training data. As a
result, the global model accounts largely for the coarse-grained differences, and incorrectly ranks
test image 1 over 2. The end of each arrow points to the image with more of the attribute (sporty).
Note that the rank of each point is determined by its projection onto w

D′
A ((xr , xs), (xu, xv)) = dA(xr , xu) × dA(xs, xv). (6.4)

The product reflects that we are looking for pairs where each image is visually
similar to one of those in the novel pair. It also ensures that the constraint pairs
are evaluated for distance as a pair instead of as individual images.2 If both query
training couplings are similar, the distance is low. If some image coupling is highly
dissimilar, the distance is greatly increased.Theminimum inEq.6.3 and the swapping
of (xu, xv) → (xv, xu) in the second term ensure that we account for the unknown
ordering of the test pair; while all training pairs are ordered with RA(xu) > RA(xv),
the first or second argument of Xq may exhibit the attribute more. When learning

2A more strict definition of “analogous pair” would further constrain that there be low distortion
between the vectors connecting the query pair and training pair, respectively, i.e., forming a par-
allelogram in the metric space. This is similarly efficient to implement. However, in practice, we
found the stricter definition is slightly less effective than the product distance. This indicates that
some variation in the intra-pair visual differences are useful to the learner.
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a local ranking function for attribute A, we sort neighbor pairs for Xq according to
DA, then take the top K to form P ′

A.
When identifying neighbor pairs, rather than judge image distance dA by the

usual Euclidean distance on global descriptors, we want to specialize the function
to the particular attribute at hand. That’s because often a visual attribute does not
rely equally on each dimension of the feature space, whether due to the features’
locations ormodality. For example, if judging image distance for the attribute smiling,
the localized region by the mouth is likely most important; if judging distance for
comfort the features describing color may be irrelevant. In short, it is not enough to
find images that are globally visually similar. For fine-grained comparisons we need
to focus on those that are similar in terms of the property of interest.

To this end, we learn a Mahalanobis metric:

dA(xi , x j ) = (xi − x j )
TMA(xi − x j ), (6.5)

parameterized by the d × d positive definitematrixMA.We employ the information-
theoretic metric learning (ITML) algorithm [15], due to its efficiency and kerneliz-
ability. Given an initial d × d matrixMA0 specifying any prior knowledge about how
the data should be compared, ITML produces the MA that minimizes the LogDet
divergence D�d from that initial matrix, subject to constraints that similar data points
be close and dissimilar points be far:

min
MA	0

D�d(MA,MA0) (6.6)

s.t. dA(xi , x j ) ≤ c (i, j) ∈ SA
dA(xi , x j ) ≥ � (i, j) ∈ DA.

The setsSA andDA consist of pairs of points constrained to be similar and dissimilar,
and � and c are large and small values, respectively, determined by the distribution of
original distances.We setMA0 = Σ−1, the inverse covariance matrix for the training
images. To compose SA and DA, we use image pairs for which human annotators
found the images similar (or dissimilar) according to the attribute A. While metric
learning is usually used to enhance nearest neighbor classification (e.g., [23, 27]),
we employ it to gauge perceived similarity along an attribute.

Figure6.6 shows example neighbor pairs. They illustrate how our method finds
training pairs analogous to the test pair, so the local learner can isolate the informa-
tive visual features for that comparison. Note how holistically, the neighbors found
with metric learning (FG-LocalPair) may actually look less similar than those found
without (LocalPair). However, in terms of the specific attribute, they better isolate
the features that are relevant. For example, images of the same exact person need not
be most useful to predict the degree of smiling, if others better matched to the test
pair’s expressions are available (last example). In practice, the local rankers trained
with learned neighbors are substantially more accurate.
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Fig. 6.5 Sample images from each of the high-level shoe categories of UT-Zap50K

6.4.3 Fine-Grained Attribute Zappos Dataset

Having explained the basic approach, we now describe a new dataset amenable to
fine-grained attributes. We collected a new UT Zappos50K dataset (UT-Zap50K3)
specifically targeting the fine-grained attribute comparison task. The dataset is fine-
grained due to two factors: (1) it focuses on a narrow domain of content, and (2) we
develop a two-stage annotation procedure to isolate those comparisons that humans
find perceptually very close.

The image collection is created in the context of an online shopping task, with
50,000 catalog shoe images from Zappos.com. For online shopping, users care about
precise visual differences between items. For instance, it is more likely that a shopper
is deciding between two pairs of similar men’s running shoes instead of between a
woman’s high heel and aman’s slipper. The images are roughly 150 × 100 pixels and
shoes are pictured in the same orientation for convenient analysis. For each image,
we also collect its meta-data (shoe type, materials, manufacturer, gender, etc.) that
are used to filter the shoes on Zappos.com.

Using Mechanical Turk (mTurk), we collect ground truth comparisons for 4 rel-
ative attributes: open, pointy at the toe, sporty, and comfortable. The attributes are
selected for their potential to exhibit fine-grained differences. A worker is shown two
images and an attribute name, and must make a relative decision (more, less, equal)
and report the confidence of his decision (high, mid, low). We repeat the same com-
parison for 5workers in order to vote on the final ground truth.We collect 12,000 total
pairs, 3,000 per attribute. After removing the low confidence or agreement pairs, and
“equal” pairs, each attribute has between 1,500 to 1,800 total ordered pairs (Fig. 6.5).

Of all the possible 50,0002 pairs we could get annotated, we want to prioritize the
fine-grained pairs. To this end, first, we sampled pairswith a strong bias (80%) toward
intra-category and -gender images (based on the meta-data). We call this collection
UT-Zap50K-1. We found ∼40% of the pairs came back labeled as “equal” for each
attribute. While the “equal” label can indicate that there’s no perceivable difference
in the attribute, we also suspected that it was an easy fallback response for cases that
required a little more thought—that is, those showing fine-grained differences. Thus,
we next posted the pairs rated as “equal” (4,612 of them) back onto mTurk as new
tasks, but without the “equal” option. We asked the workers to look closely, pick one

3UT-Zap50K dataset and all related data are publicly available for download at
vision.cs.utexas.edu/projects/finegrained.
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image over the other, and give a one sentence rationale for their decisions. We call
this set UT-Zap50K-2.

Interestingly, the workers are quite consistent on these pairs, despite their diffi-
culty. Out of all 4,612 pairs, only 278 pairs had low confidence or agreement (and
so were pruned). Overall, 63% of the fine-grained pairs (and 66% of the coarser
pairs) had at least 4 out of 5 workers agree on the same answer with above average
confidence. This consistency ensures we have a dataset that is both fine-grained as
well as reliably ground truthed.

Compared to an existing Shoes attribute dataset [5] with relative attributes [34],
UT-Zap50K is about 3.5× larger, offers meta-data and 10×more comparative labels,
and most importantly, specifically targets fine-grained tasks. Compared to existing
popular relative attribute datasets like PubFig [36] and Outdoor Scenes [42], which
contain only category-level comparisons (e.g., “Viggo smiles less than Miley”) that
are propagated down uniformly to all image instances, UT-Zap50K is distinct in that
annotators have made image-level comparisons (e.g., “this particular shoe image
is more pointy than that particular shoe”). The latter is more costly to obtain but
essential for testing fine-grained attributes thoroughly.

In the next section we use UT-Zap50K as well as other existing datasets to test
our approach. Later in Sect. 6.5 we will discuss extensions to the annotations that
make it suitable for the just noticeable difference task as well (Fig. 6.6).

Fig. 6.6 Example fine-grained neighbor pairs for three test pairs (top row) from the datasets tested
in this chapter. We display the top 3 pairs per query. FG-LocalPair and LocalPair denote results
with and without metric learning (ML), respectively.UT-Zap50K pointy: ML puts the comparison
focus on the tip of the shoe, caring less about the look of the shoe as a whole. OSR open: ML
has less impact, as openness in these scenes relates to their whole texture. PubFig smiling: ML
learns to focus on the mouth/lip region instead of the entire face. For example, while the LocalPair
(non-learned) metric retrieves face pairs that more often contain the same people as the top pair,
those instances are nonetheless less relevant for the fine-grained smiling distinction it requires. In
contrast, our FG-LocalPair learned metric retrieves nearby pairs that may contain different people,
yet are instances where the degree of smiling is most useful as a basis for predicting the relative
smiling level in the novel query pair
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6.4.4 Experiments and Results

To validate our method, we compare it to two state-of-the-art methods as well as
informative baselines.

6.4.4.1 Experimental Setup

DatasetsWeevaluate on three datasets:UT-Zap50K, as defined above,with concate-
natedGIST and color histogram features; theOutdoor SceneRecognition dataset [42]
(OSR); and a subset of the Public Figures faces dataset [36] (PubFig). OSR contains
2,688 images (GIST features) with 6 attributes, while PubFig contains 772 images
(GIST + Color features) with 11 attributes. We use the exact same attributes, fea-
tures, and train/test splits as [38, 43]. Our choice of features is based on the intent
to capture spatially localized textures (GIST) as well as global color distributions,
though of course alternative feature types could easily be employed in our framework.

SetupWe run for 10 random train/test splits, setting aside 300 ground truth pairs for
testing and the rest for training. We cross-validate C for all experiments, and adopt
the same C selected by the global baseline for our approach. We use no “equal”
pairs for training or testing rankers. We report accuracy in terms of the percentage
of correctly ordered pairs, following [38]. We present results using the same labeled
data for all methods.

For learning to rank, our total training pairs PA consist of only ordered pairs
Po. For ITML, we use the ordered pairs PA for rank training to compose the set of
dissimilar pairs DA, and the set of “equal” pairs to compose the similar pairs SA.
We use the default settings for c and � in the authors’ code [15]. The setting of K
determines “how local” the learner is; its optimal setting depends on the training
data and query. As in prior work [7, 57], we simply fix it for all queries at K = 100
(though see Sect. 6.4.5 for a proposed generalization that learns the neighborhood
size as well). Values of K = 50–200 give similar results.

Baselines We compare the following methods:

• FG-LocalPair: the proposed fine-grained approach.
• LocalPair: our approach without the learned metric (i.e.,MA = I). This baseline
isolates the impact of tailoring the search for neighboring pairs to the attribute.

• RandPair: a local approach that selects its neighbors randomly. This baseline
demonstrates the importance of selecting relevant neighbors.

• Global: a global ranker trained with all available labeled pairs, using Eq.6.2. This
is the Relative Attributes method [43]. We use the authors’ public code.

• RelTree: the nonlinear relative attributes approachof [38],which learns a hierarchy
of functions, each trained with successively smaller subsets of the data. Code is
not available, so we rely on the authors’ reported numbers (available for OSR and
PubFig).



134 A. Yu and K. Grauman

Table 6.1 Results for the UT-Zap50K dataset

Open Pointy Sporty Comfort

(a) UT-Zap50K-1 with coarser pairs

Global [43] 87.77 89.37 91.20 89.93

RandPair 82.53 83.70 86.30 84.77

LocalPair 88.53 88.87 92.20 90.90

FG-LocalPair 90.67 90.83 92.67 92.37

(b) UT-Zap50K-2 with fine-grained pairs

Global [43] 60.18 59.56 62.70 64.04

RandPair 61.00 53.41 58.26 59.24

LocalPair 71.64 59.56 61.22 59.75

FG-LocalPair 74.91 63.74 64.54 62.51

Fig. 6.7 Accuracy for the 30 hardest test pairs on UT-Zap50K-1

6.4.4.2 Zappos Results

Table6.1a shows the accuracy on UT-Zap50K-1. Our method outperforms all base-
lines for all attributes. To isolate the more difficult pairs in UT-Zap50K-1, we sort the
test pairs by their intra-pair distance using the learnedmetric; those that are close will
be visually similar for the attribute, and hence more challenging. Figure6.7 shows
the results, plotting cumulative accuracy for the 30 hardest test pairs per split. We
see that our method has substantial gains over the baselines (about 20%), demon-
strating its strong advantage for detecting subtle differences. Figure6.8 shows some
qualitative results.

We proceed to test on even more difficult pairs. Whereas Fig. 6.7 focuses on pairs
difficult according to the learned metric, next we focus on pairs difficult according
to our human annotators. Table6.1b shows the results for UT-Zap50K-2. We use
the original ordered pairs for training and all 4,612 fine-grained pairs for testing
(Sect. 6.4.3). We outperform all methods for 3 of the 4 attributes. For the two more
objective attributes, open and pointy, our gains are sizeable—14% over Global for
open. We attribute this to their localized nature, which is accurately captured by our
learned metrics. No matter how fine-grained the difference is, it usually comes down
to the top of the shoe (open) or the tip of the shoe (pointy). On the other hand, the
subjective attributes are much less localized. The most challenging one is comfort,
where our method performs slightly worse than Global, in spite of being better on
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Fig. 6.8 Example pairs contrasting our predictions to the Global baseline’s. In each pair, the top
item is more sporty than the bottom item according to ground truth from human annotators. (1) We
predict correctly, Global is wrong. We detect subtle changes, while Global relies only on overall
shape and color. (2)We predict incorrectly, Global is right. These coarser differences are sufficiently
captured by a global model. (3) Both methods predict incorrectly. Such pairs are so fine-grained,
they are difficult even for humans to make a firm decision

the coarser pairs (Table6.1a). We think this is because the locations of the subtleties
vary greatly per pair.

6.4.4.3 Scenes and PubFig Results

We now shift our attention to OSR and PubFig, two commonly used datasets for
relative attributes [34, 38, 43]. The paired supervision for these datasets originates
from categorywise comparisons [43], and as such there are many more training
pairs—on average over 20,000 per attribute.

Tables6.2 and 6.3 show the accuracy for PubFig and OSR, respectively. See [54]
for attribute-specific precision recall curves. On both datasets, our method outper-
forms all the baselines. Most notably, it outperforms RelTree [38], which to our
knowledge is the very best accuracy reported to date on these datasets. This partic-
ular result is compelling not only because we improve the state-of-the-art, but also

Table 6.2 Accuracy comparison for the OSR dataset. FG-LocalPair denotes the proposed approach

Natural Open Perspective LgSize Diagonal ClsDepth

RelTree
[38]

95.24 92.39 87.58 88.34 89.34 89.54

Global [43] 95.03 90.77 86.73 86.23 86.50 87.53

RandPair 92.97 89.40 84.80 84.67 84.27 85.47

LocalPair 94.63 93.27 88.33 89.40 90.70 89.53

FG-
LocalPair

95.70 94.10 90.43 91.10 92.43 90.47
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Table 6.3 Accuracy comparison for the PubFig dataset

Male White Young Smiling Chubby F.Head

RelTree [38] 85.33 82.59 84.41 83.36 78.97 88.83

Global [43] 81.80 76.97 83.20 79.90 76.27 87.60

RandPair 74.43 65.17 74.93 73.57 69.00 84.00

LocalPair 81.53 77.13 83.53 82.60 78.70 89.40

FG-LocalPair 91.77 87.43 91.87 87.00 87.37 94.00

Brow Eye Nose Lip Face

RelTree [38] 81.84 83.15 80.43 81.87 86.31

Global [43] 79.87 81.67 77.40 79.17 82.33

RandPair 70.90 73.70 66.13 71.77 73.50

LocalPair 80.63 82.40 78.17 79.77 82.13

FG-LocalPair 89.83 91.40 89.07 90.43 86.70

because RelTree is a nonlinear ranking function. Hence, we see that local learning
with linear models is performing better than global learning with a nonlinear model.
With a lower capacity model, but the “right” training examples, the comparison is
better learned. Our advantage over the global Relative Attributes linear model [43]
is even greater.

On OSR, RandPair comes close to Global. One possible cause is the weak super-
vision from the categorywise constraints. While there are 20,000 pairs, they are less
diverse. Therefore, a random sampling of 100 neighbors seems to reasonably mimic
the performancewhen using all pairs. In contrast, ourmethod is consistently stronger,
showing the value of our learned neighborhood pairs.

While metric learning (ML) is valuable across the board (FG-LocalPair > Local-
Pair), it has more impact on PubFig than OSR. We attribute this to PubFig’s more
localized attributes. Subtle differences are whatmakes fine-grained comparison tasks
hard.ML discovers the features behind those subtletieswith respect to each attribute.
Those features could be spatially localized regions or particular image cues (GIST vs.
color). Indeed, our biggest gains compared to LocalPair (9% or more) are on white,
where we learn to emphasize color bins, or eye/nose, where we learn to emphasize
the GIST cells for the part regions. In contrast, the LocalPair method compares the
face images as a whole, and is liable to find images of the same person as more
relevant, regardless of their properties in that image (Fig. 6.6).

6.4.4.4 Runtime Evaluation

Learning local models on the fly, though more accurate for fine-grained attributes,
does come at a computational cost. The main online costs are finding the nearest
neighbor pairs and training the local ranking function. For our datasets,with K = 100
and 20,000 total labeled pairs, this amounts to about 3 s. There are straightforward
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ways to improve the runtime. The neighbor finding can be done rapidly using well
known hashing techniques, which are applicable to learned metrics [27]. Further-
more, we could precompute a set of representative local models. For example, we
could cluster the training pairs, build a local model for each cluster, and invoke the
suitablemodel based on a test pair’s similarity to the cluster representatives.We leave
such implementation extensions as future work.

6.4.5 Predicting Useful Neighborhoods

This section expands on the neighbor selection approach described in Sect. 6.4.2,
briefly summarizing our NIPS 2014 paper [55]. Please see that paper for more details
and results.

As we have seen above, the goal of local learning is to tailor the model to the
properties of the data surrounding the test instance. However, so far, like other prior
work in local learningwe havemade an important core assumption: that the instances
most useful for building a local model are those that are nearest to the test example.
This assumption is well-motivated by the factors discussed above, in terms of data
density and intra-class variation. Furthermore, as we saw above, identifying training
examples solely based on proximity has the appeal of permitting specialized simi-
larity functions (whether learned or engineered for the problem domain), which can
be valuable for good results, especially in structured input spaces.

On the other hand, there is a problem with this core assumption. By treating the
individual nearness of training points as a metric of their utility for local training,
existing methods fail to model how those training points will actually be employed.
Namely, the relative success of a locally trained model is a function of the entire
set or distribution of the selected data points—not simply the individual pointwise
nearness of each one against the query. In other words, the ideal target subset consists
of a set of instances that together yield a good predictive model for the test instance.
Thus, local neighborhood selection ought to be considered jointly among training
points.

Based on this observation, we have explored ways to learn the properties of
a “good neighborhood”. We cast the problem in terms of large-scale multi-label
classification, where we learn a mapping from an individual instance to an indicator
vector over the entire training set that specifies which instances are jointly useful
to the query. The approach maintains an inherent bias toward neighborhoods that
are local, yet makes it possible to discover subsets that (i) deviate from a strict
nearest neighbor ranking and (ii) vary in size. We stress that learning what a good
neighbor looks like (metric learning’s goal) is distinct from learning what a good
neighborhood looks like (our goal). Whereas a metric can be trained with pairwise
constraints indicating what should be near or far, jointly predicting the instances that
ought to compose a neighborhood requires a distinct form of learning.

The overall pipeline includes three main phases, shown in Fig. 6.9. (1) First,
we devise an empirical approach to generate ground truth training neighborhoods
(xn, yn) that consist of an individual instance xn paired with a set of training
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Fig. 6.9 Overview of our compressed sensing based approach. yn and ŷq represent the M-
dimensional neighborhood indicator vectors for a training and testing instance, respectively. φ

is a D × M random matrix where D denotes the compressed indicators’ dimensionality. f is the
learned regression function used to map the original image feature space to the compressed label
space. By reconstructing back to the full label space, we get an estimate of ŷq indicating which
labeled training instances together will form a good neighborhood for the test instance xq

instance indices capturing its target “neighbors”, the latter being represented as a M-
dimensional indicator vector yn , whereM is the number of labeled training instances.
(2) Next, using the Bayesian compressed sensing approach of [30], we project yn to
a lower dimensional compressed label space zn using a random matrix φ. Then, we
learn regression functions f1(xn), ..., fD(xn) to map the original features xn to the
compressed label space. (3) Finally, given a test instance xq , we predicts its neigh-
borhood indicator vector ŷq using φ and the learned regression functions f . We use
this neighborhood of points to train a classifier on the fly, which in turn is used to
categorize xq .4

In [55] we show substantial advantages over existing local learning strategies,
particularly when attributes are multimodal and/or its similar instances are difficult
to match based on global feature distances alone. Our results illustrate the value in
estimating the size and composition of discriminative neighborhoods, rather than
relying on proximity alone. See our paper for the full details [55].

6.5 Just Noticeable Differences

Having established the strength of local learning for fine-grained attribute compar-
isons, we now turn to task of predicting when a comparison is even possible. In other
words, given a pair of images, the output may be one of “more,” “less,” or “equal.”

While some pairs of images have a clear ordering for an attribute (recall Fig. 6.2),
for others the difference may be indistinguishable to human observers. Attempting

4Note that the neighborhood learning idea has been tested thus far only for classification tasks,
though in principle applies similarly to ranking tasks.
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to map relative attribute ranks to equality predictions is nontrivial, particularly since
the span of indistinguishable pairs in an attribute space may vary in different parts of
the feature space. In fact, as discussed above, despite the occasional use of unordered
pairs for training,5 it is assumed in prior work that all test images will be orderable.
However, the real-valued output of a ranking function as trained in Sect. 6.3 will
virtually never be equal for two distinct inputs. Therefore, even though existing
methods may learn to produce similar rank scores for equal pairs, it is unclear how
to determine when a novel pair is “close enough” to be considered unorderable.

We argue that this situation calls for a model of just noticeable difference among
attributes. Just noticeable difference (JND) is a concept from psychophysics. It refers
to the amount a stimulus has to be changed in order for it to be detectable by human
observers at least half the time. For example, JND is of interest in color perception
(which light sources are perceived as the same color?) and image quality assessment
(up to what level of compression do the images look ok?). JNDs are determined
empirically through tests of human perception. For example, JND in color can be
determined by gradually altering the light source just until the human subject detects
that the color has changed [21].

Why is it challenging to develop a computational model of JND for relative
attributes? At a glance, one might think it amounts to learning an optimal threshold
on the difference of predicted attribute strengths. However, this begs the question
of how one might properly and densely sample real images of a complex attribute
(like seriousness) to gradually walk along the spectrum, so as to discover the right
threshold with human input. More importantly, an attribute space need not be uni-
form. That is, depending on where we look in the feature space, the magnitude of
attribute difference required to register a perceptible change may vary. Therefore,
the simplistic “global threshold” idea falls short. Analogous issues also arise in color
spaces, e.g., the famous MacAdam ellipses spanning indistinguishable colors in the
CIE x, y color space vary markedly in their size and orientation depending on where
in the feature space one looks (leading to the crafting of color spaces like CIE Lab
that are more uniform). See Fig. 6.10.

We next introduce a solution to infer when two images are indistinguishable for a
given attribute. Continuing with the theme of local learning, we develop a Bayesian
approach that relies on local statistics of orderability. Our approach leverages both a
low-level visual descriptor space, within which image pair proximity is learned, as
well as a mid-level visual attribute space, within which attribute distinguishability
is represented (Fig. 6.11). Whereas past ranking models have attempted to integrate
equality into training, none attempt to distinguish between orderable and unorderable
pairs at test time.

Our method works as follows. First, we construct a predicted attribute space using
the standard relative attribute framework (Sect. 6.3). Then, on top of that model, we
combine a likelihood computed in the predicted attribute space (Sect. 6.5.1.1) with a

5Empirically, we found the inclusion of unordered pairs during training in [43] to have negligible
impact at test time.
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Fig. 6.10 Analogous to the MacAdam ellipses in the CIE x, y color space (right) [21], relative
attribute space is likely not uniform (left). That is, the regions within which attribute differences
are indistinguishable may vary in size and orientation across the high-dimensional visual feature
space. Here we see the faces within each “equally smiling” cluster exhibit varying qualities for
differentiating smiles—such as age, gender, and visibility of the teeth—but are still difficult or
impossible to order in terms of smilingness. As a result, simple metrics and thresholds on attribute
differences are insufficient to detect just noticeable differences, as we will see in Sect. 6.5.2.2

Fig. 6.11 Overview of our Bayesian approach. (1) Learn a ranking function RA using all annotated
training pairs (Sect. 6.3), as depicted in Fig. 6.3. (2) Estimate the likelihood densities of the equal and
ordered pairs, respectively, using the pairwise distances in relative attribute space. (3) Determine the
local prior by counting the labels of the analogous pairs in the image descriptor space. (4) Combine
the results to predict whether the novel pair is distinguishable (not depicted). Best viewed in color

local prior computed in the original image feature space (Sect. 6.5.1.2). We show our
approach’s superior performance compared to various baselines for detecting notice-
able differences, as well as demonstrate how attribute JND has potential benefits for
an image search application (Sect. 6.5.2).
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6.5.1 Local Bayesian Model of Distinguishability

The most straightforward approach to infer whether a novel image pair is distin-
guishable would be to impose a threshold on their rank differences, i.e., to predict
“indistinguishable” if |RA(xr ) − RA(xs)| ≤ ε. The problem is that unless the rank
space is uniform, a global threshold ε is inadequate. In other words, the rank margin
for indistinguishable pairs need not be constant across the entire feature space. By
testingmultiple variants of this basic idea, our empirical results confirm this is indeed
an issue, as we will see in Sect. 6.5.2.

Our key insight is to formulate distinguishability prediction in a probabilistic,
local learning manner. Mindful of the nonuniformity of relative attribute space, our
approach uses distributions tailored to the data in the proximity of a novel test pair.
Furthermore, we treat the relative attribute ranks as an imperfect mid-level represen-
tation on top of which we can learn to target the actual (sparse) human judgments
about distinguishability.

Let D ∈ {0, 1} be a binary random variable representing the distinguishability of
an image pair. For a distinguishable pair, D = 1. Given a novel test pair (xr , xs), we
are interested in the posterior:

P(D|xr , xs) ∝ P(xr , xs |D)P(D), (6.7)

to estimate how likely two images are distinguishable. To make a hard decision we
take the maximum a posteriori estimate over the two classes:

d∗ = argmax
d

P(D = d|xr , xs). (6.8)

At test time, our method performs a two-stage cascade. If the test pair appears
distinguishable, we return the response “more” or “less” according to whether
RA(xr ) < RA(xs) (where R is trained in either a global or local manner). Other-
wise, we say the test pair is indistinguishable. In this way we unify relative attributes
with JND, generating partially ordered predictions in spite of the ranker’s inherent
totally ordered outputs.

Next, we derive models for the likelihood and prior in Eq.6.7, accounting for the
challenges described above.

6.5.1.1 Likelihood Model

We use a kernel density estimator (KDE) to represent the distinguishability likeli-
hood over image pairs. The likelihood captures the link between the observed rank
differences and the human-judged just noticeable differences.

Let Δr,s denote the difference in attribute ranks for images r and s:

Δr,s = |RA(xr ) − RA(xs)|. (6.9)
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Recall that Po and Pe refer to the sets of ordered and equal training image pairs,
respectively. We compute the rank differences for all training pairs inPo andPe, and
fit a nonparametric Parzen density:

P(xr , xs |D) = 1

|P|
∑

i, j∈P
Kh

(
Δi, j − Δr,s

)
, (6.10)

for each set in turn. Here P refers to the ordered pairs Po when representing distin-
guishability (D = 1), and the equal pairs Pe when representing indistinguishability
(D = 0). The Parzen density estimator [44] superimposes a kernel function Kh at
each data pair. In our implementation, we use Gaussian kernels. It integrates local
estimates of the distribution and resists overfitting. The KDE has a smoothing para-
meter h that controls the model complexity. To ensure that all density is contained
within the positive absolute margins, we apply a positive support to the estimator.
Namely, we transform Δi, j using a log function, estimate the density of the trans-
formed values, and then transform back to the original scale. See (a) in Fig. 6.11.

The likelihood reflects how well the equal and ordered pairs are separated in the
attribute space. However, critically, P(xr , xs |D = 1) need not decrease monotoni-
cally as a function of rank differences. In other words, the model permits returning
a higher likelihood for certain pairs separated by smaller margins. This is a direct
consequence of our choice of the nonparametric KDE, which preserves local mod-
els of the original training data. This is valuable for our problem setting because in
principle it means our method can correct imperfections in the original learned ranks
and account for the nonuniformity of the space.

6.5.1.2 Prior Model

Finally, we need to represent the prior over distinguishability. The prior could simply
count the training pairs, i.e., let P(D = 1) be the fraction of all training pairs that
were distinguishable. However, we again aim to account for the nonuniformity of the
visual feature space. Thus, we estimate the prior based only on a subset of data near
the input images. Intuitively, this achieves a simple prior for the label distribution in
multiple pockets of the feature space:

P(D = 1) = 1

K
|P ′

o|, (6.11)

where P ′
o ⊂ Po denotes the set of K neighboring ordered training pairs. P(D = 0)

is defined similarly for the indistinguishable pairs Pe. Note that while the likelihood
is computed over the pair’s rank difference, the locality of the prior is with respect
to the image descriptor space. See (b) in Fig. 6.11.

To localize the relevant pocket of the image space, we adopt the metric learning
strategy detailed in Sect. 6.4.2. Using the learned metric, pairs analogous to the
novel input (xr , xs) are retrieved based on a product of their individual Mahalanobis
distances, so as to find pairs whose members both align.
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6.5.2 Experiments and Results

We present results on the core JND detection task (Sect. 6.5.2.2) on two challenging
datasets and demonstrate its impact for an image search application (Sect. 6.5.2.3).

6.5.2.1 Experimental Setup

Datasets and Ground Truth Our task requires attribute datasets that (1) have
instance-level relative supervision, meaning annotators were asked to judge attribute
comparisons on individual pairs of images, not object categories as a whole and
(2) have pairs labeled as “equal” and “more/less.” To our knowledge, ourUT-Zap50K
and LFW-10 [47] are the only existing datasets satisfying those conditions.

To train and evaluate just noticeable differences, we must have annotations of
utmost precision. Therefore, we take extra care in establishing the (in)distinguishable
ground truth for both datasets. We perform preprocessing steps to discard unreliable
pairs, as we explain next. This decreases the total volume of available data, but it is
essential to have trustworthy results.

The UT-Zap50K dataset is detailed in Sect. 6.4.3. As ordered pairs Po, we use
all coarse and fine-grained pairs for which all 5 workers agreed and had high confi-
dence. Even though the fine-grained pairs might be visually similar, if all 5 workers
could come to agreement with high confidence, then the images are most likely dis-
tinguishable. As equal pairs Pe, we use all fine-grained pairs with 3 or 4 workers in
agreement and only medium confidence. Since the fine-grained pairs have already
been presented to the workers twice, if the workers are still unable to come to an
consensus with high confidence, then the images are most likely indistinguishable.
The resulting dataset has 4,778 total annotated pairs, consisting of on average 800
ordered and 350 indistinguishable (equal) pairs per attribute.

The LFW-10 dataset [47] consists of 2,000 face images, taken from the Labeled
Faces in theWild [26] dataset.6 It contains 10 relative attributes, like smiling, big eyes,
etc., with 1,000 labeled pairs each. Each pair was labeled by 5 people. As ordered
pairsPo, we use all pairs labeled “more” or “less” by at least 4workers. As equal pairs
Pe, we use pairs where at least 4 workers said “equal”, as well as pairs with the same
number of “more” and “less” votes. The latter reflects that a split in decision signals
indistinguishability. Due to the smaller scale of LFW-10, we could not perform as
strict of a preprocessing step as in UT-Zap50K; requiring full agreement on ordered
pairs would eliminate most of the labeled data. The resulting dataset has 5,543 total
annotated pairs, on average 230 ordered and 320 indistinguishable pairs per attribute.

Baselines We are the first to address the attribute JND task. No prior methods infer
indistinguishability at test time [32, 38, 43, 46, 47]. Therefore, we develop multiple
baselines to compare to our approach:

6cvit.iiit.ac.in/projects/relativeParts.
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• Rank Margin: Use the magnitude of Δr,s as a confidence measure that the pair
r, s is distinguishable. This baseline assumes the learned rank function produces
a uniform feature space, such that a global threshold on rank margins would be
sufficient to identify indistinguishable pairs. To compute a hard decision for this
method (for F1-scores), we threshold the Parzen window likelihood estimated
from the training pairs by ε, the midpoint of the likelihood means.

• LogisticClassifier [32]: Train a logistic regression classifier to distinguish training
pairs in Po from those in Pe, where the pairs are represented by their rank differ-
ences Δi, j . To compute a hard decision, we threshold the posterior at 0.5. This is
the method used in [32] to obtain a probabilistic measure of attribute equality. It is
the closest attempt we can find in the literature to represent equality predictions,
though the authors do not evaluate its accuracy. This baseline also maintains a
global view of attribute space.

• SVMClassifier: Train a nonlinear SVMclassifierwith aRBF kernel to distinguish
ordered and equal pairs. We encode pairs of images as single points by concate-
nating their image descriptors. To ensure symmetry, we include training instances
with the two images in either order.7

• MeanShift: Performmean shift clustering on the predicted attribute scores RA(xi )
for all training images. Images falling in the same cluster are deemed indistinguish-
able. Since mean shift clusters can vary in size, this baseline does not assume a
uniform space. Though unlike our method, it fails to leverage distinguishability
supervision as it processes the ranker outputs.

Implementation Details For UT-Zap50K, we use 960-dim GIST and 30-bin Lab
color histograms as image descriptors. For LFW-10, they are 8,300-dim part-based
features learned on top of dense SIFT bag ofwords features (provided by the authors).
We reduce their dimensionality to 100withPCA toprevent overfitting.Thepart-based
features [47] isolate localized regions of the face (e.g., exposing cues specific to the
eyes vs. hair).We experimentedwith both linear andRBFkernels for RA. Since initial
results were similar, we use linear kernels for efficiency. We use Gaussian kernels
for the Parzen windows. We set all hyperparameters (h for the KDE, bandwidth for
Mean Shift, K for the prior) on held-out validation data. To maximize the use of
training data, in all results below, we use leave-one-out evaluation and report results
over 4 folds of random training–validation splits.

6.5.2.2 Just Noticeable Difference Detection

We evaluate just noticeable difference detection accuracy for all methods on both
datasets. Figure6.12 shows the precision–recall curves and ROC curves, where we
pool the results from all 4 and 10 attributes in UT-Zap50K and LFW-10, respectively.
Tables6.4 and 6.5 report the summary F1-scores and standard deviations for each
individual attribute. The F1-score is a useful summary statistic for our data due to

7We also implemented other encoding variants, such as taking the difference of the image descriptors
or using the predicted attribute scores RA(xi ) as features, and they performed similarly or worse.
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Fig. 6.12 Just noticeable difference detection accuracy for all attributes. We show the precision–
recall (top row) and ROC curves (bottom row) for the shoes (left) and faces (right) datasets. Legends
show AUC values for ROC curves. Note that the Mean Shift baseline does not appear here, since it
does not produce confidence values

Table 6.4 JND detection on UT-Zap50K (F1 scores)

Open Pointy Sporty Comfort All attributes

Margin 48.95 67.48 66.93 57.09 60.11 ± 1.89

Logistic 10.49 62.95 63.04 45.76 45.56 ± 4.13

SVM 48.82 50.97 47.60 40.12 46.88 ± 5.73

M. Shift 54.14 58.23 60.76 61.60 58.68 ± 8.01

Ours 62.02 69.45 68.89 54.63 63.75 ± 3.02

Table 6.5 JND detection on LFW-10 (F1 scores). NaN occurs when recall = 0 and precision = inf

Bald D.Hair Eyes GdLook Masc. Mouth

Margin 71.10 55.81 74.16 61.36 82.38 62.89

Logistic 75.77 53.26 86.71 64.27 87.29 63.41

SVM 79.06 32.43 89.70 70.98 87.35 70.27

M. Shift 66.37 56.69 54.50 51.29 69.73 68.38

Ours 81.75 69.03 89.59 75.79 89.86 72.69

Smile Teeth F.Head Young All attributes

Margin 60.56 65.26 67.49 34.20 63.52 ± 2.67

Logistic 59.66 64.83 75.00 NaN 63.02 ± 1.84

SVM 55.01 39.09 79.74 NaN 60.36 ± 9.81

M. Shift 61.34 65.73 73.99 23.19 59.12 ± 10.51

Ours 73.30 74.80 80.49 32.89 74.02 ± 1.66

the unbalanced nature of the test set: 25% of the shoe pairs and 80% of the face pairs
are indistinguishable for some attribute.

Overall, ourmethod outperforms all baselines.We obtain sizeable gains—roughly
4–18% on UT-Zap50K and 10–15% on LFW-10. This clearly demonstrates the
advantages of our local learning approach, which accounts for the nonuniformity of
attribute space. The “global approaches,” RankMargin and Logistic Classifier, reveal
that a uniform mapping of the relative attribute predictions is insufficient. In spite of
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the fact that they include equal pairs during training, simply assigning similar scores
to indistinguishable pairs is inadequate. Their weakness is likely due both to noise
in those mid-level predictions as well as the existence of JND regions that vary in
scale. Furthermore, the results show that even for challenging, realistic image data,
we can identify just noticeable differences at a high precision and recall, up to nearly
90% in some cases.

The SVM baseline is much weaker than our approach, indicating that discrimina-
tively learning what indistinguishable image pairs look like is insufficient. This result
underscores the difficulty of learning subtle differences in a high-dimensional image
descriptor space, and supports our use of the compact rank space for our likelihood
model.

Looking at the per attribute results (Tables6.4 and 6.5), we see that our method
also outperforms the Mean Shift baseline. While Mean Shift captures dominant
clusters in the spectrum of predicted attribute ranks for certain attributes, for others
(like pointy ormasculine) we find that the distribution of output predictions are more
evenly spread. Despite the fact that the rankers are optimized to minimize margins
for equal pairs, simple post-processing of their outputs is inadequate.

We also see that that our method is nearly always best, except for two attributes:
comfort in UT-Zap50K and young in LFW-10. Of the shoe attributes, comfort is
perhaps the most subjective; we suspect that all methods may have suffered due to
label noise for that attribute. While young would not appear to be subjective, it is
clearly a more difficult attribute to learn. This makes sense, as youth would be a
function of multiple subtle visual cues like face shape, skin texture, hair color, etc.,
whereas something like baldness or smiling has a better visual focus captured well
by the part features of [47]. Indeed, upon inspection we find that the likelihoods
insufficiently separate the equal and distinguishable pairs. For similar reasons, the
Logistic Classifier baseline [32] fails dramatically on both open and young.

Figure6.13 shows qualitative prediction examples. Here we see the subtleties of
JND.Whereas pastmethodswould be artificially forced tomake a comparison for the
left panel of image pairs, our method declares them indistinguishable. Pairs may look
very different overall (e.g., different hair, race, headgear) yet still be indistinguishable
in the context of a specific attribute. Meanwhile, those that are distinguishable (right
panel) may have only subtle differences.

Figure6.14 illustrates examples of just noticeable difference “trajectories” com-
puted by our method. We see how our method can correctly predict that various
instances are indistinguishable, even though the raw images can be quite diverse
(e.g., a strappy sandal and a flat dress shoe are equally sporty). Similarly, it can
detect a difference even when the image pair is fairly similar (e.g., a lace-up sneaker
and smooth-front sneaker are distinguishable for openness even though the shapes
are close) (Fig. 6.15).

Figure6.16 displays 2D t-SNE [40] embeddings for a subset of 5,000 shoe images
based on the original image feature space and our learned attribute space for the
attribute pointy. To compute the embeddings for our method, we represent each
image xi by its posterior probabilities of being indistinguishable to every other image.
i.e., v(xi ) = [P(D = 0|xi , x1), P(D = 0|xi , x2), ..., P(D = 0|xi , xN )] where N is
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Fig. 6.13 Example predictions. The top four rows are pairs our method correctly classifies as
indistinguishable (left panel) and distinguishable (right panel), whereas the Rank Margin baseline
fails. Each row shows pairs for a particular attribute. The bottom row shows failure cases by our
method; i.e., the bottom left pair is indistinguishable for pointiness, but we predict distinguishable

Fig. 6.14 Example just noticeable differences. In each row, we take leftmost image as a starting
point, then walk through nearest neighbors in relative attribute space until we hit an image that is
distinguishable, as predicted by our method. For example, in row 2, our method finds the left block
of images to be indistinguishable for sportiness; it flags the transition from the flat dress shoe to the
pink “loafer-like sneaker” as being a noticeable difference

Fig. 6.15 The modified WhittleSearch framework. The user can now express an “equality” feed-
back, speeding up the process of finding his envisioned target

the total number of images in the embedding. We see that while the former pro-
duces a rather evenly distributed mapping without distinct structures, the latter
produces a mapping containing unique structures along with “pockets” of indis-
tinguishable images. Such structures precisely reflect the nonuniformity we pointed
out in Fig. 6.10.
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Fig. 6.16 t-SNE
visualization of the original
feature space (top) and our
learned attribute space
(bottom) for the attribute
pointy. Shoes with similar
level of pointiness are placed
closer together in our learned
space, forming loose
“pockets” of
indistinguishability. Best
viewed on PDF

6.5.2.3 Image Search Application

Finally, we demonstrate how JND detection can enhance an image search appli-
cation. Specifically, we incorporate our model into the WhittleSearch framework
of Kovashka et al. [34], overviewed in Chap.5 of this book. WhittleSearch is an
interactive method that allows a user to provide relative attribute feedback, e.g., by
telling the system that he wants images “more sporty” than some reference image.

http://dx.doi.org/10.1007/978-3-319-50077-5_5
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Fig. 6.17 Image search results. We enhance an existing relative attribute search technique called
WhittleSearch [34] with our JND detection model. The resulting system finds target images more
quickly (left) and produces a better overall ranking of the database images (right)

The method works by intersecting the relative attribute constraints, scoring database
images by how many constraints they satisfy, then displaying the top scoring images
for the user to review. See [34] for details.

We augment that pipeline such that the user can express not only “more/less” pref-
erences, but also “equal” preferences (Fig. 6.15). For example, the user can now say,
“I want images that are equally sporty as image x .” Intuitively, enriching the feed-
back in this manner should help the user more quickly zero in on relevant images that
match his envisioned target. To test this idea, we mimic the method and experimental
setup of [34] as closely as possible, including their feedback generation simulator.

We evaluate a proof-of-concept experiment onUT-Zap50K,which is large enough
to allow us to sequester disjoint data splits for training our method and performing
the searches (LFW-10 is too small). We select 200 images at random to serve as
the mental targets a user wants to find in the database, and reserve 5,000 images
for the database. The user is shown 16 reference images and expresses 8 feedback
constraints per iteration.

Figure6.17 shows the results. Following [34], we measure the relevance rank of
the target as a function of feedback iterations (left, lower is better), as well as the
similarity of all top-ranked results compared to the target (right, higher is better). We
see that JNDs substantially bolster the search task. In short, the user gets to the target
in fewer iterations because he has a more complete way to express his preferences—
and the system understands what “equally” means in terms of attribute perception.

6.6 Discussion

Our results show the promise of local models for addressing fine-grained visual com-
parisons. We saw how concentrating on the most closely related training instances
is valuable for isolating the precise visual features responsible for the subtle dis-
tinctions. Our methods expand the viability of local learning beyond traditional
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classification tasks to include ranking. Furthermore, in an initial step toward elim-
inating the assumption of locality as the only relevant factor in local learning, we
introduced a novel approach to learn the composition and size of the most effective
neighborhood conditioned on the novel test input. Finally, we explored how local
statistical models can address the “just noticeable difference” problem in attributes,
successfully accounting for the nonuniformity of indistinguishable pairs in the fea-
ture space.

There are several interesting considerations worthy of further discussion and new
research.

While global rankers produce comparable values for all test pairs, our local ranking
method’s predictions (Sect. 6.4) are test pair specific. This is exactly what helps
accuracy for subtle, fine-grained comparisons, and, to some extent, mitigates the
impact of inconsistent training comparisons. However, in some applications, it may
be necessary to produce a full ordering of many images. In that case, one could try
feeding our method’s predictions to a rank aggregation technique [12], or apply a
second layer of learning to normalize them, as in [11, 14, 38].

One might wonder if we could do as well by training one global ranking function
per category within a domain—i.e., one for high heels, one for sneakers, etc. This
would be another local learning strategy, but it appears much too restrictive. First
of all, it would require category-labeled examples (in addition to the orderings PA),
which may be expensive to obtain or simply not apropos for data lacking clear-cut
category boundaries (e.g., is the storefront image an “inside city scene” or a “street
scene”?). Furthermore, it would not permit cross-category comparison predictions;
we want to be able to predict how images from different categories compare in their
attributes, too.

As discussed in Sect. 6.4.4.4, straightforward implementations of lazy local learn-
ing come with noticeable runtime costs. In our approach, the main online costs are
nearest neighbor search and rank function training. While still only seconds per test
case, as larger labeled datasets become available these costs would need to be coun-
tered with more sophisticated (and possibly approximate) nearest neighbor search
data structures, such as hashing or kd-trees. Another idea is to cache a set of rep-
resentative models, precomputing offline a model for each prototypical type of new
input pair. Such an implementation could also be done in a hierarchical way, letting
the system discover a fine-grained model in a coarse to fine manner.

An alternative approach to represent partial orders (and thus accommodate indis-
tinguishable pairs) would be ordinal regression, where training data would consist
of ordered equivalence classes of data. However, ordinal regression has severe short-
comings for our problem setting. First, it requires a consistent ordering of all training
data (via the equivalence classes). This is less convenient for human annotators and
more challenging to scale than the distributed approach offered by learning to rank,
which pools any available paired comparisons. For similar reasons, learning to rank is
much better suited to crowdsourcing annotations and learning universal (as opposed
to person-specific [1, 10], see Chap.5) predictors. Finally, ordinal regression requires
committing to afixednumber of buckets. Thismakes incremental supervision updates

http://dx.doi.org/10.1007/978-3-319-50077-5_5
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problematic. Furthermore, to represent very subtle differences, the number of buckets
would need to be quite large.

