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Preface

The pharmaceutical industry, in the course of drug discovery and clinical

development, is continuously challenged to simultaneously reduce costs, timelines,

and the risk of attrition for clinical development compounds. These challenges

persist and by many accounts continue to mount, despite decades of technological

advances that have brought about improvements across all areas of pharmaceutical

research and development. Over the past 10 years, much emphasis has been placed

on the development and application of new and improved screens to aid in drug

discovery efforts and minimize clinical development risks. As a result, pharmaceu-

tical scientists are better able to screen out less desirable compounds and guide

discovery efforts toward drug candidates better suited to achieve the clinical

performance criteria across the variety of disciplines represented on the

discovery team.

Development organizations have also continually improved drug product plat-

forms and solubility enhancement technologies to address challenges associated

with the absorption of poorly soluble drugs. Innovation in the fields of novel oral

and non-oral drug delivery systems supports a range of molecular modalities,

enabling the delivery of drug candidates to specific target sites within the body.

However, application of these technologies has been mostly limited to a small

number of niche products.

Venturing into the more complex and uncharted territories of druggable but

non-validated pharmacological targets, discovery teams have had to retool their

strategies to: (a) establish a clear understanding of the relationship between target

engagement and the pharmacodynamic response, (b) develop relevant measurable

biomarkers across species, and (c) understand the relationship between ADMET

(adsorption, distribution, metabolism, excretion, and toxicology) parameters and

the SAR (structure activity relationship) of drug candidates, in a manner that

rapidly informs discovery efforts. To this end, remarkable strides have been made

in the development and utilization of recombinant technologies, imaging tools,
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ex vivo pharmacology models, and numerous in silico modeling and simulation

tools. In addition, the need for clinical validation of novel targets has necessitated

greater creativity in the design of early clinical studies in order to provide rapid

feedback to discovery teams engaged with backup drug candidate efforts.

Precompetitive partnerships among companies, open innovation industry-

academia collaborations, and other constructs are becoming increasingly prevalent.

These interactions have helped accelerate the pace of innovation and technology

development in various fields of drug discovery and development.

The digital age has also brought about significant changes to patient lifestyles

and caregiver profiles. It has revolutionized our ability to generate, share, and

analyze unprecedented amounts of data more efficiently than ever before. These

changes, along with changes in the payer profiles across the globe, global regulatory

requirements, and the large global partnership networks, have ushered in a new era

in the business of pharmaceutical research. In order to be successful in this new

playing field, it is essential that the pharmaceutical industry adapt to the changing

environment as outlined below and described in further detail in the chapters that

follow.

Once targets of interest have been identified, discovery efforts must also develop

a clear understanding of the patient, care provider, and payer profiles, projected out,

to the extent possible, to the estimated time of launch of the product. They must

have a good understanding of how the new therapeutic agent compares with or

complements the prevailing standard of care. This information must be used to

guide the definition of the product profile, which should then inform the

corresponding optimum molecular property space that medicinal chemistry efforts

need to target.

ADME and toxicology assessments should be fully integrated with the chemistry

and pharmacology trajectories in order to provide meaningful input into molecular

design, as well as a sufficient understanding of translatability to clinical studies.

Developability assessments require a judgment-based approach encompassing solid

form, drug product design, and performance evaluations, within the context of

potential challenges to clinical and commercial development, patient centricity,

cost, and other business considerations.

Clinical studies must be designed to provide high-quality information on the

safety, efficacy, and tolerability of the drug candidate as early as possible. Innova-

tions in clinical and ultimately commercial drug products are also needed to ensure

they are as simple and inexpensive as possible in order to rapidly inform further

development and/or provide feedback for subsequent backup efforts. New modal-

ities require drug delivery technologies that better cater to patient needs while

simultaneously improving compliance and therapeutic efficacy.
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This book is intended to provide pharmaceutical scientists across multiple

disciplines with additional background and insights to enhance their effectiveness

in their respective roles and thereby achieve greater success in the discovery and

development of new drugs.

Indianapolis, IN Shobha N. Bhattachar

Wallingford, CT John S. Morrison

Indianapolis, IN Daniel R. Mudra

Indianapolis, IN David M. Bender
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Part I

Discovery, Development and
Commercialization of Drug Candidates:

Overview and Issues



Chapter 1

Pharmaceutical Industry Performance

David C. Swinney

Abstract Good health is a priority for all. Medicines are an important aspect of

maintaining good health. However, medicines are very difficult to discover,

develop, and provide to patients. There are many more failures than successes

resulting in high attrition rates. Analysis shows there is more than one way to

discover medicines. As a consequence, the pharmaceutical industry is continuously

reshaping itself to address the challenges of high attrition. This introductory chapter

will highlight some of the challenges to pharmaceutical industry productivity, how

they are currently addressed, and how the industry is reshaping itself to address

these challenges. It is concluded that addressing these challenges creates many new

opportunities for innovation.

Keywords Pharmaceutical industry productivity • Degree of innovation • Learn

and confirm cycle • Mechanistic paradox • Precision medicine • Drug discovery

1.1 Introduction

Good health is a priority for all, and medicines are an important aspect of

maintaining good health. The goal of the pharmaceutical industry is to continue

to provide safe and effective medicines for patients. However, these new medicines

are becoming more difficult and costly to discover, develop, and deliver. There are

many more failures than successes, and as a consequence, the pharmaceutical

industry is continuously reassessing its strategies to address the high attrition rates.

The hope of the industry and medical research has been that a greater under-

standing of the basis for disease enabled by new molecular technologies will lead to

new medicines that address all these challenges. While the implementation of these

new technologies has greatly increased the extent of disease biology knowledge and

enabled more precise use of approved medicines, it has not dramatically increased
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the number of new molecular entities (NMEs) approved by the US FDA [1]

(Fig. 1.1). Accordingly, the adjusted cost of developing a new medicine through

to regulatory approval has dramatically increased [2–4].

The consensus reason for the decrease in productivity is a high attrition or failure

rate [2–4]. A large fraction of drug research and development programs fail.

However, when these drug candidate failures occur at later stages in development

(phase III clinical trials), the costs are significant. There have been many proposals

and associated actions to address the attrition, many of which have been incorpo-

rated into the discovery and development process. Some of these processes have

reduced attrition due to specific issues, but none have yet improved overall

productivity [5].

Perhaps the biggest challenge to industry performance is translating molecular

understanding of diseases into medicines that can be effectively and efficiently used

to treat disease in patients. This is confounded by a mechanistic paradox:

while the knowledge of mechanism (e.g. how a drug works) is very helpful to discover and

precisely use medicines, paradoxically the knowledge initially available is rarely suffi-

ciently complete to provide a blueprint for discovery and initial use of the medicines.

The current vision for medicinal health is precision medicines that customize

healthcare, with medical decisions, practices, and/or products tailored to the indi-

vidual patient. It is envisioned that new genetic information and advances in

computation science and chemistry will enable this goal. However, knowledge of

how a drug works and how it can be precisely used only becomes available after it

has been discovered and tested; consequently the mechanistic paradox provides a

significant long-term challenge to achieving this objective.

This introductory chapter first lays out the general background of drug discovery

and development, providing some important definitions, emphasizing unmet

medicinal needs, highlighting recent success rates, and describing the process that

has evolved to identify safe and effective medicines. The later part of this chapter
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Fig. 1.1 New molecular entity (NME) approvals, by innovation category [1]
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addresses some of the knowledge gaps contributing to high attrition rates that

provide challenges to implementing the vision of the Precision Medicine Initiative.

1.1.1 Definitions

Performance. Broadly defined as the action or process of carrying out or

accomplishing an action, task, or function. When applied to the pharmaceutical

industry, performance is typically defined as providing new medicines for patients.

The performance of the pharmaceutical industry has remained relatively constant in

terms of new molecular entities (NMEs) approved by the US FDA over the past

several decades (Fig. 1.1), despite considerable increases in expenditures. As a

consequence, the productivity (or ratio of performance/expenditures) has decreased

over this time. A number of excellent articles have been written to address the

decrease in productivity [2–4].

Attrition. The process of gradually reducing the effectiveness of something through

sustained pressure. Attrition in the pharmaceutical industry is the failure of poten-

tial medicines to be approved for use in patients by regulatory agencies and

ultimately reach the marketplace. These failures result in very significant financial

losses (1) due to research expenditures on failed projects which (2) were not

invested in projects that could have led to approved medicines and thereby

increased performance and productivity. There are many reasons for attrition with

the most common being the inability to show efficacy and the lack of tolerable

safety in human clinical trials [5] (Fig. 1.2).

Process. A series of actions or steps taken in order to achieve a particular end. For

example, a process has been installed in drug discovery and development across the

pharmaceutical industry to ensure that medicines submitted to regulatory agencies

are sufficiently safe and efficacious to be effectively used in patients. The process

usually involves initial preclinical testing to identify potentially safe and efficacious

drug candidates, followed by evaluating safety and efficacy in human clinical trials

(Fig. 1.3). More details of this process are discussed below in Sect. 1.1.1.

Precision medicine. Precision medicine refers to the tailoring of medical treatment

to the individual characteristics of each patient [6]. It does not literally mean the

creation of drugs or medical devices that are unique to a patient but rather the ability

to classify individuals into subpopulations that differ in their susceptibility to a

particular disease, in the biology and/or prognosis of those diseases they may

develop, or in their response to a specific treatment. Preventive or therapeutic

interventions can then be concentrated on those patients most likely to benefit,

sparing expense and side effects for those who will not. Although the term “per-

sonalized medicine” is also used to convey this meaning, that term is sometimes

misinterpreted as implying that unique treatments can be designed for each indi-

vidual. The discovery and precise use of medicines is a long-term goal of medical

research.

1 Pharmaceutical Industry Performance 5



Innovation. The introduction of something new. Innovation is commonly confused

with invention and creativity. Creativity is the ability to generate original ideas,

concepts, and objects. It spurs invention, which is most evident in the areas of

technology and business. Artists enjoy creativity, whereas engineers and scientists

focus on inventions. But innovation demands an additional ingredient: market

success.
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Fig. 1.3 Drug discovery and development: a product development process
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Fig. 1.2 Root-cause analysis for 359 phase 3 and 95 NDA/BLA suspended programs. A program

was designated as “suspended” when conclusive evidence had been gathered regarding a

company’s plans to discontinue development or communications with regulators were not

reinitiated for several years [5]
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In a recent opinion in Nature, Kuziak stated that the path to innovation is

currently more art than science, which might explain why it is shockingly ineffi-

cient: the chance of an invention attaining enough commercial or social success to

be recognized as an innovation reaches no more than low single percentages. In the

US Small Business Innovation Research program, a very low proportion of grants

results in a viable economic activity, product, or service. In markets that are

saturated, such as those of mobile phones or medical discoveries, the success rate

is even lower [7].

The goal to discover, develop, and market innovative new therapies is arguably

the grand challenge of medical research. As noted above, there is a clear process to

ensure therapies that reach the market are safe at effective doses; however, this

process does not ensure that new therapies will be innovative. This aspect occurs

earlier in the basic research and discovery phases and will be discussed in more

detail in Sect. 1.1.2.

1.1.2 Unmet Need

The primary goal of the pharmaceutical industry is to provide medicines for unmet

medical needs. The priority unmet medical needs for Europe and the world in 2013

were identified in a report from the WHO (World Health Organization) [8]. The

report identifies:

• The population of Europe and the world is aging, with more people—especially

women—living beyond the age of 80. Since 2004, for the first time in Europe,

there are now more people over the age of 65 than under 15 years. With this

aging, there is a marked increase in diseases of the elderly such as osteoarthritis,

lower back pain, hearing loss, and Alzheimer’s disease.
• Ischemic heart disease, stroke, depression, chronic obstructive pulmonary dis-

ease (COPD), and alcoholic liver disease were all considered as areas for priority

research as was the need for specific biomarkers which could be used to identify

potential pharmaceutical products, diagnose and monitor the progression of

disease, or assess the effect of treatment.

• Tobacco use, alcohol abuse, and obesity are risk factors that underlie many of the

most common serious noncommunicable diseases (NCDs) affecting both Europe

and the world. While prevention efforts must take precedence, the report stated

that research is needed on pharmaceutical methods to address these risk factors

and the pathologies exacerbated by these risk factors (e.g., COPD, various

cancers, alcoholic liver disease, osteoarthritis, and diabetes).

• Antibacterial resistance and pandemic influenza remain major threats to global

public health. Malaria and tuberculosis (TB) represent major threats, especially

in low- and middle-income countries. Antimicrobial resistance will remain a

threat until primary prevention with vaccines occurs. Diarrhea, pneumonia,
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neonatal conditions, and maternal mortality are major contributors to the global

burden of disease. For neglected tropical diseases and rare diseases, establishing

new mechanisms to promote the translation of basic research into clinically

important products remains a priority. The report identified that while progress

has occurred since 2004 in the treatment of Buruli ulcer, other diseases such as

leishmaniasis, trypanosomiasis, and dengue still require substantial research.

The report also stated that pharmaceutical innovation should encompass special

groups of patients such as the elderly, women, and children, who have particular

needs in relation to dosage forms and products. The development of appropriate

formulations for children and the elderly needs to be supported. Progress has been

made in some oral forms but more is needed. Furthermore, research is needed on the

use of electronic health records (EHRs) to deliver much-needed information on

safety and effectiveness of medicine use in these populations.

1.1.3 NMEs and the Degree of Innovation

Pharmaceutical performance for all novel therapeutics approved by the FDA

between 2005 and 2012 was evaluated using a framework established by the

FDA to classify the degree of innovation: first-in-class, advance-in-class, and

addition-to-class [9]. Although innovation can be measured in different ways,

drugs with novel mechanisms of action (first-in-class) are largely considered to

be the most innovative. Drugs that provide important clinical benefits despite not

being mechanistically novel (advance-in-class) may be equally important innova-

tions in terms of their clinical promise [1]. The report compared the use of priority

review and accelerated approval regulatory pathways, regulatory review times, and

characteristics of pivotal trials, including number, design, primary end point,

duration, and size, for novel therapeutics stratified by degree of innovation

(Fig. 1.4). Between 2005 and 2012, the FDA approved 188 novel therapeutics:

70 (37%) were first-in-class, 42 (22%) were advance-in-class, and 76 (40%) were

addition-to-class. Over half of the biologics (56%, 19 of 34) were first-in-class;

nearly half of the small molecules (46%, 70 of 154) were additions-to-class and

accounted for 73% (51 of 70) of first-in-class therapeutics. Almost two-thirds of

therapeutics approved for autoimmune and musculoskeletal diseases (64%, 7 of 11)

were first-in-class, as were one-third of therapeutics for cancer (36%, 14 of 39) and

less than one-quarter of therapeutics for psychiatric disease (22%, 2 of 9). The

authors concluded that the FDA was consistently applying existing regulatory

levers to support and accelerate the review and approval of drugs considered

mechanistically innovative (i.e., first-in-class therapeutics) as well as those antici-

pated to provide substantial clinical advances (i.e., advance-in-class therapeutics

acting through existing mechanisms of action) [1].
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1.2 Drug Discovery and Development Overview

1.2.1 Learn and Confirm Cycle

The creation of medicines to treat unmet medical needs involves an iterative cycle

of testing and learning. Figure 1.5 describes some of the important phases of this

process in which research, discovery, and development activities are initiated to

provide a treatment for disease. Physiological, genetic, and chemical knowledge are

generated and used to understand the disease, and this knowledge helps identify

translation biomarkers to evaluate the effectiveness of the potential medicine.

These activities represent the research phase (12 to 3 o’clock in Fig. 1.5).

Fig. 1.4 Characteristics of novel therapeutics approved by the FDA between 2005 and 2012,

stratified by degree of innovation. Data for first-in-class therapeutics are shown in green, advance-
in-class therapeutics in orange, and addition-to-class therapeutics in blue. (a) Use of special

regulatory pathways. Lighter circles represent the total number of therapeutics, whereas the darker
circles nested within the lighter circles illustrate the proportion of therapeutics approved through the
special regulatory pathways. (b) First review and total regulatory time. (c) Characteristics of pivotal
efficacy trials, aggregated to account for all trials supporting the FDA indication approval [9]
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The objective of the research phase is to generate knowledge that will inform the

discovery phase. In the most effective processes, the discovery and development

phases further refine this knowledge and provide feedback for continued research.

There are many types of knowledge important to drug discovery and development: the

cause of the disease, including the genetic contributions, pharmacological mecha-

nisms of action that can safely modulate the disease, the most appropriate therapeutic

Starting pt (assay/target)
Discovery strategy

Drug Candidates

Medical Need

Translation biomarker

Discovery

Clinical safety

Proof of concept

Lead optimization

Lead identification

Pharmacological mechanism

Phase 3 Efficacy

Drug Approval

Development

Drug discovery is 
an iterative process 

starting with an unmet 
medical need and 
an idea to address 

that need.

Basic research

Fig. 1.5 Learn and confirm cycle of drug discovery and development. Drug discovery and

development cycle. The approval of a medicine to treat an unmet medical need including a rare

disease involves an iterative cycle of testing and learning. This figure describes some of the

important phases in the process. The process of discovery and development of a new medicine is

initiated in response to an unmet medical need to treat a disease. Physiological, genetic, and

chemical knowledge provide an understanding of the disease. This knowledge will lead to the

identification of translation biomarkers that are used to evaluate the effectiveness of a potential

medicine. The available knowledge informs drug discovery strategies which are used as starting

points for the practical process of discovering a new medicine. Target-based drug discovery

(TDD) is associated with modulating a specific gene product known as the target, and phenotypic

drug discovery (PDD) is a strategy driven by assays which measure phenotypes associated with the

disease. Ideally these phenotypes will be associated with the translational biomarkers. These two

strategies generally are focused on small molecules and are medicinal chemistry intensive, in

contrast to biologics which use recombinant proteins and antibodies as therapeutics. It should be

noted that the knowledge to choose a strategy is generally incomplete; however, the more

iterations that occur in the drug discovery/development cycle, the more complete the knowledge

and the better chance that a molecule will make it to registration. The discovery strategies will

result in a lead molecule, ideally with activity against the translational biomarker. The molecule

will work by a molecular mechanism of action (MMOA) that provides an optimal therapeutic

index. These molecules will then be optimized for biopharmaceutics properties and safety to

provide a drug candidate. At this point, the process of drug discovery is complete, and the

molecule should succeed or fail based on its own merit. Opportunities to improve efficiency in

drug discovery will increase the probability that clinical candidates will make it to registration.

The left hand of the circle (from 6 to 12 o’clock) is the development phase of drug discovery which

involves testing for safety and efficacy in humans leading to registration. Multiple iterations are

generally required before a medicine with sufficient efficacy at a safe dose is discovered, tested in

humans, and registered
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molecular modality (small molecules, biologics, nucleic acids), and the pharmaceuti-

cal properties of these molecules. Initially there are gaps in this knowledge base, and

processes have been put in place to bridge or de-risk these gaps. An important feature

of a productive R&D paradigm is to efficiently use the available knowledge and to

effectively integrate new knowledge as it becomes available.

The knowledge obtained during the research phase is used to inform the discov-

ery phase (3 to 6 o’clock in Fig. 1.5) and establish strategies that will be used as the
practical starting points for creating new medicines. Target-based drug discovery

(TDD) is associated with modulating a specific gene product or target, whereas

phenotypic drug discovery (PDD) is a strategy driven by assays which measure

phenotypes or observable characteristics associated with the disease. Ideally these

phenotypes are also associated with translational biomarkers. Both of these strate-

gies are primarily small molecule focused and medicinal chemistry intensive, in

contrast to biologics which use recombinant proteins and antibodies as therapeutic

moieties. The knowledge required to choose a specific strategy is initially incom-

plete; however, further iterations in the research/discovery/development cycle add

to the knowledge base and improve the chances that a molecule will possess sufficient

efficacy and safety to survive to registration. Successful discovery strategies result in

lead molecules with a molecular mechanism of action (MMOA) that provides an

optimal therapeutic index and which ideally provides activity against translational

biomarkers. These lead molecules are then further optimized to improve

biopharmaceutics properties and safety which yield a drug candidate for clinical

assessment. At this point, the drug discovery phase is complete, and the molecule

must succeed or fail based on its own merit with no further structural modification.

The left-hand portion of the cycle (from 6 to 12 o’clock in Fig. 1.5) represents

the development phase of the process in which the drug candidate is tested for

safety and efficacy in humans and if successful ultimately leads to registration.

Multiple iterations of the entire research/discovery/development cycle are often

required before a medicine is created with sufficient efficacy safety.

1.2.2 Process to Identify Safe and Effective Medicines

As noted above, a key challenge of drug discovery is to identify molecules that are

safe at efficacious doses. Since it is impossible to a priori predict all interactions of a

medicine within a patient, a process has evolved that first identifies potential drug

candidates and then de-risks these molecules in numerous tests.

This process of drug discovery involves the identification of molecular struc-

tures, synthesis, characterization, and screening in assays for therapeutic efficacy

and safety. Compounds demonstrating beneficial activity in these tests begin the

process of drug development leading to clinical trials. This process has evolved

over time to identify molecules that are safe as well as efficacious as further

outlined below (Fig. 1.3).
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Target identification and validation. This is the typical starting point for drug

discovery programs. There is currently much debate regarding the role of this

step in the process, which is discussed further in Sect. 1.4. Armed with an idea,

researchers work to identify biological targets for a potential medicine. A drug

target is a molecular structure in the body that, when it interacts with a potential

drug compound, produces a clinical effect (e.g., treatment or prevention of a

disease). The investigators conduct studies in cells, tissues, and animal models to

determine whether the target can be influenced by known medicinal agents.

Lead identification. After learning more about underlying disease pathways and

identifying potential targets, researchers seek to narrow the large field of potential

compounds to one lead compound. This promising molecule provides activity

against the target and has the potential to become a medicine. Candidate molecules

are created from living or synthetic material and tested with high-throughput

screening techniques.

Lead optimization. Lead investigational compounds that display sufficient potency

to survive the initial screening are then “optimized” or structurally altered to

improve efficacy and safety. By changing the structure of a compound, scientists

can modulate its properties. Hundreds of different variations or “analogues” of the

initial leads are produced and then tested and ranked in multiple assays. The

resulting “best” compound that meets the required profile criteria becomes a drug

candidate and undergoes extensive further testing and analysis before potentially

being reviewed for approval by regulatory agencies.

Preclinical safety testing. Scientists carry out both in vitro and animal tests to assess

the compound’s safety. Through these techniques, researchers strive to understand

what potential side effects may occur in humans. Techniques for making a drug on

small-scale preclinical stage may not translate easily to larger production. There-

fore, during this stage, scientists must also determine how sufficiently large quan-

tities of the drug candidate can be produced for toxicity studies as well as to support

clinical trials. Further production will also be required once the medicine is

approved for use in the general patient population.

Investigational new drug application and clinical trial planning. Before any clin-

ical trial can begin, drug sponsoring organizations must file an investigational new

drug (IND) application with the FDA. The application includes the results of the

preclinical work, the candidate drug’s molecular structure and properties, details on

how the investigational medicine is thought to work in the body, a listing of any

potential side effects indicated from the preclinical studies, and manufacturing

information. The IND also provides a detailed clinical trial plan that outlines

how, where, and by whom the studies will be conducted.

Phase I clinical trial. In phase I trials, the candidate drug is tested in people for the

first time. These studies are usually conducted with a small number of healthy

volunteers, generally 100 individuals or less. The main goal of a phase I trial is to

assess the safety of the medicine when used in humans. Researchers explore the

human pharmacokinetics of a drug: how it is absorbed, distributed, metabolized,
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and eliminated (ADME) from the body. They also study the drug’s intended and

unintended pharmacodynamics (potential side effects). These closely monitored

trials are designed to help researchers determine a safe dosing range and if the

candidate medicine warrants advancement to the next stage of development.

Phase II clinical trial. In phase II trials, researchers evaluate the candidate drug’s
effectiveness in 100 to 500 patient volunteers with the disease or condition under

study. Many phase II trials evaluate patients receiving the drug candidate versus a

comparator treatment, either an inactive substance (placebo) or a different drug that

represents the standard of care for the disease. At this stage, researchers analyze

optimal dose strength and dosing schedules. Possible short-term side effects

(adverse events) and risks associated with the drug are also investigated. Drugs

that continue to show promise are advanced to much larger phase III trials.

Phase III clinical trial. Phase III trials generate statistically significant data about

the safety, efficacy, and the overall benefit-risk relationship of the investigational

medicine. Phase III trials may enroll 1000 to 5000 patients or more across numerous

clinical trial sites around the world. This phase of research is essential in

establishing whether a drug is safe and effective. It also provides the basis for

labeling instructions to help ensure proper use of the drug (e.g., information on

potential interactions with other medicines, specific dosing instructions, etc.).

FDA review and approval of marketing application. Once the clinical trials have

demonstrated that the drug candidate is both safe and effective, the sponsoring

company submits a new drug application (NDA) or biologics license application

(BLA) to the FDA requesting approval to market the drug. These applications

contain the results and data analysis from the entire clinical development program,

as well as the earlier preclinical testing and proposals for manufacturing and

labeling of the new medicine. These documents can run 100,000 pages or more.

1.3 How Medicines Work

The process of drug discovery evolved to ensure that drug candidate molecules

address an unmet medical need without compromising patient safety. Knowledge of

how a drugs works (e.g., its mechanism of action) is helpful to translate under-

standing of the disease to treatment for the patient. For instance, a specific mutation

in a gene that results in cancer can inform the selection of a target as well as the

patient population for clinical testing. As an example, c-Abl is a kinase that when

mutated causes chronic myelogenous leukemia and can be treated with the inhibitor

imatinib [10]. Some forms of melanoma are caused by a mutation in BRAF kinase,

which are treated with the BRAF inhibitor vemurafenib [11].

It has been long recognized that pharmacological action begins with an interac-

tion between two molecules (a drug and a target). Ehrlich noted in 1913 that a

substance will not work unless it is bound, corpora non agunt nisi fixata [12]. How-
ever, target binding alone is not always sufficient for a substance to initiate the
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desired physiological process. For example, two similarly structured molecules can

bind to:

1. An enzyme with similar affinity; however, only the molecule that binds in a

suitable manner will initiate the catalytic reaction.

2. A receptor with similar affinity; however, an agonist will initiate a response,

whereas an antagonist will block the response.

The molecular mechanism of action (MMOA) through which binding is coupled

to the pharmacological response affects dose-response relationships and the thera-

peutic index. But simply knowing the parts of an efficient machine, be it a watch,

automobile, or computer, is not sufficient to understand how it works. The parts

must collaborate in precise ways to provide the desired accurate outcome: time,

reliable transportation, or processed information.

Analogously an MMOA is the interaction between a drug and its target

(or targets) that creates a specific response. These specific molecular interactions

link structure to function in such a manner as to provide a therapeutically effective

and safe response. As such, an MMOA differs from a mechanism of action (MOA),

which only describes the process from the context of the physiological response

(such as antihistamines, anti-inflammatory, etc.). There are many facets to this

interaction that ultimately result in the desired therapeutic outcome. For example,

the particular site of interaction (allosteric or orthosteric), molecular descriptors of

the binding interaction (such as affinity and binding kinetics), the functional impact

(receptor agonism, modulation, or antagonism), and the specificity of the functional

outcome (activation of specific signaling pathways) all contribute to the MMOA

and affect the ultimate pharmacological response. Possible MMOAs at a target are

listed below, together with selected examples of drugs that act through these

MMOAs.

(a) Kinetic mechanisms.
For kinetic mechanisms, a pharmacological response to the drug is primarily

driven by binding kinetics and residence time at the target [13–17].

• Equilibrium binding. The response is determined by the equilibrium dissoci-

ation constant (Ki) of the drug to the target. Binding has sufficiently rapid

association and dissociation rates (kon and koff) that allow equilibrium to be

reached, and this process is therefore sensitive to competition with physio-

logical substrates and/or ligands. Examples include bosentan, an endothelin

receptor antagonist, and aliskiren, a renin inhibitor [18, 19].

• Slow kinetics. Non-equilibrium and irreversible mechanisms involve slow

association and/or dissociation rates (kon and koff) that do not allow equilib-

rium to be reached, and these processes are less sensitive to competition with

physiological substrates and/or ligands. Examples include orlistat which

binds irreversibly to the active site serine of pancreatic lipase, azacitidine

which irreversibly binds to DNA methyltransferases, and candesartan which

has a slow dissociation rate from the angiotensin II receptor [13–17, 20–22].
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(b) Conformational mechanisms.
For conformational mechanisms, drug binding results in a conformational

change in the target that elicits a response. Examples include sirolimus which

binds to the peptidyl-prolyl isomerase FKBP12 and stabilizes a conformation

that subsequently inhibits the kinase activity of mammalian target of rapamycin

and fulvestrant which induces a conformation of the estrogen receptor that is

subsequently degraded [13, 23–27].

• Noncompetitive inhibition and/or antagonism. This MMOA involves drug

binding to a target at a site that is distinct from the physiological substrate,

and/or ligand-binding site, and results in an inhibition of the response.

Caspofungin is believed to be a noncompetitive inhibitor of 1,3-β-D-glucan
synthase, owing to the observation that its IC50 (half-maximal inhibitory

concentration) is not influenced by substrate concentrations [28].

• Uncompetitive inhibition and/or antagonism. An uncompetitive MMOA is

contingent on prior activation of the target by a physiological effector (the

substrate or the ligand). As a consequence, the same amount of drug blocks

the response to a greater degree at higher versus lower concentrations of the

physiological effector. Memantine is an uncompetitive antagonist that binds

only to the activated form of the NMDA receptor. The potency of the

inhibition of the NMDA receptor by memantine increases at higher concen-

trations of glutamate (the physiological ligand [29, 30]).

• Full agonism. Maximal efficacy is produced following drug binding to a

receptor and subsequent receptor activation. For example, ramelteon mimics

the activity of melatonin for the melatonin receptor through binding at the

orthosteric site with efficient coupling to activate specific signaling

pathways [31].

• Partial agonism. This form of MMOA produces only partial efficacy fol-

lowing drug binding to the orthosteric site on the receptor. Examples include

aripiprazole as a partial agonist of the dopamine D2 receptor and varenicline

as a partial agonist of the nicotinic acetylcholine receptors [32–34].

• Allosteric modulation. This mechanism involves regulation of the biological

activity of the target by binding of a drug at a site distinct from the site for

the endogenous substrate and/or ligand (allosteric site). Cinacalcet is an

allosteric modulator of the calcium receptor by binding to the allosteric

site [35].

(c) Redox mechanisms.
Reduction-oxidation (redox) reactions produce a pharmacological response

to the drug as a consequence of electron transfer between the drug and a

physiological target. For example, generation of hydroxyl radicals by

verteporfin is thought to contribute to its ability to damage cells, and the

antiprotozoal activity of nitazoxanide is believed to be due in part to interfer-

ence with the pyruvate ferredoxin oxidoreductase enzyme-dependent electron

transfer reaction, which is essential to anaerobic energy metabolism [36, 37].
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A major challenge in the identification of safe medicines is to identify molecular

mechanisms of action (MMOAs) that provide both sufficient efficacy and safety

[13, 24, 38–41]. These MMOAs can be thought of as “pharmacological hot spots.”

Due to the dynamic complexity of physiology both at the molecular and systems

level, it is difficult to a priori predict the exact interactions and molecules that will

elicit a safe, therapeutically useful response.

1.4 Drug Discovery Strategies: How Medicines
Are Discovered

Medicines come in many forms (biologics, small molecules, etc.) and are discov-

ered in different ways. The generally preferred drug discovery process involves

utilizing whatever knowledge of a molecular mechanism is available to help

identify potential new medicines. Unfortunately, in many cases, this knowledge is

incomplete, most notably for first-in-class medicines. As a result, one of two drug

discovery strategies to increase this knowledge base is pursued:

1. Target-based drug discovery (TDD). For target-based drug discovery, a “thera-

peutic hypothesis” refers to the concept that perturbing a particular target in a

given manner will benefit patients with minimal (or at least acceptable) toxicity.

Ideally, the data for validating such a therapeutic hypothesis is derived from the

patient population of interest as a result of direct perturbation of a target with a

known function. However, strictly speaking, the only truly validated targets are

those that are already successfully modulated by a safe and effective

therapeutic [42].

2. Phenotypic drug discovery (PDD). Phenotypic assays measure a phenotype

response in a physiological system (e.g., animals, cells and biochemical path-

ways) [43, 44]. A phenotype is the physical appearance or biochemical charac-

teristic of an organism as a result of the interaction of its genotype and the

environment. Phenotypic assays provide an empirical method to probe effects in

physiological systems with minimal assumptions as to the molecular details of

how the system works. The phenotype most relevant to the practice of drug

discovery is a phenotype that directly translates to the clinical disease (transla-

tional biomarker).

Phenotypic assays have always played an important role in drug discovery

[40, 45]. Much of early pharmacology and drug discovery was based on phenotypic

assays, which were used to identify lead compounds that provided the desired

efficacy. In his Nobel lecture entitled “Selective Inhibitors of Dihydrofolate Reduc-

tase,” George H. Hitchings Jr. stated “Those early, untargeted studies led to the

development of useful drugs for a wide variety of diseases and has justified our

belief that this approach to drug discovery is more fruitful than narrow targeting”

[45]. In the final decades of the twentieth century, the emphasis of drug discovery
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changed to a more reductionist, target-based approach, with phenotypic assays used

primarily to confirm efficacy and evaluate safety. This was driven by the molecular

and genetic revolutions with the capabilities to identify many new drug targets and

the potential toprovide numerous new medicines. Though not explicitly stated, the

drug targets were also intended to be biomarkers for the disease. In this paradigm,

the central features are (1) identification of a molecule that binds to the selected

target and (2) optimization of the biopharmaceutics properties such that the drug

concentrations in the body are sufficient to ensure that the drug is available to bind

to the target throughout the dosing interval. This target-based paradigm was

envisioned to provide a more rational approach to drug discovery, analogous to a

design and engineering approach in other industries.

The general lack of productivity with the TDD approach has led to a reemerged

interest in the last few years for using phenotypic assays to drive discovery.

Swinney and Anthony analyzed the discovery strategies for NMEs approved by

the US Food and Drug Administration (FDA) between 1999 and 2008 [41]. Of the

259 agents identified, 75 were first-in-class drugs with new MMOAs, and of these,

50 (67%) were synthetically derived small molecules versus 25 (33%) that were

biological agents produced in cells. The results also showed that the contribution of

phenotypic screening to the discovery of first-in-class small-molecule drugs

exceeded that of target-based approaches—with 28 and 17 of these drugs coming

from these two approaches, respectively. This discrepancy is especially notable in

an era in which the major focus was on target-based approaches. A more recent

analysis by Swinney and Xia showed a similar trend of success with phenotypic

strategies. Between 1999 and 2012, there were 102 NMEs approved for rare

diseases. Within the first-in-class NMEs, 15 used phenotypic drug discovery,

12 used target-based drug discovery, and 18 were biologics [46]. The Swinney

and Anthony analysis suggested that compound identification using a phenotypic

approach can also be effective (function-first/phenotypic drug discovery (PDD)). It

was concluded that the function-first approach was valuable for uncovering new

molecular mechanisms of action (MMOAs) that a priori were difficult to

identify, and this contributed to the success of phenotypic assays for first-in-class

medicines [41, 47].

Clearly the pharmaceutical industry and medical research are heavily invested in

the target-based approach for both technical and intellectual reasons. When this

process works (in other words when the target/MMOA are validated), it provides a

rational approach for discovering and developing medicines, analogous to engi-

neering. The ability to apply structure-based design to a specific target allows

optimization of efficacy and drug-like properties in a rational way. A target-based

approach also aligns with the potential for genetics to explain the cause of disease

and provide biomarkers for discovery and clinical evaluation. This in turn allows

better selection of patients for clinical trials and increases the probability of success.

The clinical pharmacology directly relates dosing to target occupancy in order to

maximize the therapeutic index. And finally, a target provides an understandable

metrics to communicate mechanism of action to the stakeholders across the value
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chain, from researchers in discovery biology and medicinal chemistry to drug

developers and program funders.

Despite these benefits, there are two major challenges for the TDD approach.

First is the necessity of identifying and validating the target. Second, as described

earlier in this chapter, the MMOA of an effective medicine must provide a safe and

effective response. This process is more complex than simple occupancy of a drug

target and is difficult to a priori predict. The renewed interest in phenotypic

screening provides new opportunities to address these challenges through integra-

tion of the systems (PDD) approach with the current target-centric (TDD) approach.

Two recent manuscripts by Moffat et al. and Eder et al. provided two different

perspectives to this issue [48, 49]. The Moffat paper addresses the challenges of

relating a target and genetics to a well-defined phenotype [48], while the Eder work

focuses on the processes that successfully led to identification of first-in-class

medicines [49].

Moffat et al. investigated the contribution of phenotypic screening toward

oncology therapeutics, an area in which target-based approaches have been partic-

ularly prominent. In many cases, disease-causing genes also provided patient-

specific biomarkers for clinical evaluation [48]. The authors defined pure pheno-

typic screening to be a discovery process identifying chemical entities able to

produce desirable biological and therefore phenotypic effects on cells or organisms

without prior knowledge of the biological activity or mode of action against a

specific molecular target(s). However, the authors noted that in practice many

projects are not target agnostic and conversely many target-based discoveries rely

heavily on phenotypic assays. They concluded that recent phenotypic screening in

cancer drug discovery has been hampered by a reliance on “classical” nonspecific

drug phenotypes such as cytotoxicity and mitotic arrest. They instead proposed that

mechanism-informed phenotypic drug discovery (MIPDD) provides a basis to

better identify the causal relationships between target inhibition and phenotypic

effects. Such mechanistically informed phenotypic models can provide some con-

firmation that the targeted agents have the necessary MMOA. Additionally knowl-

edge of the drug target enables diagnostic hypotheses and the development of

pharmacodynamic biomarkers [50].

Eder et al. performed a very thorough analysis of the origins of first-in-class new

drugs, emphasizing the processes that led to identification of the new drugs [19]. To

this end, phenotypic screening was defined as the testing of compounds in a

systems-based approach such as cells, tissues, or animals using a target-agnostic

assay that monitors for a phenotypic change. This definition assumes that no

mechanistic information is available. The analysis by Eder shows that the majority

of first-in-class drugs were discovered with target-based approaches as opposed to

the finding in the Swinney and Anthony 2011 paper in which the majority were

categorized as being discovered by phenotypic screening. This discrepancy is

partially resolved by Eder as being due to the categorization, in which they included

biologics as target based as well as drugs discovered using a chemocentric

approach. The category “chemocentric” was used to categorize systems-based

approaches in which an active component had been identified previously, such as
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isolation of aspirin from willow bark. Eder et al. concluded that phenotypic

screening and target-based screening were complementary strategies not requiring

researchers to choose between the two [49].

Ultimately the conclusions of the Moffat and Eder groups depended on the

definitions used for phenotypic screening, and it is the differences in the definitions

and corresponding interpretations that provide interesting insights. In the Swinney

and Anthony 2011 paper [41], the term “phenotypic screening” was used to

describe any approach in which the MMOA that provides a tolerable therapeutic

index is not assumed. In this context, phenotypic screening is empirical and

includes all screening that is not target based. This definition focused on synthetic

small molecules and excluded biologics as well as natural substance-based medi-

cines. This is primarily because the question addressed in the analysis was “what

type of mechanistic knowledge led to the identification of MMOAs that provide

safe and effective medicines.” The work by Moffat et al. recognized this issue and

specifically addressed the concern with a new category that bridges between TDD

and PDD, mechanism-informed PDD (MIPDD) [48]. The paper by Eder et al. did

not address this aspect [49].

Many of the features important for successful drug discovery are relevant to both

the PDD and TDD strategies. This includes the necessity of progressing forward

with an incomplete understanding of the disease pathobiology, chemistry, and

mechanisms of drug action. It remains a continued challenge to relate the molecular

aspects of drug action to a safe and therapeutically useful response in patients.

Moffat and coworkers ultimately conclude that very few recent cancer drug dis-

covery success stories can be described as purely TDD or PDD, and PDD therefore

remains a crucial activity in selecting, validating, and developing cancer drugs with

optimal MMOAs [50]. Accordingly an integrated view of drug discovery that links

molecular drivers to molecular targets to well-defined phenotypes is recommended.

While Eder et al. highlight the success of TDD, they also discussed the promise of

phenotypic screening to uncover new therapeutic principles and molecular path-

ways for currently untreatable diseases. They even proposed that phenotypic

screening be considered as a new discipline [49].

It is clear that the strengths of PDD and TDD compliment their respective

weaknesses. The strengths of TDD include the tools to optimize molecular inter-

actions and translate between genetics and clinical disease markers. TDD is facil-

itated by complete and accurate knowledge of physiology, chemistry, and

pharmacology, which is both a strength and a weakness. Alternatively, the empir-

icism of PDD can compensate for the often incomplete knowledge available for

TDD. However, as both studies noted, PDD requires validated biomarkers and

robust physiological relevant assays (Fig. 1.6). As proposed by Moffat and

coworkers [50], better integration of the empirical/phenotypic and molecular/tar-

get-based approaches is needed with a mind-set to identify an effective molecule.

Using this mind-set, the target becomes a tool rather than an outcome.

Clearly, effective integration of drug discovery disciplines is needed, in which

different approaches with both strategies and tools are used as appropriate for a

given project based on available knowledge. As mentioned previously, the
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complementary strengths of TDD and PDD should help compensate for their

respective weaknesses, with the ultimate goal of improving drug discovery

productivity.

1.5 Mechanistic Paradox and Precision Medicine

From the above discussions outlining how medicines work and how they were

discovered, it is clear that the relationship between a gene (with a mutation) and

pharmacological modulation of the gene product (drug target) to provide a phar-

macological response is both complex and unique. The knowledge of how a

particular drug works, the patient population in which it works, and how it is best

used comes only after it has been discovered and tested clinically. Consequently,

this presents a mechanistic paradox in drug discovery:

while the knowledge of mechanism (e.g. how a drug works) is very helpful to discover and

precisely use medicines, paradoxically the knowledge available during drug discovery is

rarely sufficiently complete to provide a blueprint for the discovery and initial use of

medicines.

Addressing this paradox is an important challenge for pharmaceutical industry

performance and translating molecular understanding of the diseases into medi-

cines that effectively and efficiently treat disease in patients. Toward this goal, the

PrecisionMedicine Initiative was implemented in 2015 [6]. The underlying concept

of precision medicine is to refine the understanding of an individual illness based on

their specific genetic makeup and other personalized medical data. The aim of the

initiative, according to US President Obama, is to usher in a new era of medicine

that harnesses data to support and advance research, technology, and policies as
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-System-based

-Identification of MMOA
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Fig. 1.6 Complementarity of target-based drug discovery (TDD) and phenotypic drug discovery

(PDD) strategies
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well as empowering healthcare providers and patients. The goal of precision

medicine is to “get the right treatment to the right patient at the right time,”

providing more personalized care and ultimately resulting in better outcomes at

lower costs.

The initiative has two main components: a near-term focus on cancers and a

longer-term aim to generate knowledge applicable to the whole range of ill health

and disease. Both components are now within reach because of advances in basic

research, including molecular biology, genomics, and bioinformatics. Furthermore,

the initiative taps into converging trends of increased connectivity, through social

media and mobile devices, and Americans’ growing desire to be active partners in

medical research [6].

Such a varied array of research activities will propel our understanding of

diseases—their origins and mechanisms and opportunities for prevention and

treatment—laying a firm, broad foundation for precision medicine. It will also

pioneer new models for doing science that emphasize engaged participants and

open, responsible data sharing. Moreover, the participants themselves will be able

to access their health information and information about research that uses their

data [6].

Therapies with safe and effective pharmacological mechanisms will need to be

identified in order to realize the full potential value of the Precision Medicine

Initiative toward connecting the understanding of the causes of disease to treatment

of patients. Unfortunately, what we have learned in the last 20 years is that

identification of a gene rarely directly identifies a drug therapy. It will be important

to address the knowledge gap of the previously described mechanistic paradox.One
approach is to continue acquiring more complete knowledge to provide a drug

discovery and development blueprint. However, the magnitude of this challenge is

enormous as it involves understanding every dynamic interaction in physiology, as

well as how they change with time and between individuals. The cost and time

needed to acquire this knowledge and determine its importance will be

considerable.

How can drug discovery become more innovative and productive given the

inherent knowledge gaps? The drug discovery and development process has

evolved over time to better ensure efficacy and safety of medicines in patients.

These processes do not however ensure innovation, and it can be argued that they in

fact limit innovation. The key challenge is to address the mechanistic paradox:

although the pharmaceutical industry is enabled by knowledge and needs this

knowledge for precise use of medicines, this knowledge is unfortunately always

incomplete.

When successful, the Precision Medicine Initiative will categorize patients more

precisely into smaller groups based on the specifics of the disease. In doing so, these

diseases may begin to have patient subpopulation numbers similar to rare (orphan)

diseases. An orphan disease is categorized by the US FDA as one with less than

200,000 patients. Analysis of drug discovery in orphan diseases provides some

insights into the successes and challenges that will need to be addressed including

how treatment options can be identified and/or created in a patient relevant time
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frame. The most obvious way is to identify an approved medicine that could be

repurposed or, if warranted, used off-label. Another more direct option is to

discover a medicine specific for that disease. However, currently only a few

medicines are discovered each year for rare diseases. A recent analysis by Swinney

and Xia in 2014 found that only 46 first-in-class medicines were approved for rare

diseases over a 14-year period [46]. In this analysis, the impact of genetic knowl-

edge on successful drug discovery was assessed since over 80% of rare diseases are

genetic. It was concluded that genetic contributions (25%) were underrepresented

with respect to the number of genetic diseases. This analysis of NMEs approved for

orphan rare diseases provided further insights into factors important to bridge the

knowledge gap in drug discovery. It was concluded that knowledge of most

diseases and the underlying molecular causes is incomplete. An additional chal-

lenge is that knowledge of the cause, for instance, a genetic defect or multiple

genetic defects, rarely provides a specific molecular solution. Plenge, Scolnick, and

Altshuler recently noted most preclinical research programs have incomplete

supporting material to accurately inform the drug discovery strategy [42].

The successful genetic approaches, while being fewer than expected based on

the number of genetic diseases, were in disease areas with substantial supporting

knowledge to facilitate drug discovery. For example, the success of kinases for

cancer and enzyme replacement therapy for inborn errors of metabolism was due to

significant preexisting research which provided an understanding of both molecular

and physiological challenges. Perhaps most interesting were the examples where an

understanding of regulatory pathways involved in diseases provided knowledge

that led to successful therapeutic strategies [46] (e.g., hereditary angioedema/HAE

and cryopyrin-associated periodic syndromes/CAP [51]).

1.6 Opportunities

The challenge of improving pharmaceutical industry performance requires signif-

icant innovation. While the complete knowledge needed to draft a blueprint for the

discovery and use of an innovative first in class medicines is unlikely be available

for many diseases, there are opportunities to innovatively bridge the knowledge

gaps. These involve collaborations as well as cross-discipline initiatives and teams.

Some examples at different stages of drug discovery and development include:

• The Precision Medicine Initiative (discussed above) which will provide disease

biomarkers and help identify underlying genetic causes of diseases [6].

• The European Lead Factory, established in 2013 to find valuable, lead candi-

dates that can be utilized to develop novel treatment options for patients [52].

