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In Silico ADME Techniques Used
in Early-Phase Drug Discovery

Matthew L. Danielson, Bingjie Hu, Jie Shen, and Prashant V. Desai

Abstract The process of drug discovery and development is time consuming and

expensive. In silico tools, in combination with in vitro and in vivo models, provide a

valuable resource to improve the efficiency of this process. In this chapter, we

provide an overview of various in silico tools and models used to identify and

resolve absorption, distribution, metabolism, and excretion (ADME) challenges in

drug discovery. In general, structure-based in silico techniques such as docking and

molecular dynamics simulations have limited applicability in the ADME space due

to the promiscuity of many ADME targets and the limited availability of high-

resolution 3-D structures. Pharmacophore models, a ligand-based in silico method,

can be used to identify key structural features responsible for the interaction with

the target of interest. However, due to broad ligand specificity and the probability of

multiple binding sites in many ADME targets, pharmacophore models have limited

prospective applicability across structurally diverse chemical scaffolds. Con-

versely, quantitative structure-property relationship (QSPR) models are capable

of extracting knowledge from a wide variety of chemical scaffolds and have

prospectively shown utility as predictive models for many ADME endpoints mea-

sured in the pharmaceutical industry. QSPR models, especially those based on

machine learning techniques, are known to have limited interpretability. To address

this challenge, the use of QSPR models is typically coupled with information

derived from trends between ADME endpoints and physicochemical properties

(e.g., lipophilicity, polar surface area, number of hydrogen bond donors, etc.)

during drug discovery. Furthermore, knowledge extracted by the matched molec-

ular pair analysis (MMPA) of ADME data provides insight that is used to identify

fragment replacements to improve the ADME characteristics of compounds.

In conclusion, an effective amalgamation of in silico tools is necessary to influence

the design of compounds that will possess favorable ADME properties. Finally, in

silico tools should never be used in isolation; they make up one arm of the
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integrated and iterative learning cycle that is comprised of in silico, in vitro, and

in vivo models that we recommend using to effectively drive a drug discovery

project.

Keywords In silico ADME • Quantitative structure-property relationship models •

Matched-molecular pair analysis • Predictive models • Physico-chemical properties

The drug discovery and development process is time consuming and expensive,

encompassing approximately 15 years and over two billion dollars to bring a drug

to market [1]. Stage-appropriate use of models is an integral part of the drug

discovery process. Early-phase drug discovery uses various in silico and in vitro

models to explore potency, ADME properties, and safety. As drug discovery pro-

gresses, preclinical in vivo animal models are used to estimate how a compound

will behave in humans, and ultimately model situations are created in a controlled

clinical environment (clinical models) before the compound is approved for use in

the general population.

In an attempt to reduce the time and cost associated with the drug discovery

process, in silico tools are one class of models employed throughout this process. In

silico tools have a direct impact on how drug discovery progresses and are espe-

cially useful in the early-phase of drug discovery where a clinical candidate is being

pursued and optimized. These tools are used to design and prioritize the synthesis of

compounds with desirable affinity, specificity, a multitude of ADME properties,

and safety with the goal of delivering the best possible compound to test in the

clinical setting.

In this chapter, we provide an overview of various in silico models and tools

employed to identify and resolve ADME challenges during the process of drug

discovery. Generally speaking, in silico ADME tools are classified into two major

categories, structure-based and ligand-based. Each class of in silico tools are

addressed in subsequent sections.

4.1 Structure-Based In Silico Models

When sufficient structural information exists on the protein of interest, generally in

the form of a nuclear magnetic resonance or crystallographic X-ray structure,

structure-based drug design techniques are used in early-phase drug discovery. In

structure-based drug design, interactions between the protein and the ligand are the

focus of the study, and this is commonly referred to as rational drug design. Novel

ligands can be designed de novo, meaning the interactions between a hypothetical

ligand and the protein are optimized with the goal of creating a compound with high

affinity and selectivity. Molecular docking can be used to orient a ligand within

the active site of the protein to provide an estimate of the protein-ligand interaction.

However, molecular recognition between a protein and a ligand is a complex process
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that does not occur in a static structure. Molecular dynamics (MD) and Monte Carlo

(MC) simulations are computational techniques used to create trajectories that

model the protein-ligand fluctuations and dynamics in atomic detail [2, 3].

4.1.1 Molecular Docking

The goal of molecular docking is to model the potential interaction between a

protein and a ligand [4]. Although several docking programs exist [4–11], each

docking program can be broken down into two general parts: the search function

used to orient and place the ligand inside the binding pocket (binding pose gener-

ation) and the scoring function used to quantify the protein-ligand interaction and

predict the binding affinity (binding affinity prediction). This chapter provides an

overview of the current status of molecular docking but does not go into detail on

search algorithms or scoring functions, both areas of active research.

For certain protein targets, the search algorithm may generate bioactive binding

poses (root-mean-square deviation <2 Å) during the search process for 90% of

compounds, but this percentage can be as low as 40% for other protein systems

[12]. This is especially challenging for ADME targets that are known to bind a

diverse array of compounds and are promiscuous in nature. For many ADME

targets, factors such as the size of the binding pocket (relatively large and hydro-

phobic), the water network within the active site, and protein flexibility lead to

significant challenges while utilizing molecular docking. Figure 4.1 illustrates this

point on one class of ADME targets, the cytochrome P450 (CYP) family of

enzymes. CYPs are estimated to be involved in the metabolism of approximately

75% of drugs currently on the market with CYP3A4 known to metabolize approx-

imately 50% of such compounds [20]. While several publications exist on CYP3A4

docking [21–26], the abovementioned problems limit its use in early-phase drug

discovery programs outside of qualitative idea generation.

In instances where the docking search algorithm identifies a bioactive binding

pose, current scoring functions are not accurate enough to reliably predict the

binding affinity [27–29]. The correlation between the experimentally measured

and predicted binding affinities for a series of compounds binding to the same

protein target is usually weak and often influenced by the size of the ligand rather

than the underlying physicochemical contributions to the binding affinity

[30, 31]. Therefore, bioactive binding poses are not always ranked as the most

energetically favorable (or top ranked) during the docking procedure [12]. In

addition, the lack of accuracy and separation in binding affinity prediction makes

it challenging to predict the binding affinities of compounds within a structure-

activity relationship (SAR) series let alone in silico de novo-designed compounds.

A recent review by Lill [32] discusses many of the current problems and challenges

of molecular docking and goes into greater depth on techniques used to overcome

such obstacles.
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Post-processing is one such technique designed to overcome the problem of

using simplistic scoring functions in docking and can significantly improve the

successful prediction of binding affinities [33, 34]. Post-processing techniques

incorporate dynamic information of the protein-ligand system after the docking

process has been completed. The top-scored binding pose, or several favorably

scored poses, is used as input to subsequent MD simulations. In combination with

free-energy methods such as free-energy perturbation [35], thermodynamic inte-

gration [36], molecular-mechanics Poisson-Boltzmann or generalized Born surface

Fig. 4.1 Reproduced from Danielson et al. Potentially increasing the metabolic stability of drug

candidates via computational site of metabolism prediction by CYP2C9: The utility of incorpo-

rating protein flexibility via an ensemble of structures. Eur J Med Chem 2011 Sep.;46(9):3953–63.