Our work offers a way to learn a computational model for just noticeable differ-
ences. While we borrow the term JND from psychophysics to motivate our task, of
course the analogy is not 100% faithful. In particular, psychophysical experiments
to elicit JND often permit systematically varying a perceptual signal until a human
detects a change, e.g., a color light source, a sound wave amplitude, or a compression
factor. In contrast, the space of all visual attribute instantiations does not permit such
a simple generative sampling. Instead, our method extrapolates from relatively few
human-provided comparisons (fewer than 1,000 per attribute in our experiments)
to obtain a statistical model for distinguishability, which generalizes to novel pairs
based on their visual properties. It remains interesting future work to explore the
possibility of generative models for comparative attribute relationships.

Just noticeable differencemodels—and fine-grained attributes in general—appear
most relevant for domain-specific attributes.Within a domain (e.g., faces, cars, hand-
bags, etc.), attributes describe fine-grained properties, and it is valuable to represent
any perceptible differences (or realize there are none). In contrast, comparative ques-
tions about very unrelated things or extra-domain attributes can be nonsensical. For
example, do we need to model whether the shoes and the table are equally ornate? or
whether the dog or the towel ismore fluffy? Accordingly, we focused our experiments
on domains with rich vocabularies of fine-grained attributes, faces and shoes.

Finally, we note that fine-grained differences, as addressed in this chapter, are a
separate problem from subjective attributes. That is, ourmethods address the problem
where there may be a subtle distinction, yet the distinction is noncontroversial. Other
work considers ways in which to personalize attribute models [31, 33] or discover
which are subjective properties [13] seeChap.5). Itwould be interesting to investigate
problems where both subjectivity and fine-grained distinctions interact.

6.7 Conclusion

Fine-grained visual comparisons have many compelling applications, yet traditional
global learning methods can fail to capture their subtleties. We proposed several
local learning to rank approaches based on analogous training comparisons, and we
introduced a new dataset specialized to the problem. On multiple attribute datasets,
we find our ideas improve the state of the art.
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Chapter 7
Localizing and Visualizing Relative
Attributes

Fanyi Xiao and Yong Jae Lee

Abstract In this chapter, we present aweakly supervised approach that discovers the
spatial extent of relative attributes, given only pairs of ordered images. In contrast
to traditional approaches that use global appearance features or rely on keypoint
detectors, our goal is to automatically discover the image regions that are relevant
to the attribute, even when the attribute’s appearance changes drastically across its
attribute spectrum. To accomplish this, we first develop a novel formulation that
combines a detector with local smoothness to discover a set of coherent visual chains
across the image collection.We then introduce an efficient way to generate additional
chains anchored on the initial discovered ones. Finally, we automatically identify the
visual chains that are most relevant to the attribute (those whose appearance has high
correlation with attribute strength), and create an ensemble image representation to
model the attribute. Through extensive experiments, we demonstrate our method’s
promise relative to several baselines in modeling relative attributes.

7.1 Introduction

Visual attributes are human-nameable object properties that serve as an intermediate
representation between low-level image features and high-level objects or scenes
[9, 10, 17, 21, 24, 31, 33, 34]. They yield various useful applications includ-
ing describing an unfamiliar object, retrieving images based on mid-level prop-
erties, “zero-shot” learning [24, 30, 31], and human–computer interaction [4, 5].
Researchers have developed systems that model binary attributes [10, 21, 24]—a
property’s presence/absence (e.g., “is furry/not furry”)—and relative attributes [31,
35, 36]—a property’s relative strength (e.g., “furrier than”).

While most existing computer vision algorithms use global image representa-
tions to model attributes (e.g., [24, 31]), we humans, arguably, exploit the benefits
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Fig. 7.1 The spatial extent of an attribute consists of the image regions that are most relevant to
the existence/strength of the attribute. Thus, an algorithm that can automatically identify the spatial
extent of an attribute will be able to more accurately model it

of localizing the relevant image regions pertaining to each attribute (see Fig. 7.1).
Indeed, recent work demonstrates the effectiveness of using localized part-based rep-
resentations [3, 35, 45]. They show that attributes—be it global (“is male”) or local
(“smiling”)—can be more accurately learned by first bringing the underlying object-
parts into correspondence, and then modeling the attributes conditioned on those
object-parts. For example, the attribute “wears glasses” can be more easily learned
when people’s faces are in correspondence. To compute such correspondences, pre-
trained part detectors are used (e.g., faces [35] and people [3, 45]). However, because
the part detectors are trained independently of the attribute, the learned parts may not
necessarily be useful formodeling the desired attribute. Furthermore, someobjects do
not naturally have well-defined parts, which means modeling the part-based detector
itself becomes a challenge.

Themethod in [7] addresses these issues bydiscoveringuseful, localized attributes.
A drawback is that the system requires a human-in-the-loop to verify whether each
discovered attribute is meaningful, limiting its scalability. More importantly, the
system is restricted to modeling binary attributes; however, relative attributes often
describe object properties better than binary ones [31], especially if the property
exhibits large appearance variations (see Fig. 7.2).

So, how can we develop robust visual representations for relative attributes, with-
out expensive and potentially uninformative pretrained part detectors or humans-in-
the-loop? To do so, we will need to automatically identify the visual patterns in each
image whose appearance correlates with (i.e., changes as a function of) attribute
strength. This is a challenging problem: as the strength of an attribute changes, the
object’s appearance can change drastically. For example, if the attribute describes
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strong weak
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Attribute:  
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Fig. 7.2 (top) Given pairs of images, each ordered according to relative attribute strength (e.g.,
“higher/lower-at-the-heel”), (bottom) our approach automatically discovers the attribute’s spatial
extent in each image, and learns a ranking function that orders the image collection according to
predicted attribute strength

how “high-heeled” a shoe is, then pumps and flats would be on opposite ends of
the spectrum, and their heels would look completely different (see Fig. 7.2). Thus,
identifying the visual patterns that characterize the attribute is very difficult without
a priori knowledge of what a heel is. Moreover, it is even more difficult to do so
given only samples of pairwise relative comparisons, which is the typical mode of
relative attribute annotation.

In this chapter, we describe a method that automatically discovers the spatial
extent of relative attributes in images across varying attribute strengths. The main
idea is to leverage the fact that the visual concept underlying the attribute under-
goes a gradual change in appearance across the attribute spectrum. In this way,
we propose to discover a set of local, transitive connections (“visual chains”) that
establish correspondences between the same object-part, even when its appearance
changes drastically over long ranges. Given the candidate set of visual chains, we
then automatically select those that together best model the changing appearance of
the attribute across the attribute spectrum. Importantly, by combining a subset of the
most-informative discovered visual chains, our approach aims to discover the full
spatial extent of the attribute, whether it be concentrated on a particular object-part
or spread across a larger spatial area.

To our knowledge, no prior work discovers the spatial extent of attributes, given
weakly supervised pairwise relative attribute annotations. Toward this goal, important
novel components include: (1) a new formulation for discovery that uses both a
detector term and a smoothness term to discover a set of coherent visual chains, (2)
a simple but effective way of quickly generating new visual chains anchored on the
existing discovered ones, and (3) a method to rank and combine a subset of the visual
chains that together best capture the attribute.We apply our approach to three datasets
of faces and shoes, and outperform state-of-the-art methods that use global image
features or require stronger supervision. Furthermore, we demonstrate an application
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of our approach, in which we can edit an object’s appearance conditioned on the
discovered spatial extent of the attribute. This chapter expands upon our previous
conference paper [43].

7.2 Related Work

In this section, we review related work in visual attributes and visual discovery.

7.2.1 Visual Attributes

Most existing work use global image representations to model attributes (e.g., [24,
31]). Others have demonstrated the effectiveness of localized representations. For
example, the attribute “mouth open” can be more easily learned when people’s
mouths are localized. Early work showed how to localize simple color and shape
attributes like “red” and“round” [12].Recent approaches rely onpretrained face/body
landmark or “poselet” detectors [3, 16, 20, 21, 45], crowd-sourcing [7], or assume
that the images are well-aligned and object/scene-centric [2, 42], which either
restricts their usage to specific domains or limits their scalability. Unlike these meth-
ods that try to localize binary attributes, we instead aim to discover the spatial extent
of relative attributes, while forgoing any pretrained detector, crowd-sourcing, or
object-centric assumptions.

While the “relative parts” approach of [35] shares our goal of localizing relative
attributes, it uses strongly supervised pretrained facial landmark detectors, and is
thus limited to modeling only facial attributes. Importantly, because the detectors are
trained independently of the attribute, the detected landmarks may not necessarily be
optimal for modeling the desired attribute. In contrast, our approach aims to directly
localize the attribute without relying on pretrained detectors, and thus can be used to
model attributes for any object.

7.2.2 Visual Discovery

Existing approaches discover object categories [8, 13, 29, 32, 38], low-level fore-
ground features [27], or mid-level visual elements [6, 37]. Recent work shows how
to discover visual elements whose appearance is correlated with time or space, given
images that are time-/geo-stamped [26]. Algorithmically, this is the closest work to
ours. However, our work is different in three important ways. First, the goal is differ-
ent: we aim to discover visual chains whose appearance is correlated with attribute
strength. Second, the form of supervision is different: we are given pairs of images
that are ordered according to their relative attribute strength, so unlike [26], we must
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infer a global ordering of the images. Finally, we introduce a novel formulation
and efficient inference procedure that exploits the local smoothness of the varying
appearance of the attribute, which we show in Sect. 7.4.4 leads to more coherent
discoveries.

7.3 Approach

Given an image collection S={I1, . . . , IN } with pairwise ordered and unordered
image-level relative comparisons of an attribute (i.e., in the form of Ω(Ii )>Ω(I j )
and Ω(Ii )≈Ω(I j ), where i, j∈{1, . . . , N } and Ω(Ii ) is Ii ’s attribute strength), our
goal is to discover the spatial extent of the attribute in each image and learn a ranking
function that predicts the attribute strength for any new image.

This is a challenging problem for two main reasons: (1) we are not provided with
any localized examples of the attribute sowemust automatically discover the relevant
regions in each image that correspond to it and (2) the appearance of the attribute
can change drastically over the attribute spectrum. To address these challenges, we
exploit the fact that for many attributes, the appearance will change gradually across
the attribute spectrum. To this end, we first discover a diverse set of candidate visual
chains, each linking the patches (one from each image) whose appearance changes
smoothly across the attribute spectrum.We then select among them the most relevant
ones that agree with the provided relative attribute annotations.

There are threemain steps to our approach: (1) initializing a candidate set of visual
chains, (2) iteratively growing each visual chain along the attribute spectrum, and
(3) ranking the chains according to their relevance to the target attribute to create an
ensemble image representation. In the following, we describe each of these steps in
turn.

7.3.1 Initializing Candidate Visual Chains

A visual attribute can potentially exhibit large appearance variations across the
attribute spectrum. Take the high-at-the-heel attribute as an example: high-heeled
shoes have strong vertical gradients while flat-heeled shoes have strong horizontal
gradients. However, the attribute’s appearancewill be quite similar in any local region
of the attribute spectrum. Therefore, to capture the attribute across its entire spec-
trum, we sort the image collection based on predicted attribute strength (we elaborate
below), and generate candidate visual chains via iterative refinement; i.e., we start
with short but visually homogeneous chains of image regions in a local region of
the attribute spectrum, and smoothly grow them out to cover the entire spectrum.
We generate multiple chains because (1) appearance similarity does not guarantee
relevance to the attribute (e.g., a chain of blank white patches satisfies this property
perfectly but provides no information about the attribute) and (2) some attributes
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are better described with multiple image regions (e.g., the attribute “eyes open” may
better be described with two patches, one on each eye). We will describe how to
select the relevant ones among the multiple candidate chains in Sect. 7.3.3.

We start by first sorting the images in S in descending order of predicted attribute
strength—with Ĩ1 as the strongest image and ĨN as the weakest—using a linear
SVM-ranker [15] trained with global image features, as in [31]. To initialize a single
chain, we take the top Ninit images and select a set of patches (one from each image)
whose appearance varies smoothly with its neighbors in the chain, by minimizing
the following objective function:

min
P

C(P) =
Ninit∑

i=2

||φ(Pi ) − φ(Pi−1)||2, (7.1)

where φ(Pi ) is the appearance feature of patch Pi in Ĩi , and P = {P1, . . . , PNinit } is
the set of patches in a chain. Candidate patches for each image are densely sampled
at multiple scales. This objective enforces local smoothness: the appearances of the
patches in the images with neighboring indices should vary smoothly within a chain.
Given the objective’s chain structure, we can efficiently find its global optimum using
Dynamic Programming (DP).

In the backtracking stage of DP, we obtain a large number of K -best solutions.We
then perform a chain-level non-maximum-suppression (NMS) to remove redundant
chains to retain a set of Kinit diverse candidate chains. For NMS, we measure the
distance between two chains as the sum of intersection-over-union scores for every
pair of patches from the same image. This ensures that different initial chains not
only contain different patches from any particular image, but also together spatially
cover as much of each image as possible (see Fig. 7.3).

Note that our initialization procedure does not assume any global alignment across
the images. Instead the chain alignment is achieved through appearance matching
by solving Eq.7.1.

Init Kinit

...

Init 1

Fig. 7.3 Our initialization consists of a set of diverse visual chains, each varying smoothly in
appearance
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7.3.2 Iteratively Growing Each Visual Chain

The initial set of Kinit chains are visually homogeneous but cover only a tiny frac-
tion of the attribute spectrum. We next iteratively grow each chain to cover the entire
attribute spectrum by training a model that adapts to the attribute’s smoothly chang-
ing appearance. This idea is related to self-paced learning in the machine learning
literature [1, 22], which has been applied to various computer vision tasks such as
object discovery and tracking [26, 28, 39].

Specifically, for each chain, we iteratively train a detector and in each iteration
use it to grow the chain while simultaneously refining it. To grow the chain, we again
minimize Eq. 7.1 but now with an additional term:

min
P

C(P) =
t∗Niter∑

i=2

||φ(Pi ) − φ(Pi−1)||2 − λ

t∗Niter∑

i=1

wT
t φ(Pi ), (7.2)

where wt is a linear SVM detector learned from the patches in the chain from the
(t−1)-th iteration (for t = 1, we use the initial patches found in Sect. 7.3.1), P =
{P1, . . . , Pt∗Niter } is the set of patches in a chain, and Niter is the number of images
considered in each iteration (explained in detail below). As before, the first term
enforces local smoothness. The second term is the detection term: since the ordering
of the images in the chain is only a rough estimate and thus possibly noisy (recall
we computed the ordering using an SVM-ranker trained with global image features),
wt prevents the inference from drifting in the cases where local smoothness does
not strictly hold. λ is a constant that trades-off the two terms. We use the same DP
inference procedure used to optimize Eq. 7.1.

Once P is found, we train a new detector with all of its patches as posi-
tive instances. The negative instances consist of randomly sampled patches whose
intersection-over-union scores are lower than 0.3 with any of the patches in P . We
use this new detectorwt in the next growing iteration.We repeat the above procedure
T times to cover the entire attribute spectrum. Figure7.4a illustrates the process of
iterative chain growing for the “high-at-the-heel” and “smile” attributes. By itera-
tively growing the chain, we are able to coherently connect the attribute despite large
appearance variations across its spectrum. However, there are two important consid-
erations to make when growing the chain: (1) multimodality of the image dataset
and (2) overfitting of the detector.

7.3.2.1 Multimodality of the Image Dataset

Not all images will exhibit the attribute due to pose/viewpoint changes or occlusion.
We therefore need a mechanism to rule out such irrelevant images. For this, we use
the detector wt . Specifically, we divide the image set S—now ordered in decreasing
attribute strength as { Ĩ1, . . . , ĨN }—into T process sets, each with size N/T . In the
t-th iteration, we fire the detector wt trained from the (t−1)-th iteration across each
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(a) Discovered visual chain 
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(b) Re-ranked visual chain 
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(a) Discovered visual chain 

(b) Re-ranked visual chain 

Fig. 7.4 Top “high-at-the-heel;” bottom: “smile.” a We iteratively grow candidate visual chains
along the direction of decreasing attribute strength, as predicted by the ranker trained with global
image features [31]. b Once we obtain an accurate alignment of the attribute across the images,
we can train a new ranker conditioned on the discovered patches to obtain a more accurate image
ordering

image in the t-th process set in a sliding window fashion. We then add the Niter

images with the highest maximum patch detection scores for chain growing in the
next iteration.

7.3.2.2 Overfitting of the Detector

The detector can overfit to the existing chain during iterative growing, which means
that mistakes in the chain may not be fixed. To combat this, we adopt the cross-
validation scheme introduced in [37]. Specifically, we split our image collection S
into S1 and S2, and in each iteration, we run the above procedure first on S1, and then
take the resulting detector and use it to mine the chain in S2. This produces more
coherent chains, and also cleans up any errors introduced in either previous iterations
or during chain initialization.

7.3.3 Ranking and Creating a Chain Ensemble

Wenowhave a set of Kinit chains, each pertaining to a unique visual concept and each
covering the entire range of the attribute spectrum. However, some image regions
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that capture the attribute could have still been missed because they are not easily
detectable on their own (e.g., forehead region for “visible forehead”). Thus, we next
describe a simple and efficient way to further diversify the pool of chains to increase
the chance that such regions are selected. We then describe how to select the most
relevant chains to create an ensemble that together best models the attribute.

7.3.3.1 Generating New Chains Anchored on Existing Ones

Since the patches in a chain capture the same visual concept across the attribute
spectrum, we can use them as anchors to generate new chains by perturbing the
patches locally in each image with the same perturbation parameters (Δx ,Δy,Δs).
More specifically, perturbing a patch centered at (x, y) with size (w, h) using para-
meter (Δx ,Δy,Δs) leads to a new patch at location (x + Δxw, y + Δyh), with size
(w × Δs, h × Δs) (see Fig. 7.5). Note that we get the alignment for the patches in
the newly generated chains for free, as they are anchored on an existing chain (given
that the object is not too deformable). We generate Kpert chains for each of the Kinit

chains with Δx and Δy each sampled from [−δxy, δxy] and Δs sampled from a dis-
crete set χ , which results in Kpert × Kinit chains in total. To detect the visual concept
corresponding to a perturbed chain on any new unseen image, we take the detector
of the anchoring chain and perturb its detection using the corresponding perturbation
parameters.

7.3.3.2 Creating a Chain Ensemble

Different chains characterize different visual concepts. Not all of them are relevant to
the attribute of interest and some are noisy. To select the relevant chains, we rank all
the chains according to their relatedness to the target attribute using the image-level
relative attribute annotations. For this, we split the original training data into two

Fig. 7.5 We generate new chains (blue dashed patches) anchored on existing ones (red solid
patches). Each new chain is sampled at some location and scale relative to the chain anchoring it.
This not only allows us to efficiently generate more chains, but also allows us to capture visual
concepts that are hard to detect in isolation yet still important to model the attribute (e.g., 1st image:
the patch at the top of the head is barely detectable due to its low gradient energy, even though it is
very informative for “Bald head”)
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subsets: one for training and the other for validation. For each of the Kpert × Kinit

candidate chains, we train a linear SVM detector and linear SVM-ranker [15, 31].
We then fire the detector on each validation image in a sliding window fashion and
apply the ranker on the patch with the maximum detection score to get an estimated
attribute strength Ω̂(Ii ) for each image Ii . Finally, we count howmany of the pairwise
ground-truth attribute orderings agree with our predicted attribute orderings:

acc(R, Ω̂) = 1

|R|
∑

(i, j)∈R

1[Ω̂(Ii ) − Ω̂(I j ) ≥ 0], (7.3)

where |R| is the cardinality of the relative attribute annotation set on the validation
data, and 1[·] is the indicator function. We rank each chain according to this val-
idation set accuracy, and select the top Kens chains. To form the final image-level
representation for an image, we simply concatenate the feature vectors extracted
from the detected patches, each weighted by its chain’s validation accuracy. We then
train a final linear SVM-ranker using this ensemble image-level representation to
model the attribute.

7.4 Results

In this section, we analyze our method’s discovered spatial extent of relative
attributes, pairwise ranking accuracy, and contribution of local smoothness and per-
turbed visual chains.

Implementation details.

The feature φ we use for detection and local smoothness is HOG [11], with size 8× 8
and 4 scales (patches ranging from 40× 40 to 100× 100 of the original image). For
ranker learning, we use both the LLC encoding of dense-SIFT [41] stacked with
a two-layer spatial pyramid (SP) grid [25], and pool-5 activation features from the
ImageNet pretrained CNN (Alexnet architecture) implemented using Caffe [14, 19].
(We find the pool-5 activations, which preserve more spatial information, to be more
useful in our tasks than the fully connected layers.) We set λ = 0.05, Ninit = 5,
Niter = 80, Kinit = 20, Kpert = 20, Kens = 60, δxy = 0.6, and χ = {1/4, 1}. We
find T = 3 iterations to be a good balance between chain quality and computation.

Baselines.

Our main baseline is the method of [31] (Global), which learns a relative attribute
ranker using global features computed over the whole image. We also compare to
the approach of [35] (Keypoints), which learns a ranker with dense-SIFT features
computedon facial keypoints detected using the superviseddetector of [46], and to the
local learning method of [44], which learns a ranker using only the training samples
that are close to a given testing sample. For Global [31], we use the authors’ codewith
the same features as our approach (dense-SIFT+LLC+SP and pool-5 CNN features).
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For Keypoints [35] and [44], we compare to their reported numbers computed using
dense-SIFT and GIST+color-histogram features, respectively.

Datasets.

LFW-10 [35] is a subset of the Labeled faces in the wild (LFW) dataset. It consists
of 2000 images: 1000 for training and 1000 for testing. Annotations are available
for 10 attributes, with 500 training and testing pairs per attribute. The attributes are
listed in Table7.1.
UT-Zap50K [44] is a large collection of 50,025 shoe images.We use theUT-Zap50K-
1 annotation set, which provides on average 1388 training and 300 testing pairs of
relative attribute annotations for each of 4 attributes: “Open,” “Sporty,” “Pointy,” and
“Comfort.”
Shoes-with-Attributes [18] contains 14,658 shoe images from like.com and 10
attributes, of which 3 are overlapping with UT-Zap50K: “Open,” “Sporty,” and
“Pointy.” Because each attribute has only about 140 pairs of relative attribute anno-
tations, we use this dataset only to evaluate cross-dataset generalization performance
in Sect. 7.4.3.

7.4.1 Visualization of Discovered Visual Chains

We first visualize our discovered visual chains for each attribute in LFW-10 and
UT-Zap50k. In Fig. 7.6, we show the single top-ranked visual chain, as measured by
ranking accuracy on the validation set (see Eq. 7.3), for each attribute. We uniformly
sample and order nine images according to their predicted attribute strength using
the ranker trained on the discovered image patches in the chain. Our chains are
visually coherent, evenwhen the appearance of the underlyingvisual concept changes
drastically over the attribute spectrum. For example, for the attribute “Open” in
UT-Zap50k, the top-ranked visual chain consistently captures the opening of the
shoe, even though the appearance of that shoe part changes significantly across the
attribute spectrum. Due to our precise localization of the attribute, we are able to
learn an accurate ordering of the images. While here we only display the top-ranked
visual chain for each attribute, our final ensemble image representation combines
the localizations of the top 60-ranked chains to discover the full spatial extent of the
attribute, as we show in the next section.

7.4.2 Visualization of Discovered Spatial Extent

We next show qualitative results of our approach’s discovered spatial extent for each
attribute in LFW-10 and UT-Zap50K. For each image, we use a heatmap to display
the final discovered spatial extent, where red/blue indicates strong/weak attribute
relevance. To create the heatmap, the spatial region for each visual chain is overlaid
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Fig. 7.6 Top-ranked visual chain for each attribute in LFW-10 (top) and UT-Zap50K (bottom).
All images are ordered according to the predicted attribute strength using the ranker trained on the
discovered image patches in the chain
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Fig. 7.7 (left) Detection boxes of the top 60-ranked visual chains for “Smile,” using each of their
associated detectors. (right) The validation score (see Eq.7.3) of each visual chain is overlaid onto
the detected box in the image and summed to create the visualization of the discovered spatial extent
of the attribute

by its predicted attribute relevance (as described in Sect. 7.3.3), and then summed up
(see Fig. 7.7). Figure7.8 shows the resulting heatmaps on a uniformly sampled set
of unseen test images per attribute, sorted according to predicted attribute strength
using our final ensemble representation model.

Clearly, our approach has understood where in the image to look to find the
attribute. For almost all attributes, our approach correctly discovers the relevant
spatial extent (e.g., for localizable attributes like “Mouth open”, “Eyes open”, “Dark
hair”, and “Open”, it discovers the corresponding object-part). Since our approach
is data-driven, it can sometimes go beyond common human perception to discover
non-trivial relationships: for “Pointy”, it discovers not only the toe of the shoe,
but also the heel, because pointy shoes are often high-heeled (i.e., the signals are
highly correlated). For “Comfort”, it has discovered that the lack or presence of
heels can be an indication of how comfortable a shoe is. Each attribute’s precisely
discovered spatial extent also leads to an accurate image ordering by our ensemble
representation ranker (Fig. 7.8 rows are sorted by predicted attribute strength). There
are limitations as well, especially for atypical images: e.g., “Smile” (6th image) and
“Visible forehead” (8th image) are incorrect due to mis-detections resulting from
extreme pose/clutter. Finally, while the qualitative results are harder to interpret
for the more global attributes like “Good looking” and “Masculine looking”, we
demonstrate through quantitative analyses in Sect. 7.4.4.3 that they occupy a larger
spatial extent than the more localizable attributes like “Mouth open” and “Smile”.
Since the spatial extent of the global attributes is more spread out, the highest-ranked
visual chains tend to overlap most at the image centers as reflected by the heatmaps.

In Fig. 7.9, we compare against the Global baseline. We purposely use a higher
spatial resolution (20× 20) grid for the baseline tomake the visualization comparison
fair. Since the baseline uses a fixed spatial pyramid rigid grid, it cannot deal with
changes in translation or scale of the attribute across different images; it discovers
the background clutter to be relevant to “Dark hair” (1st row, 3rd column) and the
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Fig. 7.8 Qualitative results showing our discovered spatial extent and ranking of relative attributes
on LFW-10 (top) and UT-Zap50K (bottom). We visualize our discoveries as heatmaps, where
red/blue indicates strong/weak predicted attribute relevance. For most attributes, our method cor-
rectly discovers the relevant spatial extent (e.g., for “Mouth open,” “Dark hair,” and “Eyes open,” it
discovers the corresponding object-part), which leads to accurate attribute orderings. Our approach
is sometimes able to discover what may not be immediately obvious to humans: for “Pointy,” it
discovers not only the toe of the shoe, but also the heel, because pointy shoes are often high-heeled
(i.e., the signals are highly correlated). There are limitations as well, especially for atypical images:
e.g., “Smile” (6th image) and “Visible forehead” (8th image) are incorrect due to mis-detections
resulting from extreme pose or clutter. Best viewed on pdf
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Visible teeth

Dark hair

Ours Spatial pyramid

Fig. 7.9 Spatial extent of attributes discovered by our approach versus a spatial pyramid baseline.
Red/blue indicates strong/weak attribute relevance. Spatial pyramid uses a fixed rigid grid (here
20× 20), and so cannot deal with translation and scale changes of the attribute across images. Our
approach is translation and scale invariant, and so its discoveries are much more precise

nose region to be relevant to “Visible teeth” (2nd row, 4th column). Our approach is
translation and scale invariant, and hence its discoveries are much more precise.

7.4.3 Relative Attribute Ranking Accuracy

We next evaluate relative attribute ranking accuracy, as measured by the percentage
of test image pairs whose pairwise orderings are correctly predicted (see Eq. 7.3).

We first report results on LFW-10 (Table7.1). We use the same train/test split as
in [35], and compare to the Global [31] and Keypoints [35] baselines. Our approach
consistently outperforms the baselines for both feature types. Notably, even with the
weaker dense-SIFT features, our method outperforms Global [31] that uses the more
powerful CNN features for all attributes except “Masculine looking”, which may be
better described with a global feature.1 This result demonstrates the importance of
accurately discovering the spatial extent for relative attribute modeling. Compared to
Keypoints [35],which also argues for the value of localization, our approach performs
better but with less supervision; we do not use any facial landmark annotations during
training. This is likely due to our approach being able to discover regions beyond
pre-defined facial landmarks, which may not be sufficient in modeling the attributes.

We also report ranking accuracy on UT-Zap50K (Table7.2). We use the same
train/test splits as in [44], and compare again to Global [31], as well as to the local
learning method of [44]. Note that Keypoints [35] cannot be easily applied to this

1Technically our approach is able to discover relevant regions with arbitrary sizes. However, in
practice we are limited by a fixed set of box sizes that we use for chain discovery.
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Table 7.2 Attribute ranking accuracy (%) on UT-Zap50K. Even though our approach outperforms
the baselines, the performance gap is not as large as on the LFW-10 dataset, mainly because the
images in this dataset are much more spatially aligned. Thus, Global [31] is sufficient to do well on
this dataset. We perform another cross-dataset experiment to address this dataset bias, the results
of which can be found in Table7.3

Open Pointy Sporty Comfort Mean

Yu and Grauman [44] 90.67 90.83 92.67 92.37 91.64

Global [31]+DSIFT 93.07 92.37 94.50 94.53 93.62

Ours+DSIFT 92.53 93.97 95.17 94.23 93.97

Ours+Global+DSIFT 93.57 93.83 95.53 94.87 94.45

Global [31]+CNN 94.37 93.97 95.40 95.03 94.69

Ours+CNN 93.80 94.00 96.37 95.17 94.83

Ours+Global+CNN 95.03 94.80 96.47 95.60 95.47

dataset since it makes use of pretrained landmark detectors, which are not available
(and much more difficult to define) for shoes. While our approach produces the high-
est mean accuracy, the performance gain over the baselines is not as significant com-
pared to LFW-10. This is mainly because all of the shoe images in this dataset have
similar scale, are centered on a clear white background, and face the same direction.
Since the objects are so well-aligned, a spatial pyramid is enough to capture detailed
spatial alignment. Indeed, concatenating the global spatial pyramid feature with our
discovered features produces even better results (Ours+Global+DSIFT/CNN).2

Finally, we conduct a cross-dataset generalization experiment to demonstrate that
our method is more robust to dataset bias [40] compared to Global [31]. We take
the detectors and rankers trained on UT-Zap50K, and use them to make predictions
on Shoes-with-Attributes. Table7.3 shows the results. The performance for both
methods is much lower because this dataset exhibits shoes with very different styles
andmuchwider variation in scale and orientation. Still, ourmethod generalizesmuch
better than Global [31] due to its translation and scale invariance.

7.4.4 Ablation Studies

In this section, we perform ablation studies to analyze the different components of
our approach, and perform additional experiments to further analyze the quality of
our method’s discoveries and how they relate to human annotations.

2Doing the same on LFW-10 produces worse results since the images are not as well-aligned.



172 F. Xiao and Y. J. Lee

Table 7.3 Cross-dataset ranking accuracy (%), training on UT-Zap50K and testing on Shoes-with-
Attributes. Our approach outperformsGlobal [31] with a largemargin in this setting (∼10%points),
since our approach is both translation and scale invariant

Open Pointy Sporty Mean

Global [31]+DSIFT 55.73 50.00 47.71 51.15

Ours+DSIFT 63.36 62.50 55.96 60.61

Global [31]+CNN 77.10 72.50 71.56 73.72

Ours+CNN 80.15 82.50 88.07 83.58

7.4.4.1 Contribution of each term in Eq. 7.2

We conduct an ablation study comparing our chains with those mined by two base-
lines that use either only the detection term or only the local smoothness term in
Eq. 7.2. For each attribute in LFW-10 and UT-Zap50K, we select the single top-
ranked visual chain. We then take the same Ninit initial patches for each chain, and
re-do the iterative chain growing, but without the detection or smoothness term.
Algorithmically, the detection-only baseline is similar to the style-aware mid-level
visual element mining approach of [26].

We then ask a human annotator to mark the outlier detections that do not visually
agree with the majority detections, for both our chains and the baselines’. On a total
of 14 visual chains across the two datasets, on average, our approach produces 3.64
outliers per chain while the detection-only and smoothness-only baselines produce
5 and 76.3 outliers, respectively. The smoothness-only baseline often drifts during
chain growing to develop multiple modes. Figure7.10 contrasts the detection-only
baseline with ours.

Detection only Detection and smoothness (Ours)

Mouth 
open

Good 
looking

Fig. 7.10 Three consecutive patches in two different visual chains, for “Mouth open” and “Good
looking”. (left) The middle patches are mis-localized due to the confusing patterns at the incorrect
locations. (right) These errors are corrected by propagating information from neighbors when local
smoothness is considered
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7.4.4.2 Visual Chain Perturbations

As argued in Sect. 7.3.3, generating additional chains by perturbing the originally
mined visual chains is not only an efficient way of increasing the size of the candidate
chain pool, but also allows the discovery of non-distinctive regions that are hard to
localize but potentially informative to the attribute. Indeed, we find that for each
attribute, on average only 4.25 and 2.3 selected in the final 60-chain ensemble are
the original mined chains, for UT-Zap50K and LFW-10, respectively. For example,
in Fig. 7.8 “Open”, the high response on the shoe opening is due to the perturbed
chains being anchored on more consistent shoe parts such as the tongue and heel.

7.4.4.3 Spreadness of Subjective Attributes

Since the qualitative results (Fig. 7.8) of the more global attributes are harder to
interpret, we next conduct a quantitative analysis to measure the spreadness of our
discovered chains. Specifically, for each image, we compute a spreadness score:
(# of unique pixels covered by all chains)/(# of pixels in image), and then average
this score over all images for each attribute. We find that the global attributes like
good_looking, young andmasculine_looking have higher spreadness than local ones
like mouth_open, eyes_open and smile.

7.4.4.4 Where in the Image Do Humans Look to Find the Attribute?

This experiment tries to answer the above question by analyzing the human annota-
tor rationales provided with the UT-Zap50k dataset. We take “comfort” as our test
attribute since its qualitative results in Fig. 7.8 are not as interpretable at first glance.
Specifically, we count all noun and adjective word occurrences for the 4970 anno-
tator rationales provided for “comfort”, using the Python Natural Language Toolkit
(NLTK) part-of-speech tagger. The following are the resulting top-10 word counts:
shoe-595, comfortable-587, sole-208, material-205, b-195 heel-184, support-176,
foot-154, flexible-140, soft-92. Words like sole, heel and support are all related to
heels, which supports the discoveries of our method.

7.4.5 Limitations

While the algorithm described in this chapter is quite robust as we have shown in
the above experiments, it is not without limitations. Since our approach makes the
assumption that the visual properties of an attribute change gradually with respect to
attribute strength, it also implicitly assumes the existence of the same visual concept
across the attribute spectrum. For example, for the attributes that we study in this
chapter, our approach assumes that all images contain either faces or shoes regardless
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of the strength of the attribute. However, it would be difficult to apply our approach
to datasets that do not hold this property, like natural scene images. This is because
for an attribute like “natural”, there are various visual properties (like forests and
mountains, etc.) that are relevant to the attribute but are not consistently present
across different images. Therefore, it would be much more challenging to discover
visual chains that have the same visual concept whose appearance changes gradually
according to attribute strength to link the images together.

Another limitation comes from our approach’s dependency on the initial ranking.
A rough initial ranking is required for the local smoothness property to hold in the
first place. This may not always be the case if the task is too difficult for a global
ranker to learn in the beginning (e.g., a dataset that contain highly cluttered images).
One potential solution in that case would be to first group the training images into
visually similar clusters and then train global rankerswithin each cluster to reduce the
difficulty of ranker learning. The images in each cluster would be ordered according
to the corresponding global ranker for initialization, and the rest of our algorithm
would remain the same.

7.4.6 Application: Attribute Editor

Finally, we introduce an interesting application of our approach called the Attribute
Editor, which could potentially be used by designers. The idea is to synthesize a new
image, say of a shoe, by editing an attribute to have stronger/weaker strength. This
allows the user to visualize the same shoe but e.g., with a pointier toe or sportier look.
Figure7.11 shows examples, for each of 4 attributes in UT-Zap50k, in which a user
has edited the query image (shown in the middle column) to synthesize new images
that have varying attribute strengths. To do this, we take the highest-ranked visual
chain for the attribute, and replace the corresponding patch in the query image with a
patch from a different image that has a stronger/weaker predicted attribute strength.
For color compatibility, we retrieve only those patches that have similar color along
its boundary as that of the query patch. We then blend in the retrieved patch using
Poisson blending. The editing results for the “smile” attribute are shown in Fig. 7.12.

Our application is similar to the 3D model editor of [5], which changes only the
object-parts that are related to the attribute and keeps the remaining parts fixed. How-
ever, the relevant parts in [5] are determined manually, whereas our algorithm dis-
covers them automatically. Our application is also related to the Transient Attributes
work of [23], which changes the appearance of an image globally (without localiza-
tion like ours) according to attribute strength.
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Predicted attribute strength

strong weak

Pointy

Sporty

Open

Comfort

Fig. 7.11 The middle column shows the query image whose attribute (automatically localized in
red box) we want to edit. We synthesize new shoes of varying predicted attribute strengths by
replacing the red box, which is predicted to be highly relevant to the attribute, while keeping the
rest of the query image fixed

Fig. 7.12 Our attribute editor for “Smile”. For the same person, the images from left to right
become less and less smiling
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7.5 Conclusion

We presented an approach that discovers the spatial extent of relative attributes. It
uses a novel formulation that combines a detector with local smoothness to discover
chains of visually coherent patches, efficiently generates additional candidate chains,
and ranks each chain according to its relevance to the attribute. We demonstrated
our method’s effectiveness on several datasets, and showed that it better models
relative attributes than baselines that either use global appearance features or stronger
supervision.

Acknowledgements The work presented in this chapter was supported in part by an AmazonWeb
Services Education Research Grant and GPUs donated by NVIDIA.
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Part III
Describing People Based on Attributes



Chapter 8
Deep Learning Face Attributes for Detection
and Alignment

Chen Change Loy, Ping Luo and Chen Huang

Abstract Describable face attributes are labels that can be given to a face image to
describe its characteristics. Examples of face attributes include gender, age, ethnicity,
face shape, and nose size. Predicting face attributes in the wild is challenging due
to complex face variations. This chapter aims to provide an in-depth presentation
of recent progress and the current state-of-the-art approaches to solving some of
the fundamental challenges in face attribute recognition, particularly from the angle
of deep learning. We highlight effective techniques for training deep convolutional
networks for predicting face attributes in the wild, and addressing the problem of
imbalanced distribution of attributes. In addition, we discuss the use of face attributes
as rich contexts to facilitate accurate face detection and face alignment in return. The
chapter ends by posing an open question for the face attribute recognition challenge
arising from emerging and future applications.

8.1 Introduction

Face attribute recognition aims at recognizing describable facial characteristics of a
person, including physical appearance, expression, gender, ethnicity, and age range.
Solving the face attribute recognition problem has gained a rapid increase of attention
in both the academic research communities and the industrial laboratories in recent
years.

The problemhasmanymanifestations fromdifferent application domains depend-
ing on the kind of attributes one is recognizing. For instance, the capability of recog-
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nizing describable facial characteristics such as nose size and mouth shape helps to
compose descriptions at various levels of specificity for face verification, identifi-
cation, and retrieval. On the other hand, the problem is related to ‘age estimation’
when the aim is to estimating the age range (e.g., young, old, mid-twenties) of a target
person. Solving the ‘expression recognition’ problem can be considered as a face
attribute recognition problem too. In this specific task, the target attributes are pro-
totypical expressions such as angry, happy, disgust, sad, surprise, fear, and neutral.
Recognizing such attributes facilitate the estimation of a person’s internal emotional
states and intentions. In the context of social signal processing, face attribute recog-
nition can be extended beyond single person’s attributes. For instance, recognizing
inter-person attributes such as friendly, warm, and dominant, reveals intrinsic rela-
tions between two or more persons [84].

Conventional face attribute recognition methods typically begin with the extrac-
tion of hand-crafted features at pre-detected facial landmarks. An independently
trained classifier such as support vector machine (SVM) is then applied for recog-
nition. For instance, Kumar et al. [38] extracted HOG-like features on various face
regions to tackle attribute classification and face verification. To improve the dis-
criminativeness of hand-crafted features, Bourdev et al. [5] built a three-level SVM
system to extract high-level information. Existing age estimation methods [11, 27]
extracted active appearance model features and formulated a cumulative attribute-
aware ridge regression function [11] or discriminative sparse neighbor approxima-
tion [27] for estimating age. These approaches generally require careful detection
and alignment of face images, and most of them apply to frontal faces only. Solving
the face attribute recognition in the wild requires more sophisticated methods since
faces can be observed under substantial variations of poses, lightings, and occlusions.

Deep convolutional networks (DCN), or often known as deep convolutional neural
networks (CNN), have achieved remarkable performance in many computer vision
tasks, such as object detection [23, 53], image classification [25, 57, 61], segmen-
tation [44, 46], and face recognition [59, 60], due to their exceptional capability of
capturing abstract concepts invariant to various phenomenon in visual world, e.g.,
viewpoint, illumination, and clutter. Face attribute recognition, similarly, can enjoy
a considerable performance boost by adopting a deep learning framework [45, 48].

In this chapter, we describe the use of DCN for solving some of the fundamen-
tal challenges in face attribute recognition. In particular, we present a novel DCN
framework for mitigating the class imbalance problem in face attribute recognition
in Sect. 8.2. Subsequently, we show that attributes can be exploited as an informa-
tive and rich source of context for learning robust deep representations. We show
specifically how attributes can benefit face detection (Sect. 8.3) and face alignment
(Sect. 8.4). Finally, in Sect. 8.5, we discuss an open question to be solved in order to
meet requirements in emerging and future real-world applications.
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8.2 Learning to Recognize Face Attributes

Data in vision domain often exhibit highly skewed class distribution, i.e., most data
belong to a few majority classes, while the minority classes only contain a scarce
amount of instances. Face attribute recognition faces the same problem too—it is
comparatively easier tofindpersonswith ‘normal-sizednose’ attribute onweb images
than that of ‘big-nose.’ Without handling the imbalance issue conventional methods
tend to be biased toward the majority class with poor accuracy for the minority class.

To counter the negative effects, one often chooses from a few available options.
The first option is re-sampling, which aims to balance the class priors by under-
sampling themajority class or over-sampling theminority class (or both). The second
option is cost-sensitive learning, which assigns higher misclassification costs to the
minority class than to the majority. Such schemes are well-known for some inherent
limitations. For instance, over-sampling can easily introduce undesirable noise with
over-fitting risks, and under-sampling is often preferred but may remove valuable
information. Such nuisance factors can be equally applicable to deep representation
learning in the face attribute recognition task.

In this section, we present an approach called Large Margin Local Embedding
(LMLE) for learning a deep representation given class-imbalanced face attribute
data [28].1 The LMLEmethod is motivated by the observation that the minority class
often contains very few instances with high degree of visual variability. The scarcity
and high variability make the genuine neighborhood of these instances easy to be
invaded by other imposter nearest neighbors.2 Specifically, we propose to learn an
embedding f (x) ∈ R

d with a CNN to ameliorate such invasion. The CNN is trained
with instances selected through a quintuplet sampling scheme and the associated
triple-header hinge loss. The learned embedding can produce features that preserve
not only locality across the same-class clusters but also discrimination between neg-
ative and positive attribute classes. We will demonstrate that such ‘quintuplet loss’
introduces a tighter constraint for reducing imbalance in the local data neighborhood
when compared to existing triplet loss. We also study the effectiveness of classic
schemes of class re-sampling and cost-sensitive learning in the face attribute recog-
nition context.

8.2.1 A Large Margin Local Embedding Approach

Given a face attribute dataset with an imbalanced class distribution, our goal is to
learn an Euclidean embedding f (x) from an image x into a feature space Rd , such
that the embedded features preserve locality across the same-class clusters as well

1The method is also applicable to other visual recognition problems that encounter imbalanced
class distributions.
2An imposter of a data point xi is another data point x j with a different class label, yi �= y j .
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Fig. 8.1 a Class-level embedding by triplet versus. b cluster- and class-level embedding by quintu-
plet. We take two different sized classes as example to illustrate the class imbalance. The quintuplet
associated with a triple-header hinge loss is found favorable for imbalanced classification

as discrimination between classes to prevent any possible local class imbalance. We
constrain this embedding to live on a d-dimensional hypersphere, i.e., || f (x)||2 = 1.

Quintuplet Sampling. To achieve the aforementioned goal, we select quintuplets
from the imbalanced data as illustrated in Fig. 8.1b. Each quintuplet is defined as

• xi : an anchor,
• x p+

i : the anchor’s most distant within-cluster neighbor,
• x p−

i : the nearest within-class neighbor of the anchor, but from a different cluster,
• x p−−

i : the most distant within-class neighbor of the anchor,
• xni : the nearest between-class neighbor of the anchor.

We wish to ensure that the following relationship holds in the embedding space:

D( f (xi ), f (x p+i )) < D( f (xi ), f (x p−i )) < D( f (xi ), f (x p−−
i )) < D( f (xi ), f (xni )),

(8.1)
where D( f (xi ), f (x j )) = ‖ f (xi ) − f (x j )‖22 is the Euclidean distance.