• Quantitative Systems Pharmacology (QSP) defined as an approach to transla-

tional medicine that combines computational and experimental methods to

elucidate, validate, and apply new pharmacological concepts to the development

and use of small-molecule and biologic drugs [53].
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• BioRam, a biopharmaceutics risk assessment roadmap that optimizes drug

product development and performance by using therapy-driven target drug

delivery profiles as a framework to achieve the desired therapeutic outcome [54].

These initiatives represent a snapshot of the many aspects of drug discovery and

development that are not addressed in this introductory chapter but will be

discussed in subsequent chapters.
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Chapter 2

New Product Planning and the Drug
Discovery-Development Interface

Robin Reagan

Abstract The pharmaceutical industry is under increasing pressure to deliver safe

and innovative drugs more quickly without incurring unsustainable R&D costs.

Regulatory hurdles have risen in tandem with customer expectations making it

essential that the science and commercial functions partner early and effectively

throughout a molecule’s march from target concept to an optimized, market-ready

drug. Unfortunately, numerous examples exist of failures to achieve this key, cross-

functional collaboration resulting in well-intentioned drugs paving the road to

disappointed hopes. Here we review the key variables and timing of the collabora-

tion between discovery, development, and commercial (new product planning).

A successful collaboration ensures that the best molecule is identified and devel-

oped resulting in a successful launch, rapid adoption, and broad use over its life

with a positive impact on human health.

Keywords New product planning • Pharmaceutical marketing

2.1 Overview and Introduction

The pharmaceutical industry’s productivity rate on a background of increasing

competition and payer pressures requires optimal teamwork across the pharmaceu-

tical value chain over a long period. While every function brings critical compe-

tencies to the drug development journey, one of the most important partnerships in

early development is for research and development (R&D) and commercial to

co-officiate in marrying science to unmet market needs. When scientists and new

product marketers work effectively together, the benefits to customers are far

ranging while simultaneously creating a competitive advantage to the firm.

Ironically, new product marketers and early development scientists have much

more in common in some respects than new product marketers have with their

global and brand management colleagues. Global marketers typically engage when
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a drug is several years prior to launch so expectations for its efficacy, safety,

tolerability, formulation, and delivery are fairly set. Local country brand managers

usually work from a centrally developed brand plan which they are tasked to

execute in their market over 12–24 months. Early new product marketers, like

their development colleagues, operate with considerable uncertainty over a signif-

icantly longer timeframe, especially when in a therapeutic area new to the com-

pany. The high failure rate in early development requires both scientists and early

marketers to focus on advancing the science or gaining and reapplying new

knowledge.

Marketers involved in early drug development manage uncertainty through a

variety of tools and techniques to identify the highest potential drug development

ideas from the perspective of the customer. Though these techniques are different

from those deployed in the lab, both the marketer and scientist combine statistically

validated research with qualitative insight gained from internal and external experts

to understand and predict the future. In this chapter we will review how marketers

define value by understanding the disease, customer needs, the science, and oppor-

tunities and threats concluding with a brief discussion of the development and

marketing partnership and ways to make it more productive.

• Marketing’s job is to translate customer needs into actionable information

for R&D. In turn, R&D must help marketing understand the disease and

tools (drugs, formulation, delivery, devices, and packaging) that could

meet those needs. Customers win when science and marketing come

together with solutions to very specific unmet needs.

• The rise in payer power may be the single most important market change

in pharmaceutical marketing over the past 10 years. R&D and marketing

ignore this at their peril when embarking upon an early program.

• R&D and marketing, however, must be fully aligned beginning with

preclinical data generation on a plan for staggered educational messages

that ultimately addresses key unmet customer needs.

• Whether R&D’s goals are revolutionary innovation, incremental benefit,

or simply a “me-too,” marketing should identify and share customer needs

to ensure that R&D can translate those needs to possible solutions from

which the best molecule is selected.

• From the “inside out,” groundbreaking or novel science is exciting and

seems valuable. From the “outside in,” the question is whether that novel

science translates into a benefit or solution the customer doesn’t have
today.

• Working with marketing early can prompt ideas for assays or preclinical

studies to explore hypotheses that increase the probability of identifying

and achieving a bundle of benefits in the clinic valued by one or more

customer groups and target patients.

(continued)
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• R&D input into profile testing in the context of the competitive environ-

ment for qualitative and quantitative market research is enormously help-

ful, especially if the marketer is new to the disease state or early product

development.

• The new product planner must anticipate and plan, years in advance, for

the impact of regulatory changes, competitor events, and environmental

trends with the entire team’s expert input.
• It’s much better to conduct research prospectively grounded in a firm

understanding of unmet customer needs than to be fairly advanced and

attempt to retrofit a drug’s benefits and risks to a customer.

• Early program scientists and marketers should be natural allies in the

pursuit of satisfying customer needs. Each function brings valuable, spe-

cialized expertise to the partnership, which can be a highly combustible

combination for igniting innovation.

2.2 Understanding the Disease State

Scientists spend years studying a disease, a drug target, or how to translate bench

science into an actual drug. Unfortunately, this doesn’t always guarantee a com-

mercially successful product. The marketer is R&D’s essential link to the customer

dealing with the disease, patients, health-care providers (HCPs), and payers, in

addition to allied stakeholders such as regulatory authorities, professional organi-

zations, patient advocacy groups, and, in many cases, government agencies. An

agile marketer can quickly learn the basics of the science involved in a disease and

then focus on understanding the current treatment model and what patient and HCP

needs remain unmet. Marketing’s job is to translate customer needs into actionable

information for R&D. In turn, R&D must help marketing understand the disease

and tools (drugs, formulation, delivery, devices, and packaging) that could meet

those needs. Customers win when science and marketing come together with

solutions to very specific unmet needs.

Unfortunately, not every disease is well understood (e.g., fibrotic disorders) nor

does every professional medical society have straightforward guidelines or treat-

ment recommendations. The treatment of many diseases remains a blend of judg-

ment and science based on the best available data, which is then individualized to

the patient. Barring a disease with no treatment options, new therapies take time to

be evaluated in real-world clinical settings, gain reimbursement, and prove safety in

broad use across much more diverse patients than typically seen in clinical trials.

Even with older drugs, data may be lacking to prove benefit or risk because the cost

of testing a widely held belief is expensive, impractical, or unethical. In other cases,

HCPs are reluctant to accept a single trial as sufficient evidence for changing
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medical practice for a new or an old drug. Hormone replacement therapy (HRT) is a

good example of this. There have been wide ranging opinions regarding the safety,

indications for use, and efficacy of HRT products. The clinical trials ranged from

the original studies by manufacturers to government-funded studies such as the

Women’s Health Initiative. Some HCPs found reconciling the different data impos-

sible, so they rely on their own experience informed by reputable sources. This

leads to a wide variation in usage. Understanding the human motivations and

beliefs behind current treatments and potential future options for both HCPs and

patients is a key marketing responsibility.

A basic disease understanding and knowledge of current treatment guidelines is

the starting point after which new product marketers conduct exploratory qualita-

tive market research to understand actual practices in a product-agnostic manner,

especially in dynamic disease states. Understanding HCP beliefs about the disease

and current treatment options is the next step to evaluate whether emerging science

will challenge or complement current thinking. Marketers seek to clarify whether,

how much and when treatment follows or deviates from current standards. Once

marketers have this understanding, they turn their focus to a deeper understanding

of customer needs (HCP, patient, caregiver, and payer) using a variety of analytical

and statistical tools and methods to gather, organize, and analyze information in a

systematic manner.

2.3 Customer Needs

The customer for an ethical pharmaceutical differs from consumer products for

several reasons. Most notably, the patient or end user is rarely the drug decision-

maker who is typically, though not always, a health-care provider. In addition, other

important customers influence the drug decision including payers and, for some

diseases, a caregiver. Balancing the many, sometimes conflicting, needs of these

multiple customers isn’t always easy and in some cases is impossible. A novel drug

has a much better chance at success when R&D and marketing work closely

together to maximize customer satisfaction within complex boundaries. So while

the patient is the ultimate consumer and can choose not to fill a prescription (due to

cost) or take a drug (because it’s too difficult or the side effects too bothersome), the

choice of drug is made by the HCP within the constraints payers and sometimes

caregivers raise. Factor in the need to meet regulatory requirements heavily

weighted toward safety, and the result is a more complicated matrix of customers

than what is involved in motivating a consumer to pick one product vs. another on

the store shelf.

Marketers use primary and secondary research to understand these multiple

customer needs. Primary research is conducted by the company starting from a

blank slate and focuses on very specific objectives. Secondary research is

conducted by others using a variety of sources and can range from syndicated

research and data mining sold to multiple customers to free sources from
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government databases such as the National Health and Nutrition Examination

Survey (NHANES) which assesses and tracks changes in health over time. Both

primary and secondary research can be qualitative and quantitative. Qualitative

market research seeks to understand the “why” behind the customer’s response and
in early drug development can be conducted as in-depth, individual interviews,

focus groups, and expert advisor input gained individually or in an advisory board.

Quantitative market research uses validated statistical tools and techniques to get at

hard facts such as the likelihood to prescribe a new drug compared to current

treatments or the relative value of different benefits.

In early drug development, a key quantitative technique to understand customer

needs is segmentation market research. This market research builds on a qualitative

disease state understanding to identify and prioritize customer needs in order to

group their characteristics, beliefs, and needs for guidance on which customer

groups might be best suited for a new drug. In contrast to science, where data are

hoped to provide a clear answer, marketers segment, or group, customers to identify

unique, identifiable, and actionable differences. There’s no single “right” way

customers could be grouped, but it’s the best way for purposes of understanding

the disease or evaluating how novel drugs may solve their needs with an acceptable

level of risk. Grouping anti-hypertensive patients by their degree of hypertension is

unlikely to be unique. Grouping them by a mix of their comorbidities, coping

mechanisms, or support network would likely generate a more actionable segmen-

tation scheme. An, obese middle-aged mother will have different priorities for

managing her hypertension than an aged male stroke survivor in assisted living.

Segmentation does not look solely at rational, clinical factors (type and stage of

disease, family history, age, etc.), but also psychosocial factors and patient-centered

(ethnographic) needs.

HCPs similarly and routinely consciously and subconsciously group patients in

order to individualize care. In addition to “hard” clinical data, HCPs assess many

“soft” factors before changing or intensifying treatment such as a patient’s
demeanor (upbeat vs. negative), self-care (neat vs. untidy), and motivation (coop-

erative vs. combative), among others. While no physician will fail to treat a patient

appropriately, they avoid pushing a patient to the point where they won’t return and
may reserve extra effort or innovative drugs for patients who have the resources—

physical, mental, financial, and family, to follow the HCP’s orders. Understanding
this dynamic, how big the different segments are, and consistency across geogra-

phies ensures that marketing can propose the best groups of patients for a novel

drug and appropriately forecast its market potential.

When scientists or marketers forget the needs of the target patient, it’s possible
to register a drug and then withdraw it from the market due to commercial failure.

For example, eliminating injections is a high priority need for needle-phobic,

insulin-dependent patients. However, the number of people with truly debilitating

needle-phobia appears to be small. Based on the low, slow adoption of inhaled

insulin, the majority of people with diabetes appear to view the safety concerns,

hassle, and cost of inhaled insulin as not worth eliminating the injection.
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Segmentation market research changes over the course of a drug’s development

from the brand-agnostic approach outlined above to increasingly specific research

framed around the drug in development and its emerging profile. As noted previ-

ously, development scientists and new product marketers share the need to assess

and plan despite uncertainty around a drug’s benefit-to-risk profile. Marketers

manage this in early development by testing both ranges and different bundles of

effects with physicians, patients, and payers to see the impact on the likelihood to

prescribe, take, and reimburse, respectively. Until Phase 3 results are available;

however, neither the marketer nor the scientist knows the actual profile which has

significant implications for speed of uptake, sales volume, and all the operational

requirements necessary to have a drug ready to succeed at launch and beyond.

In some therapeutic areas, HCPs and patients are surprisingly consistent around

the world in their unmet clinical and emotional needs. In contrast, payers vary

significantly and demand different types and levels of proof to meet their expecta-

tions. The most obvious difference is in countries with single payers, typically the

government, and those with multiple insurers. However, even among single payer

systems, there can be key differences in the type of data required before a novel drug

is reimbursed. Payer-specific data needs are not always easily satisfied in Phase

3 clinical trials which must meet regulatory requirements focusing on safety. Yet

failure to meet payer requirements can result in patients never receiving an innovative

drug due to poor or slow reimbursement. The rise in payer power may be the single

most important market change in pharmaceutical marketing over the past 10 years.

R&D and marketing ignore this at their peril when embarking upon an early program.

No drug, no matter what level of innovation, sells itself. At a minimum, medical

education is necessary simply to make customers aware of a novel drug. Marketing

can determine, with R&D’s help, what other scientific knowledge needs to be

reinforced, created, or changed to prescribe the drug appropriately. If the drug

establishes a new class or introduces a different treatment approach, then it is

particularly important for R&D and marketing to collaborate on the customer

medical education strategy. It’s a given that the timing and disclosure of proprietary

science require coordination across multiple functions over time. R&D and mar-

keting, however, must be fully aligned beginning with preclinical data generation

on a plan for staggered educational messages that ultimately addresses key unmet

customer needs.

The more R&D can understand the needs of these different customer groups,

then the more their deep expertise and creativity can be unleashed for solutions that

a marketer could not conceive. Whether R&D’s goals are revolutionary innovation,
incremental benefit or simply a “me-too,” marketing should identify and share

customer needs to ensure that R&D can translate those needs to possible solutions

from which the best molecule is selected. Once a chemical structure becomes a

candidate, clinical trials become the primary lever to influence its profile. While

downstream formulation chemists can try to fix molecular shortcomings through

their genius, it’s not always possible to solve problems cost-effectively or quickly

enough to prevent costly delays. Early, healthy R&D/marketing collaboration

enables scientists to design customer needs into the molecule increasing the prob-

ability of technical success in the clinic.
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2.4 Does Science Matter?

Sometimes it seems like the most fundamental difference between R&D and

marketing centers around the value of scientific innovation. This is a perfect

example of the difference of an “inside-out” vs. “outside-in” perspective. From

the “inside out,” groundbreaking or novel science is exciting and seems valuable.

From the “outside in,” the question is whether that novel science translates into a

benefit or solution the customer doesn’t have today. It’s also a key to avoid the

expert’s bias against science that seems incremental or “clunky,” but is safe and

delivers high-value benefits.

So of course science matters. But how it matters is in the clinical value it brings

to patients, not simply in being new. Remarkable, elegant science that offers no

benefit over current options will be viewed as another, more expensive tool with

unproven safety. Working with marketing early can prompt ideas for assays or

preclinical studies to explore hypotheses that increase the probability of identifying

and achieving a bundle of benefits in the clinic valued by one or more customer

groups and target patients.

This is a key area where R&D, working in partnership with marketing, can

translate innovative science into satisfying existing and new customer needs both

obvious and subtle. One consumer goods example of this is the OXO Good Grips

brand of kitchen utensils. Originally conceived as a solution for cooks with manual

dexterity issues, the brand has thrived as consumers of all ages realized and valued

the utensils’ ease of use, quality, and modern design. Importantly, the company

understood and met the needs of their primary target customer, before they

expanded to broader customer groups [1]. The “science” of designing an easier-

to-use tool mattered, but customer insights ensured incorporation of other elements

such as avoiding the stigma of a “handicapped” tool that ultimately expanded their

sales to many more customers.

Science matters, but we need curious scientists and marketers to collaborate in

translating science into customer-centered solutions. Further, this collaboration

must continue throughout the R&D value chain and over time as ways to create

customer value exist across every function. If you’ve ever struggled to open plastic
clamshell packaging, you know that no matter how great the product, the company

lost their customer focus at the final step of packaging and the first point of product

experience.

2.5 The SWOT Team or How to Look Critically at Your
Program

A SWOT analysis, evaluating your program (strengths and weaknesses) in the

context of the general and specific market issues (threats and opportunities), is a

common planning tool across companies and functions. In early drug development,
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the SWOT analysis forces team members across R&D, clinical, and commercial to

look critically at their program and their company’s capabilities for positives and
negatives. For example, the drug may have the potential for superior efficacy

(strength), but must be dosed twice a day (weakness), or research has discovered

an exciting drug candidate (strength), but in a therapeutic area where the company

has no clinical design experience (weakness). Analyzing strengths and weaknesses

focuses on factors that the company can directly affect while evaluating threats and

opportunities examines external trends and potential events, e.g., the rise in geno-

mic profiling or a drug class proving a significant benefit such as a cure similar to

what hepatitis C drugs have recently achieved.

Market research into the impact of the drug’s profile as it advances is necessary
to stay current with the market because counterintuitive opportunities and issues

can easily arise. For example, if every treatment for a disease has significant,

unpleasant side effects and a novel treatment does not, then HCPs may perceive

the drug as weak. Market research could establish what trials or data were necessary

to prove potent efficacy in addition to tolerability and safety. Further, once one drug

has proven a benefit, customers are likely to expect that from subsequent drugs in

that class and anything else new unless they offer an offsetting benefit. The bar for

customer expectations typically only rises. There are exceptions when a side effect

emerges in a leading drug class after widespread use. A well-executed SWOT

analysis will capture both “inside-out” factors (program and company strengths

and weaknesses you can affect) in addition to “outside-in” factors (threats and

opportunities over which you have less control).

Because of differences in expertise, filters, and market knowledge, it’s essential
that a broad functional group works together to ensure a robust SWOT analysis. The

presence of R&D, marketing, medical, and operations in this exercise ensures that

the analysis is thorough and diverse. A comprehensive SWOT analysis allows the

early development team to work together to monitor the market and account for

contingencies while putting in place plans to reinforce strengths and mitigate

weaknesses. Late-in-the-game commercial requests can be minimized or at least

land on receptive development colleagues prepared to respond positively due to

early identification of and planning for that scenario.

2.6 Those Pesky Competitors

Another important, iterative marketing tool throughout drug development is an

analysis of the competition. Once the disease state, the unmet needs of groups of

patients with that disease, and physician attitudes and beliefs are understood, then

it’s necessary to understand the attractiveness of current and future treatments and

how a novel drug compares. R&D input into profile testing in the context of the

competitive environment for qualitative and quantitative market research is enor-

mously helpful, especially if the marketer is new to the disease state or early

product development. Moreover, observing qualitative market research, such as
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in-depth interviews or advisory board discussions between key thought leaders, can

be very valuable for the R&D team. The use of webcams, remote interviews, and

virtual meetings makes this much easier and less expensive than just a few years

ago when most market research and advisory board meetings were conducted in

person. The primary caveat for R&D (or any function) participating in qualitative

market research or advisory board discussions is to resist drawing conclusions from

a small subset of interviews or opinion leaders who don’t reflect “real-world”
clinical knowledge or practice. It may be helpful to view qualitative market

research and advisory board discussions as proof of concept testing, while quanti-

tative market research, like early clinical trials, addresses key questions based on

statistically powered data from a more representative customer sample.

New product marketers evaluate a slew of competitor activities including the

impact of new entrants (based on assumptions around their profile), launch order

(who is first, second, third, etc.), launch timing (how much of a lead do the first and

subsequent market entrants have), approved indications, and price and reimburse-

ment assumptions. Due to its size and pricing freedom, the USA has always been

central for long-term product planning, but even in the USA, more uncertainty has

entered in some therapeutic areas as the Federal Drug Administration raised higher

hurdles than their regulatory counterparts in other countries and regions. The new

product planner must anticipate and plan, years in advance, for the impact of

regulatory changes, competitor events, and environmental trends with the entire

team’s expert input. Japan, for example, has modernized their regulatory process in

recent years to enable more rapid availability of innovative products. More rapid

access to newer, more expensive drugs in a super-aged society, however, may

prompt significant changes to the Japanese reimbursement system in the future.

The new product marketer in partnership with pricing and reimbursement experts

assesses these opportunities and risks to inform early development in order to

increase the probability a new drug will be competitive at launch years in the future.

Marketing leads planning for changes in the competitive landscape, but plans

will likely be inadequate if R&D is not a strong collaborator throughout the process.

Given that regulatory agencies and payers frequently demand remediation in the

form of additional clinical work or process changes, it is in the best interest of R&D

to engage closely with marketing to ensure frequent, informed market monitoring,

analysis, and scenario planning at the research-development interface. Fortunately,

the benefit to anticipating competitor moves and market events accrues not just to

the most advanced drug but also to those earlier in the pipeline.

2.7 How to Have an R&D and Marketing Marriage Made
in Heaven

Perhaps the single most important thing R&D can do to work effectively with new

product marketing is to take every opportunity to understand customer needs. The

best marketers understand the customer’s importance and should respond
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enthusiastically to development partners who join them with creative ideas to meet

their needs. When everyone has serving the customer as their “true north,” then it

becomes remarkably easy to navigate across cultures, functions, geographies,

personalities, and styles. Even if your company designs and incents R&D and

marketing to collaborate, the quality and ease of partnering when everyone is

aligned on what’s best for the customer will be higher. Your task is much harder

if your company has not created processes and rewards for collaboration, but it’s
still possible to succeed if you seek to understand each other’s constraints and work
together to overcome them on behalf of the customer [2].

If your firm has structured and funded drug development to enable early,

productive collaboration with marketing, then your main effort may be simply to

do your job well. Unfortunately, the benefits of early development-marketing

partnerships are not immediately obvious to everyone in an organization. Down-

stream pressures to fund new launches or marketed products can force reduced

headcount and resources necessary for development and marketing to work effec-

tively together. If you’re in an environment where marketer sightings at team

meetings are infrequent or unknown due to organizational design, resources, or

culture, then reach out to marketing formally or informally for a consultation to

learn more about the customer and whether your target and/or ideas resonate. It’s
much better to conduct research prospectively grounded in a firm understanding of

unmet customer needs than to be fairly advanced and attempt to retrofit drug’s
benefits and risks to a customer.

Meet with your marketing partners prepared to translate science into layperson

terms and the “so what” of novel biology or innovative chemistry. Recognize that

your marketer may be fairly new to early drug development and require coaching to

recognize when they need to pay attention. Development milestones are obvious

points of engagement, but there can be other, subtle moments that ping your

marketer’s radar such as a dose that is predicted to be large or druggability hurdles

that increase active drug ingredient cost. This is an area where marketers and

development chemists should jointly challenge the team to improve potency or

pursue less difficult synthesis pathways.

Recognize that the majority of marketers are further downstream and may have a

very different focus as they work to launch and promote drugs on the market. Most

new product marketing groups are smaller and may cut across several therapeutic

areas. This can be understandably frustrating to scientists who’ve spent years to

become experts and want an equally experienced and competent marketing partner.

Experts can be fairly intimidating for marketers who are trained in transferable

skills and are expected to learn quickly how to apply them in new therapeutic areas.

As a scientific leader, you can help your marketing colleagues by providing mini-

tutorials or easy-to-understand references for their use to level the playing field.

What the marketer brings to the partnership is a profound understanding of the

customer and the environment in which our drugs will compete. Help your marketer

accelerate up the scientific learning curve, and they’ll reciprocate by deepening

your customer understanding potentially igniting your scientific creativity in ways

you may never have considered.
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2.8 Should R&D and Marketing Collaborate Early or
Late? Yes!

Academic researchers have explored this topic from the perspective of collabora-

tion between different functions and cultures, timing, and even whether the product

represents an incremental or breakthrough innovation [3]. Mix all of these impor-

tant elements with a high dose of variability driven by individual personalities, and

there seems to be evidence for a variety of successful approaches. If R&D is well

guided directionally by deep customer understanding and strategic guardrails, then

one could argue that new product marketing is valuable in early development

primarily for occasional consults and updates as the market changes. However,

the health-care market is dynamic with constant, rolling changes in customer

perceptions and expectations. Combine this with employee turnover and new

science offering up novel targets with bundles of benefits previously unavailable,

and collaborating early and regularly is wise. In addition, competitive hurdles don’t
always rise. When unexpected safety issues arise in a marketed drug or HCPs report

lower than expected real-world efficacy, then a program with a previously

noncompetitive benefit-to-risk profile may be possible to revive.

2.9 R&D and Marketing Are Allies, Not Enemies

Early program scientists and marketers should be natural allies in the pursuit of

satisfying customer needs. Each function brings valuable, specialized expertise to

the partnership, which can be a highly combustible combination for igniting

innovation. Unfortunately, differences in culture, inadequate processes, misaligned

incentives, lack of trust, and poor understanding of each other’s constraints and

timelines can result in an equally explosive recipe for frustration, resentment, and

hostility. Scientists are bright, creative, and solution oriented. The best, however,

are those able to translate their complex, technical world into benefits the marketer

and the customer can understand. Motivated marketers will work hard to learn a

new disease state or pathway, but generous R&D colleagues can translate and

interpret how their function can create additional benefits. Similarly, if you place

the customer first and seek out your marketer to help meet their needs through

innovative science, then there’s no need for you to become a marketing guru. Your

marketer will happily bring you along resulting in rich rewards from your construc-

tive R&D/marketing collaboration for our customers, our companies, and yourself.
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Chapter 3

Target Engagement Measures in Preclinical
Drug Discovery: Theory, Methods, and Case
Studies

Timothy B. Durham and Michael R. Wiley

Abstract Target engagement (TE) in drug discovery is generally defined as the

interaction of ligands with their target biomolecules. Understanding TE allows

research teams to design and interpret quality in vivo experiments, providing a

more refined assessment of target validation. It can also orient teams toward

delivering molecules that better enable clinical studies by focusing SAR efforts

on the optimization of projected human performance characteristics. In this chapter,

theoretical aspects of TE and its importance for addressing drug discovery issues

like selectivity and the relationship of pharmacokinetics to pharmacodynamics are

addressed. Methods to measure TE directly are reviewed along with a discussion of

how to estimate TE based on pharmacokinetic data. The principles outlined within

the chapter are then demonstrated by application to a theoretical drug discovery

effort focused on validation of a novel protein target. Finally, two case studies are

discussed in which application of these principles was used to optimize compounds

toward desired human performance characteristics in one instance and to drive a

target de-prioritization decision in another.

Keywords Biological target engagement • Target engagement ratio •

Pharmacodynamic response • Target validation

3.1 Introduction

Target engagement (TE) in drug discovery, sometimes expressed as target occu-

pancy, describes the physical interaction of a drug molecule with its corresponding

biological target [1]. Having a clear understanding of the time course of TE in vivo

is a prerequisite for achieving quality hypothesis testing in the execution of

meaningful efficacy studies, both in preclinical models and in patients [1]. Recently,
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much has been written about the often poor translation of preclinical data into

clinical outcomes and its impact on the cost and efficiency of the drug discovery

process [2–7]. In fact, the failure to achieve efficacy in phase 2/phase 3 clinical

trials is now the most common and by far the most costly contributor to the

technical failure of clinical candidates. Therefore, it is critical that efficacy exper-

iments are designed to deliver the most useful information possible, to either

validate or invalidate specific mechanisms of drug action, given the commitment

of resources and time needed to complete them.

To that end, research teams that focus on developing a reliable understanding of

TE from their inception are better able to design effectively, learn efficiently, and

act decisively in the prosecution of both preclinical and clinical research. For

example, this approach impacts a team’s ability to make quality decisions regarding

the selection of specific tool compounds, along with appropriate doses and dosing

regimens, for conducting informative preclinical efficacy studies [8]. Subsequently,

those data can be used to more effectively design projected human efficacy exper-

iments, as well as the performance characteristics of drug candidates required to

carry them out [9]. Finally, by rigorously focusing SAR efforts to deliver those

performance characteristics as early in the program as possible, teams have the

opportunity to minimize the number of iterative learning cycles and thus maximize

the speed and efficiency of the candidate selection process.

In this chapter, our first objective is to review the basic concepts that drive TE

in vitro and in vivo. Then we discuss how research teams can use those concepts to

design and analyze studies to explore the relationship of TE with efficacy in more

complex biological systems. Finally, we provide a couple of illustrative examples

from our own research efforts. Of course unique issues will be encountered with

each research team/project, depending on the specific disease area, target family,

and mechanism of drug action under investigation. However, this perspective

should serve as a useful guide to initiate cross-functional dialogue as teams

deliberate on strategies to pursue their targets of interest.

3.2 Basic Concepts

For drugs having reversible, rapidly equilibrating binding interactions with their

biological targets, TE can be easily estimated with reliable knowledge of both the

drug concentration under study and the affinity constant for the particular drug-

target pair. For most drug discovery programs, apparent binding parameters are

usually derived from in vitro data which define the concentration-dependent effect

of the drug on a relevant biological activity parameter. For example, consider the

case represented by the drug-protein complex and corresponding concentration-

response curve illustrated in Fig. 3.1. In this simple model system, the protein exists

in either a free/active state or a drug-bound/inactive state. Although this example

illustrates a small molecule that functions as an inhibitor, the analysis applies

equally, regardless of the functional consequences of drug-target binding. Upon
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visual inspection, the theoretical concentration-response curve shown in Fig. 3.1b

represents a high-quality data set based on several criteria. At low concentration,

several data points across a significant concentration range demonstrate a lack of

biological activity and therefore an apparent lack of TE. At the high end, several

data points demonstrate saturation of the observed biological activity. In between,

the transition from the onset of TE through target saturation occurs over a concen-

tration range of about 100-fold. A more detailed inspection of this concentration-

response curve reveals the data points are well represented by the mathematical

concentration-response model known as the Hill equation, which describes the

relationship as follows:

%TE ¼ 100

1þ EC50

L½ �
� �h ð3:1Þ

where h is the Hill coefficient (often referred to as the Hill slope) and [L] is the
concentration of the ligand [10]. The Hill coefficient is a term which reflects the

stoichiometry of ligand binding. For the vast majority of small molecule drug

discovery efforts, desirable mechanisms of drug action rely on a single drug
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response curve with Hill coefficient (h) ¼ 1
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molecule binding to the biological target, and therefore h values of 1 are viewed as

ideal. If a concentration-response curve is observed with h¼ 2, this implies that two

molecules of the drug must bind to the protein to produce activity [10]. Thus,

discovery scientists often use the Hill coefficient to triage compounds following up

on screening campaigns, flagging those whose concentration-response curves

appear overly “steep” upon visual inspection [11]. Compounds having values of

h outside of the range 0.5–1.5 may be deprioritized based on the perception that

they are more likely to act via undesirable or “nuisance” mechanisms [11].

Given access to a quality concentration-response curve, the relative amount of

TE can be easily estimated for any given drug concentration, as illustrated by the

red dotted lines on the curve shown in Fig. 3.1b. It can be useful to think of TE

either in terms of the apparent percentage of target bound (%TE) or as a ratio of the

drug concentration relative to the EC50. In this case, a target engagement ratio

(TER) may be defined as follows:

TER ¼ L½ �
EC50

ð3:2Þ

Table 3.1 provides a comparison of these approaches for defining TE, over a

wide range of drug concentrations, for an ideal curve with Hill coefficient of 1. The

same data is presented in graphical form in Fig. 3.2, which illustrates several key

points that will be important in the design of experiments in more complex

biological systems.

First, the attributes of a quality plot of TER vs biological activity mirror those of

any other quality concentration-response curves, such as the transition from a lack

of TE through target saturation over a concentration range and slope consistent with

the expected drug-target binding interactions. Such plots offer the additional

advantage that multiple compounds, with diverse structures but common mecha-

nisms of action, can be included on the same graph in order to confirm the

consistent translation of TE into biological activity (Fig. 3.3).

In further examining the relationship of the TER to %TE, the graph clearly

highlights the diminishing returns provided by further increases in drug concentra-

tion as the system approaches saturation (Fig. 3.4). For example, the first tenfold

Table 3.1 TER and %TE

TER %TE

0.01 1

0.03 2

0.1 9

0.3 23

1 50

3 75

10 91

30 97

100 99
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increase in TER relative to the EC50 raises the %TE from 50% to 91%. However,

beyond that point, another tenfold increase in TER (total TER of 100) produces

only an additional 8% increase in %TE.

Thus, incremental increases in %TE at the high end require a much larger

increase in drug concentration. Said another way, at the high end of the TE range,

large increases in drug concentration will likely provide little meaningful increase

in TE. For this reason, it is important to carefully consider the dose/concentration

range used to test mechanistic hypotheses in complex biological systems (e.g., cell-

based assays and in vivo). Using a drug concentration much higher than needed
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provides little additional impact on TE, yet may erode the “effective selectivity” for

engagement of the desired drug target vs other proteins.

For example, consider the two concentration-response curves for the drug

illustrated in Fig. 3.5. As measured at the EC50s, the affinity of the drug for

Target A is 100-fold more potent than the corresponding affinity for Target B,

seemingly a high-level of selectivity. The dotted lines on the figure highlight

the “effective selectivity” for engagement of Target A relative to Target B at

several different drug concentrations. The blue line illustrates that at the EC50

concentration for Target A, TE for Target B is expected to be insignificant.

The highest selectivity would appear to be achieved at a TER of 10 for Target

A (green line). At this concentration, ~90% TE is expected for Target A, with

only ~10% TE for Target B. Then as the concentration continues to rise, the

Fig. 3.4 Curve illustrating the relationship of TER to %TE at high vs low TE

Fig. 3.5 Concentration-

response curves for a drug

versus two different

biological targets with

100-fold affinity difference

at the EC50 level. The TER

values shown on the X-axis
in the figure represent

Target A. For Target B,

those TER values should be

divided by 100
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effective selectivity erodes. At TERs of 100 (red line) and 1000 (purple line)

for Target A, %TEs are not substantially different from each other, saturated

at ~99%. However, the %TE for Target B at those concentrations continues to

rise, from ~50% to ~90%, respectively. Thus, in spite of the apparent high

in vitro selectivity, a lack of attention to detail in the experimental design

could significantly erode the actual selectivity of TE for this drug in vivo.

This could create ambiguity in the evaluation of the efficacy hypothesis and

introduce safety risks, or both, dependent on the impact of engaging Target B

in vivo.

3.3 Target Engagement in Vivo

If the assay used to establish the concentration-response relationship in vitro

provides a meaningful representation of the drug-target functional interaction, it

should also be useful for estimating target engagement in vivo, where the same

drug interacts with the same biological target to produce analogous effects, just in

a more complex biological environment. If this assumption is true, then the

challenge of estimating TE in vivo is reduced to the challenge of defining the

concentration of the drug in vivo. Thus, quality estimates of TE in vivo require

quality pharmacokinetic data, and toward that end, a number of points are

important to remember.

First, the relevant concentration for estimating TE in vivo should be the “effec-

tive” drug concentration actually available to interact with the target [12]. Fre-

quently, this will not be well represented by the total drug concentration measured

in vivo due to nonspecific interactions that reduce the fraction of “free” drug

available to the target. For example, plasma proteins such as albumin can be a

significant source of nonspecific protein binding [13–17]. Given the fact that such

nonspecific interactions can vary significantly across a related series of compounds,

teams need to understand the extent to which nonspecific protein binding may occur

and consider adjusting TE estimates accordingly [18–20]. Typically, it is assumed

that nonspecific binding to plasma proteins or brain tissue is predictive of

nonspecific binding in other tissues. For these proteins, the free fraction ( fu) is
easily measured in vitro and can be used as a corrective factor to establish free drug

concentration. Thus, using the equation below, one can estimate TER:

TER ¼ f u � L½ �total
EC50

ð3:3Þ

where [L]total is the total ligand concentration and EC50 is the absolute concentra-

tion of ligand in the in vitro assay that delivers 50% of the maximal response.

An alternative to this approach is to divide the total plasma concentration by a

functional EC50 value determined under conditions in which the nonspecific inter-

actions are already taken into consideration (Eq. 3.4).
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TER ¼ L½ �total
EC50functional

ð3:4Þ

Examples may include assays run in whole blood, or in buffers which include

physiologically relevant concentrations of albumin as a surrogate. In these cases,

the compound is already overcoming the relevant nonspecific interactions in

order to produce activity in the functional assay. Thus, incorporation of an

additional fu term into the TE calculation would incorrectly underestimate target

engagement.

Another important set of issues to consider derives from species differences

that can significantly impact the projection and interpretation of TE in vivo. For

most drug discovery teams, the primary assays used for characterizing target

affinity as well as for predicting ADME properties logically utilize human pro-

teins. However, species differences in the affinity of drugs for both specific

target proteins and nonspecific plasma proteins can be very difficult to predict,

even with respect to highly homologous target family proteins [18–20]. In fact,

even within the same species, discrepancies due to differences in strains or

disease states have been reported [21, 22]. In addition, such selectivity differ-

ences can vary with subtle structural changes across a series of related drug

molecules. Therefore, it is important for the quality design/interpretation of

in vivo experiments (and for the translation of preclinical results to projected

human properties) that assays are enabled to characterize both the binding

interactions and the effective drug concentration in the species utilized for the

in vivo proof-of-concept studies.

It is also important to consider the drug concentration in the compartment in

which the biological target resides. This can be particularly challenging when

the distribution of the drug is significantly impacted by active transporters

[23, 24]. In such a case, the direct measurement of drug concentration in the

target tissue may be required. This can be costly, time consuming, and exper-

imentally challenging, thus limiting the team’s ability to collect meaningful

data points. However, when active transport mechanisms are not involved,

the picture can be simplified by the application of the free drug hypothesis

[13, 16, 17]. It states that the concentration of free drug on either side of a

permeable membrane should be the same in the absence of active transport

processes. Therefore, the assessment of the free drug concentration in plasma is

often a useful approximation of the free drug concentration in tissues. Given

that plasma protein-binding assays (human as well as most of the species

routinely used in preclinical research) are readily accessible, experimental

assessment of the free drug concentration is relatively straightforward. How-

ever, even with compounds in which active transport is not anticipated, it is

important to periodically confirm that drug concentrations in the target tissue

are as expected before making decisions based on TE using plasma drug levels.

Such validation is especially important in the case of target compartments
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where active transporters function most commonly, such as the CNS or the

liver [23–25].

A final, very important issue to consider in assessing TE in vivo is its time course

[8]. For drugs that have rapid-reversible binding interactions with their biological

targets, TE in vivo will change rapidly in response to changing drug levels. Given

that a drug’s concentration in vivo changes over time, moving through peaks and

troughs during each dosing period, it is important to understand how TE changes at

meaningful intervals over the full time course explored in any in vivo efficacy

experiment. For the example depicted in Fig. 3.6, the %TE is expected to fluctuate

between ~80% at the high end and insignificant levels at the low end over the course

of the experiment. Assessing the exposure and pharmacology of drugs with this

type of profile at single time points would likely have limited applications and could

potentially be misleading.

While the time course of TE is tightly linked to the time course of drug exposure

for rapid-reversible ligands, this is not the case for drugs that are released slowly

from binding interactions with their corresponding targets [26–29]. In the most

extreme case, the ligand protein interaction is irreversible, as with the example

illustrated in Fig. 3.7 [30–33]. For an irreversible ligand, the parameters that

characterize the binding event are KI and kinact. KI is the concentration of inhibitor

that produces ½kinact (analogous to the term KM for enzyme substrates), and kinact is
the kinetic constant that describes the maximum rate at which the irreversible

inactivation occurs (usually through formation of a covalent bond) [34]. [Note: KI

has a different meaning than Ki for competitive inhibitors.]
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TE for irreversible drugs is controlled by both concentration and time. The

percent target engagement can be described by the equation:

%TE ¼ 100%� 1� e
� kinact L½ �

KIþ L½ �

� �
t

 !
ð3:5Þ

(For derivation of Eq. 3.5, see Box 1 [34, 35].) Note that Eq. 3.5 is a reasonable

mathematical description when KI � [L] � [T] and the rate of target protein

resynthesis is slow relative to the experimental window. Figure 3.8 illustrates the

PK-TE relationship for a drug with an irreversible mechanism of action as defined

by Eq. 3.5. As the graph illustrates, increasing drug concentration at early time

points leads to increasing TE. However, as the binding is irreversible, TE continues

after the drug is cleared from the system. In this case, recovery of biological activity

Fig. 3.7 Irreversible drug model

0

10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1 4 9 14 19 24

T
ar

g
et

 E
n

g
ag

em
en

t 
(%

)
Time (h)

[Drug] free (nM)
Target Engagment

[D
ru

g
] 

fr
ee

 (n
M

)

Fig. 3.8 Plot of exposure and target engagement for a theoretical irreversible ligand. For this

example, kinact/Ki ¼ 392,000, fu ¼ 0.016, and the half-life of protein turnover is >24 h

50 T.B. Durham and M.R. Wiley



in the system depends primarily on the rate at which new target protein is

resynthesized. Thus, an apparent disconnect between the time course of drug

exposure and the time course of TE is expected for drugs that operate by an

irreversible mechanism of action [8, 26–29]. It is important to underscore here

that both reversible and irreversible mechanisms are well precedented in medicine

with numerous examples of successful, effective drugs. Each approach has different

potential advantages and risks, which should be carefully considered in weighing

strategic options for the prosecution of each unique project. This discussion high-

lights the differences expected in translational pharmacology and thus the critical

importance of experimentally characterizing the full time course of PK and biolog-

ical activity to enable a clear understanding of the system under investigation.

Box 1. Derivation of Eq. (3.5) for Irreversible Inhibitors

The amount of target-ligand covalent complex (TL*) can be described by the
equation:

TL∗ ¼ T½ �Total 1� e�kobst
� � ð3:6Þ

where [T]total is the total concentration of target, kobs is the measured rate, and

t is time. The rate kobs can be defined for irreversible inhibitors as

kobs ¼ kinact L½ �
KI þ L½ � ð3:7Þ

where [L] is equal to the concentration of the ligand. If we substitute Eq. 3.7

into Eq. 3.6, the resulting Eq. 3.8 can then be solved for target engagement

([TL*]/[T]total):

TL∗ ¼ T½ �Total 1� e
� kinact L½ �

KIþ L½ �

� �
t

 !
ð3:8Þ

TE ¼ TL∗

T½ �Total
¼ 1� e

� kinact L½ �
KIþ L½ �

� �
t

 !
ð3:9Þ

Equation 3.9 can then be converted to Eq. 3.5 by multiplying both sides

by 100%.
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3.4 Application to In Vivo Experimental Design

Target validation (TV) lies at the heart of drug discovery and is particularly

important for the exploration of novel targets in which the connection to disease

biology is the major point under investigation [36–39]. Given the large number of

clinical programs that fail due to lack of efficacy, it is critical that efficacy

experiments are designed to deliver the most useful information regarding TV as

early as possible. In doing so, precious resources can be efficiently focused to

accelerate efforts that have the highest probability of delivering all the way to

patients [2, 3, 5, 7]. At a high level, the goal of a TV exercise is to establish the

pharmacological consequences of engaging the desired target via an acceptable

mechanism, at a useful level, for a suitable duration, and with acceptable selectivity

[36–38]. Drug discovery efforts are generally undertaken because there is some

level of biological evidence that supports a connection between a target and disease.

This can come in many forms, for example, genetic information such as knockout,

knockdown, or knock-in experiments in animals or cellular systems. The available

evidence in turn supports a hypothesis that selective pharmacological manipulation

of that target will produce a desirable outcome. However, this preliminary infor-

mation is often limited in resolution with respect to both the level and the time

course of target manipulation [39]. Therefore, the goal of the study design is often

to explore the full range of TE over the full time course of the efficacy study.

By definition, if such a study were successfully designed and executed, it would

either establish the level and duration of TE needed to produce efficacy or it would

reliably invalidate the drug target (at least by the mechanism of action for the drug

tested) if it failed to deliver the required pharmacological results. In our experience,

a sustained TE of �90% (or a TER � 10) should be sufficient to test the transla-

tional pharmacological hypothesis in most systems. In the event that �90% TE is

sustained in an efficacy experiment and no pharmacological signal is detected, it is

likely that the TV hypothesis is disproven. Further, by demonstrating that the

expected TE was achieved in such an experiment, teams can feel confident that

the hypothesis was successfully tested, and the lack of efficacy was not due to any

inadequacy in the performance characteristics of the tool molecule (e.g., the

compound wasn’t “potent” enough). As a result, a crisp termination decision can

confidently be made, saving the time and resources required to identify “better” tool

molecules. Such termination decisions can sometimes be viewed negatively within

the culture of some research teams. However, driving TE informed TV decisions as

quickly as possible ensures technical resources are efficiently applied to the most

valuable target opportunities, which is clearly in the best interest of both patients

and research organizations.

To illustrate the application of these principles, consider the following example

of experimental design to explore the pharmacological validation of a typical early

drug discovery target.

Target X is a hypothetical peripheral protein reported to have significant poten-

tial impact on a human disease. The published data supporting this hypothesis
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consists of embryonic knockout of Target X in rodents showing protection in

preclinical efficacy models used to simulate the disease state. For this example,

we assume those efficacy models will require multiple days of drug treatment, and

thus the relevant time course of TE for design purposes will be 24 h periods of time.

The research team’s goal is to identify a compound that can be used to demonstrate

that modulation of Target X in vivo (in this case through inhibition or inactivation)

can produce a similar protective effect in the efficacy models.

In pursuit of this goal, the research team established a recombinant protein

biochemical assay and a functional assay for Target X. The functional assay utilizes

rodent albumin at a quantity which should be sufficient to account for nonspecific

protein binding. Using compound screening, followed by some SAR optimization, a

potential tool compound with encouraging potency (see Table 3.2) and drug-like

properties has been identified. Kinetic assessment shows that the compound demon-

strates rapid-reversible binding kinetics. The drug also has measurable activity

against the related Target Y. Based on the biological function of Target Y, significant

modulation could produce effects that confound the efficacy readout for Target

X. Therefore, the potential for erosion of selectivity in vivo must be taken into

account in any pharmacological validation experiment. Accordingly, rodent in vitro

assays have been enabled to ensure that the level of in vivo TE for both Target X and

Y can be reliably projected and interpreted in the efficacy studies. Interestingly, the

rodent in vitro data demonstrate that the affinity of the drug for rodent Target X is

five-fold weaker than human. However, the selectivity for rodent Target X vs Y is

ten-fold greater than for human Target X vs Y, suggesting a greater potential for

selective engagement of Target X in the preclinical efficacy POC experiment.

As an initial step in the process of in vivo characterization of the tool compound,

a PK study was conducted in the rodent species to be used in the preclinical model.

As shown in Fig. 3.9, a reasonable oral dose (10 mg/kg PO) produced an oral

exposure curve which showed encouraging absorption but almost complete clear-

ance from the plasma by 24 h. Combining this PK data with the EC50s from either

the biochemical assay (corrected by fu) or the functional assay, TER values for

Target X and Y at several time points can be projected (Table 3.3). Again, it is

important to re-emphasize that for the purposes of the preclinical proof of concept,

the fu and assay values from the appropriate efficacy species should be used for

projecting TERs in the design of the efficacy experiments. If the program is

successful and continues forward, the human values will of course be critical for

projecting human properties, prioritizing compounds, and ultimately selecting the

best clinical candidate for patients.