Copyright © 2001 published by Elsevier Masson SAS. All rights reserved [13]. Examples of

protein flexibility in cytochrome P450 enzymes: (a) Changes in Arg47 side-chain rotamer in P450

BM-3 depending on the bound ligand (palmitoleic acid and corresponding protein in blue,
PDB-code: 1FAG [14]; N-palmitoylmethionine and corresponding protein in magenta: 1ZO9

[15]). (b) Alternative loop conformations are observed in CYP119 when different ligands are

bound. Compared to the apo structure of CYP119 (F/G loop in orange: 1IO7 [16]), the F/G loop

adapts distinct configurations when 4-phenylimidazole (ligand and loop in magenta: 1F4T [17]) or

imidazole (blue: 1F4U [17]) is bound. (c) In CYP3A4 significant protein flexibility occurs in the

F/G portion of the protein (apo: orange, 1TQN [18]; erythromycin bound: blue, 2J0D [19]) to

accommodate erythromycin and part of the F–F0 loop becomes disordered. This motion causes the

solvent-accessible volume of the binding site to significantly increase and can dramatically affect

ligand binding. (d) CYP3A4 exhibits a protein breathing motion increasing the size of the binding

pocket to accommodate two ketoconazole (ligands in magenta, protein in blue: 2V0M [19])

compounds without significant conformational changes of the helices or loop regions composing

the binding pocket (apo: orange: 1TQN [18])
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area [37], or linear interaction energy analysis [38], a more accurate estimation of

the free energy of binding is possible [33]. However, this process is relatively time

consuming and requires that the bioactive binding pose is within the top-ranked

binding poses in order to limit computational time, a criterion that is not always

evident when carrying out molecular docking studies on large and rather promis-

cuous ADME targets.

4.1.2 Molecular Dynamics

Molecular dynamics (MD) is a computational technique used to study the physical

movement of atoms. The first MD simulation of a biomolecular system was done in

1977 on bovine pancreatic trypsin inhibitor using a simplistic molecular mechanics

potential to describe the properties of the system [39]. Although this simulation was

only performed for 9.2 ps, it was a groundbreaking study that showed that integrat-

ing Newton’s equations of motion over a series of very short-time steps (usually one

or two femtoseconds) could transform a once static X-ray structure into a dynamic

trajectory from which time-averaged properties could be calculated. Underlying

any MD simulation is a physics-based force field that defines all parameters of the

system. Several force fields and MD programs exist [40–46], and the parameters are

usually defined by high-level quantum chemical calculations or empirically fit to

experimental properties. In addition to the force field parameters, a potential

function, or mathematical relationship, is needed to describe how the individual

atoms of a system interact during the MD simulation. Most force field potentials

describe the interactions between atoms in the system in terms of a five-component

description of intra- and intermolecular forces. The AMBER force field potential is

shown in Eq. (4.1) and consists of bonded (bonds, angles, and dihedral terms) and

nonbonded (van der Waals and electrostatic terms) components [42].
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In this type of potential, intermolecular bonds are treated as a simple Hooke’s
law springs with a characteristic force constant Kr and equilibrium bond length req.
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The angular term accounts for bond angle bending in the system, and the dihedral

term represents the intrinsic torsional energy due to twisting about bonds. The van

der Waals term accounts for the attractive London dispersion and repulsive van der

Waals nonbonded forces and is calculated by a 12-6 Lennard-Jones potential. Force

field assigned atomic partial charges are used to calculate the nonbonded electro-

static interaction between two atoms by solving Coulomb’s law. Summing over all

pairs, triplets, and quartets of atoms in the system, the force field potential provides

an estimate of the energy of the system at a particular configuration. A more

detailed description of MD and the algorithms associated with this technique can

be found elsewhere in the literature [3, 41–43, 47–49].

Currently, MD simulations are performed on macromolecular systems com-

prised of thousands of atoms, and several different explicit and implicit water

models exist to solvate the system [47–53]. The nanosecond time scale is routinely

reached in MD simulations, and in specialized instances protein systems have even

been simulated up to the millisecond time scale [54, 55]. With increasing computer

power and advances in technologies and methods, millisecond time scale simula-

tions may become routine in the near future. However, this also brings with it

additional challenges such as storing, analyzing, and interpreting such a vast array

of data. Despite the previously mentioned problems, MD simulations are routinely

used to turn a static X-ray crystallographic structure into a dynamic system.

Snapshots taken from the MD simulation provide some estimate of protein flexi-

bility and can be used as alternative templates for molecular docking, and this

technique has been utilized in several CYP isoforms [13, 56–61]. While MD

simulations have become routine in the computational chemistry field, their appli-

cation in early-phase drug discovery has not. This is especially true for ADME

targets due to very limited number of high-resolution X-ray crystallographic struc-

tures and their promiscuous nature. Additionally, the time and resource intensive

nature of MD simulations and the rather fast-paced movement of chemistry SAR on

project teams further limit the application of MD simulations during this phase.

4.2 Ligand-Based In Silico Models and Tools

4.2.1 Quantitative Structure-Property Relationship (QSPR)
Models

Quantitative structure-activity relationship (QSAR) models are one of the com-

monly employed ligand-based techniques to predict the activity of compounds. The

field of modern QSAR can be traced back more than 50 years to a model produced

by Hansch [62]. QSAR sophistication has grown from its early application on a

small congeneric series of compounds using simple linear regression to now being

applied to data sets comprised of thousands of diverse compounds utilizing a wide

variety of statistical and machine learning algorithms.
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When such models are used to predict various properties, including ADME

endpoints, they are referred to as quantitative structure-property relationship

(QSPR) models. Given the promiscuity and limited structural knowledge of

ADME targets, QSPR models are commonly used in the pharmaceutical industry

to address ADME-related challenges. The basic premise of QSPR methodology is

to develop a relationship between an observed property and structural features of a

compound. Considering a set of compounds with observed experimental data

(training set), a model is developed that can be used to predict the activity of

other compounds (test set) not included in the initial training set. Compounds are

represented using a variety of molecular descriptors that describe the chemical

structure and properties of the compound. A relationship between the molecular

descriptors and the observed response is computed using mathematical techniques

such as linear regression, artificial neural network, support vector machine (SVM),

and random forest (RF). A general description of such algorithms is summarized in

Sect. 4.2.1.4. Figure 4.2 illustrates the general process of building and applying

QSPR models to a group of compounds, and each step of the process is further

explained below.

Fig. 4.2 Schematic representation of key components when building and applying QSPR models.

The top section shows the generalized equation representing a typical QSPR model and lists key

components required to derive such an equation for a given data set. The bottom section depicts a

typical workflow used to build and use a QSPR model
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4.2.1.1 Data Set Selection and Curation

The first step to create any QSPR model is the selection of the data set that the

model will be built upon. A key consideration when choosing any data set to create

a model upon is that the data should be accurate, reliable, reproducible, and

measured using identical experimental conditions for all compounds. This can be

a significant challenge when building QSPR models based on public databases

compiled by collating data from multiple labs spanning a variety of experimental

protocols. Stouch et al. demonstrated that models based on data sourced from

multiple labs showed poor predictive capabilities for compounds tested in a rigor-

ous and consistent manner [63]. For example, in the case of a hERG inhibition

model provided by an external vendor, the data were collated from several different

laboratories using a variety of assay conditions: different cell types expressing the

hERG channel and different activation potentials for the channel, along with

combining binding and inhibition data. The predictions from the vendor model

had a poor correlation coefficient of 0.01 and a high root-mean-square error

(RMSE) of 1.3 log units for the test set evaluated by the authors.

Following the selection of data, the importance of data curation cannot be

overemphasized. In order to create the best possible QSPR model, it is critical to

minimize the inclusion of potentially erroneous data. The potential sources of

erroneous data include false positives/false negatives, under-/overestimated

responses, spurious results (e.g., microsomal stability >100%), incorrect structural

representation of compounds, data below the analytical detection limits, and impure

material. For example, while building a classification model for P-glycoprotein

(P-gp) efflux, Desai et al. excluded compounds reported as non-substrates

displaying >60% inhibition of a fluorescent P-gp substrate, very slow passive

permeability, and very low cell partitioning (all cases suggesting potential false

negatives) in addition to compounds with poor mass recovery (potentially spurious

data) [64]. When feasible, it is good practice to find and utilize analytical data

related to identity and purity of compounds. Such information is commonly avail-

able in an industrial setting but not easily found for data compiled from multiple

sources and available in public databases like ChEMBL. In a previous study,

several public and commercial databases were investigated, and error rates in

chemical structure annotation ranged from 0.1% to 3.4% [65].