Such a fine-grained similarity defined by the quintuplet has two merits: (1) The
ordering in Eq. (8.1) provides richer information and a stronger constraint than the
conventional class-level image similarity. In the latter, two images are considered
similar as long as they belong to the same category. In contrast, we require two
instances to be close in both class- and cluster-levels to be considered similar. This
actually helps build a local classification boundary with the most discriminative local
samples. Other irrelevant samples in a class are effectively ‘held out’ for class sep-
aration, making the local boundary robust and insensitive to imbalanced class sizes.
(2) The quintuplet sampling is repeated during the CNN training, thus avoiding
unnecessary information loss as in traditional random under-sampling. When com-
pared with over-sampling strategies, it introduces no artificial noise. In practice, to
ensure adequate learning for all classes, we collect quintuplets for equal numbers of
minority- and majority-class samples xi in one mini-batch.
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Fig. 8.2 The geometry
intuition of margins. Ideally,
in the hypersphere
embedding space, clusters
should collapse into small
neighborhoods with safe
margin g1 between one
another, and g2 being the
largest within a class, and
their containing class is also
well separated by a large
margin g3 from other classes

Note in the above, we implicitly assume the imbalanced data are already clustered
so that quintuplets can be sampled. In practice, one could obtain the initial clusters
for each class by applying k-means on some prior features extracted from e.g., the
DeepID2 face recognition model [59]. To make the clustering more robust, an iter-
ative scheme is formulated to refine the clusters using features extracted from the
proposed model itself every 5000 iterations. The overall pipeline will be summarized
next.

Triple-Header Hinge Loss. To enforce the relationship in Eq.8.1 during feature
learning, we apply the large margin idea using the sampled quintuplets. A triple-
header hinge loss is formulated to constrain threemargins between the four distances,
and we solve the following objective function with slack allowed:

min
∑

i

(εi + τi + σi ) + λ‖W‖22,
s.t. :
max

(
0, g1 + D( f (xi ), f (x p+

i )) − D( f (xi ), f (x p−
i ))

)
≤ εi ,

max
(
0, g2 + D( f (xi ), f (x p−

i )) − D( f (xi ), f (x p−−
i ))

)
≤ τi ,

max
(
0, g3 + D( f (xi ), f (x p−−

i )) − D( f (xi ), f (xni ))
)

≤ σi ,

∀i, εi ≥ 0, τi ≥ 0, σi ≥ 0 (8.2)

where εi , τi , σi are the slack variables, g1, g2, g3 are themargins,W is the parameters
of the CNN embedding function f (·), and λ is a regularization parameter.

This formulation can effectively regularize the deep representation learning based
on the ordering specified in quintuplets, imposing a tighter constraint than triplets [9,
55, 66]. Ideally, in the hypersphere embedding space, clusters should collapse into
small neighborhoods with safe margin g1 between one another, and g2 being the
largest within a class, and their containing class is also well separated by a large mar-
gin g3 from other classes (see Fig. 8.2). An appealing feature of the proposed learning
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Fig. 8.3 The learning network

algorithm is that the margins can be explicitly determined by a geometric intuition.
Suppose there are L training samples in total, class c is of size Lc, c = 1, . . . ,C .
Let all the classes spread s ∈ [0, 1] of the entire hypersphere, and we generate clus-
ters of equal-size l for each class. Obviously, the margins’ lower bounds are zero.
For their upper bounds, gmax

1 is obtained when all �L/ l	 clusters are squeezed into
single points on a proportion s of the sphere. Hence gmax

1 = 2 sin(π ∗ sl/L), and
gmax
2 can be approximated as 2 sin(π ∗ s(Lc − l)/L) using the triangle inequality.
gmax
3 = 2 sin(π/C) when all classes collapse into single points. In practice, we try

several decreasing margin combinations before actual training.
The learning network architecture is shown in Fig. 8.3. Given a re-sampled mini-

batch, we retrieve for each xi in it a quintuplet by using a lookup table computed
offline. To generate a table of meaningful and discriminative quintuplets, instead of
selecting the ‘hardest’ ones from the entire training set, we select ‘semi-hard’ ones
by computing distances on a random subset (50%) of training data to avoid those
mislabeled or poor quality data. Then each quintuplet member is fed independently
into five identical CNNs with shared parameters. Finally, the output feature embed-
dings are L2 normalized and used to compute a triple-header hinge loss by Eq.8.2.
Backpropagation is used to update the CNN parameters.

To further ensure equal learning for the imbalanced classes, we assign each sample
and its quintuplet in mini-batches a cost such that the class weights therein are
identical. Below we summarize the learning steps of the LMLE approach. Note that
the learning is iterative.

1. Cluster for each class by k-means using the learned features from previous iter-
ation. For the first iteration, we use pre-trained features obtained from a face
verification task [59].

2. Generate a quintuplet table using the cluster and class labels from a subset of
training data.

3. For CNN training, repeatedly sample mini-batches equally from each class and
retrieve the corresponding quintuplets from the offline table.

4. Feed all quintuplets into five identical CNNs to compute loss in Eq.8.2 with
cost-sensitivities.
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Fig. 8.4 From left to right: 2D feature embedding of one imbalanced binary face attribute using
features obtained from DeepID2 network [59], triplet-based embedding, quintuplet-based LMLE.
We only show 2 Positive Clusters (PC) and 5 Negative Clusters (NC) out of a total of 499 clusters
to represent the imbalance

5. Backpropagate the gradients to update the CNN parameters and feature embed-
dings.

6. Alternate between steps 1–2 and steps 3–5 every 5000 iterations until conver-
gence.

Differences between Quintuplet Loss and Triplet Loss. The triplet loss is inspired
by Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) [24] and
LargeMarginNearestNeighbor (LMNN) [68]. It iswidely used inmany recent vision
studies [9, 55, 66], aiming to bring data of the sameclass closer,while data of different
classes further away (see Fig. 8.1). To enforce such a relationship, one needs to
generate mini-batches of triplets, i.e., an anchor xi , a positive instance x

p
i of the same

class, and a negative instance xni of different class, for deep feature learning.We argue
that they are rather limited in capturing the embedding structure of imbalanced data,
such as that observed in face attribute data. Specifically, the similarity information
is only extracted at the class-level, which would homogeneously collapse each class
irrespective of their different degrees of variations. As a result, the class structures
are lost. Moreover, when a class’s semantic scope is large but only consists of a few
instances with high variability, it is hard to maintain the class-wise margin, leading
to potential invasion of imposter neighbors or even domination of the majority class
in local neighborhood. By contrast, LMLE generates diverse quintuplets that differ
in the membership of clusters as well as classes, operating at both cluster- and class-
levels. It is thus capable of better capturing the considerable data variability within
each class and reducing any local class imbalance. Figure8.4 illustrates the advantage
of LMLE.

Nearest Neighbor Imbalanced Classification. The above LMLE approach offers
crucial feature representations for the following classification to perform well on
the imbalanced face attribute data. We choose the simple k-nearest neighbor (kNN)
classifier to show the efficacy of the learned features. Better performance is expected
with the use of more elaborated classifiers.

A traditional kNN classifier predicts the class label of a query q as the majority
label among its kNN in the training set P = {(xi , yi )}Li=1, where yi = 1, . . . ,C is
the (binary or multi-way) class label of sample xi . Such kNN rule is appealing due to
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its non-parametric nature, and it is easy to extend to new classes without retraining.
However, the underlying equal-class-density assumption may not be satisfied and
will greatly degrade its performance in the imbalanced case. Specifically, the formed
decision boundary will be severely biased to majority classes.

To this end, we modify the kNN classifier in two ways: (1) In the well-clustered
embedding space LMLE, we treat each cluster as a class-specific exemplar,3 and
perform a fast cluster-wise kNN search. (2) Letφ(q) be query q’s local neighborhood
defined by its kNN cluster centroids {mi }ki=1. We seek a large margin local boundary
among φ(q), labeling q as the class to which themaximum cluster distance is smaller
than the minimum cluster distance to any other class by the largest margin:

yq = −argmax
c=1,...,C

⎛

⎝ max
mi∈φ(q)
yi=c

D( f (q), f (mi )) − min
m j∈φ(q)
y j �=c

D( f (q), f (m j ))

⎞

⎠ . (8.3)

This large margin local decision offers us two advantages:

(i) Higher resistance to data imbalance: Recall that we fix the cluster size l (200
in this study) rather than the number of clusters for each class (to avoid large quan-
tization errors for the minority classes). Thus the �Lc/ l	 clusters generated from
different classes c = 1, . . . ,C still exhibit class imbalance. The class imbalance
issue is partially mitigated here since a classification based on the large margin rule
is independent of the class size. It is also very suited to the LMLE representation
which is learned under the same rule.

(ii) Fast speed: Decision by cluster-wise kNN search is much faster than by sample-
wise search.

We summarize the steps for the kNN-based imbalanced classification. For a
query q,

1. Find its kNN cluster centroids {mi }ki=1 from all classes.
2. If all the k cluster neighbors belong to the same class, q is labeled by that class

and exit.
3. Otherwise, label q as yq using Eq.8.3.

Evaluation. We evaluate the effectiveness of the proposed method on a large-scale
face attribute dataset. Each face attribute is binary, with severely imbalanced positive
and negative samples (e.g., “Bald” attribute: 2 vs. 98%). We simultaneously predict
40 attributes in a multi-task framework.

For evaluation we collected a large-scale face attribute dataset known as CelebA
dataset [45]. It contains 10,000 identities, each with about 20 images. Every face
image is annotated with 40 attributes and 5 key points. More information on the
dataset can be found in [45].4 We use the annotated key points to align each image
to 55 × 47 pixels. We partition the dataset following [45]: the first 160 thousand

3Employing clustering to aid classification is common in the literature [6, 65].
4http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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images (i.e., 8000 identities) for training, the following 20 thousand for training
SVM classifiers for the PANDA [81] and ANet [45], and remaining 20 thousand for
testing.Wewill introduce ANet in Sect. 8.3.1. To account for the imbalanced positive
and negative attribute samples, a balanced accuracy is adopted, that is accuracy =
0.5(tp/Np + tn/Nn), where Np and Nn are the numbers of positive and negative
samples, while tp and tn are the numbers of true positive and true negative. Note
that this evaluation metric differs from that employed in [45], where accuracy =
((tp + tn)/(Np + Nn)), which can be biased to the majority class.

We use an CNN architecture identical to that presented in [59], and employ
DeepID2 features [59] as prior features for the clustering. Note the prior features
for initial clustering are not critical to the final results because we will gradually
learn deep features in alternation with their clustering every 5000 iterations. Dif-
ferent prior features generally converge to similar results, but at different speeds.
The proposed CNN is trained using batch size 40, momentum 0.9, and λ = 0.0005
in Eq.8.2. Class-specific cost is defined as the inverse to class size in a batch. We
search k = 20 nearest clusters (i.e., |φ(q)| = 20 in Eq.8.3) for querying.

Table 8.1 Mean per-class accuracy (%) and class imbalance level (=|positive class rate-50|%) of
the 40 face attributes on CelebA dataset [45]. Attributes are sorted ascending by the imbalance
level. To account for the imbalanced positive and negative attribute samples, a balanced accuracy
is adopted, unlike [45]. The results of ANet are therefore different from that reported in [45] (see
text for details)
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Table8.1 compares the proposed LMLE-kNN method for multi-attribute classi-
fication with state-of-the-art methods, namely Triplet-kNN [55], PANDA [81] and
the ANet [45], which are trained using the same images and tuned to their best
performance. The attributes and their mean per-class accuracy results are given in
the order of ascending class imbalance level (=|positive class rate-50|%) to better
reflect its effect on performance. It is shown that LMLE-kNN consistently outper-
forms others across all face attributes, with an average gap of 4% over the runner-up
ANet. Considering most face attributes exhibit high class imbalance with an average
positive class rate of 23%, such improvements are nontrivial and prove the repre-
sentation power of the LMLE-based deep features on imbalanced data. Although
PANDA and ANet are capable of learning a robust representation by model ensem-
bling and multi-task learning respectively, these methods ignore the imbalance issue
and thus struggle for highly imbalanced attributes, e.g., ‘Bald.’ Compared with the
closely related triplet samplingmethod [55], quintuplet sampling better preserves the
embedding locality and discrimination on imbalanced data. The advantage is more
evident when observing the relative accuracy gains over other methods in Fig. 8.5.
The gains tend to increase with higher class imbalance level.

We further conduct an ablation test to demonstrate the benefits of quintuplet
loss and the applied re-sampling and cost-sensitive schemes. As can be observed
in Table8.2, while favorable performance is obtained using the classic schemes,
we find that the proposed quintuplet loss leads to much larger performance gains
than the popular triplet loss does over standard softmax. This strongly supports the
necessity of imposing additional cluster-wise relationships as in quintuplets. Such
constraints can better preserve local data neighborhood than triplets, which is critical
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Fig. 8.5 Relative accuracy gains over competitors on the sorted 40 face attributes in Table8.1
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Table 8.2 Ablation tests on attribute classification (average accuracy—%)

Methods Loss only Loss + resample Loss + resample + cost

Softmax 68.07 69.43 70.16

Triplet 71.29 71.75 72.43

Quintuplet 81.31 83.39 84.26

for ameliorating the invasion of imposter neighbors in the face attribute recognition
problem. It is worth noting that for the cost-sensitive scheme, when applied to strictly
balanced data from a re-sampled mini-batch, it would have no effects since the class
weights are already equal. However, in the case of predicting multiple face attributes,
class-balanced data for one attribute will be almost certainly imbalanced for the other
attributes, whose costs can then help.

Summary. In this section, we have discussed the importance of handling the class
imbalance issue inherent in the attribute recognition problem. Contemporary deep
representation learningmethods typically resort to class re-sampling or cost-sensitive
learning. Through extensive experiments, we have validated their effectiveness and
further demonstrated that the proposed triple-header loss with quintuple sampling
works remarkably well in comparison to existing approaches for learning a deep
representation from imbalanced attribute data. In the same context, the proposed
method has also been shown superior to the triplet loss, which is commonly adopted
for large margin learning. We attribute the effectiveness to the unique capability of
the loss in preserving locality across clusters and discrimination between classes.
Next, we show that attributes can be exploited as an informative and rich source of
context for learning robust deep representations.We show specifically how attributes
can benefit face detection (Sect. 8.3) and face alignment (Sect. 8.4).

8.3 Face Attributes for Face Localization and Detection

In Sect. 8.2, we assume face detection is performed (using an off-the-shelf face detec-
tor [41]) prior to the attribute recognition step. In essence, face localization or detec-
tion is a crucial step for face attribute recognition. These two problems are typically
treated as isolated problems in existing literature [4, 5, 13, 37, 48, 81]. Current meth-
ods first detect face parts and extract features from each part and then the extracted
local features are concatenated to train classifiers. For example, Kumar et al. [37] pre-
dicted face attributes by extracting hand-crafted features from ten face parts. Zhang
et al. [81] recognized human attributes by employing hundreds of poselets [5] to
align human body parts. In this section, we demonstrate that face detection and face
attribute recognition are highly correlated tasks in two aspects. First, cascading face
localization and attribute recognition improves each other. Second, attributes facili-
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tate the detection of facial parts, making face detection robust to large pose variations
and occlusions.

8.3.1 A Cascaded Approach for Face Localization and
Attribute Recognition

To understand why rich attribute information enables accurate face localization, one
could consider the examples in Fig. 8.6. If only a single detector [41, 49] is used
to classify all the positive and negative samples in Fig. 8.6a, it is difficult to handle
complex face variations. Therefore, multi-view face detectors [73] were developed in
Fig. 8.6b, i.e., face images in different views are handled by different detectors. View
labels were used in training detectors and the whole training set was divided into
subsets according to views. If views are treated as one type of face attributes, learning
a face representation by predicting attributes with deep models actually extends this
idea to an extreme. As shown in Fig. 8.6c, a neuron (or a group of neurons)5 in a CNN
functions as a detector of an attribute. When a subset of neurons are activated, they
indicate the existence of a particular attribute configuration. For instance, Fig. 8.7
visualizes the neurons in the fully-connected layer of a CNN trained for attribute
prediction. The neurons are ranked by their responses in descending order with
respect to test images. It is observed that these neurons collectively express diverse
high-level meanings to explain the test images. The neurons at different layers can
form many activation patterns, implying that the whole set of face images can be
divided into many subsets based on attribute configurations, and each activation
pattern corresponds to one subset (e.g., ‘pointy nose,’ ‘rosy cheek,’ and ‘smiling’).
Therefore, it is not surprising that neurons learned by attributes lead to effective
representations for face localization.

We introduce a deep learning framework for joint face localization and attribute
prediction in the wild [45]. It cascades two CNNs, LNet and ANet, which are fine-
tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by
massive general object categories for face localization, while ANet is pre-trained
by massive face identities for attribute prediction. This framework reveals valuable
facts on learning a face representation. First, it shows how the performances of face
localization (LNet) and attribute prediction (ANet) can be improved by different pre-
training strategies. Second, it reveals that although the filters of LNet are fine-tuned
only with image-level attribute tags, their response maps over the entire images
have strong indication of face locations. This fact enables training LNet for face
localization with only image-level annotations, but without face bounding boxes or
landmarks, which are required by existing attribute recognition methods. Third, it
also demonstrates that the high-level hidden neurons of ANet automatically discover
semantic concepts after pre-training with massive face identities, and such concepts

5The layers of a CNNhave neurons arranged in 3 dimensions: width, height, and the third dimension
of an activation volume.
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Fig. 8.6 Rich attribute information enables accurate face localization through capturing and divid-
ing the face space into finer subsets of different attribute configurations

Fig. 8.7 The activations of neurons in CNN capture attribute configurations of different faces. In
particular, attributes presented in each test image are explained by a sparse linear combination of
these concepts. For instance, the first image is described as ‘a lady with bangs, brown hair, pale
skin, narrow eyes and high cheekbones’

are significantly enriched after fine-tuning with attribute tags. Each attribute can be
well explained with a sparse linear combination of these concepts.

NetworkStructureOverview. Figure8.8 illustrates our pipelinewhere LNet locates
the entire face region in a coarse-to-fine manner as shown in (a) and (b), while ANet
extracts features for attribute recognition as shown in (c). Different from existing
works that rely on accurate face and landmark annotations, LNet is trained in a
weakly supervised manner with only image-level annotations. Specifically, it is pre-
trained with one thousand object categories of ImageNet [16] and fine-tuned by
image-level attribute tags. The former step accounts for background clutter, while
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Fig. 8.8 The pipeline of joint learning face localization and attribute prediction

the latter step learns features robust to complex face variations. Learning LNet in this
way not only significantly reduces data labeling, but also improves the accuracy of
face localization. Both LNeto and LNets have network structures similar to AlexNet
[36], whose hyper-parameters are specified in Fig. 8.8a, b respectively. The high
activations in the averaged response maps of the fifth convolutional layer (C5) of
LNeto indicate the head-and-shoulders region, while the activations of C5 of LNets
indicate faces. Moreover, the input xo of LNeto is a m × n image, while the input
xs of LNets is the head-shoulder region, which is localized by LNeto and resized
to 227 × 227. The localization is obtained through searching a threshold, such that
a window with a response larger than this threshold corresponds to the region of
interest.

As illustrated in Fig. 8.8c, ANet is learned to predict attributes y by providing the
input face region x f , which is detected by LNets and properly resized. Specifically,
multi-view versions (the four corner patches, the center patch, and their horizontal
flips) [36] of x f are utilized to train ANet. Furthermore, ANet contains four convolu-
tional layers, where the filters of C1 and C2 are globally shared and the filters of C3
and C4 are locally shared. The effectiveness of local filters have been demonstrated
in many face- related tasks [58, 62]. To handle complex face variations, ANet is
pre-trained by distinguishing massive face identities, which facilitates the learning
of discriminative features.

Figure8.8d outlines the procedure of attribute recognition. ANet extracts a set
of feature vectors (FCs) by cropping overlapping patches on x f . Support Vector
Machines (SVMs) [21] are trained to predict attribute values given each FC. The final
prediction is obtained by averaging all these values, to cope with small misalignment
of face localization.

Pre-training LNet. Both LNeto and LNets are pre-trained with 1,000 general object
categories from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2012 [16], containing 1.2 million training images and 50 thousands validation
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images. All the data is employed for pre-training except one-third of the validation
data for choosing hyper-parameters [36]. We augment data by cropping ten patches
from each image, including one patch at the center and four at the corners, and their
horizontal flips. We adopt softmax for object classification, which is optimized by
stochastic gradient descent (SGD) with backpropagation (BP) [40]. As shown in
Fig. 8.9a.2, the averaged response map in C5 of LNeto already indicates locations of
objects including human faces after pre-training.

Fine-tuning LNet. Both LNeto and LNets are fine-tuned with attribute tags. Addi-
tional output layers are added to the LNets individually for fine-tuning and then
removed for evaluation. LNeto adopts the full image xo as input while LNets uses the
region with high responses (determined by thresholding) xs in the averaged response
map in C5 of LNeto as input, which roughly correspond to head-shoulders. The
cross-entropy loss is used for attribute classification, i.e. L = ∑

i=1 yi log p(yi |x) +
(1 − yi ) log

(
1 − p(yi |x)

)
, where p(yi = 1|x) = 1

1+exp(− f (x)) is the probability of
the i-th attribute given image x. As shown in Fig. 8.9a.3, the response maps after
attribute fine-tuning become cleaner and smoother, suggesting that the filters learned
by attribute tags can detect face patterns with complex variations. To appreciate the
effectiveness of pre-training, we also include the averaged response map in C5 when
trained from scratch with attribute tags but without pre-training in Fig. 8.9a.4. It
cannot separate face regions from background and other body parts well.

Thresholding and ProposingWindows. We show that the responses of C5 in LNet
are discriminative enough to separate faces and background by simply searching a
threshold, such that a window with a response larger than this threshold corresponds
to a face and otherwise is background. To determine the threshold, we select 2000
images, each of which contains a single face, and 2000 background images from the
SUNdataset [69]. For each image, EdgeBox [88] is adopted to propose 500 candidate
windows, each of which is measured by a score that sums over its response values
normalized by its window size. A larger score indicates the localized pattern is more
likely to be a face. Each image is then represented by the maximum score over all its
windows. In Fig. 8.9b, the histogram of the maximum scores shows that these scores

Fig. 8.9 a.1 Original image, a.2–a.4 are averaged response maps in C5 of LNeto after pre-training
(a.2), fine-tuning (a.3) and directly training from scratch with attribute tags but without pre-training
(a.4). b Threshold used to separate faces from non-faces
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clearly separate face images from background images. The threshold is chosen as
the decision boundary as shown in Fig. 8.9b.

Evaluation. We evaluate the effectiveness of using attributes to facilitate face local-
ization. We employ the CelebA dataset [45], which contains ten thousand identities,
each of which has 20 images. There are two hundred thousand images in total. A
subset of images from CelebA (twenty thousand images from one thousand ran-
domly chosen identities) are employed to compare the face localization performance
of LNet with three widely adopted face detectors, including DPM [49], ACF Multi-
view [73], SURFCascade [41], and a commercial product (Face++) [20].We evaluate
them by using Receiver Operating Characteristic (ROC) curves when I oU 6 ≥0.5.
As plotted in Fig. 8.10a, when False Positives Per Image, FPPI = 0.01, the true
positive rates of Face++ and LNet are 85 and 93%; when FPPI = 0.1, our method
outperforms the other three methods by 11, 9 and 22% respectively. We also inves-
tigate how these methods perform with respect to the overlap ratio (I oU ), following
[49, 88]. Figure8.10c shows that LNet generally provides more accurate face local-
ization, leading to good performance in the subsequent attribute prediction. LNet
significantly outperforms LNet (without pre-training) by 74% when the overlap
ratio equals to 0.5, which validates the effectiveness of pre-training. We then explore
the influence of the number of attributes on localization. Figure8.10d illustrates that
rich attribute information facilitates face localization.

To examine the generalization ability of LNet, we collect another 3,876 face
images for testing, namely MobileFaces, where the images are captured by the cam-
eras of mobile phones. These images are collected from an image domain different to
the CelebA dataset. Several examples ofMobileFaces are shown in Fig. 8.11b and the
corresponding ROC curves are plotted in Fig. 8.10b. We observe that LNet consis-
tently performs better and still gains 7% improvement (FPPI = 0.1) compared with
other face detectors. As demonstrated in Fig. 8.11, LNet accurately localize faces in
the wild except some failure cases due to extreme poses and large occlusions.

8.3.2 From Facial Parts Responses to Face Detection

In Sect. 8.3.1, we demonstrated that face attribute recognition benefits face localiza-
tion. In this section, we introduce a deep learning approach, Faceness [77, 78], to
further show that face attributes help in localizing distinct facial parts. The localized
facial parts are robust to large pose variations and occlusions. The combination of
local parts’ responses improve face detection. An example is given in Fig. 8.12.

The Faceness’s pipeline consists of three stages, i.e. generating partness maps,
ranking candidate windows by faceness scores, and refining face proposals for face
detection. In the first stage as shown in Fig. 8.13, a full image x is used as input to
five CNNs. Note that all the five CNNs can share deep layers to save computational

6IoU indicates Intersection over Union.
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(a) (b)

(d)(c)

Fig. 8.10 Receiver operating characteristic curves on a CelebA and b MobileFaces datasets.
c Recall rates with respect to overlap ratio (FPPI = 0.1). d Recall rates with respect to the number
of attributes (FPPI = 0.1)

Fig. 8.11 Examples of face localization of LNet, including a CelebA, bMobileFaces, and c some
failure cases
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Fig. 8.12 We introduce a deep convolutional network for face detection, which achieves high
recall of faces even under severe occlusions and head pose variations. The key to the success of
our approach is the new mechanism for scoring face likeliness based on deep network responses
on local facial parts. The part-level response maps (we call it ‘partness’ map) are generated by our
deep network given a full image without prior face detection. All these occluded faces are difficult
to handle by conventional approaches

time. Each CNN outputs a partness map, which is obtained by weighted averaging
over all the label maps at its top convolutional layer. Each of these partness maps
indicates the location of a specific facial component presented in the image, e.g., hair,
eyes, nose, mouth, and facial hair, denoted by ha , he, hn , hm , and hb, respectively.
We combine all these partness maps through max pooling into a face label map h f ,
which clearly designates faces’ locations.

In the second stage, given a set of candidatewindows that are generated by existing
object proposalmethods such as [1, 64, 88],we rank thesewindows according to their
faceness scores, which are extracted from the partness maps with respect to different
facial parts configurations, as illustrated in Fig. 8.14. For example, as visualized in
Fig. 8.14, a candidate window ‘A’ covers a local region of ha (i.e., hair) and its
faceness score (this is for a part, not the holistic face) is calculated by dividing the
values at its upper part with respect to the values at its lower part, because hair is
more likely to present at the top of a face region. Note that the spatial configuration
of faces, e.g., lower and upper parts as illustrated in Fig. 8.14 can be learned from
data. More details are provided in [77]. A final faceness score of ‘A’ is obtained by
averaging over the scores of these parts. In this case, a large number of false positive
windows can be pruned. In the last stage, the proposed candidate windows are refined
by training a multi-task CNN, where face classification and bounding box regression
are jointly optimized.

Learning Partness Maps. The partness maps can be learned in multiple ways. The
most straightforward manner is to use the image and its pixelwise segmentation
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Fig. 8.13 The pipeline of generating part response maps and part localization. Different CNNs are
trained to handle different facial parts, but they can share deep layers for computational efficiency

Fig. 8.14 The pipeline for generating face proposals

Fig. 8.15 The responses or partness maps obtained by using different types of supervisions
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label map as input and target, respectively. This setting is widely employed in image
labeling [22, 51]. However, it requires label maps with pixelwise annotations, which
are expensive to collect. Another setting is image-level classification (i.e. faces and
non-faces), as shown in Fig. 8.15c. It works well when the training images are well-
aligned [59]. Nevertheless, it suffers from complex background clutter because the
supervisory information is not sufficient to account for complex face variations. Its
learned feature maps contain too much noise, which overwhelms the actual faces’
locations. Attribute learning in Fig. 8.15d extends the binary classification in (c)
to the extreme by using a combination of attributes to capture face variations. For
instance, an ‘Asian’ face can be distinguished from a ‘Caucasian’ face. However,
our experiments demonstrate that this setting is not robust to occlusion. Hence, as
shown in Fig. 8.15e, Faceness extends (d) by partitioning attributes into groups based
on facial components. For instance, ‘black hair,’ ‘blond hair,’ ‘bald,’ and ‘bangs’
are grouped together, as all of them are related to hair. The grouped attributes are
summarized in Table8.3. In this case, different face parts can bemodeled by different
CNNs (with option to share some deep layers). If one part is occluded, the face region
can still be localized by CNNs of other parts. Note that although we have multiple
attributes in each attribute group, a part CNN in Fig. 8.13 only produces a single
output to indicate the presence of a part.

Face Detection. The proposed windows achieved by faceness measure have high
recall rate. To improve it further, we refine these windows by joint training face clas-
sification and bounding box regression using a CNN similar to the AlexNet [36]. In
particular, we fine-tune AlexNet using face images fromAFLW [35] and person-free
images from PASCALVOC 2007 [19]. For face classification, a proposed window is
assignedwith a positive label if the IoU between it and the ground truth bounding box
is larger than 0.5; otherwise it is negative. For bounding box regression, each pro-
posal is trained to predict the positions of its nearest ground truth bounding box. If the
proposed window is a false positive, the CNN outputs a vector of [−1,−1,−1,−1].
We adopt the Euclidean loss and cross-entropy loss for bounding box regression and
face classification, respectively.

Table 8.3 Facial attributes grouping

Facial part Facial attributes

Hair Black hair, Blond hair, Brown hair, Gray hair, Bald, Wavy hair, Straight hair,
Receding hairline, Bangs

Eye Bushy eyebrows, Arched eyebrows, Narrow eyes, Bags under eyes,
Eyeglasses

Nose Big nose, Pointy nose

Mouth Big lips, Mouth slightly open, Smiling, Wearing lipstick

Facial hair No beard, Goatee, 5 o’clock shadow, Mustache, Sideburns
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Fig. 8.16 a Comparisons on FDDB dataset. b Comparisons on AFW dataset

Evaluation. We conduct face detection experiments on two datasets: FDDB [31] and
AFW [87].We adopt the PASCALVOC precision–recall protocol for evaluation.We
compare Faceness-Net against all published methods [10, 32, 41–43, 49, 56, 71, 73,
87] in the FDDB. For the AFWwe compare with (1) deformable part based methods,
e.g., structure model [72] and Tree Parts Model (TSM) [87]; (2) cascade-based
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methods, e.g., Headhunter [49]. Figure8.16a, b show that Faceness-Net outperforms
all previous approaches by a considerable margin, especially on the FDDB dataset.

Summary. In this section, we discussed two attribute-aware deep networks, which
are pre-trained with generic objects or identities and then fine-tuned with global or
specific part-level binary attributes. It is interesting to observe that these networks
could generate response maps in deep layers that strongly indicate the locations of
the face or its parts, without any explicit face/part supervisions. Thanks to this unique
capability, we are able to train face detector that is robust to severe occlusion and face
variations in unconstrained environment. Next we will discuss how face alignment
can benefit from attribute learning.

8.4 Face Attributes for Face Alignment

Face alignment, or detecting semantic facial landmarks (e.g., eyes, nose, mouth
corners) is a fundamental component in many face analysis tasks, such as face ver-
ification [47] and face recognition [30]. Though great strides have been made in
this field, robust facial landmark detection remains a formidable challenge in the
presence of partial occlusion and large head pose variations [12, 76] (Fig. 8.17a).
Landmark detection is traditionally approached as a single and independent prob-
lem. Popular approaches include template fitting approaches [14, 63, 79, 87] and
regression-based methods [7, 8, 15, 75, 80, 85, 86]. Deep models have been applied
as well. For example, Sun et al. [58] propose to detect facial landmarks by coarse-
to-fine regression using a cascade of CNNs. This method shows superior accuracy
compared to previousmethods [3, 8] and existing commercial systems. Nevertheless,
the method requires a complex and unwieldy cascade architecture of deep models.

Facial landmark detection can be influenced by a number of heterogeneous and
subtly correlated factors. Changes on a face are often governed by the same rules
determined by the intrinsic facial structure. For instance, when a kid is smiling, his
mouth is widely opened (the second image in Fig. 8.17a). Effectively discovering
and exploiting such an intrinsically correlated facial attribute would help in detect-
ing the mouth corners more accurately. Indeed, the input and solution spaces of face
alignment can be effectively divided given auxiliary face attributes. In a small exper-
iment, we average a set of face images according to different attributes, as shown in
Fig. 8.17b. The frontal and smiling faces show the mouth corners, while there are no
specific details for the image averaged over thewhole dataset. Given the rich auxiliary
attributes, treating facial landmark detection in isolation is counterproductive.

To this end, we consider optimizing facial landmark detection (the main task)
by leveraging auxiliary information from attribute inference tasks. Potential auxil-
iary tasks include head pose estimation, gender classification, age estimation, facial
expression recognition, or in general, the prediction of facial attributes. Given the
multiple tasks, we employ DCN given its natural capability in handling joint features
learning andmulti-objective inference.We can formulate a cost function that encom-
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(a) (b)

Fig. 8.17 a Examples of facial landmark detection by a single conventional CNN, the cascaded
CNN [58], and the proposed Tasks-Constrained Deep Convolutional Network (TCDCN). More
accurate detection can be achieved by optimizing the detection task jointly with related/auxiliary
tasks. b Average face images with different attributes. The image in blue rectangle is averaged
among the whole training faces, while the one in red is from the smiling faces with frontal pose.
It indicates that the input and solution space can be effectively divided into subsets, which are in
different distributions. This lowers the learning difficulty

passes all the tasks and use the cost function in the network backpropagation learning.
Designing the network requires some special care. First, the different tasks of face
alignment and attribute inference are inherently different in learning difficulties. For
instance, learning to identify ‘wearing glasses’ attribute is easier than determining
if one is smiling. Second, as highlighted in Sect. 8.2, we rarely have attributes with
similar number of positive/negative cases. For instance, male/female classification
enjoys more balanced samples than facial expression recognition. Consequently,
different tasks have different convergence rates. In many cases we observe that the
joint learning with a specific auxiliary task improves the convergence of landmark
detection at the beginning of the training procedure, but become ineffective when the
auxiliary task training encounters local minima or over-fitting. Continuing the train-
ing with all tasks jeopardizes the network convergence, leading to poor landmark
detection performance.

8.4.1 Attribute Tasks-Constrained Deep
Convolutional Network

To exploit the rich attributes for constraining face alignment, we develop a Tasks-
Constrained Deep Convolutional Network (TCDCN) [82, 83].

Network Structure Overview. Formally, we cast facial landmark detection as a
nonlinear transformation problem, which transforms raw pixels of a face image
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to positions of dense landmarks. The proposed network is illustrated in Fig. 8.18,
showing that the highly nonlinear function is modeled as a DCN, which is pre-
trained by five landmarks and attributes, and subsequently fine-tuned to predict the
dense landmarks. Since dense landmarks are expensive to label, the pre-training step
is essential because it prevents DCN from over-fitting to small datasets. In general,
the pre-training and fine-tuning procedures are similar, except that the former step
initializes filters by a standard normal distribution, while the latter step initializes
filters using the pre-trained network. In addition, the pre-training stage employs both
sparse landmarks and attributes as targets, while the fine-tuning stage only uses dense
landmarks.

We describe the pre-training stage as follows. As shown in Fig. 8.18, DCN
extracts a high-level representation x ∈ R

D×1 on a face image I using a set of filters
K = {ks}Ss=1, x = φ(I |K), where φ(·) is the nonlinear transformation learned by
DCN. With the extracted feature x, we jointly estimate landmarks and attributes,
where landmark detection is the main task and attribute prediction is the auxiliary
task. Let {ym}Mm=1 denote a set of real values, representing the x-, y-coordinates
of the landmarks, and let {lt }Tt=1 denote a set of binary labels of the face attributes,
∀lt ∈ {0, 1}. We have a weight matrixW = [wy

1,w
y
2, ...,w

y
M ,wl

1,w
l
2, ...,w

l
T ], where

each column vector corresponds to the parameters for detecting a landmark or pre-

Fig. 8.18 This figure shows the process of transferring representation from a network pre-trained
with images annotated with sparse landmarks and attributes (the top part), to a new network for
dense landmark learning (the bottom part). For both networks, a 60 × 60 image is taken as input. In
the first layer, we convolve it with 20 different 5 × 5 filters, using a stride of 1. The obtained feature
map is 56 × 56 × 20, which is subsampled to 28 × 28 × 20 with a 2 × 2 max-pooling operation.
Similar operations are repeated in layer 2, 3, 4, as the parameters shown in the figure. The last layer
is fully connected. Then the output is obtained by regression
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dicting an attribute based on a generalized linear model [50]. The proposed network
considers the following aspects to make the learning effective:

• Dynamic task coefficient—Unlike existing multi-task deep models that treat all
tasks as equally important, we assign and weight each auxiliary task with a coef-
ficient λt , t = 1...T , where T is the number of tasks. The coefficient is adaptively
and dynamically adjusted based on training and validation errors achieved so far
in the learning process. Thus a task that is deemed not beneficial to the main task is
prevented from contributing to the network learning. A halted taskmay be resumed
automatically if it is found useful again during the learning process. This approach
can be seen as a principled and flexible way of achieving ‘early stopping’ for a
specific task.

• Inter-task correlationmodeling—We additionallymodel the relatedness of hetero-
geneous tasks in a covariancematrixΥ in the objective function.Different from the
dynamic task coefficient that is concernedwith the learning convergence, inter-task
correlation modeling helps better exploiting the relation between tasks to achieve
better feature learning.

Objective Function. Given a set of face images and their labels, we jointly estimate
the filtersK in the DCN, the weight matrixW, the task covariance matrix Υ , and the
dynamic coefficients Λ = {λt }Tt=1. We skip the detailed derivation of the objective
function. Interested readers can refer to [83]. The objective function we need to
optimize is given as follows:

argmin
K,W,Λ,Υ �0

N∑

i=1

M∑

m=1

(ymi − wy
m
Txi )2

−
N∑

i=1

T∑

t=1

λt

{
lti ln f (wl

t
T
xi ) + (1 − lti ) ln

(
1 − f (wl

t
T
xi )

)}

+ tr(WΥ −1WT) + D ln |Υ | +
S∑

s=1

kTs ks +
T∑

t=1

(λt − μt )
2.

(8.4)

The first and second terms are the least square and cross-entropy loss functions for
the main task (landmark regression) and the auxiliary tasks (attribute classification),
respectively. Here f (x) = 1/(1 + exp{−x}). Note that we additionally consider the
optimization of task covariance matrix Υ so as to capture the correlations between
landmark detection and auxiliary attributes. The dynamic coefficient λt of a task is
optimized through adjustment based on the mean μt , which can be written as

μt = ρ × Et
val( j − τ) − Et

val( j)

Et
val( j − τ)

× Et
tr ( j − τ) − Et

tr ( j)

Et
tr ( j − τ)

, (8.5)
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Table 8.4 Annotated face attributes in the MAFL dataset

Group Attributes

Eyes Bushy eyebrows, arched eyebrows, narrow eyes, bags under eyes, eyeglasses

Nose Big nose, pointy nose

Mouth Mouth slightly open, no beard, smiling, big lips, mustache

Global Gender, oval face, attractive, heavy makeup, chubby

Head pose Frontal, left, left profile, right, right profile

where Et
val( j), and E

t
tr ( j) are the values of the loss function of task t on the validation

set and training set, respectively, at the j-th learning iteration. The ρ is a constant
scale factor, and τ controls a training strip of length τ . The second term in Eq. (8.5)
represents the tendency of the validation error. If the validation error drops rapidly
within a period of length τ , the value of the first term is large, indicating that training
should be emphasized as the task is valuable. Similarly, the third term measures the
tendency of the training error. We show the benefits of task covariance matrix and
dynamic coefficient in the evaluation section.

Evaluation. To facilitate the training and evaluation of TCDCN, we construct a
dataset,Multi-Attribute Facial Landmark (MAFL),7 by annotating 22 facial attributes
on 20,000 faces randomly chosen from the CelebA dataset [45]. The attributes are
listed in Table8.4 and all the attributes are binary, indicating the attribute is presented
or not. We divide the attributes into four groups to facilitate the following analysis.
The grouping criterion is based on the main face region influenced by the associated
attributes. In addition, we divide the face into one of five categories according to
the degree of yaw rotation. This results in the fifth group named as ‘head pose.’ All
the faces in the dataset are accompanied with five facial landmarks locations (eyes,
nose, and mouth corners), which are used as the target of the face alignment task.
We randomly select 1,000 faces for testing and the rest for training. We report our
results on two popular metrics [85], i.e. mean error and failure rate. The mean error
is measured by the distances between estimated landmarks and the ground truth, and
normalized with respect to the inter-ocular distance. Mean error larger than 10% is
reported as a failure.

To examine the influence of auxiliary tasks, we evaluate different variants of the
proposed model. In particular, the first variant is trained only on facial landmark
detection. We train another five model variants on facial landmark detection along
with the auxiliary tasks in the groups ‘eyes,’ ‘nose,’ ‘mouth,’ ‘global,’ ‘head pose,’
respectively. In addition,we synthesize a taskwith randomobjective and train it along
with the facial landmark detection task, which results in the sixth model variant. The
full model is trained using all the attributes. For simplicity, we name each variant
by facial landmark detection (FLD) and the auxiliary tasks, such as ‘FLD only,’
‘FLD+eyes,’ ‘FLD+pose,’ ‘FLD+all.’

7Data and codes of this work are available at http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html.

http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
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It is evident from Fig. 8.19 that optimizing landmark detection with auxiliary
tasks is beneficial. In particular, ‘FLD+all’ outperforms ‘FLD’ by a large margin,
with a reduction of over 7% in failure rate. When a single auxiliary task group is
present, ‘FLD+pose’ and ‘FLD+global’ perform better than the others. This is not
surprising since the pose variation affects locations of all landmarks directly and the
‘global’ attribute group influences the whole face region. The other auxiliary tasks
such as ‘eyes’ and ‘mouth’ are observed to have comparatively smaller influence to
the final performance, since they mainly capture local information of the face. As
for ‘FLD+random’ the performance is hardly improved. This result shows that the
main task and auxiliary task need to be related for any performance gain in the main
task.

In addition, we show the relative improvement caused by different groups of
attributes for each landmark inFig. 8.20. In particular,wedefine relative improvement
= reduced error

original error , where the original error is produced by the model of ‘FLD only.’ We
can observe a trend that each group facilitates landmark localization in the corre-
sponding face region. For example, for the group ‘mouth,’ the benefits are mainly
observed at the corners of mouth. This observation is intuitive since attributes like
smiling drives the lower part of the faces, more than the upper facial region. The
learning of these attributes develops a shared representation that describes the lower
facial region, which in turn facilitates the localization of corners of mouth. Similarly,
the improvement of eye location is much more significant than mouth and nose for
the attribute group ‘eye.’ However, we observe the group ‘nose’ improves the eye and
mouth localization remarkably. This is mainly because the nose is in the center of the

Fig. 8.19 Comparison of different model variants of TCDCN: the mean error over different land-
marks (left), and the overall failure rate (right)

Fig. 8.20 Improvement over different landmarks by different attribute groups
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Fig. 8.21 Examples of improvement by attribute groups ‘eye’ and ‘mouth’

Fig. 8.22 Results of ESR [8], SDM [70], LBF [52] and our method on the IBUG faces [54]

face, and there exists constrains between the nose location and other landmarks. The
horizontal coordinate of the nose is likely to be the mean of the eyes in a frontal face.
As for the groups of ‘pose’ and ‘global’, the improvement is significant in all land-
marks. Figure8.21 depicts improvements led by adding ‘eye’ and ‘mouth’ attributes.
Figure8.22 showsmore examples, demonstrating the effectiveness of TCDCN under
various face variations.

We compare the proposed TCDCN against various state-of-the-art methods on the
popular 300-W benchmark [54], following the same protocol in [52]. In particular,
the training set of 300-W contains 3,148 faces, including the AFW [87], the training
sets of LFPW [3], and the training sets of Helen [39]. The test set contains 689
faces, including IBUG, the testing sets of LFPW, and the testing sets of Helen. The
comparisons are summarized in Table8.5. For the challenging subset (IBUG faces)
TCDCN produces a significant error reduction of over 10% in comparison to the
state-of-the-art approach [85]. As can be seen from Fig. 8.22, the proposed method
exhibits superior capability of handling difficult cases with large head rotation and
exaggerated expressions, thanks to the shared representation learning with auxiliary
face attributes.

Benefits of Dynamic Tasks Coefficient and Inter-Task Correlation Learning. We
compare the dynamic tasks coefficient with the task-wise early stopping proposed in
the earlier version of this work [82]. As shown in Table8.6, the dynamic task coef-
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Table 8.5 Mean errors (%) on 300-W [54] dataset (68 landmarks)

Method Common subset Challenging subset Fullset

CDM [79] 10.10 19.54 11.94

DRMF [2] 6.65 19.79 9.22

RCPR [7] 6.18 17.26 8.35

GN-DPM [63] 5.78 – –

CFAN [80] 5.50 16.78 7.69

ESR [8] 5.28 17.00 7.58

SDM [70] 5.57 15.40 7.50

ERT [34] – – 6.40

LBF [52] 4.95 11.98 6.32

CFSS [85] 4.73 9.98 5.76

TCDCN 4.80 8.60 5.54

Table 8.6 Comparison of mean error (×10−2) on MAFL dataset under different network
configurations

Without inter-task correlation
learning

With inter-task correlation
learning

Task-wise early stopping [82] 8.35 8.21

Dynamic task coefficient 8.07 7.95

ficient achieves better performance than the task-wise early stopping scheme. This
is because the new method is more dynamic in coordinating the different auxiliary
tasks across the whole training process. In addition, we also show the mean errors of
facial landmark localization with andwithout inter-task correlation learning (without
correlation learning means that we simply apply multiple tasks as targets and do not
use the term of Υ in Eq. (8.4)). It demonstrates the effectiveness of task correlation
learning.