Table 3.2 In vitro data for potential in vivo tool compound

Rodent fu ¼ 0.18 Biochemical EC50 Functional EC50

Target X Human ¼ 4 nM Human ¼ 20 nM

Rodent ¼ 20 nM Rodent ¼ 100 nM

Target Y Human ¼ 40 nM Human ¼ 200 nM

Rodent ¼ 2000 nM Rodent ¼ 10,000 nM
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Based on the biological validation data (embryonic KO) and the duration of the

in vivo experiment, evaluation of full sustained target engagement (TER �10)

throughout the experiment is needed to drive a definitive decision on the pharma-

cological validation of Target X. However, to maximize the likelihood that any

observed efficacy signal is coming primarily from modulation of Target X, a design

that minimizes concomitant engagement of Target Y during the efficacy study is

highly desirable. As shown in Table 3.3, the equations discussed previously were

applied to project TERs based on the corresponding plasma concentrations from the

PK experiment using measured rodent fu and the rodent functional assay. In our

research programs, we have found it advantageous to develop simple computational

tools to facilitate the evaluation of potential tool molecules to explore the relation-

ships between TE and biological activity in vivo. Software such as Microsoft Excel

allows one to build spreadsheets from Eq. (3.4) to allow data from PK experiments,

in vitro assays, and protein-binding assessments to be instantly converted to TERs.

These same tools can also be used prospectively to determine what dose one

expects will deliver the desired levels of target engagement. Simple computational

tools like these allow chemists and pharmacologists to readily determine the

suitability of tool experiments for specific studies and to identify what performance

parameters might need to be improved. Similarly, we have built tools in our

organization that can be used to determine the suitability of compounds for use in

osmotic pump experiments from Eq. (3.12) (vide infra). Note that the functional

and biochemical TER values closely agree. Therefore, to simplify the remainder of

the example, we will only show functional TER values.

In assessing the data, it is clear that the potential tool compound could not

sustain a sufficient TER at Target X with a single daily oral dose 10 mg/kg, as the

24 h TER is much less than 1. However, using the assumption that exposure will

vary in a linear, dose-dependent fashion, the team can project other doses and
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dosing paradigms for design purposes. Table 3.4 illustrates such a projection for the

larger QD dose of 100 mg/kg. At this dose, the compound sustains a minimum TER

of ~3 for 24 h; however, it comes at the cost of very high drug exposure at Cmax,

resulting in>50% engagement of Target Y for>12 h. Further, Target Y is inhibited

by >90% for at least 4 h (see red boxes in Table 3.4).

To address excessive engagement of Target Y, BID dosing was evaluated.

Inspection of the 12 h values in Table 3.3 reveals a TER of ~30 with the 10 mg/

kg dose. This suggests that with BID dosing, the dose could be lowered by a factor

of ~3 relative to 10 mg/kg and still sustain a TER �10. Accordingly, the dose of

3 mg/kg BID was projected. As the data in Table 3.4 illustrate, this dose/regimen is

not only expected to sustain the desired TER for Target X over 24 h, but the %TE

for Target Y should not rise to even 30% during the full course of the efficacy

experiment (see green boxes in Table 3.4).

Figure 3.10 shows plots for all three of these experimental designs overlaid in

one graphical representation. Such illustrations are often quite useful for comparing

the relative strengths and weaknesses of design options prior to making the final

selection of dosing conditions. It is important to note that this type of analysis is

generally useful for choosing doses/regimens to explore the upper end of the in vivo

dose response. However, if efficacy is observed, it is equally important to explore the
lower limits of efficacy detection as well. Just as with in vitro concentration-response
curves, evaluating the full range of the in vivo concentration response adds confi-

dence that the observed pharmacology derives from the expected mechanism of drug

action. Establishing the minimum effective level and duration of target engagement

may also have important implications for the appropriate definition of safety margins

should the team advance molecules on to toxicology studies [8]. Dose fractionation

is one useful strategy to define the minimum level and duration of exposure needed

to drive efficacy in vivo. Reference 8 (Tuntland et al.) has an overview of dose

fractionation methodology with some additional leading references. PK/PD experts

can help teams determine when and how to conduct such studies.

The preceding vignette illustrates that by using these design principles, the team

was able to design a quality efficacy experiment to achieve their objectives. By

Table 3.4 Projected PK and TER values (Targets X and Y) for dosing 100 mg/kg PO, QD, and

3 mg/kg PO, BID

Projected exposure/TER:

100 mg/kg PO, QD

Projected exposure/TER:

3 mg/kg PO, BID

Time

Total

(nM)

Target X

TERFunctional

Target Y

TERFunctional

Total

(nM)

Target X

TERFunctional

Target Y

TERFunctional

0.5 61,000 610 6 1833 18 0.2

1 120,000 1200 12 3667 37 0.4

2 180,000 1800 18 5500 55 0.6

4 120,000 1200 12 3667 37 0.4

8 61,000 610 6 1833 18 0.2

12 33,000 330 3 1000 10 0.1

24 280 3 0.03 2000 20 0.2
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carefully considering the in vivo selectivity issues associated with Target Y, they

minimized the risk of generating misleading efficacy data by using a too high dose.

By exploring multiple dosing paradigms, they avoided spending additional time

and resources in search of improved tool molecules with better selectivity versus

Target Y, or with PK profiles having smaller differences in peak-trough ratio.

Frequently, drug hunting teams face the challenge of needing to establish pharma-

cological validation for targets armed with tool molecules that may not be fully

optimized in terms of potency and/or pharmacokinetic properties. In the next

section, we address one approach that can help to expedite TV experiments using

technology to achieve TE in vivo and overcome tool molecule limitations.

3.4.1 Compound Delivery via Pump as a Means to Facilitate
Target Validation

Conducting in vivo studies to establish target engagement is a resource-intensive

effort. In the best scenarios, compounds with a combination of suitable potency and

pharmacokinetics are readily available. However, for many drug discovery efforts,

available tool molecules are insufficient in terms of either potency or PK perfor-

mance. Resolving those issues through SAR development requires the application

of medicinal chemistry, ADME, and biology resources to identify suitable tools

through iterative rounds of optimization. The resource requirements and timelines

for these efforts can be significant. Therefore, any strategy a team can devise to
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Fig. 3.10 Overlay of experimental design options: the time course of TERfunctional using different

doses and dosing regimens
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allow the use of “suboptimal” tool compounds can facilitate significant time/cost

savings, especially if the TV exercise ultimately fails to validate the target.

Pump delivery presents a powerful tool for enabling interrogation of the rela-

tionship between PK and efficacy [9, 40–43]. There are multiple types of implant-

able infusion pumps that can be used. Some newer electronic pumps allow the

control of compound delivery via a user input program. These programs can be

designed to vary the rate of compound dosing over the course of the study, such as

with cases in which dosing alignment with circadian cycles is desirable. Some

pump systems can even be refilled during the course of an in vivo experiment. This

can drastically extend accessible duration of infusion, eliminating the need for

multiple surgeries which can compromise efficacy studies. Currently, these systems

are just emerging, and we would anticipate that their use will continue to increase

over time.

Nonelectronic osmotic pumps provide a less expensive but still powerful tool for

conducting sustained delivery. Figure 3.11 shows a simplified diagram of how a

mechanical osmotic pump works [40–43]. The pump consists of a drug reservoir

that is made of an impermeable membrane. This is encased within a semipermeable

membrane housing. Between the two membranes is an osmotic engine that acts to

push fluid out of the outlet at one end of the pump. For use in vivo, the pump

reservoir is filled with drug solution, and the pump is implanted into the test animal,

under the skin in the subcutaneous space. Water from the animal tissues slowly

diffuses through the semipermeable membrane into the osmotic engine. This causes

the volume of the engine to increase which in turn applies force against the drug

reservoir. This pushes the drug solution through the outlet. Usually, after a short

induction period, this reaches a steady rate that continues until all the pumping

capacity has been exploited. Time ranges for infusion are dependent on the type and

size of the pump used but can last from days to up to 4 weeks.

Outlet

Semi-permeable membrane

Drug Reservoir

Osmotic Engine

Impermeable membrane

Water

Drug Molecule

 
Fig. 3.11 Diagram of an osmotic pump
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3.4.2 Designing an Osmotic Pump Study

To conduct a continuous infusion study using an osmotic pump, several design

factors need to be considered. Most importantly, the team needs to define the

concentration of drug in plasma needed to achieve the desired TE in the target

compartment. Once the desired plasma level is defined, studies can be designed

with a few simple pieces of experimental data. Steady-state plasma concentrations

can be projected with the following information:

1. The IV clearance of the drug in the efficacy species.

2. The maximum solubility of the drug in an acceptable vehicle.

3. The manufacturer’s rating information for the available pumps, which includes

the infusion rates, reservoir volume, and maximum duration of use.

From this information, a researcher can determine if any available osmotic pump

will be acceptable for the study design. Using the desired steady-state plasma levels

of drug and the clearance, one can determine the necessary level of solubility using

the following equation:

Css � Cl�W

Ri

¼ S ð3:10Þ

where Css is the desired plasma steady-state level, Cl is the IV clearance, W is the

body weight of the animal, Ri is the rate of infusion of the pump, and S is the

concentration of the drug solution in the pump [9]. If we replace L in Eq. (3.3) with

Css, we can then solve for Css and substitute this expression into Eq. (3.10) to give

the following modified equation:

TER�EC50

f u

h i
� Cl�W

Rinfusion

¼ S ð3:11Þ

Note that as discussed above, in cases where the in vitro assay incorporates

nonspecific protein binding in the experiment, application of fu is not appropriate,
and the equation simplifies to

TER� EC50functional � Cl�W

Rinfusion

¼ S ð3:12Þ

Using the above approach, tool compounds and experimental designs can be

evaluated prior to costly in vivo efficacy experiments.

Thus, if a potential in vivo tool compound is identified, the team needs to

measure the in vitro potency and the IV clearance (both in the efficacy species)

as well as the solubility limit in the vehicle anticipated for pump use. With this

information, an in vivo concentration-response study such as the one illustrated in

Fig. 3.12a can be designed. First, Eq. (3.10) can be applied to project the upper limit

of accessible steady-state exposure and thus the upper limit of the TER that can be
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sustained with the tool compound being considered. If this step is encouraging, the

design can be completed by adding lower doses in half log units to explore the

lower levels of the in vivo concentration-response curve. Figure 3.12b illustrates

the application of the strategy to a hypothetical efficacy experiment and shows how

the PK might translate in vivo.

Clearly the use of pump technology has a number of practical advantages for the

design and execution of efficacy studies. By eliminating the variation of exposure

levels during the course of the study, it enables a very clear definition of the

relationship between steady-state drug concentration and the associated biological

response. Further, this method minimizes the potential for erosion of selectivity

in vivo which can come from large increases in peak vs trough drug exposure with

oral administration. For chronic (multiple days) efficacy models, pumps also

eliminate the need for oral dosing. This can be particularly valuable for some

Fig. 3.12 Biological response vs target engagement ratio experimental design. (A) TER vs time

for an infusion pump multidose study. (B) Plot of Biological Response (%) vs TER overlaid with

the theoretical TERs from the doses illustrated in panel A. A dose-response experiment achieving

these TER values would provide a sufficient number of points to enable estimation of the

concentration-response curve in vivo
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models in which repeat oral dosing can result in significant stress for the study

animals and compromise experimental results.

However, the use of pump technology is not ideal for every application, as there

are caveats. For example, severe solubility limitations of drug molecules may

eliminate them as candidates for pump studies, or may cause pumps to fail during

efficacy experiments. Also, some in vivo efficacy protocols are not compatible with

the need for implant surgery. In such cases, administering drug with in-food or

in-water formulations can also be a useful, practical alternative [44]. However, the

potential benefits of both accelerating proof-of-concept studies and achieving high-

quality in vivo concentration-response relationships suggest this technology is an

important strategic option that teams should aggressively consider in the early

prosecution of their drug discovery programs.

3.4.3 Approaches to Measuring Target Engagement In Vivo

The previous sections describe methods for estimating in vivo TE based on the

combination of quality in vitro and PK data. Often, such methods are the only

practical options available for research teams. However, when feasible, the exper-

imental demonstration of TE is a powerful method for building confidence in the

analysis and interpretation of efficacy experiments. In this section, we highlight a

few of the emerging methods for biophysical characterization of drug-target com-

plexes in vivo.

Cellular thermal shift assay (CETSA) is a relatively new biophysical technique

that allows assessment of TE in both cells and animals [45–50]. This approach

relies on the same thermal stability assay used broadly in structural biology to

assess compound binding to proteins. In a CETSA experiment, cells or animals are

dosed with compound or vehicle. Cells/tissues are then harvested for analysis from

each group. Cell aliquots from these harvested pools are then incubated at various

temperatures for a fixed time. Under heating, native proteins not associated with the

compound denature and precipitate at lower temperatures than those bound to

compound. The cells are lysed and the amount of soluble target protein remaining

is quantified by immunoblotting. The quantity of soluble target protein then pro-

vides an indication of TE. Measurement of TE in a dose-responsive fashion,

referred to as ITDRFCETSA, has also been achieved.

The developers of CETSA demonstrated its value by comparing the clinical

PARP-1 inhibitors iniparib and olaparib [48]. Iniparib failed to meet phase 3 effi-

cacy endpoints, while olaparib was recently approved by the FDA. Using CETSA

the authors demonstrated that iniparib did not engage PARP-1. Conversely,

olaparib did show positive TE of PARP-1 in the CETSA assay. These results

suggest that iniparib may act through an alternative mechanism.

Recent coupling of the CETSA approach to tandem MS capabilities has resulted

in a technique dubbed thermal proteome profiling (TPP) (Fig. 3.13) [51–53]. This

variation leverages tandem mass tag (TMT) labeling. The power of this approach is
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it allows assessment of TE for a given compound within the entire measurable

proteome. Briefly, cells are treated with compound or vehicle and then heated and

lysed, and soluble protein fractions are separated as in the previous CETSA

approach. The difference is that rather than immune quantifying the protein using

a target-specific antibody, the lysates are digested with a protease and labeled with

TMT reagents. Mass spec analysis of the TMT-labeled peptides from treated versus

control groups then allows identification of the proteins interacting with the target

using standard proteomics methods.

An alternative to direct biophysical characterization is to measure target occu-

pancy by competition with a tracer ligand of known affinity for the drug target.

Positron emission tomography (PET) imaging and LC MS/MS techniques have

proven to be highly valuable examples of this approach. PET is a particularly

powerful technique because it enables direct assessment of target occupancy

in vivo [54–62]. For example, PET has been a powerful tool for the clinical

evaluation of TE in patients, particularly in the CNS. However, it requires the

development of radioligands (with the radiolabel introduced at a very late stage in

the synthesis) and access to specialized equipment, which increases the cost of

enablement. During a PET experiment, the study drug is administered to the subject

followed by a radiolabeled ligand which then competes for the target. The level of

target occupancy can then be assessed by radiographic imaging. PET ligands need

to meet specific pharmacokinetic and potency criteria. This often requires invest-

ment of medicinal chemistry resources to develop and characterize suitable ligand

candidates.

LC MS/MS techniques provide a lower-cost option to assess target engagement

that might be more attractive for early preclinical work, especially when target

validation has not been confirmed [54]. These methods have advanced significantly

in recent years. LC MS/MS works similarly to PET but does not require the

synthesis of radioligands. This allows it to be easily incorporated into standard

medicinal chemistry programs as a parallel activity. This technique has been used in

many drug discovery efforts for both GPCRs and enzymes [54, 63–65].

Approaches to measuring target engagement using specially designed chemical

agents have also been developed [1]. This can be a powerful method to assess TE,

Fig. 3.13 Process diagram for thermal protein profiling
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and recent examples of the use of this approach with covalent irreversible kinase

inhibitors have been described. These approaches can be applied at any point in a

project life cycle, from early discovery efforts into the clinic. However, the methods

require the development of chemical tools.

As a recent example, Bruton’s tyrosine kinase (Btk) is a target of interest for

autoimmune and B-cell malignancies [66]. Because cysteine 481 in Btk is not

conserved in many other kinases, inhibitors which can react with this cysteine

have been pursued as an alternative to reversible ATP competitive inhibitors.

Celgene has disclosed a clinical candidate, CC-292, which uses this approach

[66]. To measure TE with CC-292, Celgene developed CNX-500 which is a

biotinylated inhibitor capable of competing with CC-292 for Btk (Fig. 3.14)

[66]. CNX-500 has been used to assess target engagement in both mice and

human subjects. Plasma B-cells of treated animals/patients are isolated. Treatment

of the lysate of these B-cells with CNX-500 inactivates any Btk not already

covalently bound to CC-292. The CNX-500 ligated protein is then captured and

quantified using ELISA. Using this approach Celgene was able to establish time-

lines for Btk protein turnover, CC-292 PK-PD relationships, and CC-292 target

engagement efficacy relationships in a collagen-induced arthritis model in mice.

3.4.4 The Relationship of TE to Pharmacodynamics

As discussed previously, the characterization of TE in vivo links the time course of

drug concentration (PK) with the time course of target binding. Although methods

for the direct measurement of in vivo TE continue to advance, most frequently TE is

inferred based on the measurement of some resulting biological activity, or phar-

macodynamic activity (PD) [8]. The characterization of PK/PD relationships and

the construction of mathematical models to describe them represent a challenge of

sufficient detail and scope that it comprises an independent discipline unto itself.

Numerous sources are available to provide a thorough and effective treatment of the

fundamental principles of PK/PD and their application to drug discovery, and it is

Fig. 3.14 Btk inhibitor CC-292 and tool compound CNX-500
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certainly not our intention to try to exhaustively review that work [8, 64, 67–69].

Actually, the practical purpose of learning to understand the time course of TE is to

gain greater control over the modulation of biological activity via drug action. So to

some, distinctions between the time course of TE and PDmay seem rather arbitrary.

However, the terms are sometimes used interchangeably (mistakenly), and there are

some subtle yet important differences between the two that can impact study

design, interpretation, and iteration. Therefore, we highlight here a few key terms

and principles to consider in the design of efficacy experiments.

Several factors combine to determine how the time course of an in vivo bio-

marker readout may change in response to changes in drug concentration. Two

examples include (1) the time required for signaling between the point of TE on the

biological pathway and the biomarker being measured and (2) the rate at which that

biomarker is cleared from the compartment of measurement. If the transmission of

the biological signal being measured in vivo occurs quickly, relative to changes in

drug exposure, a so-called direct concentration-response relationship between PK

and PD will be observed [8]. Figure 3.15 shows a hypothetical example of such a

profile, illustrating the relationship between a PK curve (blue) and both a TE curve

(red) and a resulting PD response curve (green). In this case, the interaction of the

drug with its biological target is characterized by rapid-reversible binding kinetics.

Thus, as shown previously in Fig. 3.6, changes in the time course of TE respond

rapidly to changes in the time course of drug exposure. Subsequently, due to the

rapid transmission of TE into a biological signal, changes in PD activity for this

system basically mirror changes in TE. Direct concentration-response systems have

the practical advantage that experimentally they are more straightforward to char-

acterize in vivo relative to corresponding indirect systems.

Fig. 3.15 Time course of drug exposure and TE and PD response for a direct concentration-

response system
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On the other hand, if transmission of the biological signal being measured is

slow relative to changes in drug levels, an apparent disconnect or hysteresis is

observed, between the time course of drug exposure (PK) and the time course of the

corresponding PD readout [8]. One example of such an “indirect” PK/PD relation-

ship is shown in Fig. 3.16. In this example, both the drug molecule and the

biological target are the same as from the example in Fig. 3.15 (note that the time

course of both drug exposure and TE are identical in the two figures). In fact the

only difference in the example depicted in Fig. 3.16 is a reduction in the clearance

rate of the biomarker generated in the process. The figure clearly illustrates the

difference between the time course of drug exposure (also TE) and the time course

of PD that results from this subtle change in the system.

Figure 3.16 also highlights the significant risks inherent in evaluating PK/PD at

single time points in such a system. The red dotted line illustrates the time point

associated with the Cmax for drug exposure. The Cmax is frequently selected as the

time point to evaluate in the design of single time point efficacy screens. However,

in this case, due to the slow equilibration of the biomarker, the amount of change in

the biological signal observed at Cmax would appear insignificant, in spite of the fact

that TE in this system is effectively saturated at that specific time point. Conversely,

if the team evaluated the PK and PD at the 10 h time point (green dotted line), in this

system it would appear that a significant biological effect was observed, but with an

insignificant drug concentration (and actually at an insignificant level of TE).

Fig. 3.16 Time course of drug exposure, TE and PD response for an indirect concentration-

response system. In this example, the drug and target are the same as those represented in

Fig. 3.15; however, the PD biomarker has a reduced clearance rate
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Of course there are numerous different experimental conditions that could

produce indirect concentration-response relationships. As discussed previously,

the effect of slow dissociation of the drug from the target protein (Fig. 3.8) is

such an example. Thus, this section underscores again the importance of under-

standing the full time course of both PK and PD, through the full range of TE, as

early in projects as possible. If the system under investigation has a direct PK/PD

relationship, it should be relatively straightforward to build in vivo relationships

linking TE with efficacy. If not, the team should be sure to seek collaboration (at the

very least consultation) from a PK/PD professional.

3.4.5 Case Studies in Using TE

In this section we highlight two examples of drug discovery projects in which TE

analysis is used to address key questions regarding pharmacological target valida-

tion. In one example, efficacy experiments are designed to provide insight into the

in vivo function of insulin-degrading enzyme (IDE), a target of interest for diabetes.

In the second example, an in vivo concentration-response relationship is developed

for an osteoarthritis (OA) drug program, and that data is used to refine the desired

performance characteristics to focus SAR efforts toward the selection of a clinical

candidate.

3.4.5.1 Application of TE in a Program Exploring Insulin-Degrading
Enzyme as a Potential Target for Insulin Sensitization [70]

Insulin-degrading enzyme (IDE or insulysin) is an evolutionarily conserved zinc

metalloprotease belonging to the cryptidase family [71]. Members of this protease

family contain a large active site (~15,700Å3) referred to as a crypt, which can fully

enclose substrates. In vitro, IDE binds and cleaves a diverse array of substrates,

including insulin, glucagon, amyloid beta-peptide (Aβ1–40 and Aβ1–42), ubiquitin,
amylin, insulin-like growth factor II, atrial natriuretic peptide, and transforming

growth factor alpha [71–79]. Of its many substrates, IDE is exceptionally effective

at degrading insulin (Km ¼ 85 nM and kcat/Km ¼ 2.42 min�1 μM�1) [74].

Although significant biochemical characterization of IDE had been completed,

the role of IDE in the physiological regulation and action of insulin had not been

clearly defined at the time we became interested in the target. The majority of prior

efforts exploring the in vivo role of IDE came from gene deletion studies. Several

research groups have evaluated IDE�/� mice, but the phenotypes reported for the

knockouts have varied. In some IDE�/� mouse cohorts, increased insulin levels

were observed, but in other cohorts no change in insulin levels occurred [80–82].

Because IDE had been claimed to be the primary regulator of insulin clearance

in vivo, we hypothesized that inhibiting IDE activity could reduce insulin
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breakdown and prolong insulin action (i.e., IDE inhibitors would act as insulin

sensitizers) [70]. At the time our work was initiated, suitable pharmacological

inhibitors were not available for in vivo studies, and thus tool molecules needed

to be identified. In support of the program, a biochemical assay and a cell lysate

assay of insulin degradation were developed. This cell lysate assay served as a

functional assay and contained large amounts of protein, allowing assessment of

inhibitor activity within an environment where an opportunity for substantial

nonspecific protein binding existed.

To identify small molecule inhibitors, a medium throughput screen was

conducted, which yielded two weak partial inhibitors (compounds 1 and 2) that

were successfully co-crystallized with IDE (Fig. 3.17). Based on the binding

location of the two molecules in proximal exosites on the protein, compound

NTE-1, a potent, full inhibitor of insulin degradation was designed (Fig. 3.17).

NTE-1 is a reversible tight-binding inhibitor (Table 3.5) and fortunately has

suitable PK properties in rodents to support in vivo studies using SC dosing. This

compound also had equivalent potency in mouse, rat, and human enzyme systems.

Treatment of DIO mice with NTE-1 followed by oral glucose challenge resulted

in lower glucose excursion, increased plasma amylin, and slightly increased insulin

(Fig. 3.18). Plasma TER levels>10 (based on the lysate assay) were sustained over

the time course of the experiment, suggesting �90% inhibition of IDE function

in vivo.

These initial results were encouraging because glucose excursion in the treat-

ment arm was lower in the oral glucose tolerance test (OGTT), as would be

expected with an insulin sensitizer. However, the fact that insulin changes were

Fig. 3.17 IDE inhibitors
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not statistically significant was concerning. Additionally, amylin (which is also an

IDE substrate) is known to slow gastric emptying which could suppress glucose

excursion [72, 74, 83]. Thus, while we had evidence of TE, the relative contribu-

tions of IDE inhibition to glucose lowering via amylin and insulin could not be

determined in this experiment.

Therefore, we conducted a euglycemic clamp study in SD rats to allow us to

focus solely on the impact on insulin action of IDE inhibition. The design of this

clamp study is shown in Fig. 3.19. In this experiment, SD rats were surgically fitted

with catheters to allow infusion of multiple substrates. After recovery from surgery,

the rats were connected to infusion pumps that delivered a sustained level of drug or

Fig. 3.18 Effects of NTE-1 treatment on plasma glucose, amylin, insulin, and glucagon in DIO

mice after an oral glucose challenge. Fasted mice received a 15 mg/kg dose ofNTE-1 SC followed

by an oral glucose load. NTE-1 treatment produced statistically significant increases in glucose

clearance and plasma amylin levels. Plasma insulin was elevated but did not reach statistical

significance. Inset graphs represent analyte AUC. (A) Whole blood glucose; (B) Amylin; (C)
Glucagon; (D) Insulin. + ¼ p < 0.05 vs vehicle by RM-ANOVA and * ¼ p < 0.05 relative to

vehicle by Student’s t-test

Table 3.5 IDE inhibitor characterization

Compound 1 2 NTE-1

hIDE insulin IC50 (nM) 2000 2000 4 � 2

Rat hepatocyte lysate insulin degradation IC50 (nM) ND ND 18

koff (min�1) ND ND 0.0047

t1/2 (h) ND ND 2.45

ND¼ not determined
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vehicle in addition to radiolabeled glucose (to allow measurement of hepatic

glucose production (HGP)) and somatostatin (to suppress endogenous insulin and

glucagon production). The dose of NTE-1 was chosen to sustain a TER of �130

and 110 in the biochemical and cell lysate insulin degradation assays, respectively.

In this case, we selected this high target engagement goal because the likelihood of

confounding pharmacology due to inhibition of other cryptidases was anticipated to

be very low [71].

Once the fixed infusion was started, a second adjustable pump was used to

deliver glucose. The glucose infusion rate (GIR) was adjusted until the animals’
plasma glucose was constant at 105 mg/dL. At this point, a fixed dose of insulin was

added to the steady infusion pump, causing the animals’ plasma glucose to drop.

The glucose infusion rate was then increased until the animals once again had a

steady plasma glucose level of 105 mg/dL. By comparing the difference in GIR

and/or HGP in the stabilized/clamped animals before and after insulin challenge,

any effect of NTE-1 on reducing insulin clearance or enhancing insulin action can

be quantified. To ensure that the compound had inhibited IDE, we measuredNTE-1

concentration in the liver at the termination of the experiment and found that the

liver concentration was ~70 mg/g (approximately 95 mM). TE was further

supported by strong inhibition of insulin degradation in liver lysates made from

tissues of the treated animals (Fig. 3.20b).

Notably, NTE-1 did not have any impact on insulin action or clearance in this

experiment as revealed by assessment of the GIR or HGP (Fig. 3.20a and b).

Because of our confidence in the TE we achieved in this experiment, we concluded

that the majority of the impact on glucose we observed in our OGTT studies were

driven by inhibiting IDE-mediated amylin clearance. Based on these data, IDE

Fig. 3.19 Euglycemic clamp study

3 Target Engagement Measures in Preclinical Drug Discovery: Theory, Methods. . . 69



inhibitors would not be anticipated to be effective insulin sensitizers [70]. Thus, a

quality data package was generated from a tool molecule with poor ADME

properties relative to what would be expected for a candidate for diabetes therapy.

This enabled a decision to deprioritize further investment in the development of this

target in favor of efforts with a higher probability of technical success.

3.4.5.2 Use of TE to Establish Clinical Candidate Performance

Characteristics for Aggrecanase Inhibitors as Disease-

Modifying Treatments for Osteoarthritis [9, 84]

Osteoarthritis (OA) is a disease characterized by the degradation of joint cartilage

leading to pain and loss of function. The societal impact of this disease is signif-

icant, including a major economic burden on healthcare systems and compromised

quality of life for patients. Current treatments for OA include symptom relief

(NSAIDs) and surgical joint replacement. Unfortunately, no treatment regimen

which can directly affect the progression of OA has yet been approved.

Fig. 3.20 NTE-1 treatment

effects in a euglycemic

clamp in Sprague Dawley

rats. (A) Average glucose
infusion rate (GIR) during

the last hour of a

euglycemic clamp. (B)
Hepatic glucose production

(HGP) during basal and

euglycemic clamp is shown.

Basal and clamp

measurements were

obtained after 2 or 4 h

infusions of vehicle or

NTE-1, respectively; Inset:
Insulin degradation in

lysates from perfused livers

harvested from animals

after completion of the

euglycemic clamp. NTE-1
treatment resulted in

significant preservation of

exogenously added insulin

relative to vehicle

70 T.B. Durham and M.R. Wiley



At the structural level, the joint contains both cartilage and synovial fluid, a

non-Newtonian fluid composed of water, hyaluronic acid, and lubricin. The process

by which nutrients and waste products are exchanged between plasma and the joint

space is believed to be diffusion controlled [85]. Cartilage is a nonvascularized

tissue composed of type II collagen and aggrecan. One hypothesis for OA progres-

sion is that the rate of extracellular matrix (ECM) synthesis versus degradation

becomes unbalanced. Therefore, it has been hypothesized that ECM protease

inhibitors could halt or reverse the progression of OA.

ADAMTS-4 and ADAMTS-5 (aggrecanase 1 and aggrecanase 2) are zinc

metalloproteases that are known to have a specific and primary role in aggrecan

degradation [86–91]. The hypothesis that inhibition of ADAMTS-4 and ADAMTS-

5 in humans could impact OA is supported by data generated in genetically

modified mice (animals with either ADAMTS KO or stabilized aggrecan substrate)

as well as in human chondrocytes [91–94]. Notably, the active sites of ADAMTS-4

and ADAMTS-5 share significant active site similarity with the matrix

metalloproteases (MMPs) [96]. There are 28 MMPs known, all of which have a

high level of homology at the catalytic site. In fact, several MMPs have been

described as ECM proteases and have been nominated as potential drug targets

for OA. However, due to the significant selectivity challenges associated with

developing small molecule inhibitors of this class, off-target toxicity has been a

barrier to clinical success to date. Therefore, a drug discovery effort to develop

inhibitors of any member of this enzyme class would need to have high MMP

selectivity, to facilitate a quality test of the efficacy hypothesis, and to avoid

potential off-target toxicology.

Our efforts to discover aggrecanase inhibitors led to a series of hydantoins found

to be potent, dual inhibitors of ADAMTS-4 and ADAMTS-5 with high MMP

selectivity (Fig. 3.21). Compounds such as 3 were found to be efficacious in an

acute PDmodel (mono-iodoacetate, MIA) and in a more resource-intensive surgical

efficacy model of OA, with joint damage induced by meniscal tear [84]. Having

Fig. 3.21 Aggrecanase

inhibitor 3
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established a qualitative linkage in vivo between PD activity in the MIA model and

efficacy in the surgical model of disease, we wanted to develop a more quantitative

relationship between TE parameters and PD activity in the MIA in order to more

effectively define performance characteristics for compounds that would be desir-

able for clinical study [9].

To that end, rat oral exposure data were collected for compound 3, as well as

several analogs, in order to enable the TE-based design of MIA experiments. As the

representative data in Fig. 3.21 illustrate, in vitro potency was measured in the

presence of rat plasma in order to obtain a functional assessment of the drug

concentration needed to overcome the relevant nonspecific protein binding

in vivo. To ensure that species selectivity of target affinity was accounted for, rat

ADAMTS4 potency was evaluated for all compounds studied in vivo and was

found to be indistinguishable from the corresponding human potency. Because

synovial fluid is generally known to present low barriers to the passive permeation

of small molecules and is not under the influence of active transporters, the free

drug hypothesis was applied [85]. Thus, plasma levels from the rat PK studies were

used in combination with rat plasma IC50s to approximate TERs in the target

compartment. Finally, due to the fact that the MIA model requires several days of

drug treatment, 24 h time intervals were considered as the relevant time course for

TE in the experimental design.

As shown in Table 3.6, at a dose of 10 mpk/PO compound 3 produces a TER of

>200 at Cmax, but by 8 h the TER dropped to ~6. Thus, in order to ensure that TE

would be sustained over each 24 h period during the time course of the efficacy

study, BID dosing was indicated. Using this design strategy, compound 3 and

several similar analogs were evaluated in the rat MIA model of cartilage degrada-

tion. In this assay, animals are injected with MIA which causes protease release into

the synovium. After an incubation period, animals are treated with compound BID,

PO for 4 days. Sacrifice of the animals 4 h post final dose and lavage of the knee

allows assessment of aggrecan degradation by NITEGE fragment quantification

using ELISA. As can be seen in Fig. 3.22, this study design yielded a range of PD

activities which gave reasonable correlation to the TE in plasma.

Based on the evaluation of this data set, the MIA EC50 appears to correspond to a

TER of ~150, when measured at a single time point of 4 h. However, inspection of

the full PK curves for the compounds in Fig. 3.22 shows that the plasma concen-

trations of the inhibitors are expected to differ by >2 orders of magnitude between

Cmax and Cmin over the course of the efficacy experiment [9]. Thus, in order to

eliminate the significant variation in exposure levels and to minimize any potential

Table 3.6 Rat pharmacokineticsa

Compound

Rat plasma

hADAMTS-5

IC50 (nM)

AUC

(nM h)

Cmax

(nM)

Target

engagement

ratio at Cmax

8 h

plasma

(nM)

8 h target

engagement

ratio

3 35 20,000 7600 220 220 6.3
aData based on a 10 mg/kg PO dose in Lewis rats
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for erosion of selectivity vs MMPs in vivo, an infusion pump design was evaluated.

Compound 3 was found to have solubility (30 mg/mL in PEG300) and rat IV

clearance properties making it ideal for use in such an experiment. It also showed in

lab simulation that it maintained consistent release from the osmotic pump over the

required dosing period. Thus, for the TE/PD study design, four dose groups were

utilized, with a high dose of 30 mg/mL followed by half log reductions down to a

low dose of 1.44 mg/mL. This dose range was estimated to provide a range of

steady-state TERs from ~100 down to ~3, respectively.

As shown in Fig. 3.23, osmotic pump infusion of compound 3 produced consis-

tent plasma levels throughout the time course of the MIA experiment. A plot of the

PD activity versus the steady-state TER of compound 3 produces a logarithmic

curve (Fig. 3.24, R2 ¼ 0.8). Thus, from these experiments we concluded that the

high TERs achieved at Cmax in the previous oral experiments were not required to

drive PD efficacy. Further, the role of in vivo selectivity erosion was eliminated as

contributing factor as well, as estimates of in vivo TERs for all other MMPs

measured never rose above ~0.01 over the course of the study using the pump

design. In fact, a compound capable of sustaining a minimum TER in plasma �10

will produce an ED50 effect in the MIA model. This is particularly noteworthy since

ED50s in the MIA model were found to correlate with statistically significant

improvement in total joint score in the challenging surgical model [84].

Fig. 3.22 MIA NITEGE inhibition versus target engagement ratio at 4 h. Data shown is pooled

from dose-response experiments using compound 3 (highlighted with blue circles) and several

analogous inhibitors of similar structure, potency, selectivity, and PK properties
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Based on this analysis, further SAR efforts were focused on the development of

an inhibitor with a combination of human potency and projected human ADME

properties sufficient to sustain a free drug concentration � 10 times above the

human biochemical ADAMTS-4 and ADAMTS-5 IC50, with an attractive projected

oral dose QD in man. This strategy led to the identification of compound

4 (Fig. 3.25), which showed an attractive combination of potency, selectivity,

MIA efficacy, and projected human PK properties supporting the prediction that

it would deliver the desired level of human TE at a dose of 45 mg/PO, QD. By
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comparison, compound 3 was projected to require an oral dose of 600 mg QD in

man to achieve the same level of sustained TE [9].

This example illustrates the utility of osmotic pumps to enable the efficient

development of a TE/PD relationship in our preclinical model, with nonoptimal

compounds. Subsequently, that information was used to guide our efforts to identify

a molecule with performance characteristics supportive of human clinical study.

This stands in contrast to previous efforts in which the same TE concepts described

in this chapter were used to invalidate several of the MMPs which had been

nominated as potential therapeutic targets for OA. In these cases, potent but poorly

selective tool compounds demonstrated efficacy in both PD and surgical efficacy

models. However, unlike our aggrecanase inhibitor program, as target engagement

with high selectivity was achieved for the MMP targets of interest (to improve

toxicology profiles), efficacy in preclinical models was lost. Like the IDE program,

in these cases the disconnection of selective TE from the desired efficacy facilitated

prioritization decisions to focus resources on higher potential efforts.

3.5 Conclusion

In summary, the proactive development of a reliable understanding for the time

course of in vivo TE represents a powerful strategy for driving timely/quality

decision-making across the value chain for cross-functional drug discovery

teams. At the front end, TE analysis can dovetail with lead generation technologies

to accelerate the identification of useful tool compounds for the design of quality

in vivo studies that enable preclinical target validation. In this phase, the use of

alternative dosing methods such as infusion pumps can be particularly impactful for

accelerating data acquisition without the need for costly compound optimization

Fig. 3.25 Aggrecanase

inhibitor 4
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cycles. On the back end, TE analysis can be employed to refine desired performance

characteristics for candidate selection, to improve the patient focus and efficiency

of lead optimization efforts and more rapidly enable clinical experiments. Thus, the

application of TE-based drug discovery strategies represents a critical link in the

collaborative process of efficiently translating molecules into medicines.
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Chapter 4

In Silico ADME Techniques Used
in Early-Phase Drug Discovery

Matthew L. Danielson, Bingjie Hu, Jie Shen, and Prashant V. Desai

Abstract The process of drug discovery and development is time consuming and

expensive. In silico tools, in combination with in vitro and in vivo models, provide a

valuable resource to improve the efficiency of this process. In this chapter, we

provide an overview of various in silico tools and models used to identify and

resolve absorption, distribution, metabolism, and excretion (ADME) challenges in

drug discovery. In general, structure-based in silico techniques such as docking and

molecular dynamics simulations have limited applicability in the ADME space due

to the promiscuity of many ADME targets and the limited availability of high-

resolution 3-D structures. Pharmacophore models, a ligand-based in silico method,

can be used to identify key structural features responsible for the interaction with

the target of interest. However, due to broad ligand specificity and the probability of

multiple binding sites in many ADME targets, pharmacophore models have limited

prospective applicability across structurally diverse chemical scaffolds. Con-

versely, quantitative structure-property relationship (QSPR) models are capable

of extracting knowledge from a wide variety of chemical scaffolds and have

prospectively shown utility as predictive models for many ADME endpoints mea-

sured in the pharmaceutical industry. QSPR models, especially those based on

machine learning techniques, are known to have limited interpretability. To address

this challenge, the use of QSPR models is typically coupled with information

derived from trends between ADME endpoints and physicochemical properties

(e.g., lipophilicity, polar surface area, number of hydrogen bond donors, etc.)

during drug discovery. Furthermore, knowledge extracted by the matched molec-

ular pair analysis (MMPA) of ADME data provides insight that is used to identify

fragment replacements to improve the ADME characteristics of compounds.

In conclusion, an effective amalgamation of in silico tools is necessary to influence

the design of compounds that will possess favorable ADME properties. Finally, in

silico tools should never be used in isolation; they make up one arm of the
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integrated and iterative learning cycle that is comprised of in silico, in vitro, and

in vivo models that we recommend using to effectively drive a drug discovery

project.

Keywords In silico ADME • Quantitative structure-property relationship models •

Matched-molecular pair analysis • Predictive models • Physico-chemical properties

The drug discovery and development process is time consuming and expensive,

encompassing approximately 15 years and over two billion dollars to bring a drug

to market [1]. Stage-appropriate use of models is an integral part of the drug

discovery process. Early-phase drug discovery uses various in silico and in vitro

models to explore potency, ADME properties, and safety. As drug discovery pro-

gresses, preclinical in vivo animal models are used to estimate how a compound

will behave in humans, and ultimately model situations are created in a controlled

clinical environment (clinical models) before the compound is approved for use in

the general population.

In an attempt to reduce the time and cost associated with the drug discovery

process, in silico tools are one class of models employed throughout this process. In

silico tools have a direct impact on how drug discovery progresses and are espe-

cially useful in the early-phase of drug discovery where a clinical candidate is being

pursued and optimized. These tools are used to design and prioritize the synthesis of

compounds with desirable affinity, specificity, a multitude of ADME properties,

and safety with the goal of delivering the best possible compound to test in the

clinical setting.

In this chapter, we provide an overview of various in silico models and tools

employed to identify and resolve ADME challenges during the process of drug

discovery. Generally speaking, in silico ADME tools are classified into two major

categories, structure-based and ligand-based. Each class of in silico tools are

addressed in subsequent sections.

4.1 Structure-Based In Silico Models

When sufficient structural information exists on the protein of interest, generally in

the form of a nuclear magnetic resonance or crystallographic X-ray structure,

structure-based drug design techniques are used in early-phase drug discovery. In

structure-based drug design, interactions between the protein and the ligand are the

focus of the study, and this is commonly referred to as rational drug design. Novel

ligands can be designed de novo, meaning the interactions between a hypothetical

ligand and the protein are optimized with the goal of creating a compound with high

affinity and selectivity. Molecular docking can be used to orient a ligand within

the active site of the protein to provide an estimate of the protein-ligand interaction.

However, molecular recognition between a protein and a ligand is a complex process
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that does not occur in a static structure. Molecular dynamics (MD) and Monte Carlo

(MC) simulations are computational techniques used to create trajectories that

model the protein-ligand fluctuations and dynamics in atomic detail [2, 3].

4.1.1 Molecular Docking

The goal of molecular docking is to model the potential interaction between a

protein and a ligand [4]. Although several docking programs exist [4–11], each

docking program can be broken down into two general parts: the search function

used to orient and place the ligand inside the binding pocket (binding pose gener-

ation) and the scoring function used to quantify the protein-ligand interaction and

predict the binding affinity (binding affinity prediction). This chapter provides an

overview of the current status of molecular docking but does not go into detail on

search algorithms or scoring functions, both areas of active research.

For certain protein targets, the search algorithm may generate bioactive binding

poses (root-mean-square deviation <2 Å) during the search process for 90% of

compounds, but this percentage can be as low as 40% for other protein systems

[12]. This is especially challenging for ADME targets that are known to bind a

diverse array of compounds and are promiscuous in nature. For many ADME

targets, factors such as the size of the binding pocket (relatively large and hydro-

phobic), the water network within the active site, and protein flexibility lead to

significant challenges while utilizing molecular docking. Figure 4.1 illustrates this

point on one class of ADME targets, the cytochrome P450 (CYP) family of

enzymes. CYPs are estimated to be involved in the metabolism of approximately

75% of drugs currently on the market with CYP3A4 known to metabolize approx-

imately 50% of such compounds [20]. While several publications exist on CYP3A4

docking [21–26], the abovementioned problems limit its use in early-phase drug

discovery programs outside of qualitative idea generation.

In instances where the docking search algorithm identifies a bioactive binding

pose, current scoring functions are not accurate enough to reliably predict the

binding affinity [27–29]. The correlation between the experimentally measured

and predicted binding affinities for a series of compounds binding to the same

protein target is usually weak and often influenced by the size of the ligand rather

than the underlying physicochemical contributions to the binding affinity

[30, 31]. Therefore, bioactive binding poses are not always ranked as the most

energetically favorable (or top ranked) during the docking procedure [12]. In

addition, the lack of accuracy and separation in binding affinity prediction makes

it challenging to predict the binding affinities of compounds within a structure-

activity relationship (SAR) series let alone in silico de novo-designed compounds.

A recent review by Lill [32] discusses many of the current problems and challenges

of molecular docking and goes into greater depth on techniques used to overcome

such obstacles.
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Post-processing is one such technique designed to overcome the problem of

using simplistic scoring functions in docking and can significantly improve the

successful prediction of binding affinities [33, 34]. Post-processing techniques

incorporate dynamic information of the protein-ligand system after the docking

process has been completed. The top-scored binding pose, or several favorably

scored poses, is used as input to subsequent MD simulations. In combination with

free-energy methods such as free-energy perturbation [35], thermodynamic inte-

gration [36], molecular-mechanics Poisson-Boltzmann or generalized Born surface

Fig. 4.1 Reproduced from Danielson et al. Potentially increasing the metabolic stability of drug

candidates via computational site of metabolism prediction by CYP2C9: The utility of incorpo-

rating protein flexibility via an ensemble of structures. Eur J Med Chem 2011 Sep.;46(9):3953–63.

Copyright © 2001 published by Elsevier Masson SAS. All rights reserved [13]. Examples of

protein flexibility in cytochrome P450 enzymes: (a) Changes in Arg47 side-chain rotamer in P450

BM-3 depending on the bound ligand (palmitoleic acid and corresponding protein in blue,
PDB-code: 1FAG [14]; N-palmitoylmethionine and corresponding protein in magenta: 1ZO9

[15]). (b) Alternative loop conformations are observed in CYP119 when different ligands are

bound. Compared to the apo structure of CYP119 (F/G loop in orange: 1IO7 [16]), the F/G loop

adapts distinct configurations when 4-phenylimidazole (ligand and loop in magenta: 1F4T [17]) or

imidazole (blue: 1F4U [17]) is bound. (c) In CYP3A4 significant protein flexibility occurs in the

F/G portion of the protein (apo: orange, 1TQN [18]; erythromycin bound: blue, 2J0D [19]) to

accommodate erythromycin and part of the F–F0 loop becomes disordered. This motion causes the

solvent-accessible volume of the binding site to significantly increase and can dramatically affect

ligand binding. (d) CYP3A4 exhibits a protein breathing motion increasing the size of the binding

pocket to accommodate two ketoconazole (ligands in magenta, protein in blue: 2V0M [19])

compounds without significant conformational changes of the helices or loop regions composing

the binding pocket (apo: orange: 1TQN [18])
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area [37], or linear interaction energy analysis [38], a more accurate estimation of

the free energy of binding is possible [33]. However, this process is relatively time

consuming and requires that the bioactive binding pose is within the top-ranked

binding poses in order to limit computational time, a criterion that is not always

evident when carrying out molecular docking studies on large and rather promis-

cuous ADME targets.