In order to properly curate the assay data that will be used to build a model, it is

critical to understand the experimental protocol and potential caveats associated

with that given measurement. One of the common issues leading to potentially

erroneous results is poor solubility of the compound in the medium used for the

assay (e.g., none or very little of the compound is in solution giving an incorrect

assay value). This can potentially be addressed by running a parallel experiment to

measure the solubility of the compound in the buffer used for the ADME assay. For

example, at Eli Lilly and Company, aqueous kinetic solubility in pH 7.4 phosphate

buffer is measured for all compounds tested in high-throughput ADME assays. This

information is used to curate the data for various ADME endpoints wherein

compounds that are not in solution at the concentration used for the given ADME
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assay are not included in the QSPR model. To summarize this section, while it is

often an overlooked and underappreciated step, data curation based on detailed

understanding of the experimental measurement is a critical step in building high-

quality QSPR models.

4.2.1.2 Training Set Selection

Following data curation, the next logical step of creating a QSPR model is selecting

compounds to construct and train the model. What size or how many compounds

needed to be in the training set is a precarious question that is sometimes asked. No

easy answer to the question exists, and the size of the training set needed to build a

useful model depends on the complexity of the endpoint and the intended use of the

model. For example, for models intended to be applied prospectively to compounds

spanning a wide range of structural diversity, the training set should reflect similar

structural diversity and perhaps as much diversity as possible. Prospective model

performance, meaning how well the model predicts compounds not in the training

set, also depends on whether the training set encompasses the entire range of the

assay response. For models such as microsomal metabolic stability that are based

on a continuous response (assay range from 0% to 100%), the ideal situation is to

have a training set containing compounds spanning the entire 0–100% range and

uniformly distributed if possible. For categorical response such as low or high, an

even or close to even distribution of compounds between the categories is desired.

Models constructed with training sets that span a narrow spectrum of the entire

assay response (e.g., a training set containing 95% of compounds that have micro-

somal metabolic stability of >90% when the assay range spans 0–100%) or with a

highly skewed distribution of the categorical response (e.g., 95% of compounds in

the training set belong to the “high” class) are likely to result in QSPR models with

limited utility when used prospectively.

4.2.1.3 Molecular Descriptors

Following data curation and training set selection, molecular descriptors must be

calculated in order to derive the mathematical relationship between chemical

structure and assay activity. Molecular descriptors are numerical parameters

derived from chemical structures, and a wide variety of descriptors are used to

build QSPR models. Physicochemical (e.g., log P, pKa, MW), topological (e.g.,

atom connectivity), constitutional (e.g., number of nitrogen), and quantum chem-

ical (dipole moment, atomic charges) are few examples of common types of

descriptors. To gain a deeper understanding and comprehension of molecular

descriptors, the reader is referred to a publication by Todeschini and Consonni [66].

In addition to molecular descriptors, molecular fingerprints are often used to

represent chemical structures [67, 68]. A molecular fingerprint is comprised of a

series of substructures, and the presence/absence of such substructures determines
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the numerical code for the molecular fingerprint [69–71]. For example, Molecular

Access System (MACCS) fingerprint uses a set of structural features to code the

compound into a binary representation [72]. Figure 4.3 shows an example snippet

of the MACCS fingerprint representation for the drug diazepam. The column titled

“key positions” in the figure assigns a number to a particular chemical feature,

listed under “fragment description.” The “fingerprint code” is a binary value

associated to the absence (assigned zero)/presence (assigned one) of the chemical

feature. Using the “key positions” and “fingerprint code,” one can derive the final

fingerprint shown in Fig. 4.3. Only “fingerprint codes” that are present in the

compound are kept in order to keep the fingerprint code vector sparse.

Typically, when constructing a QSPR model, a large collection of molecular

descriptors and a variety of fingerprints are calculated. The descriptors and finger-

prints are subsequently evaluated using statistical approaches to select the optimal

combination to relate chemical structure to the activity of the endpoint. When

constructing a model for the first time, several versions of the QSPR model may

be built using various combinations of descriptors or fingerprints followed by

several iterations of prospective model evaluation (Sect. 4.2.1.5) to identify the

optimal collection of descriptors or single best fingerprint [73].

4.2.1.4 QSPR Model Training/Building

After data curation, training set preparation, and descriptor/fingerprint selection, the

QSPR model is ready to be built. Mathematic algorithms such as linear regression,

artificial neural network, SVM, and RF are routinely used to train and build QSPR

models [74]. Linear regression (for continuous response) or discriminant (for

categorical response) models assume that the measured property value is an addi-

tive response to the underlying molecular descriptors. For example, in the QSPR

model for solubility shown in Eq. (4.2) [75], it is assumed that solubility is linearly

dependent on lipophilicity (log P) and topological polar surface area (TPSA).

Fig. 4.3 Snippet of MACCS fingerprint of diazepam
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logS ¼ �1:0377logP� 0:0210TPSAþ 0:4488 ð4:2Þ

Besides prediction, linear models may provide mechanistic insight and can be

interpretable in nature as long as the molecular descriptors are “simple” and

intuitive. Thus, in case of the solubility model in Eq. (4.2), the negative coefficient

for log P suggests that an increase in the lipophilicity of compounds is expected to

decrease solubility.

Given the complexity of most ADME-related responses, linear models appear to

only be applicable over a relatively narrow spectrum of compounds that contain

conserved structural motifs. In practice, such models are rarely useful prospectively

due to their inability to extrapolate and predict compounds outside their immediate

domain of applicability. Machine learning methods such as RF [76, 77] and SVM

[78, 79] have been applied to QSPR models to combat the abovementioned

limitations and are capable of elucidating more complex relationships between

structural descriptors and the observed response.

In general terms, RF models are based on several iterations of the recursive

partition approach, and SVM models identify a hyperplane in the high-dimension

descriptor space to enable maximum separation of observed responses. Within the

pharmaceutical industry, a large amount of ADME data are generated in a consis-

tent manner, and therefore such machine learning methods are preferred to build

“global” QSPR models that are designed to be applicable across multiple drug

discovery projects that cover a broad spectrum of chemical space [80]. In our

experience, such models typically outperform linear QSPR models in extracting

structure-property relationship knowledge from large sets of diverse compounds.

However, given the complexity of RF and SVM models, they are relatively less

interpretable compared to linear models and often offer limited mechanistic insight

to go along with predictions. Although generally less interpretable, it should be

noted that it is possible to get an estimation of the most influential descriptors for

RF models, in turn providing some understanding of key molecular characteristics

influencing a given endpoint. For example, in case of an RF model for P-gp efflux,

Desai et al. identified that molecular features related to the number of hydrogen

bond donors (HBD), TPSA, and hydrogen bond strength were most influential in

terms of P-gp efflux of compounds [64].

4.2.1.5 QSPR Model Evaluation

The performance of a QSPR model is evaluated using a variety of parameters

depending on the type (continuous vs. categorical) and the intended use of the

model. Performance parameters are typically calculated at three stages of the model

building process. For example, after building a continuous response model, the first

stage is to assess the ability of the model to fit the training set compounds. This

metric is commonly referred to as r2 in the QSAR/QSPR literature. The second

stage evaluates the ability of the model to predict the set of compounds left out of
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the model building process in an iterative manner (called cross-validation,

leave-one-out, or leave-some-out) is referred to as q2. The third stage is known as

external or prospective validation, and the model’s ability to predict compounds

that were not used during any stages of the model building process is evaluated.