Summary. Instead of learning facial landmark detection in isolation, we have shown
that more robust landmark detection can be achieved through joint learning with
heterogeneous but subtly correlated auxiliary tasks, such as expression, demographic,
and head pose. The proposed Tasks-ConstrainedDCNallows errors of auxiliary tasks
to be backpropagated in deep hidden layers for constructing a shared representation to
be relevant to themain task.We also show that by learning a dynamic task coefficient,
we can utilize the auxiliary tasks in a more efficient way. Thanks to learning with the
auxiliary attributes, the proposedmodel ismore robust to faceswith severe occlusions
and large pose variations compared to existing methods.
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8.5 Discussion

This chapter has presented a viable approach for addressing the face attribute recog-
nition problem, together with an extensive discussion of exploiting such attributes
to facilitate other face analysis tasks in return. These techniques and approaches by
no means have covered exhaustively all the open problems associated with solving
face attribute recognition.

A key challenge is to recognize attributes from low-resolution images. Specifi-
cally, human experts seek and rely upon matching characteristics, such as discrete
hair styles, and facial features for human recognition and identification. In practice,
most surveillance cameras are installed to capture far-view field so as to maximize
the scene coverage. Consequently, a detectable face of interest may only occupy tiny
amount pixels of the whole image (e.g. 20 × 20 or even smaller), especially for stan-
dard definition surveillance videos. Given the low-resolution and potentially blurred
images, describing and matching characteristics becomes an exceptionally difficult
and challenging task for both human and machine to perform. How to achieve robust
attribute recognition even on low-resolution images? While existing face halluci-
nation [26, 29, 33, 67, 74] or image super-resolution methods [17, 18] could be
a potential solution, these studies concern about human perceived quality but not
machine perception, thus existing methods do not guarantee good attribute recog-
nition performance. In addition, the performance of existing image hallucination
remains poor due to the large variations in appearance, illumination and pose, as
well as motion and out of focus blurs. Without the guidance of face structures and
attributes, the hallucination output would not be realistic and contain clear artifacts.
It is thus an interesting direction to explore the joint learning of face hallucination
and attribute prediction so that the two tasks could help and regularize each other.
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Chapter 9
Visual Attributes for Fashion Analytics
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Abstract In this chapter, we describe methods that leverage clothing and facial
attributes as mid-level features for fashion recommendation and retrieval. We
introduce a system called Magic Closet for recommending clothing for different
occasions, and a system called Beauty E-Expert for hairstyle and facial makeup rec-
ommendation. For fashion retrieval, we describe a cross-domain clothing retrieval
system, which receives as input a user photo of a particular clothing item taken in
unconstrained conditions, and retrieves the exact same or similar item from online
shopping catalogs. In each of these systems, we show the value of attribute-guided
learning and describe approaches to transfer semantic concepts from large-scale
uncluttered annotated data to challenging real-world imagery.
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9.1 Motivation and Related Work

Visual analysis of people, in particular the extraction of facial and clothing attributes
[5, 6, 14, 37], is a topic that has received increasing attention in recent years by the
computer vision community. The task of predicting fine-grained facial attributes has
proven effective in a variety of application domains, such as content-based image
retrieval [16], and person search based on textual descriptions [9, 35]. We refer to
Chap.8 for a detailed analysis of methods for processing facial attributes.

Regarding the automated analysis of clothing images, several methods have been
proposed for context-aided people identification [10], fashion style recognition [13],
occupation recognition [32], and social tribe prediction [17]. Clothing parsing meth-
ods, which produce semantic labels for each pixel in the input image, have also
received significant attention in the past few years [20, 21, 26, 27, 38]. In the sur-
veillance domain, matching clothing images across cameras is a core subtask for the
well-known person reidentification problem [18, 31].

In this chapter, we demonstrate the effectiveness of clothing and facial attributes
asmid-level features for fashion analytics and retail applications. This is an important
area due to the accelerated growth of e-commerce applications and their enormous
financial potential.

Within this application domain, several recent methods have successfully used
visual attributes for product retrieval and search. Berg et al. [2] discover attributes
of accessories such as shoes and hand bags by mining text and image data from
the Internet. Liu et al. [24] describe a system for retrieving clothing items from
online shopping catalogs. Kovashka et al. [15] developed a system called “Whittle-
Search”, which is able to answer queries such as “Show me shoe images like these,
but sportier”. They used the concept of relative attributes proposed by Parikh and
Grauman [29] for relevance feedback. More details about this system is described in
Chap.5. Attributes for clothing have been explored in several recent papers [3–5].
They allow users to search visual content based on fine-grained descriptions, such
as a “blue striped polo-style shirt”.

Attribute-based representations have also shown compelling results for matching
images of people across domains [19, 31]. The work by Donahue and Grauman
[7] demonstrates that richer supervision conveying annotator rationales based on
visual attributes improves recognition performance. Sharmanska et al. [30] explored
attributes and rationales as a form of privileged information [34], considering a learn-
ing to rank framework. Along this direction, in one of the applications considered
in this chapter, we show that cross-domain image retrieval can benefit from feature
learning that simultaneously optimizes a loss function that takes into account visual
similarity and attribute classification.

Next, we will describe how visual attributes can serve as a powerful image rep-
resentation for fashion recommendation and retrieval. We start by describing two
systems for clothing and makeup recommendation, respectively, and then show an
attribute-guided learning method for cross-domain clothing retrieval.

http://dx.doi.org/10.1007/978-3-319-50077-5_8
http://dx.doi.org/10.1007/978-3-319-50077-5_5
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Fig. 9.1 Two typical clothing recommendation scenarios for Magic Closet. (Top panel) Cloth-
ing suggestion: given an occasion, the most suitable clothing combinations from the user’s photo
album are suggested. (Bottom panel) Clothing pairing: given an occasion and a reference clothing
item, the clothing most suitable for the occasion and most matched with the reference clothing is
recommended from online shopping websites

9.2 Recommendation Systems

In this section, we describe two recommendation systems based on attribute predic-
tion. In both cases, we use attributes as an intermediate representation to leverage
semantic knowledge from a large expert database. In the first case, we detail a system
to recommend clothing from a user’s collection for a given special occasion such
as a wedding, funeral or conference. We construct a latent SVM model where each
potential function in the latent SVM is defined specifically for the clothing recom-
mendation task. We use low-level visual features to predict intermediate clothing
attributes such as color, pattern, material, or collar type, which in turn are used to
predict the best choice of outfit for the given occasion from the user’s closet or from
online shopping stores.

In the second case, we develop a system to recommend hairstyle and makeup
selections for a user’s image without makeup and with either short or bound hair.
Again, we use visual features to predict intermediate attribute features for this task.
In this scenario, we use a multiple tree-structured super-graphs model to estimate
facial/clothing attributes such as a high forehead, flat nose bridge, or collar shape,
which in turn are used to predict the most suitable high-level beauty attributes such
as hair length or color, lip gloss color or the eye shadow template class.
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9.2.1 “Hi, magic closet, tell me what to wear!”

Problem:Only a few existing works target the clothing recommendation task. Some
online websites1 can support the service of recommending the most suitable cloth-
ing for an occasion. However, their recommendation tools are mainly based on dress
codes and common sense. Magic Closet is the first system to automatically investi-
gate the task of occasion-oriented clothing recommendation and clothing pairing by
mining the matching rules among semantic attributes from real images.

Magic Closet mainly addresses two clothing recommendation scenarios. The first
scenario is clothing suggestion. As shown in the top panel of Fig. 9.1, a user specifies
an occasion and the system will suggest the most suitable outfits from the user’s own
photo album. The second scenario is clothing pairing. As shown in the bottom panel
of Fig. 9.1, a user inputs an occasion and one reference clothing item (such as a T-shirt
the user wants to pair), and then the most matched clothing from the online shopping
website is returned (such as a skirt). The returned clothing should aesthetically pair
with the reference clothing well and also be suitable for the specified occasion. As
a result, the Magic Closet system can serve as a plug-in application in any online
shopping website for shopping recommendation.

Two key principles are considered when designing Magic Closet. One is wearing
properly.Wearing properlymeans putting on some suitable clothing,which conforms
to normative dress codes2 and common sense. The other is wearing aesthetically.
There are some aesthetic rules which need to be followed when one pairs the upper
body clothing and lower body clothing. For example, it looks weird to wear a red
coat and a green pants together.

Recommendation Model: In the model learning process, to narrow the semantic
gap between the low-level visual features of clothing and the high-level occasion
categories, we propose to utilize mid-level clothing attributes. Here 7 multivalue
clothing attributes are defined, including the category attribute (e.g., “jeans”, “skirts”)
and detail attributes, describing certain properties of clothing (e.g., color, pattern).

We propose to learn the clothing recommendation model through a unified latent
Support Vector Machine (SVM) framework [23]. The model integrates four poten-
tials: (1) visual features versus attribute, (2) visual features versus occasion, (3)
attributes versus occasion, and (4) attribute versus attribute. Here the first three poten-
tials relate to clothing-occasion matching and the last one describes the clothing-
clothing matching. Embedding these matching rules into the latent SVM model
explicitly ensures that the recommended clothing satisfies the requirement of wear-
ing properly and wearing aesthetically simultaneously.

A training clothing image is denoted as a tuple (x, au, al , o). Here x corresponds
to the visual features from the whole body clothing, which is formed by directly
concatenating the upper body clothing feature xu and lower body clothing feature
xl , namely x = [xu; xl ]. We extract 5 types of features from 20 upper body parts and
10 lower body parts detected using the methodology in [39]. The features include

1http://www.dresscodeguide.com/.
2Dress codes are written and unwritten rules with regards to clothing.

http://www.dresscodeguide.com/
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Fig. 9.2 Clothing category attributes. All the attributes are organized in a tree structure and only
the leaf nodes are considered in this work

Fig. 9.3 Detail attributes considered in this work

Histograms ofOrientedGradient (HOG), Local Binary Pattern (LBP), colormoment,
color histogram, and skin descriptor. More specifically, each human part is first par-
titioned into several smaller, spatially evenly distributed regular blocks. Features
extracted from all the blocks are finally concatenated into a 28,770 dimensional fea-
ture vector to represent a human part. The block-based features can roughly preserve
relative position information inside each human part.

The occasion categories of the clothing are represented by o ⊂ O, where O
denotes the finite occasion category set. Note that each clothing may have multi-
ple occasion category labels. The attributes of the upper body clothing are denoted
by a vector au = [au1 , . . . , auKu

]T , where Ku is the number of attributes considered
for the upper body clothing. Each attribute describes certain characteristic of the
upper body clothing, e.g., color, collar. Similarly, the attributes of the lower body
clothing are denoted as a vector al = [al1, . . . , alKl

]T . All the attributes considered in
this work are listed in Figs. 9.2 and 9.3.We denote the attribute set for the upper body
and lower body as Au and Al , respectively. Note that each attribute is multivalued
and we represent each attribute by a multidimensional binary value vector in the
model learning process. For example, the attribute “color” has 11 different values,
e.g., red, orange, etc. Then we represent the “color” attribute by an 11-dimensional
vector with each element corresponding to one specific type of color.

Given N training examples {(x(n), a(n)
u , a(n)

l , o(n))}Nn=1, our goal is to learn a model
that can be used to recommend the most suitable clothing for a given occasion
label o ∈ O, which considers clothing-occasion and clothing–clothing matching
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simultaneously. Formally speaking, we are interested in learning a scoring func-
tion fw : X × O → R, over an image x and a user specified occasion label o, where
w are the parameters of fw. Here X denotes the clothing image space. During test-
ing, fw can be used to suggest the most suitable clothing x∗ from X t (candidate
clothing repository) for the given occasion o as x∗ = argmaxx∈X t fw(x, o). While for
the clothing pairing recommendation, given specified lower body clothing xl , fw can
select the most suitable upper body clothing x∗

u as x
∗
u = argmaxxu∈X t

u
fw ([xu; xl ], o),

where X t
u denotes the candidate upper body clothing repository. For the lower body

clothing pairing, it works similarly.
The recommendation function is defined as follows:

wTΦ(x, au, al , o) = wT
o φ(x, o) +

∑

j∈Au∪Al

wT
a j

ϕ(x, a j )

+
∑

j∈Au∪Al

wT
o,a j

ω(a j , o) +
∑

( j,k)∈E
wT

j,kψ(auj , a
l
k). (9.1)

In this model, the parameter vector w is the concatenation of the parameters in all
the factors. Φ(x, au, al , o) is the concatenation of φ(x, o), ϕ(x, a j ), ω(a j , o) and
ψ(auj , a

l
k). It is a feature vector depending on the images x, the attributes au , al and

occasion label o. The model presented in Eq. (9.1) simultaneously considers the
dependencies among visual features, attributes, and occasions. In particular, its first
term predicts occasion from visual features; the second term describes the relation-
ship between visual features and attributes; the third term captures the relationship
between attributes and occasion. The last term expresses the dependencies between
the attributes of upper and lower body clothing. Instead of predicting the occa-
sion from visual features or attributes directly, we mine much richer matching rules
among them explicitly. The impacts of different relationships on the matching score
in Eq. (9.1) are automatically determined in the learning process, therefore, the four
relationships are not treated equally.

Model Learning and Inference: In this work, we adopt the latent SVM formu-
lation to learn the model as in [8]:

min
w,ξ

β‖w‖2 +
N∑

n=1

ξ (n)

s.t. max
au ,al

wTΦ(x(n), au, al , o(n)) − max
au ,al

wTΦ(x(n), au, al , o)

≥ Δ(o, o(n)) − ξ (n), ∀n,∀o ∈ O, (9.2)

where β is the tradeoff parameter controlling the amount of regularization, and ξ (n)

is the slack variable for the n-th training sample to handle the soft margin. Such an
objective function requires that the score of clothing for a suitable occasion should
be much higher than for a non-suitable occasion.Δ(o, o(n)) is a loss function defined
as
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Δ0/1(o(n), o) =
{
1 if o /∈ o(n)

0 otherwise

In Eq. 9.2, we aim to learn a discriminative occasion-wise scoring function on
each pair of clothing (more specifically, on their features and inferred attributes)
such that the scoring function can rank clothing correctly by maximizing the score
difference between suitable ones and unsuitable ones for the interest occasion.

After learning the model, we can use it to score any image-occasion pair (x, o).
The score is inferred as fw(x, o) = maxau ,al w

TΦ(x, au, al , o). Thus after specifying
the occasion o, we can obtain a rank of the clothing from the user’s clothing photo
album. In particular, given the parameter model w, we need to solve the following
inference problem during recommendation:

{a∗
u, a

∗
l } = argmax

au ,al
wTΦ(x, au, al , o),

which can be solved by linear programming since the attributes form a tree struc-
ture [36]. And then the clothing obtaining the highest score will be suggested, namely

x∗ = argmax
x

{
max
au ,al

wTΦ(x, au, al , o)
}

. (9.3)

Similarly, for the clothing pairing recommendation, given a specified upper body
clothing xu and the occasion o, the most suitable lower body clothing x∗

l is paired as:

x∗
l = argmax

xl

{
max
au ,al

wTΦ ([xu; xl ], au, al , o)
}

. (9.4)

The upper body clothing recommendation for a given lower body clothing is con-
ducted in a similar way.

Evaluation Metric and Baselines: We compare the proposed Magic Closet sys-
tem with two linear SVM-based models. The first baseline is a feature-occasion
multiclass linear SVMwhich predicts occasion from visual features directly without
considering attributes. After training based on {x(n), o(n)}Nn=1, given an occasion, all
the clothing in the repository are ranked according to the output confidence score
of the feature-occasion SVM. The second baseline feature-attribute-occasion SVM
is composed of a two-layer linear SVM. The first-layer SVM linearly maps visual
features to attribute values, which is trained based on {x(n), a(n)

u , a(n)
l }Nn=1. Then the

visual features are converted into attribute confidence score vectors via such first-
layer SVM. The second-layer SVM is trained on these attribute confidence vectors
to predict their occasion labels. Similar to feature-occasion SVM, all clothing in the
repository are ranked based on the output of the two-layer feature-attribute-occasion
SVM. We evaluate their performance via Normalized Discounted Cumulative Gain
(NDCG), which is commonly used to evaluate ranking systems.
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Fig. 9.4 Comparison of
Magic Closet with two
baselines on the clothing
suggestion task (NDCG vs. #
returned samples)

Experiment 1: Occasion-Oriented Clothing Suggestion To evaluate the perfor-
mance of the proposed method, we collect a dataset, which is split into three subsets.
The first subset WoW_Full includes 9,469 images containing visible full-body. The
second subset, denoted asWoW_Upper, contains 8,421 imageswith only upper body,
such as T-shirts, Fashion hoodies. And the 6,527 images containing lower body cloth-
ing, such as Jeans andSkirts, are put intoWoW_Lower.According to different sources
of data, WoW_Upper is further split into two subsets, one isWoW_Upper_DP where
all the images are Daily Photos (DP), which are crawled from popular photo sharing
websites, while the other one is WoW_Upper_OS, the photos of which are crawled
from Online Shopping (OS) websites. Similarly, both WoW_Lower and WoW_Full
subsets are further split into DP and OS subsets in the same way. Though in a
practical system all the clothing photos are from the same user, here in order to com-
prehensively evaluate theMagic Closet system for suggesting clothing with different
attributes,we simulate the suggestion scenario onWoW_Full_DPdataset,which con-
tains 6, 661 images from multiple users. We evenly split the WoW_Full_DP subset
into two groups. The first half WoW_Full_DP_1 together withWoW_Full_OS (con-
taining 2, 808 images) are used for training the latent SVM-based model embedded
inMagic Closet. The second half ofWoW_Full_DP_1 is used as testing set. Each set
of clothes is annotated with an occasion label, e.g., dating or conference. Given an
occasion, the clothing from the set which maximizes the score function in Eq. (9.3)
is suggested by Magic Closet.

Quantitative evaluation results of the clothing suggestion are shown in Fig. 9.4.
From the results, we can make the following observations. (1) The feature-occasion
SVM consistently outperforms the feature-attribute-occasion SVM. This is because
the visual features we adopt possess relatively strong discriminative power and their
high dimensionality benefits linear classification. We also observe that it is harder to
construct a linear relationship between low-dimensional attribute confidence vectors
and occasions. (2) The proposed latent SVM model outperforms the two baseline
models significantly. This result well demonstrates the effectiveness of the proposed
model in mining matching rules among features, attributes, occasions, and utilizing
their correlation in occasion-oriented clothing suggestion.
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Fig. 9.5 Comparison of
Magic Closet with baselines
for clothing pairing (NDCG
vs. # returned samples)

Experiment 2: Occasion-Oriented Clothing Pairing To simulate this scenario,
we collect 20 images (10 upper body and 10 lower body) as the queries. Summing up
across 8 occasions, the total number of queries is 160.The repository consists of cloth-
ing from online shopping dataset, including two subsets WoW_Upper_OS (2,500
images) and WoW_Lower_OS (3,791 images). In clothing pairing, for each query
of upper/lower body clothing, we provide the rank of the candidate lower/upperbody
clothing in the online shop dataset. The rank is calculated based on the pairs aesthetic
score and suitableness for the specified occasion, as evaluated in Eq. 9.4. To obtain
the ranking ground truth of the returned clothing, we do not require our labelers (40
people aging from 19 to 40) to score each candidate pair. We adopt the group-wise
labeling strategy: given an occasion, we randomly show 8 clothing as a group to
the labelers. So, labelers only need to rank the clothing within each group and the
final rank is obtained. Such strategy can alleviate the burden of labelers significantly.
Each pair is labeled at least 10 times and thus the potential inaccurate rank can be
eliminated via averaging.

Figure9.5 shows theNDCGvaluew.r.t. the increasing number of returned samples
of the baseline models and the Magic Closet system. From the figure, we can have
the following observations. (1) For the two baseline methods, the feature-attribute-
occasion SVM performs significantly better than the feature-occasion SVM. This
is because that the feature-occasion SVM is a linear model. The calculated pairing
score equals to wT [xu; xl] = wT

u xu + wT
l xl . The maximization of this score w.r.t.

xl is independent of xu . Therefore, for a specified occasion, for different queries,
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the returned results are identical. However, due to the good performance of feature-
occasion SVM in occasion prediction, it can still return suitable clothing for the
occasion. Thus its performance is still acceptable. While for the feature-attribute-
occasion SVM, since the features are mapped to the attribute space at first, this issue
is alleviated. Moreover, the attribute-based features are more robust to cross-domain
variation (DP vs. OS). (2) The proposed Magic Closet outperforms the two baseline
models. This result is as expected since Magic Closet can better capture matching
rules among attributes and thus recommend more aesthetic clothing pairs.

9.2.2 “Wow You Are so Beautiful Today!”

Wehave built a system calledBeauty e-Experts, a fully automatic system for hairstyle
and facial makeup recommendation and synthesis [25]. Given a user-provided frontal
face image with short/bound hair and no/light makeup, the Beauty e-Experts system
can not only recommend themost suitable hairdo andmakeup, but also show the syn-
thetic effects. The interface of the Beauty e-Experts system is shown in Fig. 9.6. The
main challenge in this problem is how tomodel the complex relationships among dif-
ferent beauty and facial/clothing attributes for reliable recommendation and natural
synthesis.

To obtain enough knowledge for beauty modeling, we build the Beauty
e-Experts Database, which contains 1,505 attractive female photos with a variety of
beauty attributes and facial/clothing attributes annotated [25]. Based on this Beauty
e-Experts Dataset, two problems are considered for the Beauty e-Experts system:
what to recommend and how to wear, which describe a similar process of selecting
hairstyle and cosmetics in our daily life. For the what-to-recommend problem, we
propose a multiple tree-structured super-graphs model to explore the complex rela-
tionships among the high-level beauty attributes, mid-level facial/clothing attributes,
and low-level image features, and then based on this model, the most compatible
beauty attributes for a given facial image can be efficiently inferred. For the how-to-
wear problem, an effective and efficient facial image synthesis module is designed
to seamlessly synthesize the recommended hairstyle and makeup into the user facial
image.

Beauty attributes, facial/clothing attributes, and features: To obtain beauty
knowledge from our dataset, we comprehensively explore different beauty attributes
on these images, including various kinds of hairstyles and facial makeups. We care-
fully organize these beauty attributes and set their attribute values based on some
basic observations or preprocessing on the whole dataset. Table9.1 lists the names
and values of all the beauty attributes considered in the work. For the first four beauty
attributes in Table9.1, their values are set intuitively, and for the last five ones, their
values are obtained by running the k-means clustering algorithm on the training
dataset for the corresponding features. We show the visual examples of specific
attribute values for some beauty attributes in Fig. 9.7.
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Fig. 9.6 Overall illustration of the proposed Beauty e-Experts system. Based on the user’s facial
and clothing characteristics, the Beauty e-Experts system automatically recommends the suitable
hairstyle and makeup products for the user, and then produces the synthesized visual effects

Table 9.1 A list of the high-level beauty attributes

Name Values

Hair length Long, medium, short

Hair shape Straight, curled, wavy

Hair bangs Full, slanting, center part, side part

Hair volume Dense, normal

Hair color 20 classes

Foundation 15 classes

Lip gloss 15 classes

Eye shadow color 15 classes

Eye shadow template 20 classes

We further explore a set of mid-level facial/clothing attributes to narrow the gap
between the high-level beauty attributes and the low-level image features. Table9.2
lists all the mid-level facial/clothing attributes annotated for the dataset. These mid-
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Table 9.2 A list of mid-level facial/clothing attributes considered in this work

Names Values

Forehead High, normal, low

Eyebrow Thick, thin

Eyebrow length Long, short

Eye corner Upcurved, downcurved, normal

Eye shape Narrow, normal

Ocular distance Hypertelorism, normal, hypotelorism

Cheek bone High, normal

Nose bridge Prominent, flat

Nose tip Wide, narrow

Mouth opened Yes, no

Mouth width Wide, normal

Smiling Smiling, neutral

Lip thickness Thick, normal

Fatness Fat, normal

Jaw shape Round, flat, pointed

Face shape Long, oval, round

Collar shape Strapless, v-shape, one-shoulder, high-necked, round, shirt collar

Clothing pattern Vertical, plaid, horizontal, drawing, plain, floral print

Clothing material Cotton, chiffon, silk, woolen, denim, leather, lace

Clothing color Red, orange, brown, purple, yellow, green, gray, black, blue, white, pink,
multicolor

Race Asian, Western

level attributes mainly focus on the facial shapes and clothing properties, which are
kept fixed during the recommendation and the synthesis process.3

After the annotation of the high-level beauty attributes and mid-level facial/
clothing attributes, we further extract various types of low-level image features on
the clothing and facial regions for each image in the Beauty e-Experts Dataset to
facilitate further beauty modeling. The clothing region of an image is automatically
determined based on its geometrical relationship with the face region. Specifically,
the following features are extracted for image representation:

• RGB color histogram and color moments on the clothing region.
• Histograms of oriented gradients (HOG) and local binary patterns (LBP) features
on the clothing region.

• Active shape model [28] based-shape parameters.
• Shape context [1] features extracted at facial points.

3Although the clothes of a user can be changed to make one look more beautiful, they are kept fixed
in our current Beauty e-Experts system.
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Fig. 9.7 Visual examples of the specific values for some beauty attributes

All the above features are concatenated to form a feature vector of 7,109 dimen-
sions, and then Principal Component Analysis (PCA) is performed for dimensional-
ity reduction. The compressed feature vector with 173 dimensions and the annotated
attribute values are then fed into an SVM classifier to train a classifier for each
attribute.

TheRecommendationModel: Based on the beauty attributes and facial/clothing
attributes, we propose to learn a multiple tree-structured super-graphs model to
explore the complex relationships among these attributes.Based on the recommended
results, an effective and efficient facial image synthesis module is designed to seam-
lessly synthesize the recommended results into the user facial image and show it
back to the user. The whole system processing flowchart is illustrated in Fig. 9.8.

A training beauty image is denoted as a tuple (〈x, ar 〉, ab). Here x is the image fea-
tures extracted from the raw image data; ar and ab denote the set of the facial/clothing
attributes and beauty attributes, respectively. Each attribute may have multiple dif-
ferent values, i.e., ai ∈ {1, . . . , ni }, where ni is the number of attribute values for the
i-th attribute. The facial/clothing attributes ar act as the mid-level cues to narrow the
gap between the low-level image features x and the high-level beauty attributes ab.
The recommendation model needs to uncover the complex relationships among the
low-level image features, mid-level facial/clothing attributes and high-level beauty
attributes, and make the final recommendation for a given image.

We model the relationships among the low-level image features, the mid-level
facial/clothing attributes, and the high-level beauty attributes from a probabilistic
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Fig. 9.8 Systemprocessing flowchart.Wefirst collect theBeauty e-ExpertsDatabase of 1,505 facial
images with different hairstyles and makeup effects. With the extracted facial and clothing features,
we propose a multiple tree-structured super-graphs model to express the complex relationships
among beauty and facial/clothing attributes. The results from multiple individual super-graphs are
fused based on a voting strategy. In the testing stage, the recommended hair and makeup templates
for the testing face are then applied to synthesize the final visual effects

perspective. The aim of the recommendation system is to estimate the probability of
beauty attributes, together with facial/clothing attributes, given the image features,
i.e., p

(
ab, ar |x), which can be modeled using the Gibbs distribution,

p
(
ab, ar|x) = 1

Z (x)
exp

(−E
(
ab, ar, x

))
, (9.5)

where Z (x)=∑
ab,ar exp

(−E
(
ab, ar, x

))
, also known as the partition function, is

a normalizing term dependent on the image features, and E(ab, ar, x) is an energy
function measuring the compatibility among the beauty attributes, facial/clothing
attributes, and image features. The beauty recommendation results can be obtained by
finding the most likely joint beauty attribute state âb = argmaxab maxar p

(
ab, ar |x).

The capacity of this probabilistic model fully depends on the structure of the
energy function E(ab, ar , x). Here we propose to learn a general super-graph struc-
ture to build the energy function which can theoretically be used to model any
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relationships among the low-level image features,mid-level facial/clothing attributes,
and high-level beauty attributes. To begin with, we give the definition of a super-
graph.

Definition 9.1 Super-graph: a super-graph G is a pair G = (V, E) where V is called
super-vertexes, consisting of a set of nonempty subsets of a basic node set, and E
is called super-edges, consisting of a set of two-tuples, each of which contains two
different elements in V .
It can be seen that a super-graph is actually a generalization of a graph in which a
vertex can have multiple basic nodes and an edge can connect any number of basic
nodes. When all the super-vertexes only contain one basic node, and each super-
edge is forced to connect to only two basic nodes, the super-graph then becomes a
traditional graph. A super-graph can be naturally used to model the complex rela-
tionships among multiple factors, where the factors are denoted by the vertexes and
the relationships are represented by the super-edges.

Definition 9.2 k-order super-graph: for a super-graph G = (V, E), if the maximal
number of vertexes involved by one super-edge in E is k, G is said to be a k-order
super-graph.

Based on the above definitions, we propose to use the super-graph to charac-
terize the complex relationships among the low-level image features, mid-level
facial/clothing attributes, and high-level beauty attributes in our problem. For exam-
ple, pairwise correlations can be sufficiently represented by a 2-order super-graph
(traditional graph), while other more complex relationships, such as one-to-two
and two-to-two relationships, can be represented by other higher order super-
graphs. Denote the basic node set A as the union of the beauty attributes and
facial/clothing attributes, i.e., A = {ai |ai ∈ ar ∪ ab}. Suppose the underlying rela-
tionships among all the attributes are represented by a super-graphG = (V, E), where
V = {ai |ai ⊂ A}. ai is a set of non-empty subsets of A. Note that we use ai to denote
a non-empty attribute set and ai to denote a single attribute. E is the super-edge set
that models their relationships, the energy function can then be defined as,

E
(
ab, ar , x

) =
∑

ai∈V
φi (ai , x) +

∑

(ai ,a j )∈E
φi j

(
ai , a j

)
. (9.6)

The first summation term is called FA (feature to attribute) potential, which is used
to model the relationships between the attributes and low-level image features, and
the second one is called AA (attribute to attribute) potential and is used to model
the complex relationships among different attributes represented by the super-edges.
φi (ai , x) and φi j

(
ai , a j

)
are the potential functions of the corresponding inputs,

which can be learned in different ways. Generally, the FA potential φi (ai , x) is
usually modeled as a generalized linear function in the form like

φi (ai = si , x) = ψai (x)
� wsi

i , (9.7)
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where si is the values for attribute subset ai , ψai (x) is a set of feature mapping
functions for the attributes in ai using SVM on the extracted features, and wi is the
FA weight parameters to be learned for the model. And the AA potential function
φi

(
ai , a j

)
is defined by a scalar parameter for each joint state of the corresponding

super-edge,
φi j

(
ai = si , a j = s j

) = w
si s j
i, j , (9.8)

where w
si s j
i, j is a scalar parameter for the corresponding joint state of ai and a j with

the specific value si and s j .
The learning of the super-graph-based energy function includes learning the struc-

ture and the parameters in the potential functions.
Model Learning: Structure Learning. For a super-graph built on a basic node

set A = {a1, . . . , aM }withM elements, we find a k-order tree-structured super-graph
for these vertexes. We first calculate the mutual information between each pair of
vertexes, and denote the results in the adjacencymatrix form, i.e.,W = {wi j }1≤i, j≤M .
Then we propose a two-stage algorithm to find the k-order tree-structured super-
graph.

In the first stage, we aim to find the candidate set of basic node subsets V =
{ai |ai ⊂ A}, which will be used to form the super-edges. The objective here is to
find the set of subsets that has the largest amount of total mutual information in the
result k-order super-graph. Here we first define a function that calculates the mutual
information of a subset set with a specified mutual information matrix,

f (V,W ) =
∑

|ai |≥2

∑

a j ,ak∈ai
w jk . (9.9)

Based on this definition, we formulate the candidate set generation problem as the
following optimization problem

argmax
V

f (V,W ),

s.t. |ai | ≤ �k + 1

2
�,∀i, (9.10)

|V| ≤ m,

where the first inequation is from the k-order constraint from the result super-graph,
�·� is the floor operator, and the parameter m in the second inequation is used to
ensure that the generated subsets have a reasonable size to cover all the vertexes and
make the inference on the result super-graph more efficient. Specifically, its value
can be set as

m =
{
M, k = 2,
2�M/(k − 1)�, otherwise, (9.11)

where �·� is the ceil operator. To solve this optimizationproblem,wedesign a k-means
like iterative optimization algorithm to find the solution. The algorithm first initial-
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izes some random vertex subsets and then reassigns each vertex to the subsets that
result in maximal mutual information increment; if one vertex subset has more than
�(k + 1)/2� elements, it will be split into two subsets; if the total cardinality of the
vertex subset set is larger than 2�M/(k − 1)�, two subsets with the smallest cardi-
nalities will be merged into one subset. This procedure is repeated until convergence.

The second stageof the two-stage algorithmfirst calculates themutual information
between the element pair that satisfies the order restrictions in each vertex subset.
The order constraint is that the maximal number of vertexes involved by one super-
edge in E is k. Then it builds a graph by using the calculated mutual information as
adjacency matrix, and the maximum spanning tree algorithm is adopted to find its
tree-structured approximation.

The above two-stage algorithm is run many times by setting different k values
and initializations of subsets, which then generates multiple tree-structured super-
graphs with different orders and structures. In order to make the parameter learning
tractable, the maximal k-value K is set to be equal to 5.

Model Learning: Parameter Learning. For each particular tree-structured
super-graph, its parameter set, including the parameters in the FA potentials and
the AA potentials, can be denoted in a whole as� = {wsi

i ,w
si s j
i j }. We adopt the max-

imal likelihood criterion to learn these parameters. Given N i.i.d. training samples
X = {〈xn, arn〉, abn}, we need to minimize the loss function

L = 1

N

N∑

n=1

Ln + 1

2
λ
∑

i,si

‖wsi
i ‖22

= 1

N

N∑

n=1

{− ln p
(
abn, a

r
n|xn

)} + 1

2
λ
∑

i,si

‖wsi
i ‖22, (9.12)

where Ln is the loss for each sample (expanded in the second line of the equation),
λ is the tradeoff parameter between the regularization term and log-likelihood and
its value is chosen by k-fold validation on the training set. Since the energy function
is linear with respect to the parameters, the log-likelihood function is concave and
the parameters can be optimized using gradient-based methods. The gradient of the
parameters can be computed by calculating their marginal distributions. Denoting
the value of attribute ai for training image n as âi , we have

∂Ln

∂wsi
i

= ([
âi = si

] − p (ai = si |xn)
)
ψai (xn) , (9.13)

∂Ln

∂w
si s j
i j

= [
âi = si , â j = s j

] − p
(
ai = si , a j = s j |xn

)
, (9.14)

where [·] is the Iverson bracket notation, i.e., [·] equals 1 if the expression is true,
and 0 otherwise.
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Based on the calculation of the gradients, the parameters can be learned from
different gradient-based optimization algorithms. In the experiments, we use the
implementation by Schmidt4 to learn these parameters. The learned parameters,
together with the corresponding super-graph structures, form the final recommenda-
tion model.

Inference: Here each learned tree-structured super-graph model can be seen as a
beauty expert. Given an input testing image, the systemfirst extracts the feature vector
x, and then each beauty expert makes its recommendation by performing inference
on the tree structure to find the maximum posteriori probability of p

(
ab, ar |x). The

recommendation results output by all the Beauty e-Experts are then fused bymajority
voting to make the final recommendation to the user.

The Synthesis Module: With the beauty attributes recommended by the multiple
tree-structured super-graphs model, we further synthesize the final visual effect of
hairstyle and makeup for the testing image. To this end, each makeup attribute forms
a template which can be directly obtained from a dataset. These obtained hair and
makeup templates are then fed into the synthesis process, which mainly has two
steps: alignment and alpha blending.

In the alignment step, both of the hairstyle and the makeup templates need to be
aligned with the testing image. For hair template alignment, a dual linear transfor-
mation procedure is proposed to put the hair template on the target face in the testing
image. For the makeup templates alignment, only the eye shadow template needs to
be aligned to the eye region in the testing image. Other makeup templates can be
directly applied to the corresponding regions based on the face keypoint detection
results. In the alpha blending step, the final result is synthesized with hair template,
makeup, and the testing face.

Experiments and Results: For the recommendation model in the Beauty
e-Experts system,we also implement some alternatives usingmulticlass SVM, neural
network, and latent SVM. Figure9.9 plots the comparison results of our proposed
model and other baselines. The performance is measured by NDCG, which is widely
used to evaluate ranking systems. From the results, it is observed that our model and
latent SVM significantly outperforms multiclass SVM and neural network. From
Fig. 9.9 it can be further found that our model has overall better performance than
the latent SVMmethod, especially in the top 15 recommendations.With higher order
relationships embedded, our model can express more complex relationship among
different attributes. In addition, by employing multiple tree-structured super-graphs,
our model obtains more robust recommendation results.

We then compare the hairstyle and makeup synthesis results with a few commer-
cial systems, including Instant Hair Makeover (IHM),5 Daily Makeover (DM),6 and
the virtual try-onwebsite (TAAZ).7 As shown in Fig. 9.10, the first column are the test
images, and the other four columns are the results generated by DM, IHM, TAAZ,

4http://www.di.ens.fr/~mschmidt/Software/UGM.html.
5http://www.realbeauty.com/hair/virtual/hairstyles.
6http://www.dailymakeover.com/games-apps/games.
7http://www.taaz.com.

http://www.di.ens.fr/~mschmidt/Software/UGM.html
http://www.realbeauty.com/hair/virtual/hairstyles
http://www.dailymakeover.com/games-apps/games
http://www.taaz.com
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Fig. 9.9 NDCG values of multiple tree-structured super-graphs model and three baselines. The
horizontal axis is the rank of top-k results, while the vertical axis is the corresponding NDCG
value. Our proposed method achieves better performance than the latent SVM model and other
baselines

Fig. 9.10 Contrast results of synthesized effect among commercial systems and our paper
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and our system, respectively. The reason why we select these three systems is that
only these three can synthesize both the hairstyle and makeup effects. The makeup
and hairstyle templates used in the synthesis process are selected with some user
interactions to ensure that all the four methods share similar makeups and hairstyles.
It can be seen that, even after some extra user interactions, the results generated from
these three websites have obvious artifacts. The selected hair templates cannot cover
the original hair area. IHM cannot even handle the mouth open cases.

9.3 Fine-Grained Clothing Retrieval System

In this section, we describe a fine-grained clothing retrieval system [12]. In a similar
fashion to the recommendation work described in the previous section, we use a
large-scale annotated dataset with many attributes to transfer knowledge to a noisy
real-world domain. In particular, given an offline clothing image from the “street”
domain, the goal is to retrieve the same or similar clothing items from a large-scale
gallery of professional online shopping images, as illustrated in Fig. 9.11.We propose
a Dual Attribute-aware Ranking Network (DARN) consisting of two subnetworks,
one for each domain, whose retrieval feature representations are driven by semantic
attribute learning.

Fig. 9.11 Cross-domain clothing retrieval. a Query image from daily photos. b Top-6 product
retrieval results from the online shopping domain. The proposed systemfinds the exact same clothing
item (first two images) and ranks the ones with similar attributes as top results
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9.4 Data Collection

We have collected about 453,983 online upper-clothing images in high-resolution
(about 800 × 500 on average) from several online shopping websites. Generally,
each image contains a single frontal-view person. From the text surrounding the
images, semantic attributes (e.g., clothing color, collar shape, sleeve shape, clothing
style) are extracted and parsed into 〈key, value〉 pairs, where each key corresponds to
an attribute category (e.g., color), and the value is the attribute label (e.g., red, black,
white). Then, we manually pruned the noisy labels, merged similar labels based on
human perception, and removed those with a small number of samples. After that, 9
categories of clothing attributes are extracted and the total number of attribute values
is 179. As an example, there are 56 values for the color attribute.

The specified attribute categories and example attribute values are presented in
Table9.3. This large-scale dataset annotated with fine-grained clothing attributes is
used to learn a powerful semantic representation of clothing, as we will describe in
the next section.

Recall that the goal of our retrieval problem is to find the online shopping images
that correspond to a given query photo in the “street” domain uploaded by the user.
To analyze the discrepancy between the images in the shopping scenario (online
images) and street scenario (offline images), we collect a large set of offline images
with their online counterparts. The key insight to collect this dataset is that there are
many customer review websites where users post photos of the clothing they have
purchased. As the link to the corresponding clothing images from the shopping store
is available, it is possible to collect a large set of online–offline image pairs.

We initially crawled 381,975 online–offline image pairs of different categories
from the customer review pages. Then, after a data curation process, where several
annotators helped removing unsuitable images, the data was reduced to 91,390 image
pairs. For each of these pairs, fine-grained clothing attributes were extracted from
the online image descriptions. As can be seen, each pair of images depict the same

Table 9.3 Clothing attribute categories and example values. The number in brackets is the total
number of values for each category

Attribute categories Examples (total number)

Clothes button Double Breasted, Pullover, … (12)

Clothes category T-shirt, Skirt, Leather Coat … (20)

Clothes color Black, White, Red, Blue … (56)

Clothes length Regular, Long, Short … (6)

Clothes pattern Pure, Stripe, Lattice, Dot … (27)

Clothes shape Slim, Straight, Cloak, Loose … (10)

Collar shape Round, Lapel, V-Neck … (25)

Sleeve length Long, Three-quarter, Sleeveless … (7)

Sleeve shape Puff, Raglan, Petal, Pile … (16)
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Fig. 9.12 The distribution of online–offline image pairs

clothing, but in different scenarios, exhibiting variations in pose, lighting, and back-
ground clutter. The distribution of the collected online–offline images is illustrated in
Fig. 9.12. Generally, the number of images of different categories in both scenarios
are almost in the same order of magnitude, which is helpful for training the retrieval
model.

In summary, our dataset is suitable to the clothing retrieval problem for several rea-
sons. First, the large amount of images enables effective training of retrieval models,
especially deep neural network models. Second, the information about fine-grained
clothing attributes allows learning of semantic representations of clothing. Last but
not least, the online–offline images pairs bridge the gap between the shopping sce-
nario and the street scenario, providing rich information for real-world applications.

9.4.1 Dual Attribute-Aware Ranking Network

In this section, the Dual Attribute-aware Ranking Network (DARN) is introduced
for retrieval feature learning. Compared to existing deep features, DARN simultane-
ously integrates semantic attributes with visual similarity constraints into the feature
learning stage, while at the same time modeling the discrepancy between domains.

Network Structure. The structure of DARN is illustrated in Fig. 9.13. Two sub-
networks with similar Network-in-Network (NIN) models [22] are constructed as
its foundation. During training, the images from the online shopping domain are
fed into one subnetwork, and the images from the street domain are fed into the
other. Each subnetwork aims to represent the domain-specific information and gen-
erate high-level comparable features as output. The NIN model in each subnetwork
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Fig. 9.13 The specific structure of DARN, which consists of two subnetworks for images of the
shopping scenario and street scenario, respectively. In each subnetwork, it contains a NIN network,
including all the convolutional layers, followed by two fully connected layers. The tree-structure
layers are put on top of each network for attribute learning. The output features of each subnetwork,
i.e., FC1, Conv4-5, are concatenated and fed into the triplet ranking loss across the two subnetworks

consists of five stacked convolutional layers followed byMLPConv layers as defined
in [22], and two fully connected layers (FC1, FC2). To increase the representation
capability of the intermediate layer, the fourth layer, named Conv4, is followed by
two MLPConv layers.

On top of each subnetwork, we add tree-structured fully connected layers to
encode information about semantic attributes. Given the semantic features learned
by the two subnetworks, we further impose a triplet-based ranking loss function,
which separates the dissimilar images with a fixed margin under the framework of
learning to rank. The details of semantic information embedding and the ranking
loss are introduced next.

Semantic InformationEmbedding. In the clothing domain, attributes often refer
to the specific description of certain parts (e.g., collar shape, sleeve length) or clothing
(e.g., clothes color, clothes style). Complementary to the visual appearance, this
information can be used to form a powerful semantic representation for the clothing
retrieval problem. To represent the clothing in a semantic level, we design tree-
structure layers to comprehensively capture the information of attributes and their
full relations.

Specifically,we transmit theFC2 response of each subnetwork to several branches,
where each branch represents a fully connected network to model each attribute
separately. In this tree-structured network, the visual features from the low-level
layers are shared among attributes; while the semantic features from the high-level
layers are learned separately. The number of neurons in the output-layer of each
branch equals the number of corresponding attribute values. Since each attribute has
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a single value, the cross-entropy loss is used in each branch. Note that the values of
some attributes may be missing for some clothing images. In this case, the gradients
from the corresponding branches are simply set to zero.

During the training stage, the low-level representation of clothing images is
extracted layer by layer. As the activation transfers to the higher layers, the rep-
resentation becomes more and more abstract. Finally, the distinctive characteristic of
each attribute is modeled in each branch. In the back-propagation, the gradient of loss
from each attribute w.r.t. the activation of FC2 layer are summed up and transferred
back for weight update.

Learning to Rank with Semantic Representation: In addition to encoding the
semantic representation, we apply the learning to rank framework on DARN for
retrieval feature learning. Specifically, the triplet-based ranking loss is used to con-
strain the feature similarity of image triplets. Denoting a and b the features of an
offline image and its corresponding online image, respectively, the objective function
of the triplet ranking loss is:

Loss(a, b, c) = max(0,m + dist (a, b) − dist (a, c)), (9.15)

where c is the feature of the dissimilar online image, dist (·, ·) represents the feature
distance, e.g., Euclidean distance, andm is themargin, which is empirically set as 0.3
according to the average feature distance of image pairs. Basically, this loss function
imposes that the feature distance between an online–offline clothing pair should be
less than that of the offline image and any other dissimilar online image by at least
margin m.

In this way, we claim that the triplet ranking loss has two advantages. First and
obviously, the desirable ranking ordering can be learned by this loss function. Second,
as the features of online and offline images come from two different subnetworks,
this loss function can be considered as the constraint to guarantee the comparability
of features extracted from those two subnetworks, therefore bridging the gap between
the two domains.