4.1.2 Molecular Dynamics

Molecular dynamics (MD) is a computational technique used to study the physical

movement of atoms. The first MD simulation of a biomolecular system was done in

1977 on bovine pancreatic trypsin inhibitor using a simplistic molecular mechanics

potential to describe the properties of the system [39]. Although this simulation was

only performed for 9.2 ps, it was a groundbreaking study that showed that integrat-

ing Newton’s equations of motion over a series of very short-time steps (usually one

or two femtoseconds) could transform a once static X-ray structure into a dynamic

trajectory from which time-averaged properties could be calculated. Underlying

any MD simulation is a physics-based force field that defines all parameters of the

system. Several force fields and MD programs exist [40–46], and the parameters are

usually defined by high-level quantum chemical calculations or empirically fit to

experimental properties. In addition to the force field parameters, a potential

function, or mathematical relationship, is needed to describe how the individual

atoms of a system interact during the MD simulation. Most force field potentials

describe the interactions between atoms in the system in terms of a five-component

description of intra- and intermolecular forces. The AMBER force field potential is

shown in Eq. (4.1) and consists of bonded (bonds, angles, and dihedral terms) and

nonbonded (van der Waals and electrostatic terms) components [42].
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In this type of potential, intermolecular bonds are treated as a simple Hooke’s
law springs with a characteristic force constant Kr and equilibrium bond length req.
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The angular term accounts for bond angle bending in the system, and the dihedral

term represents the intrinsic torsional energy due to twisting about bonds. The van

der Waals term accounts for the attractive London dispersion and repulsive van der

Waals nonbonded forces and is calculated by a 12-6 Lennard-Jones potential. Force

field assigned atomic partial charges are used to calculate the nonbonded electro-

static interaction between two atoms by solving Coulomb’s law. Summing over all

pairs, triplets, and quartets of atoms in the system, the force field potential provides

an estimate of the energy of the system at a particular configuration. A more

detailed description of MD and the algorithms associated with this technique can

be found elsewhere in the literature [3, 41–43, 47–49].

Currently, MD simulations are performed on macromolecular systems com-

prised of thousands of atoms, and several different explicit and implicit water

models exist to solvate the system [47–53]. The nanosecond time scale is routinely

reached in MD simulations, and in specialized instances protein systems have even

been simulated up to the millisecond time scale [54, 55]. With increasing computer

power and advances in technologies and methods, millisecond time scale simula-

tions may become routine in the near future. However, this also brings with it

additional challenges such as storing, analyzing, and interpreting such a vast array

of data. Despite the previously mentioned problems, MD simulations are routinely

used to turn a static X-ray crystallographic structure into a dynamic system.

Snapshots taken from the MD simulation provide some estimate of protein flexi-

bility and can be used as alternative templates for molecular docking, and this

technique has been utilized in several CYP isoforms [13, 56–61]. While MD

simulations have become routine in the computational chemistry field, their appli-

cation in early-phase drug discovery has not. This is especially true for ADME

targets due to very limited number of high-resolution X-ray crystallographic struc-

tures and their promiscuous nature. Additionally, the time and resource intensive

nature of MD simulations and the rather fast-paced movement of chemistry SAR on

project teams further limit the application of MD simulations during this phase.

4.2 Ligand-Based In Silico Models and Tools

4.2.1 Quantitative Structure-Property Relationship (QSPR)
Models

Quantitative structure-activity relationship (QSAR) models are one of the com-

monly employed ligand-based techniques to predict the activity of compounds. The

field of modern QSAR can be traced back more than 50 years to a model produced

by Hansch [62]. QSAR sophistication has grown from its early application on a

small congeneric series of compounds using simple linear regression to now being

applied to data sets comprised of thousands of diverse compounds utilizing a wide

variety of statistical and machine learning algorithms.
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When such models are used to predict various properties, including ADME

endpoints, they are referred to as quantitative structure-property relationship

(QSPR) models. Given the promiscuity and limited structural knowledge of

ADME targets, QSPR models are commonly used in the pharmaceutical industry

to address ADME-related challenges. The basic premise of QSPR methodology is

to develop a relationship between an observed property and structural features of a

compound. Considering a set of compounds with observed experimental data

(training set), a model is developed that can be used to predict the activity of

other compounds (test set) not included in the initial training set. Compounds are

represented using a variety of molecular descriptors that describe the chemical

structure and properties of the compound. A relationship between the molecular

descriptors and the observed response is computed using mathematical techniques

such as linear regression, artificial neural network, support vector machine (SVM),

and random forest (RF). A general description of such algorithms is summarized in

Sect. 4.2.1.4. Figure 4.2 illustrates the general process of building and applying

QSPR models to a group of compounds, and each step of the process is further

explained below.

Fig. 4.2 Schematic representation of key components when building and applying QSPR models.

The top section shows the generalized equation representing a typical QSPR model and lists key

components required to derive such an equation for a given data set. The bottom section depicts a

typical workflow used to build and use a QSPR model
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4.2.1.1 Data Set Selection and Curation

The first step to create any QSPR model is the selection of the data set that the

model will be built upon. A key consideration when choosing any data set to create

a model upon is that the data should be accurate, reliable, reproducible, and

measured using identical experimental conditions for all compounds. This can be

a significant challenge when building QSPR models based on public databases

compiled by collating data from multiple labs spanning a variety of experimental

protocols. Stouch et al. demonstrated that models based on data sourced from

multiple labs showed poor predictive capabilities for compounds tested in a rigor-

ous and consistent manner [63]. For example, in the case of a hERG inhibition

model provided by an external vendor, the data were collated from several different

laboratories using a variety of assay conditions: different cell types expressing the

hERG channel and different activation potentials for the channel, along with

combining binding and inhibition data. The predictions from the vendor model

had a poor correlation coefficient of 0.01 and a high root-mean-square error

(RMSE) of 1.3 log units for the test set evaluated by the authors.

Following the selection of data, the importance of data curation cannot be

overemphasized. In order to create the best possible QSPR model, it is critical to

minimize the inclusion of potentially erroneous data. The potential sources of

erroneous data include false positives/false negatives, under-/overestimated

responses, spurious results (e.g., microsomal stability >100%), incorrect structural

representation of compounds, data below the analytical detection limits, and impure

material. For example, while building a classification model for P-glycoprotein

(P-gp) efflux, Desai et al. excluded compounds reported as non-substrates

displaying >60% inhibition of a fluorescent P-gp substrate, very slow passive

permeability, and very low cell partitioning (all cases suggesting potential false

negatives) in addition to compounds with poor mass recovery (potentially spurious

data) [64]. When feasible, it is good practice to find and utilize analytical data

related to identity and purity of compounds. Such information is commonly avail-

able in an industrial setting but not easily found for data compiled from multiple

sources and available in public databases like ChEMBL. In a previous study,

several public and commercial databases were investigated, and error rates in

chemical structure annotation ranged from 0.1% to 3.4% [65].

In order to properly curate the assay data that will be used to build a model, it is

critical to understand the experimental protocol and potential caveats associated

with that given measurement. One of the common issues leading to potentially

erroneous results is poor solubility of the compound in the medium used for the

assay (e.g., none or very little of the compound is in solution giving an incorrect

assay value). This can potentially be addressed by running a parallel experiment to

measure the solubility of the compound in the buffer used for the ADME assay. For

example, at Eli Lilly and Company, aqueous kinetic solubility in pH 7.4 phosphate

buffer is measured for all compounds tested in high-throughput ADME assays. This

information is used to curate the data for various ADME endpoints wherein

compounds that are not in solution at the concentration used for the given ADME
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assay are not included in the QSPR model. To summarize this section, while it is

often an overlooked and underappreciated step, data curation based on detailed

understanding of the experimental measurement is a critical step in building high-

quality QSPR models.

4.2.1.2 Training Set Selection

Following data curation, the next logical step of creating a QSPR model is selecting

compounds to construct and train the model. What size or how many compounds

needed to be in the training set is a precarious question that is sometimes asked. No

easy answer to the question exists, and the size of the training set needed to build a

useful model depends on the complexity of the endpoint and the intended use of the

model. For example, for models intended to be applied prospectively to compounds

spanning a wide range of structural diversity, the training set should reflect similar

structural diversity and perhaps as much diversity as possible. Prospective model

performance, meaning how well the model predicts compounds not in the training

set, also depends on whether the training set encompasses the entire range of the

assay response. For models such as microsomal metabolic stability that are based

on a continuous response (assay range from 0% to 100%), the ideal situation is to

have a training set containing compounds spanning the entire 0–100% range and

uniformly distributed if possible. For categorical response such as low or high, an

even or close to even distribution of compounds between the categories is desired.

Models constructed with training sets that span a narrow spectrum of the entire

assay response (e.g., a training set containing 95% of compounds that have micro-

somal metabolic stability of >90% when the assay range spans 0–100%) or with a

highly skewed distribution of the categorical response (e.g., 95% of compounds in

the training set belong to the “high” class) are likely to result in QSPR models with

limited utility when used prospectively.

4.2.1.3 Molecular Descriptors

Following data curation and training set selection, molecular descriptors must be

calculated in order to derive the mathematical relationship between chemical

structure and assay activity. Molecular descriptors are numerical parameters

derived from chemical structures, and a wide variety of descriptors are used to

build QSPR models. Physicochemical (e.g., log P, pKa, MW), topological (e.g.,

atom connectivity), constitutional (e.g., number of nitrogen), and quantum chem-

ical (dipole moment, atomic charges) are few examples of common types of

descriptors. To gain a deeper understanding and comprehension of molecular

descriptors, the reader is referred to a publication by Todeschini and Consonni [66].

In addition to molecular descriptors, molecular fingerprints are often used to

represent chemical structures [67, 68]. A molecular fingerprint is comprised of a

series of substructures, and the presence/absence of such substructures determines
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the numerical code for the molecular fingerprint [69–71]. For example, Molecular

Access System (MACCS) fingerprint uses a set of structural features to code the

compound into a binary representation [72]. Figure 4.3 shows an example snippet

of the MACCS fingerprint representation for the drug diazepam. The column titled

“key positions” in the figure assigns a number to a particular chemical feature,

listed under “fragment description.” The “fingerprint code” is a binary value

associated to the absence (assigned zero)/presence (assigned one) of the chemical

feature. Using the “key positions” and “fingerprint code,” one can derive the final

fingerprint shown in Fig. 4.3. Only “fingerprint codes” that are present in the

compound are kept in order to keep the fingerprint code vector sparse.

Typically, when constructing a QSPR model, a large collection of molecular

descriptors and a variety of fingerprints are calculated. The descriptors and finger-

prints are subsequently evaluated using statistical approaches to select the optimal

combination to relate chemical structure to the activity of the endpoint. When

constructing a model for the first time, several versions of the QSPR model may

be built using various combinations of descriptors or fingerprints followed by

several iterations of prospective model evaluation (Sect. 4.2.1.5) to identify the

optimal collection of descriptors or single best fingerprint [73].

4.2.1.4 QSPR Model Training/Building

After data curation, training set preparation, and descriptor/fingerprint selection, the

QSPR model is ready to be built. Mathematic algorithms such as linear regression,

artificial neural network, SVM, and RF are routinely used to train and build QSPR

models [74]. Linear regression (for continuous response) or discriminant (for

categorical response) models assume that the measured property value is an addi-

tive response to the underlying molecular descriptors. For example, in the QSPR

model for solubility shown in Eq. (4.2) [75], it is assumed that solubility is linearly

dependent on lipophilicity (log P) and topological polar surface area (TPSA).

Fig. 4.3 Snippet of MACCS fingerprint of diazepam
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logS ¼ �1:0377logP� 0:0210TPSAþ 0:4488 ð4:2Þ

Besides prediction, linear models may provide mechanistic insight and can be

interpretable in nature as long as the molecular descriptors are “simple” and

intuitive. Thus, in case of the solubility model in Eq. (4.2), the negative coefficient

for log P suggests that an increase in the lipophilicity of compounds is expected to

decrease solubility.

Given the complexity of most ADME-related responses, linear models appear to

only be applicable over a relatively narrow spectrum of compounds that contain

conserved structural motifs. In practice, such models are rarely useful prospectively

due to their inability to extrapolate and predict compounds outside their immediate

domain of applicability. Machine learning methods such as RF [76, 77] and SVM

[78, 79] have been applied to QSPR models to combat the abovementioned

limitations and are capable of elucidating more complex relationships between

structural descriptors and the observed response.

In general terms, RF models are based on several iterations of the recursive

partition approach, and SVM models identify a hyperplane in the high-dimension

descriptor space to enable maximum separation of observed responses. Within the

pharmaceutical industry, a large amount of ADME data are generated in a consis-

tent manner, and therefore such machine learning methods are preferred to build

“global” QSPR models that are designed to be applicable across multiple drug

discovery projects that cover a broad spectrum of chemical space [80]. In our

experience, such models typically outperform linear QSPR models in extracting

structure-property relationship knowledge from large sets of diverse compounds.

However, given the complexity of RF and SVM models, they are relatively less

interpretable compared to linear models and often offer limited mechanistic insight

to go along with predictions. Although generally less interpretable, it should be

noted that it is possible to get an estimation of the most influential descriptors for

RF models, in turn providing some understanding of key molecular characteristics

influencing a given endpoint. For example, in case of an RF model for P-gp efflux,

Desai et al. identified that molecular features related to the number of hydrogen

bond donors (HBD), TPSA, and hydrogen bond strength were most influential in

terms of P-gp efflux of compounds [64].

4.2.1.5 QSPR Model Evaluation

The performance of a QSPR model is evaluated using a variety of parameters

depending on the type (continuous vs. categorical) and the intended use of the

model. Performance parameters are typically calculated at three stages of the model

building process. For example, after building a continuous response model, the first

stage is to assess the ability of the model to fit the training set compounds. This

metric is commonly referred to as r2 in the QSAR/QSPR literature. The second

stage evaluates the ability of the model to predict the set of compounds left out of
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the model building process in an iterative manner (called cross-validation,

leave-one-out, or leave-some-out) is referred to as q2. The third stage is known as

external or prospective validation, and the model’s ability to predict compounds

that were not used during any stages of the model building process is evaluated.

The ability of the model to fit the training set simply serves as a feasibility

assessment. It does not provide an assessment of the model’s ability to predict

compounds outside the training set and therefore isn’t particularly useful

[81]. Cross-validation is based on prediction of compounds left out of the model

but is still an internal validation as it derives the test set from the existing pool of

compounds. Depending on the modeling method employed, the cross-validation test

set can bias the choice of descriptors and other model-related parameters [82]. Many

experts in the QSAR community believe that this type of validation often over-

estimates a model’s ability to predict a true external or prospective test set. Therefore,
in order to comprehensively evaluate the utility of a QSPR model, it is critical to

assess its predictive ability against an external prospective test set [64, 83–85].

For QSPR models based on continuous data, the square of the correlation

coefficient (r2) between the observed and predicted value (referred to as q2 when
used in the context of cross-validation) is the most common performance parameter

reported. RMSE between the observed and predicted values is another key param-

eter used to assess continuous response model performance. Higher values of r2

(maximum 1 for a perfect model) and smaller values of RMSE are desirable [86]. In

many cases, Spearman’s rank correlation coefficient (ρ) is also reported as an

indicator of model performance [87]. Depending on the intended use of the

QSPR model, one or more of these parameters may be utilized to determine how

well a particular model is preforming. For example, if the goal is to identify a model

wherein predictions are correlated with the observations (not necessarily to predict
the absolute value of the property), the r2 of a prospective test set would serve as a

useful parameter. On the other hand, to simply rank order the prospective com-

pounds, a model with high ρ value would be sufficient. If the goal is to accurately

predict the absolute value of the property, a model with low RMSE would be

necessary. The ideal QSPR model would have favorable performance values for all

of the abovementioned metrics.

Classification QSPR models have a different set of performance metrics com-

pared to regression models. Commonly reported performance parameters for clas-

sification models are based on the fraction/percent of correct predictions (overall

accuracy), the accuracy of each experimental class (sensitivity and specificity), and

the accuracy of each predicted classes (PPV and NPV). Table 4.1 provides details to

calculate the abovementioned parameters and is referred to as a contingency table

or confusion matrix. In addition to these widely used metrics, parameters such as

the kappa index are often reported to assess the agreement between prediction and

the experimentally determined category. A kappa value of 1 indicates perfect

agreement between predictions and experimental values, �1 suggests complete

disagreement, and 0 indicates the prediction is no better than random chance. In

general, a kappa value >0.4 is considered an indicator of reasonable model

performance with useful predictive power [88, 89].
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4.2.1.6 Interpretation of Model Prediction

In addition to the abovementioned parameters for model evaluation, several other

factors should be considered when assessing the utility and/or applying a QSPR

model to a given drug discovery project. In the case of a continuous response

model, an applicability domain-related parameter should also be considered in

addition to the predicted value if available. Meaning a parameter that indicates if

the QSPR model can, or should, predict a compound of interest based on what the

model was trained on. If the compound of interest is vastly different than all

compounds in the training set, it is expected that such an applicability domain

parameter would be unfavorable. Several methods to estimate the applicability

domain for a QSPR model have been described in the literature, and they generally

provide a qualitative indicator of the confidence for each prediction or a quantita-

tive estimation of the confidence interval around the predicted value [90–93].

In addition to the standard contingency table metrics commonly reported (see

Table 4.1), if one is evaluating a classification QSPR model built with a machine

learning method (e.g., RF or SVM), the predicted scores of each compound give an

estimation of the relative confidence or reliability of prediction [64, 77, 94]. For

example, for two compounds predicted to be in the same category, the compound

associated with higher score is assumed to be a more reliable prediction compared

to the other.

In addition to the abovementioned numerical parameters reported to determine

QSPR model applicability/reliability, in order to conduct a thorough assessment of

the utility of a model for a given chemical scaffold or drug discovery project, one

should always consider:

• The inherent experimental variability in the measurement, especially in case of

the high-throughput ADME assays. Model performance has been shown to be

directly related to the inherent variability in the measurement of the given assay

parameter [95]. For regression QSPR models built on continuous data, one

should evaluate the performance of the model based on the proportion of

predicted values that falls within the experimental variability of the measured

Table 4.1 Contingency table with equations for a classification QSPR model

Predictions

Experiments

Positive Negative

Positive TP FP Positive predictive value (PPV) TP/(TP + FP)

Negative FN TN Negative predictive value

(NPV)

TN/

(TN + FN)

Sensitivity Specificity Overall accuracy ¼ (TP + TN)/N

TP/

(TP + FN)

TN/

(FP + TN)

TP, TN¼ true positive, true negative; FP, FN¼ false positive, false negative; N¼ total number of

compounds
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response and not just rely on an r2 value. For example, if the inherent variability

of an assay is threefold, a model built on these data should be evaluated with this

variability in mind. One should check the proportion of the prospective test set

that are predicted within threefold of the experimental values. A regression

model may not have an r2 value of 0.9 for this model, but if 90% of the predicted

compounds are within threefold of the experimental values, then that model will

still be useful.

• Due to the variability in ADME high-throughput assays, we build and advise the

use of categorical QSPR models for such data.

• The QSPR model should be evaluated on a prospective test set that spans the

entire spectrum of the response, or in the case of a categorical model, the test set

should have a balanced distribution of compounds from each category or one

that mirrors the training set distribution.

• The assessment of a QSPR model should not be based on a small fraction of

compounds, only the most recent compounds, or only the potent compounds

from a given chemical scaffold or drug discovery project.

• A QSPR model should not be evaluated based on its performance against a

second experimental endpoint not directly predicted by the model. For example,

comparing predictions from a QSPR model built on in vitro microsomal meta-

bolic stability data against an in vivo clearance outcome should not be done

without establishing if this is permissible. The compound and scaffold of interest

may be cleared by mechanisms other than microsomal metabolism, and an in

silico microsomal clearance QSPR model should not be expected to accurately

predict the in vivo clearance value for such cases.

4.2.2 ADME QSPR Models Used at Eli Lilly and Company

Over the past couple of decades, many publications pertaining to the application of

QSPR models for ADME-related physicochemical properties and in vitro/in vivo

endpoints have been published. In an attempt at brevity, the reader is referred to review

articles that summarize this area of research [96–98]. Table 4.2 provides a brief

summary of ADME QSPR models developed and used at Eli Lilly and Company.

The data set for each individual model was generated by/for Eli Lilly and Company

using consistent experimental conditions for each individual ADME in vitro or in vivo

assay. Total data set size ranges from 2,000 to 80,000 depending on the throughput of

the particular assay. All ADMEQSPRmodels are built using an SVM algorithm with

an optimum molecular fingerprint selected for each assay endpoint.
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4.2.3 Prospective Validation of ADME QSPR Models
at Eli Lilly and Company

In an industrial drug discovery paradigm where new pharmacological targets are

constantly explored, it is important to update global QSPR models to ensure their

applicability and prospective prediction performance. Figure 4.4 highlights the

outcome of this chronological process at Eli Lilly and Company where prospective

performance of ADME QSPR models was maintained for several classification

models used over the past several years.

As drug discovery project teams synthesize and test new compounds in various

ADME in vitro assays, the global models are updated by curating and adding the

new data to their respective training sets. Before updating any particular model, the

existing model is prospectively evaluated to measure its predictive performance

Table 4.2 Representative list of ADME QSPR models used at Eli Lilly and Company

Endpoint Data source

Training set

size

(in thousands)

Model type:

Classification (C)

Continuous (R)

Kinetic aqueous

solubility

Solubility of DMSO stock

diluted at various concentra-

tions in phosphate buffer

(pH 7.4)

80 C

High-throughput

solubility

Solubility of DMSO-dried sam-

ple in buffers at pH 2, 6, and 7.4

30–32 C

Passive permeability Passive permeability across

MDCK cells

15 C and R

Hepatic microsomal

stability (human/

mouse/rat/dog/

monkey)

Stability in hepatic microsomes 20–80 C and R

Cytochrome P450

competitive inhibition

(CYP3A4/CYP2D6/

CYP2C9)

% inhibition of CYPs at 10 μM 65 C

CYP3A4 time-

dependent inhibition

Time-dependent inhibition of

CYP3A4 at 10 μM
10 C

P-glycoprotein sub-

strate recognition

Efflux by human P-glycoprotein

overexpressed in MDCK cells

4 C

In vivo mouse brain

unbound concentration

Unbound concentration of

compound 5 min post-IV dose

2 R

In vivo mouse brain:

plasma partition coeffi-

cient of unbound com-

pound (Kpuu)

brain:plasma partition coeffi-

cient of unbound drug (Kpuu) in

mouse 5 min post-IV dose

2 C and R

Fraction unbound

(plasma, brain,

microsomes)

Equilibrium dialysis at 1 μM
incubation

6–8 R
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against data generated after the model was built. The result of this assessment for a

set of seven Eli Lilly and Company ADME models is shown in Fig. 4.4. The

training set for these models range from ~4,000 to 75,000 and increases in number

with every model update cycle. Focusing on the mouse metabolic turnover model,

the oldest version of the QSPR model in Fig. 4.4 was built using ~40,000 com-

pounds. Before updating the model, it was prospectively evaluated against an

additional ~4,000 compounds, and after showing suitable performance, the new

data were added to the training set of the existing model to build the next version

containing ~44,000 compounds.

All models in Fig. 4.4 are SVM models using fingerprints as descriptors and

provide categorical predictions, along with a score representing the reliability of

such a prediction. As explained in Sect. 4.2.1.6, predictions associated with higher

scores are expected to have greater likelihood of aligning with the measured

response. Based on the prospective validation results, suitable score cutoffs (typi-

cally 0.7 on a scale of 0–1.0 for both prediction categories) are assigned to “accept”

a given prediction, while predictions with scores below the cutoffs for a given

category are labeled as “indeterminate.” The PPVs/NPVs shown in Fig. 4.4 are

calculated for compounds with “acceptable” scores. For all models listed in

Fig. 4.4, >80% of the test set compounds had “acceptable” scores, and thus the

models were applicable for>80% of the test sets. As shown in Fig. 4.4, the average

PPV/NPV for the ADME models ranged from 75% to 85% in prospective testing.

Given such consistent prospective performance, the ADME QSPR models are

routinely used to design and prioritize compounds for synthesis and testing during

early-stage drug discovery. The performance of various versions of the global P-gp

Fig. 4.4 Prospective validation of ADME QSPR classification models used at Eli Lilly and

Company. Average PPV and NPV over the last 8–10 versions are shown. Error bars represent

the standard deviation. All models were applicable for ~80% of prospective test sets when score

cutoffs were used to “accept” a prediction
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efflux model and its application in identifying and addressing challenges related to

central nervous system (CNS) drug discovery projects is described in detail by

Desai et al. [64].

4.2.4 Trends Between Calculated Physicochemical
Properties and ADME Parameters

To complement the usefulness of ADME QSPR models, the physicochemical

properties of compounds influencing ADME properties is well documented. One

of the earliest analysis of ADME properties was performed by Lipinski leading to

the “rule of five” suggesting that poor absorption and permeability are more likely if

the molecular weight (MW) is >500, the number of NH and OH hydrogen bond

donors is >5, the calculated log P (i.e., clog P) is >5, and the number of N and O

atoms is >10 [99]. The goal of this guideline was not necessarily to rule out certain

synthetic ideas but rather steer the synthetic chemistry effort toward chemical space

that is more likely to yield compounds with superior ADME properties. Subse-

quently, several analyses describing the trends between calculated physicochemical

properties and in vitro/in vivo ADME parameters have been reported [100–103]. In

an exhaustive analysis of a large and structurally diverse set of preclinical com-

pounds profiled at GlaxoSmithKline, Gleeson reported relationships between sev-

eral ADME assays and calculated physicochemical descriptors [100]. This included

in vitro ADME endpoints like solubility, permeability, rat brain tissue and plasma

protein binding, P-gp efflux, and inhibition of the CYP isozymes. Several in vivo

ADME parameters like oral bioavailability, clearance, volume of distribution, and

CNS penetration in the rat were also analyzed. Some of the calculated physico-

chemical descriptors used in this analyses were clog P, clog D, the number of

hydrogen bond acceptors (HBA) and donors (HBD) (typically counted as number

of N + O for HBA and NH + OH for HBD), positive and negative ionization states,

molecular flexibility, molar refractivity, MW, TPSA [104], and the number of

rotatable bonds. From this descriptor list, ionization state, clog P, and MW were

identified as the most influential physicochemical properties for ADME properties.

The paper suggested that compounds with a MW of <400 and a clog P of <4 were

preferred with regard to maintaining a favorable ADME profile. In another report

by Varma et al. [102], ionization state, lipophilicity, and polar descriptors were

found to be the physicochemical determinants of renal clearance in human based on

a compiled data set of ~400 marketed drugs. It is important to keep in mind that the

conclusions about correlations between physicochemical and ADME properties can

be strongly influenced by the size and nature of the database employed. Moreover,

many of the physicochemical parameters are not independent of each other. For

example, an increase in MW is likely to be associated with increase in the number

of heteroatoms like N and O, which in turn are associated with TPSA.
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Figures 4.5, 4.6, 4.7, and 4.8 along with summary Table 4.3 detail Eli Lilly and

Company’s ADME in vitro data in relation to key physicochemical properties over

the past 2 years. Figure 4.5 shows the trend that as clog P increases so does

microsomal unbound intrinsic clearance (Clint,u) [105]. This analysis indicates

Fig. 4.5 Experimental rat microsomal Clint,u vs clog P. Green ¼ slow, yellow ¼ moderate,

red ¼ rapid Clint,u. Global data analysis suggests compounds with clog P of <4 are less likely to

have rapid Clint,u

Fig. 4.6 Experimental MDCK permeability vs clog P. Green ¼ rapid permeability, red ¼ slow.

Global data analysis suggests that compounds with clog P between 2 and 4 are more likely to have

rapid permeability
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that compounds with clog P value <4 are more likely to have slow unbound

intrinsic clearance (Fig. 4.5) and a low CYP3A4 inhibition potential (Fig. 4.8).

Similarly, compounds with clog P between 2 and 4 (Fig. 4.6) and TPSA <100 Å2

(Fig. 4.7) are more likely to have rapid permeability across MDCK cells. Desai

Fig. 4.7 Experimental MDCK permeability vs TPSA. Green ¼ rapid permeability, red ¼ slow.

Global data analysis suggests compounds with TPSA of <100 Å2 are more likely to have rapid

permeability

Fig. 4.8 CYP3A4 inhibition vs clog P.Green¼ low inhibition, red¼ high inhibition. Global data

analysis suggests compounds with clog P of<4 are more likely to have low inhibition of CYP3A4
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et al. have previously published physicochemical trends for efflux by the P-gp

transporter and reported having the most basic pKa < 8.0 and TPSA <60 Å2 as key

physicochemical properties of P-gp non-substrates [64].

4.2.5 Pharmacophore Modeling

Another ligand-based modeling technique that is used in drug discovery is

pharmacophore modeling. The word pharmacophore has several definitions asso-

ciated with it despite the concept being around for over 40 years. A medicinal

chemist may define a pharmacophore as a structural fragment or functional group

related to a chemical compound or series of compounds. Computational chemists

often define a pharmacophore as a collection of hydrogen bond acceptors, hydrogen

bond donors, aromatic rings, charged atoms, and hydrophobic regions of com-

pounds that provide affinity and specificity to a particular target. The official

IUPAC definition states, “A pharmacophore is the ensemble of steric and electronic

features that is necessary to ensure the optimal supramolecular interactions with a

specific biological target structure and to trigger (or to block) its biological

response” [106].

No matter the definition, the concept of pharmacophore modeling is simple and

even intuitive to medicinal chemists working in early drug discovery. The

Table 4.3 Trends between calculated physicochemical properties and ADME endpoints from Eli

Lilly and Company data

Physicochemical

parameter

Desirable

range Trends with ADMET properties

clog D at pH ¼ 7.4

(Chemaxon)

<3 Higher kinetic aqueous solubility, slow microsomal

metabolism and unbound intrinsic clearance (Clint,u), low

CYP inhibition potential, high unbound CNS exposure

1–3 Rapid passive permeability

clog P (Chemaxon) <4 Slow microsomal metabolism and unbound intrinsic

clearance (Clint,u), low CYP inhibition potential, high

unbound CNS exposure

2–4 Rapid passive permeability

Most basic pKa <7.4 Lower risk of P-gp efflux

Molecular weight <400 Da Higher unbound CNS exposure

TPSA 60–90 Å2 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of NH + OH

groups

<3 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of N + O

atoms

<8 Rapid passive permeability, lower risk of P-gp efflux,

higher unbound CNS exposure

Number of negatively

charged atoms

0 Higher unbound CNS exposure
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technique models the interaction between a ligand and a binding site, thereby

producing a model of the spatial arrangement of molecular features essential for

biological activity. The central premise of a pharmacophore model states that if a

compound contains the needed molecular features in a spatial orientation that

matches the model, the compound should bind to the target of interest.

Pharmacophore models have been created for several ADME targets along with

being used to predict activity, selectivity, toxicity, and enrichment in high-

throughput screening experiments [20, 74, 107–110].

The scope of this chapter provides an overview of pharmacophore modeling and

will only briefly introduce the two general parts of any pharmacophore modeling

program. However, extensive literature has been published that describes

pharmacophore models in greater detail [111–113]. In general, pharmacophore

modeling can be broken down into two general steps: (1)molecular super positioning

of ligands and (2) scoring how well a ligand matches the pharmacophore features.

The molecular super positioning (also known as alignment) of ligands is time

consuming and represents a significant challenge to creating any pharmacophore

model. This step inherently involves the alignment of flexible compounds that have

multiple possible conformations. Precomputing ligand conformers is common in

many of the pharmacophore program available today [111–113]. When conformers

are pre-generated, pattern-matching techniques are then used to create the ligand

alignment. Many pharmacophore programs use a rigid-body alignment technique

that is some type of a maximum common substructure search [114] implemented

with the Bron-Kerbosh clique detection algorithm [115] that accounts for the spatial

arrangement of pharmacophore features. Scoring functions differ between software,

but they generally account for things such as number of matching pharmacophore

points along with the spatial orientation and the internal energy of the matching

ligand conformer along with some sort of volume or binding site matching term.

Throughout the pharmacophore building process, several parameters must be set and

optimized, thereby complicating the process of creating an optimal pharmacophore

model or one that the entire community uses or accepts for that matter. The reference

ligand, or set of ligands, used to create the pharmacophore alignment is often

subjective and requires the skill and knowledge of a computational expert.

However, it can be especially challenging to create useful pharmacophore

models for targets that are known to be flexible and promiscuous in binding many

compounds. Most ADME targets fall into this class, but there is no lack of

pharmacophore models published for such targets [107, 109, 116–118]. For exam-

ple, pharmacophore models have been published for several CYP enzymes, includ-

ing CYP3A4, that are known to be extremely flexible and recognize diverse

compounds. Figure 4.9 displays a pharmacophore model for the organic anion-

transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter that

lacks high-resolution structural information.

While many pharmacophore publications exist, in many instances

pharmacophore models are created using a small subset of compounds known to

bind to such targets (10–15 compounds maximum). Such models may perform well

on very similar compounds (meaning if the alignment was done with a statin
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compound, the pharmacophore model more than likely will predict other statin-like

compounds as likely to interact with the target), but they are not particularly useful

in a drug discovery setting where diverse chemistry is being explored on many

projects.

The other extreme also is problematic for ADME targets, meaning creating a

pharmacophore model based on hundreds of compounds. This is due to the fact that

Fig. 4.9 Reproduced from Ekins et al. Comparative pharmacophore modeling of organic anion-

transporting polypeptides: a meta-analysis of rat Oatp1a1 and human OATP1B1. J Pharmacol Exp

Therap 2005, 314(2):533–541 [116]. Pharmacophores generated from substrate data for human

OATP1B1 expressed in oocytes (showing bilirubin mapped to features) (a), human embryonic

kidney cells (showing bilirubin monoglucuronide mapped to features) (b), rat Oatp1a1 expressed

in oocytes (showing aldosterone mapped to features) (c), CHO cells (showing BSP mapped to

features) (d), HeLa cells (showing taurohyodeoxycholate mapped to features) (e), merged

OATP1B1 model using pharmacophores described in a and b (f), meta-analysis model using all

cell type compound data for human OATP1B1 (showing bilirubin mapped to features) (g), and
merged Oatp1a1 model using pharmacophores described in c, d, and e (h), showing aldosterone

mapped to features (i). Pharmacophore features include hydrophobes (cyan), negative ionizable

(blue), and hydrogen bond acceptors (green)
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generating a “unique” pharmacophore pattern for ligand binding is extremely

challenging given the diversity of compounds. More often than not, the number

of unique matching pharmacophores for several hundred diverse structures will be

very few and limited. For example, a pharmacophore model constructed on 500

OATP1B1 inhibitors may only have three pharmacophore points that match the

majority of the 500 compounds. When this occurs, the pharmacophore model is not

useful as it is incapable of differentiating between active and inactive compounds in

the data set. In order for any pharmacophore model to be useful, it has to be shown

to not only differentiate active vs inactive compounds but additionally it must have

predictive power that informs the design of de novo compounds. This validation

criterion is not examined in many published ADME pharmacophore models, and it

is essential to evaluate before making the claim that a useful model has been

created.

4.2.6 Site of Metabolism Prediction

Understanding and modulating drug metabolism is one of the fundamental concepts

of ADME. Several computational techniques exist to predict the site of metabolism

(SOM) on compounds. It should be noted that publications and research on SOM

prediction exist for metabolizing enzymes other than CYPs [119–122]. However,

due to their significance in metabolizing compounds, SOM predictions by CYP

enzymes dominate the published literature and will be the focus of this section.

Prior studies predicting SOM of compounds interacting with CYPs have utilized

a variety of computational methods such as quantum chemical calculations,

pharmacophore models, QSAR, molecular docking, MD simulations, and basic

empirical/chemical rules [13, 121, 123–138]. Recent reviews published on CYP

SOM prediction provide a good summary of prior studies and techniques used

[139, 140]. Although previous studies have been performed to predict SOM, there is

no consensus about which method performs “best.” In general, the top performing

methods claim to accurately predict the experimental SOM 80% of the time or

greater.

Recent thinking suggests that the SOM of a compound is influenced by two

factors: (1) the intrinsic reactivity of each site in the compound to oxidation and

(2) the accessibility of individual atoms to the CYP heme group, the site where

oxidation occurs in the enzyme. The intrinsic reactivity is normally estimated using

Hartree-Fock, semiempirical methods such as the Austin Model 1, or density

functional theory quantum mechanical calculations of the chemical reaction.

Accessibility to the CYP heme group is routinely estimated with solvent-accessible

surface area calculations, molecular docking, and other structural features.

Several commercial SOM prediction programs exist that allow users to profile

compounds to overcome metabolic liabilities. While this may be possible, caution

should be used when proposing such a strategy using SOM tools in isolation. In a

publication by Vaz et al. [141], they address problems associated with the metabolic
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“blocking” strategy. Metabolic “blocking” occurs when a halogen atom, typically a

fluorine atom, is attached to the atom/region of the compound susceptible to

metabolism in order to reduce the metabolic turnover. Despite literature examples

where this strategy was shown to be successful, the general strategy of “blocking”

typically shifts the SOM to another atom or region of the compound due to the

promiscuous nature of CYPs. In many instances, halogenating a site, typically an

aromatic ring, makes the compound more lipophilic. This ultimately can lead to no

change, or even increase, in affinity for CYPs and thus expose other sites on the

compound to oxidation. In addition, the more lipophilic compound could poten-

tially fit the CYP pocket better and hence become potential CYP inhibitors. By

possibly fixing one ADME problem (metabolism) by introducing additional

lipophilicity through “blocking,” another problem may also arise in the form of

solubility limitations.

When trying to mediate metabolic ADME problems, we suggest that multiple in

silico tools and methods are used to provide a balanced ADME profile of a

compound. In addition to SOM prediction software, in silico models of unbound

intrinsic clearance, metabolic stability, log P, and solubility should be monitored

with any proposed structural change to mediate a metabolic liability. Besides

altering the reactivity of a particular site, we suggest evaluating options to reduce

the affinity of a compound for CYPs as well. A reduction in log P by modifying

hydrophobic groups into polar moieties and/or removing hydrophobic fragments

from the compound is more likely to provide the reduction in metabolic turnover

needed for a particular project.

4.2.7 SPR/STR Knowledge Extraction Using Matched
Molecular Pair Analysis

Knowledge-driven modification of compounds is desirable to achieve the optimal

potency and ADME properties. For each drug discovery project, a useful QSAR/

QSPR model is able to accurately predict the activity of a compound. However, the

model provides limited information pertaining to what modifications should be

made to the compound in the next cycle of drug design. The matched molecular pair

analysis (MMPA) technique is a promising approach to address this issue. MMPA

was first coined by Kenny and Sadowski [142] to describe any systematic method of

identifying structural matched molecular pairs (MMPs) from a set of compounds

and associated property change. In this context, MMPs are generally defined as

pairs of compounds that differ only by a single, localized structural transformation,

and Fig. 4.10 shows an example [144].

The basic premise of MMPA is essentially an extraction of information within a

chemical series featuring a common core. The property of interest can be plotted

against the substituents at a given position of the core in order to identify the effects

of the structural transformation on the property [145]. Various automated methods,
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including supervised and unsupervised methods, have been developed to identify

MMPs and quantify the associated biological changes on large data sets. Supervised

methods require predefined molecular transformations to identify the MMPs in the

data set [144, 146]. However, any possible MMPs that are outside the predefined

structural transformation dictionary cannot be identified. Unsupervised methods

have the potential to identify all MMPs within a compound data set without a

predefined molecular transformation dictionary [147–151]. It decomposes the com-

pounds into fragments first and then indexes the fragments for rapid sorting and

identifies the core scaffolds and R-group substituents. For a more detailed summa-

rization of current MMPA methods, the reader is referred to a review by Griffen

et al. [145].

After the MMPA algorithm identifies all possible MMPs, the results are tabu-

lated to show differences between MMPs for a measured endpoint. The effect of a

specific chemical substitution is typically summarized by the mean response

change, the sample standard deviation of the response change, and the standard

error of the mean for each endpoint. The total number of pairs identified for each

substituent is also reported to assess the significance of the effects. Leach et al.

recommended at least 20 MMPs should be identified for a useful molecular

transformation [144]. More recently, Kramer et al. have recommended the use of

paired t-test to calculate the number of pairs necessary to achieve statistical

significance with a given average activity difference. They also demonstrated the

importance of building pairs from identical assays measured in the same

laboratory [152].

To provide quick and easy understandable guidance, the effects of a molecular

transformation on different endpoints can be summarized by a simple symbolic

colored arrow or circle that informs the medicinal chemists what compounds to be

synthesized [153]. In addition, the structural transformations information can be

summarized as rules in a knowledge database. By querying a compound of interest

against the knowledge database with MMP rules in place, virtual compounds can be

proposed to determine if the property of interest is likely to improve with the

associated structural modification.

Fig. 4.10 Permission to use from Papadatos et al. [143]. Example of a matched molecular pair.

The transformation is H to CF3 (a single-point change) and is highlighted in blue. The asterisk in
the context denotes the attachment point
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MMPA methods have been used to assess the mean effect of different sub-

stituents on various ADME parameters such as solubility [143, 144, 154], perme-

ability [147, 149], clearance [149], and CYP inhibition [147]. Not surprisingly,

common structural modifications, such as replacing hydrogen with a methyl group

or changing a methyl to an ethyl substituent, were the most frequently observed

MMPs [149].

In general, the structural changes that displayed favorable changes for an

endpoint could also be explained by the associated change in physicochemical

properties. For example, Gleeson et al. reported that replacing an aliphatic hydro-

gen atom with a hydroxyl, ethyl, or benzyl group leads to a decrease in CYP3A4

pIC50 > 0.2 log unit in 55%, 15%, and 10% of MMPs. This finding correlates well

with the change in clog D (pH 7.4) of the substituents [147], meaning that as the

compound becomes less lipophilic, it is less likely to be an inhibitor of CYP3A4.

This observation is aligned with our internal analysis of trends between

lipophilicity and CYP3A4 inhibition (Fig. 4.8).

Leach et al. also found that the addition of heavy halogens on aromatic rings was

detrimental to solubility and a numerical estimate for such effects was also calcu-

lated. For instance, adding bromine to an aromatic ring led to over an order of

magnitude reduction of aqueous solubility [144]. Therefore, if a drug discovery

team is trying to increase the solubility of their scaffold, they should avoid adding

heavier halogens, such as bromine, to their compounds.

While molecular substitutions that track closely with the molecular properties

can be useful in guiding the design of new compounds, they may not be overly

insightful to a well-versed medical chemist. It is more interesting to identify the

substituents that display changes not associated with their physicochemical prop-

erty changes. For example, despite the considerable increase in lipophilicity caused

by phenyl substitutions of an aliphatic hydrogen (Δclog D at pH 7.4 of +1.8 log

units), the average change in pIC50 of CYP1A2 inhibition for 147 pairs of com-

pounds was quite insignificant (ΔpIC50 of 0.11) [147].

Another type of MMP is called “switch” transformations, which acts to turn on

or turn off the activity. Regardless of the starting value of the endpoint, such MMP

transformation results in approximately the same ending value. For example, it was

reported that the replacement of a hydrogen by a 4-piperidine group resulted in a

microsomal clearance value of ~20 μL/min/mg for all the studied compounds

regardless of the starting microsomal clearance values [149].

One should be aware that MMPA results depend on both the transformation and

the chemical context. This is manifested by the observation that although many of

the molecular transformations are statistically significant with large mean activity

changes, most of them also have high variability [149]. Therefore, making conclu-

sions based on the average activity change across the entire MMPA data may be

misleading for the chemical series of interest [143, 147]. For example, global

context independent MMPA indicated that substituting a pyrimidine for a hydrogen

atom increased CYP2C9 inhibition [147]. However, when the same substitution

occurred for an aliphatic hydrogen (context dependent), a decrease in CYP2C9

inhibition was observed [147].
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Another example also showed the importance of the chemical context for the

MMP transformation. It was observed that transforming a piperidine ring into a

morpholine ring has conflicting effects on solubility depending on whether the

transformation was added to a polar aromatic ring or a positively ionizable aliphatic

ring (Fig. 4.11) [143]. Several recent publications have proposed adding two

dimensional contextual information about the compound or three dimensional

(3-D) information pertaining to binding environment into the MMPA analysis to

address the issue of context dependency in MMPA [155, 156].

4.3 Integrated and Iterative Use of Models in Early Drug
Discovery

As mentioned in the introduction to this chapter, the application of in silico, in vitro,

and in vivo models is inherent to the drug discovery process. It should be noted that

the use of such models in isolation is unlikely to be fruitful and may even be

misleading. Therefore, models should be applied in an integrated and iterative

Fig. 4.11 Permission to use from Papadatos et al. [143]. Global and local MMPA distributions for

the piperidine to morpholine transformation for a solubility data set. The colors reflect the effect of
each transformation with red, amber, and green denoting unfavorable (decrease), zero, and

favorable (increase) changes in solubility. Different outcomes are observed depending on the

context of the compound; if the attachment point is a polar aromatic ring [V], then there is an

increase in solubility, while if the attachment point is a positively ionizable aliphatic ring [Y], then

solubility decreases
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fashion to build structure-activity and structure-property knowledge toward identi-

fying the best clinical candidate possible for any given drug discovery project.

Once a scaffold has been identified that interacts with the desired pharmacolog-

ical target, to assess the applicability of in silico ADME models for that particular

scaffold, one needs to select a set of compounds that will be tested in vitro. As

depicted in Fig. 4.12, this representative set should span the range of predicted in

silico values, include various physicochemical characteristics, and include as much

structural diversity as possible in order to systematically evaluate in silico model(s).

While it would be preferred to select “active” compounds against the biological

target for this assessment, this is not a requirement. It is more important to focus on

including diversity as mentioned above. The in silico-in vitro analyses will help

assess whether the in silico model(s) are applicable for a particular scaffold or along

with predicted physicochemical properties can be used to guide and prioritize the

synthesis of compounds. In an analogous manner, it is equally important to explore

the relationship between in vitro ADME models and the in vivo profile of com-

pounds in order to select an appropriate suite of in vitro tools to prioritize the

selection of compounds for in vivo assessment. This iterative learning cycle (shown

in Fig. 4.12) provides an efficient strategy to identify and resolve various challenges

related to optimizing compound potency and ADME properties rather than using a

filtration approach where only the active compounds progress for in vitro and

in vivo ADME measurements.

To detail how this integrated and iterative process unfolds in the pharmaceutical

industry, consider this example. The typical goal of most small compound drug

discovery project is to identify compounds that can attain, and maintain, sufficient

in vivo unbound concentration to engage the pharmacological target following oral

dosing. To that end, it is important to balance compound potency with key ADME

parameters like solubility, permeability, and clearance from the body. For this

example, let us assume that the discovery project team has access to global QSPR

models for solubility, permeability, and microsomal stability.

Chemical scaffolds being 
evaluated for further prioritization

a) Physicochemical profile
b) Prediction by QSPR model
c) Structural diversity

Selection of 
representative set

In Vitro ADME measurement Periodic 
evaluation

In vitro – in vivo alignment
(e.g. in vivo clearance)

Identification of suitable in silico tools

Use of key in silico tools for
compound design and 

prioritization for synthesis

QSPR model
Physicochemical property trends
Matched-molecular pair analysis

Synthesis of prioritized compounds

Ev
al

ua
tio

n 
of

 h
yp

ot
he

se
s

In silico model

In vitro model In vivo model

scaffold

Fig. 4.12 Integrated and iterative use of models in early-phase drug discovery. The left schematic

shows the recommended process to identify and integrate in silico, in vitro, and in vivo models.

The schematic on the right illustrates the importance of the iterative learning cycle
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The first step to establish the in silico-in vitro connectivity is to select a set of

compounds from the scaffold and subsequently compare the outcome from

corresponding in vitro measurements. This set of compounds should represent a

range of predicted property (solubility, permeability, and microsomal stability),

calculated phys-chem properties (e.g., clog P, TPSA), and be structurally diverse.