The ability of the model to fit the training set simply serves as a feasibility

assessment. It does not provide an assessment of the model’s ability to predict

compounds outside the training set and therefore isn’t particularly useful

[81]. Cross-validation is based on prediction of compounds left out of the model

but is still an internal validation as it derives the test set from the existing pool of

compounds. Depending on the modeling method employed, the cross-validation test

set can bias the choice of descriptors and other model-related parameters [82]. Many

experts in the QSAR community believe that this type of validation often over-

estimates a model’s ability to predict a true external or prospective test set. Therefore,
in order to comprehensively evaluate the utility of a QSPR model, it is critical to

assess its predictive ability against an external prospective test set [64, 83–85].

For QSPR models based on continuous data, the square of the correlation

coefficient (r2) between the observed and predicted value (referred to as q2 when
used in the context of cross-validation) is the most common performance parameter

reported. RMSE between the observed and predicted values is another key param-

eter used to assess continuous response model performance. Higher values of r2

(maximum 1 for a perfect model) and smaller values of RMSE are desirable [86]. In

many cases, Spearman’s rank correlation coefficient (ρ) is also reported as an

indicator of model performance [87]. Depending on the intended use of the

QSPR model, one or more of these parameters may be utilized to determine how

well a particular model is preforming. For example, if the goal is to identify a model

wherein predictions are correlated with the observations (not necessarily to predict
the absolute value of the property), the r2 of a prospective test set would serve as a

useful parameter. On the other hand, to simply rank order the prospective com-

pounds, a model with high ρ value would be sufficient. If the goal is to accurately

predict the absolute value of the property, a model with low RMSE would be

necessary. The ideal QSPR model would have favorable performance values for all

of the abovementioned metrics.

Classification QSPR models have a different set of performance metrics com-

pared to regression models. Commonly reported performance parameters for clas-

sification models are based on the fraction/percent of correct predictions (overall

accuracy), the accuracy of each experimental class (sensitivity and specificity), and

the accuracy of each predicted classes (PPV and NPV). Table 4.1 provides details to

calculate the abovementioned parameters and is referred to as a contingency table

or confusion matrix. In addition to these widely used metrics, parameters such as

the kappa index are often reported to assess the agreement between prediction and

the experimentally determined category. A kappa value of 1 indicates perfect

agreement between predictions and experimental values, �1 suggests complete

disagreement, and 0 indicates the prediction is no better than random chance. In

general, a kappa value >0.4 is considered an indicator of reasonable model

performance with useful predictive power [88, 89].
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4.2.1.6 Interpretation of Model Prediction

In addition to the abovementioned parameters for model evaluation, several other

factors should be considered when assessing the utility and/or applying a QSPR

model to a given drug discovery project. In the case of a continuous response

model, an applicability domain-related parameter should also be considered in

addition to the predicted value if available. Meaning a parameter that indicates if

the QSPR model can, or should, predict a compound of interest based on what the

model was trained on. If the compound of interest is vastly different than all

compounds in the training set, it is expected that such an applicability domain

parameter would be unfavorable. Several methods to estimate the applicability

domain for a QSPR model have been described in the literature, and they generally

provide a qualitative indicator of the confidence for each prediction or a quantita-

tive estimation of the confidence interval around the predicted value [90–93].

In addition to the standard contingency table metrics commonly reported (see

Table 4.1), if one is evaluating a classification QSPR model built with a machine

learning method (e.g., RF or SVM), the predicted scores of each compound give an

estimation of the relative confidence or reliability of prediction [64, 77, 94]. For

example, for two compounds predicted to be in the same category, the compound

associated with higher score is assumed to be a more reliable prediction compared

to the other.

In addition to the abovementioned numerical parameters reported to determine

QSPR model applicability/reliability, in order to conduct a thorough assessment of

the utility of a model for a given chemical scaffold or drug discovery project, one

should always consider:

• The inherent experimental variability in the measurement, especially in case of

the high-throughput ADME assays. Model performance has been shown to be

directly related to the inherent variability in the measurement of the given assay

parameter [95]. For regression QSPR models built on continuous data, one

should evaluate the performance of the model based on the proportion of

predicted values that falls within the experimental variability of the measured

Table 4.1 Contingency table with equations for a classification QSPR model

Predictions

Experiments

Positive Negative

Positive TP FP Positive predictive value (PPV) TP/(TP + FP)

Negative FN TN Negative predictive value

(NPV)

TN/

(TN + FN)

Sensitivity Specificity Overall accuracy ¼ (TP + TN)/N

TP/

(TP + FN)

TN/

(FP + TN)

TP, TN¼ true positive, true negative; FP, FN¼ false positive, false negative; N¼ total number of

compounds
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response and not just rely on an r2 value. For example, if the inherent variability

of an assay is threefold, a model built on these data should be evaluated with this

variability in mind. One should check the proportion of the prospective test set

that are predicted within threefold of the experimental values. A regression

model may not have an r2 value of 0.9 for this model, but if 90% of the predicted

compounds are within threefold of the experimental values, then that model will

still be useful.

• Due to the variability in ADME high-throughput assays, we build and advise the

use of categorical QSPR models for such data.

• The QSPR model should be evaluated on a prospective test set that spans the

entire spectrum of the response, or in the case of a categorical model, the test set

should have a balanced distribution of compounds from each category or one

that mirrors the training set distribution.

• The assessment of a QSPR model should not be based on a small fraction of

compounds, only the most recent compounds, or only the potent compounds

from a given chemical scaffold or drug discovery project.

• A QSPR model should not be evaluated based on its performance against a

second experimental endpoint not directly predicted by the model. For example,

comparing predictions from a QSPR model built on in vitro microsomal meta-

bolic stability data against an in vivo clearance outcome should not be done

without establishing if this is permissible. The compound and scaffold of interest

may be cleared by mechanisms other than microsomal metabolism, and an in

silico microsomal clearance QSPR model should not be expected to accurately

predict the in vivo clearance value for such cases.

4.2.2 ADME QSPR Models Used at Eli Lilly and Company

Over the past couple of decades, many publications pertaining to the application of

QSPR models for ADME-related physicochemical properties and in vitro/in vivo

endpoints have been published. In an attempt at brevity, the reader is referred to review

articles that summarize this area of research [96–98]. Table 4.2 provides a brief

summary of ADME QSPR models developed and used at Eli Lilly and Company.

The data set for each individual model was generated by/for Eli Lilly and Company

using consistent experimental conditions for each individual ADME in vitro or in vivo

assay. Total data set size ranges from 2,000 to 80,000 depending on the throughput of

the particular assay. All ADMEQSPRmodels are built using an SVM algorithm with

an optimum molecular fingerprint selected for each assay endpoint.
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4.2.3 Prospective Validation of ADME QSPR Models
at Eli Lilly and Company

In an industrial drug discovery paradigm where new pharmacological targets are

constantly explored, it is important to update global QSPR models to ensure their

applicability and prospective prediction performance. Figure 4.4 highlights the

outcome of this chronological process at Eli Lilly and Company where prospective

performance of ADME QSPR models was maintained for several classification

models used over the past several years.