We found that the response of FC1 layer, i.e., the first fully connected layer,
achieves the best retrieval result. Therefore, the triplet ranking loss is connected to
the FC1 layer for feature learning. However, the response from the FC1 layer encodes
global features, implying that subtle local informationmaybe lost,which is especially
relevant for discriminating clothing images. To handle this problem, we claim that
local features captured by convolutions should also be considered. Specifically, the
max-pooling layer is used to down-sample the response of the convolutional layers
into 3 × 3 × fn , where fn is the number of filters in the n-th convolutional layer.
Then, the down-sampled response is vectorized and concatenated with the global
features. Lastly, the triplet ranking loss is applied on the concatenated features of
every triplet. In our implementation, we select the pooled response map of Conv4
and Conv5, i.e., the last two convolutional layers, as local features.
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9.4.2 Clothing Detection

As a preprocessing step, the clothing detection component aims to eliminate the
impact of cluttered backgrounds by cropping the foreground clothing from images,
before feeding them into DARN. Our method is an enhanced version of the R-CNN
approach [11],which has recently achieved state-of-the-art results in object detection.

Analogous to the R-CNN framework, clothing proposals are generated by selec-
tive search [33], with some unsuitable candidates discarded by constraining the range
of size and aspect ratio of the bounding boxes. Similar to Chen et al. [5], we process
the region proposals by a NIN model. However, our model differs in the sense that
we use the attribute-aware network with tree-structured layers as described in the
previous section, in order to embed semantic information as extra knowledge.

Based on the attribute-aware deep features, support vector regression (SVR) is
used to predict the intersection over union (IoU) of clothing proposals. In addition,
strategies such as the discretization of IoU on training patches, data augmentation,
and hard example mining, are used in our training process. As post-processing,
bounding box regression is employed to refine the selected proposals with the same
features used for detection.

9.4.3 Cross-Domain Clothing Retrieval

Wenowdescribe the implementation details of our complete system for cross-domain
clothing retrieval.

Training Stage. The training data is comprised of online–offline clothing image
pairs with fine-grained clothing attributes. The clothing area is extracted from all
images using our clothing detector, and then the cropped images are arranged into
triplets.

In each triplet, the first two images are the online–offline pairs, with the third
image randomly sampled from the online training pool. As the same clothing images
have an unique ID, we sample the third online image until getting a different ID than
the online–offline image pair. Several such triplets construct a training batch, and
the images in each batch are sequentially fed into their corresponding subnetwork
according to their scenarios. We then calculate the gradients for each loss function
(cross-entropy loss and triplet ranking loss) w.r.t. each sample, and empirically set
the scale of gradients from those loss functions as 1. Lastly, the gradients are back
propagated to each individual subnetwork according to the sample domain.

We pre-trained our network as well as the baseline networks used in the exper-
iments on the ImageNet dataset (ILSVRC-2014), as this yields improved retrieval
results when compared to random initialization of parameters.
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End-to-end Clothing Retrieval. We have set up an end-to-end real-time clothing
retrieval demo on our local server. In our retrieval system, 200,000 online clothing
images cropped by the clothing detector are used to construct our retrieval gallery.
Given the cropped online images, the concatenated responses from FC1 layer, pooled
Conv4 layer, and pooled Conv5 layer of one subnetwork of DARN corresponding
to shop scenario are used as the representation features. The same processes are
operated on the query image, except that the other subnetwork of DARN is used for
retrieval feature extraction. We then l2 normalize the features from different layers
for each image. PCA is used to reduce the dimensionality of the normalized features
(17,920-D for DARNwith Conv4-5) into 4,096-D, which conducts a fair comparison
with other deep features using FC1 layer output only. Based on the preprocessed
features, the Euclidean distance between query and gallery images is used to rank
the images according to the relevance to the query.

9.4.4 Experiments and Results

For the retrieval experiment, about 230,000 online images and 65,000 offline images
are sampled for network training. In the training process, each offline image and its
online counterpart are collected, with the dissimilar online image randomly sampled
from the 230,000 online pool to construct a triplet. To make the retrieval result
convincing, the rest 200,000 online images are used as the retrieval gallery.

For clothing retrieval, the approach using Dense-SIFT (DSIFT) + fisher vector
(FV) is selected as traditional baseline. To analyze the retrieval performance of deep
features, we compare pretrained networks including AlexNet (pretrained CNN) and
pretrained NIN. We denote the overall solution as Dual Attribute-aware Ranking
Network (DARN), the solution without dual structure as Attribute-aware Ranking
Network (ARN), the solution without dual structure and the ranking loss function as
Attribute-aware Network (AN). We further evaluate the effectiveness of DARN in
terms of different configurations w.r.t. the features used, DARN using the features
obtained from FC1, DARN with Conv4 using the features from FC1+Conv4, and
DARNwith Conv4-5 using the features from FC1+Conv4+Conv5. It is worth noting
that the dimension of all features is reduced to 4096 byPCA to have a fair comparison.

Figure9.14 shows the full detailed top-k retrieval accuracy results for different
baselines as well as their proposed methods. We vary k as the tuning parameter as it
is an important indicator for a real system.
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Fig. 9.14 The top-k retrieval accuracy on 200,000 retrieval gallery. The number in the parentheses
is the top-20 retrieval accuracy

9.5 Summary

In this chapter,we reviewed fashion attribute prediction and its applications in fashion
recommendation and fashion retrieval.We introduced two recommendation systems.
The first system is called Beauty E-expert, a fully automatic system for hairstyle and
facial makeup recommendation. The second system is called Magic Closet, which
is an occasion-oriented clothing recommendation system. For fashion retrieval, a
fine-grained clothing retrieval system was developed to retrieve the same or similar
clothing items from online shopping stores based on a user clothing photo. In each of
these systems, we described an approach to transfer knowledge from a large ground
truth dataset to a specific challenging real-world scenario. Visual features were used
to learn semantic fashion attributes and their relationships to images from a similar
but more challenging user domain. By simultaneously embedding semantic attribute
information and visual similarity constraints, we have been able to construct practical
real-world systems for fashion analytics.
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Chapter 10
A Taxonomy of Part and Attribute
Discovery Techniques

Subhransu Maji

Abstract This chapter surveys recent techniques for discovering a set of Parts and
Attributes (PnAs) in order to enable fine-grained visual discrimination between its
instances. Part and Attribute (PnA)-based representations are popular in computer
vision as they allow modeling of appearance in a compositional manner, and provide
a basis for communication between a human and a machine for various interactive
applications. Based on two main properties of these techniques a unified taxonomy
of PnA discovery methods is presented. The first distinction between the techniques
is whether the PnAs are semantically aligned, i.e., if they are human interpretable
or not. In order to achieve the semantic alignment these techniques rely on addi-
tional supervision in the form of annotations. Techniques within this category can be
further categorized based on if the annotations are language-based, such as name-
able labels, or if they are language-free, such as relative similarity comparisons.
After a brief introduction motivating the need for PnA based representations, the
bulk of the chapter will be dedicated to techniques for PnA discovery categorized
into non-semantic, semantic language-based, and semantic language-free methods.
Throughout the chapter we will illustrate the trade-offs among various approaches
though examples from the existing literature.

10.1 Introduction

This chapter surveys a number of part-based and attribute-based models proposed
in the last decade in the context of visual recognition, learning, and description for
human-computer interaction. Part-based representations have been very successful
for various recognition tasks ranging from detecting objects in cluttered scenes [9,
34], segmenting objects [16, 107], recognizing scene categories [45, 72, 77, 92],
to recognizing fine-grained attributes of objects [10, 98, 111]. Parts provide robust-
ness to occlusion—the head of a person can be detected even when the legs are
occluded. Parts can also be composed in different ways enabling generalization to
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novel viewpoints, poses, and articulations of objects. Two popular methods, namely
the Deformable Part-based Model (DPM) of Felzenszwalb et al. [34] and the poselets
of Bourdev et al. [9, 11], exploit this property to build robust object detectors.

The compositional nature of part-based models is also the basis for Convolu-
tional Neural Networks (CNNs). While traditional part-based models can be seen as
shallow networks where the representations are hand-designed, CNNs learn all the
model parameters from raw pixels to image labels in an end-to-end manner using a
deeper architecture. When trained on large labeled datasets, deep CNNs have led to
breakthrough results on a number of recognition tasks [44, 48, 87], and are currently
the dominant approach for nearly all visual recognition problems.

Beyond recognition, a set of parts provides a means for a human to indicate the
pose and articulation of an object. This is useful for recognition with humans “in
the loop” where a person can annotate a part of the object to guide recognition.
For instance, Branson et al. [13] interactively categorize birds by asking users to
click on discriminative parts leading to significant improvement over the computer
vision only baseline. In such cases it is desirable that the parts represent semantically
aligned concepts since it involves communication with a human.

Along with parts, visual attributes provide a means to model the appearance of
objects. The word “attribute” is extremely generic as it can refer to any property
that might be associated with an object. Attributes can describe an entire object or
a part, e.g., a tall person or a long nose. Attributes can refer to low-level proper-
ties such as color and texture, or high-level properties such as age and gender of
a person. Attributes can be shared across categories, e.g., both a dog and a cat can
be “furry”, allowing the description of previously unseen categories. Semantically
aligned attributes provide a basis for learning interpretable visual classifiers [33],
create classifiers for unseen categories [52], debugging recognition systems through
attribute-based explanations [3, 76], and providing human feedback during learning
and inference [14, 46, 51, 78].

Thus, PnAs provide a rich compositional way of describing and recognizing cat-
egories. Techniques for PnA discovery are necessary as the desired set of parts and
attributes often depend on the underlying task. While it may not be necessary to
model the gender, hair-style, or the eye color of a person for detecting them, it may
be useful for identifying a particular individual. One motivating reason for the unified
treatment of PnAs in this chapter is that their roles are interchangeable for recogni-
tion and description. For instance, in order to distinguish between a red-beaked and a
yellow-beaked bird, one could have two parts, “red beak” and “yellow beak” and no
attributes, or a single part “beak” with two attributes, red and yellow. Therefore, from
a representation point of view it is more fruitful to think of the joint space induced
by various part-attribute interactions instead of each one of them independently. In
other words we can think of attributes being localized, i.e. associated with a part, or
not.

The next section provides an overview of the rest of the chapter, and describes a
unified taxonomy of recent PnA discovery methods.
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10.1.1 Overview

Although there are many ways to categorize the vast number of methods for PnA
discovery in the literature, the particular one described in this chapter was chosen
because it is especially useful for fine-grained domains which are our main focus.
Often these domains have a rich structure described through language, visual illus-
trations, and other modalities, which can be used to guide representation learning.
Translating all this information to useful visual properties is one of the main chal-
lenges of these methods. The proposed taxonomy categorizes various PnA methods
based on

• the degree to which the models explicitly try to achieve semantic alignment or
interpretability of the underlying PnAs,

• the nature of the source of semantics, i.e. if they are language-based or not.

When semantic alignment is not the primary goal, the PnAs can be thought of as a
intermediate representation of the appearance of objects. Example methods for part
discovery in this setting include DPMs [34], and CNNs [48, 56]. Here the learned
parts factorize the appearance variation within the category and are learned without
additional supervision apart from the category labels at the object or image level.
Hence, semantic alignment is not guaranteed and parts that arise tend to represent
visually salient patterns. Similarly non-semantic attributes can be thought of as the
coordinates in a transformed space of images optimized for the recognition task.
Such methods are described in Sects. 10.2.1 and 10.2.2.

Language is a natural source of semantics. Although the vocabulary of parts
and attributes that arise in language are a result of multiple phenomena, they pro-
vide a rich source of interpretable visual PnAs. For instance, parts of animals can
be based on the names of anatomical parts. Various existing datasets that contain
part annotations follow this strategy. This include the Caltech-UCSD Birds (CUB)
dataset [100], OID:Airplanes dataset [98], and part annotations of animals in PAS-
CAL VOC dataset [9, 20]. Similarly, attributes can be based on common color,
texture, and shape terms used in language, or can be highly specialized language-
based properties of the category. For example, the CUB dataset annotates parts of
birds with color attributes, while the Berkeley “attributes of people” dataset [10]
contains attributes describing gender, clothing, age, etc. We review techniques for
collecting language-based attribute and part annotations in Sects. 10.3.1 and 10.3.4
respectively.

Task-specific language-based PnAs can also be discovered by analyzing descrip-
tions of objects (Sect. 10.3.2). For example, Berg et al. [6] analyze captioned images
on the web to discover attributes. Nameable attributes may also be discovered
interactively by asking annotators to name the principal directions of variations
within the data [79], by selecting a subset of attributes that frequently discriminate
instances [80], or by analyzing descriptions of differences between instances [63].
We review such techniques in Sect. 10.3.3.
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Fig. 10.1 A taxonomy of PnA discovery techniques discussed in this chapter based on the degree
of semantic alignment (y-axis) and if they are language-based (x-axis). Various sections and sub-
sections in this chapter are listed within each quadrant

Beyond language, semantic alignment of PnAs may also be achieved by collecting
language-free annotations (Sect. 10.4). An example of this is through
similarity comparisons of the form “is A more similar to B than C”. The coordinates
of the embedded space that reflects these similarity comparisons can be viewed as an
semantic attribute [101] (Sect. 10.4.1). Another example is when an annotator clicks
on landmarks between pairs of instances. Such data can be collected without having
to name the parts providing a way to annotate parts for categories that do not have a
well defined set of nameable parts [65]. The resulting pairwise correspondence data
can be used for learning semantic part appearance models (Sect. 10.4.2).

Figure 10.1 shows the taxonomy pictorially. Existing approaches are divided into
three main categories: non-semantic PnAs (Sect. 10.2), semantic language-based
PnAs (Sect. 10.3), and semantic language-free PnAs (Sect. 10.4). Within each cate-
gory we further organize approaches into various sections to illustrate the scenarios
when they are applicable and the computational versus annotation-cost trade-offs
they offer. We describe some open questions and conclude in Sect. 10.5.

10.2 Non-semantic PnAs

A common theme underlying techniques for non-semantic PnA discovery is that the
parts and attributes arise out of a framework where the goal is a factorized represen-
tation of the appearance space. Pictorially, one can think of PnAs as an intermediate
representation between the images and high-level semantics. The factorization results
in better computational efficiency, statistical efficiency, and robustness of the overall
model.
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10.2.1 Attributes as Embeddings

A typical strategy of learning attributes in this setting is to constrain the intermedi-
ate representation to be low-dimensional or sparse. Techniques for dimensionality
reduction, such as k-means [59], Principal Component Analysis (PCA) [42], Local-
ity Sensitive Hashing [37], auto-encoders [4], and spectral clustering [68], can be
applied to obtain compact embeddings.

An early application of such approach for recognition is the eigenfaces of Turk
and Pentland [97]. PCA is applied to a large number of aligned frontal faces to learn
a low-dimensional space corresponding to the first few PCA basis. These capture
the major axes of variations, some of which are aligned to factors such as lighting,
or facial expression. The low-dimensional embedding was used for face recogni-
tion in their setting. One can use an image representation such as Fisher Vector [81,
82] instead of pixel values before dimensionality reduction for additional invari-
ance. These techniques have no explicit control over the semantic alignment of the
representation, and are not guaranteed to lead to interpretable attributes.

In a task-specific setting the intermediate representation can be optimized for
the final performance. An example of this is a two-layer neural network for image
classification that takes raw pixels as input and produces class probabilities via an
intermediate layer which can be seen as attributes.

There are many realizations of this strategy in the literature that vary in the specifics
of the architecture and the nature of the task. For example, the “picodes” approach of
Bergamo et al. [7] learns a compact binary descriptor (e.g., 16 bytes) that has a good
object recognition performance. Attributes are parametrized as a(x) = 1[wT x > 0],
for some weight vector w for an input representation x. Rastegari et al. [86] use a
similar parameterization but use a notion of “predictability” measured as attributes
that achieve high separation between classes as the objective. Yu et al. [109] learn
attributes by formulating it as a matrix factorization problem.

Experiments reported in the above work show that the task-driven attributes
achieve better performance compared to unsupervised methods for attribute discov-
ery on datasets such as Caltech-256 [40] and ImageNet [28]. Moreover, they provide
a compact representation of images for efficient retrieval and other applications.

10.2.2 Part Discovery Based on Appearance and Geometry

In addition to appearance, part-based models can take into account the geometric
relationships between the parts during learning. In the unsupervised, or task-free
setting, parts may be obtained by clustering local patches using any unsupervised
method such as k-means, spectral clustering, etc. This is the one of the key steps in
the bag-of-visual-words representation of images [24] and their variants such as the
Fisher Vector [81, 82] and Vector of Locally Aggregated Descriptors (VLAD) [43],
which are some of the early successful image representations.
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Geometric information can be added during the clustering process to account for
spatial consistency, e.g., by coarsely quantizing the space using a spatial pyramid [55],
or by appending the coordinates of the local patches (called “spatial augmentation”)
to the appearance before clustering [90, 91]. Parts may also be discovered via corre-
spondences between pairs of instances obtained by some low-level matching proce-
dure. For instance, Berg et al. [5] discover important regions in images by considering
geometrically consistent feature matches across instances.

Another example of a model that combines appearance and geometry for part
learning is the DPM of Felzenszwalb et al. [34]. The model has been widely used for
object detection in cluttered scenes. A category is modeled as a mixture of compo-
nents, each of which is represented as a “root” template and a collection of “parts”
that can move independently relative to the root template. The tree-like structure
of the model allows efficient inference through distance transforms. The parame-
ters of the model are learned through an iterative procedure where the component
membership, part positions, and appearances models are updated in order to obtain
good separation between positive examples and the background. Figure 10.2a shows
two components learned for person detection on the PASCAL VOC dataset [32].
The compositional architecture of the DPM led to significant improvements over the
monolithic template-based detector of Dalal and Triggs [25].

Another example for task-driven part discovery is the “discriminative patches”
approach of Singh et al. [92]. Here parts are initialized by clustering appearance,
and through a process of positive and hard-negative mining the part appearances

(a) Figure source: Felzenszwalb et al. [34] (b) Figure source: Gupta et al. [92]

Fig. 10.2 a Two components of the deformable part-based model learned for the person category.
The “root” and “part” templates are show using the HOG feature visualization (left and middle)
and the spatial model is shown on the right. b Examples of discriminative patches discovered for
various classes in the PASCAL VOC dataset
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are iteratively refined. Finally parts that are frequent and help discriminate among
classes are selected. Figure 10.2b shows example discriminative patches discovered
for the PASCAL VOC dataset. The authors demonstrate good performance on image
classification datasets, such as PASCAL VOC, MIT Indoor scenes [83], using a rep-
resentation that records the activation of discriminative patches at different locations
and scales (similar to a bag-of-visual-words model [24]).

Since these methods primarily rely on appearance and geometric consistency, the
discovered parts may not be aligned to semantics. For instance, the DPM requires
that each object have the same set of parts even if the object is partially occluded.
Hence the model uses a part to both recognize a part of the object or its occluder.
Similarly, discriminative patches are visually consistent parts according to the under-
lying Histograms of Oriented Gradient (HOG) features [25] and hence two patches
that are visually dissimilar but belong to the same semantic category are unlikely to
be grouped as the same part. For example, two kinds of car wheels, or two styles of
windows, will be represented using two or more parts.

Convolutional Neural Networks (CNNs) can be seen as part-based model trained
in an end-to-end manner, i.e. starting from a pixel representation to class labels.
The hierarchy of convolution and max-pooling layers resemble the computation of
a deformable part-based model. Indeed, the DPM can be seen as a particular instan-
tiation of a CNN since both HOG (see Mahendran and Vedaldi [62]) and the DPM
computations (see Girshick et al. [38]) can be written as shallow CNNs. However,
after the recent breakthrough result of Krishevsky et al. [48] on the ImageNet clas-
sification dataset [28], CNNs have become the architecture of choice for nearly all
visual recognition tasks [12, 23, 39, 44, 60, 87, 94, 111, 112].

CNNs trained in a supervised manner can be seen to simultaneously learn parts
and attributes. For instance, visualizations of the “AlexNet CNN” [48] by Zeiler
and Fergus [110], as seen in Fig. 10.3, reveal units that activate strongly on parts
such as human and dog faces, as well as attributes such as “text” and “grid-like”.
Recent works, such as the bilinear CNNs [57] show that discriminative localized
attributes emerge when these models are fine-tuned for fine-grained recognition
tasks. Figure 10.4 shows example filters learned when these mdoels are trained on
birds [100], cars [47], and airplane [64] datasets. The remarkable performance of
CNNs shows that considering part and attribute discovery jointly can have signifi-
cant benefits.

10.3 Semantic Language-Based PnAs

Language is the source of categories for virtually all modern datasets in computer
vision. The widely used ImageNet dataset reflects the hypernymy-hierarchy (“is a”
relationships) of nouns in WordNet—a lexical database of words in English organized
in a variety of ways [67]. Naturally, language is also a source of PnAs useful for a
high-level description of objects, scenes, materials, and other visual phenomenon.
For example, a cat can be described as a four-legged furry animal. This human-
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Fig. 10.3 Visualizations of the top activations of six conv5 units of the AlexNet CNN [48] trained on
ImageNet dataset [28]. For each image patch on the left the locations of where that are responsible
for the activations are also shown on the left. The units strongly respond to parts such as dog
and human faces, as well as attributes such as “grid-like” and “text”. Figure source: Zeiler and
Fergus [110]

Fig. 10.4 Visualizions of the top activations of several units of the “bilinear CNN” (B-CNN [D,M]
model) [57] fine-tuned on birds [100] (left), cars [47] (middle), and airplane [64] (right) datasets.
Each row shows the patches in the training data with the highest activations for a particular unit of
the “D network” (See [57] for details). The units correspond to various localized attributes ranging
from yellow-red stripes (row 4) and particular beak shapes (row 8) for birds, wheel detectors (rows
6, 8, 9) for cars, to propeller (rows 1, 4) and vertical-stabilizer types (row 8) for airplanes
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interpretable description of learned models provides a means for communication
between a human and machine during learning and inference. Below we overview
several applications of language-based PnAs from the literature.

10.3.1 Expert Defined Attributes

An early example of language-based attributes in the computer vision community
was for describing texture. Bajscy proposed attributes such as orientation, contrast,
size, and spacing of structural elements in periodic textures [2]. Tamura et al. [95]
identified six visual attributes of textures namely coarseness, contrast, directionality,
linelikeness, regularity, and roughness. Amadasun and King derived computational
models for five properties of texture, namely, coarseness, contrast, business, com-
plexity, and texture strength [1].

Recently, Cimpoi et al. [22] extended the set of describable attributes to include
47 different words based on the work of Rao and Lohse [85]. Other texture attributes
such as material properties have been used to construct datasets such as CUReT [26],
UIUC [54], UMD [105], Outex [69], Drexel Texture Database [71], KTH-TIPS [17,
41] and Flickr Material Dataset (FMD) [89]. In all the above cases experts identified
the set of language terms as attributes based on domain knowledge, or in some cases
through human studies [85].

Beyond textures, language-based attributes have since been proposed for a variety
of other datasets and applications. Farhadi et al. [33] describe object categories with
shape, part-names and material attributes. Lampert et al. [52] proposed the Animals
with Attributes (AwA) dataset consisting of variety of animals with shared attributes
such as color, food habits, size, etc. The Caltech-UCSD Birds (CUB) dataset [100]
consists of hundreds of species of birds labeled with attributes such as the shape the
beak, color of the wings, etc. The OID:Airplanes [98] dataset consists of airplanes
labeled with attributes such as number of wings, type of wheels, shapes of parts,
etc. Attributes such as gender, eye color, hair syle, etc., have been used by Kumar et
al. [49] to recognize, describe, and retrieve faces. Other examples include attributes
of people [10], human actions [58], clothing style and fashion [19, 106], urban
tribes [50], and asthetics [30].

A challenge is using language-based attributes to the degree of specialization to be
considered. For instance, while an attribute of airplane such as the shape of the nose
can be understood by most people, an attribute such as the type of the aluminum alloy
used in manufacturing can only be understood by a domain expert. Similarly, the sci-
entific names of parts of animals are typically known only to a domain expert. While
common attributes have the advantage that they can be annotated by “crowdsourc-
ing”, they may lack the precision needed for fine-grained discrimination between
closely related categories. Bridging the gap between expert-defined and commonly
used attributes remains an open question. In the context of object categories this
aspect has been studied by Ordonez et al. [70] where they learn common names
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(a) Figure source: Berg et al. [6] (b) Figure source: Divvala et al. [31]

Fig. 10.5 aAutomatically discovered handbag attributes from [6], sorted by “visualness” measured
as the predictability of the attribute based on visual features. bAutomatically mined visual attributes
for various categories from books [31]

(“entry-level categories”) by analyzing the frequency of usage in text on the Internet,
e.g. grampus griseus is translated to a dolphin.

10.3.2 Attribute Discovery by Automatically Mining Text

Language-based attributes may also be mined from large sets of images with captions.
Ferrari and Zisserman [36] mine attributes of texture and color from descriptions on
the web. Berg et al. [6] obtain attributes by mining frequently occurring phrases from
captioned images and estimating if they are visually salient by training a classifier to
predict the attribute from images (Fig. 10.5a). In the process they also characterize if
the attributes are localized or not. Text on the Internet from online books, Wikipedia
articles, etc., have been mined to discover attributes for objects [31] (Fig. 10.5b),
semantic affordances of objects and actions [18], and other common-sense properties
of the visual world [21].

10.3.3 Interactive Discovery of Nameable Attributes

While captioned images are a great source of attributes, the vast majority of categories
are not well represented in captioned images on the web. In such situations one can
aim to discover nameable attributes interactively. Parikh and Grauman [73] show
annotators images that vary along a projection of the underlying features and ask
them to describe it if possible (Fig. 10.6a). To be effective the method requires a
feature space whose projections are likely to be semantically correlated.
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(a) Figure source: Parikh and Grauman [73]

(b) Figure source: Patterson and Hays [80]

(c) Figure source: Maji [63]

Fig. 10.6 Interactive attribute discovery. Annotators are asked to a name what varies in the
images from left to right [73], b select attributes that distinguish images on the left from the
right [80], and c describe the differences between pairs of instances [63]. The collected data is
analyzed to discover a set of nameable attributes

Fig. 10.7 The vocabulary of parts (top row) and their attributes (bottom row) discovered by from
sentence pairs describing the differences between images in OID:Airplanes dataset [98]. The three
most discriminative attributes are also shown. Figure source: Maji [63]

Patterson and Hays [80] start from a set of attributes mined from natural language
descriptions and ask annotators to select five attributes that distinguish images from
various scene classes in the SUN database. Thus attributes suited for discrimination
within the set of images can be discovered (Fig. 10.6b).

A similar strategy was used in my earlier work [63] where annotators were asked
to describe the visual differences between pairs of images (Fig. 10.6c) revealing fine-
grained properties useful for discrimination. The collected data was mined to discover
a lexicon of parts and attributes by analyzing the frequency and co-occurrence of
words in the descriptions (Fig. 10.7).
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Fig. 10.8 Two methods for collecting part annotations. On the left, the positions of set of landmarks
are annotated. On the right, bounding-boxes for parts are annotated

10.3.4 Expert Defined Parts

Like attributes, language-based parts have been widely used in computer vision for
modeling articulated objects. An early example of this is pictorial structure model
for detecting people in images where parts were based on the human anatomy [35].
A modeling decision that is unique compared to attributes is the choice of the spatial
extent, scale, pose, and other visual phenomenon, for a given semantic part.

Broadly, there are commonly used methods for collecting part annotations
(Fig. 10.8). The first is landmark-based where positions of landmarks, such as
joint positions of humans, or fiducial points for faces are annotated. The second
is bounding-box-based where part bounding-boxes are explicitly labeled to define
the extent of each part. The bounding-boxes may be further refined to reflect the
pixel-wise support or segmentation of the parts.

When landmarks are provided one could simply assume that parts correspond
to these landmarks. This strategy has been applied for modeling faces with fidu-
cial points [113], articulated people with deformable part-based models [35, 108],
etc. Another strategy is to discover parts that correspond to frequently occurring
configuration of landmarks. The poselets approach combines this strategy with a
procedure to select a set of diverse and discriminative parts for the task of person
detection [9]. The discovered poselets are different from both landmarks and anatom-
ical parts (Fig. 10.9a). For instance, a part consisting of half the profile face and the
right shoulder is a valid poselet. These patterns can capture distinctive appearances
that arise due to self-occlusion, foreshortening, and other phenomenon which are
hard to model in a traditional part-based model.

When bounding-boxes are provided there is relatively little flexibility in part dis-
covery. Much work in this setting has focused on effectively modeling appearance
through a mixture of templates. Additional annotations, such as viewpoint, pose, or
shape, can be used to guide mixture model learning. For instance,
Vedaldi et al. [98] show that using shape and viewpoint annotations to initialize
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(a) Discovered poselets for person detection (b) Detection using part mixtures

Fig. 10.9 Visual part discovery from annotations. a Poselets discovered for detecting people using
landmark annotations on the PASCAL VOC dataset. Figure source: Bourdev et al. [9]. b Detection
AP using k = 40 mixture components based on aspect-ratio clustering, left-right clustering, and
supervised shape clustering. Nose shape clusters learned by EM are shown in the bottom. Figure
source: Vedaldi et al. [98]

HOG-based parts improves detection accuracy compared to the aspect-ratio based
clustering (Fig. 10.9b).

10.4 Semantic Language-Free PnAs

Language-based PnAs, when applicable, provide a rich semantic representation of
objects. However language alone may not be sufficient to capture the full range of
visual phenomena. Consider the space of colors defined by the [R, G, B] values. Berlin
and Kay in their seminal work [8] analyzed the words used to describe color across
widely across languages. While languages like English have many words to describe
color, there are languages that have very few words, including an extreme case of
language with only have two words (“bright” and “dull”) to describe color leading
to a gross simplification of the color space. Similarly, restricting one to nameable
parts poses challenges in annotating categories that are structurally diverse. It would
require significant effort to define a set of parts that apply to all chairs, or all buildings,
since the resulting set of parts would have to very large to account for the diversity
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within the category. Moreover, the parts are unlikely to have intuitive names, e.g.
“top-right corner of the left handle”.

In this section we overview methods to discover semantically aligned PnA without
restricting oneself to language-based interfaces. The underlying approach is to collect
annotations relative to another. Such annotations provide constraints which can be
utilized to guide the alignment of the representation to semantics. We describe several
examples of such approaches.

10.4.1 Attribute Discovery from Similarity Comparisons

Similarity comparisons of the form “A is more similar to B than C”, can be used to
obtain annotations without relying on language. These can be used to transform the
data into an Euclidean space that respects the similarity constrains using methods for
distance metric learning [27, 104], large-margin nearest neighbor learning [103],
t-STE [61], Crowd Kernel Learning [96], etc.

Figure 10.10 shows a visualization of the categories in the CUB dataset using
a two-dimensional embedding learned from crowdsourced similarity comparisons
between images [101]. Each image-level similarity constraint is converted to a
category-level similarity constraint by using the category labels of the images from
which an embedding is learned using t-STE. A group of points on the bottom-right
corresponds to perching birds, while another group on the bottom-left corresponds
to gull-like birds.

Since a representation learned in such manner respects the underlying perceptual
similarity, it can be used as a means of interacting with a user for fine-grained recog-
nition. Wah et al. [101] build an interface where users interactively recognize bird
species by selecting the most similar image in a display. The underlying perceptual
embedding is used to select the images to be displayed in each iteration. The authors
show that the method requires fewer questions to get to the right answer than an
attribute-based interface of Branson et al. [14].

Fig. 10.10 A visualization of the first two dimensions of the 200-node category-level similarity
embedding. Visually similar classes tend to belong to coherent clusters (circled and shown with
selected representative images). Figure source: Wah et al. [101] (Best viewed digitally with zoom)
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(a) Relative attributes (b) Non-localized and localized similarity

Fig. 10.11 a In the relative attributes framework an attribute is measured relative to other images,
e.g. is the person in the image smiling more, or less, than the other images. Figure source: Parikh
and Grauman [74]. b Global or localized similarity comparisons are used to learn a perceptual
embedding of the entire object or parts respectively. Figure source: Wah et al. [102]

A drawback of similarity comparisons is that there can be considerable ambiguity
in the task since there are many ways to compare images. Most methods for learning
embeddings do not take this into account and hence are less robust to annotations col-
lected via “crowdsouring” which can have significant noise. A number of approaches
aim to reduce this ambiguity by providing additional instructions to the annotators.

The relative attributes approach of Parikh and Grauman [74] guides similarity
comparisons by focusing on a particular describable attribute. An example annotation
task is: is A smiling more than B, as seen in Fig. 10.11a. Such annotations are used to
learn a ranking function, or a one dimensional embedding, of images corresponding
to the attribute. Relative attributes bridge the gap between categorical attributes and
low-dimensional semantic embeddings, and have been used for interactive search
and learning of visual attributes [46, 75].

Wah et al. [101] guide similarity comparisons by restricting the image to a part
of the object, as seen in Fig. 10.11b, to obtain a semantic embedding of parts. The
authors use parts discovered using the discriminative patches approach [92], but part
annotations can be used instead when available. The authors show that localized
perceptual similarities provides a richer way of indicating closeness to a test image
and leads to better efficiency during interactive recognition tasks.

10.4.2 Part Discovery from Correspondence Annotations

Traditional methods for annotating parts require a set of nameable parts. When such
parts are not readily available one can instead label correspondences between pairs of
instances. Maji and Shakhanrovich [65, 66] show that when annotators are asked to
mark correspondences between image pairs within a category, the result is fairly con-
sistent across annotators, even when the names of parts are not known (Fig. 10.12a).
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(a) Pairwise correspondence annotations (b) The “Bubbles” game

Fig. 10.12 a Annotators click on corresponding regions between to indicate parts [65, 66].
b The Bubbles game shows annotators a blurry image in the middle and asks which one of the
two categories, left or right, does it belong to. The user can click on a region of the blurry image to
reveal what is underneath. These clicks reveal the discriminative regions within an image which is
used to learn a part-based representation called the BubblesBank. Figure source: Deng et al. [29]

Annotators rely on semantics beyond visual similarity to mark correspondences—
two windows are matched even though they are visually different.

Methods for part discovery that rely on appearance and geometry can be extended
to take into account the pairwise constraints obtained from such correspondence
annotations. The authors propose an approach were the patches corresponding to
a semantic part are iteratively updated while respecting the underlying matches
between image pairs. The resulting discovered patches are both visually and seman-
tically aligned and can be used for rich part-based analysis of objects, including for
detection and segmentation [66].

Another method that implicitly obtains correspondences is the BubbleBank
approach of Deng et al. [29]. Annotators are shown two images A and B, and asked
which of the two is the category of the third image (Fig. 10.12b). The caveat is that
the third image is blurry, but the user can click on parts of the image to reveal what is
underneath. Since, in order to accurately recognize the category corresponding parts
have to be compared such annotations reveal the salient regions or parts for a given
category. These clicks are used to create the BubbleBank representation, a set of
parts centered around the frequently clicked locations, and applied for fine-grained
recognition.

10.5 Conclusion

The chapter summarizes the current techniques for PnA discovery by categoriz-
ing them into three broad categories. The methods described are most relevant for
describing and recognizing fine-grained categories, but this is by no means a com-
plete account of existing methods. Unsupervised part-based methods alone have a
rich history and even within the DPM family methods vary on how they model
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part appearance and geometric relationships between parts. See Ramanan [84] for a
excellent survey of classical part-based models.

Similarity, a sub-field of Human-Computer Interaction (HCI) designs “games
with purpose” to annotate properties of images including attributes and part labels.
A well known example is the ESP game [99] where a pair of annotators indepen-
dently tag images and get rewarded only if the tags match. This makes it competitive
encouraging participation and reduces vandalism. Some frameworks discussed in
this chapter such as pairwise correspondence for part annotations, describing the
differences for attribute discovery, and the Bubbles game, fall into this category. For
a good overview of such techniques see the lecture notes by Law and Ahn [53].

We also did not cover methods that discover the structure of objects by analyzing
its motion over time. This has been well studied in robotics to discover the kinematic
structure of articulated objects [15, 93]. Although this works best at the instance-
level, the strategy has been used to discover parts within a category [88].

Finally, a number of recent works discover PnAs within the framework of deep
CNNs for fine-grained recognition [12, 57, 111, 112]. Although these methods have
been very successful, they bring a new set of challenges. One of them is training
models for a new domain when limited labeled data is available. Factorization of the
appearance using parts and attributes, either using labels provided explicitly through
annotations, or implicitly in the model, continues to be the method of choice for such
situations.
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Chapter 11
The SUN Attribute Database: Organizing
Scenes by Affordances, Materials,
and Layout

Genevieve Patterson and James Hays

Abstract One of the core challenges of computer vision is understanding the content
of a scene. Often, scene understanding is demonstrated in terms of object recognition,
3D layout estimation from multiple views, or scene categorization. In this chapter
we instead reason about scene attributes—high-level properties of scenes related
to affordances (‘shopping,’ ‘studying’), materials (‘rock,’ ‘carpet’), surface proper-
ties (‘dirty,’ ‘dry’), spatial layout (‘symmetrical,’ ‘enclosed’), lighting (‘direct sun,’
‘electric lighting’), and more (‘scary,’ ‘cold’). We describe crowd experiments to
first determine a taxonomy of 102 interesting attributes and then to annotate binary
attributes for 14,140 scenes. These scenes are sampled from 707 categories of the
SUN database and this lets us study the interplay between scene attributes and scene
categories. We evaluate attribute recognition with several existing scene descriptors.
Our experiments suggest that scene attributes are an efficient feature for capturing
high-level semantics in scenes.

11.1 Attribute-Based Representations of Scenes

Scene representations are vital to enabling many data-driven graphics and vision
applications. There is important research on low-level representations of scenes (i.e.,
visual features) such as the gist descriptor [18] or spatial pyramids [14]. Typically,
low-level features are used to classify scenes into a single-scene category. For exam-
ple, a scene could be described by the category label ‘village’ or ‘mountain.’ Category
labels can be a useful way to briefly describe the context of a scene. However, there
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Fig. 11.1 Visualization of a hypothetical space of scenes embedded in 2D and partitioned by
categories

are limitations to using a single category label to try to describe everything that is
happening in a scene. In this chapter, we explore a different approach, attribute-based
representation of scenes.

Scene attributes shake up the standard category-based recognition paradigm.
Figure 11.1 illustrates the limitations of a strictly category-based description of
scenes. Categorical scene representations have several potential shortcomings:
(1) Important intra-class variations such as the dramatic differences between four
‘village’ scenes cannot be captured, (2) hard partitions break up the continuous tran-
sitions between many scene types such as ‘forest’ and ‘savanna,’ (3) an image can
depict multiple, independent categories such as ‘beach’ and ‘village,’ and (4) it is
difficult to reason about unseen categories, whereas attribute-based representations
lend themselves towards zero-shot learning [11, 12].

An attribute-based representation of scenes addresses these problems by express-
ing variation within a scene category. Using attributes, we can describe scenes using
many attribute labels instead of simple binary category membership. We can also
use attributes to describe new scene categories not seen at training time (zero-shot
learning), which would be impossible with a category-based representation.

It is worth noting that the presence of a particular attribute can be ambiguous in a
scene, just like category membership can be ambiguous. Scenes only have one cate-
gory label, though, and with hundreds of categories (as with the SUN database) the
ground truth category is often unclear. But with a large taxonomy of attributes, most
tend to be unambiguous for a particular scene. In this work we largely treat attributes
as binary (either present or not), but when annotators disagree (see Fig. 11.7) it tends
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Fig. 11.2 Hypothetical space of scenes partitioned by attributes rather than categories. In reality,
this space is much higher dimensional and there are not clean boundaries between attribute presence
and absence

to be because the attribute is partially present (e.g., a slightly ‘dirty’ room or a partly
‘indoors’ patio). This real-valued notion of attribute presence is natural and in con-
trast to categorical representations where membership is usually strict.

Our work is inspired by attribute-based representations of objects [1, 4–7, 11,
25, 28], faces [10], and actions [15, 32], as an alternative or complement to category-
based representations. Attribute-based representations are especially well suited for
scenes because scenes are uniquely poorly served by categorical representations.
For example, an object usually has unambiguous membership in one category. One
rarely observes issue 2 (e.g., this object is on the boundary between sheep and horse)
or issue 3 (e.g., this object is both a potted plant and a television).

In the domain of scenes, an attribute-based representation might describe an image
with ‘concrete,’ ‘shopping,’ ‘natural lighting,’ ‘glossy,’ and ‘stressful’ in contrast to a
categorical label such as ‘store.’ Figure 11.2 visualizes the space of scenes partitioned
by attributes rather than categories. Note, the attributes do not follow category bound-
aries. Indeed, that is one of the appeals of attributes—they can describe intra-class
variation (e.g., a canyon might have water or it might not) and inter-class relation-
ships (e.g., both a canyon and a beach could have water). As stated by Ferrari and
Zisserman, “recognition of attributes can complement category-level recognition and
therefore improve the degree to which machines perceive visual objects” [7].
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In order to explore the use of scene attributes, we build a dataset of scene images
labeled with a large vocabulary of scene attributes. Later sections in this chapter
describe the creation and verification of the SUN attribute database in the spirit of
analogous database creation efforts such as ImageNet [2], LabelMe [26], and Tiny
Images [29].

A small set of scene attributes was explored in Oliva and Torralba’s seminal
‘gist’ paper [18] and follow-up work [19]. Eight ‘spatial envelope’ attributes were
found by having participants manually partition a database of eight scene categories.
These attributes such as openness, perspective, and depth were predicted using the
gist scene representation. Greene and Oliva show that these global scene attributes
are predictive of human performance on a rapid basic-level scene categorization
task. They argue that global attributes of the type we examine here are important
for human perception, saying, “rapid categorization of natural scenes may not be
mediated primarily though objects and parts, but also through global properties of
structure and affordance,” [8]. In this context ‘affordance’ is used to mean the capacity
of a scene to enable an activity. For example, a restaurant affords dining and an empty
field affords playing football.

Russakovsky and Fei-Fei identify the need to discover visual attributes that gen-
eralize between categories in [25]. Using a subset of the categories from ImageNet,
Russakovsky and Fei-Fei show that attributes can both discriminate between unique
examples of a category and allow sets of categories to be grouped by common
attributes. In [25] attributes were mined from the WordNet definitions of categories.
The attribute discovery method described in this chapter instead identifies attributes
directly with human experiments. In the end we discover a larger set of attributes,
including attributes that would be either too common or too rare to be typically
included in the definition of categories.

More recently, Parikh and Grauman [21] argue for ‘relative’ rather than binary
attributes. They demonstrate results on the eight category outdoor scene databases,
but their training data is limited—they do not have per-scene attribute labels and
instead provide attribute labels at the category level (e.g., highway scenes should be
more ‘natural’ than street scenes). This undermines one of the potential advantages
of attribute-based representations—the ability to describe intra-class variation. In
this chapter we discover, annotate, and recognize 15 times as many attributes using
a database spanning 90 times as many categories where every scene has independent
attribute labels.

Lampert et al. demonstrate how attributes can be used to classify unseen cate-
gories [11]. Lampert et al. show that attribute classifiers can be learned independent
of category, and then later test images can be classified as part of an unseen cate-
gory with the simple knowledge of the expected attributes of the unseen category.
This opens the door for classification of new categories without using visual training
examples to learn those unseen categories. In Sect. 11.6 we examine the performance
of our scene attributes for zero-shot learning by recognizing test images from cate-
gories in our dataset without seeing visual examples for those scene categories.

Our scene attribute investigation is organized as follows. First, we derive a tax-
onomy of 102 scene attributes from crowdsourced experiments (Sect. 11.2). Next,
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we use crowdsourcing to construct our attribute-labeled dataset on top of a signif-
icant subset of the SUN database [31] spanning 707 categories and 14,140 images
(Sect. 11.3). We visualize the distribution of scenes in attribute space (Sect. 11.4).

We train and test classifiers for predicting attributes (Sect. 11.5). Furthermore, in
Sect. 11.6 we explore the use of scene attributes for scene classification and the zero-
shot learning of scene categories. We compare how scene classifiers derived using
scene attributes confuse scene categories similar to how human respondents confuse
categories. This chapter is based on research originally presented in a CVPR confer-
ence publication [22] and a longer, more detailed IJCV journal publication [23].

Since the original release of the SUN attribute database there have been several
interesting studies which use it. Zhou et. al demonstrate state-of-the-art performance
for scene attribute recognition and scene classification with the Places database [33].
In their paper, Zhou et al. introduce a very large scene dataset containing over 7
million scene images. This dataset enables the authors to train new convolutional
neural network (CNN) features that outperform earlier systems on scene-centric
recognition tasks including scene attribute recognition.

The SceneAtt dataset expands the SUN attribute dataset by adding more outdoor
scene attributes [30]. The scene attributes discovered in later sections of this chapter
are also used to support several different kinds of in-the-wild recognition systems.
Kovashka et al. use the SUN attributes in their pipeline to improve personalized
image search [9]. Zhou et al. use the SUN attributes as features for identifying the
city in which an image was taken in [34]. Mason et al. and our own IJCV paper on
the SUN attributes use the attributes as input to novel image captioning pipelines
[17, 23].

These are some of the largest and most successful projects that build on or take
inspiration from the SUN attribute dataset. In the next sections, we will introduce
readers to the scene attributes that helped to push forward research in scene and
attribute understanding.