This step will determine if the global ADME QSPR models are applicable for the

scaffold in question and if they provide reasonable predictive performance to

enable the prioritization and design of compounds predicted to have a balanced

ADME profile in terms of the three ADME endpoints mentioned above.

Before implementing this strategy, it is important to test a small set of com-

pounds spanning a range of measured solubility, permeability, and microsomal

stability in the in vivo models to determine whether the oral exposure of these

compounds is aligned with their in vitro profile. For example, if the in vivo

clearance is rapid for compounds with low microsomal turnover in vitro, it would

suggest that the primary clearance mechanism for such compounds is likely to

involve non-oxidative pathways and/or excretion via renal or biliary route. Typi-

cally, elimination routes outside the oxidation pathway would not be identified

using a microsomal stability assessment (in silico or in vitro). In such cases, one

might consider testing the compounds in an in vitro hepatocyte clearance model

(that will account for various non-CYP metabolic enzymes) to see if better align-

ment is observed with in vivo clearance. Once a suitable suite of in silico and

in vitro tools have been identified that align with key in vivo characteristics, an

efficient and robust strategy to integrate these models in an iterative manner can be

implemented.

4.4 Summary

In this chapter, a variety of structure- and ligand-based in silico methods used to

identify and resolve challenges related to the optimization of key ADME properties

have been described. Given the promiscuity of many ADME targets and the limited

availability of high-resolution 3-D structures, structure-based in silico techniques

like docking and MD simulation have significant challenges and therefore have

limited applicability for this purpose. Ligand-based in silico methods such as

pharmacophore models can be useful to identify key structural features responsible

for the interaction with the target of interest. However, due to broad ligand

specificity and likelihood of multiple binding sites (e.g., P-glycoprotein) for many

ADME targets, pharmacophore models also have limited prospective applicability

across structurally diverse chemical scaffolds.

QSPR models, especially machine learning models, can extract knowledge from

a wide variety of chemical scaffolds and a large number of compounds enabling

their utility as predictive models for many ADME endpoints. Not surprisingly,

QSPR models are one of the most commonly employed in silico tools for ADME

optimization during the drug discovery process, especially in an industrial setting
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where a large number of structurally diverse compounds are routinely measured in a

variety of ADME assays. At the same time, QSPR models have limited interpret-

ability and thus typically don’t provide direct clues to design new compounds to

address ADME challenges.

To address that limitation of QSPR models, trends with calculated physicochem-

ical properties like molecular weight, clog P, TPSA, and others are effectively

utilized during the design process to optimize the ADME characteristics of a given

chemical scaffold. Similarly, knowledge extracted by the MMPA of existing

ADME data also provides clues that identify fragment replacements toward

improving the ADME characteristics.

To summarize, an effective amalgamation of in silico tools is valuable in guiding

the design of compounds with favorable ADME properties on a drug discovery

project. These models must be verified to show they provide valid predictions or the

integrated in silico-in vitro-in vivo cycle breaks down. Finally, in silico tools should

never be used in isolation. They make up one arm of the integrated and iterative

learning cycle that we recommend using in order to effectively drive a drug

discovery project.
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Chapter 5

Discover Toxicology: An Early Safety
Assessment Approach

Thomas K. Baker, Steven K. Engle, Bartley W. Halstead,

Brianna M. Paisley, George H. Searfoss, and Jeffrey A. Willy

Abstract Early safety assessment efforts from target identification to lead

development have undergone rapid growth and evolution over the last

10 years. In this chapter, we will discuss the current development trends driving

the need for early safety assessment practices. We will discuss the key areas of

focus which include target-related, off-target-related, and chemical property-

related toxicities. We will offer an overview of the various scientific approaches

being utilized in each of these focus areas along with an organizational frame-

work that has proven effective in de-risking the early portfolio. We will con-

clude with some perspectives on application within the project team setting and

traps associated with data over interpretation.

Keywords In silico safety pharmacology • In vitro toxicology endpoint • In vivo

toxicology prediction • Livery injury • Toxicogenomics • Gene editing •

Microphysiological culture systems • Heart injury cell models • Injection site

irritation • Skeletal muscle injury cell models • Gastrointestinal injury cell models

5.1 Introduction

Drug safety is an integral part of the drug development process and represents a key

set of experiments that enable investigational new drug (IND) and new drug

application (NDA) submissions (The Federal Food, Drug and Cosmetic Act).

Ideally, the drug discovery process should culminate with the delivery of a candi-

date drug with the widest possible margin of safety. To achieve this key deliverable,

toxicology organizations within the pharmaceutical industry are constantly evolv-

ing to deliver candidate drugs with an optimized safety profile. As a result, many

toxicology organizations are integrating with discovery efforts once a validated

T.K. Baker (*) • S.K. Engle • B.W. Halstead • B.M. Paisley • G.H. Searfoss • J.A. Willy

Department of Investigative Toxicology, Lilly Research Labs, Eli Lilly and Company Lilly

Corporate Center, Indianapolis, IN 46285, USA

e-mail: baker_thomas_k@lilly.com

© American Association of Pharmaceutical Scientists 2017

S.N. Bhattachar et al. (eds.), Translating Molecules into Medicines, AAPS
Advances in the Pharmaceutical Sciences Series 25,

DOI 10.1007/978-3-319-50042-3_5

119

mailto:baker_thomas_k@lilly.com


target enters the portfolio. This chapter will discuss discovery phase toxicology

activities that can be applied to facilitate the delivery of optimized drug candidates

into the drug development process. Key focus areas for this chapter will be target-

based toxicology risk, structure-based toxicology risk, early safety pharmacology

assessments, in silico and in vitro safety screening, and application of early in vivo

biomarker screens.

5.2 Toxicology Target Evaluation and Assessment

Potential drug targets are estimated to be approximately 8000 with 482 molecular

targets hit by known marketed drugs [1]. Target classification, based on approval,

includes enzymes, receptors, ion channels, transporter proteins, metabolites,

nucleic acids, and chromatin binding proteins. The target can be defined as a

molecular structure that will undergo specific chemical interactions with candidate

drug molecules that result in a desired clinical effect—ultimately for the treatment

of a disease. Unfortunately, pharmacological interaction of some targets may result

in unacceptable side effects for the given disease indication. Building awareness

and understanding of potential safety liabilities of targets are important for the

selection of targets with a higher probability of technical success.

Each of the target classes has unique biological and pathway consequences that

pose a challenge when assessing on-target or target-related toxicological risk. A

thorough literature characterization of the target is the primary line of understand-

ing toxicity risk associated with molecular interactions with the target. At the same

time, a complete understanding of the biology associated with modulation of the

target could include thorough analysis with data mining tools inclusive of the

following areas: genomic, phenotypic, preclinical, and clinical data. Description

of the target and understanding mechanism of action related to a particular disease

indication can be explored through search of scientific publications and exploration

of biomedical and genomic information sources like the National Center for

Biotechnology Information (NCBI). Table 5.1 describes some useful publically

available tools for exploring potential drug targets, biological pathways, and iden-

tification of potential animal models to characterize risks associated with target

modulation. Stepwise characterization of the target can be simplified in the follow-

ing linear path: description of the target gene or protein ! mechanism of action/

indication ! tissue level distribution ! toxicological effects associated with

manipulation ! selectivity of subtypes or closely related targets (kinases, recep-

tors, etc.) ! prior experience or previously published information. This stepwise

linear strategy as depicted in Fig. 5.1 offers a strategic approach for conducting a

thorough risk assessment of the target.

After research of the target, various studies are utilized to elucidate predicted

and experimental effects of target modulation. Studies utilizing organ- or tissue-

specific in vitro models confirm any on-target risk and identify tool molecules that

can be used to test hypotheses in preclinical in vivo studies utilizing wild-type and
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Table 5.1 Assessment of target and building a risk assessment and mitigation strategy in early

safety development are possible by utilizing web-based tools for complete characterization of

pathway, disease, and genomic models

Target URL Utility

Biological, pathway, and

disease information

OMIM Online Mendelian Inheritance in Man®
(An Online Catalog of Human Genes and

Genetic Disorders)

NCBI The National Center for Biotechnology Infor-

mation advances science and health by pro-

viding access to biomedical and genomic

information

RefSeq Provides annotated summaries based on

function

PubMed PubMed comprises more than 23 million cita-

tions for biomedical literature from

MEDLINE, life science journals, and online

books. Citations may include links to full-text

content from PubMed Central and publisher

web sites

The Human

Protein Atlas

Good mRNA/protein expression data (please

review Ab validation with caution)

Mouse Genome

Informatics

Mouse knockout phenotype and animal model

description

PubCHEM

Project

Chemistry and structural focused search

Genomic and molecular

information

Ensembl

Genome

Browser

Sequence alignments and orthology searches

NCBI Homol-

ogy Guide

A list of all NCBI databases and tools for

sequence alignment and comparison

NCBI

HomoloGene

Useful tool for rapid % homology comparison

of the target protein/RNA sequences against all

species (NB after inputting your target of

interest)

NCBI BLAST Finds regions of local similarity between bio-

logical sequences, compares nucleotide or

protein sequences to sequence databases, and

calculates the statistical significance of

matches. BLAST can be used to infer func-

tional and evolutionary relationships between

sequences as well as to help identify members

of gene families

UniProt The mission of UniProt is to provide the sci-

entific community with a comprehensive, high-

quality, and freely accessible resource of pro-

tein sequence and functional information

Selectivity, target subtype,

prior experience,

regulatory

PharmaPendium A collection of regulatory documents, preclin-

ical and clinical data that encompasses safety

ADME, and drug interactions



knockout (KO) animals. Genetic editing and deletion of target genes of cell-based

or whole animal systems are essential for identification of candidate development

risk and strategy building. Gene KO and knockdown (KD) animal models are an

excellent tool to exploit toxicological effects associated with target manipulation or

direct “on-target” consequences of pharmacological modulation of the target of

interest (step 4, Fig. 5.1). At the extreme, these knockout or knockdown

Fig. 5.1 A linear, stepwise approach to the characterization of on- and off-target safety in Target

to Lead Development
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experiments help define embryonic lethality and organ or tissue development

failure. Alternatively, these systems help understand how to balance target modu-

lation or “titer” pharmacologic activity to balance the potential “on-target” safety

profile. Understanding target modulation with KO or KD technology is both helpful

for gauging overall toxicity risk with target modulation and critical to building a

strategy for candidate development. Additional detail of gene editing technology is

discussed in Sect. 5.7.1.3, Technologies. Taken together, these studies are

conducted to better understand the risks associated with a given target activity.

With this knowledge, a strategy can be developed to establish the margin of safety

early in the discovery process and where appropriate define opportunities such as

dosing frequency or modified absorption and distribution properties that can be

utilized to optimize the margin of safety [2].

5.3 Off-Target Assessment

While modulation of an intended target may have unintended consequences, tox-

icological effects can also result from modulation of unintended pharmacology. It is

estimated that adverse drug reactions cause 100,000 fatalities annually in the USA

at a cost of $177 billion per year [3]. Therefore, in silico and in vitro profiling of

adverse drug receptors (ADRs), pharmacological modulation that results in adverse

effects, can help scientists identify and avoid detrimental adverse drug reactions.

ADRs can come from isoforms of the target protein, proteins within the same target

class, proteins with similar binding sites, or general promiscuity across target

classes. Here we will present examples of anti-targets, in silico and in vitro screen-

ing options of ADRs, and considerations on how to apply these data to molecules in

drug discovery.

5.3.1 In Silico Safety Pharmacology

It has been estimated that there are approximately 21,000 protein-coding genes in

the human genome with just over 17,000 encoded proteins currently identified

[4, 5]. It is unknown what percentage of proteins result in adverse effects when

modulated with an agonist or antagonist, and it is not feasible to run a potential

therapeutic in enzymatic or biochemical assays for all known proteins. Even

prioritizing in vitro pharmacology profiling to the list of known ADRs can be a

costly endeavor, so screening molecules through in silico pharmacology models can

inform scientists with a refined list of potential off-targets to screen in vitro. In

silico models to predict ADRs can be built-in house, found in the literature, or

licensed from companies that specialize in building tools to predict pharmacology.

Loss- or gain-of-function mutations in potassium voltage-gated channel subfamily

KQT member 1 (KCNQ1), caveolin 3 (Cav3), sodium voltage-gated channel alpha
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subunit 5 (SCN5A), human ether-�a-go-go related gene (hERG), and other genes have
been associated with long QT syndromes. Inhibition by hERG, a voltage-gated

potassium channel, by pharmaceutical agents, has also demonstrated the ability to

prolong QT intervals. Astemizole, grepafloxacin, terfenadine, and cisapride are

examples of small molecules with unintentional hERG inhibition that caused cardiac

arrhythmias associated with QT interval prolongation resulting in their withdrawal

from the market [6]. Efforts to develop predictive models of hERG blockers have

been largely successful due to it being a promiscuous protein with binding largely

influenced by lipophilicity, aromatic moieties, and basic nitrogens. Due to the wide

structural diversity of ligands that result in hERG blockade, the more successful

hERG quantitative structure-activity relationship (QSAR) models tend to be classi-

fication models using molecular descriptors, rather than 3D docking models [7].

Endocrine disruption is one in vivo toxicology endpoint that groups are trying to

forecast using QSAR models of in vitro pharmacological endpoints. Endocrine

disruption involves interference in the hormone (or endocrine) system, which may

result in developmental or functional effects. Endocrine toxicity may manifest as

reproductive, carcinogenic, or immunogenic effects. QSAR models of estrogen

receptors (ER), ERα and ERβ, androgen receptors, and 17β-hydroxysteroid dehy-

drogenase 3, to name a few, have been developed to attempt to predict the

likelihood of endocrine disruption in novel chemistry [8–10]. Several groups

have used a comprehensive approach by combining the QSAR models of multiple

targets associated with endocrine disruption to predict a molecule’s risk for hor-

mone perturbations.

To evaluate a specific QSARmodel’s prediction, it is first important to understand

the performance of that QSAR model in measures such as accuracy, predictive

squared correlation coefficient, sensitivity, specificity, positive predicative values

(PPV), and negative predictive values (NPV). Secondly, knowledge of the applica-

bility domain of the model will allow the user to determine if the novel chemistry can

be reasonably predicted by the model. Additional considerations would include

confidence measures for the prediction, internal evaluation of that QSAR model’s
concordance to in vitro outcome against an internal test set, and evaluation of the in

silico-in vitro concordance for other compounds from the same scaffold.

Depending on the degree of confidence in the in silico prediction from the QSAR

evaluation, you can decide how to use that information. If in silico-in vitro concor-

dance of other compounds from that scaffold is high, then it may make sense to use

the QSAR model to prioritize which compounds progress. However, if there is less

confidence in a prediction or no establishment of scaffold-specific in silico-in vitro

concordance, then further progression of the molecule into in vitro enzyme screen-

ing at that ADR may be your best option.

5.3.2 Enzyme Safety Pharmacology

Even with the plethora of advantages of in silico pharmacological screening, there

are several drawbacks to only utilizing QSAR approaches over in vitro assays.
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Given the vast number of protein-coding genes and the fact that a molecule can

modulate a protein via agonist, inverse agonist, antagonist, allosteric, covalent, and

protein-protein disruption interactions, there are more potential endpoints to test

than there are reliable in silico models. As QSAR models are only as good as the

data used to build them and need to have an endpoint that can be modeled, certain

pharmacological endpoints have limited numbers of potent molecules with low

chemical diversity in available enzyme datasets. Furthermore, in silico models may

have poor in silico-in vitro concordance for a given scaffold, thus making an in

silico screening strategy ineffectual for that chemical series. The wide range of

enzymatic screening that can be developed internally or that are available via

contract research organizations allows greater flexibility and confidence in identi-

fying ADR risk in multiple species.

Kinases have shown a wide range of therapeutic potentials with Gleevec

(imatinib) and ibrutinib being marketed examples of oncolytic kinase inhibitors.

Despite the large potential for patient benefit, identifying druggable kinase targets

has been a challenge due to difficulties identifying selective ligands. Active kinase

conformations have a large degree of structural overlap in their binding sites often

with homology spanning kinase subfamilies and groups [11]. Several kinases are

known ADRs for gastrointestinal, cardiovascular, reproductive, and bone marrow

toxicity. Companies like DiscoveRx (DiscoveRx Corporation, USA), ActivX

(ActivX Biosciences, Inc., USA), and CEREP (Eurofins Discovery Services, France)

screen submitted compounds in predefined or customized biochemical or cell-based

assay panels. However, in vitro profiling of concentration response in even one

compound at the roughly 500 kinases can be an expensive prospect, so alternative

approaches have been taken. One approach is to screen compounds in a “sentinel”

kinase panel that includes the more promiscuous or central kinase proteins out of

networks of kinases with high pharmacological similarity [12]. This allows for

estimation of promiscuity rather than specific kinase interactions. Another approach

is to generate single point data at each kinase for compounds and then generate

concentration-response curve values only at those kinases that showed strong single

point responses.

Drug-induced valvulopathy in patients treated with the 5-hydroxytryptamine

receptor 2B (5-HT2B) receptor agonists is a serious ADR that can result in

myocardial dysfunction, congestive heart failure, and sudden mortality. The drug

combination fenfluramine and phentermine, coined fen-phen, resulted in some

patients requiring valve replacement due to 5-HT2B stimulation by fenfluramine.

Valvulopathy seems to be associated primarily with high-affinity 5-HT2B receptor

agonists like ergotamine, pergolide, and fenfluramine rather than 5-HT2B antago-

nists or low-affinity agonists at therapeutic doses [13]. Due to the serious potential

side effects with the activation of this serotonin receptor and the lack of predictive

animal models for drug-induced valvulopathy, in vitro screening remains a key risk

mitigation strategy.

Hepatotoxicity is a key risk in drug discovery and it is important to avoid liver

transferases, bilirubin, and direct hepatic effects in animal and human testing.

Hepatic metabolism regulation by nuclear hormone receptors (NHRs) has been

one mechanism by which hepatotoxicity is suspected in vivo. Due to their
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involvement in expression of transport proteins and metabolizing enzymes, NHRs

like pregnane X receptor (PXR), constitutive androstane receptor (CAR), hepato-

cyte nuclear factor 4-alpha (HNF-4α), farnesoid X receptor (FXR), liver X receptor

(LXR), and peroxisome proliferator-activated receptor (PPAR) play roles in drug

metabolism, bile acid homeostasis, drug transport, lipid homeostasis, cholesterol

regulation, and adipogenesis [14]. Pharmacological counter-screening against NHR

modulation may help to avoid untoward effects on the liver.

Investigation of covalent inhibitor ADR risk can be especially difficult due to the

differing drug kinetics between traditional and covalent inhibitors. Even relatively

weak interactions with an off-target protein may result in covalent modification if

the protein contains the conserved nucleophilic residue and the compound’s elec-
trophile is in the proper configuration to interact. Due to the differing kinetics,

profiling targeted covalent inhibitors in enzymatic pharmacology screens at multi-

ple incubation times and utilizing click-chemistry approaches have been proposed

to provide a more accurate “selectivity” perspective than traditional single time

point screens afford [15, 16].

Other pharmacologies that have been linked to adverse effects include cycloox-

ygenase-1 (COX-1) inhibitor-related abdominal pain, histamine H1 antagonist-

associated sedation, and muscarinic receptor inhibitor-induced SLUDGE (saliva-

tion, lacrimation, urination, diarrhea, GI upset, emesis) to name a few [17, 18]. Dr.

Laszlo Urban is a leading expert in the field of safety pharmacology with an

extensive list of publications on in silico and in vitro ADR screening strategies.

Urban and colleagues have nicely described ADRs and the possible adverse effects

associated with modulating these targets. These sources would be valuable for those

wanting to explore a more comprehensive list of ADRs and their connection to

preclinical and clinical toxicities.

Once activity at an ADR has been identified, then several considerations must be

made to determine the impact on a molecule’s progression. Although an ADR by

definition can result in an adverse toxicity, the degree of tolerability of that toxicity

must be considered with regard to the severity of the disease state being modulated,

brain penetration for ADRs beyond the blood-brain barrier, patient population,

duration and frequency of treatment, and the adverse toxicity itself [18]. Nausea

and vomiting side effects may be more acceptable if the medication is dosed weekly

for the complete remission of a late-stage terminal cancer, than for daily adminis-

tration to help minimize seasonal allergy effects. The potency of the drug for the

ADR in comparison to the on-target potency and the in vivo pharmacokinetic

profile of the molecule can determine whether modulation of the ADR is likely

within an in vivo setting. Taken together, in vitro ADR profiling and the consider-

ations discussed above can help reduce the risk of non-tolerable side effects.

5.3.3 Summary

In silico and in vitro safety pharmacology screens are pivotal to identifying ADR

risks early in safety assessment. Unintentional modulation of an ADR can put the
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patient’s safety at risk and delay the delivery of valuable therapeutics to patients. In
silico pharmacology screens should be used to inform enzymatic testing to identify

ADRs early and avoid preclinical and clinical safety liabilities. An understanding of

patient population, disease state, toxicokinetics, tolerability, and structure-activity

relationships helps to inform the dosing, progression, and/or chemical modification

of molecules with ADR risks.

5.4 In Silico Preclinical Predictive Modeling

Developing novel, timely, and informative approaches for toxicity risk assessment

is imperative with the push for reduction of animal usage. This push comes from

three main fronts: the advent of the Tox21 vision and strategy for the future of

toxicology, the concern for ethical treatment of animals, and the financial impact of

increasing costs associated with preclinical in vivo toxicity studies [19, 20]. These

fronts have created an increased emphasis on computational approaches to assess

the risk of molecules.

Utilizing QSAR models of in vitro and in vivo toxicological findings in early

safety assessment can help in prioritization of molecules in early phases of drug

discovery. Computational approaches are particularly appealing due to their ability

to be high-throughput with minimal resources. Prior to chemical synthesis, virtual

compounds can be screened using QSAR models to determine the potential risks

associated with the chemistry. This can save chemists valuable time and resource

by de-prioritizing synthesis of compounds with high predicted toxicological risk.

As with any QSAR model, limitations include, but are not limited to, the:

Quality of the data for the endpoint in which you are modeling

Diversity of the compounds used to make the model

Balance of compounds with positive and negative results for the modeled

endpoint training set

Performance of the QSAR model in cross-validation and prospective test set

evaluations

Applicability domain of the novel compound to the training set compounds

Here we will discuss the application and considerations when using computational

tools and data trends to forecast in vitro and in vivo safety risk.Wewill emphasize the

use of physicochemical properties, QSAR, and structural tools to assess risk. Finally,

we will discuss approaches to forecast in vivo adverse toxicities.

5.4.1 Physical and Chemical Properties

Molecules have inherent physicochemical (physchem) properties associated with

them. Many biological processes of drugs are driven or contributed to by the

physchem properties of the drug. The ionization, lipophilicity, protein binding,
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solubility, and polar surface area are some of the physchem properties that affect

the ADMET properties of drugs.

Manipulating physchem parameters do not always affect ADMET properties

and efficacy equally, so optimization of one parameter may be at the expense of

another parameter. Lipophilicity, aka hydrophobicity, is one such parameter where

the magnitude or direction of change is not consistent from one parameter to the

next. For example, increases in mitochondrial uptake have been shown to correlate

with increased lipophilicity [21]. Therefore, improved efficacy via mitochondrial

targets may be driven by increasing log P, a measure of lipophilicity. Conversely,

increased lipophilicity has been reported to be correlated with the risk of decreased

cell viability as measured by depletion of cellular ATP [22]. Using an internal

cytolethality dataset of rat primary hepatocyte (RPH) LC50 values generated from

lactate dehydrogenase (LDH) release calculations, the trend of higher measured

log P being associated with increased cytolethality risk can be observed (Fig. 5.2).

Promiscuity, activity at non-intended targets, has also been demonstrated to have a

strong correlation to lipophilicity increasing the potential of pharmacologically

mediated toxicities [23]. Thus, multiparameter optimization is crucial to develop

safe and efficacious drugs.

The extent of ionization at a basic amine is determined by the pKa of that basic

group and the pH of the system, so the degree of ionization would differ between

the stomach and the large intestines. Higher pKa values indicate more basic

functional groups and molecules may be comprised of multiple basic centers.

Ionization state is crucial for determining absorption of a molecule as protonated

basic molecules are less lipid soluble, thus limiting transport across a biological

membrane. Increased basicity of molecules has been associated with increased

apparent volume of distribution and tissue partitioning, which would increase a

compound’s distribution into non-target tissues possibly increasing the chance for

off-target toxicity [24]. Accumulation of basic compounds within lysosomes is

known as lysosomotropism or lysosome trapping; the acidic nature of lysosomes

results in basic molecules becoming protonated and trapped within the lysosome.

The relationship between basicity and lysosomal accumulation has been well

documented [25], and an example of this relationship is shown in Fig. 5.3.

As physchem properties are drivers of many in vitro and in vivo toxicity

endpoints, it is no surprise that physchem descriptors often rise to the top when

identifying optimal descriptors for toxicology in silico or rule-based models.

Research by Hughes et al. found that calculated log P (clogP) and total polar

surface area (tPSA) showed strong correlations to adverse outcomes that were

suspected to not be related to the primary pharmacology of the molecule

[26]. This finding was coined the 3/75 Rule. Since that time, some other companies

have reported that the 3/75 Rule did not hold for their internal chemistry, which

could be the result of differences in analyses or chemical space. Thus, it is always

important to evaluate what works best for your own unique chemistry.
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5.4.2 Structural Risk Assessment

Structural risk assessment is a broad catchall term to describe the information we can

derive around toxicological risk from chemical structure alone.Much of structure risk

assessment is focused on using historical knowledge to identify relationships between

substructure, structure, or reactive metabolites and a given toxicity endpoint.

Matched molecular pair analyses won’t be discussed here but do show promise in

identifying viable replacements to functional groups or cores associated with toxicity

Fig. 5.2 Influence of lipophilicity on cytolethality risk. Individual molecules are separated into a

low cytolethality (>100 μM) and high cytolethality (<50 μM) risk bins based on RPH LC50

values. High-cytolethality-risk compounds have an average log P of 3.9, while low-cytolethality-

risk compounds have an average log P of 2.7 for this internal dataset. There is a significant

difference in log P between the high-risk and low-risk groups of �1.2 (95% CI, �1.3 to �1.1)

using the t test
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risk. While structural risk assessment can provide valuable, testable hypotheses early

in a compound’s development, utility may also be derived in later stages when

unexpected toxicities are identified via in vivo toxicology studies.

One important piece of structural risk assessment is determination of structural

reactivity. The intrinsic reactivity of certain functional groups, like quinones,

alkynes, nitrosamines, acyl halides, or epoxides, present in parent or in a reactive

metabolite formed from the parent compound, has been associated with drug-

induced liver injury (DILI), genotoxicity, and carcinogenicity. Fortunately, many

of these overtly reactive groups in parent molecules are known and filtered out by

medicinal chemists. Reactive metabolites are less likely to be caught until identified

using site-of-metabolism prediction, glutathione trapping, or other liquid

chromatography-mass spectrometry (LC-MS) detection tools [27, 28]. However,

the presence of a reactive metabolite does not necessarily translate to toxicity, so

other factors like dose burden must be considered.

Just as reactive metabolite presence does not imply toxicity, the results of

structural risk assessments need to be considered holistically with dose, exposure,

and available in vitro or in vivo data. This section will focus on two areas of

structural risk assessment, similarity and substructural analyses, to identify poten-

tial risks associated with molecules.

5.4.3 Similarity Analyses

Structural similarity is a measure of similarity or distance of one compound versus

another compound. These parameters are calculated using algorithms that look at

Fig. 5.3 Relationship between lysosomotropism and most basic pKa. Internal data from HepG2

cells treated with compounds and LysoTracker Green DND-26 (Molecular Probes) to measure

maximum fluorescent object count (Rmax). Molecules were classified as lysosomotropic if

Rmax> 1000 at a concentration<40 μM,while non-lysosomotropic molecules had Rmax< 200 at

concentrations>40 μM. Lysosomotropic molecules had an average most basic pKa approximately

five units higher than non-lysosomotropic molecules
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the characteristics that are similar or dissimilar between the two molecules. Struc-

tures may be mapped to molecular fingerprints (i.e., bit strings of 0 and 1 to indicate

the absence or presence of each described molecular feature, respectively) or

mapped using field-based functions to determine 3D molecular similarity to calcu-

late similarity or distance measures. Tanimoto similarity and Euclidean distance are

two of the more common measures to determine similarity with the range of

similarity values being between 0 and 1. Despite having the same range, they

have an inverse relationship. As Tanimoto similarity approaches “1,” the molecules

are closer in similarity, while as Euclidean distance approaches “1,” the molecules

are less similar to each other. It is important to know which measure you are looking

at to interpret the result.

Chemical similarity can be measured and interpreted in many different ways;

thus the concept of “similarity” may vary person to person. Structural similarity, the

similarity between structures, is the more common interpretation of chemical

similarity. With structural similarity, the molecule is deconstructed into substruc-

tures or fingerprints to enable comparison between molecules. However, within a

scaffold of high similarity minor functional group, changes can greatly affect the

property similarity between compounds. Addition of a carboxylic acid can drasti-

cally alter the binding and electronics surrounding a molecule, thus making the

molecules dissimilar from a property standpoint. Biological similarity may also

vary with minute chemical modifications, such as addition of an acrylamide,

resulting in molecules that may have high structural and property similarity, but

that vary greatly in biology. In contrast, two molecules may differ greatly in

structural similarity, yet share property and/or biological similarity due to the steric

properties of those molecules [29].

Read-across is one evolving approach that considers more than just structural

similarity alone to make a prediction on toxicological risk. Those developing read-

across methods identified that structural similarity alone was not enough to impact

regulatory decisions. More recent read-across analyses consider property, bioavail-

ability, metabolism, and biological similarities alongside structural similarity to

guide risk predictions [30]. Given the novelty of chemicals in drug discovery,

satisfying the multiple measures of similarity seems unlikely in practice.

There are advantages that both internal and external similarity searches can

provide in early safety assessment. Many companies have chemical libraries of

molecules that are used to screen “hits” in active assessment screens. One com-

pound may end up being a “hit” for multiple projects; thus a given library could

have a wealth of historical pharmacological, ADME, and toxicology data associ-

ated with it. Identifying structural similarity to internal chemistry with historical

knowledge can provide valuable information on potential risks to enable early

mitigation strategies to be formed. External tools for similarity searches can

provide valuable information on literature and marketed compounds:

• MetaDrug (Thompson Reuters Corporation, USA)—expert-checked summari-

zation of property, biological, and/or toxicity data on over 700,000 compounds
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• ChemSpider (Royal Society of Chemistry, UK)—free, comprehensive database

of freely available property and/or toxicity data on 35 million compounds from

almost 500 data sources

• PharmaPendium (Elsevier B.V., USA)—preclinical, clinical, and post-

marketing toxicity data from approval documents

Using external sources for similarity searches greatly expands the chemical

space and information sources to further probe risks for early chemistry.

While structural similarity can provide potential insights into the risk for newer

chemistry or to explain in vivo adverse effects, one should be weary of using

similarity alone to guide their decisions. Just as minute changes in chemical

structure can result in a detrimental loss of potency, minor chemical modifications

can greatly alter a compound’s toxicity profile. Zolpidem, a GABAA potentiator

primarily used for the treatment of insomnia, thus produces sedative effects as part

of its mechanism of action. The structurally similar molecule alpidem (Fig. 5.4), a

peripheral benzodiazepine receptor ligand, was prescribed for the treatment of

anxiety. Despite the two molecules sharing similar structural features, alpidem

avoided the sedative effects of zolpidem at therapeutic doses. Furthermore, alpidem

was withdrawn from the market for hepatotoxicity in humans, while Zolpidem is

not hepatotoxic and is still a marketed product [31].

5.4.4 Substructural Analysis: Identification of Toxicophores

The term structural alert was first coined by Ashby and Tennant, who defined

structural features associated with mutagenicity and genotoxic carcinogenicity

[32]. Structural alerts on toxicological endpoints are also known as toxicophores,

which are very similar to the concept of pharmacophores (substructures that are

associated with activity at a certain pharmacological target within a defined con-

text). Toxicophores are substructures that are associated with an increased likeli-

hood for a certain toxicity within a defined molecular or biochemical context. Just

as the presence of a pharmacophore in a structure does not ensure potency, the

Fig. 5.4 Illustrations of the structures of (a) zolpidem and (b) alpidem
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presence of a toxicophore does not guarantee toxicity. Toxicophores may be driving

toxicity risk via reactive metabolism formation, interaction with an ADR, modula-

tion of physicochemical properties, or other mechanisms.

Substructures may be statistically associated with a particular toxicity (i.e.,

“suspect” groups), but they may not necessarily be toxicophores. The true liability

could actually be related to another substructure that is often contained in molecules

that bare the “suspect” group. Another possibility is that the “suspect” group has

only been contained in compounds for a single project that had an on- or off-target

toxicity that was unrelated to the “suspect” group. These confounding factors may

mislead researchers if not identified and interrogated.

For those wishing to identify toxicophores, it is important to set toxicokinetic

exposure limits for the test and training sets. Otherwise, large differences in

exposure could account for the toxicity differences, thus confounding the analysis.

To better separate “suspect” groups from toxicophores, it is important to ensure that

substructures have been in a representative number of molecules and in more than

one chemical series. This will improve the statically robustness of the analysis and

help to mitigate confounding factors mentioned previously.

Determining the context in which a toxicophore has an increased toxicity risk is

an important step to pruning out “suspect” groups. The context of risk may be

related to chemical features on the toxicophore. Some potential chemical features

that may alter the toxicity risk for a toxicophore could include addition of steric

bulk, incorporation of nitrogens into rings, shortening alkyl chains, removal of

electron-withdrawing groups, or addition of ring substituents. Expert alert systems

like Derek Nexus (Lhasa Limited, UK) and CASE Ultra (MultiCASE, USA)

incorporate the context in which a structure has increased toxicity risk into their

predictions; therefore, a furan may be a hepatotoxicity alert for one molecule, while

a different furan-containing compound may not have the alert due to a difference in

surrounding chemical features.

Substructural analyses can provide early alerts to identify genotoxicity, hepato-

toxicity, and other toxicity risks. These tools may also be employed to determine

substructures that may be driving toxicity identified in an in vivo toxicity screen.

Collection of in vivo information for diverse chemistry containing the toxicophore

can enable identification of the context surrounding the toxicophore and/or the

mechanism driving the toxicity. Toxicophore alerts should not halt the progression

of a molecule, but rather guide decisions on chemical modification, in vitro ADR or

toxicity testing screens, or early Ames mutagenicity profiling.

5.4.5 In Silico Models for In Vitro Tox Endpoints

In vitro screening approaches have enabled earlier evaluation of toxicity risks for a

larger number of molecules than plausible with in vivo toxicology studies.

Improvements in technology and screening methods enable higher throughput of

an expanded number of endpoints in cellular systems. Primary cells (primary
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human hepatocytes, rat primary hepatocytes), immortalized cell lines (HepRG,

HepG2, H9c2), and induced pluripotent stem cells (iCell cardiomyocytes, iCell

neurons) are examples of in vitro models used to characterize cellular perturbations

of molecules [14, 33–35]. Functional and cell state endpoints measured in cellular

systems include, but are far from limited to, viability, cell morphology changes,

mitochondrial function, proliferation rate changes, glutathione loss, and QT pro-

longation [36–39].

In silico models of in vitro toxicology endpoints allow chemists to prioritize

lower-risk molecules for chemical synthesis. There are a number of public in vitro

assay datasets that are available to use for toxicology in silico model building. The

EPA ToxCast and Tox21 program generated in vitro toxicology data for thousands

of chemicals at over 800 assay endpoints generating one of the largest public

toxicology datasets. PubChem BioAssay and ChEMBL databases are large public

repositories of multiple assay endpoints including toxicology bioassay outcomes

[40, 41]. In curating data, great care should be taken to ensure data quality,

accuracy, and validity; otherwise any in silico model generated using those data

will contain erroneous information. As efforts expand to identify alternatives to

animal testing, the number of public toxicology datasets continues to proliferate.

Development of in silico toxicology models often involves filtering available

data to those compounds that lack potent cytolethality (for non-cytolethality in vitro

endpoints) and that have favorable solubility relative to the concentration ranges

used in vitro. If one is modeling in vitro phospholipid accumulation, for example,

potent cytolethality may result in artificial phospholipid fluorescent probe signals

that are associated with cellular death and not a true phospholipid response. Using

the same example of modeling phospholipid accumulation, if a compound has very

poor aqueous solubility, it may show no in vitro phospholipid accumulation due to

compound not getting into solution. “Negative” in vitro signals for aqueous insol-

uble compounds could be “positive” in vivo once formulated to better solubilize,

thus resulting in false negative in vitro results. Removing cytolethal and poor

solubilizing molecules from toxicology in silico model datasets will remove some

variability and unknowns from your in silico models.

For novel scaffolds, in silico models can often provide valuable information to

enable selection of compounds for in vitro toxicology testing. Rather than going “in

blind” to in vitro screening for new chemistry, one can select a range of compounds

from each prediction class to assess in silico-in vitro alignment. For example, in

Fig. 5.5, assessing in vitro cytolethality of a new scaffold selection of potent

molecules with QSAR predictions of both “high risk” and “low risk” enables

early understanding of model performance for the novel chemistry. Figure 5.5a

shows a project scaffold where high- and low-risk in silico predictions show good

concordance to in vitro cytolethality risk, so using the in silico model to identify a

lower-risk in vitro chemical space should work well for this scaffold. Figure 5.5b

shows a project scaffold where the in silico model predicts high risk, while the

in vitro risk is generally low to mid risk; therefore, using the in silico model may

overpredict the risk for molecules from this scaffold.
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5.4.6 In Vivo Tox Prediction

There are many ongoing efforts to predict in vivo toxicity, many of which are led by

the following initiatives or consortiums:

• Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)

• European Partnership for Alternative Approaches to Animal Testing (EPAA)

• Safety Evaluation Ultimately Replacing Animal Testing (SEURAT-1)

• EPA’s Toxicity Forecaster (ToxCast)/Tox21

• eTOX

For example, the eTOX collaboration project to identify novel in silico strategies

and tools to improve toxicological risk assessment in early drug development has

developed the eTOXsys platform. This platform contains a number of in vivo

toxicological in silico models including cardiotoxicity and phospholipidosis

[42]. eTOX has used the concept of combining the multiple Molecular Initiator

Events (MIE) that may contribute to an Adverse Outcome Pathway (AOP) to build

a single model [43]. For example, instead of one model for drug-induced liver

injury (DILI), there may be multiple MIE models (i.e., total bilirubin increase,

hepatocellular necrosis, alanine aminotransferase increase, and bile salt export

pump inhibition) used as a consensus model for a DILI AOP prediction.

Prediction of carcinogenicity risk for compounds is an area that has been heavily

explored. Regulatory requirements for evaluating chemical carcinogenicity involve

2-year rat screening, a prospect that costs valuable time and money in getting

Fig. 5.5 In silico-in vitro cytolethality model concordance for two different scaffolds. Bars

represent in silico model predictions and bars are colored on the actual in vitro risk. (A)
Representation of good in silico-in vitro concordance indicates in silico prioritization may be

warranted. (B) Representation of poor in silico-in vitro concordance for high-risk predictions and

good connectivity for low-risk predictions. In vitro evaluation of high-risk predictions would be

optimal due to in silico-in vitro differences
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medicines to patients. Therefore, those in the pharmaceutical industry use in silico,

in vitro, and in vivo models of the easier-to-test endpoints of chromosome aberra-

tion (CAB) and bacterial mutagenicity to screen compounds to determine which

compounds to advance into the 2-year screens. Most in silico models center around

prediction of DNA reactivity as assessed by Ames mutagenicity testing as DNA

reactivity is considered a hallmark of carcinogenicity [44] although data show only

50% of marketed genotoxic (i.e., mutagenic, clastogenic, aneugenic, epigenetic)

compounds result in carcinogenicity [45, 46]. Commercially available Ames muta-

genicity in silico prediction tools that have demonstrated favorable prediction

accuracy include Derek Nexus (Lhasa Limited, UK) and Leadscope (Leadscope,

USA), although it has been demonstrated that the addition of in-house chemistry to

a model training set helps improve model performance [47].

There are a variety of programs available that offer prediction of in vivo

toxicological endpoints including hepatobiliary injury, carcinogenicity, skin sensi-

tization, and acute toxicity. The datasets behind these models are often a combina-

tion of public and proprietary data. Examples of programs to predict toxicological

endpoints are highlighted in Table 5.2. Several of these applications include

non-toxicological endpoints such as absorption, distribution, metabolism, or elim-

ination (ADME) and physicochemical or pharmacological models. A few of the

programs also include or offer the option to license the databases behind these

models.

Table 5.2 Applications for prediction of in vivo toxicological endpoints with brief details on their

offerings

Application Source Details

ACD/Percepta ACD/Labs Predictions for over 25 physchem and ADMET endpoints

(seven of which are toxicological). Model output includes

measures of prediction reliability

ADMET

Predictor

Simulations

Plus, Inc.

Rapid prediction of over 25 toxicological QSAR models.

Model building, visualization, and additional physchem and

ADME model tools also available

Derek Nexus Lhasa

Limited

Rule-based expert system using chemical structure alerts to

predict over 50 toxicological endpoints

Discovery Stu-

dio TOPKAT

Accelrys,

Inc.

Statistical-based QSAR models for 14 toxicological end-

points. Additional predictive science applications available

eTOXsys eTOX Contains 20 toxicology models and 19 safety pharmacology

models where the prediction is the result of the outputs of

multiple models. Ability to query the database behind

eTOXsys

Leadscope Leadscope,

Inc.

Comprised of nine statistical or expert alert models span-

ning 86 toxicological endpoints. Toxicity databases are also

available

MetaDrug Thompson

Reuters

Over 70 QSAR models to predict ADMET and therapeutic

activities. Metabolism prediction tools, toxicity pathway

maps, and large comprehensive databases also available

REACH QSAR Molcode QSAR prediction for 30 endpoints primarily focused on

toxicity risk
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Despite many efforts to predict specific in vivo toxicity endpoints in preclinical

species and humans, these models in general have poor accuracy. The prevalence of

adverse events is <10% for many toxicities, especially when filtering out com-

pounds that cause multi-target organ toxicity driven by poor physicochemical

properties and/or poor selectivity. The low prevalence for compounds to cause a

given toxicity often results in models with low PPV due to a higher proportion of

false positives compared to true positives. An additional complicating factor to

prevalence is that a specific toxicity may result from multiple MIEs, so compounds

resulting in toxicity via a particular MIE may be poorly represented in a model’s
training set. Thus, compounds causing toxicity via an MIE that is poorly

represented may not be predicted positive by the model driving down the NPV.

One additional factor that causes difficulties in building in silico models for in vivo

endpoints is creation of the training and test set used to build the model. This is due

to compounds differing in dose, exposure, intrinsic clearance, plasma protein

binding, CNS penetration, and other crucial ADME properties that make compar-

ison of compounds difficult. For example, “Compound A” may have only been

dosed up to a total Cmax of 1 μM with no cardiac necrosis observed, whereas

“Compound B” may have been dosed higher, and cardiac necrosis was observed at

a dose resulting in a total Cmax of 100 μM. In this example, due to exposure

differences, the endpoint of cardiac necrosis cannot be easily compared between

“Compound A” and “Compound B” at total Cmax concentrations exceeding 1 μM.

Therefore, ADME properties need to be taken into account along with prevalence

when building in silico models of in vivo endpoints.

In recent years, alternative approaches to predicting in vivo toxicity have been

investigated to try to improve accuracy. Incorporation of in vitro concentration

responses as biological descriptors and their maximal responses were shown to

improve acute rodent toxicity QSAR model accuracy [48]. Therefore, combining

in vitro toxicological data with general molecular descriptors may provide for

improved model predictivity. Setting specific exposure cutoffs has been one

approach to improve comparison across compounds when building model training

and test sets [26]. In modeling the total Cmax at the lowest observed adverse effect

level (LOAEL), our group showed that increasing apparent volume of distribution

(Vd, area) and increasing cytolethality drastically reduced the average LOAEL,

while decreasing Vd and cytolethality greatly increases the average LOAEL

[49]. Figure 5.6 shows internal data demonstrating the relationship between Vd,

area, RPH cytolethality, and adverse histopathology in oral dosed rat 4-day toxi-

cology studies. This work has shown the value of incorporating in vitro endpoints,

exposure, and additional ADME parameters to determine toxicological risk.

5.4.7 Summary

Given the push for reduction of animal use in preclinical testing, utilization of

predictors for in vivo toxicological risk is imperative. Physicochemical properties,
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in silico models, and structural risk assessment can be used in conjunction with

in vitro models to identify toxicity risks prior to in vivo screening. These tools show

great value in scaffold risk assessment to identify lower-risk chemical series and in

development of better-informed in vitro, biomarker, or in vivo toxicology screening

strategies. While in silico and structural tools are not a replacement for animal

testing, they do provide opportunities for finding safer molecules earlier in devel-

opment to protect animals and patients.

5.5 Cellular Systems: General Screening and Models
of Key Target Organs

Cell-based models in toxicology have been applied in numerous ways often with

unique strategic intent. The most widely used approach is the evaluation of general

cell health. This phenotypic approach interrogates generalized cellular function in a

higher-throughput screening paradigm which can be applied in a proactive manner

to de-risk chemistry in early discovery. Alternatively, cell-based systems are

applied for cause in a directed screening effort or in a hypothesis-driven target

organ approach to better understand mechanism of action and facilitate lower-

throughput screening efforts.

Fig. 5.6 Correlation of Vd, area, and RPH cytolethality to rat oral dosing 4-day adverse histopa-

thology. Internal dataset of 4-day rat orally dosed compounds. Probabilities indicate the proportion

of molecules in that “bin” with adverse histopathology findings in any of the eight primary target

organ tissues examined where at least 20% of the animals had an adverse effect in the same tissue

where the total Cmax at that dose was<10 μM. Those compounds with no adverse effects at a total

Cmax of 10 μM or higher were considered “clean.” These data show that higher Vd, area (5–10 L/

kg), and lower RPH LC50 (<20 μM) internal compounds have historically shown a high proba-

bility of adverse histopathology at total Cmax values <10 μM, whereas lower Vd, area (<5 L/kg),

and high RPH LC50 (>20 μM) internal compounds have shown a low probability of adverse

histopathology at total Cmax values <10 μM
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5.5.1 General Screening

General cell health screening involves the application of endpoints such as

cytolethality, phospholipidosis, steatosis, mitochondrial membrane potential, and

redox status to name a few. In this paradigm, a cell model is usually chosen that is

both a good general reflection of a mammalian cell of toxicological interest

(hepatocyte) and has the characteristics of reproducibility, robustness, and ease of

culturing (a cell line). The human hepatoma cell line HepG2 is a good example of a

cell model that has those characteristics.

General cell health screens have been applied at various points in the drug

discovery model. Often, you will see these data being generated and applied just

before project teams begin to optimize lead molecules with short-term live-phase

studies. Unfortunately, at this point in the drug discovery process, the available

chemical space has been narrowed leaving little room for structural diversification.

However, if you can integrate your general cell-based safety screening paradigm

into an earlier discovery process where biological hits are being profiled, there is

ample chemical diversity to optimize safety along with target activity, drug dispo-

sition, and biopharmaceutical properties. In this setting, a combination of in silico

and informatics tools as described in Sect. 5.4 along with a few key toxicology cell-

based screens can be effectively applied to improve the outcome of early live-phase

studies.