As drug discovery project teams synthesize and test new compounds in various

ADME in vitro assays, the global models are updated by curating and adding the

new data to their respective training sets. Before updating any particular model, the

existing model is prospectively evaluated to measure its predictive performance

Table 4.2 Representative list of ADME QSPR models used at Eli Lilly and Company

Endpoint Data source

Training set

size

(in thousands)

Model type:

Classification (C)

Continuous (R)

Kinetic aqueous

solubility

Solubility of DMSO stock

diluted at various concentra-

tions in phosphate buffer

(pH 7.4)

80 C

High-throughput

solubility

Solubility of DMSO-dried sam-

ple in buffers at pH 2, 6, and 7.4

30–32 C

Passive permeability Passive permeability across

MDCK cells

15 C and R

Hepatic microsomal

stability (human/

mouse/rat/dog/

monkey)

Stability in hepatic microsomes 20–80 C and R

Cytochrome P450

competitive inhibition

(CYP3A4/CYP2D6/

CYP2C9)

% inhibition of CYPs at 10 μM 65 C

CYP3A4 time-

dependent inhibition

Time-dependent inhibition of

CYP3A4 at 10 μM
10 C

P-glycoprotein sub-

strate recognition

Efflux by human P-glycoprotein

overexpressed in MDCK cells

4 C

In vivo mouse brain

unbound concentration

Unbound concentration of

compound 5 min post-IV dose

2 R

In vivo mouse brain:

plasma partition coeffi-

cient of unbound com-

pound (Kpuu)

brain:plasma partition coeffi-

cient of unbound drug (Kpuu) in

mouse 5 min post-IV dose

2 C and R

Fraction unbound

(plasma, brain,

microsomes)

Equilibrium dialysis at 1 μM
incubation

6–8 R
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against data generated after the model was built. The result of this assessment for a

set of seven Eli Lilly and Company ADME models is shown in Fig. 4.4. The

training set for these models range from ~4,000 to 75,000 and increases in number

with every model update cycle. Focusing on the mouse metabolic turnover model,

the oldest version of the QSPR model in Fig. 4.4 was built using ~40,000 com-

pounds. Before updating the model, it was prospectively evaluated against an

additional ~4,000 compounds, and after showing suitable performance, the new

data were added to the training set of the existing model to build the next version

containing ~44,000 compounds.

All models in Fig. 4.4 are SVM models using fingerprints as descriptors and

provide categorical predictions, along with a score representing the reliability of

such a prediction. As explained in Sect. 4.2.1.6, predictions associated with higher

scores are expected to have greater likelihood of aligning with the measured

response. Based on the prospective validation results, suitable score cutoffs (typi-

cally 0.7 on a scale of 0–1.0 for both prediction categories) are assigned to “accept”

a given prediction, while predictions with scores below the cutoffs for a given

category are labeled as “indeterminate.” The PPVs/NPVs shown in Fig. 4.4 are

calculated for compounds with “acceptable” scores. For all models listed in

Fig. 4.4, >80% of the test set compounds had “acceptable” scores, and thus the

models were applicable for>80% of the test sets. As shown in Fig. 4.4, the average

PPV/NPV for the ADME models ranged from 75% to 85% in prospective testing.

Given such consistent prospective performance, the ADME QSPR models are

routinely used to design and prioritize compounds for synthesis and testing during

early-stage drug discovery. The performance of various versions of the global P-gp

Fig. 4.4 Prospective validation of ADME QSPR classification models used at Eli Lilly and

Company. Average PPV and NPV over the last 8–10 versions are shown. Error bars represent

the standard deviation. All models were applicable for ~80% of prospective test sets when score

cutoffs were used to “accept” a prediction
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efflux model and its application in identifying and addressing challenges related to

central nervous system (CNS) drug discovery projects is described in detail by

Desai et al. [64].

4.2.4 Trends Between Calculated Physicochemical
Properties and ADME Parameters

To complement the usefulness of ADME QSPR models, the physicochemical

properties of compounds influencing ADME properties is well documented. One

of the earliest analysis of ADME properties was performed by Lipinski leading to

the “rule of five” suggesting that poor absorption and permeability are more likely if

the molecular weight (MW) is >500, the number of NH and OH hydrogen bond

donors is >5, the calculated log P (i.e., clog P) is >5, and the number of N and O

atoms is >10 [99]. The goal of this guideline was not necessarily to rule out certain

synthetic ideas but rather steer the synthetic chemistry effort toward chemical space

that is more likely to yield compounds with superior ADME properties. Subse-

quently, several analyses describing the trends between calculated physicochemical

properties and in vitro/in vivo ADME parameters have been reported [100–103]. In

an exhaustive analysis of a large and structurally diverse set of preclinical com-

pounds profiled at GlaxoSmithKline, Gleeson reported relationships between sev-

eral ADME assays and calculated physicochemical descriptors [100]. This included

in vitro ADME endpoints like solubility, permeability, rat brain tissue and plasma

protein binding, P-gp efflux, and inhibition of the CYP isozymes. Several in vivo

ADME parameters like oral bioavailability, clearance, volume of distribution, and

CNS penetration in the rat were also analyzed. Some of the calculated physico-

chemical descriptors used in this analyses were clog P, clog D, the number of

hydrogen bond acceptors (HBA) and donors (HBD) (typically counted as number

of N + O for HBA and NH + OH for HBD), positive and negative ionization states,

molecular flexibility, molar refractivity, MW, TPSA [104], and the number of

rotatable bonds. From this descriptor list, ionization state, clog P, and MW were

identified as the most influential physicochemical properties for ADME properties.

The paper suggested that compounds with a MW of <400 and a clog P of <4 were

preferred with regard to maintaining a favorable ADME profile. In another report

by Varma et al. [102], ionization state, lipophilicity, and polar descriptors were

found to be the physicochemical determinants of renal clearance in human based on

a compiled data set of ~400 marketed drugs. It is important to keep in mind that the

conclusions about correlations between physicochemical and ADME properties can

be strongly influenced by the size and nature of the database employed. Moreover,

many of the physicochemical parameters are not independent of each other. For

example, an increase in MW is likely to be associated with increase in the number

of heteroatoms like N and O, which in turn are associated with TPSA.
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Figures 4.5, 4.6, 4.7, and 4.8 along with summary Table 4.3 detail Eli Lilly and

Company’s ADME in vitro data in relation to key physicochemical properties over

the past 2 years. Figure 4.5 shows the trend that as clog P increases so does

microsomal unbound intrinsic clearance (Clint,u) [105]. This analysis indicates

Fig. 4.5 Experimental rat microsomal Clint,u vs clog P. Green ¼ slow, yellow ¼ moderate,

red ¼ rapid Clint,u. Global data analysis suggests compounds with clog P of <4 are less likely to

have rapid Clint,u

Fig. 4.6 Experimental MDCK permeability vs clog P. Green ¼ rapid permeability, red ¼ slow.

Global data analysis suggests that compounds with clog P between 2 and 4 are more likely to have

rapid permeability
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that compounds with clog P value <4 are more likely to have slow unbound

intrinsic clearance (Fig. 4.5) and a low CYP3A4 inhibition potential (Fig. 4.8).

Similarly, compounds with clog P between 2 and 4 (Fig. 4.6) and TPSA <100 Å2

(Fig. 4.7) are more likely to have rapid permeability across MDCK cells. Desai

Fig. 4.7 Experimental MDCK permeability vs TPSA. Green ¼ rapid permeability, red ¼ slow.

Global data analysis suggests compounds with TPSA of <100 Å2 are more likely to have rapid

permeability

Fig. 4.8 CYP3A4 inhibition vs clog P.Green¼ low inhibition, red¼ high inhibition. Global data

analysis suggests compounds with clog P of<4 are more likely to have low inhibition of CYP3A4
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et al. have previously published physicochemical trends for efflux by the P-gp

transporter and reported having the most basic pKa < 8.0 and TPSA <60 Å2 as key

physicochemical properties of P-gp non-substrates [64].