11.2 Building a Taxonomy of Scene Attributes
from Human Descriptions

Our first task is to establish a taxonomy of scene attributes for further study. The space
of attributes is effectively infinite but the majority of possible attributes (e.g., “Was
this photo taken on a Tuesday,” “Does this scene contain air?”) are not interesting.
We are interested in finding discriminative attributes which are likely to distinguish
scenes from each other (not necessarily along categorical boundaries). We limit our-
selves to global, binary attributes. This limitation is primarily economic—we collect
millions of labels and annotating binary attributes is more efficient than annotating
real-valued or relative attributes. None-the-less, by averaging the binary labels from
multiple annotators we produce a real-valued confidence for each attribute.
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(a) Open-ended description
User Interface

(b) One vs.One Comparison
User Interface

(c) Two vs.Two Comparison
User Interface

Fig. 11.3 Attribute Collection UIs. These are examples of the Mechanical Turk user interfaces
used to collect scene attributes

To determine which attributes are most relevant for describing scenes we perform
open-ended image description tasks on Amazon Mechanical Turk (AMT). First we
establish a set of ‘probe’ images for which we will collect descriptions. There is one
probe image for every category, selected for its canonical appearance. We want a set
of images which is maximally diverse and representative of the space of scenes. For
this reason the probe images are the images which human participants found to be
most typical of 707 SUN dataset categories [3].

We initially ask AMT workers to provide text descriptions of the individual probe
images. From thousands of such tasks (hereafter HITs, for human intelligence tasks)
it emerges that people tend to describe scenes with five types of attributes: (1) mate-
rials (e.g., cement, vegetation), (2) surface properties (e.g., rusty) (3) functions or
affordances (e.g., playing, cooking), (4) spatial envelope attributes (e.g., enclosed,
symmetric), and (5) object presence (e.g., cars, chairs). An example of the open-
ended text description UI is shown in Fig. 11.3a.

Within these broad categories we focus on discriminative attributes. To find such
attributes we develop a simplified, crowdsourced version of the ‘splitting task’ used
by [18]. The simplest UI for that task is shown in Fig. 11.3b. Unfortunately, asking
crowd workers to describe the difference between two images resulted in overly
specific descriptions of the contents of a particular image. For example, in Fig. 11.3b
the worker correctly stated that there is a red sweater in one image but not in the
other, which is not helpful for our task because ‘red sweater’ does not describe the
scene.

To overcome that problem, we show AMT workers two groups of scenes
(Fig. 11.3c). We ask workers to list attributes of each type (material, surface prop-
erty, affordance, spatial envelope, and object) that are present in one group but not
the other. The images show typical scenes from distinct, random categories. Such
attributes would not be broadly useful for describing other scenes. We found that
having two random scene images in each set elicited a diverse, broadly applicable
set of attributes.

The attribute gathering task was repeated over 6000 times. From the thousands of
raw discriminative attributes reported by participants we manually collapse nearly
synonymous responses (e.g., dirt and soil) into single attributes. We omit attributes
related to aesthetics rather than scene content. For this study we also omit the object
presence attributes from further discussion because prediction of object presence,
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Fig. 11.4 Scene Attributes. A word cloud of all the scene attributes where the area of the word is
proportional to its popularity in the dataset (word cloud made using the software available at www.
wordle.net by Jonathan Feinberg)

i.e., object classification, has been thoroughly investigated (Additionally, the SUN
database already has dense object labels for most scenes.). Our participants did not
report all of the spatial envelope attributes found by [18], so we manually add binary
versions of those attributes so that our taxonomy is a superset of prior work. In
total, we find 38 materials, 11 surface properties, 36 functions, and 17 spatial layout
attributes. Attributes which were reported in less than 1% of trials were discarded
(Fig. 11.4).

11.3 Building the SUN Attribute Database

With our taxonomy of attributes finalized we create the first large-scale database of
attribute-labeled scenes. We build the SUN attribute database on top of the existing
SUN categorical database [31] for two reasons: (1) to study the interplay between
attribute-based and category-based representations and (2) to ensure a diversity of
scenes. We annotate 20 scenes from each of the 717 SUN categories. Of the full SUN
database, which has over 900 categories, only 717 contain at least 20 instances. Our
goal is to collect ground truth annotations for all of the 102 attributes for each scene
in our dataset. In total we gather more than four million labels. This necessitates a
crowdsourced annotation strategy and we once again utilize AMT.

The Attribute annotation task. The primary difficulty of using a large, non-
expert workforce is ensuring that the collected labels are accurate while keeping
the annotation process fast and economical [27]. From an economic perspective,
we want to have as many images labeled as possible for the lowest price. From a
quality perspective, we want workers to easily and accurately label images. We find

www.wordle.net
www.wordle.net
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that particular UI design decisions and worker instructions significantly impacted
throughput and quality of results. After several iterations, we choose a design where
workers are presented with a grid of four dozen images and are asked to consider only
a single attribute at a time. Workers are asked to click on images which exhibit the
attribute in question. Before working on our HITs, potential annotators are required to
pass a quiz covering the fundamentals of attribute identification and image labeling.
The quiz asked users to select the correct definition of an attribute after they were
shown the definition and example pictures. Users were also graded on how many
images they could identify containing a given attribute. The quiz closely resembled
the attribute labeling task. An example of our HIT user interface is shown in Fig. 11.5.

Fig. 11.5 Annotation interface for AMT workers. The particular attribute being labeled is promi-
nently shown and defined. Example scenes which contain the attribute are shown. The worker cannot
scroll these definitions or instructions off of their screen. When workers mouse over a thumbnail a
large version appears in the preview window in the top right corner
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(a) The total number of labels completed by
each worker.

(b) The average time (sec) each worker
spent on a HIT of image labels.

Fig. 11.6 These plots visualize our criteria for identifying suspicious workers to grade. Figure 11.6a
shows the heavy-tailed distribution of worker contributions to the database. The top workers spent
hundreds of hours on our HITs. The red line in plot 11.6b demarcates the average work time across
all workers, and the blue lines mark the positive and negative standard deviations from the mean.
Work time statistics are particularly useful from identifying scam workers as they typically rush to
finish HITs

Even after the careful construction of the annotation interface and initial worker
screening, many workers’ annotations are unreasonable. We use several techniques
to filter out bad workers and then cultivate a pool of trusted workers:

Filtering bad workers. Deciding whether or not an attribute is present in a scene
image is sometimes an ambiguous task. This ambiguity combined with the financial
incentive to work quickly leads to sloppy annotation from some workers. In order to
filter out those workers who performed poorly, we flag HITs which are outliers with
respect to annotation time or labeling frequency.

Some attributes, such as ‘ice’ or ‘fire,’ rarely appear and are visually obvious and
thus those HITs can be completed quickly. Other attributes, such as ‘man-made’ or
‘natural light,’ occur in more than half of all scenes thus the expected completion
time per HIT is higher. We use the behavioral trends shown in Fig. 11.6 to help filter
out poorly performing workers. We only use workers who give higher quality labels.
This choice is supported by research such as [13] where good workers were shown
to be faster and more accurate than the average of many workers.

Figure 11.7 qualitatively shows the result of our annotation process. To quantita-
tively assess accuracy we manually grade ∼600 random positive and ∼600 random
negative AMT annotations in the database. The population of labels in the dataset is
not even (8 % positive, 92 % negative). This does not seem to be an artifact of our
interface (which defaults to negative), but rather it seems that scene attributes follow
a heavy-tailed distribution with a few being very common (e.g., ‘natural’) and most
being rare (e.g., ‘wire’).

We graded equal numbers of positive and negative labels to understand if there
was a disparity in accuracy between them. For both types of annotation, we find
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Fig. 11.7 The images in the table above are grouped by the number of positive labels (votes) they
received from AMT workers. From left to right the visual presence of each attribute increases.
AMT workers are instructed to positively label an image if the functional attribute is likely to occur
in that image, not just if it is actually occurring. For material, surface property, or spatial envelope
attributes, workers were instructed to positively label images only if the attribute is present

∼93 % of labels to be reasonable, which means that we as experts would agree with
the annotation.

In the following sections, our experiments rely on the consensus of multiple anno-
tators rather than individual annotations. This increases the accuracy of our labels.
For each of our 102 attributes, we manually grade 5 scenes where the consensus was
positive (2 or 3 votes) and likewise for negative (0 votes). In total we grade 1020
images. We find that if 2 out of 3 annotations agree on a positive label, that label
is reasonable ∼95 % of the time. Many attributes are very rare, and there would be
a significant loss in the population of the rare attributes if consensus was defined
as 3/3 positive labels. Allowing for 2/3 positive labels to be the consensus standard
increases the population of rare attributes without degrading the quality of the labels.

11.4 Exploring Scenes in Attribute Space

Now that we have a database of attribute-labeled scenes we can attempt to visualize
that space of attributes. In Fig. 11.9 we show all 14,340 of our scenes projected onto
two dimensions by t-distributed stochastic neighbor embedding (t-SNE) [16]. Each
subplot in Fig. 11.9 highlights the population of all images with a given attribute
(Fig. 11.8).
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(a) Enclosed Area (b) Open Area

(c) Sailing/Boating (d) Transporting Thingsor People

Fig. 11.8 Distributions of sceneswith the given attribute. This set of plots highlights the populations
of images with the listed attributes. Each point is represented by their 102-dimensional attribute
vector, reduced to a 2D projection using t-SNE. Grey points are images that do not contain the
given attribute. The boldness of the colored points is proportional to the amount of votes given for
that attribute in an image, e.g., darkest colored points have three votes. ‘Enclosed area’ and ‘open
area’ seem to have a strong effect on the layout of scenes in “attribute space.” As one might hope,
they generally occupy mutual exclusive areas. It is interesting to note that ‘sailing/boating’ occurs
in two distinct regions which correspond to open water scenes and harbor scenes

To better understand where images with different attributes live in attribute space,
Fig. 11.8 illustrates where dataset images that contain different attributes live in this
2D version of the attribute feature space.
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Fig. 11.9 2D visualization of the SUN attribute dataset. Each image in the dataset is represented by
the projection of its 102-dimensional attribute feature vector onto two dimensions using t-distributed
stochastic neighbor embedding [16]. There are groups of nearest neighbors, each designated by
a color. Interestingly, while the nearest-neighbor scenes in attribute space are semantically very
similar, for most of these examples (underwater_ocean, abbey, coast, ice skating rink, field_wild,
bistro, office) none of the nearest neighbors actually fall in the same SUN database category. The
colored border lines delineate the approximate separation of images with and without the attribute
associated with the border
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Fig. 11.10 2D visualization of 15 scene categories. 20 images from each of the listed scene cat-
egories are displayed in a 2D t-SNE visualization of attribute feature space. It is interesting to see
how some categories, such as ‘office,’ ‘coast,’ and ‘forest/broadleaf,’ are tightly clustered, while
others, such as ‘bedroom,’‘living room,’ and ‘kitchen’ have greater overlap when represented by
scene attributes

Figure 11.10 shows the distribution of images from 15 scene categories in attribute
space. The particular scene categories were chosen to be close to those categories
in the 15 scene benchmarks [14]. In this low-dimensional visualization, many of
the categories have considerable overlap (e.g., bedroom with living room, street
with highway, city with skyscraper). This is reasonable because these overlapping
categories share affordances, materials, and layouts. With the full 102-dimensional
attribute representation, these scenes could still be differentiated and we examine
this task in Sect. 11.6.

11.5 Recognizing Scene Attributes

A motivation for creating the SUN attribute dataset is to enable deeper understanding
of scenes. For scene attributes to be useful they need to be machine recognizable.
To assess the difficulty of scene attribute recognition we perform experiments using
the baseline low-level features used for category recognition in the original paper
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introducing the SUN database [31]. Our classifiers use a combination of kernels gen-
erated from gist, HOG 2 × 2, self-similarity, and geometric context color histogram
features. (See [31] for feature details). These four features were chosen because
they are each individually powerful and because they can describe distinct visual
phenomena.

How hard is it to recognize Attributes? To recognize attributes in images, we
create an individual classifier for each attribute using random splits of the SUN
attribute dataset for training and testing data. Note that our training and test splits are
scene category agnostic—for the purpose of this section we simply have a pool of
14,340 images with varying attributes. We treat an attribute as present if it receives at
least two votes, i.e., consensus is established, and absent if it receives zero votes. As
shown in Fig. 11.7, images with a single vote tend to be in a transition state between
the attribute being present or absent so they are excluded from these experiments.

We train and evaluate independent classifiers for each attribute. Correlation
between attributes could make ‘multi-label’ classification methods advantageous,
but we choose to predict attributes independently for the sake of simplicity.

To train a classifier for a given attribute, we construct a combined kernel from a
linear combination of gist, HOG 2 × 2, self-similarity, and geometric context color
histogram feature kernels. Each classifier is trained on 300 images and tested on
50 images and AP is computed over five random splits. Each classifier’s train and
test sets are half positive and half negative even though most attributes are sparse
(i.e., usually absent). We fix the positive to negative ratio so that we can compare the
intrinsic difficulty of recognizing each attribute without being influenced by attribute
popularity. Figures 11.11 and 11.12 plot the average precision of classifiers for each
attribute, given different positive/negative training example ratios. For the balanced
50 % positive/50 % negative training set in Fig. 11.11, the average precision across all
attributes is 0.879. The current state-of-the-art method, a CNN trained on the Places
database obtains an average precision of 0.915 over all attributes [33].

Some attributes are vastly more popular than others in the real world. To evaluate
attribute recognition under more realistic conditions, and to make use of as much
training data as the SUN attribute database affords us, we train classifiers on 90 %
of the dataset and test on the remaining 10 %. This means that some attributes (e.g.,
‘natural’ will have thousands of positive examples, and others e.g., ‘smoke’ will have
barely 100). Likewise, chance is different for each attribute because the test sets are
similarly skewed. The train and test instances for each attribute vary slightly because
some images have confident labels for certain attributes and ambiguous labels for
others and again we only use scenes with confident ground truth labels for each
particular attribute classifier. Figure 11.12 shows the AP scores for these large-scale
classifiers. More popular attributes are easier to recognize, as expected. Overall, the
average AP scores for different types of attributes are similar—Functions/affordances
(AP 0.44), materials (AP 0.51), surface properties (AP 0.50), and spatial envelope
(AP 0.62). Average precision is lower than the previous experiment not because the
classifiers are worse (in fact, they’re better) but because chance is much lower with
a test set containing the natural distribution of attributes.
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Fig. 11.11 Average precision for attribute classifiers. Training and testing sets have a balanced
positive to negative example ratio, with 300 training examples and 50 test images per attribute. The
AP of chance selection is marked by the red line. AP scores are often high even when the visual
manifestations of such attributes are subtle. This plot shows that it is possible to recognize global
scene attributes. Attributes that occur fewer than 350 times in the dataset were not included in this
plot

The classifiers used for Fig. 11.12 and the code used to generate them are publicly
available.1 The attribute classifiers trained on 90 % of the SUN attribute dataset are
employed in all further experiments in this chapter.

1SUN attribute Classifiers along with the full SUN attribute dataset and associated code are available
at www.cs.brown.edu/~gen/sunattributes.html.

www.cs.brown.edu/~gen/sunattributes.html


284 G. Patterson and J. Hays

Fig. 11.12 Average precision for attribute classifiers. 90 % of the dataset used for training/10 %
for test; positive to negative example ratio varies per attribute due to the natural population of each
attribute in the dataset. All of the scene attributes are included in this plot. Chance is different
for every attribute as they appear with variable frequency in nature. Note that the most difficult to
recognize attributes are also the rarest. Many attributes that are not strongly visual such as ‘studying,’
‘spectating,’ or ‘farming’ are nonetheless relatively easy to recognize

Attribute Classifiers in the Wild. We show qualitative results of our attribute
classifiers in Fig. 11.13. Our attribute classifiers perform well at recognizing attributes
in a variety of contexts. Most of the attributes with strong confidence are indeed
present in the images. Likewise, the lowest confidence attributes are clearly not
present. It is particularly interesting that function/affordance attributes and surface
property attributes are often recognized with stronger confidence than other types
of attributes even though functions and surface properties are complex concepts
that may not be easy to define visually. For example, the golf course test image in
Fig. 11.13 shows that our classifiers can successfully identify such abstract concepts
as ‘sports’ and ‘competing’ for a golf course, which is visually quite similar to places
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Test Scene Images Detected Attributes
Most Confident Attributes: vegetation,
open area, sunny, sports, natural light,
no horizon, foliage, competing, rail-
ing, natural
Least Confident Attributes: studying,
gaming, fire, carpet, tiles, smoke,
medical, cleaning, sterile, marble
Most Confident Attributes: shrubbery,
flowers, camping, rugged scene, hik-
ing, dirt/soil, leaves, natural light,
vegetation, rock/stone
Least Confident Attributes: shingles,
ice, railroad, cleaning, marble, sterile,
smoke, gaming, tiles, medical
Most Confident Attributes: eating, so-
cializing, waiting in line, cloth, shop-
ping, reading, stressful, congregating,
man-made, plastic
Least Confident Attributes: gaming,
running water, tiles, railroad, waves/
surf, building, fire, bathing, ice,
smoke
Most Confident Attributes: vertical
components, vacationing, natural
light, shingles, man-made, praying,
symmetrical, semi-enclosed area,
aged/ worn, brick
Least Confident Attributes: railroad,
ice, scary, medical, shopping, tiles,
cleaning, sterile, digging, gaming
Most Confident Attributes: vertical
components, brick, natural light,
praying, vacationing, man-made,
pavement, sunny, open area, rusty
Least Confident Attributes: ice,
smoke, bathing, marble, vinyl,
cleaning, fire, tires, gaming, sterile

Fig. 11.13 Attribute detection. For each query, the most confidently recognized attributes (green)
are indeed present in the test images, and the least confidently recognized attributes (red) are either
the visual opposite of what is in the image or they are irrelevant to the image

where no sports would occur. Abstract concepts such as ‘praying’ and ‘aged/worn’
are also recognized correctly in both the abbey and mosque scenes in Fig. 11.13.
Figure 11.14 shows several cases where the most confidently detected attributes are
incorrect.
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Test Images Detected Attributes
Most Confident Attributes: swim-
ming, asphalt, open area, sports,
sunbathing, natural light, diving, still
water, exercise, soothing
Least Confident Attributes: tiles,
smoke, ice, sterile, praying, marble,
railroad, cleaning, medical activity,
gaming
Most Confident Attributes: cold, con-
crete, snow, sand, stressful, aged/
worn, dry, climbing, rugged scene,
rock/stone
Least Confident Attributes: medical
activity, spectating, marble, cleaning,
waves/ surf, railroad, gaming, build-
ing, shopping, tiles
Most Confident Attributes: carpet,
enclosed area no horizon, elec-
tric/indoor lighting, concrete, glossy,
cloth, working, dry, rubber/ plastic
Least Confident Attributes: trees,
ocean, digging, open area, scary,
smoke, ice, railroad, constructing/
building, waves/ surf

Fig. 11.14 Failure cases. In the top image, it seems the smooth, blue regions of the car appear to
have created false positive detections of ‘swimming,’ ‘diving,’ and ‘still water.’ The bottom images,
unlike all of our training data, is a close-up object view rather than a scene with spatial extent. The
attribute classifiers seem to interpret the cat as a mountain landscape and the potato chips bag as
several different materials—‘carpet,’ ‘concrete,’ ‘glossy,’ and ‘cloth’

In earlier attribute work where the attributes were discovered on smaller datasets,
attributes had the problem of being strongly correlated with each other [5]. This is less
of an issue with the SUN attribute dataset because the dataset is larger and attributes
are observed in many different contexts. For instance, attributes such as “golf” and
“grass” are correlated with each other, as they should be. But the correlation is not
so high that a “golf” classifier can simply learn the “grass” visual concept, because
the dataset contains thousands of training examples where “grass” is present but
“golf” is not possible. However, some of our attributes, specifically those related to
vegetation, do seem overly correlated with each other because the concepts are not
semantically distinct enough.

Figure 11.13 shows many true positive detections. Somewhat surprisingly, many
affordance attributes are often estimated correctly and strongly positively for images
that contain them. This may be because different activities occur in very distinct
looking places. For example, scenes for eating or socializing are distinct from scene
for playing sports which are distinct from natural scenes where no human activity
is likely to take place. Unsurprisingly, attributes related to vegetation and the shape
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of the scene are also relatively easy to detect. These attributes are common in the
dataset, and their classifiers benefit from the additional training data.

Figure 11.14 shows false positive detections. False negative detections can be
inferred from Fig. 11.14. This figure can help us qualitatively understand why
attribute recognition may fail. In the first image in Fig. 11.14, there is a broken-down
blue car in a field grown wild. This somewhat unusual juxtaposition of a car that
looks different from other, working cars in the dataset and a natural-looking scene
that wouldn’t normally contain cars results in the mis-estimation of the attribute
‘swimming.’

The next two images in Fig. 11.14 both fail for reasons of image scale. The images
are zoomed in much closer than other images in the SUN dataset which typically try
to capture a whole scene. In the case of the cat, it results in the cat being mis-identified
as a snowy mountain type landscape and the carpet attribute is not recognized at all.

Figure 11.15 shows the most confident classifications in our test set for various
attributes. Many of the false positives, highlighted in red, are reasonable from a visual
similarity point of view. ‘Cold,’ ‘moist/damp,’ and ‘eating’ all have false positives that
could be reasonably considered to be confusing. ‘Stressful’ and ‘vacationing’ have
false positives that could be subjectively judged to be correct—a crowded subway
car could be stressful, and the New Mexico desert could be a lovely vacation spot.

Correlation of Attributes and Scene Categories. To better understand the rela-
tionships between categories and attributes, Table 11.1 lists a number of examples
from the SUN 397 categories with the attribute that is most strongly correlated with
each category.

The correlation between the scene category and the attribute feature of an input
image is calculated using Pearson’s correlation. We calculate correlation between
the predicted attribute feature vectors for 50 examples from each of the SUN 397
categories and a feature vectors that indicate the category membership of the example
images.

Table 11.1 has many interesting examples where an attribute is strongly corre-
lated with visually dissimilar but semantically related categories, such as ‘praying’
for both the indoor and outdoor church categories. Even attributes that are quite
abstract concepts, such as ‘socializing’ and ‘stressful,’ are the most strongly corre-
lated attributes for ‘pub/indoor’ and ‘cockpit,’ respectively. Scene attributes capture
information that is intrinsic to the nature of scenes and how humans interact with
them.

11.6 Predicting Scene Categories from Attributes

11.6.1 Predictive Power of Attributes

In this section we measure how well we can predict scene category from ground truth
scene attributes. While the goal of scene attributes is not necessarily to improve the
task of scene categorization, this analysis does give some insight into the interplay
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Fig. 11.15 Top 5 most confident detections in Test Set. For each attribute, the top five detections
from the test set are shown. Images boxed in green are true positives, and red are false positives.
Examples of false positives, such as the ‘praying’ examples, show how attributes are identified in
images that arguably contain the attribute, but human annotators disagreed about the attribute’s
presence; in this case the false positives were a sacristy, which is a room for the storage of religious
items, and a cathedral pictured at a distance. The false positive for ‘glass’ also contain glass,
although photographed under glancing illumination, which may have caused the human annotators
to mislabel it. For several of the examples, all of the top 5 detections are true positives. The detections
for ‘brick,’ ‘metal,’ and ‘competing’ demonstrate the ability of attribute classifiers to recognize the
presence of attributes in scenes that are quite visually dissimilar. For ‘brick’ and ‘metal’ even the
kinds of bricks and metals shown are differ greatly in type, age, and use case. The false positives in
the praying example are an art gallery and a monument

between scene categories and scene attributes. In the next experiment, we used the
attribute labels made by the crowd workers as the input feature for scene classification.
This experiment gives us an upper bound for how useful scene attributes on their
own could be for the task of scene classification. In the next subsection, we will
estimate scene attributes for previously unseen test images and use the estimated
scene attributes as features for scene classification.
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Table 11.1 Most correlated attributes. A sampling of scene categories from the SUN 397 dataset
listed with their most correlated attribute

Category Most correlated attributes

Airport terminal Socializing

Art studio Cluttered space

Assembly line Working

Athletic field/outdoor Playing

Auditorium Spectating

Ball pit Rubber/plastic

Baseball field Sports

Basilica Praying

Basketball court Exercise

Bathroom Cleaning

Bayou Still water

Bedroom Carpet

Biology laboratory Research

Bistro/indoor Eating

Bookstore Shopping

Bowling alley Competing

Boxing ring Spectating

Campsite Camping

Canal/natural Still water

Canal/urban Sailing/boating

Canyon Rugged scene

Car interior/backseat Matte

Car interior/frontseat Matte

Casino/indoor Gaming

Catacomb Digging

Chemistry lab Research

Chicken coop/indoor Dirty

Chicken coop/outdoor Fencing

Cathedral/indoor Praying

Church/outdoor Praying

Classroom Studying/learning

Clothing store Cloth

(continued)
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Table 11.1 (continued)

Category Most correlated attributes

Cockpit Stressful

Construction site Constructing/building

Corn field Farming

Cottage garden Flowers

Dentists office Medical activity

Dining room Eating

Electrical substation Wire

Factory/indoor Working

Fastfood restaurant Waiting in line

Fire escape Railing

Forest path Hiking

Forest road Foliage

Fountain Running water

Ice skating rink/indoor Sports

Ice skating rink/outdoor Cold

Iceberg Ocean

Lecture room Studying/learning

Mosque/indoor Cloth

Mosque/outdoor Praying

Operating room Sterile

Palace Vacationing

Poolroom/establishment Gaming

Poolroom/home Gaming

Power plant/outdoor Smoke

Pub/indoor Socializing

Restaurant Eating

Restaurant kitchen Working

Stadium/football Spectating

Subway station/platform Railroad

Underwater/coral reef Diving

Volcano Fire

Wheat field Farming

One hundred binary attributes could potentially distinguish the hundreds SUN
dataset scene categories if the attributes were (1) independent and (2) consistent
within each category, but neither of these are true. Many of the attributes are cor-
related (e.g., “farming” and “open area”) and there is significant attribute varia-
tion within categories. Furthermore, many groups of SUN database scenes would
require very specific attributes to distinguish them (e.g., “forest_needleleaf” and
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Fig. 11.16 Category recognition from ground truth attributes using an SVM. We plot accuracy for
the 717 category SUN attribute dataset and for a subset of 395 categories which roughly match
the evaluation of the SUN 397 dataset [31] (two categories present in [31] are not part of the SUN
attribute dataset). We compare attribute-based recognition to visual recognition by plotting the
highest accuracy from [31] (pink-dotted line)

“forest_broadleaf”), so it would likely take several hundred attributes to perfectly
predict scene categories.

Figure 11.16 shows how well we can predict the category of a scene with known
attributes as we increase the number of training examples per category. Each image is
represented by the ground truth attribute labels collected in Sect. 11.3. We compare
this to the classification accuracy using low-level features [31] on the same data
set. With one training example per category, attributes are roughly twice as accurate
as low-level features. Performance equalizes as the number of training examples
approaches 20 per category.

From the results in Fig. 11.16, it is clear that attributes alone are not perfectly suited
for scene classification. However, the performance of our attribute-based classifiers
hints at the viability of zero-shot learning techniques which have access to attribute
distributions for categories but no visual examples. The fact that category prediction
accuracy increases significantly with more training examples may be a reflection of
intra-class attribute variations.

Attributes allow for the exploration of scenes using information that is comple-
mentary to the category labels of those scenes. To the best of our knowledge these
experiments are the first to explore the use of attributes as features for scene clas-
sification. As with objects [11], attributes also offer the opportunity to learn new
scene categories without using any training examples for the new categories. This
“zero-shot” learning for scenes will be explored in the next section.
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Fig. 11.17 Scene category
recognition rate versus
number of training examples.
Classification tested on the
SUN 397 dataset [31].
Images that occur in both the
SUN 397 and SUN attribute
datasets were omitted from
the training and test sets of
the above classifiers

11.6.2 Scene Classification

Attributes as Features for Scene Classification.
Although our attributes were discovered in order to understand natural scenes more
deeply than categorical representations, scene classification remains a challenging
and interesting task. As a scene classification baseline, we train one-vs-all non-
linear SVMs with the same low-level features used to predict attributes. Figure 11.17
compares this with various classifiers which instead operate on attributes as an inter-
mediate representation.

The simplest way to use scene attributes as an intermediate representation is to
run our attribute classifiers on the scene classification training instances and train
one-vs-all SVMs in the resulting 102-dimensional space. This “predicted attribute
feature” performs better than three of the low-level features, but worse than the HoG
2 × 2 feature.2

In Fig. 11.17 each trend line plots the scene classification accuracy of the associ-
ated feature. All predicted features use the same test/train sets, and results averaged
over several random test/train splits. When combined with the four low-level features

2The images in the SUN attribute dataset were originally taken from the whole SUN dataset, which
includes more than 900 scene categories. Thus, some portion of the SUN attribute images also
appear in the SUN 397 dataset, which is also a subset of the full SUN dataset. The scene classifiers
using low-level and predicted attribute features were trained and tested on the SUN397 dataset
minus any overlapping images from the SUN attribute dataset to avoid testing scene classification
on the same images used to train attribute classifiers.
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originally used in the attribute classifiers, the ‘attributes’ feature clearly improves
performance over a scene classifier that only uses low-level features. This further
supports our claim that attributes are encoding important semantic knowledge. Clas-
sification accuracy using 15 different low-level features (the same features used in
Xiao et al.) plus attribute features at 50 training examples is 40.22 %, slightly beating
the 38.0 % accuracy reported in [31].

The current state-of-the-art performance on the SUN 397 benchmark is 56.2 % in
the paper introducing the Places dataset [33]. In [33], Zhou et al. use 150 training
examples per category. Figure 11.16 shows that perfectly estimated attributes by
themselves could achieve nearly 30 % accuracy with only a tenth the number of
training examples per category. Scene attributes do a great job of category prediction
where there are few training examples available, and CNN-trained features do well
with lots of training examples. Scene attributes capture important generalizable visual
concepts.

The ground truth feature classifier in Fig. 11.17 deserves slightly more explana-
tion. The ground truth attribute feature in Fig. 11.17 is taken from 10 random splits
of the SUN attribute dataset. Thus the number of test examples available for the
ground truth feature are (20 − ntrain), where ntrain is the number of training set
images whose attribute labels were averaged to come up with the attribute feature
for a given category. As the number of training examples increases, the ground truth
feature trend line is less representative of actual performance as the test set is increas-
ingly small. Using ground truth attributes as a feature gives an upper bound on what
attribute features could possibly contribute to scene classification.

It is important to note that the low-level features live in spaces that may have
thousands of dimensions, while the attribute feature is only 102-dimensional. Partly
for this reason, the attribute-based scene classifier seems to benefit less from addi-
tional training data than the low-level features. This makes sense, because lower
dimensional features have limited expressive capacity and because the attribute dis-
tribution for a given category isn’t expected to be especially complex (this is, in fact,
a motivation for zero-shot learning or easy knowledge transfer between observed
and unobserved categories).

Learning to Recognize Scenes without Visual Examples.
In zero-shot learning, a classifier is presented (by some oracle) a ground truth distri-
bution of attributes for a given category rather than any visual examples. Test images
are classified as the category whose oracle-annotated feature vector is the nearest
neighbor in feature space to the test images’ features.

Canonical definitions of zero-shot learning use an intermediate feature space to
generalize important concepts shared by categories [11, 20]. Lampert et al. use
an attribute representation to enable knowledge transfer between seen and unseen
categories, and Palatucci et al. uses phonemes. In these zero-shot learning scenarios,
it is prohibitively difficult or expensive to collect low-level feature examples of an
exhaustive set of categories. The use of oracle features for those unseen categories
is a way to identify them without collecting enough examples to train a classifier.
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The goal of zero-shot learning is to learn a classifier f : X → Z for a label set
Z , where some categories in Z were not seen during training. This is accomplished
by learning two transfer functions, g : X → A and h : A → Z . The set A is an
intermediate feature space like attributes or phonemes. Some oracle provides the
labels for the unseen categories in Z using the feature space of A. In traditional zero-
shot learning experiments, instances from the unseen categories in Z are not used to
learn the transfer function g : X → A. This makes sense if obtaining examples of
the unseen categories is difficult as in [11, 20].

Because we already had a nearly exhaustive set of scene categories in the SUN
attribute dataset, the attribute classifiers were trained using images that belonged to
categories that were held out during the “zero-shot” testing of the transfer function
h : A → Z . In our “zero-shot” experiment, all of the possible scene category labels
in Z were held out. The experiments conducted using scene attributes as features in
this subsection are an expanded version of traditional zero-shot learning, and we have
maintained that term to support the demonstration of how a scene category can be
identified by it’s typical attributes only, without any visual examples of the category.
The entire “zero-shot” classification pipeline in this section never involved showing
the classifier a visual training example of any scene category. The classifier gets an
oracle feature listing the typical attributes of each of the 397 categories.

Our goal is to show that given some reasonable estimate of scene’s attributes it
is possible to estimate the scene category without using the low-level features to
classify the query image. Scene attributes are correlated with scene categories, and
query scenes can be successfully classified if only their attributes are known. In this
sense our experiment is similar to, but more stringent than canonical knowledge
transfer experiments such as in Rohrbach et al. because the scene category labels
were not used to help learn the mapping from pixel-features to attributes [24].

Despite the low number of training examples (397, one oracle feature per category,
for zero-shot features vs. n × 397 for pixel-level features), the zero-shot classifier
shown in Fig. 11.18 performs about as well as the gist descriptor. It does, however,

Fig. 11.18 Scene category recognition without visual examples. The ‘attributes averaged per cate-
gory’ feature is calculated by averaging the predicted attribute features of all of the training instances
of a given scene category in the SUN 397 dataset. Test instances are evaluated by selecting the
nearest-neighbor scene category feature, and taking that scene category’s label
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perform significantly worse than the attribute-based classifier trained on n examples
of predicted attributes shown in Fig. 11.17. Averaging the attributes into a single
“characteristic attribute vector” for each category is quite lossy. In some ways, this
supports the argument that there is significant and interesting intra-category variation
of scene attributes.

11.7 Discussion

In this chapter, we use crowdsourcing to generate a taxonomy of scene attributes and
then annotate more than ten thousand images with individual attribute labels. We
explore the space of our discovered scene attributes, revealing the interplay between
attributes and scene categories. We measure how well our scene attributes can be
recognized and how well predicted attributes work as an intermediate representation
for zero-shot learning and image retrieval tasks.

Scene attributes are a fertile, mostly unexplored recognition domain. Many
attributes are visually quite subtle, and new innovations in computer vision may
be required to automatically recognize them. Even though all of our attribute labels
are global, many attributes have clear spatial support (materials) while others may
not (functions and affordances). Further experimentation with scene attributes will
lead to better ways of describing scenes and the complicated events that take place
in them.
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Attributes and Language



Chapter 12
Attributes as Semantic Units Between
Natural Language and Visual Recognition

Marcus Rohrbach

Abstract Impressive progress has been made in the fields of computer vision and
natural language processing. However, it remains a challenge to find the best point
of interaction for these very different modalities. In this chapter, we discuss how
attributes allow us to exchange information between the two modalities and in this
way lead to an interaction on a semantic level. Specifically we discuss how attributes
allow using knowledge mined from language resources for recognizing novel visual
categories, how we can generate sentence description about images and video, how
we can ground natural language in visual content, and finally, how we can answer
natural language questions about images.

12.1 Introduction

Computer vision has made impressive progress in recognizing large number of
objects categories [83], diverse activities [93], and most recently also in describing
images and videos with natural language sentences [89, 91] and answering natural
language questions about images [48].Given sufficient training data these approaches
can achieve impressive performance, sometimes even on parwith humans [28]. How-
ever, humans have two key abilities most computer vision system lack. On the one
hand humans can easily generalize to novel categories with no or very little training
data. On the other hand, humans can rely on other modalities, most notably language,
to incorporate knowledge in the recognition process. To do so humans seem to be
able to rely on compositionality and transferability, which means they can break
up complex problems into components, and use previously learned components in
other (recognition) tasks. In this chapter we discuss how attributes can form such
components which allow to transfer and share knowledge, incorporate external lin-
guistic knowledge, and decompose the challenging problems of visual description
and question answering into smaller semantic units, which are easier to recognize
and associate with textual representation.
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Fig. 12.1 Examples for textual descriptions and visual content

Let us first illustrate this with two examples. Attribute descriptions given in the
form of hierarchical information (a mammal), properties (striped, black, and white),
and similarities, (similar to a horse), allow humans to recognize a visual category,
even if they never observed this category before. Given this description in form of
attributes most humans would be able to recognize the animal shown in Fig. 12.1a as
a zebra. Furthermore, once humans know that Fig. 12.1a is a zebra, they can describe
what it is doing within a natural sentence, even if they never saw example images
with captions of zebras before (Fig. 12.1b). A promising way to handle these chal-
lenges is to have compositional models which allow interaction between multimodal
information at a semantic level.

One prominent way to model such a semantic level are semantic attributes. As the
term “attribute” has a large variety of definitions in the computer vision literature
we define for the course of this chapter as follows.

Definition 12.1 An attribute is a semantic unit, which has a visual and a textual
representation.

The first part of this definition, the restriction to a semantic unit is important to
discriminate attributes from other representations, which do not have human inter-
pretable meaning, such as image gradients, bag of (visual) words, or hidden repre-
sentations in deep neural networks. We will refer to these as features. Of course for
a specific feature, one can try to find or associate it with a semantic meaning or unit,
but typically it is unknown and once one is able to identify such a association, one
has found a representation for this semantic attribute. The restriction to a semantic
unit allows to connect to other sources of information on a semantic level, i.e. a level
of meaning. In the second part of the definition we restrict it to semantic units which
can be both represented textually and visually.1 This this specific for this chapter as

1There are attributes/semantic units, which are not visual but textually, e.g. smells, tastes, tactile
sensory inputs, and ones which are visual but not textual, which are naturally difficult to describe
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we want to exploit the connection between language and visual recognition. From
this definition, it should also be clear that attributes are not distinct from objects,
but rather that objects are also attributes, as they obviously are semantic and have a
textual and visual representation.

In this chapter, we discuss some of the most prominent directions where language
understanding and visual recognition interact. Namely how knowledge mined from
language resources can help visual recognition, how we can ground language in
visual content, how we can generate language about visual content, and finally how
we can answer natural language questions about images, which can be seen as a
combination of grounding the question, recognition, and generating an answer. It
is clear that these directions cannot cover all potential interactions between visual
recognition and language. Other directions include generating visual content from
language descriptions (e.g., [45, 102]) or localizing images in text i.e. to find where
in a text an image is discussed. In the following we first analyze challenges for
combining visual and linguistic modalities; afterward we provide an overview of
this chapter which includes a discussion how the different sections relate to each
other and to the idea of attributes.

12.1.1 Challenges for Combining Visual and Linguistic
Modalities

One of the fundamental differences between the visual and the linguistic modality is
the level of abstraction. The basic data unit of the visual modality is a (photographic)
image or video which always shows a specific instance of a category, or even more
precisely a certain instance for a specific viewpoint, lighting, pose, time, etc. For
example, Fig. 12.1a shows one specific instance of the category zebra from a side
view, eating grass. In contrast to this, the basic semantic unit of the linguisticmodality
are words (which are strings of characters or phonemes for spoken language, but we
will restrict ourselves to written linguistic expressions in this chapter). Although a
word might refer to a specific instance, the word, i.e. the string, always represents
a category of objects, activities, or attributes, abstracting from a specific instance.
Interestingly this difference, instance versus category level representation, is also
what defines one of the core challenges in visual recognition and is also an important
topic in computational linguistics. In visual recognition we are interested in defining
or learning models which abstract over a specific image or video to understand the
visual characteristic of a category. In computational linguistics, when automatically
parsing a text, we frequently face the inverse challenge of trying to identify intra

(Footnote 1 continued)
in language, but think of many visual patterns beyond striped and dotted, for which we do not
have name, or the different visual attributes between two people or faces which humans can clearly
recognize but which might be difficult to put into words. We also like to note that some datasets
such as Animals with Attributes [44] include nonvisual attributes, e.g. smelly, which might still
improve classification performance as they are correlated to visual features.
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and extra linguistic references (co-reference resolution/grounding2) of a word or
phrase. These problems arise because words typically represent concepts rather than
instances and because anaphors, synonyms, hypernyms, or metaphorical expressions
are used to refer to the identical object in the real world.

Understanding that the visual and linguistic modalities have different levels of
abstraction is important when trying to combine both modalities. In Sect. 12.2 we
use linguistic knowledge at category rather than instance level for visual knowledge
transfer, i.e. we use linguistic knowledge at the level where it is most expressive
that is at level of its basic representation. In Sect. 12.3, when describing visual input
with natural language, we put the point of interaction at a semantic attribute level
and leave concrete realization of sentences to a language model rather than inferring
it from the visual representation, i.e. we recognize the most important components
or attributes of a sentence, which are activities, objects, tools, locations, or scenes
and then generate a sentence based on these. In Sect. 12.4 we look at a model which
grounds phrases which refer to a specific instance by jointly learning visual and
textual representations. In Sect. 12.5 we answer questions about images by learning
small modules which recognize visual elements which are selected according to the
question and linked to themost important components in the questions, e.g. questions
words/phrases (How many), nouns, (dog) and qualifiers (black). By this composition
in modules or attributes, we create an architecture, which allows learning these
attributes, which link visual and textual modality, jointly across all questions and
images.

12.1.2 Overview and Outline

In this chapter we explain how linguistic knowledge can help to recognize novel
object categories and composite activities (Sect. 12.2), how attributes help to describe
videos and images with natural language sentences (Sect. 12.3), how to ground
phrases in images (Sect. 12.4), and how compositional computation allows for effec-
tive question answering about images (Sect. 12.5). We conclude with directions for
future work in Sect. 12.6.

All these directions have in common that attributes form a layer or composition
which is beneficial for connecting between textual and visual representations. In
Sect. 12.2, for recognizing novel object categories and composite activities, attributes
form the layer where the transfer happens. Attributes are shared across known and
novel categories, while information mined from different language resources is able
to provide the associations between the know categories and attributes at training
time to learn attribute classifiers and between the attributes and novel categories at
test time to recognize the novel categories.

2Co-reference is when two or more words refer to the same thing or person within text, while
grounding looks at how words refer to things outside text, e.g. images.
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When describing images and videos (Sect. 12.3), we first learn an intermediate
layer of attribute classifiers, which are then used to generate natural language descrip-
tions. This intermediate layer allows us to reason across sentences at a semantic level
and in this way to build a model which generates consistent multi-sentence descrip-
tion. Furthermore, we discuss how such an attribute classifier layer allows us to
describe novel categories where no paired image-caption data is available.

When grounding sentences in images, we argue that it makes sense to do this
on a level of phrases are rather full sentences, as phrases form semantic units, or
attributes, which can be well localized in images. Thus, in Sect. 12.4 we discuss how
we localize short phrases or referential expressions in images.

In Sect. 12.5 we discuss the task of visual question answering which connects
these previous sections, as one has to ground the question in the image and then
predict or generate an answer. Here we show how we can decompose the question
into attributes which are in this case small neural network components, which are
composed in a computation graph to predict the answer. This allows us to share and
train the attributes across questions and images, but build a neural network which is
specific for a given question.

The order of the following sections weakly follows the historic development,
where we start with work which appeared at the time when attributes started to
become popular in computer vision [18, 43]. And the last section on visual question
answering, a problem which requires more complex interactions between language
and visual recognition, has only recently become a topic in the computer vision
community [4, 48].

12.2 Linguistic Knowledge for Recognition of Novel
Categories

While supervised training is an integral part of building visual, textual, or multimodal
category models, more recently, knowledge transfer between categories has been
recognized as an important ingredient to scale to a large number of categories as well
as to enable fine-grained categorization. This development reflects the psychological
point of view that humans are able to generalize to novel3 categories with only a few
training samples [6, 56]. This has recently gained increased interest in the computer
vision and machine learning literature, which look at zero-shot recognition (with no
training instances for a class) [17, 21, 22, 44, 53, 58, 59], and one- or few-shot
recognition [6, 61, 85]. Knowledge transfer is particularly beneficial when scaling
to large numbers of classes where training data is limited [21, 53, 66], distinguish-
ing fine-grained categories [13, 19], or analyzing compositional activities in videos
[22, 68].

3We use “novel” throughout this chapter to denote categories with no or few labeled training
instances.
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Recognizing categories with no or only few labeled training instances is challeng-
ing. In this section we first discuss how we can build attribute classifiers using only
category-labeled image data and different language resources which allow recognize
novel categories (Sect. 12.2.1). And then, to further improve this transfer learning
approach, we discuss how to additionally integrate instance similarity and labeled
instances of the novel classes if available (Sect. 12.2.2). Furthermore we discuss
what changes have to be made to apply similar ideas to composite activity recogni-
tion (Sect. 12.2.3).

12.2.1 Semantic Relatedness Mined from Language
Resources for Zero-Shot Recognition

Lampert et al. [43, 44] propose to use attribute-based recognition to allow recognizing
unseen categories based on their object-attribute associations. Their Direct Attribute
Prediction (DAP) model is visualized in Fig. 12.2. Given images which are labeled
with known category labels y and object-attribute associations ay

m between categories
and attributes, we can learn attribute classifier p(am |xi ) for an image xi . This allows
to recognize novel categories z if we have associations az

m .