General cell health screens have been developed using various combinations of

cell systems, analytic reagents, and assay platforms. The simplest platforms rely on

easily maintained cell lines with simple enzymatic-, fluorescent-, or luminescent-

based readouts [50]. These readouts can be single endpoint or multiplexed into

“high-content” platforms [51]. A list of cell systems and key endpoints can be found

in Table 5.3.

Table 5.3 Collection of cell systems used in early safety assessment screening

Cell system Endpoint Biological function Measurement

Rat pri-

mary

hepatocytes

Cell death Measurement of enzyme leakage (lactate

dehydrogenase) from a cell which has lost

membrane integrity

Enzymatic

Rat pri-

mary

hepatocytes

ATP Measurement of mitochondrial function and

cell death

Luminescent

HepG2 Steatosis Measurement of neutral lipid accumulation

within the cytoplasm of the cell

Fluorescent

HepG2 Phospholipidosis Measurement of phospholipid accumulation

within the cytoplasm of the cell

Fluorescent

HepG2 Lipodystrophy Measures expansion of lysosomal compart-

ments with the cytoplasm of the cell

Fluorescent
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5.5.2 Focused Cell Screens

Beyond general cytotoxicity screening and broadly applicable phenotypic assays

(phospholipidosis, neutral lipid accumulation, and lysosomotropy), focused cell

models are chosen to reflect the organ and tissue toxicities that are manifested

during late drug discovery and early drug development. The cell model choice may

be based on previous knowledge of the drug’s target organ/tissue distribution and

biochemical/signaling pathway impact or on knowledge derived from animal

model studies. Using hematopoietic stem cells in and a colony forming assay for

screening when the target is a cyclin-dependent kinase is an example of choosing a

cell model based on previous knowledge of the target, while establishing a screen-

ing assay in skeletal muscle myotubes after noting skeletal muscle injury in an

initial rat toxicology study is an example of choosing a model based on study

results.

Once the appropriate cell model is identified, the relevant assay endpoint

(s) needs to be established. These will vary depending on the nature of the injury

(observed or anticipated) and can range from simple cell viability assays, through

mechanism and function based screens, and even global gene expression analysis

[52]. More and more, cellular injury evaluation involves using multiparameter

high-content analysis approaches which incorporate several endpoints and thus

provide both more granularity on the nature of the injury and more selection

power for ranking molecules [51].

As early chemistry and drug safety groups have become more efficient at

identifying inherent compound physical-chemical property-based risk and have

developed in silico predictive models, more molecules with liability based primar-

ily on compound structure properties are removed earlier in the preclinical devel-

opment process. Because of this success, cell injury models and assays today reflect

more mechanistic and functional toxicity screening approaches, where the nature of

the injury is usually more subtle and often reflects a negative impact on cell

function not manifested as overt cytotoxicity. Two examples of these newer

function or mechanism-based cellular injury models would include screening for

compounds that negatively impact vesicular trafficking in retinal epithelial cells

using a high-content imaging-based approach or screening compounds with poten-

tial cardiac arrhythmia risk using cultured ventricular cardiac myocytes and

multielectrode array field potential duration measurements [53].

Another trend in the development of tissue- and organ-based cell models has

been the major move toward the use of human cell models over animal cell models.

The rationale is that human cells will more accurately reflect the biology and thus

relevant molecule risk in the intended treatment population than animal derived cell

models. Until recently, the use of human cell models was limited, in that most of the

available human models are transformed cell lines which have inherent drawbacks

as to their relevance to the in vivo human status. The inability, except in a few cases

such as hepatocytes, to obtain primary cells from humans has until recently limited

the widespread use of human cell models in drug safety screening. New potentials
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for using human cell models have arisen with the advent of technologies that allow

for the production of many differentiated cell types from human-induced pluripo-

tent stem cells (iPSC) generated, relatively noninvasively, from donor’s skin or

blood cells [54]. A number of these human iPSC-derived cell models are now being

evaluated in many drug safety organizations and in a few cases are being routinely

used in drug safety assessment screening [55].

In the following section, we will provide examples of how organ-/tissue-specific

cell models are being used in early drug safety screening and emphasize the

movement toward mechanism and function-based screening approaches as well

as the move toward extensive use of human cell models.

5.5.3 Liver Injury Cell Models

Drug-induced liver injury is the leading cause for adverse toxicity in the clinic and

in severe cases can lead to the need for liver transplantation and sometimes result in

death [56]. Although many compounds causing acute liver failure are identified

during preclinical testing, the use of both immortalized cell lines and primary

hepatocytes during early drug discovery is essential for screening large compound

sets to identify a safe chemical space while maintaining potency at the target of

interest. During later stages of drug development, focused experiments can be

utilized to understand mechanism of on- vs. off-target toxicity using these in vitro

models.

While standard cytolethality screens have been suggested to correlate with

nonspecific organ toxicities [49], these are not clear predictors of liver-specific

toxicity. Nonetheless, it is essential to understand a compound’s in vitro cell death

profile prior to interpreting results of other functional assays. To measure

cytolethality, either primary hepatocytes or immortalized liver cell lines are treated

with a concentration response curve, and cell death is measured by either lactate

dehydrogenase release or high-content imaging using nuclear staining. The con-

centration which results in 50% cell death (LC50) relative to total control is

reported, and compounds within a chemical scaffold are banned from most

cytolethal (low LC50) to least cytolethal (similar to vehicle control).

Following generation of cytolethality curves, further endpoints can be produced

to understand functional changes within the hepatocyte. These endpoints are often

multiplexed within the same well using high-content imaging. Examples range

from understanding relative amounts of neutral lipid accumulation (i.e.,

phospholipidosis or steatosis) to perturbations of vesicular trafficking (i.e.,

lysosomotropism and inhibition of autophagic flux) or mitochondrial function

with either fluorescent probes or fluorescently labeled proteins [57]

(Fig. 5.7). When implementing new functional assays, it is essential to utilize a

test set of molecules known to perturb the cellular system of interest, as well as

negative controls. Having a set of positive and negative controls is essential to set

parameters for data interpretation, such as fold change and relative fluorescence.
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5.5.4 Gastrointestinal Injury Cell Models

Intestinal epithelial cells (IECs) have a critical function in the absorption of

nutrients and act as a physical barrier between our body and the outside world.

Damage and/or death of the epithelial cells lead to the breakdown of this barrier

function along with inflammation as a result of access of the immune system to the

intestinal flora. Intestinal epithelial damage is frequently associated with various

inflammatory disorders as well as drug-mediated toxicity. The lumen of the gut,

although at first glance may seem to be a simple mucosal epithelia with primarily

absorptive properties, is in reality a much more complex and nuanced system of

multiple cell types, which also interfaces with a complex microbial biome [58].

Most cell lines used for GI toxicity screening purposes are intestinal epithelial in

nature such as the rat IEC-6 and human Caco-2 cell lines and thus reflect primarily

properties of an enterocyte cell [59, 60]. Under proper culturing conditions, the

IEC-6 cell model, having been derived from the crypt region of a juvenile rat small

intestine, can display a mixed cell morphology which reflects multiple cell types

when differentiated over time in culture (Table 5.4). In our laboratory, IEC6 cells

have been able to discriminate GI injury risk with a positive predictivity of 68% that

separates GI toxicants from other more general cytotoxicants.

Intestinal organoids, “mini guts,” are now being generated in culture that better

replicate the GI with cryptal regions giving rise to villous structures [61]. Intestinal

organoids are showing promise as a physiologically relevant surrogate system for

large- and mid-scale in vitro testing of intestinal epithelium-damaging drugs and

toxins and for the investigation of cell death pathways [62].

Fig. 5.7 (A) HepG2 cells were treated with either vehicle of 5 μM amiodarone and LipidTox

Green phospholipidosis detection reagent for 24 h, followed by fixation with preference and 5 μg/
mL Hoechst prior to fluorescent imaging on the PerkinElmer Opera. (B) HepG2 cells were treated
with either vehicle of 30 μM amiodarone for 24 h. Following fixation with 5 μg/mL Hoechst, cells

were stained with LipidTox Deep Red for 2 h prior to imaging on the PerkinElmer Opera. (C)
HepG2 cells were treated with either vehicle or a concentration response curve of amiodarone

from 100 to 1 μM and processed as described in (A) and (B)
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5.5.5 Heart Injury Cell Models

Heart injury caused by compound treatment may be due to direct action at the

cardiac myocyte but may also be due to indirect effects on cardiac function, such as

hemodynamic changes, that eventually may lead to cardiac myocyte death.

Mirroring those indirect effects on cardiac myocytes in a single cell in vitro

model is very challenging if not impossible. Until the advent of iPSC-derived

human cardiac myocytes, researchers have been limited to cell models that reca-

pitulate only partially the attributes of an adult cardiac myocyte. Primary cardiac

myocytes are difficult to isolate and maintain in culture; neonatal rat ventricular

myocytes (NRVM) are very fetal in nature and often do not display a uniform

synchronous beating pattern, and the rat H9c2 cardiomyoblast cell line, though

expressing a number of cardiac myocyte-specific genes, lacks the ability to spon-

taneously beat in culture [63]. Now with the availability of human iPSC-derived

cardiac myocytes, many of the shortcomings associated with earlier cardiomyocyte

cell models have been addressed (Table 5.5) [64].

Table 5.4 Relative gene expression levels of selected intestinal epithelia genes from the rat IEC-6

cell line at 1 day and 7 days in culture under differentiating conditions

Expression of intestinal mucosal epithelial genes in IEC-6 cells (PCR analysis)

Gene name

Gene

symbol Predominant cell type

IEC-6

1d

IEC-6

7d

Intestinal alkaline

phosphatase

Alpi Enterocyte � ++

Villin Vil1 Enterocyte ++ ++

Sucrase isomaltase Sim Enterocyte + +

Kruppel-like factor 4 Klf4 Enterocyte, goblet cell ++ +

Kruppel-like factor 5 Klf5 Stem, enteroendocrine, paneth

cells

+ +++

Cholecystokinin Cck Enteroendocrine + ++

Mucin1 Muc1 Goblet cell + +

Mucin2 Muc2 Goblet cell � �
Intestinal trefoil factor Tff3 Enterocyte, goblet cell + +

Ephrin type B2 receptor EphB2 Villus + ++

Ephrin B2 ligand Efnb2 Villus +++ +++

Hairy enhancer of split-1 Hes1 Stem, enteroendocrine, paneth

cells

+ ++

Musashi-1 Msi2h Stem cell + ++

Notch 1 Notch1 Stem cell + ++
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5.5.6 Skeletal Muscle Injury Cell Models

Skeletal muscles represent a considerable mass in the organism (36–42% of body

mass in human adults) [65] and have a key role in regulating overall organismal

bioenergetics and thus are a major target for xenobiotic-mediated injury. Although

abundant and grossly similar in morphology, skeletal muscles are not a uniform

tissue as location and function of skeletal muscle fibers vary and thus their suscep-

tibilities to toxicants also vary accordingly. “Fast twitch” glycolytic fibers respond

differently than “slow twitch” oxidative fibers, and different muscle groups can be

one form or the other or a mix of both types of fibers. Skeletal muscle, like cardiac

muscle, is a bioenergetically active tissue susceptible to injury either directly or

indirectly. Skeletal muscle injury by drugs such as statins and PPAR agonists can be

mirrored by in vitro models consisting of both cell lines such as the mouse C2C12,

and rat L6 and H9c2 cell lines, and primary myoblasts isolated from animal and

human muscle tissue. The availability of human iPSC-derived skeletal myoblasts

should allow for a consistent source of cells for screening for skeletal muscle injury

risk [66].

5.5.7 Injection Site Irritation

Injection site reactions (ISRs) are a common occurrence with parenteral drugs, and

few in vitro assays exist which accurately predict the occurrence of ISRs in vivo.

Small molecules are often developed as parenteral compounds to increase bioavail-

ability or to avoid intestinal toxicity, whereas all biologics are developed as

parenteral products. Because ISRs are an acute local toxicity at the injection site,

normal in vitro cytolethality assays, which are designed to predict chronic systemic

toxicities, are not predictive for ISRs. To screen for ISR potential prior to running

in vivo studies with parenteral compounds, L6 rat myoblasts are differentiated into

myotubes and treated with compounds formulated in 5% mannitol and adjusted to

pH 4.0–10.0 to maintain maximal solubility [67–70]. Cell membrane perturbation

is measured by conversion of nonfluorescent calcein-AM to fluorescent calcein,

where lower fluorescence is indicative of higher ISR potential. We have shown that

acute membrane perturbation, as measured by decreased fluorescence, correlates to

a high extent with clinical ISRs for small molecules (Table 5.6). One important

observation is that many of the small molecules inducing clinical ISRs are dosed at

a higher dose concentration than the measured L6 IC50. For example, doxorubicin

is dosed at 2 mg/mL, which causes nearly 100% cell membrane perturbation in the

L6 assay at this concentration in the absence of cell death, but the L6 IC50 is tenfold

lower at 0.2 mg/mL. For this reason, the L6 assay has been used not only to

prioritize compounds for lowest ISR risk but also for optimizing dose concentra-

tions for in vivo experiments as well as selecting alternative formulations to

minimize risk of ISRs. It is important to note that a percentage of ISRs are caused
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by large molecules, which have been suggested to have an immune component

associated with the manifestation of inflammation and necrosis at the injection site

[71]. However, while the L6 assay might have utility to understand structure and

charge-related irritation associated with large molecules, ISRs due to immunoge-

nicity might not be picked up with this assay and new tools will need to be explored.

5.5.8 Hematopoietic System and Hematopoiesis

Hematopoiesis is the process by which bone marrow stem cell progenitors give rise

to the mature cell populations of circulating peripheral blood in animals. Injury to

the bone marrow compartment causes hematological toxicity, or hematotoxicity,

and is frequently observed in administration of drugs eliciting antiproliferative

effects. Hematotoxicity, leading to myelosuppression and neutropenia, is the most

common clinical dose-limiting toxicity (DLT) encountered during development of

oncolytic therapies. The antiproliferative effects are often desired pharmacology of

oncolytics but manifest as undesired or off-target pharmacology in other therapeu-

tic classes. In vitro cell-based models such as the bone marrow progenitor or colony

formation unit (CFU) assays are utilized to measure off-target risk for a given set of

candidate drugs, but, perhaps more importantly, to measure and help predict the

clinical risk profile of neutropenia [72].

The in vitro CFU assays are highly specialized clonogenic assays and are

utilized to measure the differentiation and proliferative capacity of specific hema-

topoietic progenitor cells. The assays are guided by incubation with specific

cytokine cocktails that promote differentiation and growth of primitive hematopoi-

etic cells. Qualitative endpoints of hematotoxicity include the following: measure-

ment of multiple lineages, scheduled treatment (continuous vs. pulsed exposure),

combination treatment, multispecies sensitivity, and rank order of a chemical

series [73].

Table 5.6 L6 correlates with clinical ISRs

Drug

Clinical

ISR

(Y/N)

Clinical dose

concentration

(mg/mL)

L6% cell

membrane

perturbation

at clinical

dose

concentration

L6% cell death at

clinical dose

concentration

L6 IC50

(mg/mL)

Doxorubicin Y 2 97 0 0.2

Mitoxantrone Y 0.5 88 0 0.1

Vinorelbine Y 2 84 2 0.8

Metoprolol N 1 0 0 >10

Atenolol N 0.5 0 0 >10
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Although there are many CFU assay endpoints used to measure direct effects on

bone marrow lineage precursors, the key assay endpoints used in early safety

assessment are CFU-GM (myeloid, granulocyte-macrophage progenitor) and

BFU-E (erythroid progenitor). These progenitors give rise to the myeloid and

erythroid cells that differentiate and proliferate to form components of the periph-

eral blood. Drug-induced reduction of hematopoietic progenitors are measured in

each of these assays and used to predict multiple elements of hematotoxicity. The

CFU-GM assay has served as a “gold standard” for predicting the clinical maxi-

mum tolerated dose (MTD) and plasma concentrations where neutropenia is likely

to occur [72].

Under treatment conditions lasting for the duration of the assay, typically 1–10

days, inhibition dose response curves can help the in vivo plasma concentrations

predictive of a clinical grade III neutropenia [73]. Treatment time periods in the

assay are typically continuous that last throughout the 7–10-day assay duration.

However, noncontinuous or “pulsed” followed by washout treatment periods allows

flexible exposure time of the progenitor cells to the test molecule. Pulsed exposure

times, e.g., �24 h, have been applied to investigate effects of targeted (cell cycle

kinase inhibitor) therapies [74]. Differential effects in the CFU assays are observed

with pulsed vs. continuous exposures, and these effects can be applied to predictive

PK/PD models that predict a safer and more effective clinical starting dose

[73]. Additional noncontinuous treatment periods, compounds can be added in

combination and in a pulsed or continuous treatment to evaluate combination

therapy effect on bone marrow progenitors.

Current formats of the assay and utilization of appropriate cytokine cocktails

allow for multispecies comparison. Species-specific effect can be evaluated in order

to help reduce animal toxicity studies and identify the most sensitive preclinical

species that may translate to a clinical risk.

CFU assays are lower throughput and reflect accurate effects on mechanism due

to the longer 7–10-day incubation periods in the culture system. However, when

higher-throughput efficiency is needed to screen potential drug candidates, alter-

native models are useful. Suspension cell cultures using a variety of cell types (e.g.,

mononuclear bone marrow cells, CD34+ cells, myeloblastic cell lines, etc.) are

incubated with compound and assessed for phenotypic changes. Higher content

technologies are used to assess cell viability, cell density, and proliferative index

[75]. Subsequently, these higher content and throughput assays serve as an effective

prefilter to the CFU assay such that only safest profile candidates are evaluated for

predictive neutropenia risk.

Preclinical hematotoxicity may be driven by multiple biological, chemical, and

physicochemical properties. An effective strategy includes the use of multiple tools

to minimize or mitigate hematopoietic toxicity leading to neutropenia or other

cytopenias. Intrinsic chemical properties, like lipophilicity and basicity, overt

toxicity to nonproliferating cells, and higher-throughput viability/proliferation

assays, should be incorporated in a screening strategy prior to subsequent use of

more definitive bone marrow CFU assays. This strategy minimizes expense and

maximizes probability of true positive results by minimizing the number of false

positives due to chemical-based or off-target toxicity (Fig. 5.8).
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5.5.9 iPSC-Derived Cell Models

The advent of human stem cell technologies, especially the ability to produce

induced pluripotent stem cells (iPSC), has provided an opportunity to address

long-standing limitations on the use of in vitro cell models for risk screening,

including the lack of species relevance, lack of phenotype that reflects the in vivo

environment, tumor-derived cells, and high variability/poor reproducibility using

primary cells [76].

The iPSC technology allows for a uniform and continuous source of cells with

the same genetic background which can be used to generate any differentiated cell

population present in the organism, as long as the appropriate factors driving the

differentiation are understood [77]. As the iPSC reprogramming approach can be

done starting with any somatic cell, moral and ethical issues concerning the use of

human embryo-derived cells are avoided. Another significant advantage that the

iPSC approach provides is the ability to generate patient-specific cells, which will

contain the genetic background associated with that patient’s particular condition or
disease, allowing for characterization of toxicity in the context of the disease state

(Fig. 5.9) [78–80].

Several human iPSC-derived cell types of toxicological interest are available in

industrial amounts from commercial sources. The most widely used cell types are

cardiac myocytes, hepatocytes, and neurons. Additional iPSC-derived cell types,

including endothelial cells, skeletal myoblasts, astrocytes, and macrophages, are

Fig. 5.8 Cell-based

strategy designed to limit

overt chemical-based

toxicity in the highly

specialized bone marrow

progenitor colony formation

assays
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available or are being developed but have a more limited utility for toxicity

profiling. The ability to more fully characterize functional endpoints such as cardiac

contractility and neuronal synaptic plasticity in an accessible and reproducible

experimental format provides a significant advantage over previous cell models.

Although iPSC-derived human cells have proven to be a valuable tool for in vitro

cell-based safety assessment, there are several negatives associated with the cells,

which may in certain cases impact the overall utility of the cells. Differentiated cells

derived from iPSCs tend to be somewhat immature in nature in their gene/protein

expression patterns and resulting functional attributes. Maintenance of the cells in

culture for longer durations ameliorates the fetal nature of the cells to some degree

but not completely. Possibly related to the somewhat immature nature of iPSC-

derived cells is the observation that their epigenetic marks may differ from a

differentiated cell derived from a pluripotent stem cell of normal embryonic origin

and may actually contain epigenetic marks of the somatic cell used to generate the

iPSC. This may not be a concern depending on the test articles and endpoints being

evaluated but should be taken into account if epigenetic impacts are anticipated.

Finally, from a purely logistical standpoint, the expense and somewhat more

complex culturing conditions of the cells make them a more challenging choice

for extensive screening applications. The iPSC-derived human cells are likely best

used in a tier-2 setting where prefiltered molecules can be evaluated for specific

mechanistically relevant functional endpoints.

The iPSC-derived cell model that has received the most attention and which is

most widely used today in safety assessment is the human cardiac myocyte model.

The ability of the iPSC-derived cardiac cells to beat with spontaneous rhythm when

grown densely enough to form a syncytium provides a useful model for assessing

impacts on contractile function of cardiac myocytes in an in vitro setting. Using

Fig. 5.9 Using iPSC technology, organ toxicity in humans can be assessed in the relevant cell

type from both normal and diseased patient populations (Figure courtesy of Cellular Dynamics

International, a FUJIFILM company)

5 Discover Toxicology: An Early Safety Assessment Approach 149



various analytical approaches, such as measuring cytoplasmic calcium flux, probe-

free cell shape monitoring, and membrane voltage potential change, many groups

have shown that these cells have the ability to correctly identify and categorize

known cardioactive compounds [81–83]. In addition to the iPSC-derived cardiac

myocytes, the development of iPSC-derived human neurons has provided toxicol-

ogists with the ability to grow a homogeneous population of synaptically active

human cortical or peripheral neurons for assessing aspects of neurotoxicity, includ-

ing neurodegeneration, impaired synaptic activity, and seizure induction

[84, 85]. Development of hepatocytes derived from human iPSCs would be a

particularly attractive cell type as drug-induced liver injury (DILI) is a major

drug development concern, and nonhuman in vitro models are poorly predictive

of effects in the human patient population [86].

5.5.10 Microphysiological Culture Systems

Microphysiological organotypic culture systems are rapidly advancing to more

readily create in vitro tissues/organ models by co-culturing in appropriate ratios,

and often in a three-dimensional architecture, defining cell types that comprise an

organ or complex tissue [87]. These platforms incorporate complex factors found

in vivo, including extracellular scaffolding, three-dimensional structure, cellular

interactions, perfusion, biomechanical stresses, electrical stimulation of excitable

tissue, and hormone responses to list a few. These features are present in preclinical

animal models, but some aspects of animal physiology do not accurately represent

those of humans. National Institutes of Health (NIH), Food and Drug Administra-

tion (FDA), and the Defense Advanced Research Projects Agency (DARPA)

collaborated to launch the Microphysiological Systems (MPS) Program in 2012

(http://www.ncats.nih.gov/research/reengineering/tissue-chip/tissue-chip.html).

Ten major organ systems were identified for funding as part of this program (intes-

tine, liver, central and peripheral nervous system, blood-brain barrier, vascular

system, skeletal muscle/innervated motor unit, heart, lung, kidney, and female

reproductive system) along with key contributions from bioengineering, stem cell

biology, cellular and molecular biology, physiology, toxicology, and pharmacology.

In the end, these unique culture platforms are being funded to offer viable options for

surrogate human tissue testing.

5.6 In Vivo Biomarker Screens

Biological markers (biomarkers) are objective indications of disease, injury, or

pharmacology that can be measured accurately and reproducibly in an organism

[88, 89]. When applied during in vivo drug development studies, biomarkers can

give a sensitive and quantitative measure of test article-related tissue injury or
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changes in homeostasis. As part of early safety assessment, the use of in vivo

biomarkers is a step in the progressive dedication of resources as a project

advances. With the goal of assessing a compound’s safety as early as possible,

the inclusion of biomarker measurements makes sense after in silico and in vitro

endpoints have been utilized to prioritize compounds more likely to be tolerated in

animal studies and as soon as in vivo studies are conducted. The use of biomarkers

has been encouraged by the US Food and Drug Administration to reduce the time

and cost of drug development [90].

The “decision gate” analogy is a useful paradigm in drug development. It holds

that drug development can be divided into several go/no-go decisions, including

whether the drug works in humans, and whether it can be marketed [91]. Lead

optimization is an important decision gate, during which a molecule’s suitability for
human dosing is determined by establishing the maximum tolerated dose and dose-

limiting toxicity in nonclinical studies. Early safety assessment supports this pro-

cess by assessing a molecule’s safety as early during development as possible,

helping to narrow the possible candidates to safer choices. Elimination of molecules

with strong structural similarities to known toxicants or undesirable effects on

cultured tissues, such as cytotoxicity, and those that cause changes (often increases)

in safety biomarkers during in vivo studies improves the chances of success in

finding a molecule that will be successful during lead optimization and tolerated in

human studies.

Each tool available during early safety assessment supports application of the

next. As we have discussed, a thorough understanding of the risks associated with

target modulation, based on available literature and previous experience, informs

the entire project, predicting lesser or greater investment of resources based on

lower or higher risk of dose-limiting toxicity and possibly pointing toward specific

target organs. In silico modeling and in vitro screening help initially narrow the

number of molecules to choose from based on previous experience with similar

chemistries and direct effects on cells in culture. After these tools have helped

prioritize which molecules are more likely to be tolerated in human studies, those

with the ability to bind to the target and some measure of bioavailability are chosen

for the first in vivo studies, often in a mouse model of a disease state consistent with

the intended indication for the drug program. As development progresses and

molecules show efficacy and tolerability in mouse models, rat studies may be

conducted at higher doses to begin to identify target organ toxicity and establish

maximum tolerated doses in order to set dose levels for longer duration rodent

studies (e.g., 14 days to 3 months) and studies in larger animals during nonclinical

safety assessment. The application of blood- and urine-based biomarkers during

these initial studies in mice and rats will be the focus of this section.

The use of biomarkers in early safety assessment is dependent on the availability

of assays for safety-related endpoints or the investigator’s ability to develop an

assay for the desired endpoint. Platforms commonly used to measure biomarkers in

blood samples include (but are not limited to) enzyme-linked immunosorbent

assays (ELISA), electrochemiluminescent immunosorbent assays (ECLIA), poly-

merase chain reaction (PCR), mass spectrometry, and enzyme activity assays.
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Common blood chemistries used in human patients can also be included in rodent

assays, including (but not limited to) albumin, total globulins, alkaline phosphatase,

alanine aminotransferase, aspartate aminotransferase, direct and total bilirubin,

blood urea nitrogen (BUN), calcium, chloride, cholesterol, creatinine, gamma-

glutamyl transferase, glucose, iron, phosphate, potassium, total protein, sodium,

triglycerides, and complete and differential blood counts. These endpoints offer

insight into liver function, kidney function, muscle injury, metabolic state, acid/

base balance, immune status, hydration status, and hematopoiesis. They come with

the advantage of decades of investigation into their biological significance with

well-established reference intervals allowing the flagging of concentrations above

or below typical values in healthy animals, including rodents. Results are best

interpreted with the aid of a trained pathologist certified by an organization such

as the American College of Veterinary Pathology.

Safety biomarkers can also include more recently developed “novel” markers,

such as cardiac troponins I and T [92]. In a short (2-day) mouse screen, cardiac

troponin I (cTnI) was used to rapidly explore the structure-activity relationship

(SAR) of a large number of molecules in mice administered two oral doses,

allowing higher throughput than would be possible with histopathology focused

studies [93]. Public-private consortia continue to advance the science of safety

assessment using biomarkers targeted for both nonclinical and clinical studies

[94]. In focus groups dedicated to a specific target organ injury and in collaboration

with the US Food and Drug Administration (FDA), these consortia qualify clini-

cally relevant biomarkers for use in preclinical and clinical drug development

studies [95–98].

Used in conjunction with histopathology, in vivo biomarkers can increase the

sensitivity and quantitative value of early safety assessment studies; however, by

combining multiple biomarkers into panels and forgoing direct examination of

tissues, the number of molecules that can be assessed can be increased. In rat

studies, the relatively greater amount of serum or plasma available (compared to

mice) allows for the combination of multiple novel biomarkers and traditional

clinical chemistries into a more comprehensive biomarker screen. For instance,

the use of kidney injury markers measured in urine, such as osteopontin (OPN) or

kidney injury molecule-1 (KIM1); blood-based markers, such as cardiac and

skeletal troponins I, natriuretic peptides, and microRNA-122 (miR122); and

markers of inflammation, such as lipocalin-2 (LCN2) and tissue inhibitor of

metalloproteinase-2, allows for the detection of major target organ toxicities,

such as kidney, heart, skeletal muscle, and liver, and general or systemic inflam-

mation [99–102]. Expectation of other target organ toxicities through literature-

based target evaluation, in silico modeling, or previous target experience may

require the addition of other biomarkers, or histopathology if no suitable blood-

based markers are available. For example, the use of pancreas-specific microRNAs

may be warranted for targets in the pancreas; however, the expectation of lesions in

the brain may warrant histopathology [103].

Changes in biomarker concentrations outside established reference intervals, or

outside the range established by a control group, should be considered evidence of
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possible organ injury. When used in a panel, cumulative changes in multiple bio-

markers can be regarded as strong evidence of compound-related toxicity. Similarly,

greater magnitude of change from control may indicate more severe injury. Taken

together, molecules that cause changes in multiple biomarkers, or changes of greater

magnitude, can be deprioritized compared to molecules that cause changes in fewer

markers, or changes of lesser magnitude. Preferably, molecules that cause no changes

in biomarkers or clinical chemistries in short duration screens (e.g., 2–4 days) can be

advanced into longer duration safety assessment studies.

5.7 Technologies

5.7.1 Multiplex and High-Content Approaches

The ability to measure multiple endpoints (high content) or multiple targets (mul-

tiplex) in the same sample has become a well-accepted and widely utilized

approach in cellular and molecular biology [40]. Multiple endpoint measurement

is best exemplified by the high-content imaging of cells, where using a set of

probes, each with unique tagged properties and each measuring different cellular

endpoints or components, can provide valuable information about what is occurring

in individual cells or populations of cells. As an example, using the high-content

imaging approach, one can measure viability (nuclei staining), cytoskeleton com-

plexity (actin staining), ROS content, and mitochondrial integrity all in the same

cell. This high-content imaging capability has become possible with the simulta-

neous development of new sensitive and specific fluorescent probes and tagging

approaches coupled with state-of-the-art multi-camera imaging systems

[104, 105]. Multiplexing of analytes (of the same type) has also become common-

place. Examples that come to mind are monitoring the transcriptome by gene arrays

(Affymetrix) and interrogating panels of cytokines by xMAP bead-based technol-

ogies (Luminex). Both of these multiplex approaches have been made possible by

the development of highly specific probes that can reliably detect specific analytes

(mRNAs or proteins) coupled with sensitive detection systems.

Live content imaging of cells, which can be defined as the acquisition, analysis,

and quantification of images from living cells that remain unperturbed by the

detection method allowing for repeated measurements over long periods of time

(days to weeks), is the latest advance in sophisticated high-content cell imaging

approaches [106]. The value of obtaining these kinetic readouts versus endpoint

readouts, particularly for early safety assessment, has not been clearly elucidated.

One case where there may be value for using this approach is in assessing the

impacts of compound treatment over time on neurite outgrowth in neuronal cultures

[107]. The application of both high-content and multiplex approaches in ESA

allows safety screening for more mechanistically based or multifactorial toxicities

where cell viability measurements alone are insufficient for characterizing com-

pound treatment impacts on cells.
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5.7.1.1 Gene Expression Approaches (Toxicogenomics)

A fundamental response of a cell to xenobiotic perturbation is often an alteration of

gene expression. Therefore, monitoring changes in the cell mRNA population is a

useful tool for assessing cellular injury in response to exposure to a xenobiotic

agent. Approaches for the analysis of these gene transcript changes can range from

global analysis of the entire mRNA population via microarrays or RNA sequencing,

DNA sequencing or interrogating individual transcripts using QPCR, or branched-

chain DNA assays.

Global transcript analysis using statistical-based analysis of gene expression

data has allowed for the development of gene signatures that can be diagnostic

for various toxicological endpoints [108]. In addition to using panels of genes as

biomarkers for direct screening, gene expression analysis, because of its high

informational content, can provide insight into mechanisms of compound mediated

toxicity, which can lead to the development of appropriate mechanism-based

screening assays [109]. Various gene enrichment statistical methods, coupled

with extensive gene ontology and knowledge-based systems, allow for the identi-

fication of causal signaling or metabolic pathways and regulatory networks that

may underlie the observed toxicity [110]. Coupled with the development of sophis-

ticated gene expression analysis tools has been the generation of very large com-

prehensive toxicogenomic databases that link gene expression data with extensive

phenotypic and pathology data for a large number of compound treatments in rats.

While these large toxicogenomic databases have enhanced the power of gene

expression analysis for predicting compound treatment-induced injury, coupling

these tools with techniques such as cellular knockouts (i.e., CRISPR/Cas9) and

ChIP-seq will allow for deeper understanding of the underlying mechanisms of

cellular injury [111].

5.7.1.2 In Vitro Measurement of Cellular Electrical Activity

Improvements in relevant cell models and in electrical activity/excitability mea-

surement technologies has provided drug safety scientists with the ability to more

easily evaluate xenobiotic treatment effects on populations of electrically active/

excitable cells (neurons, cardiac and skeletal myocytes). This enhanced ability has

had a significant impact on assessing compound-mediated neurotoxicity and

cardiotoxicity earlier in drug development [112]. The advent of iPSC-derived

human cardiac myocytes and neurons has promoted higher-throughput approaches

for in vitro evaluation of compound treatment impact on electrical activity in

neurons and cardiac myocytes. The advantage to using iPSC-derived human cells

is their consistent phenotype and low variability. Using these cells, coupled with

multi-well multielectrode array technologies (MEA), which sensitively measure

changes in cellular membrane potential, gives researchers the ability to screen large

numbers of compounds for undesired impacts on cellular electrical activity [113].
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5.7.1.3 Gene Editing

Throughout drug development, there is often a need to understand mechanism of

toxicity, such as determining if a given finding is on- or off-target. Recent advances

in molecular biology have allowed for the manipulation of genomic DNA, mRNA,

and even proteins to allow for the interrogation of these concepts. One of the most

basic experiments to understand mechanism of toxicity, in an in vitro system, is to

prevent protein translation of a suspected on- or off-target mRNA by small inter-

fering RNA (siRNA) or short hairpin RNA (shRNA). The resulting protein knock-

down allows for further experimentation, including many of the assays described in

previous sections, to understand if functional changes at the cellular level are due to

the protein of the interest [114]. While siRNA allows for rapid turnaround, shRNA

allows for the generation of stable knockdown cell lines, allowing for the ability to

propagate cells for multiple functional assays.

It is important to note that while both siRNA and shRNA provide results in a

very short time period, they are only knockdowns. Recent advances in molecular

biology have enabled scientists to generate in vitro knockout cell lines and even

perform homologous recombination to generate nonfunctional protein using

CRISPR/CAS9 [115]. CRISPR/CAS9 is composed of two main elements: 1) a

guide RNA (gRNA) which targets a specific sequence and 2) the Cas9 protein

which creates a double-stranded break on the DNA. The Cas9 protein requires a

conserved DNA sequence called the protospacer adjacent motif (PAM) just

upstream of the gRNA binding region. Many newer techniques utilize lentivirus

delivery systems to introduce both the gRNA and Cas9 with selectable markers

prior to clonal selection. If the goal is homologous recombination, several publi-

cations have shown it to be helpful to introduce an inducible version of Cas9

followed by the gRNA with a separate selectable marker in combination with a

nonhomologous end joining inhibitor [116, 117].

Following characterization and functional analysis of either knockdown or

knockout cells, it is often useful to develop a high-content assay using either a

promoter or 50 untranslated region of mRNA tagged to luciferase or GFP for a gene

of interest. This will allow for rapid compound screening after the known mecha-

nism of toxicity has been established. Additionally, proteins within a biological

pathway themselves can be tagged with fluorescent proteins. This is a useful

technique, especially in combination with CLICK chemistry, which enables the

scientist to image co-localization of the molecule itself to a specific organelle.

5.8 Organizational Framework for Early Safety
Assessment Activities

Small molecule drug discovery in general follows a process that is well established

across large pharma. Using this framework, our toxicology organization has built

tools and established cross-functional partnerships to embed early safety
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assessment into the general drug discovery process. As depicted in Fig. 5.10, the

elements discussed within this chapter establish an organizational framework

through which early safety assessment can be effectively implemented through

each step of the drug discovery process.

While implementation of screening tools and data generation are key elements

of the organizational framework, one often overlooked element is the application of

these data in a decision-making process. One approach that seems to be most

effective is weight of evidence. In this approach, the data for a given structural

series or scaffolds are combined to make a judgment-based decision. While this

process is more ambiguous, alternative considerations can be included such as

therapeutic indication. An alternative approach is a rule-based approach where

clear cutoffs are defined for individual assays with compounds being classified as

positive or negative. In this rule-based approach, compounds are clearly classified

leaving little room for ambiguity. This approach often suffers from high false-

positive rates to ensure false-negatives don’t slip through the screening process.

The application of biostatistics coupled with decision science principles can be used

to define the best approach given the data streams available to an organization.

5.9 Summary

Safety assessment in early drug discovery hasmade significant advancements over the

last 20 years through the application of in silico and in vitro models and the develop-

ment of numerous screening modalities such as high-content imaging and genomic

profiling along with the development and application of key target organ-based
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biomarker panels. More recently advances in next-generation sequencing have

enabled the application of RNA-Seq and ChIP-seq technologies along with the

advancement of gene editing tools that can be used to evaluate the impact of gene

silencing. With these advancements, molecules entering live-phase animal testing

have improved properties leading to a higher probability of technical success, thus

reducing animal consumption and overall dwell time before pivotal first in man safety

and efficacy testing.
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Chapter 6

Integrated Lead Optimization: Translational
Models as We Advance Toward the Clinic

Bianca M. Liederer, Xingrong Liu, Simon Wong, and Daniel R. Mudra

Abstract Drug discovery requires the convergence of molecular attributes includ-

ing magnitude and duration of exposure, tissue distribution, target engagement, and

pharmacological action. To this end, during lead optimization, discovery scientists

must leverage integrated data sets and translatable models to offer projections of

clinical performance and thereby make informed decisions on the merits of indi-

vidual molecules. This chapter presents methodologies to predict human clearance,

drug-drug interaction (DDI) risk, and penetration of the blood-brain barrier (BBB)

and exposure to the central nervous system during various stages of discovery with

emphasis on immediate preclinical stages. By focusing on current state and best

practices of the contemporary lead optimization scientist, we discuss the use of

human-derived model systems and multiparameter optimization to drive the dis-

covery of clinical candidates with favorable human ADME/PK properties in mind.

We present strategies to predict and mitigate DDIs at different stages of drug

discovery and development by evaluating CYP involvement in metabolism as

well as achieving an assessment of a DDI’s clinical significance. We introduce

concepts related to brain penetration from the perspective of small molecule drug

discovery and discuss how to effectively address BBB issues in lead optimization.

Emphasis is given to creation and application of preclinical data and methodologies

that provide a mechanistic understanding of drug disposition leading to translatable

models to predict clinical outcomes, assess developability risk, and help address

simple to complex “what-if” scenarios. Predictive models of clearance, CNS

penetration, and DDIs will be presented and discussed including comprehensive

case studies to highlight integrated approaches used to discover drug candidates

suitable for the safe exploration of clinical hypotheses.
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6.1 Introduction

The discovery of molecules suitable for testing pharmacological hypotheses in the

treatment of human disease requires a convergence of attributes including, but not

limited to, safety, magnitude, and duration of exposure, tissue distribution, and

target accessibility. Prior to 1988, unexpectedly poor human pharmacokinetics

(PK) was the leading cause of failure in clinical trials, accounting for nearly half

of all development program terminations [1]. A subsequent analysis revealed that

between 2000 and 2010, out of 157 oral compounds entering phase 1 clinical trials,

only 25 terminations (16%) were due to unexpected human PK [2] suggesting that

technical advances in predicting PK have manifested positive results in clinical

development. However, another report attributed up to 30% of clinical attrition

from 2005 to 2010 to an inability to achieve sufficient exposure at the therapeutic

target and, with that, an inability to achieve clinical efficacy [3] suggesting that

there are still improvements to be made in translating preclinical to clinical data.

Meanwhile, the cost of pharmaceutical research and development (R&D) continues

to increase even as fewer innovative drugs achieve FDA approval [4]. A series of

analyses reviewing the last 25 years of R&D (adjusted for inflation and presented in

2015 US dollars) spending and successful drug approvals demonstrated that the

average cost of bringing a single drug to market increased from $490 million in

1991 to $1.1 billion in 2001 to $3.6 billion in 2013 [5–7]. Together, the evolving

clinical attrition data and the economic statistics illustrate that the research engine

responsible for designing, discovering, and developing novel therapies for human

diseases and disorders is becoming increasingly strained over time and those

responsible for its caretaking must consider if the continued cost of failure will,

at some time, become unsustainable. Therefore, opportunities to improve the

predictive accuracy of clinical performance stand to produce benefits for both the

sustainability of research programs and the patients they serve.

In recent decades, laboratories from around the globe made important advances

in biopharmaceutics and oral absorption [8–10], drug metabolism enzymology [11],

tissue distribution [12–14], and the understanding of drug-disease, drug-food, and

drug-drug interactions [15–17], changing the way discovery scientists evaluate

molecules for potential clinical testing. The subsequent emergence of broadly

accessible, high-quality, specialized tools, such as human-derived systems for the

study of absorption or metabolism, and improved methodologies to better connect

preclinical data with clinical outcomes, for example, in vitro-in vivo extrapolation

(IVIVE) and physiologically based pharmacokinetic (PBPK) models, has begun to

significantly decrease the likelihood that poor human PK or insufficient unbound

drug exposure at the pharmacological target will cause the termination of clinical

development.
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An advanced appreciation has developed within the industry for the importance

of focusing on drug-like properties throughout the course of drug discovery. The

process of molecular design and drug discovery is most often initiated by a

subregion of “drug space” defined by one or more potent target “hits.” And while

the therapeutic target might often bias the structure-activity relationship (SAR) to a

particular region [18], it is the objective of a “hit expansion” phase to test the

regional boundaries of potency and in doing so identify, where possible, regions

that trend toward enhanced drug-like properties. In the past, it was not uncommon

for discovery teams to find themselves discovering molecules in a chemical space

rich with exquisitely potent molecules (e.g., IC50 values <1 nM) but which pro-

duced few, if any, with drug-like properties often as a result of the hydrophobic

character favored by target ligand-binding sites. Such focus on target binding tends

to produce “high-affinity ligands” that bear structural attributes (e.g., high logP)
that impart extensive tissue binding and/or enzymatic lability, resulting in an

insufficient exposure of circulating free drug [19]. The risk of an SAR producing

local minima rich with high-affinity ligands that present with few if any drug-like

properties, also known as a “high-affinity trap” [20], can be lessened by installation

of ADME resources early in the discovery process, in particular at the time of hit

and pre-lead as described by Joshi et al. in Chap. 3 and elsewhere [19, 21, 22]. By

the time a lead is declared, identification of key ADME issues endemic to an

otherwise promising chemical scaffold is critical to establishing vectors in a

chemical space that can result in the convergence of potency and drug-like or

human ADME properties. During optimization of the lead, it is imperative to turn

attention toward integrated data sets and translatable models that offer reliable

projections of clinical performance and thereby permit informed decisions on the

merits and value of individual discovery molecules. Based on these models and the

best available data, if the putative clinical candidate can be expected to perform in a

manner that allows for testing of clinical hypotheses (i.e., safety and efficacy) and

has an acceptable probability to be developed as a drug product, then a decision to

advance to clinical development is reasonable. Alternatively, if the data and models

predict untoward risk in the clinic (be it uncertainty in the projection of human PK

or the likelihood of drug-drug interactions), then a data-driven decision can be

made to return to unexplored chemical options until such time as a suitable

molecule can be found.

This chapter presents the current state and best practices of the contemporary

lead optimization scientist using integrated preclinical data sets, human-derived

model systems, and multiparameter optimization to drive the discovery of clinical

candidates with human ADME/PK properties in mind. Emphasis is given to

creation and application of preclinical data and methodologies that provide a

mechanistic understanding of drug disposition leading to translatable models to

predict clinical outcomes, assess developability risk, and help address simple to

complex “what-if” scenarios. Predictive models of clearance, central nervous

system (CNS) penetration, and drug-drug interactions will be presented and

discussed including comprehensive case studies to highlight integrated approaches

used to discover clinical drug candidates suitable for the safe exploration of clinical

hypotheses.
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Note:
This chapter focuses on the principles and application of a variety of prediction

methodologies including advantages, disadvantages, and applications in the con-
temporary industrial drug discovery setting. It will not, as a general rule, address
technical aspects of assay conduct or variability in underlying laboratory mea-
surements (e.g., in vitro or in vivo models and/or associated bioanalytical
methods). It is acknowledged that technical differences and variability in model
systems can contribute significantly to apparent statistical outliers and/or differ-
ences between laboratories. This is not intended to be an exhaustive delineation of
techniques nor a comprehensive comparison of all available methodologies. For
such information the reader is guided to the numerous references included herein.
Rather, we present a collection of methods demonstrated to present applicability
with integrated in vitro and in vivo data sets with high translatability and predic-
tion accuracy.