4.2.5 Pharmacophore Modeling

Another ligand-based modeling technique that is used in drug discovery is

pharmacophore modeling. The word pharmacophore has several definitions asso-

ciated with it despite the concept being around for over 40 years. A medicinal

chemist may define a pharmacophore as a structural fragment or functional group

related to a chemical compound or series of compounds. Computational chemists

often define a pharmacophore as a collection of hydrogen bond acceptors, hydrogen

bond donors, aromatic rings, charged atoms, and hydrophobic regions of com-

pounds that provide affinity and specificity to a particular target. The official

IUPAC definition states, “A pharmacophore is the ensemble of steric and electronic

features that is necessary to ensure the optimal supramolecular interactions with a

specific biological target structure and to trigger (or to block) its biological

response” [106].

No matter the definition, the concept of pharmacophore modeling is simple and

even intuitive to medicinal chemists working in early drug discovery. The

Table 4.3 Trends between calculated physicochemical properties and ADME endpoints from Eli

Lilly and Company data

Physicochemical

parameter

Desirable

range Trends with ADMET properties

clog D at pH ¼ 7.4

(Chemaxon)

<3 Higher kinetic aqueous solubility, slow microsomal

metabolism and unbound intrinsic clearance (Clint,u), low

CYP inhibition potential, high unbound CNS exposure

1–3 Rapid passive permeability

clog P (Chemaxon) <4 Slow microsomal metabolism and unbound intrinsic

clearance (Clint,u), low CYP inhibition potential, high

unbound CNS exposure

2–4 Rapid passive permeability

Most basic pKa <7.4 Lower risk of P-gp efflux

Molecular weight <400 Da Higher unbound CNS exposure

TPSA 60–90 Å2 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of NH + OH

groups

<3 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of N + O

atoms

<8 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of negatively

charged atoms

0 Higher unbound CNS exposure
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technique models the interaction between a ligand and a binding site, thereby

producing a model of the spatial arrangement of molecular features essential for

biological activity. The central premise of a pharmacophore model states that if a

compound contains the needed molecular features in a spatial orientation that

matches the model, the compound should bind to the target of interest.

Pharmacophore models have been created for several ADME targets along with

being used to predict activity, selectivity, toxicity, and enrichment in high-

throughput screening experiments [20, 74, 107–110].

The scope of this chapter provides an overview of pharmacophore modeling and

will only briefly introduce the two general parts of any pharmacophore modeling

program. However, extensive literature has been published that describes

pharmacophore models in greater detail [111–113]. In general, pharmacophore

modeling can be broken down into two general steps: (1)molecular super positioning

of ligands and (2) scoring how well a ligand matches the pharmacophore features.

The molecular super positioning (also known as alignment) of ligands is time

consuming and represents a significant challenge to creating any pharmacophore

model. This step inherently involves the alignment of flexible compounds that have

multiple possible conformations. Precomputing ligand conformers is common in

many of the pharmacophore program available today [111–113]. When conformers

are pre-generated, pattern-matching techniques are then used to create the ligand

alignment. Many pharmacophore programs use a rigid-body alignment technique

that is some type of a maximum common substructure search [114] implemented

with the Bron-Kerbosh clique detection algorithm [115] that accounts for the spatial

arrangement of pharmacophore features. Scoring functions differ between software,

but they generally account for things such as number of matching pharmacophore

points along with the spatial orientation and the internal energy of the matching

ligand conformer along with some sort of volume or binding site matching term.

Throughout the pharmacophore building process, several parameters must be set and

optimized, thereby complicating the process of creating an optimal pharmacophore

model or one that the entire community uses or accepts for that matter. The reference

ligand, or set of ligands, used to create the pharmacophore alignment is often

subjective and requires the skill and knowledge of a computational expert.

However, it can be especially challenging to create useful pharmacophore

models for targets that are known to be flexible and promiscuous in binding many

compounds. Most ADME targets fall into this class, but there is no lack of

pharmacophore models published for such targets [107, 109, 116–118]. For exam-

ple, pharmacophore models have been published for several CYP enzymes, includ-

ing CYP3A4, that are known to be extremely flexible and recognize diverse

compounds. Figure 4.9 displays a pharmacophore model for the organic anion-

transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter that

lacks high-resolution structural information.

While many pharmacophore publications exist, in many instances

pharmacophore models are created using a small subset of compounds known to

bind to such targets (10–15 compounds maximum). Such models may perform well

on very similar compounds (meaning if the alignment was done with a statin
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compound, the pharmacophore model more than likely will predict other statin-like

compounds as likely to interact with the target), but they are not particularly useful

in a drug discovery setting where diverse chemistry is being explored on many

projects.

The other extreme also is problematic for ADME targets, meaning creating a

pharmacophore model based on hundreds of compounds. This is due to the fact that

Fig. 4.9 Reproduced from Ekins et al. Comparative pharmacophore modeling of organic anion-

transporting polypeptides: a meta-analysis of rat Oatp1a1 and human OATP1B1. J Pharmacol Exp

Therap 2005, 314(2):533–541 [116]. Pharmacophores generated from substrate data for human

OATP1B1 expressed in oocytes (showing bilirubin mapped to features) (a), human embryonic

kidney cells (showing bilirubin monoglucuronide mapped to features) (b), rat Oatp1a1 expressed

in oocytes (showing aldosterone mapped to features) (c), CHO cells (showing BSP mapped to

features) (d), HeLa cells (showing taurohyodeoxycholate mapped to features) (e), merged

OATP1B1 model using pharmacophores described in a and b (f), meta-analysis model using all

cell type compound data for human OATP1B1 (showing bilirubin mapped to features) (g), and
merged Oatp1a1 model using pharmacophores described in c, d, and e (h), showing aldosterone

mapped to features (i). Pharmacophore features include hydrophobes (cyan), negative ionizable

(blue), and hydrogen bond acceptors (green)
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generating a “unique” pharmacophore pattern for ligand binding is extremely

challenging given the diversity of compounds. More often than not, the number

of unique matching pharmacophores for several hundred diverse structures will be

very few and limited. For example, a pharmacophore model constructed on 500

OATP1B1 inhibitors may only have three pharmacophore points that match the

majority of the 500 compounds. When this occurs, the pharmacophore model is not

useful as it is incapable of differentiating between active and inactive compounds in

the data set. In order for any pharmacophore model to be useful, it has to be shown

to not only differentiate active vs inactive compounds but additionally it must have

predictive power that informs the design of de novo compounds. This validation

criterion is not examined in many published ADME pharmacophore models, and it

is essential to evaluate before making the claim that a useful model has been

created.

4.2.6 Site of Metabolism Prediction

Understanding and modulating drug metabolism is one of the fundamental concepts

of ADME. Several computational techniques exist to predict the site of metabolism

(SOM) on compounds. It should be noted that publications and research on SOM

prediction exist for metabolizing enzymes other than CYPs [119–122]. However,

due to their significance in metabolizing compounds, SOM predictions by CYP

enzymes dominate the published literature and will be the focus of this section.

Prior studies predicting SOM of compounds interacting with CYPs have utilized

a variety of computational methods such as quantum chemical calculations,

pharmacophore models, QSAR, molecular docking, MD simulations, and basic

empirical/chemical rules [13, 121, 123–138]. Recent reviews published on CYP

SOM prediction provide a good summary of prior studies and techniques used

[139, 140]. Although previous studies have been performed to predict SOM, there is

no consensus about which method performs “best.” In general, the top performing

methods claim to accurately predict the experimental SOM 80% of the time or

greater.