Fig. 12.2 Zero-shot
recognition with the Direct
Attribute Prediction model
[43] allows recognizing
unseen classes z using an
intermediate layer of
attributes a. Instead of
manually defined
associations between classes
and attributes (cyan lines),
Rohrbach et al. [65] reduce
supervision by mining
object-attribute association
from language resources,
such as Wikipedia, WordNet,
and image or web search
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Table 12.1 Zero-shot recognition on AwA dataset [43]. Results for different language resources
to mine association. Trained on 92 images per class, mean area under the ROC curve (AUC) in %

(a) Attribute-based zero-shot recognition

Language resource Measure In AUC

WordNet [20], path Lin measure [46] [65] 60.5

Yahoo Web, hit count [54] Dice coef. [11, 82] [65] 60.4

Flickr Img, hit count [65] Dice coef. [11, 82] [65] 70.1

Yahoo Img, hit count [65] Dice coef. [11, 82] [65] 71.0

Wikipedia [65] ESA [23, 98] [65] 69.7

Yahoo Snippets [7] Dice/Snippets [69] [69] 76.0

Yahoo Img Expanded attr. [69] 77.2

Combination Classifier fusion [69] 75.9

Combination Expanded attr. [69] 79.5

Manual [43] [69] 79.2

(b) Attributes versus direct similarity, reported in [69]

Images AUC

Test + train clsa

Object—attribute associations

Yahoo Img 71.0 73.2 (+2.2)

Classifier fusion 79.5 78.9 (−0.6)

Manual 79.2 79.4 (+0.2)

Direct similarity

Yahoo Img 79.9 76.4 (−2.5)

Classifier fusion 75.9 72.3 (−3.6)
a Effect of adding images from known classes in the test set as distractors/negatives

To scale the approach to a larger number of classes and attributes, Rohrbach et al.
[65, 66, 69] show how these previously manual defined attribute associations ay

m

and az
m can be replaced with associations mined automatically from different lan-

guage resources. Table12.1a compares several language resources and measures to
estimate semantic relatedness to determine if a class should be associated with a
specific attribute. Yahoo Snippets [7, 69], which computes co-occurrence statistics
on summary snippets returned by search engines, shows the best performance of
all single measures. Rohrbach et al. [69] also discuss several fusion strategies to
get more robust measures by expanding the attribute inventory with clustering and
combining several measures, which can achieve performance on par with manually
defined associations (second last versus last line in Table12.1a).

As an alternative to attributes, Rohrbach et al. [65] also propose to directly transfer
information from most similar classes which does not require and intermediate level
of attributes. While this achieves higher performance when the test set only contains
novel objects, in the more adversarial settings, when the test set also contains images
from the known categories, the direct similarity based approach significantly drops
in performance as can be seen in Table12.1b.
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Rohrbach et al. [66] extend zero-shot recognition from the 10 unseen categories
in the AwA dataset to a setting of 200 unseen ImageNet [9] categories. One of
the main challenges in this setting is, that there are no predefined attributes on this
dataset available. Rohrbach et al. propose to mine part attributes fromWordNet [20]
as ImageNet categories correspond to WordNet synsets. Additionally, as the known
and unknown classes are leaf nodes of the ImageNet hierarchy, inner nodes can be
used to group leaf nodes, similar to attributes. Also, the closest known leaf node
categories can transfer to the corresponding unseen leaf category.

An alternative approach is DeViSE [21] which learns an embedding into a seman-
tic skip-gram word-space [55], trained on Wikipedia documents. Classification is
achieved by projecting an image in the word-space and taking the closest word as
label. Consequently this also allows for zero-shot recognition.

Table12.2 compares the different approaches. The hierarchical variants [66] per-
forms best, also compared to DeViSE [21] which relies on more powerful CNN [42]
features. Further improvements can be achieved by metric learning [53]. As a differ-
ent application, Mrowca et al. [57] show how such hierarchical semantic knowledge
allows to improve large-scale object detection not just classification.While theWord-
Net hierarchy is very reliable as it was manually created, the attributes are restricted
to part attributes and the mining is not as reliably. To improve in this challenging

Table 12.2 Large-scale zero-shot recognition results. Flat error in % and hierarchical error in
brackets

Approach/language resource In Top-5 error

Hierarchy

Leaf WordNet nodes [65] 72.8

Inner WordNet nodes [65] 66.7

All WordNet nodes [65] 65.2

+ metric learning [53] 64.3a

Part attributes

Wikipedia [65] 80.9

Yahoo Holonyms [65] 77.3

Yahoo Image [65] 81.4

Yahoo Snippets [65] 76.2

All attributes [65] 70.3

Direct similarity

Wikipedia [65] 75.6

Yahoo Web [65] 69.3

Yahoo Image [65] 72.0

Yahoo Snippets [65] 75.5

All measures [65] 66.6

Label embedding

DeViSe [21] 68.2a

a Note that [21, 53] report on a different set of unseen classes than [65]
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setting, we discuss next how one can exploit instance similarity and few labeled
examples if available.

Transferring knowledge from known categories to novel classes is challenging as
it is difficult to estimate visual properties of the novel classes. Approaches discussed
in the previous section cannot exploit instance similarity or few labeled instances,
if available. The approach Propagated Semantic Transfer (PST) [70] combines four
ideas to jointly handle the challenging scenario of recognizing novel categories. First,
PST transfers information from known to novel categories by incorporating external
knowledge, such as linguistic or expert-specified information, e.g., by a mid-level
layer of semantic attributes as discussed in Sect. 12.2.1. Second, PST exploits the
manifold structure of novel classes similar to unsupervised learning approaches [80,
94]. More specifically it adapts the graph-based Label Propagation algorithm [99,
101]—previously used only for semi-supervised learning [14]—to zero-shot and
few-shot learning. In this transductive setting information is propagated between
instances of the novel classes to get more reliable recognition as visualized with the
red graph in Fig. 12.3. Third, PST improves the local neighborhood in such graph
structures by replacing the raw feature-based representation with a semantic object-
or attribute-based representation. And forth, PST generalizes from zero- to few-shot
learning by integrating labeled training examples as certain nodes in its graph based
propagation. Another positive aspect of PST is that attribute or category models do
not have to be retrained if novel classes are added which can be an important aspect
e.g. in a robotic scenario.

Fig. 12.3 Recognition of
novel categories. The
approach Propagated
Semantic Transfer [70]
combines knowledge
transferred via attributes
from known classes (left)
with few labeled examples in
graph (red lines) which is
build according to instance
similarity
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12.2.2 Propagated Semantic Transfer

Figure12.4 shows results on the AwA [43] dataset. We note that in contrast to the
previous section the classifiers are trained on all training examples, not only 92 per
class. Figure12.4a shows zero-shot results, where no training examples are available
for the novel or in this case unseen classes. The table compares PSTwith propagating
on a graph based on attribute classifier similarity versus image descriptor similarity
and shows a clear benefit of the former. This variant also outperform DAP and IAP
[44] as well as Zero-Shot Learning [22]. Next we compare PST in the few-shot
setting, i.e. we add labeled examples per class. In Fig. 12.4b we compare PST to two
label propagation (LP) baselines [14]. We first note that PST (red curves) seamlessly
moves from zero-shot to few-shot, while traditional LP (blue and black curves)
needs at least one training example. We first examine the three solid lines. The black
curve is the best LP variant from Ebert et al. [14] and uses similarity based image
features. LP in combination with the similarity metric based on the attribute classifier
scores (blue curves) allows to transfer knowledge residing in the classifier trained
on the known classes and gives a significant improvement in performance. PST (red
curve) additionally transfers labels from the known classes and improves further.
The dashed lines in Fig. 12.4b provide results for automatically mined associations
between attributes and classes from language resources. It is interesting to note that
these automaticallymined associations achieve performance very close to themanual
defined associations (dashed vs. solid).

Figure12.5 shows results on the classification task with 200 unseen ImageNet cat-
egories. In Fig. 12.5a we compare PST to zero-shot without propagation presented as
discussed in Sect. 12.2.1. For zero-shot recognition PST (red bars) improves perfor-
mance over zero-shot without propagation (black bars) for all language resources and
transfer variants. Similar to theAwAdataset, PST also improves over the LP-baseline
for few-shot recognition (Fig. 12.5b). Themissing LP-baseline on raw features is due
to the fact that for the large number of images and high dimensional features the graph
construction is very time and memory consuming if not infeasible. In contrast, the
attribute representation is very compact and thus computational tractable even with
a large number of images.

Fig. 12.4 Zero-shot results on AwA dataset. Predictions with attributes and manual defined asso-
ciations. Adapted from [70]
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Fig. 12.5 Results on 200 unseen classes of ImageNet. Adapted from [70]

12.2.3 Composite Activity Recognition with Attributes
and Script Data

Understanding activities in visual and textual data is generally regarded as more
challenging than understanding object categories due to the limited training data,
challenges in defining the extend of an activity, and the similarities between activ-
ities [62]. However, long-term composite activities can be decomposed in shorter
fine-grained activities [68]. Consider, for example, the composite cooking activi-
ties prepare scrambled egg which can be decomposed in attributes of fine-grained
activities (e.g. open, fry), ingredients (e.g. egg), and tools (e.g. pan, spatula). These
attributes can than be shared and transferred across composite activities as visual-
ized in Fig. 12.6 using the same approaches as for objects and attributes discussed
in the previous section. However, the representations, both on the visual and on the
language side have to change. Fine-grained activities and associated attributes are

Fig. 12.6 Recognizing composite activities using attributes and script data
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Table 12.3 Composite cooking activity classification on MPII Cooking 2 [74], mean AP in %.
Top left quarter: fully supervised, right column: reduced attribute training data, bottom section: no
composite cooking activity training data, right bottom quarter: true zero shot. Adapted from [74]

Attribute training on All composites Disjoint composites

Activity representation [93] [67, 77, 93] [93] [67, 77, 93]

With training data for composites

Without attributes

(1) SVM 39.8 41.1 – –

Attributes on gt intervals

(2) SVM 43.6 52.3 32.3 34.9

Attributes on automatic segmentation

(3) SVM 49.0 56.9 35.7 34.8

(4) NN 42.1 43.3 24.7 32.7

(5) NN + Script data 35.0 40.4 18.0 21.9

(6) PST + Script data 54.5 57.4 32.2 32.5

No training data for composites

Attributes on automatic segmentation

(7) Script data 36.7 29.9 19.6 21.9

(8) PST + Script data 36.6 43.8 21.1 19.3

visually characterized by fine-grained body motions and low interclass variability. In
addition to holistic features [93], one consequently should exploit human pose-based
[67] and hand-centric [77] features. As the previously discussed language resources
do not provide good associations between composite activities and their attributes,
Rohrbach et al. [68] collected textual description (Script data) of these activities
with AMT. From this script, data associations can be computed based on either the
frequency statistics or, more discriminate, by term frequency times inverse document
frequency (tf∗idf).

Table12.3 shows results on the MPII Cooking 2 dataset [74]. Comparing the
first column (holistic Dense Trajectory features [93]) with the second, shows the
benefit of adding the more semantic hand-[77] and pose-[67] features. Comparing
line (1) with line (2) or (3) shows the benefit of representing composite activities
with attributes as this allows sharing across composite activities. Best performance is
achieved with 57.4% mean AP in line (6) when combining compositional attributes
with the Propagated Semantic Transfer (PST) approach (see Sect. 12.2.2) and Script
data to determine associations between composites and attributes.
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12.3 Image and Video Description Using
Compositional Attributes

In this sectionwe discuss howwe can generate natural language sentences describing
visual content, rather than just giving labels to images and videos as discussed in
the previous section. This intriguing task has recently received increased attention
in computer vision and computational linguistics communities [89–91] and has a
large number of potential applications including human–robot interaction, image
and video retrieval, and describing visual content for visually impaired people. In
this section we focus on approaches which decouple the visual recognition and the
sentence generation and introduce an intermediate semantic layer, which can be seen
a layer of attributes (Sect. 12.3.1). Introducing such a semantic layer has several
advantages. First, this allows to reason across sentences on a semantic level, which
is, as we will see, beneficial for multi-sentence description of videos (Sect. 12.3.2).
Second, we can show that when learning reliable attributes, this leads to state-of-
the-art sentences generation with high diversity in the challenging scenario of movie
description (Sect. 12.3.3). Third, this leads to a compositional structure which allows
describing novel concepts in images and videos (Sect. 12.3.4).

12.3.1 Translating Image and Video Content to Natural
Language Descriptions

Video Captioning
To address the problem of image and video description, Rohrbach et al. [71]

propose a two-step translation approachwhich first predicts an intermediate semantic
attribute layer and then learns how to translate from this semantic representation to
natural sentences. Figure12.7 gives an overview of this two-step approach for videos.
First, a rich semantic representation of the visual content including e.g. object and
activity attributes is predicted. To predict the semantic representation a CRF models

SVM

Fig. 12.7 Video description. Overview of the two-step translation approach [71] with an interme-
diate semantic layer of attributes (SR) for describing videos with natural language. From [64]



314 M. Rohrbach

the relationships between different attributes of the visual input. And second, the
generation of natural language is formulated as a machine translation problem using
the semantic representation as source language and the generated sentences as target
language. For this a parallel corpus of videos, annotated semantic attributes, and
textual descriptions allows to adapt statistical machine translation (SMT) [39] to
translate between the two languages. Rohrbach et al. train and evaluate their approach
on the videos of theMPII Cooking dataset [67, 68] and the aligned descriptions from
the TACoS corpus [62]. According to automatic evaluation and human judgments,
the two-step translation approach significantly outperforms retrieval and n-gram-
based baseline approaches, motivated by prior work. This similarly can be applied
to image description task, however, in both cases it requires an annotated semantic
attribute representation. In Sects. 12.3.3 and 12.3.4 we discuss how we can extract
such attribute annotations automatically from sentences. An alternative approach
is presented by Fang et al. [16] who mine visual concepts for image description
by integrating multiple instance learning [52]. Similar to the work presented in the
following, Wu et al. [95] learn an intermediate attribute representation from the
image descriptions. Captions are then generated solely from the intermediate attribute
representation.

12.3.2 Coherent Multi-sentence Video Description with
Variable Level of Detail

Most approaches for automatic video description, including the one presented above,
focus on generating single sentence descriptions and are not able to vary the descrip-
tions’ level of detail. One advantage of the two-step approach with an explicit inter-
mediate layer of semantic attributes is that it allows to reason on this semantic level.
To generate coherent multi-sentence descriptions, Rohrbach et al. extend the two-
step translation approach to model across-sentence consistency at the semantic level
by enforcing a consistent topic, which is the prepared dish in the cooking scenario.
To produce shorter or one-sentence summaries, Rohrbach et al. select the most rel-
evant sentences on the semantic level by using tf∗idf (term frequency times inverse
document frequency). For an example output on the TACoSMulti-Level corpus [72]
see Fig. 12.8. In order to fully automatically domulti-sentence description, Rohrbach
et al. propose a simple but effective method based on agglomerative clustering to
perform automatic video segmentation. Themost important component of good clus-
tering is the similarity measure and it turns out that the semantic attribute classifiers
(see Fig. 12.7) are very well suited for that in contrast to Bag-of-Words dense trajec-
tories [92]. This confirm the observation made in Sect. 12.2.2 that attribute classifiers
seem to form a good space for distance computations.

To improve performance, Donahue et al. [12] show that the second step, the SMT-
based sentence generation, can be replaced with a deep recurrent network to better
model visual uncertainty, but still relying on the multi-sentence reasoning on the
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Fig. 12.8 Coherent multi-sentence descriptions at three levels of detail, using automatic temporal
segmentation. See Sect. 12.3.2 for details. From [72].

semantic level. On the TACoS Multi-Level corpus this achieves 28.8% BLEU@4,
compared to 26.9% [72] with SMT and 24.9% with SMT without multi-sentence
reasoning [71].

12.3.3 Describing Movies with an Intermediate Layer of
Attributes

Two challenges arise, when extending the idea presented above to movie description
[76], which looks at the problem how to describe movies for blind people. First, and
maybe more importantly, there are no semantic attributes annotated as on the kitchen
data, and second, the data is more visually diverse and challenging. For the first
challenge, Rohrbach et al. [76] propose to extract attribute labels from the descrip-
tion to train visual classifiers to build a semantic intermediate layer by relying on
a semantic parsing approach of the description. To additionally accommodate the
second challenge of increased visual difficulty, Rohrbach et al. [75] show how to
improve the robustness of these attributes or “Visual Labels” by three steps. First, by
distinguishing three semantic groups of labels (verbs, objects and scenes) and using
corresponding feature representations for each: activity recognition with dense tra-
jectories [93], object detection with LSDA [31], and scene classification with Places-
CNN [100]. Second, training each semantic group separately, which removes noisy
negatives. And third, selecting only the most reliable classifiers. While Rohrbach
et al. use SMT for sentence generation in [76], they rely on a recurrent network
(LSTM) in [75].
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Fig. 12.9 Qualitative results on the MPII Movie Description (MPII-MD) dataset [76]. The “Visual
labels” approach [75] which uses an intermediate layer of robust attributes, identifies activities,
objects, and places better than related work. From [75]

The Visual Labels approach outperforms prior work [76, 88, 96] on theMPII-MD
[76] andM-VAD [86] dataset with respect to automatic and human evaluation. Qual-
itative results are shown in Fig. 12.9. An interesting characteristic of the compared
methods is the size of the output vocabulary, which is 94 for [76], 86 for [88] (which
uses an end-to-end LSTM approach without an intermediate semantic representa-
tion) and 605 for [75]. Although it is far lower than 6,422 for the human reference
sentences, it clearly shows a higher diversity of the output for [75].

12.3.4 Describing Novel Object Categories

In this section we discuss how to describe novel object categories which com-
bines challenges discussed for recognizing novel categories (Sect. 12.2) and gen-
erating descriptions (Sect. 12.3.1). State-of-the-art deep image and video captioning
approaches (e.g. [12, 16, 50, 89, 91]) are limited to describe objects which appear in
caption corpora such asMSCOCO[8]which consist of pairs of images and sentences.
In contrast, labeled image datasetswithout sentence descriptions (e.g. ImageNet [10])
or text only corpora (e.g. Wikipedia) cover many more object categories.

Hendricks et al. [30] propose the Deep Compositional Captioner (DCC) to
exploit these vision-only and language-only unpaired data sources to describe novel
categories as visualized in Fig. 12.10. Similar to the attribute layer discussed in
Sect. 12.3.1, Hendricks et al. extract words as labels from the descriptions to learn a
“Lexical Layer”. The Lexical Layer is expanded by objects from ImageNet [10]. To
be able to not only recognize but also generate the description about the novel objects,
DCC transfers the word prediction model from semantically closest known word in
the Lexical Layer, where similarity is computed with Word2Vec [55]. Interesting to
note is, that image captioning approaches such as [12, 91] do use ImageNet data to
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Fig. 12.10 Describing novel object categories which are not contained in caption corpora (like
otter). The Deep Compositional Captioner (DCC) [30] uses an intermediate semantic attribute
or “lexical” layer to connect classifiers learned on unpaired image datasets (ImageNet) with text
corpora (e.g. Wikipedia). This allows it to compose descriptions about novel objects without any
paired image-sentences training data. Adapted from [29]

Fig. 12.11 Qualitative results for describing novel ImageNet object categories.DCC [30] compared
to an ablation without transfer. X → Y: known word X is transferred to novel word Y. From [29].

(pre-) train the models (indicated with a dashed arrow in Fig. 12.10), but they do not
make use of the semantic information but only the learned representation.

Figure12.11 shows several categories where there exist no captions for training.
With respect to quantitative measures, compared to a baseline without transfer, DCC
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improves METEOR from 18.2 to 19.1% and F1 score, which measures the appear-
ance of the novel object, from 0 to 34.3%. Hendricks et al. also show similar results
for video description.

12.4 Grounding Text in Images

In this section we discuss the problem of grounding natural language in images.
Grounding in this case means that given an image and a natural language sentence
or phrase, we aim to localize the subset of the image which corresponds to the input
phrase. For example, for the sentence “A little brown and white dog emerges from
a yellow collapsable toy tunnel onto the lawn.” and the corresponding image in
Fig. 12.12a, we want to segment the sentence into phrases and locate the correspond-
ing bounding boxes (or segments) in the image.While grounding has been addressed
e.g. in [5, 34, 40, 81], it is restricted to few categories. An exception are Karpathy
et al. [36, 37] who aim to discover a latent alignment between phrases in text and
bounding box proposals in the image. Karpathy et al. [37] ground dependency-tree
relations to image regions using multiple instance learning (MIL) and a ranking
objective. Karpathy and Fei-Fei [36] simplify the MIL objective to just the maxi-
mal scoring box and replace the dependency tree with a learned recurrent network.
These approaches have unfortunately not been evaluated with respect to the ground-
ing performance due to a lack of annotated datasets. Only recently two datasets were
released: Flickr30k Entities [60] augments Flickr30k [97] with bounding boxes for

- a little brown and white dog
- a yellow collapsable toy tunnel
- the lawn

- a little brown and white dog
- a yellow collapsable toy tunnel
- the lawn

Input: phrases + images 
(no bounding box annotation at training or test time)

Output: grounded phrases

- a man
- a small boy
- their small, white dog
- a toy

GroundeR

- a man
- a small boy
- their small, white dog [failure]
- a toy [failure]

Attend

a man

a man
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Fig. 12.12 Unsupervised grounding by learning to associate visual and textual semantic units.
From [73]
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Fig. 12.13 Qualitative results for GroundeR unsupervised [73] on Flickr 30k entities [60]. Compact
textual semantic units (phrases, e.g. “a sitting man”) are associated with visual semantic units
(bounding boxes). Best viewed in color

all noun phrases present in textual descriptions and ReferItGame [38] has localized
referential expressions in images. Even more recent, at the time of writing, efforts
are being made to also collect grounded referential expressions for the MS COCO
[47] dataset, namely the authors of ReferItGame are in progress of extending their
annotations as well as longer referential expressions have been collected by Mao
et al. [51]. Similar efforts are also made in the Visual Genome project [41] which
provides densely annotated images with phrases.

In the followingwe focus on how to approach this problem and the first question is,
where is the best point of interaction between linguistic elements andvisual elements?
Following the approaches in [36, 37, 60] a good way to this is to decompose both,
sentence and image into concise semantic units or attributes which we can match to
each other. For the data as shown in Figs. 12.12a and 12.13, sentences can be split
into phrases of typically a few words and images are composed into a larger number
of bounding box proposals [87]. An alternative is to integrate phrase grounding in
a fully convolutional network, for bounding box prediction [35] or segmentation
prediction [33]. In the following, we discuss approaches which focus on how to
find the association between visual and linguistic components, rather than the actual
segmentation into components.Wefirst look at anunsupervised settingwith respect to
the grounding task, i.e. we assume that no bounding box annotations are available for
training (Sect. 12.4.1), and then we show how to integrate supervision (Sect. 12.4.2).
Section12.4.3 discusses the results.

12.4.1 Unsupervised Grounding

Although many data sources contain images which are described with sentences or
phrases, they typically do not provide the spatial localization of the phrases. This is
true for both curated datasets such as MSCOCO [47] or large user generated content
as e.g. in the YFCC 100M dataset [84]. Consequently, being able to learn from this
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data without grounding supervision would allow large amount and variety of training
data. This setting is visualized in Fig. 12.12a.

For this setting Rohrbach et al. [73] propose the approach GroundeR, which
is able to learn the grounding by aiming to reconstruct a given phrase using an
attention mechanism as shown in Fig. 12.12b. In more detail, given images paired
with natural language phrases (or sentence descriptions), but without any bounding
box information, we want to localize these phrases with a bounding box in the image
(Fig. 12.12c). To do this, GroundeR learns to attend to a bounding box proposal and,
based on the selected bounding box, reconstructs the phrase (Fig. 12.12b). Attention
means that the model predicts a weighting over the bounding boxes and then takes
the weighted average of the features from all boxes. A softmax over the weights
encourages that only one or a few boxes have high weights. As the second part of the
model (Fig. 12.12b, bottom) is able to predict the correct phrase only if the first part of
themodel attended correctly (Fig. 12.12b, top), this can be learnedwithout additional
bounding box supervision. At test time we evaluate the grounding performance, i.e.
whether the model assigned the highest weight to/attended to the correct bounding
box. The model is able to learn these associations as the parameters of the model
are learned across all phrases and images. Thus, for a proper reconstruction, the
visual semantic units and linguistic phrases have to match, i.e. the models learns
what certain visual phrases mean in the image.

12.4.2 Semi-supervised and Fully Supervised Grounding

If grounding supervision (phrase bounding box associations) is available, GroundeR
[73] can integrate it by adding a loss over the attention mechanism (Fig. 12.12b,
“Attend”). Interestingly, this allows to provide supervision only for a subset of the
phrases (semi-supervised) or all phrases (fully supervised).

For supervised grounding, Plummer et al. [60] proposed to learn a CCA
embedding [26] between phrases and the visual representation. The Spatial Con-
text Recurrent ConvNet (SCRC) [32] and the approach of Mao et al. [51] use a
caption-generation framework to score phrases on a set of bounding box propos-
als. This allows to rank bounding box proposals for a given phrase or referential
expression. Hu et al. [32] show the benefit of transferring models trained on full-
image description datasets as well as spatial (bounding box location and size) and
full-image context features. Mao et al. [51] show how to discriminatively train the
caption-generation framework to better distinguish different referential expression.

12.4.3 Grounding Results

In the following we discuss results on the Flickr 30k Entities dataset [60] and the
ReferItGame dataset [38], which both provide ground truth alignment between noun
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Table 12.4 Phrase grounding, accuracy in%. VGG-CLS: Pretraining the VGG network [79] for
the visual representation on ImageNet classification data only. VGG-DET: VGG further fine-tuned
for the object detection task on the PASCAL dataset [15] using Fast R-CNN [25]. VGG + SPAT:
VGG-CLS + spatial bounding box features (box location and size)

Approach Accuracy

(a) Flickr 30k entities dataset [60]

Unsupervised training

GroundeR (VGG-CLS) [73] 24.66

GroundeR (VGG-DET) [73] 32.42

Semi-supervised training

GroundeR (VGG-CLS) [73]

3.12% annotation 33.02

6.25% annotation 37.10

12.5% annotation 38.67

Supervised training

CCA embedding [60] 25.30

SCRC (VGG + SPAT) [32] 27.80

GroundeR (VGG-CLS) [73] 41.56

GroundeR (VGG-DET) [73] 47.70

(b) ReferItGame dataset [38]

Unsupervised training

LRCN [12] (reported in [32]) 8.59

CAFFE-7K [27] (reported in [32]) 10.38

GroundeR (VGG + SPAT) [73] 10.44

Semi-supervised training

GroundeR (VGG + SPAT) [73]

3.12% annotation 15.03

6.25% annotation 19.53

12.5% annotation 21.65

Supervised training

SCRC (VGG + SPAT) [32] 17.93

GroundeR (VGG + SPAT) [73] 26.93

phrases (within sentences) and bounding boxes. For the unsupervised models, the
grounding annotations are only used at test time for evaluation, not for training. All
approaches use the activations of the second last layer of the VGG network [79] to
encode the image inside the bounding boxes.

Table12.4a compares the approaches quantitatively. The unsupervised variant
of GroundeR reaches nearly the supervised performance of CCA [60] or SCRC
[32] on Flickr 30k Entities, successful examples are shown in Fig. 12.13. For the
referential expressions of the ReferItGame dataset the unsupervised variant of
GroundeR reaches performance on par with prior work (Table12.4b) and quickly
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Fig. 12.14 Qualitative grounding results on ReferItGame dataset [38]. Different colors show dif-
ferent referential expressions for the same image. Best viewed in color

gains performance when adding few labeled training annotation (semi-supervised
training). In the fully supervised setting GroundeR improves significantly over state
of the art on both datasets, which is also reflected in the qualitative results shown in
Fig. 12.14.

12.5 Visual Question Answering

Visual question answering is the problem of answering natural language questions
about images, e.g. for the question “Where is the amber cat?” about the image shown
in Fig. 12.15 we want to predict the corresponding answer on the floor, or just floor.
This is a very interesting problem with respect to several aspects. On the one hand
it has many applications, such visual search, human–robot interaction, and assist-
ing blind people. On the other hand, it is also an interesting research direction as it
requires to relate textual and visual semantics. More specifically it requires to ground
the question in the image, e.g. by localizing the relevant part in the image (amber cat
in Fig. 12.15), and then recognizing and predicting an answer based on the question
and the image content. Consequently, this problem requires more complex seman-
tic interaction between language and visual recognition than in previous sections,
specifically, the problem requires ideas from grounding (Sect. 12.4) and recognition
(Sect. 12.2) or description (Sect. 12.3).



12 Attributes as Semantic Units Between Natural Language … 323

Fig. 12.15 To approach visual question answering, Andreas et al. [3] propose to dynamically
create a deep network which is composed of different “modules” (colored boxes). These “modules”
represent semantic units, i.e. attributes,which link linguistic units in the questionwith computational
units to do the corresponding visual recognition. Adapted from [1]

Most recent approaches to visual question answering learn a joint hidden embed-
ding of the question and the image to predict the answer [4, 24, 49, 63] where all
computation is shared and identical for all questions. An exception to this is proposed
by Wu et al. [95], who learn an intermediate attribute representation from the image
descriptions, similar to the work discussed in Sects. 12.3.3 and 12.3.4. Interestingly,
this intermediate layer of attributes allows to query an external knowledge base to
provide additional (textual) information not visible in the image. The embedded tex-
tual knowledge base information is combined with the attribute representation and
the hidden representation of a caption-generation recurrent network (LSTM) and
forms the input to an LSTM-based question–answer encoder–decoder [49].

Andreas et al. [3] go one step further with respect to compositionality and propose
to predict a compositional neural network structure from the questions. As visualized
in Fig. 12.15 the question “Where is the amber cat?” is decomposed into network
“modules” amber, cat, and, and where. These modules are semantic units, i.e.
attributes, which connect most relevant semantic components of the questions (i.e.
word or short phrases) with corresponding computation to recognize it in the image.
These NeuralModule Networks (NMN) have different types of modules for different
types of attributes. Different types have different colors in Fig. 12.15. The find[cat]

and find[amber] (green) modules take in CNN activations (VGG [79], last convolu-
tional layer) and produce a spatial attention heatmap, while combine[and] (orange)
combines two heatmaps to a single one, and describe[where] (blue) takes in a
heatmap and CNN features to predict an answer. Note that the distinction between
different types, e.g. find versus describe, which have different kind of computation
and different instances, e.g. find[cat] versus find[amber], which learn different
parameters. All parameters are initialized randomly and only trained from question
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Fig. 12.16 Results on the VQA dataset [4]. Adapted from [1]

answer pairs. Interestingly, in this work attributes are not only distinguished with
respect of their type, but also are composed with other attributes in a deep network,
whose parameters’ are learned end-to-end from examples, here question–answer
pairs. In a follow up work, Andreas et al. [2] learn not only the modules, but also
what the best network structure is from a set of parser proposals, using reinforcement
learning.

In addition to NMN, Andreas et al. [2, 3] also incorporate a recurrent net-
work (LSTM) to model common sense knowledge and dataset bias which has been
shown to be important for visual question answering [49]. Quantitative results in
Table12.16(a) indicate that NMNs are indeed a powerful tool to question answering,
a few qualitative results can be seen Fig. 12.16b.

12.6 Conclusions

In this chapter we presented several tasks and approaches where attributes enable
a connection of visual recognition with natural language on a semantic level. For
recognizing novel object categories or activities, attribute can build an interme-
diate representation which allows incorporating knowledge mined from language
resources or script data (Sect. 12.2). For this scenario we saw that semantic attribute
classifiers additionally build a good metric distance space useful for constructing
instance graphs and learning composite activity recognition models. In Sect. 12.3
we explained how an intermediate level of attributes can be used to describe videos
with multiple sentences and at a variable level and allow describing novel object
categories. In Sect. 12.4 we presented approaches for unsupervised and supervised
grounding of phrases in images. Different phrases are semantically overlapping and
the examined approaches try to relate these semantic units by jointly learning repre-
sentations for the visual and languagemodalities. Section12.5 discusses an approach
to visual question answering which composes the most important attributes of a
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question in a compositional computation graph, whose parameters are learned end-
to-end only by backpropagating from the answers.

While the discussed approaches take a step toward the challenges discussed in
Sect. 12.1.1, there are many future steps ahead. While the approaches in Sect. 12.2
use many advanced semantic relatedness measures minded from diverse language
resources they are not jointly trained on textual and visual modalities. Regneri et al.
[62] and Silberer et al. [78], as discussed in Chap.13, take a step in this direction
by looking at joint semantic representation from the textual and visual modalities.
Section12.3 presents compositional models for describing videos, but it is only a
first step toward automatically describing a movie to a blind person as humans can
do it [76], which will require an even higher degree of semantic understanding, and
transfer within and between modalities. Section12.4 describes interesting ideas to
grounding in images and it will be interesting to see how this scales to the size of the
Internet. Visual question answering (Sect. 12.5) is an interesting emerging direction
with many challenges as it requires to solve all of the above, at least to some extend.
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Chapter 13
Grounding the Meaning of Words
with Visual Attributes

Carina Silberer

Abstract We address the problem of grounding representations of word meaning.
Our approach learns higher level representations in a stacked autoencoder architec-
ture from visual and textual input. The two input modalities are encoded as vectors
of attributes and are obtained automatically from images and text. To obtain visual
attributes (e.g. has_legs, is_yellow) from images, we train attribute classifiers by using
our large-scale taxonomy of 600 visual attributes, representing more than 500 con-
cepts and 700K images. We extract textual attributes (e.g. bird, breed ) from text with
an existing distributional model. Experimental results on tasks related to word simi-
larity show that the attribute-based vectors can be usefully integrated by our stacked
autoencoder model to create bimodal representations which are overall more accu-
rate than representations based on the individual modalities or different integration
mechanisms (The work presented in this chapter is based on [89]).

13.1 Introduction

Humans generally possess a rich semantic knowledge of words1 and concepts2

which captures the perceivable physical properties (e.g. visual appearance) of their
real-world referents and their relations. This knowledge enables us to recognise
objects and entities by means of our senses, to interact with them and to verbally
convey information about them [65]. An extensive amount of work in cognition
research has been devoted to approaches and theories that explain the complex phe-
nomena related to learning, representing and processing aspects of this knowledge,

1We use the term word to denote any sequence of non-delimiting symbols.
2We use the term concept to denote themental representation of objects belonging to basic-level
classes (e.g. dog), and the term category to refer to superordinate-level classes (e.g. animal).
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and has given rise to different classes of models of meaning representations. Like-
wise, meaning representations are crucial for many applications of natural language
processing, such as information retrieval, document classification, or semantic role
labelling [100], which spurred research on models for automatic representation
learning.

A major strand of research popular across disciplines focusses on models which
induce semantic representations from text corpora. These models are based on the
hypothesis that the meaning of words is established by their distributional relation to
other words [40]. Despite their widespread use, distributional models of word mean-
ing have been criticised as ‘disembodied’ in that they are not grounded in perception
and action [5, 36, 78]. This lack of grounding contrasts withmany experimental stud-
ies suggesting that meaning is acquired not only from exposure to the linguistic envi-
ronment but also from our interaction with the physical world [11, 58]. Recent years
have seen a surge of interest in models which aim at inducing perceptually grounded
semantic representations. Essentially, existing approaches learn meaning represen-
tations from multiple views corresponding to different modalities, i.e. linguistic and
perceptual input. To approximate the perceptual modality, previous work has relied
largely on features automatically extracted from images, or on semantic attributes
collected from humans (e.g. is round, is sour). The latter have a long-standing tradi-
tion in cognitive science and are thought to represent salient psychological aspects of
word meaning including multisensory information. However, their elicitation from
human subjects is expensive and limits the scope of computational models to a small
number of concepts for which attributes are available.

In this chapter, we present an approach which draws inspiration from the appli-
cation of natural language attributes in computer vision, and represent images and
the concepts depicted by them by automatically predicted attributes.3 To this end,
we created a dataset comprising nearly 700K images and a taxonomy of 636 visual
attributes and use it to train attribute classifiers. In line with the attribute-based
approximation of the visual modality, we represent the linguistic modality by textual
attributes which we obtain with an off-the-shelf distributional model [4]. We then
introduce a neural network-based model, which learns higher level meaning repre-
sentations by mapping words and images, represented by attributes, into a common
embedding space. In contrast to most previous approaches to multimodal learning
using different variants of deep networks and data sources, our model is defined at
a finer level of granularity—it computes representations for individual words—and
is unique in its use of attributes as a means of representing the textual and visual
modalities. We demonstrate the effectiveness of the representations learned by our
model by evaluating its ability to account for human behaviour on semantic tasks
related to word similarity. For this purpose, we created a new evaluation dataset in
a large-scale experiment where participants are asked to give two ratings per word
pair expressing their semantic and visual similarity, respectively. We hope that this

3By the term attributeswe refer to semantic properties or characteristics of concepts (or categories),
expressed by words which people would use to describe their meaning.
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dataset and our visual attributes resource will be of use to the computer vision and
natural language processing communities.4

We first present an overview of related work on models of word meaning. We
then describe how we extract visual and textual attributes from images and text
data, respectively, and how we use these to represent word meaning. We introduce
our model that learns higher level meaning representations using the attribute-based
representations as input, and conclude with experimental results and discussion

13.2 Background: Models of Word Meaning

The presentedwork is related to several classes ofmodels ofmeaning representations
which we review in the following. Common to the first two classes is their induction
of word meaning representations on the basis of other natural language words, which
occur in text data (Sect. 13.2.1) or are directly produced by humans for individual
words (Sect. 13.2.2).

13.2.1 Distributional Models

Distributional models of word meaning specify mechanisms for automatically con-
structing semantic representations from text corpora. They represent words through
vectors which capture their relation to other words, based on the distributional
hypothesis [40] postulating that words that appear in similar linguistic contexts tend
to have related meanings. These vector space models (VSMs) can mathematically
compare the meaning of two words by geometrically estimating their similarity,
e.g. as the cosine of the angle [21] between their vectors.

A well-known instance of VSMs are constructed by analysing a text corpus and
extracting the co-occurrence frequency of each target word with its contextual ele-
ments, such as context words or documents (e.g. [63]). Each target word is then
represented as a vector whose components correspond to contextual elements and
whose entries give their frequency of co-occurrence with the target word, weighted
by schemes such as mutual information. The dimensionality of the vector space
may further be reduced by means of an appropriate method, such as singular value
decomposition (SVD) [21, 59]. VSMs based on co-occurrence counts have been suc-
cessfully used in many natural language applications (see [100], and the references
therein) and in cognitive science on various simulation tasks (see [38]). In our work,
we apply a distributional method [4] to extract attribute-centric representations of
words from a text corpus.

4Available at http://homepages.inf.ed.ac.uk/csilbere/resources.html.

http://homepages.inf.ed.ac.uk/csilbere/resources.html
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In recent years, a variety of models have been proposed that use deep (and shal-
low) network architectures to learn distributed word representations corresponding
to vectors of activation of network units, a.k.a. word embeddings [7, 19, 44, 69, 70].
The models embed each word into a continuous space via an embedding matrix to
be learned. Typically, the embeddings are initialised randomly and then optimised
with respect to predicting the contexts in which the words occur in a text corpus.
Mikolov et al.’s [69] skip-gram model has become one of the standard choices for
NLP approaches leveraging word representations (see Sect. 13.5.1). These models,
however, usually cannot deal with out-of-vocabulary words. Our model learns dis-
tributed representations bymapping attribute-based representations into a distributed
space and which hence can be applied to encode new words.

13.2.2 Models Based on Human-Produced Attributes

A long-standing tradition in cognitive science is the assumption that meaning rep-
resentations are based on attributes Mervis and Rosch (e.g. [68]), Sloman et al.
(e.g. [91]). These are human-produced natural language properties and typically
include visual attributes (e.g. has scales, is yellow, has stripes, made of metal), but
also encode knowledge of concepts with respect to other sensory properties (gus-
tatory, acoustic, etc., such as tastes sweet, rattles), and non-perceptual attributes,
such as encyclopaedic properties (e.g. is tropical, is poisonous) or taxonomic rela-
tions (e.g. a_herbivore). Attribute-based theories of lexical semantic representation5

[20, 48, 104, inter alia] use such attributes to computationally model phenomena
of human cognition, e.g. categorisation and lexical priming. Given the context of
this book, it is important to note that these models do not use attributes recognised
automatically in, e.g. an image depicting an object to which a word can refer, but
rely on the attribute annotations produced by humans for individual words. We will
discuss visual attributes from images in Sect. 13.3.

Traditionally, attribute-based representations havebeen either directly hand-coded
by the researchers [18, 92], or induced in shallow neural network models using
the attributes as knowledge source to study semantic memory and its impairments
(e.g. [82]).

Modern attribute-based models Grondin et al. (e.g. [39]), O’Connor et al. (e.g.
[73]), Rogers et al. (e.g. [83]), Taylor et al. (e.g. [99]), Tyler and Moss (e.g. [101]),
Voorspoels et al. (e.g. [109]) use data collected in attribute norming studies, in which
a large group of humans are presented with a series of words and asked to list relevant
attributes of the things to which the words refer [24, 66, 107]. Such attribute norms6

are widely regarded as proxy for sensorimotor experience. They provide a cue to

5In the context of semantic representations, attributes are often called features or properties in the
literature. For the sake of consistency of the present work, we will adhere to the former term.
6They are often termed semantic feature production norms (e.g. [66]) or property norms (e.g. [24])
in the literature.
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aspects of humanmeaning representations which have developed through interaction
with the physical environment [66], and are used to verbally convey perceptual and
sensorimotor information (e.g. is yellow, smells bad, used by twisting).

Our neural network model induces word representations by augmenting it with
attribute-based input vectors. However, to the best of our knowledge, we present the
first model to use as input attribute activations automatically extracted from text and
image data.

13.2.3 Grounded Semantic Spaces

Grounded semantic spaces are essentially distributional models augmented with per-
ceptual information. Existing models mainly differ with respect to the type of per-
ceptual information used and the way it is integrated with linguistic information.

Some models [2, 41, 90] use attributes norms as an approximation of the per-
ceptual environment. Other models focus on the visual modality and exploit image
databases, such as ImageNet [22] or ESP [108]. A few approaches [15, 31] use
visual words which they derive by clustering SIFT descriptors [62] extracted from
images.More recently, models which combine both attribute norms and visual words
have also been introduced [84]. In other work [51, 60] representations for the visual
modality are obtained directly from image pixels using the feature extraction layers
of a deep convolutional neural network (CNN) trained on a labelled object recogni-
tion data set. Finally, some models use human generated image tags as a proxy for
visual information [13, 41].

As far as the integration mechanism is concerned, the simplest method is to con-
catenate the vectors corresponding to a word’s perceptual and linguistic representa-
tion [12, 51]. Other approaches infer bimodal representations over latent variables
responsible for the co-occurrence of words over featural dimensions. Bruni et al.
[15] concatenate two independently constructed textual and visual spaces and sub-
sequently project them onto a lower dimensional space using SVD. Several models
[2, 31, 84] present extensions of Latent Dirichlet Allocation [10], where topic dis-
tributions are learned from words and other perceptual units treating them both as
observed variables. Hill and Korhonen [41] extend the skip-gram network model
[69] in an analogous fashion; in Lazaridou et al.’s [60] extension of the skip-gram
model the representations are trained to predict linguistic and visual features. In most
cases, the visual and textual modalities are decoupled in that they are obtained inde-
pendently e.g. from text corpora and feature norms or image databases (but see [31],
for an exception).

Our model uses stacked autoencoders to learn higher level vector representations
from textual and visual input. Rather than simply adding perceptual information to
textual data it integrates both modalities jointly in a single representation which is
desirable, at least from a cognitive perspective. It is unlikely that we have separate
representations for different aspects of word meaning [83]. Following earlier work
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discussed above, we also train our model on independently collated linguistic and
visual data.However, in our case, the twomodalities are unified in their representation
by natural language attributes.

13.3 Representing Word Meaning with Attributes
from Images and Text

In our approach to perceptually ground meaning representations of words we focus
on the visual modality as a major source of perceptual information, and represent
it by visual attributes which we obtain automatically from images, as we describe
below. Analogously, we represent the textual modality by means of textual attributes
whichwe automatically extract from text data using an existing distributionalmethod
([4]; Sect. 13.3.2).

Our choice of an attribute-centric approach is motivated by theoretical arguments
from cognitive science and computer vision research. From a cognitive perspective,
the use of attributes for meaning representations is endorsed by its long-standing
tradition in cognitive science, as discussed in Sect. 13.2.2. In brief, attributes are the
medium humans naturally use to verbally convey perceptual, taxonomic, sensori-
motor, and functional knowledge of concepts. From a computer vision perspective,
attributes are advantageous for several reasons. In order to describe visual phenomena
(e.g. objects, scenes, faces, actions) in natural language, computer vision algorithms
traditionally assign each instance a categorical label (e.g. apple, sunrise, Sean Con-
nery, drinking). Attributes, on the other hand, offer a means to obtain semantically
more fine-grained descriptions. They can transcend category and task boundaries
and thus provide a generic description of visual data and, consequently, their depic-
tions (e.g. both apples and balls are round, forks and rakes have a handle and have
tines). In addition to facilitating inter-class connections bymeans of shared attributes,
intra-class variations can also be captured, hence offering a means to discriminate
between instances of the same category (e.g. birds can have long beaks or short
beaks). Moreover, attributes allow to generalise to new instances for which there are
no training examples available. We can thus say something about depicted entities
without knowing their object class. This makes attributes efficient, since they obviate
the training of a classifier for each category.

Furthermore, from a modelling perspective, attributes occupy the middle ground
between non-linguistic (low- ormid-level) image features and linguistic words.More
precisely, attributes constitute a medium that is both, machine detectable and human
understandable. They crucially represent image properties, however by being words
themselves, they can be easily integrated in any text-based model thus eschewing
known difficulties with rendering images into word-like units.
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13.3.1 Visual Attributes from Images

Initial work on visual attributes for image data [32] focussed on simple colour and
texture attributes (e.g. blue, stripes) and showed that these can be learned in a weakly
supervised setting from images returned by a search engine when using the attribute
as a query. Farhadi et al. [28] were among the first to use visual attributes in an
object recognition task. Using an inventory of 64 attribute labels, they developed
a dataset of approximately 12,000 instances representing 20 objects from the PAS-
CAL VOC 2008 [26]. Lampert et al. [57] showed that attribute-based representa-
tions can be used to classify objects when there are no training examples of the
target classes available (zero-shot learning; see also Chap.2 of this book), provided
their attributes are known. Their dataset contained over 30,000 animal images and
used 85 attributes (e.g. brown, stripes, furry, paws) from the norming study of Osh-
erson et al. [74]. Similar work was done by Parikh and Grauman [75], who use
relative attributes indicating their degree of presence in an image compared to other
images (e.g. more smiling than; see also Part II of this book). The use of attributes for
zero-shot learning was also explored in the context of scene classification ([76], see
also Chap.11) and action recognition [61]. Russakovsky and Fei-Fei [86] learned
classifiers for 20 visual attributes on ImageNet [22] with the goal of making visual
inter-category connections across a broad range of classes on the basis of shared
attributes (e.g. striped animals and striped fabric). The ability of attributes to capture
intra-category variations has in turn been leveraged in approaches for face verifi-
cation [55], domain-specific image retrieval [55, 76, 81], and fine-grained object
recognition ([25]; see also Chap.10). The use of visual attributes extracted from
images in models of semantic representations is novel to our knowledge.