6.2 Integrated Approaches to Assess and Predict
Human Clearance

Clearance (CL) is the volume of plasma or blood from which drug is completely

and irreversibly removed per unit time. Expressed in units of volume/time, it is a

simple relationship between the amount of drug in the body (Xo) and exposure as

shown in 6.1

CL ¼ Xo

AUC0�1
ð6:1Þ

where AUC0-1 is the area under the concentration-time curve from the time of

dosing to infinity. This expression illustrates that clearance of drug from plasma or

blood is the sole determinant of the dose required to elicit a particular exposure

(AUC ¼ Do/CL). Therefore, if AUC correlates with an efficacious outcome, drug

clearance (assuming intravenous administration; more on oral administration will

be presented later in this section) determines the dose at which efficacy can be

achieved. For this reason, understanding the molecular properties associated with

clearance pathways and the prediction of clearance in humans is often of central

importance in a lead optimization (LO) drug discovery program. Clearance pre-

dictions are typically conducted by one of two distinct approaches. Allometric

scaling is an empirically derived, regressive relationship with which clearance for

a “standard” human (e.g., 70 kg body weight) can be extrapolated or interpolated

from in vivo pharmacokinetics observed in preclinical species [23–28]. Alterna-

tively, physiologically based or mechanistic scaling methods are reductionist

approaches where drug properties (e.g., permeability, intrinsic clearance in micro-

somes or hepatocytes, and plasma protein binding) are applied to mathematical
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models of physiological systems (e.g., systemic and/or organ blood flow models) to

predict pharmacokinetic outcomes [24, 29–36]

6.2.1 Allometric Scaling

Following seminal work by Thompson and later by Snell, both of whom reported on

relationships between body size and anatomical structure, Sir Julian Huxley dem-

onstrated in 1932 that a logarithmic relationship exists between organ weight (Y)
and total body weight (X) across species. Termed the “allometric equation,” this

formula assumes that a given parameter (Y ) scales predictably with body weight (X)
across an unlimited range of species (i.e., simple allometry).

logY ¼ blogX þ loga ð6:2aÞ

Y ¼ aXb ð6:2bÞ

As shown in Eqs. 6.2a and 6.2b, when organ weights from different species are

plotted on 2D–log-log axes, a is the y-intercept (at x ¼ 1) and b is the slope of the

line which ranges from 0.70 to 0.99 for a variety of organs including the principle

clearance organs, the kidney, lung, and liver. In addition to organ weights, allome-

tric relationships have been shown to exist for a variety of physiological parameters

including tidal volume (b ¼ 1.0), creatinine and urea clearance (b ¼ 0.69 and 0.72,

respectively), basal oxygen consumption (b¼ 0.73), and liver blood flow (b¼ 0.89)

[24, 28, 37–40]. Simple allometry provides reasonably accurate predictions, within

a twofold error, of human clearance for a number of drugs including felbamate,

ketamine, meloxicam, midazolam, nicardipine, propranolol, sildenafil, sumatriptan,

and troglitazone. However, numerous cases exist in which human clearance cannot

be explained by the allometric equation, and simple allometry produces only 50%

of predictions within twofold error (56% within threefold error) [27]. Notwithstand-

ing the statistical uncertainties caused by extrapolation beyond the regression

curve, the term “vertical allometry” has been used to describe cases in which

predicted clearance markedly exceeds the observed data (i.e., human clearance is

overpredicted), typically with a prediction error of tenfold or greater [25, 28,

41]. Examples of drugs that exhibit vertical allometry include antipyrine, diazepam,

reboxetine, susalimod, tamsulosin, valproate, and warfarin with predicted human

clearances for these drugs reported between 10 and 53 times higher than observed

[27, 42]. In order to anticipate cases of overprediction, several structural property

thresholds can be used to alert investigators to compounds that are likely subject to

vertical allometry. Such property alerts include (1) logP > 2 and a ratio of

rat/human plasma protein binding >5, (2) extensive binding to plasma α-1-acid-
glycoprotein (AAG), and (3) large differences between unbound and total clearance

across species [26, 28, 41]. And while such guiding principles can be predictive of
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vertical allometry risk in some compound data sets, to date there are no universally

trusted rules.

Cases of vertical allometry can be seemingly incongruent with the knowledge

that mammalian liver weight, liver blood flow, and total energy consumption (kcal/

day) scale to body weight with the simple allometric exponents (b) of 0.85, 0.89,
and 0.75, respectively [23]. Boxenbaum [23] tested a hypothesis that corrections for

binding and liver blood flow would improve prediction accuracy by allometrically

scaling calculated hepatic intrinsic clearance (CLint) [43] instead of plasma clear-

ance according to Eq. 6.3

CLint ¼ Qh � CLhð Þ
f b Qh � CLhð Þ ð6:3Þ

where fb is the blood binding, Qh is liver blood flow, and CLh is hepatic clearance.

CLint was calculated for a series of five drugs (antipyrine, bromazepam, clonaze-

pam, chlordiazepoxide, and phenytoin) cleared by the liver and exhibiting varying

degrees of allometric verticality, from 11 different species spanning more than

4-log units of body weight with measured fb for each and Qh equated across species

at 1.5 L/min/kg liver weight [23, 37]. Despite this correction for mechanism,

allometrically scaled human CLint values were still 4.2–11.4 times higher than the

observed human CLint [23, 44], leading some to hypothesize that humans possess a

lesser intrinsic metabolic capacity compared with other species “lower” in the

evolutionary continuum. Put simply, such hypotheses state that smaller mammalian

species metabolize more rapidly per unit body mass compared with larger species

[23, 44].

6.2.1.1 Neoteny, Dedrick Plots, and the Rule of Exponents (ROE)

The hypothesis that species-specific physiological growth rates contribute to verti-

cal allometry was tested by analysis of plasma concentration-time profiles across

species. Elimination rates for two renally cleared drugs, ceftizoxime and metho-

trexate, the total clearances for both of which are well predicted by simple allom-

etry [28], reveal an equating principle across otherwise disparate physiologies.

Ceftizoxime, an iminomethoxy aminothiazolyl cephalosporin, exhibits markedly

different plasma elimination half-lives (t1/2) across species, ranging from 15 min in

rodents to 50 min in dogs and monkeys to nearly 120 min in humans. Mordenti [24]

demonstrated that rather than expressing ceftizoxime t1/2 in minutes but instead by

the number of heartbeats, all species studied eliminated the drug at approximately

the same rate: 50% of the dose in 7253 heartbeats. Similarly, when dose-normalized

methotrexate plasma (or serum) concentrations in mice, rats, dogs, monkeys, and

humans are plotted together on a semilogarithmic plot, concentration-time profiles

are scattered across multiple log units and seemingly not predictive of one another.

As observed with ceftizoxime, elimination was fastest in rodents, moderate in dogs

and monkeys, and slowest in human subjects. In both cases, an empirically
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determined biological time constant (i.e., a time frame specific to each species and

distinct from chronological time) scales with body weight (BW) with an exponent

(b) of 0.25, and when the time axis is expressed as time/BW0.25, known as a Dedrick

plot, the concentration-time curves from different species are near perfectly super-

imposable [24, 45, 46].

The superimposable nature of methotrexate concentration-time curves through

Dedrick plot analyses (Fig. 6.1) is consistent with the hypothesis that smaller

species possess a quicker physiological “tempo” when compared with larger spe-

cies. According to this hypothesis, in order to relate a chronologically measured

pharmacokinetic event across species, different biological time scales must be

equated by extending the time scales for smaller species and compressing those

for larger species. The varying biological time scales are thought to be a manifes-

tation of neoteny, differences in the relative rates at which physiological events

occur between species, differences that do not scale with body weight. For example,

it has long been understood that humans undergo sexual maturation at a slower rate

than nonhuman species, including laboratory animals. Similarly, humans exhibit

relatively prolonged brain and cranial growth well beyond the developmental time

at which other mammalian species cease to add brain weight (BrW). Simple

allometric coefficients derived from a diverse set of mammals can accurately

predict human total body surface area, liver weight, liver blood flow, and cardiac

cycle. However, simple allometry also predicts a human brain mass of 275 g

(compared to a typical observation of 1200–1400 g) and a human maximum life

span potential (MLP) of only 27 years [45, 47–49].

Fig. 6.1 Semilogarithmic plots of methotrexate plasma and/or serum (a) concentration versus

time in mouse (---), rat (–––), monkey (���), dog (����), and human (——) and (b) concentration
versus time after normalization of the x-axis as time/BW0.25 and the y-axis as dose/BW

(Reproduced from [24])
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Neoteny is theorized to be one cause of vertical allometric relationships

observed with human drug clearance [45]. In fact, when the antipyrine and benzo-

diazepine data sets were plotted as unbound CLint versus MLP, human CLint is well

predicted by a log-linear regression, meaning that unbound intrinsic metabolic drug

clearance decreases as body weight and life span increase [45]. Boxenbaum went

on to suggest that all species have a similar metabolically active mass (the

“ergosome”) and expend that metabolic activity (per kg of body weight) at rates

inversely proportional to their MLP. In short, small animals metabolize at relatively

high rates over short lives, whereas larger animals have slower metabolic rates over

longer life spans [23, 24, 44, 45] As such, it stands to reason that parameters

influenced by neoteny, such as BrW or MLP, could be used to adjust simple

allometric regression and thereby account for cases of vertical allometry.

The rule of exponents (ROE) is a rule-based methodology to determine when

BrW orMLP correction should be applied to a simple allometric regression or when

to apply no correction at all [50]. The ROE states that upon inspection of simple

allometric regression, the value of the exponent (b) determines the correction to be

applied according to the boundary conditions depicted in Fig. 6.2.

In a test set of 37 compounds with simple allometric exponents (b) greater than
0.7, for which 49% were poorly predicted (> twofold error), application of the ROE

improved prediction error (to within twofold) for 72% of the poorly predicted

compounds (13 of the 18) including diazepam, cefpiramide, quinidine, norfloxacin,

propafenone, thiopentone, and warfarin. Notably, a more consistent improvement

in error was observed for compounds with b > 1.0 for which a BrW correction was

applied. However, ROE worsened the accuracy, changing prediction from within a

twofold error to more than twofold error, for 42% of the compounds (8 of 19)

including midazolam, troglitazone, and thiopentone. In theory, an MLP correction

(when b> 0.7 and<1.0) will produce a predicted human clearance (hCL) of 1/3–2/

3 the value derived from simple allometry, whereas a BrW correction (when

b > 1.0) will result in a predicted hCL of 1/5–1/2 that which would otherwise be

obtained from simple allometry [50]. In practice, the prediction change brought

about by MLP or BrW correction is a function of both the number and types of

species selected, which may be an underlying cause for the reported errors

and varying degrees of success realized with ROE-based clearance predictions

[26, 51, 52].

The Rule of Exponents (ROE) � If b is between 0.55 and 0.70: 
scale using SA (no correction)

� If b is between 0.7 and 1.0: 
scale using (CL X MLP)

� If b > 1.0: scale using (CL x BrW)

� If b < 0.55: no allometric approach is
expected to provide reliable scaling

Y = (CL x BrW)

b= 0.55 0.7 1.0

Y = (CL x MLP)Y = CLAllometry not 
recommended

X = Body Weight

Fig. 6.2 The rule of exponents (ROE) is the systematic application of an MLP or BrW correction

based on the empirically derived allometric exponent (b)
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Regardless of the correction method applied, allometric-based scaling of drug

PK parameters tends to elicit criticism based on its inherent retrospective nature and

the knowledge that the enzymatic and physiological systems underlying the empir-

ical data are multifactorial, and therefore, by nature, predictions based on such data

necessitate a higher dimension of mathematical complexity. It has been challenged

that any physiologically relevant allometric approach ought to encompass the

following features [49]:

1. Empirically derived quantities that permit superimposability of pharmacokinetic

data across species (e.g., Dedrick plots).

2. Defined thermodynamic constants and mechanical terms (i.e., well-understood

biology for all relevant species).

3. A stable set of parameterized equations that accurately model the data across the

relevant geometry describing either intrinsically linear or nonlinear events (i.e.,

a group of models that covers all relevant species, kinetics, and chemical

matter).

Coincidental with the emergence of in vitro tools of drug metabolism, arguments

such as this supported many efforts in drug discovery programs to integrate

mechanistic knowledge of drug or compound clearance and disposition into allo-

metric scaling methods.

6.2.1.2 Semi-Mechanistic Allometry

Inclusion of mechanistic-based corrections to allometric regression based on known

or measurable species differences has become an increasingly common approach in

attempting to improve prediction accuracy of simple allometry. With a set of

marketed drugs for which both preclinical and clinical clearance values were

available, human clearance was more accurately predicted (21 drugs with a

predicted/observed ratio of 0.34–2.2) when scaling unbound clearance

(CLu ¼ CL/fuplasma where fuplasma is the fraction unbound in plasma) as opposed

to total clearance. A greater improvement in prediction accuracy was reported for

drugs with known species differences in protein binding (e.g., tamsulosin,

remoxipride, cefotetan, and RO25-6833), whereas little improvement was observed

for drugs with lesser differences in binding between species. Of the 27 drugs

investigated, five (propranolol, antipyrine, diazepam, valproate, and midazolam)

exhibited vertical allometry with predicted/actual ratios �9.0. However, without

exception, these poorly predicted drugs exhibited allometric exponents (b) > 0.85,

and when a BrW correction was applied, CLu predictions for these were in line with

the other 22 drugs [42]. Predictions were not improved for highly plasma-bound

drugs (fu < 0.1) with this method; however, applying the ratio of rat-to-human

plasma protein binding (Rfu) demonstrated statistically significant benefit. The

result was introduction of the fraction unbound correction intercept method

(FCIM) in which a is the y-intercept from simple allometry and the exponent (b)
was fixed at 0.77 as seen in Eq. 6.4.
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CL ¼ 33:35� a

Rf u

� �0:77

ð6:4Þ

With FCIM, total clearance scaled across 61 drugs produced significantly

improved accuracy (78% absolute percentage error, APE) compared with both

ROE and simple allometry (185% and 323% APE, respectively) [26]. A systematic

comparison of 18 allometric methods to predict human clearance for 19 develop-

ment molecules showed FCIM to be the most accurate with more than twofold

prediction error in 72% of cases, opposed to simple allometry which tends to

produce predictions within twofold error only 50% of the time [25, 26]. It is

noteworthy that the FCIM modification is based on the ratio of plasma protein

binding in rat and human, irrespective of which or how many species are included in
the regression. And as accepted as FCIM has become in some drug discovery

programs, this fundamental ambivalence to species selection underscores, despite

appearance, the ignorance of mechanism associated with this methodology.

Testing the hypotheses that allometric prediction accuracy could be improved by

including species-specific metabolism, scientists at Hoffmann-La Roche demon-

strated that inclusion of in vitro hepatocyte clearance improved the prediction

accuracy by regression of observed plasma clearance values corrected by in vitro

data according to Eq. 6.5.

CLanimal �
CLhuman hepatocytesð Þ
CLanimal hepatocytesð Þ

¼ aBWb ð6:5Þ

This correction resulted in a marked improvement in prediction accuracy (only

20–40% deviation from observed) along with a decrease in overprediction bias for

ten extensively metabolized compounds (antipyrine, bosentan, caffeine, mibefradil,

midazolam, mofarotene, RO24-6173, propranolol, theophylline, and tolcapone)

when integrating at least three preclinical species [53]. While principally of benefit

to compounds undergoing hepatic metabolism as the primary route of clearance,

this method demonstrates a means to integrate mechanistic in vitro data into the

allometric prediction and offers a rational correction in light of the aforementioned

hypothesis that humans exhibit less metabolic capacity (per kg bodyweight) than

other species included in the allometric regression [45, 53].

The long-standing and widely accepted method of allometry allows investigators

to generate predictions of human plasma clearance based on preclinical in vivo

data. Regardless of the correction method employed, allometric-based predictions

fundamentally rely on the assumption that drug clearance scales in a predicable

manner with body weight, regardless of the species used in preclinical studies.

Correction methods that attempt to standardize for neoteny such as Dedrick plots or

ROE adjust biological time scales across species and may be useful across a variety

of clearance mechanisms (e.g., metabolism, renal excretion, etc.). Other biochem-

ical- and physiological-based corrections to allometric inputs, including the use of

drug- and species-dependent terms such as plasma protein binding or hepatocyte
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CLint, also offer serviceable correction methods. And while to date there is no

reported methodology known to reduce allometric prediction error universally

across all compounds, such approaches provide discovery scientists with a number

of integrated methods to combine the in vivo relevance of allometry with

mechanism-based knowledge of species differences in drug clearance.

6.2.2 Mechanistic Scaling

It is well accepted that all methods to predict human clearance bear uncertainty and

the utility of any given method is harnessed best when the uncertainty can be

minimized and properly managed to provide meaningful guidance, be it with

decisions to advance or terminate discovery compounds or in crafting designs for

future clinical development trials. Incidences of vertical allometry along with

contemporary knowledge of species differences in metabolism, enzyme and trans-

porter expression, and substrate affinities present challenges to the reliability of a

simple log-linear correlation between body weight and total clearance [11, 24, 49,

54–58]. Furthermore, scaling according to body weight can provide only an esti-

mated value of predicted human clearance with no intrinsic knowledge of the

underlying pathway(s) of drug elimination. A more highly valued prediction

would offer a projection of the operative drug clearance pathways in healthy

human subjects or patients, thereby enabling the forecast of potential drug-drug

interactions and expected PK in special populations (e.g., healthy subjects com-

pared with renally impaired patients compared with hepatically impaired patients).

To this end, a mechanistic approach to a clearance projection will independently

scale, from preclinical data, each elimination pathway for a summation of total

clearance (CLtotal) according to Eq. 6.6.

CLtotal ¼ CLh þ CLr þ CLother ð6:6Þ

When a circulating compound is in rapid and free equilibrium with the liver,

meaning the unbound concentration in plasma is equal to unbound concentration in

the liver intracellular compartment (Kpuu ffi 1), the hepatic clearance (CLh) can be

simply thought of as metabolic clearance plus the direct excretion of unchanged

parent drug in bile (CLmetab + CLbile). However, when free drug concentration in the

liver is limited by either passive permeability or active uptake into the liver, this

requires a more integrated approach to determining CLh.

6.2.2.1 Clearance Classification Systems

The use of physical-chemical properties to guide the prediction of operative human

clearance pathways is a commonly accepted approach in many discovery programs.

Discovery scientists at Pfizer report the routine application of compound property
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categorization to understand and predict human clearance pathways. Based on the

Biopharmaceutical Drug Disposition Classification System [59], this approach

hypothesizes that for highly permeable compounds, unbound drug in plasma

crosses the hepatocyte sinusoidal membrane establishing a free drug equilibrium

such that the unbound plasma concentration will be equal to the unbound liver

concentration (Kpuuliverffi 1). The result is that clearance from circulating plasma is

determined principally by the intrinsic rate of metabolism (CLint,met). By contrast,

the unbound liver concentration for low permeability compounds is limited by

hepatic uptake, and therefore, while these compounds may undergo metabolism,

clearance from plasma for these compounds is determined by the intrinsic uptake

(influx) into the liver (PSinf, a summation of active and passive transport)

[60]. Additional granularity to this method was offered by introduction of the

Extended Clearance Classification System (ECCS), a categorical approach shown

to be 92% accurate (in a 307 compound test set) at predicting a single predominant

clearance pathway accounting for �70% of total clearance. Using structural prop-

erties including ionization state, molecular weight (MW), and passive membrane

permeability, compounds were categorized according to the grid shown in

Fig. 6.3a.

According to the ECCS, the plasma clearance of highly permeable

(PappMDCK > 5 � 10�6 cm/s), basic, and neutral molecules (Class 2) is principally

metabolic, whereas the plasma clearance of low permeability basic and neutral

molecules (Class 4) is principally determined by renal elimination. In the case of

acids and zwitterions (Classes 1 and 3), plasma clearance for low-MW compounds

(<400 g/mol) with high permeability (Class 1A) is metabolic, whereas for low-MW

compounds with low permeability (Class 3A), the free drug does not reach the

intracellular compartment to any substantive degree, and, in turn, clearance from

plasma is dictated largely by renal elimination. The clearance of high-MW

(>400 g/mol) acids and zwitterions is dictated by hepatic uptake or a mixture of

hepatic uptake and renal elimination, Classes 1B and 3B, respectively [61]. While

principally designed to be qualitative in nature, such classification of a discovery

molecule can guide the collection of laboratory data necessary to drive a quantita-

tive prediction of human clearance.

In a similar but further quantitative approach, Novartis scientists presented the

Extended Clearance Concept Classification System (ECCCS, Fig. 6.3b) that pro-

duced>90% accuracy in the prediction of human clearance (within threefold error)

by first determining hepatic clearance (CLh) by the extended clearance model

(ECM) and subsequently incorporating the predicted CLh into the well-stirred

liver model as shown in Eq. 6.7a

CLint ¼ PSinf � CLint, sec þ CLint,metð Þ
PSeff þ CLint, sec þ CLint,metð Þ ð6:7aÞ

(Gillette, 1971; Rowland et al. 1973; [34, 62]) to produce a predicted total

human clearance according to Eq. 6.7b
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Fig. 6.3 A comparison of two quadrant-based classification systems. (a) The Extended Clearance
Classification System (ECCS) framework illustrates the predominant mechanism that determines

systemic drug clearance (Reproduced from [61]). (b) The Extended Clearance Concept Classifi-

cation System (ECCCS) illustrates the rate-determining hepatic clearance mechanisms as they

relate to the extended clearance model (ECM) based on expressed property conditions

(Reproduced from [54])
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CLh ¼ Qh � fub � CLint

Qh þ fub � CLint

ð6:7bÞ

where Qh represents hepatic blood flow; fub is the free fraction of drug in the blood

(fuplasma/blood/plasma); Clint,sec and CLint,met are the in vitro secretory (biliary) and

metabolic intrinsic clearances, respectively; and PSinf and PSeff are the hepatocyte

influx and efflux permeabilities, respectively, determined from suspended and

sandwich-cultured hepatocyte systems [29, 35, 54]. Consistent with the qualitative

classification systems, the ECCS demonstrates that for highly permeable molecules

with no active uptake in the liver (Kpuuliver� 1), plasma clearance is determined by

CLint,met (ECCCS Classes 1 and 2). However, plasma clearance of compounds

exhibiting active hepatic uptake (ECCCS Classes 3 and 4) is determined by a mix of

hepatobiliary and renal elimination best described by the ECM [29, 33, 35, 54]. As a

discovery team approaches a decision of whether or not to advance a particular

molecule into clinical development, scaling methods that predict the operative

clearance pathways enable risk assessment for a variety of clinical development

scenarios. To afford such opportunity, a thorough understanding of the likely

operative clearance pathways along with a preclinical (in vitro and in vivo) data

package to describe the clearance as quantitatively as possible should be amassed to

produce a mechanistic understanding of total clearance.

6.2.2.2 Structural/Chemical Rationale

Underlying such classification and calculable prediction methodologies is the

physical-chemical and structural attributes of a molecule that determine the

in vivo disposition. Lead optimization design cycles, in the focused pursuit of

potency and selectivity, often drive a lead chemical series toward hydrophobicity

(increased high logP/D) and high molecular weights [20, 63, 64], which in turn bias

compounds toward extensive hepatic metabolism, high nonspecific binding, low

solubility, and other nondrug-like properties as described previously [19, 65–67]. In

many cases, seemingly minor and even one-atom changes in structure can elicit

significant changes in hepatic metabolism. Indinavir, a potent HIV protease inhib-

itor, also potently inhibits cytochrome P450 (CYP) due to a type II binding

interaction between the unhindered pyridyl-N and the CYP heme, which in turn

limits the systemic clearance of indinavir through saturation of metabolism. Merck

scientists demonstrated that structural modification of the pyridyl ring by addition

of gem-dimethyl substituents, direct methyl pyridyl substitution, or even isomeri-

zation of the pyridyl nitrogen resulted in an up to 33-fold increase in the CYP-IC50

(i.e., less inhibition) and a 12-fold increase in metabolic clearance. Results were

concordant with changes in the P450-binding spectra indicating that the structural

modifications directly altered the manner in which the compounds coordinate with
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the P450 heme, changing both drug-drug interaction (DDI) potential and clearance

of the parent drug (Fig. 6.4) [68].

Similarly, scientists at Bristol-Myers-Squibb reported the discovery of a

pyrazole amidine series as potent inhibitors of coagulation Factor Xa due in part

to the compound’s strongly basic benzamidine moiety (pKa 10.7). The lead series

demonstrated 1–10 nM potency against the target but limited potential for clinical

development due to low oral bioavailability (<5%) and short t1/2 in preclinical

species. In the lead optimization phase, it was recognized that, despite the exquisite

potency that could be achieved, the benzamidine moiety was a significant determi-

nant of low volumes of distributions contributing to short elimination plasma t1/2
[69]. Consequently, medicinal chemistry focused on replacing the benzamidine

with less basic substituents. This strategy increased passive permeability, reduced

hepatic intrinsic clearance (80% decrease), and modulated the distribution, while

achieving adequate potency to drive an in vivo pharmacological effect through

increased oral exposure (>260-fold), relative to the benzamidine. The resulting

benzylamine-containing clinical development compound was orally bioavailable in

humans, with an absence of food effects, a plasma t1/2 of 27–35 h, and measurable

increases in prothrombin time [19, 70, 71].

These examples of directed and apparently small structural modifications

resulted in marked changes in in vivo clearance and illustrate the power of under-

standing mechanism in particular in the LO setting as programs traverse chemical

diversity in search of clinically developable molecules.

Hepatic CLint and total plasma clearance can be significantly modulated by small

structural diversity within a series, but so too can the contributing elimination

Fig. 6.4 (a) The structure-property relationship between indinavir and its structural analogues and
their P450 binding spectra, metabolic clearance, and HIV protease potency (IC50). (b) The

relationship between metabolic clearance and CYP3A4 inhibition (IC50) upon co-incubation of

indinavir analogues and human liver microsomes (Reproduced from [68])
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pathways be substantially altered by changes in structural properties. Most drugs

and discovery compounds with a logP > 4 exhibit high liver microsomal CLint that

decreases with lower logP as described previously by Desai et al. in Chap. 4 and

elsewhere [65]. Therefore, during the course of LO, medicinal chemistry design

cycles’ intent on increasing microsomal stability, often by lowering logP/D, tends
to incorporate polar or ionizable groups thereby increasing polar surface area (PSA)

or charge potential (lowering acidic pKa or increasing basic pKa). These types of

structural properties increase the tendency of unbound hepatic CLint to underpredict

in vivo clearance due to increased contribution of non-CYP metabolic pathways

and excretion pathways [65, 72, 73] as illustrated by comparison of atenolol and

propranolol. Used in the treatment of cardiac arrhythmias, angina, and hyperten-

sion, these β-adrenergic receptor antagonists exhibit similar human plasma t1/2 but
vastly different clearance pathways (Table 6.1; [19]).

Propranolol exhibits no measurable biliary or renal excretion and rather is nearly

completely metabolized to such an extent that its observed clearance from plasma

provides a reliable in vivo estimate of total liver blood flow. Conversely atenolol,

which bears a terminal amide as opposed to propranolol’s naphthalene, undergoes
no measurable metabolism and is eliminated almost entirely by the kidneys,

necessitating clinical dose reduction in patients with renal insufficiency [62, 74,

75]. These differences in clearance pathways may be somewhat surprising based on

the apparent structural similarities between atenolol and propranolol and the lack of

any significant differences in MW or pKa. However, inspection of data from a

larger set of structurally related β-antagonists reveals that within this series the

balance of metabolism and renal excretion of unchanged drug is a function of

differences in logD7.4, carbon SP2 hybridization, and PSA with hydrophobicity

driving compounds toward metabolism and increased polarity biasing compounds

toward renal excretion (Fig. 6.5) [19, 60, 67].

Similar inspection of a set of 3-hydroxy-methylglututaryl coenzyme A

(HMG-CoA) reductase inhibitors illustrates how structure and physical-chemical

properties within a chemical series can influence pathways of clearance. Atorva-

statin (Lipitor™), fluvastatin (Lescol™), pitavastatin (Livalo™), and rosuvastatin

(Crestor™) belong to the family of synthetic statins, each with a C7-aliphatic

carboxylic acid linked to an unhindered F-phenyl by a 5- or 6-membered

N-containing mono- or bicyclic aromatic ring system. Common to the clearance

of all four is the role of OATP1B1 and other active hepatic uptake transport

mechanisms, accounting for between 75 and 99% of hepatic uptake. Where these

drugs differentiate is in their fates of clearance beyond that point (Fig. 6.6).

Atorvastatin and fluvastatin (PSinf of 198 and 544 mL/min/kg, respectively) are

almost exclusively eliminated through metabolism by hepatic CYP enzymes albeit

by differential predominant isoforms, CYP3A4 (atorvastatin) and CYP2C9

(fluvastatin). However, atorvastatin AUC is significantly increased by inhibition

of OATP1B1 (six- to eightfold increase when coadministered with rifampicin or

cyclosporine), whereas fluvastatin AUC is far less sensitive to OATP inhibitors

indicating atorvastatin’s clearance is dictated by hepatic uptake (PSinf) and

fluvastatin’s clearance is determined by CLint,met. Conversely, pitavastatin
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Fig. 6.5 The correlation of lipophilicity (log D7.4) and unbound hepatic intrinsic clearance (Cli(u),

filled squares) and unbound renal clearance (CL(r); open triangles). Compound numbering refers

to β-receptor analogues included in reference from which figure is reproduced [67]

Fig. 6.6 The fractional clearance of four statins including fraction metabolized (Fmet) and

fraction excreted (Fe), further divided into fraction excreted in urine and fraction excreted in

bile (fe,urine and fe,bile, respectively). Data were compiled from [76–79]
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(PSinf ¼ 623 mL/min/kg), which differs from fluvastatin only by the introduction of

a cyclic-propyl-pyridine ring, undergoes minor metabolism and instead is excreted

principally unchanged (78%) in the bile, mediated by MRP2 secretion, and exhibits

three- to fivefold increases in plasma AUC when co-dosed with OATP inhibitors.

Only about 15% of pitavastatin dose is excreted unchanged in the urine, and notably

due to its high passive permeability, pitavastatin is thought to undergo

enterohepatic circulation (biliary excretion followed by reabsorption) giving it the

highest oral bioavailability (51%) of the statins described here. Finally, rosuvastatin

(PSinf¼ 52 mL/min/kg), the most hydrophilic of the four, undergoes a minor degree

of metabolism (principally by CYP2C9) and is 90% excreted unchanged in feces

(62%) and urine (28%) [76–79].

The chemical diversity illustrated by the series of molecules above is consistent

with the range of structural and property diversity commonly explored in a medic-

inal chemistry LO initiative [65]. By extension, the diversity of clearance pathways

observed within these series, from nearly complete metabolism to nearly complete

excretion of unchanged drug, is representative of the diversity in clearance path-

ways that could be encountered in an active discovery lead series. Even within a

space of highly metabolized compounds (e.g., atorvastatin and fluvastatin), it is not

uncommon to observe significant shifts in the relative contribution, or fraction

metabolized (fm), from different drug-metabolizing enzymes (e.g., CYP2C9

vs. CYP3A4) as well as the processes that determine clearance from plasma

(PSinf vs. CLint,met). As polarity and hydrophilicity are introduced in a chemical

series, metabolism is likely to reduce in contribution to total clearance, and rather

biliary and urinary pathways begin to take over with varied contribution from

secretory transporters (e.g., MRP2 and OAT3). It is those compounds cleared by

hepatic metabolism (in particular CYP metabolism) for which most industrial drug

discovery programs are well positioned to optimize clearance through microsomal

and hepatocyte screening assays, and as such many DMPK programs routinely

invoke scaled in vitro CLint,met in projections of human clearance [11, 31, 80,

81]. The extent to which discovery programs can also include both qualitative

and quantitative knowledge of uptake and excretion mechanisms can lead to

increased prediction accuracy, informed chemistry design cycles, and an overall

improvement in the understanding of compounds advanced into clinical

development.

6.2.3 Mechanistic Prediction of Human Clearance

Categorical approaches such as the ECCS and ECCCS illustrate means by which a

mechanistic projection method can capture contribution from a variety of operative

clearance mechanisms and elimination pathways and, in doing so, predict each

molecule based on its unique properties. A strategy to determine the utility of such

an approach with any given discovery molecule is to quantitatively assess the

accuracy of a mechanistic prediction in preclinical species where with greater the
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prediction accuracy, the greater the confidence in subsequent human predictions for

that molecule. Provided the summation of scaled pathways (e.g., CL,met + CL,

bile + CL,renal) amounts to 70% or more of total clearance observed in preclinical

species, then the mechanistic approach is considered validated for that compound,

and in turn the summation of scaled pathways can be used with increased confi-

dence for the prediction of human clearance. Compound evaluation for projecting

human clearance, both qualitatively and quantitatively, can be approached in stages

as illustrated in Fig. 6.7.

6.2.3.1 Compound Evaluation: Physical-Chemical and Property Space

A systematic evaluation of physical-chemical and ADME properties can guide LO

teams in both qualitative and quantitative prediction of human clearance and

operative clearance pathways. Independently, the ECCS and ECCCS present meth-

odologies that provide such benefits, and while they do not precisely superimpose in

property endpoints or in categorical cutoffs, the two systems are more alike than

they are distinct, and a reasonable amalgamation by integrating the approaches can

be derived [35, 59–61]. Congruent with both systems (Fig. 6.3a, b), basic and

Well-Stirred Model  Extended Clearance Model (ECM)

Fig. 6.7 A schematic diagram depicting compound evaluation according to integrated classifica-

tion systems (ECCS/ECCCS) and data collection methods to guide and support the mechanistic

scaled clearance pathways leading to the summation of predicted total human clearance
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neutral compounds as well as low-MW (<400 g/mol) acids and zwitterions that

exhibit high passive permeability and no evidence of hepatic uptake (e.g., in vivo

[liver concentrationunbound/plasma concentrationunbound], liver Kpuuhepatic � 1) will

have a plasma clearance principally determined by metabolic clearance (i.e.,

CL � CLmet). The clearance of acidic and zwitterionic compounds that exhibit

low permeability (passive and active) will be largely determined by the summation

of hepatic uptake clearance mechanisms (PSinf from the ECM) and renal elimina-

tion where low-MW compounds will be biased toward renal elimination. Finally,

for bases, neutrals, and small MW acids and zwitterions that exhibit low passive

permeability with a large portion of uptake from active processes (e.g., Kpuu,liver

> > 1), clearance will be dictated by the totality of hepatobiliary clearance (best

determined by the ECM). In all cases, an understanding of the metabolic pathways

of a given molecule is essential to the construction of the mechanistic prediction.

6.2.3.2 Data Collection

Experimental objectives toward qualitative assessment of metabolic pathways are

of two varieties: (1) metabolite profiling and (2) reaction phenotyping. In metabo-

lite profiling it is important to identify the operative metabolic processes both

in vivo across preclinical species and in vitro (hepatocytes) in all species including

human. While not intended to be comprehensive, Fig. 6.7 captures some of the

commonly observed metabolic routes including oxidative, conjugative, and hydro-

lytic. Once the operative pathways are identified (in vitro and in vivo, including

profiling metabolites from excreta; bile and urine), it is important to determine the

enzymes or enzyme systems involved in the observed metabolic pathways. Drug

oxidation pathways are commonly mediated by CYP enzymes located in micro-

somal fractions; they are most abundant in the liver and intestine and catalyze

reactions in an NADPH-dependent manner oxidizing drug substrates by incorpo-

rating elemental oxygen from O2. Commonly observed reactions catalyzed by

CYPs include the hydroxylation of electron-rich carbon (aliphatic or aromatic C),

double-bond epoxidation, and heteroatom dealkylation [11]. The cytosolic enzymes

aldehyde oxidase (AO) and xanthine oxidase (XO) highly expressed in the liver,

lung, and kidney are known to contribute to the oxidation of electron-poor carbons,

such as aldehydes and aromatic carbons within heteroatom cyclic- and bicyclic ring

systems [58]. In order to identify a relevant in vitro system for the study of a given

molecule, it can be very useful to delineate between CYP- and AO/XO-mediated

oxidation by exploring microsomal versus cytosolic function, the ability of the

reaction to incorporate O18 from heavy water (a hallmark of AO/XO-catalyzed

oxidation) or the strict absence of the metabolic pathway in dogs [58, 82].

Non-oxidative pathways are most commonly identified by profiling metabolites in

hepatocyte incubations. Pathways catalyzed by UDP-glucuronosyltransferase

(UGTs), sulfotranferases (SULTs), N-acetyl transferases (NATs), or hydrolytic

reactions by carboxylesterases (CESs) and hydrolases can be assessed for their

possible contribution to a compound biotransformation by recombinant-expressed
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systems or, in the case of hydrolases, blood or plasma stability. Measured hepato-

cyte CLint,met can be deconvoluted through co-incubation of selective inhibitors

against several of the enzymes mentioned. In such experiments, inhibition of

a particular pathway by a selective enzyme will indicate the fraction of total

CLint attributed to that pathway (fm) according to the equation: fm ¼ (CLint –

CLint+inhibitor)/CLint. Caution must be exercised however with respect to inhibitor

selectivity and the concentrations used. For detailed descriptions of experimental

conditions, selection of hepatocyte and subcellular fractions, selectivity of inhibi-

tors and substrates, and information on additional enzymes and enzyme system

readers are directed to the many detailed references on the matter [11, 15, 81–90].

For cases in which CLmet is the primary determinant of plasma clearance

(CL � CLmet), human clearance can be determined by scaled intrinsic clearance

as described in Fig. 6.7. In the other cases, either CL � CLuptake + CLr or

CL � CLh + CLr, the projection of human clearance from in vitro data can be

made from the ECM [35, 54, 60, 61]. Establishing the intrinsic metabolic lability of

the molecule is fundamental regardless of the scaling method employed (e.g., well-

stirred or extended clearance model; see Fig. 6.7). Compounds for which the

in vitro human metabolite profile and inhibitor/recombinant studies are consistent

with only oxidative, CYP-mediated metabolism, CLint is determined from the

in vitro rate (k) of substrate loss as shown in Eq. 6.8a [81, 83].

CLint ml min�1 kg�1
� � ¼ k loss min�1

� �� g liver

kg body weight

�mL incubation

mg protein
� 45 mg protein

g liver
ð6:8aÞ

This equation holds true provided the reaction is conducted under linear condi-

tions, most likely met when substrate concentrations ([S]) are well below the Km

such that (0.5 � [S])/Km < < 0.693. Alternatively, in cases where one or more

non-CYP metabolism pathways contribute a substantial degree (>25%) to total

metabolism, metabolism should be measured in human hepatocytes and CLint

determined according to Eq. 6.8b.

CLint ml min�1 kg�1
� � ¼ k loss min�1

� �� g liver

kg body weight

�mL incubation

cells
� 120� 106 cells

g liver
ð6:8bÞ

For details on recommended assay conditions, readers are directed to detailed

descriptions on the topic [32, 80, 84, 85, 89]. In application of the ECM, the

CLint,met is determined from the in vitro model best suited to capture the relevant

metabolic pathways (e.g., microsomes, hepatocytes); PSinf and PSeff (active and

passive uptake terms) are measured in hepatocyte suspensions, whereas CLint,sec

data are generated from sandwich-cultured hepatocytes as described elsewhere

[29, 35, 54].
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In the absence of the data to determine CLh by the ECM, microsomal or

hepatocyte CLint scaled to CLmet by the well-stirred model can be added to

predicted human biliary clearance (hCLb) to achieve an estimate of total

hepatobiliary elimination. However, compounds with high permeability are likely

to be extensively reabsorbed across the intestinal epithelia, thereby reducing the

overall contribution of CLb to the total clearance. Therefore, predicted CLb should

be estimated as follows where CLbile-dog is the biliary clearance of parent drug

measured in a bile duct-cannulated dog and fa is the fraction (of an oral dose)

absorbed across the intestinal epithelia.

hCLb ¼ CLbile,dog � 1� fað Þ ð6:9Þ

The (1 � fa) term accounts for the non-reabsorbed fraction of biliary secreted

drug, thereby attenuating the predicted CLb to capture only the portion irreversibly

eliminated by this pathway. In all cases (whether determining CLh by ECM or by

summation of CLint,met + CLb), the predicted renal elimination of unchanged drug

should be accounted for by the prediction of human renal clearance (hCLr) for

which a recommended approach is to scale from dog or monkey renal elimination

including a correction for species protein binding.

hCLr ¼ CLrenal,dog or monkey � fuhuman

fudog or monkey

� �
ð6:10Þ

Using in vivo observed renal clearance in intact animals with correction differ-

ences in species plasma protein binding, human renal clearance was predicted

within twofold from dog or monkey renal clearance, for a set of 36 chemically

diverse drugs (r2 ¼ 0.84) exhibiting either active secretion or net reabsorption. This

scaling approach produced less error and underprediction bias compared with both

simple allometry and Mahmood’s corrected allometric scaling [91].

Considerations for Oral Administration

Most commonly, although not exclusively, contemporary industrial discovery pro-

grams designing and synthesizing small molecule entities are seeking orally bio-

available therapeutic agents. Therefore, the bioavailability (F) of the dose across

the intestinal absorption barrier and the first pass of the liver is of important

consideration for both the oral dose to be administered (oral clearance ¼ CL/F)
and also the enzymatic extraction in both the liver and the gut as it pertains to victim

DDIs. Oral bioavailability (F,oral) is defined in Eq. 6.11

F; oral ¼ Fa � Fg � Fh ð6:11Þ

where Fa is the fraction of dose absorbed from the intestinal lumen, Fg is the

fraction of dose escaping the intestine into the mesentery unmetabolized by gut
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enzymes, and Fh is the fraction of dose available in the portal vein that reaches the

systemic circulation unmetabolized by liver enzymes [32, 36]. The fraction

absorbed is most commonly limited by solubility, dissolution, and/or permeability

properties of the molecule and dose formulation. Compound absorption should be

calculated as described in the previous chapter and the resulting Fa determination

referenced for a mechanistic calculation of F as discussed here. Alternatively, the

fraction of dose absorbed can be estimated from rodent or dog F,oral according to

Eq. 6.1.

Fa ¼ F=Fh � Fg ð6:12Þ

However, this approach assumes that the discovery lot solubility and dissolution

parameters will estimate those observed in the clinic as well as assuming that the Fg

in rodents or dogs will be approximately 1.0, a commonly invalid assumption with

monkeys in which CYP3A is highly expressed in the intestinal epithelia

[92]. Extraction by intestinal metabolism requires careful consideration and has

been studied extensively with reliable methods currently employed in many dis-

covery programs. A study of 14 drugs in the perfused rat intestine alongside

48 drugs with rodent and human oral bioavailability demonstrated a high correla-

tion (r2 ¼ 0.8) for intestinal absorption (Fa) but no correlation (r
2 ¼ 0.29) observed

for oral bioavailability, suggesting species differences in metabolic extraction

(Fg � Fh) were largely responsible for lack of predictability from rodent to

human. In fact, intestinal CYP3A and UGT alone were reported to be present at

12- to 193-fold differences between species [93]. Human Fg can be projected based

on experimental data according to Eq. 6.13

Fg ¼
Qgut

Qgut þ fugut � CLint,g
ð6:13Þ

where Qgut is a determination of gut permeability taking into account the blood flow

surrounding the enterocytes, fugut is the fraction unbound in the intestinal lumen

(often assumed to equal 1.0), and CLint,g is the unbound intrinsic clearance in the

gut normalized for human CYP3A4 expression [94]. This calculation is based on

human in vitro model systems, whereas to harness preclinical in vivo data, the

following alternate method of calculating Fg based on in vivo monkey data has been

proposed:

Fg,human ¼ Fg,monkey

Fg,monkey þ 1� Fg,monkey

� �� CLint,HIM
CLint,MIM

ð6:14Þ

In Eq. 6.14, CLint,HIM and CLint,MIM are the in vitro intrinsic metabolic clearance

measured in human intestinal or monkey intestinal microsomes, respectively

[92]. Given the 2.3-fold higher expression of CYP3A in monkey and human

intestines (in contrast to rodent and dog which bear little to no intestinal

CYP3A), this method utilizes preclinical in vivo data while accounting for the

ratio of metabolic differences (utilizing intestinal microsomal preparations)
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between the model species (monkey) and the prediction species (human). Finally,

following a projection of CLh based on experimentation and calculations described

in Fig. 6.7 (either CL,met + CL,bile or CLh calculated according to the ECM), Fh is

calculated according to Eq. 6.15.

Fh ¼ 1� CLh=Qhð Þ ð6:15Þ

The resulting prediction of F,oral should be factored into oral clearance calcu-

lations and oral dose projections accordingly in addition to being considered in

static and dynamic models for projection of potential DDI risk in the clinic (see

Sect. 6.3).

6.2.3.3 Constructing a Mechanistic Profile

Upon conclusion of a mechanistic prediction of human clearance, there is oppor-

tunity to assess the fractional clearance pathways as they relate to clinical disposi-

tion. The following is a hypothetical but representative example of the knowledge

that should be expected for a compound interrogated as described for such a

projected human clearance. In this example, in vivo data for compound A obtained

from dog renal and biliary excretion studies and scaled as described above indicate

that 35% of the total projected human clearance is expected to be through the

excretion of unchanged parent drug ( fexc ¼ 0.35), whereas 65% is expected to be

through metabolism ( fmet ¼ 0.65). Of the fraction excreted, the majority (71%) is

expected in the urine with less in the bile. The majority (85%) of total metabolism

in hepatocytes was inhibited by co-incubation with the irreversible and nonselective

CYP inhibitor 1-aminobenzotriazole (ABT) and is, therefore, attributed to CYP

metabolism with 15% attributed to non-CYP pathway(s). Follow-up recombinant

work demonstrated that 90% of the CYP activity is due to CYP3A4 with a small

portion (10%) due to CYP2C9. Therefore, the fm,CYP3A4 is equal to 0.55

(0.9 � 0.65) and the fm,CYP2C9 is 0.06 (0.1 � 0.65).

Given this profile (Fig. 6.8), both the discovery team and the clinical develop-

ment scientists want to understand (as quantitatively as possible) the implications of

renal or hepatic impairment on the clearance of compound A. It would be valuable

to forecast the effect of a concomitantly administered CYP3A4 inhibitor or inducer

on compound A disposition including clearance and half-life. Given such under-

standing of a discovery molecule, a project team may determine that the forecasted

risk is appropriate given the indication (e.g., in the case of an unmet medical need)

and may choose to progress the molecule into clinical development, perhaps with a

modified clinical plan as the risk profile dictates, for example, exclusion of subjects

with moderate or severe hepatic impairment given that 75% of the clearance of

compound A is expected to rely upon the liver ( fmet ¼ 0.65 + febile ¼ 0.10). Alter-

natively, a program team may determine the forecasted risk is more than can

be reasonably tolerated (e.g., in the case of a projected high victim DDI risk for

a compound with a narrow therapeutic index) and may elect to revisit the
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structure-activity relationship in an attempt to discover compounds bearing less risk

in this particular area. Regardless of the ultimate decision, the value of this

prediction method is manifested by availing the team of the forecasted clinical

risk and permitting appropriate clinical progression both for product development

and patient safety-benefit profile.

6.2.4 Summary

In the LO discovery setting, the prediction of human clearance for a molecule or a

lead series of molecules is perhaps the single most important druggability property

available to the discovery scientist. Projected human clearance is essential to

anticipating drug performance in the clinic including the compound’s exposure

(AUC), its rate of elimination (t1/2), and by extension the dose required to elicit a

pharmacological response (efficacy). Without a promising or reliable projection of

clinical performance, discovery teams are left only to continue their design-

synthesis cycles until an optimally projected compound can be identified. As for

methods of clearance projection, simple allometry is a historically relied-upon

methodology for many reasons, and in some cases useful prediction accuracy can

be demonstrated over large sets of molecules making its frequency of use not

without justification. Mathematical corrections and modifications based on exper-

imental preclinical data can improve allometric uncertainty and prediction error in

some instances, but there are no universal rules for a correction method that works

for all compounds. Data suggest that for compounds known to be cleared primarily

by hepatic metabolism, correction of allometry by the ratio of animal-to-human

in vitro intrinsic clearance may provide the most promising of the rational, semi-

mechanistic approaches. Given no information on such mechanism, the FCIM

approach provides perhaps the best available correction over all compounds in

terms of reducing uncertainty and risk of overprediction bias (i.e., vertical allom-

etry). On the other hand, mechanistic approaches of clearance prediction provide

Predicted Human Clearance Pathways: Cpd A

Renal excretion: fe,OCT1 = 0.25

Biliary excretion: fe,MRP2 = 0.10

Hepatic CYP3A4: fm,CYP3A4 = 0.45

Hepatic CYP2C9: fm,CYP2C9 = 0.10

Hepatic UGT1A6: fm,UGT1A6 = 0.10
fmet = 0.65
- 85% by CYP
- 15% by non-CYP

fe = 0.35
- 71% in urine
- 29% in bile

fliver= 0.75

Fig. 6.8 An illustration of a fractional clearance profile on example discovery molecule A derived

from a mechanistic prediction of human clearance
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researchers with methodologies that can (1) in some cases provide increased

accuracy in clearance predictions, (2) be validated against preclinical in vivo

data, (3) be informed by data obtained from human in vitro model systems, and

(4) provide a rational prediction of the operative elimination pathways, the rate-

determining mechanisms, and the relative contribution to the total clearance of the

drug. With time, the underlying methods, including in vitro techniques and means

of calculating parameters, will undoubtedly continue to evolve and improve, but

with the steps outlined above researchers can achieve an increase in both prediction

accuracy and utility leading to improved decisions in discovery compound selection

as well as clinical trial design for patient safety and efficacy.