Recent thinking suggests that the SOM of a compound is influenced by two

factors: (1) the intrinsic reactivity of each site in the compound to oxidation and

(2) the accessibility of individual atoms to the CYP heme group, the site where

oxidation occurs in the enzyme. The intrinsic reactivity is normally estimated using

Hartree-Fock, semiempirical methods such as the Austin Model 1, or density

functional theory quantum mechanical calculations of the chemical reaction.

Accessibility to the CYP heme group is routinely estimated with solvent-accessible

surface area calculations, molecular docking, and other structural features.

Several commercial SOM prediction programs exist that allow users to profile

compounds to overcome metabolic liabilities. While this may be possible, caution

should be used when proposing such a strategy using SOM tools in isolation. In a

publication by Vaz et al. [141], they address problems associated with the metabolic
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“blocking” strategy. Metabolic “blocking” occurs when a halogen atom, typically a

fluorine atom, is attached to the atom/region of the compound susceptible to

metabolism in order to reduce the metabolic turnover. Despite literature examples

where this strategy was shown to be successful, the general strategy of “blocking”

typically shifts the SOM to another atom or region of the compound due to the

promiscuous nature of CYPs. In many instances, halogenating a site, typically an

aromatic ring, makes the compound more lipophilic. This ultimately can lead to no

change, or even increase, in affinity for CYPs and thus expose other sites on the

compound to oxidation. In addition, the more lipophilic compound could poten-

tially fit the CYP pocket better and hence become potential CYP inhibitors. By

possibly fixing one ADME problem (metabolism) by introducing additional

lipophilicity through “blocking,” another problem may also arise in the form of

solubility limitations.

When trying to mediate metabolic ADME problems, we suggest that multiple in

silico tools and methods are used to provide a balanced ADME profile of a

compound. In addition to SOM prediction software, in silico models of unbound

intrinsic clearance, metabolic stability, log P, and solubility should be monitored

with any proposed structural change to mediate a metabolic liability. Besides

altering the reactivity of a particular site, we suggest evaluating options to reduce

the affinity of a compound for CYPs as well. A reduction in log P by modifying

hydrophobic groups into polar moieties and/or removing hydrophobic fragments

from the compound is more likely to provide the reduction in metabolic turnover

needed for a particular project.

4.2.7 SPR/STR Knowledge Extraction Using Matched
Molecular Pair Analysis

Knowledge-driven modification of compounds is desirable to achieve the optimal

potency and ADME properties. For each drug discovery project, a useful QSAR/

QSPR model is able to accurately predict the activity of a compound. However, the

model provides limited information pertaining to what modifications should be

made to the compound in the next cycle of drug design. The matched molecular pair

analysis (MMPA) technique is a promising approach to address this issue. MMPA

was first coined by Kenny and Sadowski [142] to describe any systematic method of

identifying structural matched molecular pairs (MMPs) from a set of compounds

and associated property change. In this context, MMPs are generally defined as

pairs of compounds that differ only by a single, localized structural transformation,

and Fig. 4.10 shows an example [144].

The basic premise of MMPA is essentially an extraction of information within a

chemical series featuring a common core. The property of interest can be plotted

against the substituents at a given position of the core in order to identify the effects

of the structural transformation on the property [145]. Various automated methods,
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including supervised and unsupervised methods, have been developed to identify

MMPs and quantify the associated biological changes on large data sets. Supervised

methods require predefined molecular transformations to identify the MMPs in the

data set [144, 146]. However, any possible MMPs that are outside the predefined

structural transformation dictionary cannot be identified. Unsupervised methods

have the potential to identify all MMPs within a compound data set without a

predefined molecular transformation dictionary [147–151]. It decomposes the com-

pounds into fragments first and then indexes the fragments for rapid sorting and

identifies the core scaffolds and R-group substituents. For a more detailed summa-

rization of current MMPA methods, the reader is referred to a review by Griffen

et al. [145].

After the MMPA algorithm identifies all possible MMPs, the results are tabu-

lated to show differences between MMPs for a measured endpoint. The effect of a

specific chemical substitution is typically summarized by the mean response

change, the sample standard deviation of the response change, and the standard

error of the mean for each endpoint. The total number of pairs identified for each

substituent is also reported to assess the significance of the effects. Leach et al.

recommended at least 20 MMPs should be identified for a useful molecular

transformation [144]. More recently, Kramer et al. have recommended the use of

paired t-test to calculate the number of pairs necessary to achieve statistical

significance with a given average activity difference. They also demonstrated the

importance of building pairs from identical assays measured in the same

laboratory [152].

To provide quick and easy understandable guidance, the effects of a molecular

transformation on different endpoints can be summarized by a simple symbolic

colored arrow or circle that informs the medicinal chemists what compounds to be

synthesized [153]. In addition, the structural transformations information can be

summarized as rules in a knowledge database. By querying a compound of interest

against the knowledge database with MMP rules in place, virtual compounds can be

proposed to determine if the property of interest is likely to improve with the

associated structural modification.

Fig. 4.10 Permission to use from Papadatos et al. [143]. Example of a matched molecular pair.

The transformation is H to CF3 (a single-point change) and is highlighted in blue. The asterisk in
the context denotes the attachment point
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MMPA methods have been used to assess the mean effect of different sub-

stituents on various ADME parameters such as solubility [143, 144, 154], perme-

ability [147, 149], clearance [149], and CYP inhibition [147]. Not surprisingly,

common structural modifications, such as replacing hydrogen with a methyl group

or changing a methyl to an ethyl substituent, were the most frequently observed

MMPs [149].

In general, the structural changes that displayed favorable changes for an

endpoint could also be explained by the associated change in physicochemical

properties. For example, Gleeson et al. reported that replacing an aliphatic hydro-

gen atom with a hydroxyl, ethyl, or benzyl group leads to a decrease in CYP3A4

pIC50 > 0.2 log unit in 55%, 15%, and 10% of MMPs. This finding correlates well

with the change in clog D (pH 7.4) of the substituents [147], meaning that as the

compound becomes less lipophilic, it is less likely to be an inhibitor of CYP3A4.

This observation is aligned with our internal analysis of trends between

lipophilicity and CYP3A4 inhibition (Fig. 4.8).

Leach et al. also found that the addition of heavy halogens on aromatic rings was

detrimental to solubility and a numerical estimate for such effects was also calcu-

lated. For instance, adding bromine to an aromatic ring led to over an order of

magnitude reduction of aqueous solubility [144]. Therefore, if a drug discovery

team is trying to increase the solubility of their scaffold, they should avoid adding

heavier halogens, such as bromine, to their compounds.

While molecular substitutions that track closely with the molecular properties

can be useful in guiding the design of new compounds, they may not be overly

insightful to a well-versed medical chemist. It is more interesting to identify the

substituents that display changes not associated with their physicochemical prop-

erty changes. For example, despite the considerable increase in lipophilicity caused

by phenyl substitutions of an aliphatic hydrogen (Δclog D at pH 7.4 of +1.8 log

units), the average change in pIC50 of CYP1A2 inhibition for 147 pairs of com-

pounds was quite insignificant (ΔpIC50 of 0.11) [147].

Another type of MMP is called “switch” transformations, which acts to turn on

or turn off the activity. Regardless of the starting value of the endpoint, such MMP

transformation results in approximately the same ending value. For example, it was

reported that the replacement of a hydrogen by a 4-piperidine group resulted in a

microsomal clearance value of ~20 μL/min/mg for all the studied compounds

regardless of the starting microsomal clearance values [149].