13.3.1.1 The Visual Attributes Dataset (VISA)

A key prerequisite for learning attribute classifiers for images is the availability of
training data comprising a large number of images along with attribute annotations.
Existing image databases of objects and their attributes focus on a small number of
categories [28], or on a specific category, such as animals [57], birds [110], faces
[54] or clothing items [16]. Some databases provide attribute annotations for scenes
([56, 76], see Chap.11) or textures [17]. Other, general-purpose image collections
cover a broad range of object categories, but provide no [46, 108] or little [22, 86,
87] attribute information.

Since our goal is to develop models that are applicable to many words from
different categories, we created a new dataset. It shares many features with previous
work [28, 57], but differs in focus and scope, covering a larger number of object
classes and attributes. We chose to create the dataset on top of the image ontology
ImageNet7 [22] due to its high coverage of different objects, the high quality of its

7Available at http://www.image-net.org.

http://dx.doi.org/10.1007/978-3-319-50077-5_2
http://dx.doi.org/10.1007/978-3-319-50077-5_11
http://dx.doi.org/10.1007/978-3-319-50077-5_10
http://dx.doi.org/10.1007/978-3-319-50077-5_11
http://www.image-net.org
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images (i.e. cleanly labelled and high resolution), and its organisation according to
the hierarchical structure of the lexical database WordNet [29].
Concepts and ImagesWe created the dataset for the nominal concepts contained in
McRae et al.’s [66] attribute norms (henceforth the McRae norms), as they cover a
wide range of concrete concepts including animate and inanimate things (e.g. ani-
mals, clothing, vehicles) and are widely established in cognitive science research.
Images for the concepts in the McRae norms were harvested from ImageNet [22].
The McRae norms contain 541 concepts out of which 516 appear in ImageNet and
are represented by nearly 700K images overall. The average number of images per
concept is 1,310 with the most popular being closet (2,149 images) and the least
popular prune (5 images).
Attribute Annotation Our aim was to develop a set of visual attributes that are both
discriminating and cognitively plausible in the sense that humans would generally
use them to describe a concrete concept. As a starting point, we thus used the visual
attributes from the McRae norms. Attributes capturing non-visual attributes, such as
other primary sensory (e.g. sound) or encyclopaedic information, were not taken into
account. For example, is_purple is a valid visual attribute for an eggplant, whereas
a_vegetable is not, since it cannot be visualised. Collating all the visual attributes in
the norms resulted in a total of 676. Similar to Lampert et al. [57], we conducted the
annotation on a per-concept rather than a per-image basis (as, e.g. [28]).However, our
methodology is slightly different from Lampert et al. [57] in that we did not simply
transfer the attributes from the norms to the concepts in question but modified and
extended them during the annotation process explained below, using a small fraction
of the image data as development set (see Sect. 13.3.1.2 for details on the latter).

For each concept (e.g. eggplant), we inspected the images in the development
set and chose all visual attributes contained in the McRae norms that applied. If an
attribute was generally true for the concept, but the images did not provide enough
evidence, the attributewas nevertheless chosen and labelledwith<no_evidence>.
For example, a plum has_a_pit, but most images in ImageNet show plums where only
the outer part of the fruit is visible. We added new attributes which were supported
by the image data but missing from the initial set as given by the norms. For example,
has_lights and has_bumper are attributes of cars but are not included in the norms. In
general, we were conservative in adding new attributes since our aim was to preserve
the cognitive plausibility of the original attribute norms. For this reason, we added
entirely new attributes only when we considered them to be on the same level of
granularity as the attributes of the McRae norms.

There are several reasons for choosing the described annotation scheme instead of
transferring the McRae attributes directly. Firstly, it makes sense to select attributes
corroborated by the images. Secondly, by looking at the actual images, we could
eliminate errors in the McRae norms. For example, eight study participants erro-
neously thought that a catfish has_scales. Thirdly, during the annotation process, we
normalised synonymous attributes (e.g. has_pit and has_stone) and attributes that
exhibited negligible variations in meaning (e.g. has_stem and has_stalk). Finally, our
aim was to collect an exhaustive list of visual attributes for each concept which is
consistent across all members of a category. This is unfortunately not the case in
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the McRae norms. Participants were asked to list up to 14 different properties that
describe a concept. As a result, the attributes of a concept denote the set of properties
humans consider most salient. For example, both, lemons and oranges have_pulp.
But the norms provide this attribute only for the second concept.

Annotation proceeded on a category-by-category basis, e.g. first all food-related
concepts were annotated, then animals, vehicles, and so on. Two annotators (one of
them is the author of this chapter) developed the set of attributes for each category.
One annotator first labelled concepts with their attributes as described above, and
the other annotator reviewed the annotations, making changes if needed. Finally,
annotations were revised and compared per category in order to ensure consistency
across all concepts of that category. Attributes were grouped in ten general classes
(e.g. anatomy, parts) shown in Fig. 13.1.

Overall, we discarded or modified 262 visual attributes of the McRae norms, and
added 294 attributes. On average, each concept was annotated with 15 attributes;
approximately 11.5 of these were not part of the set of attributes created by the
participants of the McRae norms for that concept even though they figured in the
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Table 13.1 Human-authored attributes for bear , eggplant, car .<ne> stands for<no_evidence>

attribute sets of other concepts. Furthermore, on average two McRae attributes per
conceptwere discarded. Examples of concepts and their attributes fromour database8

are shown in Table13.1.

13.3.1.2 Automatically Extracting Visual Attributes

Data For each concept in the visa dataset, we partitioned the corresponding images
into a training, development, and test set. For most concepts the development set
contained a maximum of 100 images and the test set a maximum of 200 images.
Concepts with less than 800 images in total were split into 1/8 test and development
set each, and 3/4 training set. Image assignments to the splits were done randomly
in general. However, we wanted the test set to be composed of as many images with
bounding box annotations as possible. We therefore first assigned images for which
ImageNet provided bounding boxes to the splits, starting with the test set, before
assigning the remaining images. To learn a classifier for a particular attribute, we
used all images in the training data, totalling to approximately 550K images. Images
of concepts annotated with the attribute were used as positive examples, and the rest
as negative examples.
Training Attribute Classifiers In order to extract visual attributes from images, we
followed previous work [28, 57] and learned one classifier for each attribute that had
been assigned to at least two concepts in our dataset. We furthermore only consid-
ered attribute annotations that were corroborated by the images, that is, we ignored
those labelled with <no_evidence>. This amounts to 414 classifiers in total. We
used L2-regularised L2-loss linear support vector machines (SVM, [27]) to learn the

8Available at http://homepages.inf.ed.ac.uk/s1151656/resources.html.

http://homepages.inf.ed.ac.uk/s1151656/resources.html
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attribute predictions, and adopted the training procedure of Farhadi et al. [28]. We
optimised cost parameter C of each SVM on the training data, randomly partition-
ing it into a split of 70% for training, and 30% for validation. The final SVM for
an attribute was trained on the entire training data, i.e. on all positive and negative
examples.
Features We used the four different feature types proposed by Farhadi et al. [28],9

namely colour, texture, visual words, and edges. For each feature type, an image
(or an image region) was represented using a histogram based on clustered feature
descriptors (bag-of-words approach). Texture descriptors [103] were computed for
each pixel and quantised to the nearest 256 k-means centres. Edges were detected
using a standard Canny detector and their orientations were quantised into eight bins.
Colour descriptors were computed in the LAB colour space. They were sampled for
each pixel and quantised to the nearest 128 k-means centres. Visual words were
constructed with a HoG spatial pyramid using 2 scales per octave. HoG descriptors
were computed using 8 × 8 blocks and a 4 pixel step size and then quantised into 1000
k-means centres (visual words). Individual histograms were computed for the whole
image or a bounding box (if available). With the purpose to represent shapes and
locations, six additional histogramswere generated for each feature type, by dividing
the image (or region) into a grid of three vertical and two horizontal blocks, and
computing a histogram for each block in the grid separately. The resulting seven
histograms per feature typewere finally normalisedwith the l2-normand then stacked
together.
Evaluation Figure13.2 shows classifier predictions for test images from concepts
seen by the classifiers during training (top), and from new, i.e. unseen, concepts
not part of the visa dataset (bottom), respectively. We quantitatively evaluated the
attribute classifiers by measuring the interpolated average precision (AP, [88]) on
the test set. Since the reference annotations contained in visa are concept-based,
we perform the evaluation on the basis of concept-level predictions as the centroid
of all attribute predictions for the images belonging to the same concept (see below
for details on how we compute the concept-level predictions); specifically, we plot
precision against recall based on a threshold.10 Recall is the proportion of correct
attribute predictions whose prediction score exceed the threshold to the true attribute
assignments given by visa. Precision is the fraction of correct attribute predictions
to all predictions exceeding the threshold. The AP is the mean of the maximum
precision at eleven recall levels [0, 0.1, ..., 1]. The precision/recall curve is shown in
Fig. 13.3; the attribute classifiers achieved a mean AP of 0.52.

13.3.1.3 Deriving Visual Representations of Concepts

Note that the classifiers predict attributes on an image-by-image basis; in order to
describe a concept w by its visual attributes taking into account multiple images

9The code by [28] is available at http://vision.cs.uiuc.edu/attributes/ (last accessed in May 2015).
10Threshold values ranged from 0 to 0.9 with 0.1 stepsize.

http://vision.cs.uiuc.edu/attributes/
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is shiny is deep made of plastic
is round made of stainless steel
made of iron has screws has lid
has lever

has fur has jaws has whiskers
has tongue has nose has eyes
has toes has mouth has neck
has teeth has ears has tail is grey
has claws has 4 legs has feet
has head has snout has paws

has windshield has windows has roof
has windshield wiper has door
has light has steering wheel differ-
ent colours has 4 wheels is large
has bonnet has number plate
has bumper has mirror has wheels
made of aluminium has coachwork
has windows has many floors
made of stone has chimney
has tiled roof made of brick
has door has roof has walls has spire
has balcony is grey has wires is large
has carving

has bark has branches has buds
has cones has flowers has leaves
has needles has stem is green

has carving has chimney has door
has many floors has roof has walls
has wheels has windows is high
is large is rectangular made of logs
made of wood

has long handle has windows
is braided is concave is parabolic
made of fibres

has branches has flowers
has green top has layers has leaves
has stalks has stem is green is leafy
is red

Fig. 13.2 Attribute predictions for concepts seen (from top left to bottom right: kettle, rat, jeep,
house), and not seen during training (ailanthus, boathouse, shopping basket, coraltree)
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Fig. 13.3 Attribute classifier performance for different thresholds δ (test set)

representing w, we need to aggregate their attributes into a single representation. We
use a vector-based representation where each attribute corresponds to a dimension of
an underlying semantic space and concepts are represented as points in this attribute
space. Just as in text-based semantic spaces, we can thus quantify similarity between
two concepts by measuring the geometric distance of their vectors. Since we encode
visual attributes, the underlying semantic space is perceptual, and so is the similarity
we can measure.



13 Grounding the Meaning of Words with Visual Attributes 343

co
nc
ep
t
ch
ic
k

−0.5−0.5 1.01.0 0.70.7 1.01.0 −0.7−0.7 0.10.1 0.10.1 0.60.6
0.00.0 0.80.8 0.50.5 0.90.9 −0.3−0.3 −0.2−0.2 0.10.1 0.70.7

0.10.1 0.60.6 0.80.8 0.60.6 0.20.2 0.20.2 −0.5−0.5 0.50.5
−0.2−0.2 0.90.9 0.70.7 0.90.9 −0.6−0.6 −0.1−0.1 −0.3−0.3 0.30.3

−0.2−0.2 0.80.8 0.70.7 0.80.8 −0.4−0.4 0.00.0 −0.2−0.2 0.50.5

Images Iconcept Visual vectors for Iconcept Visual centroid pconcept

ma
de
of
nyl
on

ma
de
of
nyl
on

has
eye
s

has
eye
s

is y
ello

w

is y
ello

w

has
fea
the
rs

has
fea
the
rs

has
sea
ms

has
sea
ms

is c
olo
rfu
l

is c
olo
rfu
l

is s
hin
y

is s
hin
y

flie
s

fies

Fig. 13.4 Visual representation for the concept chick. Attribute classifiers predict attributes for
example images depicting chicks. The prediction scores are then converted into vectors (first arrow).
To compute a single visual attribute vector for a concept, all vectors are aggregated into pchick ,
respectively, according to Eq. (13.1) (second arrow)

We construct visual vector representations as follows. For each image xw ∈ Iw
of concept w, we output an A-dimensional vector containing prediction scores
scorea(xw) for attributes a = 1, ..., A.11 We transform these attribute vectors into
a single vector pw ∈ R

1×A by computing the centroid of all vectors for concept w:

pw = (
1

|Iw|
∑

xw∈Iw

scorea(xw))a=1,...,A (13.1)

The construction process is illustrated in Fig. 13.4 by the example concept chick.
In Table13.2 (second column) we give the six nearest neighbours for six example
concepts (first column) from our dataset. Nearest neighbours for a concept were
found by measuring the cosine similarity between the visual attribute vectors p of
that concept and all other concepts in our dataset and choosing the six concepts
with the highest similarity. For comparison the table also shows the six nearest
neighbours when the example concepts are represented by their textual attribute
vectors (Table13.2, third column; see below for their creation) and by their bimodal
vector representations as learned with our SAE model (Table13.2, last column; see
Sect. 13.3).

13.3.2 Textual Attributes

Several methods have been developed for automatically extracting norm-like
attributes from text using pattern-based approaches and co-occurrence association
measures [3], more elaborate natural language processing techniques and Word-

11For simplicity, we use the symbol w to denote both, the concept and its index. Analogously,
symbol a denotes the attribute and its index.
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Table 13.2 Example concepts (column 1) and their sixmost similar concepts computed on the basis
of visual and textual attribute-based representations (columns 2 and 3, respectively) and bimodal
representations learned by the SAE model (column 4) in order of decreasing cosine similarity

Concept Nearest neighbours

Visual Textual Bimodal (SAE)

ambulance van truck taxi bus
limousine jeep

helicopter trolley van taxi
train truck

taxi van truck bus train
trolley

bison ox bull pony elephant
bear cow

elk buffalo deer caribou
bear otter pig pony

buffalo bear elephant
caribou deer sheep

brush paintbrush pencil ladle
hammer screwdriver pin

comb paintbrush vest
scissors doll coat

comb paintbrush pencil
scissors razor pen

microwave oven shelves stove
cabinet freezer radio

stove oven freezer radio
pot colander

radio stove oven freezer
stereo fridge

scarf gloves shawl socks
sweater veil pajamas

shawl sweater cloak veil
gown robe

shawl sweater pajamas
skirt socks veil

Net [23] as well as manual extraction rules [50]. A fully unsupervised template-
based approach was proposed by Baroni et al. ([4], Strudel) which extracts weighted
concept-attribute pairs (e.g. chick–bird:n, chick–brood:v ) from a text corpus.We opted
for using Strudel to obtain textual attributes for concepts due to its knowledge-lean
approach—it merely expects input texts tagged with parts-of-speech (PoS)—and the
fact that it has a bias towards non-perceptual attributes such as actions, functions or
situations [4].

Strudel12 takes as input a set of target concepts and a set of patterns, and extracts a
list of attributes for each concept. The attributes are not known a priori, but are directly
extracted from the corpus. Unlike many other distributional models, Strudel induces
meaning representations that describe a concept via its properties instead of a bag
of co-occurring words. Each concept-attribute pair is weighted with a log-likelihood
ratio expressing the pair’s strength of association.

It is relatively straightforward to obtain a textual semantic space from Strudel’s
extracted attributes. Specifically, we represent each target word as a vector in a high-
dimensional space, where each component corresponds to some textual attribute
(entries are set to word-attribute ratio scores). Example representations for the con-
cepts canary and trolley are shown in Table13.3. In accordance with the terminology
for the visual modality, we will henceforth refer to the Strudel attributes as textual
attributes.

12The software is available at http://clic.cimec.unitn.it/strudel/.

http://clic.cimec.unitn.it/strudel/
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Table 13.3 Examples of attribute-based representations provided as input to our autoencoders
Visual eat_seeds has_beak has_claws has_handlebar has_wheels

canary 0.05 0.24 0.15 0.00 –0.10

trolley 0.00 0.00 0.00 0.30 0.32

Textual bird:n breed:v cage:n chirp:v fly:v
canary 0.16 0.19 0.39 0.13 0.13

trolley –0.40 0.00 0.00 0.00 0.00

Visual has_wings yellow of_wood
canary 0.19 0.34 0.00

trolley 0.00 0.00 0.25

Textual track:n ride:v run:v rail:n wheel:n
canary 0.00 0.00 0.00 0.00 –0.05

trolley 0.14 0.16 0.33 0.17 0.20

13.4 Visually Grounding Word Meaning with Attributes

In the following, we will present our model for visually grounded meaning rep-
resentations applies deep learning techniques in a neural network architecture for
modality integration, using our attribute-centric representations as input. We intro-
duce the details of our model in Sect. 13.4.3. Our model builds upon autoencoders to
learn higher level meaning representations for single words. We first briefly review
autoencoders placing emphasis on aspects relevant to our model which we then
describe in Sect. 13.4.3.

13.4.1 Multimodal Deep Learning

The use of stacked autoencoders to extract a shared lexical meaning representation
is new to our knowledge, although, as we explain below related to a large body of
work on multimodal deep learning in network architectures.

Work which focusses on integrating words and images has used a variety of
architectures including deep [96, 97] or restricted Boltzmann machines [95], and
autoencoders [30]. Similar methods were employed to combine other modalities
such as speech and video or images [45, 52, 72, 97].

Although our model is conceptually similar to these studies (especially those
applying stacked autoencoders), it differs in at least two aspects. First, many former
models learn bimodal representationswith the aim to reason about onemodality given
the respective other modality Huang and Kingsbury (e.g. [45]), Ngiam et al. (e.g.
[72]), Sohn et al. (e.g. [95]). In contrast, our goal is to learn bimodal representations
in which complimentary and redundant information from different modalities is
unified in an optimal way. Second, most approaches deal with a particular end task
(e.g. image classification or speech recognition, but see [97] for an exception), and
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fine-tune the network parameters with an appropriate supervised criterion on top of
the joint representations Huang and Kingsbury (e.g. [45]), or use the latter as features
for training a conventional classifier Ngiam et al. (e.g. [72]), Sohn et al. (e.g. [95]). In
contrast,wefine-tuneour autoencoder using a semi-supervised criterion. Specifically,
we use a combined objective comprising the reconstruction of the attribute-based
input and the classification of the input object. The latter, supervised criterion is used
as a means to drive the learning process, as we will explain in more detail later on.

Furthermore, ourmodel is defined at a finer level of granularity thanmost previous
work—it computes representations for individualwords—and leverages information
from decoupled data sources, i.e. image collections and text corpora. Former work
on multimodal representation learning builds upon images and their accompanied
tags [30, 95, 97], or sentential descriptions of the image content for the purpose of
image and description retrieval or description generation [49, 53, 64, 94].

13.4.2 Background

Autoencoders An autoencoder (AE) is an unsupervised feedforward neural net-
work which is trained to reconstruct a given input from its latent distributed rep-
resentation [6, 85]. It consists of an encoder fθ which maps an input vector x(i)

to a hidden (latent) representation y(i) = fθ (x(i)) = s(Wx(i) + b), with s being a
nonlinear activation function, such as a sigmoid function, and W and b being
the weight matrix and an offset vector, respectively. A decoder gθ ′ then aims to
reconstruct input x(i) from y(i), i.e. x̂(i) = gθ ′(y(i)) = s(W′y(i) + b′). The training
objective is the determination of parameters θ̂ = {W,b} and θ̂ ′ = {W′,b′} that min-
imise the average reconstruction error over a set of input vectors {x(1), ..., x(n)}:
θ̂ , θ̂ ′ = arg minθ,θ ′ 1

n

∑n
i=1 L(x(i), gθ ′( fθ (x(i)))), where L is a loss function, such as

cross-entropy. Parameters θ and θ ′ can be optimised by gradient descent methods.
AEs are ameans to learn representations of some input by retaining useful features

in the encoding phase which help to reconstruct (an approximation of) the input,
whilst discarding useless or noisy ones.

The use of a bottleneck hidden layer to produce under-complete representations of
the input is one strategy of guiding parameter learning towards useful representations.
The literature describes further strategies, such as constraining the hidden layer to
yield sparse representations [80], or denoising.
Denoising AEs The training criterion with denoising AEs is the reconstruction of
clean input x(i) given a corrupted version x̃(i) [105, 106]. The reconstruction error
for an input x(i) with loss function L then is:

err(x(i), x̃(i)) = L(x(i), gθ ′( fθ (x̃(i)))) (13.2)

One possible corruption process is masking noise, where the corrupted version x̃(i)

results from randomly setting a fixed proportion v of units of x(i) to 0. The underlying
idea of denoising AEs is that if a latent representation is capable of reconstructing the
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actual input from its corruption, it presumably has learned to capture the regularities
and interrelations of the structure of the input and can therefore be deemed a good
representation.
Stacked AEs Several (denoising) AEs can be used as building blocks to form a deep
neural network [8, 106]. For that purpose, theAEs are often pre-trained layer by layer,
with the current layer being fed the latent representation yielded by the previous,
already pre-trained, AE as input. Using this unsupervised pre-training procedure,
initial parameters are found which approximate a good solution. Subsequently, the
original input layer and hidden representations of all the AEs are stacked yielding a
deep network.

The parameters of this network can be optimised (fine-tuned) with respect to the
objectives at hand. More precisely, a supervised criterion can be imposed on top
of the last hidden layer such as the minimisation of a prediction error on a super-
vised task [6]. Another approach is to unfold the stacked AEs and fine-tune their
parameters with respect to the minimisation of the global reconstruction error [42].
Alternatively, a semi-supervised criterion can be used [79, 93] through combina-
tion of the unsupervised training criterion (global reconstruction) with a supervised
criterion, that is, the prediction of some target given the latent representation.

13.4.3 Grounded Semantic Representations
with Autoencoders

To learn meaning representations of single words from textual and visual input, we
employ stacked (denoising) autoencoders. Both input modalities are vector-based
representations of the objects the target words refer to (e.g. canary). The vector
dimensions correspond to textual and visual attributes, as exemplified in Table13.3.

13.4.3.1 Architecture

We first pre-train a stack of two autoencoders (AEs) for each modality separately.
Then, we join the modalities by feeding the latent representations (encodings)
induced by their respective second AE simultaneously to another AE. Its hidden
layer y̆ yields word representations that capture the meaning of words across both
modalities. In the final training phase, we stack all layers and unfold them in order
to fine-tune this SAE. Figure13.5 illustrates the architecture of the model. As can
be seen from the figure, we additionally add a softmax-layer on top of the bimodal
encoding layer (shown in the centre of Fig. 13.5, labelled as softmax), which outputs
predictions with respect to the object label of an input (e.g. dog, baseball). It serves as
a supervised training criterion in addition to the unsupervised reconstruction objec-
tive during fine-tuning, with the aim of guiding the learning towards descriptive
and discriminative (bimodal) representations that capture the structure of the input
patterns within and across the two modalities, and discriminate between different
objects.
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Fig. 13.5 Stacked AE trained with semi-supervised objective. Input to the model are single-word
vector representations obtained from text and images. The edges are labelled with the weight
matrices to be learned (bias vectors are omitted for the sake of clarity)

After training, a word is represented by its encoding in the bimodal layer, corre-
sponding to a vector y̆ of distributed unit activations (shown in the centre of Fig. 13.5).
An individual unit of y̆ does not represent a nameable attribute, but it is rather part
of a pattern formed by the interplay between the visual and linguistic characteristics
of the word it represents. Two words can then be compared on the basis of their
encodings (e.g. by measuring their cosine similarity), and the more their activation
patterns coincide, the more similar the words are assumed to be.

13.4.3.2 Model Details

Unimodal AEs For both modalities, we use the hyperbolic tangent function as acti-
vation function for encoder fθ and decoder gθ ′ and an entropic loss function for L .
The weights of each autoencoder (AE) are tied, i.e.W′ = WT . We employ denoising
AEs for pre-training the textual modality.

Regarding the visual AE, we derive a new (‘denoised’) target vector to be recon-
structed for each input vector x(i), and treat x(i) itself as corrupted input. The target
vector is derived as follows: each object o (or concept) in our data is represented by
multiple images. Each image in turn is rendered in a visual attribute vector x(i). The
target vector is the weighted aggregation of x(i) and the centroid x(o) of all attribute
vectors collectively representing object o. This denoising procedure compensates for
prediction errorsmade by the attribute classifiers on individual images.Moreover, not
all attributes which are true for a concept are necessarily observable from a relevant
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image. Attribute predictions for individual images therefore introduce corruption
with respect to the overall concept they represent.
Bimodal AE The bimodal AE is fed with the concatenated second hidden encodings
of the visual and textual modalities as input and maps these to a joint hidden layer y̆
of B units. We normalise both unimodal input encodings to unit length. Again, we
use tied weights for the bimodal autoencoder. We also actively encourage the AE
to detect dependencies between the two modalities while learning the mapping to
the bimodal hidden layer, and therefore apply masking noise to one modality with a
masking factor v, so that the corrupted modality optimally has to rely on the other
modality in order to reconstruct its missing input features.
Stacked Bimodal AEWe finally build a SAE with all pre-trained AEs and fine-tune
their parameters with respect to a semi-supervised criterion. That is, we unfold the
stacked AE (as shown in Fig. 13.5) and furthermore add a softmax output layer on
top of the bimodal layer y̆ that outputs predictions t̂ with respect to the inputs’ object
labels (e.g. boat):

t̂(i) = exp(W(6)y̆(i) + b(6))
∑O

k=1 exp(W
(6)
k. y̆(i) + b(6)

k )
, (13.3)

with weights W(6) ∈ R
O×B , b(6) ∈ R

O×1, where O is the number of unique object
labels. The overall objective to be minimised is then the weighted sum of the recon-
struction error Lr and the classification error Lc:

L = 1

n

n∑

i=1

(
δr Lr (x(i), x̂(i))+ δcLc(t(i), t̂(i))

)
+λR (13.4)

where δr and δc are weighting parameters that give different importance to the partial
objectives, Lc and Lr are entropic loss functions, and R is a regularisation term with
R = ∑5

j=1 2||W( j)||2 + ||W(6)||2, i.e. we use an L2 weight decay penalty (penalisa-
tion of the sum of squared weights). Finally, t̂(i) is the object label vector predicted
by the softmax function for input vector x(i), and t(i) is the correct object label,
represented as an O-dimensional one-hot vector.13

13.4.3.3 Model Properties

Ourmodel benefits from its deep learning architecture, obtainingmeaning representa-
tions frommultiple layers. The first layers operate on individual modalities, whereas
the final hidden layer combines them to a bimodal representation. This architecture
allows us to test different hypotheses with respect to word meaning. Specifically, we
can disentangle the contribution of visual or textual information, for instance by rep-
resenting words based on their unimodal encoding and contrasting them with their

13In a one-hot vector (a.k.a. 1-of-N coding), exactly one element is one and the others are zero. In
our case, the non-zero element corresponds to the object label.
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bimodal representation. Related bimodal models have used SVD [15], LDA [84], or
kCCA [90] to project the input data into a joint space directly. There is no hierarchy of
representationswith potentially increasing complexity, nor an intermediate unimodal
representation naturally connecting the input to the bimodal representation. Similarly
to models employing SVD or kCCA, our model can also perform dimensionality-
reduction in the course of representation learning by mapping to lower dimensional
hidden layers. However, in contrast to SVD, this is performed nonlinearly which we
argue allows to model complex relationships between visual and textual data.

Finally, in contrast to other network models which learn word embeddings from
randomly initialised input, our input vectors aremeaningful (they are attribute-based).
Themodel can therefore derive bimodal representations for out-of-vocabularywords,
and has furthermore the potential for inductive inference with respect to attributes
of new objects Johns and Jones (cf. [47]). For example, the model could be used to
infer textual attributes given visual attributes and vice versa. This inference ability
follows directly out of the model, without additional assumptions or modifications.
Previous models either do not have a simple way of projecting one modality onto
a joint space Andrews et al. (e.g. [2]), or altogether lack a mechanism of inferring
missing modalities.

13.5 Experiments

Vector-basedmodels aimed at representing themeaning of individual words are com-
monly evaluated against human judgements on word similarity or linguistic phenom-
ena which are dependent on similarity, such as categorisation [67]. We evaluate our
model on a word similarity and a categorisation task.14

13.5.1 Experiment 1: Word Similarity

We first give details on the evaluation dataset we used for the similarity task and then
explain how our SAE model was trained and describe comparison models.

13.5.1.1 Elicitation of Evaluation Dataset

In this experiment, we collected similarity ratings15 that capture the concepts con-
tained in the McRae norms. Although several relevant datasets exist, such as the
widely used WordSim353 [33] or the more recent Rel-122 norms [98], they contain
many abstract words, (e.g. love–sex or arrest–detention) which are not covered in

14See [89] for more experiments.
15Available at http://homepages.inf.ed.ac.uk/s1151656/resources.html.

http://homepages.inf.ed.ac.uk/s1151656/resources.html
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the McRae norms. This is for a good reason, as most abstract words do not have
discernible attributes, or at least attributes that participants would agree upon. The
new dataset we created consists exclusively of nouns from the McRae norms, and
contains similarity ratings for semantic as well as visual similarity.
Materials and Design Initially, we created all possible pairings over the concepts
of the McRae norms and computed the semantic relatedness of the corresponding
WordNet [29] synsets using Patwardhan and Pedersen’s [77] WordNet-based mea-
sure. We opted for this specific measure as it achieves high correlation with human
ratings and has a high coverage on our nouns. Next, we randomly selected 30 pairs for
each concept under the assumption that they are representative of the full variation of
semantic similarity. This resulted in 7,576 pairs. We split the pairs into overall 255
tasks; each task consisted of 32 pairs covering examples of weak to very strong
semantic relatedness, and furthermore contained at most one instance of each target
concept.
Participants and Procedure We used Amazon Mechanical Turk (AMT) to obtain
similarity ratings for the word pairs grouped into tasks. Participants were first pre-
sented instructions that explained the task and gave examples. They were asked to
rate a pair on two dimensions, visual and semantic similarity using a 5-point Lik-
ert scale (1 = highly dissimilar and 5 = highly similar). Note that they were not
provided with images depicting the concepts. Each task was completed by five vol-
unteers, all self-reported native English speakers. They were allowed to complete as
many tasks as they wanted. A total of 46 subjects (27 women, 18 men, 1 unspecified,
mean age: 38.5years, age range: 18–67) took part in the experiment and completed
between one and 147 tasks each. Participants were paid $0.5 per completed task.
Results Examples of the stimuli and elicited mean ratings are shown in Table13.4.
The similarity data was post-processed so as to identify and remove outliers. Sim-
ilarly to previous work [98], we considered an outlier to be any individual whose
mean pairwise correlation coefficient (Spearman’s ρ) fell outside two standard devi-
ations from the mean correlation. 11.5% of the annotations were detected as outliers
and removed. After outlier removal, we further examined how well the participants
agreed in their similarity judgements. We measured inter-subject agreement as the
average pairwise correlation coefficient between the ratings of all annotators for
each task. For semantic similarity, the mean correlation was ρ = 0.76 (Min = 0.34,
Max = 0.97, StD = 0.11) and for visual similarity ρ = 0.63 (Min = 0.19, Max =
0.90, StD = 0.14). These results indicate that the participants found the task rel-
atively straightforward and produced similarity ratings with a reasonable level of
consistency. For comparison, Patwardhan and Pedersen’s [77] measure achieved a
coefficient of ρ = 0.56 on the dataset for semantic similarity and ρ = 0.48 for visual
similarity. Finally, the correlation between the mean visual and semantic similarity
ratings is ρ = 0.70.

13.5.1.2 Comparison Models

We learned meaning representations for the concepts of the McRae norms which
are contained in the visa dataset. As shown in Fig. 13.5, our bimodal stacked
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Table 13.4 Mean semantic and visual similarity ratings for the concepts of the McRae norms with
varying degrees of similarity. Averaged across experiment participants

Word pairs Semantic Visual Word pairs Semantic Visual

pistol–revolver 5.0 5.0 clarinet–
keyboard_(musical)

4.3 1.3

cup–mug 5.0 4.3 car–scooter 4.0 1.7

gloves–mittens 5.0 4.2 gun–missile 4.0 1.0

bracelet–chain 2.8 4.0 screwdriver–wrench 3.6 1.4

bat_(baseball)–baton 2.8 4.0 pencil–wand 1.8 4.0

closet–elevator 1.5 2.8 bullet–thimble 1.0 3.0

autoencoder (SAE) model takes as input two (real-valued) vectors representing the
visual and textual modalities. Vector dimensions correspond to textual and visual
attributes, respectively. We maintained the partition of the visa image data into
training, validation, and test set and acquired visual vectors for each of the sets by
means of our attribute classifiers (see Sect. 13.3.1.3). We used the visual vectors of
the training and development set for training the AEs, and the vectors for the test set
for evaluation. We derived textual attribute vectors by means of Strudel [4] which
we ran on a 2009 dump of the English Wikipedia of about 800M words.16 We only
retained the ten attributes with highest log-likelihood ratio scores for each target
word, amounting to a total of 2,362 dimensions for the textual vectors. The textual
and visual vectors were scaled to the [−1, 1] range.

Model hyper-parameters17 were optimised on a subset of the freeword association
norms collected by [71]18 which covered the McRae norms. These norms were
established by presenting participants with a cue word (e.g. canary) and asking them
to name an associate word in response (e.g. bird, sing). For each cue, the norms
provide a set of associates and the frequencies with which they were named. During
training we used correlation analysis (ρ) to monitor the degree of linear relationship
between model cue-associate cosine similarities and human probabilities. The best
autoencoder on the word association task obtained a correlation coefficient of ρ =
0.33. This model has the following architecture: the textual denoising autoencoder
(Fig. 13.5, left-hand side) consists of 700 hidden units which are then mapped to the
second hidden layer with 500 units (the corruption parameter was set to v = 0.1); the
visual autoencoder (see Fig. 13.5, right-hand side) has 170 and 100 hidden units, in
the first and second layer, respectively. The 500 textual and 100 visual hidden units
feed a bimodal autoencoder containing 500 units, and masking noise was applied to
the textual modality with v = 0.2. The weighting parameters for the joint training
objective of the stacked autoencoder were set to δr = 0.8 and δc = 1 (see Eq. (13.4)).

16The corpus is downloadable from http://wacky.sslmit.unibo.it/doku.php?id=corpora.
17We performed random search over combinations of hyper-parameter values.
18Available at http://w3.usf.edu/FreeAssociation.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
http://w3.usf.edu/FreeAssociation
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We used the meaning representations obtained from the output of the bimodal layer
for the experiment.

We compare our SAE against unimodal autoencoders based solely on textual and
visual input (left- and right-hand sides in Fig. 13.5). We also compare our model
against a concatenation model as well as two latent inference approaches which
differ in their modality integration mechanisms. The first one is based on kCCAwith
a linear kernel. The second one emulates Bruni et al.’s [15] integration mechanism
based on SVD (see below). All these models run on the same data and are given input
identical to our model, namely attribute-based textual and visual representations.

We furthermore report results obtained with Bruni et al.’s [15] bimodal distrib-
utional model using their publicly available system [14]. Their textual modality is
represented by a 30K-dimensional co-occurrence matrix19 extracted from text cor-
pora, i.e. the ukWaC corpus (2 billion tokens)20 and WaCkypedia. Note that our
attribute-based input relies solely on the latter. The entries of the matrix correspond
to the weighted co-occurrence frequency between target and context words. Two
words are considered co-occurring if one of them occurs in the window of two con-
tent words on each side of the other word. Moreover, they extract visual information,
from the ESP game dataset [108] which comprises 100K images randomly down-
loaded from the Internet and tagged by humans (the average number of images per
tag is 70). The visual modality is represented by bag-of-visual-words histograms
built on the basis of clustered SIFT descriptors [62].

Finally,we also compare toMikolov et al.’s [69] skip-grammodel. Themodel uses
a neural network to learn state-of-the-art distributed word embeddings by optimising
the training objective of predicting the context words of an input word. It does
not integrate any perceptual information, representations are directly inferred from
large amounts of text data. In our experiments, we used the 300-dimensional vectors
trained on part of the Google News dataset which comprises 100B words.21 They
were trained using negative sampling (the objective is the distinction between the
target, i.e. a correct context word, from randomly sampled negative examples), and
sub-sampling of frequent words [69].

13.5.1.3 Results

We evaluate the models on the gathered word similarity dataset described in
Sect. 13.5.1.1. With each model, we measure the cosine similarity of the given word
pairs and correlate these predictions with the mean human similarity ratings using
Spearman’s rank correlation coefficient (ρ).

Table13.5 presents our results.As an indicator to howwell automatically extracted
attributes can approach the effectiveness of clean human generated attributes, we also
report results of amodel induced from theMcRae norms (see the row labelledMcRae

19We thank Elia Bruni for providing us with their data.
20From http://wacky.sslmit.unibo.it/doku.php?id=corpora.
21The vectors are available at https://code.google.com/p/word2vec/.

http://wacky.sslmit.unibo.it/doku.php?id=corpora
https://code.google.com/p/word2vec/
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Table 13.5 Correlation of model predictions against similarity

Models Semantic similarity Visual similarity

T V T+V T V T+V

McRae 0.71 0.49 0.68 0.58 0.52 0.61

Attributes 0.63 0.62 0.71 0.49 0.57 0.60

SAE 0.67 0.61 0.72 0.55 0.60 0.65

SVD – – 0.70 – – 0.59

kCCA – – 0.58 – – 0.56

Bruni – – 0.50 – – 0.44

Skip-gram 0.73 – – 0.56 – –

in the table). Each noun is represented as a vector with dimensions corresponding
to attributes elicited by participants of the norming study. Vector components are
set to the (normalised) frequency with which participants generated the correspond-
ing attribute. We show results for three models, using all attributes except those
classified as visual (columns labelled T), only visual attributes (V), and all available
attributes (T+V). The concatenationmodel (see rowAttributes inTable13.5) is based
on the concatenation (T+V) of textual attributes (obtained from Strudel) and visual
attributes (obtained from our classifiers; columns T and V, respectively). The auto-
matically obtained textual and visual attribute vectors serve as input to SVD, kCCA
and our bimodal stacked autoencoder (SAE). The third row in the table presents three
variants of our model trained on textual and visual attributes only (T and V) and on
both modalities jointly (T+V) (Table13.6).

Recall that participants were asked to provide ratings on two dimensions, namely
semantic and visual similarity. We would expect the textual modality to be more
dominant when modelling semantic similarity and conversely the perceptual modal-
ity to be stronger with respect to visual similarity. This is borne out in our unimodal
SAEs. The textual SAE correlates better with semantic similarity judgements (ρ =
0.67) than its visual equivalent (ρ = 0.61). And the visual SAE correlates better with
visual similarity judgements (ρ = 0.60) compared to the textual SAE (ρ = 0.55).
Interestingly, the bimodal SAE (T+V) is better than the unimodal variants on both
types of similarity judgements, semantic and visual.We hypothesise that bothmodal-
ities contribute complementary information and that the SAEmodel is able to extract
a shared representation which improves generalisation performance across tasks by
learning them jointly. The bimodal autoencoder (SAE, T+V) outperforms all other
bimodal models on both similarity tasks. It yields a correlation coefficient of ρ =
0.72 on semantic similarity and ρ = 0.65 on visual similarity. Human agreement on
the former task is 0.76 and 0.63 on the latter. Table13.7 shows examples of word
pairs with highest similarity according to the SAE model.

We also observe that simply concatenating textual and visual attributes (Attributes,
T+V) performs competitively with SVD and better than kCCA. This indicates that
the attribute-based representation is a powerful predictor on its own. With respect to
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Table 13.6 F-score results on ratings for the noun pairs of the McRae norms (Spearman’s ρ).
Concept categorisation

Models Categorisation

T V T+V

McRae 0.52 0.31 0.42

Attributes 0.35 0.37 0.33

SAE 0.36 0.35 0.43

SVD – – 0.39

kCCA – – 0.37

Bruni – – 0.34

Skip-gram 0.37 – –

Table 13.7 Word pairs with highest semantic and visual similarity according to SAE model. Pairs
are ranked from highest to lowest similarity

# Pair # Pair # Pair

1 pliers–tongs 5 chapel–church 9 cloak–robe 13 horse–pony

2 cathedral–church 6 airplane–
helicopter

10 nylons–trousers 14 gun–rifle

3 cathedral–chapel 7 dagger–sword 11 cello–violin 15 cedar–oak

4 pistol–revolver 8 pistol–rifle 12 cottage–house 16 bull–ox

models that do notmakeuse of attributes,we see thatBruni et al. [15] is out-performed
by all other attribute-based systems (columns T+V). Interestingly, skip-gram is the
best performing model on the semantic similarity task (column T, first block), but
falls short on the visual similarity task.

13.5.2 Experiment 2: Concept Categorisation

Concept learning and categorisation have been subject to many experimental stud-
ies and simulation approaches Goldstone et al. (see, e.g. [37], for an overview).
Existing models typically focus on a single modality, either perception or language.
For example, perceptual information is represented in form of hand-coded (binary)
values on a few dimensions Vanpaemel et al. (e.g. [102]), or by images Hsu et al.
(e.g. [43]), and linguistic representations are often derived from large text corpora
Frermann and Lapata (e.g. [35]). Very few approaches exist that use both, perception
and language [15, 111]. In this experiment, we induce semantic categories following
a clustering-based approach which uses the bimodal word representations learned
by our model.
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13.5.2.1 Experimental Setup

To obtain a clustering of nouns into categories, we use Chinese Whispers (CW, [9]),
a randomised, agglomerative graph-clustering algorithm. In the categorisation set-
ting, CW produces a hard clustering over a weighted graph whose nodes correspond
to words, and edges to cosine similarity scores between vectors representing their
meaning. At the beginning, each word forms an own category. All words are then
iteratively processed for a few repetitions in which each word is assigned to the
category (i.e. cluster) of the most similar neighbour words, as determined by the
maximum sum of (edge) weights between the word and the neighbour nodes per-
taining to the same category. CW is a non-parametric model, it induces the number of
clusters from the data as well as which nouns belong to these clusters. In our exper-
iments, we initialise CW with different graphs resulting from different vector-based
representations of the McRae nouns.

We evaluate model output against a gold standard set of categories created
by Fountain and Lapata [34]. The dataset contains a classification, (produced by
human participants) of theMcRae nouns into (possiblymultiple) semantic categories
(40 in total).22 We transformed the dataset into hard categorisations by assigning
each noun to its most typical category as extrapolated from human typicality ratings
Fountain and Lapata [see [34], for details].

We use the SAEmodel described in Experiment 1. Some performance gains could
be expected if (hyper-)parameter optimisation took place separately for each task.
However, we wanted to avoid overfitting, and show that our parameters are robust
across tasks and datasets. The SAE model is evaluated against the same comparison
models described in Experiment 1. We evaluate the clustering solution produced by
CW using the F-score measure introduced in the SemEval 2007 task [1]; it is the
harmonic mean of precision and recall defined as the number of correct members of
a cluster divided by the number of items in the cluster and the number of items in
the gold standard class, respectively.

13.5.2.2 Results

Our results on the categorisation task are given in Table13.6. In this task, simple con-
catenation of visual and textual attributes does not yield improved performance over
the individual modalities (see row Attributes in Table13.6). In contrast, all bimodal
models are better (SVDandSAE) than or equal (kCCA) to their unimodal equivalents
and skip-gram. The SAE outperforms both kCCA and SVD by a large margin deliv-
ering clustering performance similar to McRae’s human produced norms. Table13.8
shows examples of clusters produced by CW when using vector representations
provided by the SAE model. Note that we added the cluster labels manually for
illustration purposes.

22Available at http://homepages.inf.ed.ac.uk/s0897549/data/.

http://homepages.inf.ed.ac.uk/s0897549/data/
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Table 13.8 Examples of clusters produced by CW using the representations obtained from the
SAE model

Category Words

stick- like utensils baton, ladle, peg, spatula, spoon

religious buildings cathedral, chapel, church

wind instruments clarinet, flute, saxophone, trombone, trumpet, tuba

axes axe, hatchet, machete, tomahawk

entry points door, elevator, gate

ungulates bison, buffalo, bull, calf, camel, cow, donkey, elephant, goat,
horse, lamb, ox, pig, pony, sheep

13.6 Conclusions

This chapter presented the use of visual attributes predicted from images as a way of
physically grounding word meaning. We described our database (visa) which com-
prises visual attribute annotations of concrete nouns and a large set of images depict-
ing objects these nouns refer to. We explained how we obtain visual attribute-based
representations of words by means of attribute classifiers which we trained on visa.
Our deep stacked autoencoder architecture then learned visually grounded meaning
representations by simultaneously combining these visual attribute representations
with attribute vectors derived from text data. To the best of our knowledge, our model
is novel in its use of attribute-based input in a deep neural network. Experimental
results in two tasks, namely simulation of word similarity and word categorisation,
showed that our SAE model yields an overall better fit with behavioural data than
unimodal (textual or visual) models, and that it furthermore is more effective than
all bimodal comparison models.

Possible future work is to apply our model to image-based applications which
could benefit from linguistic information, such as zero-shot learning or basic-level
categorisation.
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