One should be aware that MMPA results depend on both the transformation and

the chemical context. This is manifested by the observation that although many of

the molecular transformations are statistically significant with large mean activity

changes, most of them also have high variability [149]. Therefore, making conclu-

sions based on the average activity change across the entire MMPA data may be

misleading for the chemical series of interest [143, 147]. For example, global

context independent MMPA indicated that substituting a pyrimidine for a hydrogen

atom increased CYP2C9 inhibition [147]. However, when the same substitution

occurred for an aliphatic hydrogen (context dependent), a decrease in CYP2C9

inhibition was observed [147].
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Another example also showed the importance of the chemical context for the

MMP transformation. It was observed that transforming a piperidine ring into a

morpholine ring has conflicting effects on solubility depending on whether the

transformation was added to a polar aromatic ring or a positively ionizable aliphatic

ring (Fig. 4.11) [143]. Several recent publications have proposed adding two

dimensional contextual information about the compound or three dimensional

(3-D) information pertaining to binding environment into the MMPA analysis to

address the issue of context dependency in MMPA [155, 156].

4.3 Integrated and Iterative Use of Models in Early Drug
Discovery

As mentioned in the introduction to this chapter, the application of in silico, in vitro,

and in vivo models is inherent to the drug discovery process. It should be noted that

the use of such models in isolation is unlikely to be fruitful and may even be

misleading. Therefore, models should be applied in an integrated and iterative

Fig. 4.11 Permission to use from Papadatos et al. [143]. Global and local MMPA distributions for

the piperidine to morpholine transformation for a solubility data set. The colors reflect the effect of
each transformation with red, amber, and green denoting unfavorable (decrease), zero, and

favorable (increase) changes in solubility. Different outcomes are observed depending on the

context of the compound; if the attachment point is a polar aromatic ring [V], then there is an

increase in solubility, while if the attachment point is a positively ionizable aliphatic ring [Y], then

solubility decreases

4 In Silico ADME Techniques Used in Early-Phase Drug Discovery 107



fashion to build structure-activity and structure-property knowledge toward identi-

fying the best clinical candidate possible for any given drug discovery project.

Once a scaffold has been identified that interacts with the desired pharmacolog-

ical target, to assess the applicability of in silico ADME models for that particular

scaffold, one needs to select a set of compounds that will be tested in vitro. As

depicted in Fig. 4.12, this representative set should span the range of predicted in

silico values, include various physicochemical characteristics, and include as much

structural diversity as possible in order to systematically evaluate in silico model(s).

While it would be preferred to select “active” compounds against the biological

target for this assessment, this is not a requirement. It is more important to focus on

including diversity as mentioned above. The in silico-in vitro analyses will help

assess whether the in silico model(s) are applicable for a particular scaffold or along

with predicted physicochemical properties can be used to guide and prioritize the

synthesis of compounds. In an analogous manner, it is equally important to explore

the relationship between in vitro ADME models and the in vivo profile of com-

pounds in order to select an appropriate suite of in vitro tools to prioritize the

selection of compounds for in vivo assessment. This iterative learning cycle (shown

in Fig. 4.12) provides an efficient strategy to identify and resolve various challenges

related to optimizing compound potency and ADME properties rather than using a

filtration approach where only the active compounds progress for in vitro and

in vivo ADME measurements.

To detail how this integrated and iterative process unfolds in the pharmaceutical

industry, consider this example. The typical goal of most small compound drug

discovery project is to identify compounds that can attain, and maintain, sufficient

in vivo unbound concentration to engage the pharmacological target following oral

dosing. To that end, it is important to balance compound potency with key ADME

parameters like solubility, permeability, and clearance from the body. For this

example, let us assume that the discovery project team has access to global QSPR

models for solubility, permeability, and microsomal stability.

Chemical scaffolds being 
evaluated for further prioritization

a) Physicochemical profile
b) Prediction by QSPR model
c) Structural diversity

Selection of 
representative set

In Vitro ADME measurement Periodic 
evaluation

In vitro – in vivo alignment
(e.g. in vivo clearance)

Identification of suitable in silico tools

Use of key in silico tools for
compound design and 

prioritization for synthesis

QSPR model
Physicochemical property trends
Matched-molecular pair analysis

Synthesis of prioritized compounds

Ev
al

ua
tio

n 
of

 h
yp

ot
he

se
s

In silico model

In vitro model In vivo model

scaffold

Fig. 4.12 Integrated and iterative use of models in early-phase drug discovery. The left schematic

shows the recommended process to identify and integrate in silico, in vitro, and in vivo models.

The schematic on the right illustrates the importance of the iterative learning cycle
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The first step to establish the in silico-in vitro connectivity is to select a set of

compounds from the scaffold and subsequently compare the outcome from

corresponding in vitro measurements. This set of compounds should represent a

range of predicted property (solubility, permeability, and microsomal stability),

calculated phys-chem properties (e.g., clog P, TPSA), and be structurally diverse.

This step will determine if the global ADME QSPR models are applicable for the

scaffold in question and if they provide reasonable predictive performance to

enable the prioritization and design of compounds predicted to have a balanced

ADME profile in terms of the three ADME endpoints mentioned above.

Before implementing this strategy, it is important to test a small set of com-

pounds spanning a range of measured solubility, permeability, and microsomal

stability in the in vivo models to determine whether the oral exposure of these

compounds is aligned with their in vitro profile. For example, if the in vivo

clearance is rapid for compounds with low microsomal turnover in vitro, it would

suggest that the primary clearance mechanism for such compounds is likely to

involve non-oxidative pathways and/or excretion via renal or biliary route. Typi-

cally, elimination routes outside the oxidation pathway would not be identified

using a microsomal stability assessment (in silico or in vitro). In such cases, one

might consider testing the compounds in an in vitro hepatocyte clearance model

(that will account for various non-CYP metabolic enzymes) to see if better align-

ment is observed with in vivo clearance. Once a suitable suite of in silico and

in vitro tools have been identified that align with key in vivo characteristics, an

efficient and robust strategy to integrate these models in an iterative manner can be

implemented.

4.4 Summary

In this chapter, a variety of structure- and ligand-based in silico methods used to

identify and resolve challenges related to the optimization of key ADME properties

have been described. Given the promiscuity of many ADME targets and the limited

availability of high-resolution 3-D structures, structure-based in silico techniques

like docking and MD simulation have significant challenges and therefore have

limited applicability for this purpose. Ligand-based in silico methods such as

pharmacophore models can be useful to identify key structural features responsible

for the interaction with the target of interest. However, due to broad ligand

specificity and likelihood of multiple binding sites (e.g., P-glycoprotein) for many

ADME targets, pharmacophore models also have limited prospective applicability

across structurally diverse chemical scaffolds.

QSPR models, especially machine learning models, can extract knowledge from

a wide variety of chemical scaffolds and a large number of compounds enabling

their utility as predictive models for many ADME endpoints. Not surprisingly,

QSPR models are one of the most commonly employed in silico tools for ADME

optimization during the drug discovery process, especially in an industrial setting

4 In Silico ADME Techniques Used in Early-Phase Drug Discovery 109



where a large number of structurally diverse compounds are routinely measured in a

variety of ADME assays. At the same time, QSPR models have limited interpret-

ability and thus typically don’t provide direct clues to design new compounds to

address ADME challenges.

To address that limitation of QSPR models, trends with calculated physicochem-

ical properties like molecular weight, clog P, TPSA, and others are effectively

utilized during the design process to optimize the ADME characteristics of a given

chemical scaffold. Similarly, knowledge extracted by the MMPA of existing

ADME data also provides clues that identify fragment replacements toward

improving the ADME characteristics.

To summarize, an effective amalgamation of in silico tools is valuable in guiding

the design of compounds with favorable ADME properties on a drug discovery

project. These models must be verified to show they provide valid predictions or the

integrated in silico-in vitro-in vivo cycle breaks down. Finally, in silico tools should

never be used in isolation. They make up one arm of the integrated and iterative

learning cycle that we recommend using in order to effectively drive a drug

discovery project.
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