6.3 Integrated Approaches to Assess Drug-Drug
Interactions

Pharmacokinetic drug-drug interactions (DDIs) are one of the most commonly

encountered adverse drug reactions in the clinic and typically occur when one

drug (the perpetrator) alters the metabolism of a coadministered drug (the victim).

DDIs can manifest as an increase in the victim drug’s exposure (and a decrease in

clearance) due to reversible or irreversible enzyme inhibition, or a decrease in the

victim drug’s exposure (and an increase in clearance) due to induction of the

enzymes responsible for its elimination. DDIs can also occur when a compound

alters its own metabolism (autoinhibition/autoinduction), causing changes in phar-

macokinetics following repeat administration. The consequences of these changes

in drug exposure are dictated by the therapeutic window, and serious adverse

reactions can occur when exposure is pushed beyond the efficacious range. Con-

versely, reduction in exposure due to enzyme induction can lead to a reduction or

complete loss in efficacy. Considering the potentially fatal consequences, it is

unsurprising that several high-profile drugs have been withdrawn from the market

due to adverse DDIs.

Since cytochrome P450 (CYP) enzymes are highly susceptible to inhibition and

are responsible for most known oxidative reactions, evaluating the propensity of a

compound to inhibit or induce CYP enzymes is essential in drug discovery and is

ultimately a regulatory requirement. This section focuses on appropriate strategies

to predict and mitigate DDIs at different stages of drug discovery and development

by evaluating CYP involvement in metabolism as well as achieving an assessment

of a DDI’s clinical significance.

6.3.1 Induction

Metabolic enzyme induction is a process in which increased protein synthesis

yields elevated enzyme activity and a subsequent increase in metabolic activity.
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Consequently, the perpetrator will increase the clearance and decrease the exposure

of the victim drug, which can lead to a complete loss in pharmacological effect.

Alternatively, a compound can induce its own metabolism, resulting in lower than

expected exposure after repeat administration. Since the exposure is decreased in

both of these situations, induction generally has a lower potential for adverse

reactions compared to inhibition, and the primary concern in this case is a loss in

efficacy of the victim drug. It is important to note, however, that an unexpected loss

in pharmacological activity can lead to serious adverse effects depending on the

desired therapeutic outcome (or lack thereof). For example, the potent CYP3A4

inducer rifampin can lead to serious adverse effects such as opioid withdrawal

symptoms when administered with methadone [95] or organ rejection when admin-

istered with cyclosporine [96]. One case in which CYP induction could potentially

lead to toxicity is when the formation of reactive metabolites increases, as with the

alcohol-mediated induction of CYP2E1, which has been associated with elevated

hepatotoxicity due to acetaminophen overdose [97]. These examples underscore the

importance of identifying the induction potential of a new chemical entity prior to

clinical nomination, and, consequently, pharmaceutical companies have incorpo-

rated the evaluation of induction potential into standard discovery screening and

lead optimization programs [98–100].

Briefly, the traditional approach for assessment of CYP induction potential

determines the changes in enzyme activity and mRNA expression of the key CYP

isoforms (CYP1A2, CYP2B6, and CYP3A4/5) after treatment of primary cultured

hepatocytes for 48 or 72 h [101]. Several in vitro systems are available for

evaluation of CYP induction [99], and primary cultured human hepatocytes remain

the preferred “gold standard” for the risk assessment of in vivo DDIs. Recently,

high-throughput 96-well techniques have been developed that quantitate CYP

activity, mRNA expression, protein levels, and cytotoxicity from a single well,

all of which is well suited to lead optimization [102].

The two key endpoints determined in a traditional in vivo induction assay are

EC50 (an indicator of potency, which is the concentration yielding half-maximal

induction) and Emax (the maximum fold increase in enzyme activity or mRNA

level). A high degree of variability exists in reported Emax and EC50 values for

known inducers (such as rifampin) and has been attributed to differences in

hepatocyte donors, cell culture conditions, and other experimental variables such

as buffer type and the use of an overlay. Consequently, several investigators have

recommended calibrating the induction data for new chemical entities using a

positive control, which has yielded improved DDI prediction [103, 104].

Considerations on the risk assessment for induction using steady-state and

dynamic modeling are included in Sect. 4. The remainder of this section will

focus on the mitigation of and risk assessment for adverse DDIs arising from

inhibition of CYP isozymes.
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6.3.2 Reversible (Direct) Inhibition

The vast majority of clinical drugs are metabolized by the CYP enzymes, with

CYP3A4, CYP2C9, CYP2C19, and CYP2D6 responsible for approximately 80% of

known oxidative reactions [105, 106]. Due in part to their broad substrate specific-

ity, CYP enzymes are highly susceptible to inhibition, which can be classified into

two general categories: reversible (direct) and irreversible (time dependent). Direct,

reversible inhibition is characterized by rapid association and dissociation of

inhibitor and enzyme, thus preventing the binding of a substrate to the active site.

Classical competitive inhibition, in which the inhibitor interferes with the binding

substrate (and thus increases the apparent Km without affecting Vmax), is one of the

most common types of reversible inhibition. In contrast, irreversible inhibition is

characterized by either covalent bonding of the inhibitor to the enzyme or the

formation of a quasi-irreversible metabolite-intermediate complex (MIC). This

type of inhibition will be discussed in Sect. 1.3.

Since metabolism of the inhibitor is not a prerequisite for direct inhibition,

reactive species formation is also not required for this type of inhibition. Conse-

quently, in contrast to mechanism-based inactivators, there are no clear “structural

alerts” for direct inhibitors. In addition, since this type of inhibition is reversible,

the in vivo effects of direct inhibition persist only while the inhibitor is present.

Overall, there have been fewer clinically relevant DDIs due to reversible inhibition

than due to irreversible (time-dependent) inhibition; however, potent reversible

inhibition is still an important liability, and current methodologies to evaluate direct

inhibition and predict the likelihood of an in vivo DDI are summarized in Sects. 2.3

and 2.4.

6.3.3 Time-Dependent Inhibition

Time-dependent inhibition (TDI) refers to an apparent decrease in enzyme activity

with time, caused by either the formation of inhibitory metabolites or the mecha-

nism-based inactivation (MBI) of CYP enzymes. Experimentally, MBI is charac-

terized by both time- and cofactor (NADPH)-dependent decreases in enzyme

activity and can be broadly divided into two categories: (1) quasi-irreversible

inhibition leading to metabolite-intermediate complex (MIC) formation and (2) irre-

versible inhibition due to covalent modification of a CYP heme or apoprotein.

Common to both forms of MIB is the formation of a reactive intermediate that

either coordinates tightly to the heme (in the case of MIC formation) or covalently

binds to the enzyme (in the case of irreversible inhibition). Trends on the reactivity

(and inhibitory activity) of specific functional groups known to cause MBI have

emerged, and the chemical moieties associated with MBI have been the subject of

several excellent and comprehensive reviews [107–109]. A brief summary is

included below.
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6.3.3.1 Quasi-Irreversible Inactivation and MIC Formation

The term quasi-irreversible inactivation originated from the observation that

in vitro dialysis (typically overnight) can restore microsomal CYP activity follow-

ing CYP inhibition due to MIC formation [110]. In addition to dialysis, quasi-

irreversible inhibition can be reversed in vitro by potassium ferricyanide

[111, 112]. Physiologically, however, this process is functionally irreversible

in vivo and, therefore, indistinguishable from other forms of MBI (i.e., covalent

modification of CYP) with respect to clinical DDIs [113]. In vitro, MIC formation

can be readily identified by observing a shift in the characteristic absorption

spectrum to 455 nm from 427 nm, which is due to alterations of the UV absorbance

of the prosthetic heme [114].

Structure alerts for MIC formation include primary amines (and secondary/

tertiary amines susceptible to N-alkylation to a primary amine) and

methylenedioxyphenyl derivatives. Primary amines are converted to a highly reac-

tive nitroso intermediate (via a hydroxylamine metabolite) capable of coordination

with the prosthetic heme [115], whereas methylenedioxphenyl compounds are

converted to reactive carbene intermediates [116].

Compounds susceptible to MIC formation comprise a wide range of chemical

matter and subsequently represent the largest number of clinically relevant DDIs

compared to the other mechanisms leading to MBI. This class of compounds

includes macrolide antibiotics (e.g., troleandomycin [113] and erythromycin

[117]) and calcium channel blockers (e.g., diltiazem [111] and verapamil [110]).

6.3.3.2 Covalent Modification of the Heme Prosthetic Group

Irreversible CYP activation, which cannot be reversed following in vitro dialysis,

can occur via two distinct mechanisms that are differentiated by the site of covalent

modification: the prosthetic heme group or the CYP apoprotein. Although the

nitrogen atoms of the heme prosthetic group are relatively weakly nucleophilic,

generation of the reactive species in the CYP active site in close proximity to the

pyrrole ring can facilitate direct N-alkylation and subsequent CYP inactivation

[109]. Common functional groups associated with heme alkylation include alkenes,

alkynes, hydrazines, cyclopropylamines, and terminal olefins. Clinically relevant

DDIs arising from heme alkylation are relatively rare; however, several examples

exist of covalent heme modification leading to N-alkylprotoporphyrin IX forma-

tion, which can cause experimental porphyria in animals (for a review, see Marks

[118]). Elucidation of the orientation of the heme within the CYP active site was

advanced through the use of this class of compounds and their ability to selectively

N-alkylate pyrrole nitrogen atoms [119]. In addition, 1-aminobenzotriazole (ABT)

elicits covalent heme modification [120], and even though this modification has not

been associated with clinical DDIs, it is an important tool that has been extensively

used in early ADME discovery programs to understand the contribution of
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CYP-mediated oxidative metabolism to total clearance [121]. The nonselective

CYP inactivation mediated by ABT is postulated to proceed through the formation

of a highly reactive benzyne intermediate capable of binding across two of the

pyrrole nitrogen atoms of the prosthetic heme.

6.3.3.3 Covalent Modification of the CYP Apoprotein

In addition to the heme, the CYP apoprotein is an attractive target for irreversible,

covalent modification by highly reactive species generated within the CYP active

site. This process renders the enzyme functionally inactive or in some cases acts as

a signal for proteolysis. Identification of the specific amino acid residues suscepti-

ble to adduct formation is now possible due to advances in liquid chromatography/

mass spectrometry [122]. For example, the novel CXCR2 antagonist AMG487 was

shown to form a highly reactive species (M4) that was responsible for MBI and

covalently bound to Cys239 of CYP3A4 [123]. Due to the inherent reactivity of

intermediate species, characterization of the putative reactive intermediate

(s) involved in MBI is often achieved in vitro through conjugation with nucleo-

philes (e.g., reduced glutathione (GSH), semicarbazide, or cyanide) and more

detailed structural assignment via NMR.

Common functional groups associated with covalent CYP apoprotein modifica-

tion include furans, phenols, dihaloalkanes, and thiophenes [108]. As observed with

compounds that elicit MIC formation, irreversible inhibitors that show apoprotein

binding span a wide range of therapeutic areas, including the non-tricyclic antide-

pressant nefazodone [124], kinase inhibitors (e.g., imatinib) [125], and

tetrahydrothienopyridines (e.g., clopidogrel) [126].

6.3.4 Strategies for Mitigating DDI-Related Liabilities

6.3.4.1 In Silico Methods

Since common functional groups are known to be associated with various forms of

MBI, attempts have been made to use in silico techniques to predict the likelihood

of CYP inactivation. The interactions at the CYP active site are complex, however,

and the fate of an inactivating compound is determined by the balance between

reactive species formation and metabolism not amenable to MBI. Structure-based

computational models have been developed that successfully predicted MBI, but

these are largely retrospective in nature and rely on an established mechanistic data

set [127].
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6.3.4.2 Reducing Lipophilicity and Introducing Polarity

A general association has been observed between increased lipophilicity and

decreased CYP inhibition [128], and several investigators have demonstrated

success with a strategy of altering lipophilicity to mitigate MBI. Westaway et al.

[129] increased polarity in a series of related compounds to reduce CYP inhibition

liabilities, leading to identification of the first small molecule agonist of the motlin

receptor. Zhao et al. [130] also demonstrated that CYP MBI was attenuated for a

series of GLYT-1 inhibitors through reduction of clogP by 0.6 log units. Similarly,

a net reduction of cLogP from 5.5 to 3.5 decreased the CYP3A4 inhibition liability

for a series of antigen 4 receptor antagonists [131]. While these examples demon-

strate a general trend of improved CYP inhibition profiles with decreased

lipophilicity, it should be noted that these structural modifications may also

decrease desirable properties, such as target potency or other ADME properties.

Consequently, additional, more targeted strategies have been employed to attenuate

CYP inhibition.

6.3.4.3 Examples of Successful Medicinal Chemistry Strategies

to Address TDI

Attenuation of TDI can be accomplished through replacement of (or blocking

access to) the structural motif responsible for reactive intermediate formation

with a metabolically unreactive functional group. To support this strategy, the

putative reactive intermediate is first typically identified as a GSH conjugate via

NMR, leading to synthesis of structural analogs that have various degrees of TDI.

An example of this approach was highlighted by Johnson et al. [132], who reported

successful modification of the indole core of chemoattractant receptor inhibitors to

remove TDI and DDI liability. The mechanistic studies that enabled this successful

medicinal chemistry effort were originally reported by Wong et al. [133], who

showed that the lead candidate (AMG009, a 2-methylindole containing compound)

elicited TDI through covalent modification. A GSH conjugate was unambiguously

determined via NMR to be GSH adducted to the C-3 position of the 2-methylindole

moiety, and replacement of this motif with an oxindole group prevented reactive

intermediate formation and abolished TDI.

6.3.4.4 Analysis of Concomitant Medications (Conmeds)

In addition to mitigating the potential of clinical DDIs by structural design, clinical

co-medication analysis for target patient populations can help put a presumed DDI

risk into clinical context and diminish it. For example, a drug that inhibits or

induces a certain CYP enzyme is unlikely to cause any clinically significant DDIs

(severe adverse effects) if co-medications for the target patient population are
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primarily cleared by different CYP enzymes. The significance of a clinical DDI also

depends on the magnitude of the interaction. For instance, for a CYP3A4 inhibitor,

the DDI risk with extensively CYP3A4-metabolized co-medications is likely much

higher compared to other, less extensively CYP3A4-metabolized co-medications

unless the co-medications have a wide therapeutic index and/or the associated

clinical effects are manageable or not severe. Potential DDI risks might also be

avoidable if administration of an alternative co-medication is an option, allowing

for a bypass of metabolic pathways dominated by CYPs. For accurate assessment of

the clinical liability and informed decision-making about compound progression,

early cross-functional collaboration between biologists, DMPK scientists, and

clinical scientists is valuable.

Bloomer et al. published an excellent review of how an understanding of

co-medications in target patient populations can help prioritize or deprioritize

DDI assessments and potentially discharge a DDI risk [134]. Common marketed

co-medications are shown along with their varying prescription rates for various

therapeutic targets, demonstrating that the prescription rate of a co-medication

might be zero for a certain target but significant for others. Additionally, drug

interactions of the most clinically relevant enzymes (and transporters) and the

mechanistically corresponding number of co-medications (>300 evaluated) are

shown. The number of co-medications is categorized into strong, moderate, or

weak clinical perpetrators and into severe, moderate, or limited clinical risk for

victims, all based on the “worst-case” scenario. As expected, CYP3A4 metabolizes

the majority of the evaluated co-medications, many of which are strong perpetrators

or victims with a moderate to severe clinical risk and, therefore, have clinically

relevant interactions. The authors emphasize that the determination of clinical

significance of DDI risks also requires a consideration of whether a victim

co-medication has a narrow therapeutic index, in other words if a small change in

exposure can lead to severe clinical outcomes, as well as the frequency of

co-medication use. If the co-medication does have a narrow therapeutic index,

further DDI evaluation is needed, and the question becomes one of overall risk-

benefit. Is the DDI manageable by dose adjustment, drug monitoring, or toxicity

monitoring, is it avoidable by alternative treatment options, or does

co-administration need to be excluded? On the other hand, if the victim does not

have a narrow therapeutic index and the frequency of co-medication use is low (and

no severe toxicities are expected), co-administration is possible and the DDI risk

would be very low.

6.3.5 In Vitro Assessment of DDI Potential

Routine evaluation of the potential for CYP inhibition (both reversible and time

dependent) has become firmly entrenched in ADME screening paradigms com-

monly used in the pharmaceutical industry. As discussed previously, a key require-

ment for a successful medicinal chemistry campaign to reduce DDI liability is a
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rapid, high-throughput assay that supports an iterative approach to attenuating CYP

inhibition. Experimentally complex studies designed to determine kinetic parame-

ters (Ki, KI, or kinact) are, therefore, not suitable in a screening paradigm, since

longer incubations involving multiple time points are required to capture rates of

inactivation at multiple concentrations, all of which is not amenable to a higher-

throughput format. To support the assessment of CYP inhibition in a drug discovery

setting, several abbreviated assays have emerged and are summarized below.

6.3.5.1 Higher-Throughput Evaluation of CYP Inhibition

Single-Point IC50

Early identification of the potential for direct inhibition has become an integral

component of drug discovery screening paradigms. Gao et al. [135] reported an

excellent correlation (r¼ 0.99) between the percent inhibition at a single test article

concentration (3 μM) and in a traditional ten concentration IC50 curve. Abbreviat-

ing an IC50 experiment that requires multiple test compound concentrations to a

single evaluation at 3 μM yields significant time and resource gains in a screening

paradigm. While insufficient for detailed risk assessment, screening data from a

single-point assay allows for rapid compound binning or rank ordering, which

facilitates identification of structure-activity relationships (SARs) and efficient

de-prioritization of potent inhibitors.

IC50 Shift

One of the most commonly implemented methodologies for early assessment of

time-dependent CYP inhibition is the IC50 shift assay [136, 137] in which a left

“shift” in the IC50 (i.e., an increase in potency) is presumed to be caused by TDI. In

this experiment, two IC50 values are compared: (1) a standard IC50 value

representing “direct” inhibition, with a 30 min preincubation in the absence of

NADPH, and (2) a left “shifted” IC50 (in the case of TDI), with a 30 min

preincubation in the presence of NADPH. The fold-shift is calculated as the ratio

between the direct and shifted IC50 values, and an arbitrary threshold of a fold-shift

greater than 1.5 has been proposed to flag compounds as positive for TDI. In

general, the IC50 shift assay correlates well with TDI potential expressed as kinact/
KI [136, 138, 139]. It is important to note that although the kinact/KI parameter is

frequently used as an indicator of TDI potential as it combines both the potency and

inactivation rate, it has no physiological relevance as a predictor of the magnitude

of an in vivo DDI.

A key experimental consideration for the IC50 shift experiment is the use of a

dilution, which has been shown to increase the assay sensitivity [140]. Parkinson

et al. [141] summarized the pros and cons of the dilution approach, in addition to
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highlighting the key experimental factors to consider when designing an IC50 shift

experiment.

Several variations of the IC50 shift assay have been proposed. The area under the

curve (AUC) shift approach [142] addresses the issues associated with weak

inhibitors when an IC50 value (shifted and/or direct) cannot be calculated due to

incomplete inhibition at higher concentrations. The AUC shift approach eliminates

the need for a measurable IC50 value by comparing the AUC values from the

percent activity remaining curve and the concentration curve (with and without

NADPH in the preincubation). A threshold value of a percent shift greater than 15%

was proposed to classify a compound as positive for TDI.

Another variation of the IC50 shift assay was proposed by Li et al. [143] in

which, in addition to the two IC50 curves (with and without NADPH) generated

using the traditional method, two additional IC50 values are determined in fresh

microsomal incubations containing extracts from the first two incubations (with any

metabolite formed during the initial reaction). The key readout from this novel

format is that a left shift in IC50 from the incubations containing extracts is due to

inhibition from metabolites and provides additional insight on the mechanism of

inactivation.

Single Concentration Activity Loss Assays (with Dilution)

In contrast to the multiple concentrations required for the IC50 shift assay, an

abbreviated approach that evaluates TDI at single concentration has been

implemented in several drug discovery programs [139, 140, 144]. In one version

of this methodology (referred to as “single kobs”), a single concentration (typically

set to 10 μM) is preincubated with microsomes and cofactor (NADPH) and then

diluted (typically 1/20) into a selective marker substrate assay to measure residual

activity. A plot of percent activity remaining versus time facilitates calculation of

the inactivation rate (kobs), and this value correlates with kinact/KI (R
2 ¼ 0.74)

[139]. Further evaluation of the single kobs approach revealed that, using a database
of 400 reference compounds, a kobs value of 0.02 min�1 (or 45% inhibition after

30 min) is a good indicator of TDI potential. Wong et al. [145] demonstrated that

the single kobs assay can be abbreviated to evaluate percent inhibition at a single

concentration at a single time point (30 min), eliminating the need for multiple time

points required for determining the inactivation rate. Using this method, good

correlations were observed between the percent inhibition at 10 or 25 μM and

kinact/KI. Single concentration TDI assays have also been developed using a cocktail

approach [146], in which the potential inhibition of multiple CYP isoforms is

determined using multiple substrates in a single pooled incubation. A variation on

the single concentration assay approach is the “2 + 2” method originally proposed

by Zientek et al. [147], in which two concentrations of an inactivator are evaluated

at two time points (0 and 30 min). Regardless of the format, abbreviated methods to

identify TDI potential have become important tools in drug discovery and lead
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optimization, and careful weighing of the resource savings compared to other

methods (such as the IC50 shift assay) is required.

Choice of Appropriate Assay to Support TDI Mitigation

Comparison of the various abbreviated assay formats to assess TDI in a discovery

setting has been the subject of several reviews [140, 148]. Practical considerations

related to ease of automation have favored implementation of the IC50 shift

approach; since many pharmaceutical companies evaluate direct (reversible) inhi-

bition routinely, it is relatively simple to also determine an IC50 value with or

without preincubation containing NADPH. Another attractive property of the shift

assay includes its high sensitivity (especially if a dilution is used), which can

minimize the propensity of false negatives, a primary goal for initial screening

assays.

Both the IC50 shift and kobs assays are good indicators of TDI potential, but a

recent analysis by Wong et al. [145] suggested that the strong correlation between

shifted IC50 and kinact/KI was positively biased by the inclusion of potent and

efficient inactivators (kinact/KI > 30). When these strong inhibitory compounds

were excluded, the correlation (R2) between shifted IC50 and kinact/KI decreased

from 0.8 to 0.6. In contrast, the correlation between single kobs and kinact/KI

remained good (R2 ¼ 0.8) even when potent and efficient inactivators were

excluded from the analysis. Therefore, a single concentration assay may be a

more appropriate format to support an iterative medicinal chemistry strategy to

reduce the TDI/DDI liability for a series of structurally related compounds of

similar, but moderate, TDI potential. Several successful implementations of a

single concentration assay approach have been reported [132, 149].

6.3.5.2 Kinetic Determination of Ki, KI, and kinact

Direct (Reversible Inhibition)

A useful parameter for describing reversible inhibition is the dissociation constant

Ki, which, unlike IC50 (the concentration that yields half-maximal inhibition), is

independent of the substrate concentration. The methodology for determining Ki

has been well characterized [150, 151] and involves determining the effect of a

range of inhibitor concentrations on substrate turnover at various multiples of the

Km (typically 0.5, 1, 2, 4, and 5� Km). Reciprocal plots (Lineweaver-Burk, Dixon,

or Eadie-Hofstee) can aid in the diagnosis of the mode of irreversible inhibition

(i.e., competitive, noncompetitive, or uncompetitive) and determination of Ki. The

advent of modern software packages has enabled nonlinear regression analysis to fit

the various forms of direct inhibition to determine the Ki.

Ki determination is not amenable to a high-throughput evaluation (since multiple

substrate concentrations are required), and IC50 values are routinely used as the key
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initial readout for reversible inhibition. A convenient relationship exists between Ki

and IC50 for competitive and noncompetitive inhibitors: when the substrate is at its

Km, Ki is equal to one half of its IC50. Haupt et al. [152] evaluated the accuracy of

this estimation for 343 compounds, and 92% of the estimated Ki values (calculated

as½ IC50) were within twofold of the actual Ki, supporting the use of IC50 as the key

parameter for risk assessment for reversible inhibition.

The magnitude of change in victim drug exposure (i.e., the ratio between initial

and final AUC values (AUCR)) can be predicted using a steady-state approach that

takes into account the inhibitor concentration [I] and the Ki. The FDA draft

guidance (2012) recommends a threshold value of an AUCR greater than 1.25

(where AUCR ¼ 1 + [I]/Ki) to determine the need for a clinical DDI study.

Contributions from direct inhibition are incorporated in the mechanistic static

model (or net effect model) and are discussed in Sect. 4.1.

Irreversible (Time-Dependent) Inhibition

Predicting the change in exposure of a victim drug following TDI requires knowl-

edge of two properties intrinsic to the inhibitor: (1) a measure of the potency, KI,

which is the concentration yielding half-maximal rate of inactivation and (2) the

maximum rate of inactivation, kinact. The experimental procedure for determining

these kinetic parameters was originally proposed by Silverman [153], and the

fundamental components remain in modern methodologies. Assessment of TDI is

accomplished in a two-step assay in which the CYP, cofactor, and inhibitor are

preincubated in the first stage, followed by a second activity assay in which the

residual enzyme activity from the preincubation is determined. The marker sub-

strate is incubated at saturating conditions to minimize potential direct (reversible)

inhibition, and a dilution (of at least 1/20) is used to reduce the inhibitor concen-

tration in the activity assay. Incubation time for the activity assay is kept as short as

possible (i.e., enough for sufficient marker substrate activity) to reduce the potential

for continued TDI. These strategies (dilution, saturating substrate concentration,

and reduced incubation time) all strive to isolate the enzyme inactivation to the

preincubation stage and minimize any contaminating effect of the inhibitor during

the activity assay.

The key output from the two-step procedure is a series of inactivation rates (kobs,
determined by a plot of the natural logarithm of percent remaining activity versus

preincubation time) at different concentrations. A plot of kobs versus inhibitor

concentration typically yields a classic hyperbolic Michaelis-Menten curve in

which KI is analogous to Km and kinact is analogous to Vmax.

Due to their kinetic nature, determination of the parameters KI and kinact is highly
sensitive to experimental conditions such as incubation time, protein concentration,

and dilution. Unsurprisingly, initial literature values for otherwise well-

characterized inhibitors often had unacceptably high variability (for a review, see

[154]). Yang et al. [155] highlighted two factors contributing to uncertainty and

variability: inhibitor depletion and additional (contaminating) inhibition during the
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activity assay. Thus, short incubation times and at least a 1/20 dilution are

recommended, and these considerations have largely been incorporated into the

majority of TDI kinetic studies reported in recent years [156].

Experimentally, one key consideration is the high concentrations that, depending

on the potency, would be required to accurately characterize the kinetic parameters.

For example, assuming that achieving maximal inactivation requires a concentra-

tion of about five times the KI, a compound with a KI of 25 μM would need to be in

solution at a concentration of greater than 125 μM. Typically, the final solvent

(DMSO) concentration is recommended to be less than 0.1% to avoid inhibition of

CYP isoforms, translating to a stock solution of 100 mM for this example. Creating

solutions at this level of concentration can pose a problem for compounds with poor

to moderate solubility, and consequently, a common issue associated with adequate

risk assessment for such compounds is the uncertainty associated with an incom-

plete KI/kinact curve. These limitations should be weighed carefully during the risk

assessment phase.

A key criticism of the standard “two-step” approach to determining kinetic

parameters is that the second stage activity assay is contaminated by continued

inactivation due the incomplete removal of the inactivator. Dilution is the most

common strategy for reducing the inhibitor concentration in the activity assay, but

this approach requires an increase in protein concentration in the initial

preincubation to facilitate sufficient substrate turnover for reliable activity mea-

surement. Increased protein concentration can, in turn, increase the amount of

nonspecific binding and decrease the amount of compound available to interact

with the enzyme. Another method called progressive curve analysis, which

accounts for the change in substrate, inhibitor, and metabolite concentrations in

the context of a TDI assay, provides an alternative approach to determining kinetic

parameters. This “all-in” approach does not require separation of enzyme inactiva-

tion from assessment of remaining enzyme activity, thus eliminating the need for a

dilution. Several investigators report improved accuracy in KI and kinact determina-

tion using a progress analysis approach [157, 158]. In addition, recent reports by

Nagar et al. [159] and Korzekwa et al. [160] suggest a numerical method that

directly determines TDI parameters using kinetic schemes which lead to better

estimates of KI and kinact. While initial reports are promising, further studies are

required to determine if KI and kinact values determined using these modeling

approaches yield improved accuracy in the prediction of in vivo DDI.

6.3.6 Assessing Clinical DDI Risk

6.3.6.1 Static Mechanistic Models

Although advances in high-throughput screening and early evaluation of DDI

potential have enabled successful mitigation strategies and the mechanism that

drives reactive species formation and TDI can be fully elucidated preclinically,
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the necessary structural changes to eliminate a CYP liability are often incompatible

with attributes required for pharmacological activity. In this common scenario, risk

assessment for the likelihood of a clinically relevant DDI is required in order for a

molecule with in vitro DDI liabilities to progress to the clinic.

Initial attempts to predict the in vivo consequences of MBI were first proposed

by Hall and associates [161, 162], who applied fundamental concepts of suicide-

type mechanism-based enzyme activators to CYP enzymes. The primary assump-

tion for this approach is that the inhibitor concentration is constant at steady state,

and, over the past decade, this model has evolved to incorporate contributions from

gut metabolism and competing metabolic pathways. More recently, these efforts

culminated in a “net effect” model that incorporated contributions from direct

(reversible) and time-dependent inhibition and induction [163]. This mechanistic

static model is now recommended by the FDA in its draft guidance (2012) and

consists of three components: (1) reversible inhibition, (2) TDI, and (3) induction.

Interactions at the level of the gut and liver are also incorporated into the model.

Although several investigators have reported on the relative predicative accu-

racy of various input inhibitor concentrations ([I]) in the static model, the FDA

recommends the most conservative approach, which translates to a high estimate of

the input inhibitor concentration (i.e., free hepatic portal Cmax). This conservative-

ness reduces the propensity for false-negative results (i.e., failing to predict a

clinically relevant DDI), but increases the potential of false positives, leading to

more in vivo studies yielding nonclinically significant results.

The predictive accuracy of static models has been evaluated by several investi-

gators. Fahmi et al. [98] reported that, for a series of 30 clinical DDIs, the combined

net effect model yielded an 88% success rate with a mean-fold error of 1.74.

However, the success rate was low for compounds that were anticipated to be

both inhibitors and inducers, with four out of five such compounds showing

predicted exposure changes of greater than twofold higher or lower than the

observed values. Guest et al. [164] also observed that a static approach yielded

good overall predictions for in vivo DDIs (77% success rate). However, a review

[165] of the multitude of retrospective analyses reveals that conclusions on the

predictive accuracy of static models are highly dependent on the input parameters

(kdeg, KI/kinact, [I], gut contribution) as well as the perpetrator-victim pairs consid-

ered for each study. In Wong’s analysis, low estimates of certain parameters (such

as kdeg) were shown to affect conclusions on the apparent improved prediction

accuracy when selecting other parameters (such as the input inhibitor concentra-

tion). Thus, the perceived success of the static model is highly dependent on the

selection of input parameters, and conclusions based on the predictive accuracy

using retrospective studies should be caveated by the specific assumptions of the

input parameters selected.

The tendency for static models to overpredict the magnitude of an in vivo

interaction has been observed by several investigators. Vieira et al. [166] observed

that, in general, mechanistic static models tended to overpredict the likelihood of an

in vivo DDI arising from TDI. Kenny et al. [167] reported that, for a series of

12 kinase inhibitors, a traditional steady-state approach generally led to an
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overestimation of DDI magnitude and several false positives. Taken together, these

studies support the FDA’s general opinion that the conservative static approach

minimizes the propensity for false negatives.

A potential drive for the overestimation of in vivo DDI using a static approach is

the inaccuracy of kinetic parameters derived from microsomal experiments as a

result of uncertainties around the actual unbound concentration in the liver with

access to the CYP active site. Mao et al. [168] reported improved predication

accuracy when using KI and kinact values determined in cryopreserved human

hepatocytes suspended in human plasma, suggesting that accounting for plasma

protein binding and the requirement for delivery into hepatocytes may improve the

effectiveness of a steady-state approach to predict DDI.

Overall, static models tend to minimize the incidence of false negatives, which is

desirable from a safety perspective, but tend to overpredict the likelihood of an

in vivo DDI. In an analysis reported by Prueksaritanont et al. [17], overpredictions

of up to tenfold were observed when using the free hepatic portal concentration as

the input inhibitor concentration recommended by the FDA. These authors com-

ment that, while the guidelines are likely successful in avoiding false negatives,

essentially no clinical DDI study can exclude compounds that demonstrate any

nonnegative inhibitory signal, regardless of the in vitro study outcome.

6.3.6.2 Dynamic Models

In a recent review by Sager et al. [14] of the use of physiologically based pharma-

cokinetic (PBPK) modeling, the highest percentage of literature articles were on

DDIs (27%) followed by clinical pharmacology (23%) and absorption (12%).

These statistics are unsurprising considering that a PBPK approach overcomes

the need to simplify an interaction to static conditions by accounting for changes

in three critical parameters over time: (1) inhibitor, (2) victim, and (3) enzyme

concentration. The basic framework for a PBPK model consists of a series of

compartments representing individual organs or tissues, with the relationship

between these compartments defined by physiological flow (e.g., blood, bile, or

pulmonary ventilation). A system of differential equations describes the rate of

change of drug concentration or active CYP enzyme with respect to time; thus

PBPK models take into consideration the kinetic nature of an interaction involving

a DDI (for reviews, see [169]).

Recognizing the mathematical complexity of a PBPK approach, the advent of

sophisticated software solutions has enabled broader adoption and application of

this technique. Proprietary software systems that are designed for PBPK modeling

include SimCYP (Certara), GastroPLUS (Simulations Plus), PK-SIM (Bayer Tech-

nology Services), and Cloe Predict (Cyprotex Ltd). Of these packages, SimCYP is

one of the more commonly used in the pharmaceutical industry, and this

population-based ADME simulator incorporates PBPK modeling to predict plasma

concentration-time profiles based on input physiochemical and in vitro derived
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parameters [170]. This modeling system has received widespread implementation

in the pharmaceutical industry as well as recognition by the FDA as a useful tool for

assessing DDIs. The application of PBPK modeling in the pharmaceutical industry

has been recently reviewed by Jones et al. [171].

The utility of SimCYP to predict DDIs (arising from CYP inhibition) has been

retrospectively investigated by Wang [172], and he found that the majority of

studies (87%) were predicted within twofold error of observed values. In a similar

retrospective analysis, Einolf [173] demonstrated good (within twofold error)

predictive accuracy of the PBPK approach. Overall, both of these retrospective

studies suggest a modest improvement in predictive accuracy when using a PBPK

approach facilitated by SimCYP compared to the steady-state model, which tended

to overpredict.

With respect to induction, Almond et al. [103] reported that the prediction

accuracy of a PBPK-based approach improved when in vitro EC50 and Emax data

were calibrated using in vivo data (i.e., the maximum fold in vivo induction,

Indmax). These authors emphasized the need for individual laboratories to evaluate

how prototypical inducers respond in their own in vitro system and understand the

relationship between their in vitro system and in vivo induction in order to improve

the risk assessment of induction-mediated DDIs.

In addition to assisting in risk assessment, a key application of dynamic model-

ing is the ability to simulate clinical exposures and assist in DDI trial design. One

example in which PBPKmodeling was used to help guide clinical DDI study design

was reported by Jones et al. [171]. Compound Y was a late-stage clinical candidate

that had marked nonlinear pharmacokinetics, with a sixfold increase in dose-

normalized AUC between the 5 and 400 mg doses. It is important to note that

compound Y was primarily metabolized by CYP1A2 and the key DDI concern was

its susceptibility as a victim to CYP1A2 inhibitors, such as fluvoxamine. When

in vitro data was used in a “bottom-up” modeling approach, SimCYP

underpredicted exposures at the higher doses. By leveraging SimCYP’s Bayesian
parameter estimation, a “middle-out” approach determined that threefold higher

estimates of Km and Vmax were required in order to accurately simulate the

supraportional PK observed in the clinic. The default clinical trial design to

evaluate the potential for a CYP1A2-mediated DDI would have determined the

effect of a 100 mg daily dose of fluvoxamine (a potent CYP1A2 inhibitor) on a low

dose of compound Y. However, the PBPK model, refined using the “middle-out”

approach to accurately capture the nonlinear PK, predicted that unacceptable

CYP1A2-mediated DDIs would occur only at low, subtherapeutic doses of com-

pound Y. With this insight, the clinical DDI trial was designed to include both high

and low doses of compound Y and confirmed a minimal risk for CYP1A2-mediated

DDI at the higher (and more therapeutically relevant) dose. In the absence of PBPK

modeling, only the low dose of compound Y would have been evaluated, and the

positive DDI potential would have terminated the program.
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6.3.6.3 Microdosing

The potential for DDIs can be relatively easily predicted by any of the previously

discussed in silico, in vitro, and modeling and simulation methods. However, the

magnitude of the DDI remains far more challenging to predict. This is particularly

true at the drug discovery stage when preclinical data is prospectively translated

into clinical interactions compared to the early clinical development stage when

clinical DDI data is already available and predictions are made retrospectively.

Depending on the stage at which a drug is in the pipeline and the target of the drug

discovery program, knowing the magnitude of DDIs might not be critical, and the

previously discussed methods would provide sufficient guidance. As drug candi-

dates enter the lead optimization stage and a lead compound needs to be selected

among several others, the ability to confidently predict the potential and the

magnitude of an interaction becomes more and more essential for informed “go/

no-go” decision-making and ultimately for the patients’ safety and therapeutic

benefit. This is particularly true in the case of drug candidates with a narrow

therapeutic index, such as anticancer drugs, for which a relatively small change

in exposure can lead to detrimental clinical outcomes.

Exploratory microdosing in human, a subset of phase 0 studies, is one promising

and emerging tool that can be utilized to predict and quantify the DDI risk based on

CYP inhibition for victim drugs. Microdosing has been successfully evaluated and

used for more than a decade; however, up till now this technique has been

predominantly used for the evaluation of human pharmacokinetics [174]. More

recently, the application of microdosing has spread into the evaluation of DDIs

[175]. Microdosing refers to a dose for a small molecule that is no greater than

100 μg or 1/100th of the no observed adverse effect level (NOAEL), whichever is

lower. Neither therapeutic nor toxic effects are expected to be seen at such a low

dose, enabling drugs to be safely evaluated in humans as part of the exploratory lead

optimization stage rather than the clinical stage. Compared to traditional phase

1 studies, timelines and regulatory requirements, such those needed for preclinical

data, compound amounts, and specifications, are limited for microdosing studies,

and thus these studies can be conducted in a shorter time frame at a lower cost. The

decreased time and cost of these studies is attractive and makes them feasible at the

drug discovery stage as a complimentary tool in the candidate selection process.

Existing published examples for DDIs in human volunteer microdosing studies

are still very sparse, but they support the validity and usefulness of this technique

and encourage their continued application. Croft et al. showed in a proof of concept

study that human microdosing can be used to investigate the DDI risk for victim

compounds [176]. Midazolam (a CYP3A4 substrate), tolbutamide (a CYP2C9

substrate), caffeine (a CYP1A2 substrate), and fexofenadine (a P-glycoprotein

(P-gp) substrate) were given simultaneously at a microdose of 25 μg each ([176]).

PK parameters of the substrates were determined before and after combined,

pharmacologically active, repeat doses of ketoconazole (a CYP3A4, CYP2C9,

and P-gp inhibitor) and fluvoxamine (a CYP1A2 and CYP2C9 inhibitor) were
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administered at 400 mg and 100 mg, respectively. These data were compared to the

PK parameters obtained in a traditional, non-microdosing DDI study. The CYP

substrates represent lead compounds, whereas the inhibitors represent

coadministered marketed drugs/perpetrators. The results showed that alterations

in PK due to inhibition in the microdosing study were quantitatively comparable to

those observed in the regular studies. Another example of human cassette

microdosing was published by Maeda et al. [177] and describes the simultaneous

administration of atorvastatin, pravastatin (OATP substrates), and midazolam

(a 3A4 substrate) as a microdose. The PK of the substrates was determined before

and after administration of separate, regular (pharmacologically active) doses of

rifampicin (an OATP inhibitor) and itraconazole (a CYP3A4 inhibitor) at 600 and

200 mg, respectively. The AUC exposure was significantly increased for the

microdosed OATP (pravastatin) and 3A4 (midazolam) substrates in the presence

of its corresponding inhibitor. The atorvastatin AUC exposure significantly

increased only in the presence of the OATP inhibitor rifampicin but not in the

presence of the CYP3AA4 inhibitor itraconazole, suggesting that hepatic elimina-

tion of the compound is predominantly driven by hepatic uptake by OATPs at a

microdose level. For microdose cassette dosing, no interactions are expected among

the compounds in the cassette due to the very low levels of the compounds.

Microdosing studies have also been utilized to evaluate DDIs due to food [178]

or transporters [179]; however, these interactions are not discussed in more detail

here as this section is focused on DDIs due to metabolic enzymes.

Due to the nature of microdosing studies, various highly sensitive analytical

tools (e.g., accelerator mass spectrometry (AMS), positron emission tomography

(PET), and liquid chromatography-tandem mass spectrometry (LC-MS/MS)) are

utilized to quantify the low drug concentration levels [180, 181]. For the purpose of

assessing DDI studies at the lead optimization stage, LC-MS/MS appears to be the

most practical. LC-MS/MS is most widely available, is relatively cost-effective,

and allows for faster and more straightforward sample processing and analysis. In

addition, the sample shipment is less challenging than that for PET studies, which

requires that the PET facilities be in close proximity to the research laboratory

because of the generally short half-life of positron emitting nuclides. Unlike AMS

and PET, LC-MS/MS enables dosing of multiple compounds simultaneously (cas-

sette dosing) and the use of non-radiolabeled material. This is particular important

at the lead optimization stage when a radiolabeled compound is typically not

available. While LC-MS/MS is less sensitive than AMS and PET, an evaluation

of the lower limits of quantitation of 31 diverse drugs suggests that LC-MS/MS is

sensitive enough to quantify plasma levels of most non-radiolabeled drugs in

microdosing studies to a degree that basic pharmacokinetic parameters can be

determined [182]. In practice, LC-MS/MS has already been successfully utilized

as an analytical tool in various microdosing studies, although there are reported

instances where it failed. Compounds with very low bioavailability or a high

volume of distribution might be challenging to analyze via LC-MS/MS [183, 184].

At this point, only a very small amount of published data exists for determining

DDIs of potential victim drugs by human microdosing, and the data is currently
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limited to marketed drugs with no examples of exploratory drugs [175]. More

caveats might emerge and a better understanding obtained of the prediction accu-

racy as more study results become available. However, this approach appears to be

a feasible, safe, and complimentary tool that can add valuable information at the

lead optimization stage if there are limitations or low confidence in other predictive

methods [171]. In this case, microdosing can help to prioritize and select lead

compounds and/or make “go/no-go decisions” efficiently and confidently.

6.3.7 Summary

Evaluating the in vitro propensity of a compound to inhibit or induce CYPs in vitro

allows for identification of potential DDI liabilities and SARs. However, in vitro

potency alone does not reflect the potential risk of a DDI manifesting in vivo.

Achieving an assessment of clinical significance of DDI is an important aspect of

drug discovery and development. Many tools exist to predict clinical DDI using

in vitro data, ranging from simple “rule-of-thumb” assessments such as [I]/Ki to

complex PBPK simulation packages such as SimCYP®. These in vitro tools are

used to obtain clear data on DDI potential over conducting in vivo animal studies,

which can lead to variable results due to species differences in enzymes or phys-

iology. In addition, while much less explored, microdosing in human can be

considered in certain instances as a valuable tool at the lead discovery stage to

predict the risk of drugs being victims of DDI. The evaluation of DDIs is an

iterative process throughout drug discovery and development with different

approaches appropriate at different stages and continuous refinement of the simu-

lations as new data becomes available.

6.4 Integrated Approaches to Assess Brain Penetration

The brain is separated from the systemic circulation by two main barriers: the

blood-brain barrier (BBB) and the blood-cerebrospinal-fluid barrier (BCSFB). The

BBB is composed of cerebral endothelial cells that differ from those in the rest of

the body by the presence of extensive tight junctions, the absence of fenestrations,

and the sparse pinocytotic vesicular transport. The BCSFB is formed by a contin-

uous layer of polarized epithelial cells that line the choroid plexus in the brain

ventricles. Both the BBB and BCSFB exhibit very low paracellular permeability

and express multiple drug transporters. These characteristics restrict the entry of

hydrophilic compounds or efflux transport substrates into the brain [185]. In this

section we will introduce the concepts related to brain penetration from the per-

spective of small molecule drug discovery and discuss how to effectively address

BBB issues in lead optimization.
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6.4.1 Pharmacokinetics of Brain Drug Delivery

For drugs that target the central nervous system (CNS), compounds with good brain

penetration should be selected during the drug discovery phase. Drug brain pene-

tration can be quantified by two parameters: the time required to reach equilibrium

between the brain and plasma concentrations and the extent of brain penetration.

These concepts are analogous to the rate and extent of oral absorption [186]. The

time to reach equilibrium is defined by the half-life needed to reach equilibrium

between brain and plasma concentrations [187]. The extent of brain penetration is

defined as the ratio of concentrations between free drug in the brain and free drug in

the plasma at distributional equilibrium, Kp,uu [188].

6.4.1.1 Time to Equilibrium

An empirical approach to identifying compounds with a quick onset of action

involves the screening of compounds in in vivo studies. In order to understand

the theoretical basis of this practice and develop a rational approach to design a

compound with a quick onset of action, one needs to understand the kinetics

involved in reaching equilibrium between brain and plasma concentrations. The

intrinsic brain equilibrium half-life (t1/2eq,in), defined as the time required for the

free brain concentration to reach 50% of free plasma concentration, is used to

quantitate how quickly a compound can enter into the brain [187]. The t1/2eq,in value
is calculated according to Eq. 6.16

t1=2eq, in ¼ Vb ln 2

PS � f u,brain
ð6:16Þ

where Vb represents the physiological volume of brain tissue, PS is the

permeability-surface area product, and fu,brain is the unbound fraction in the brain

tissue [187]. This equation demonstrates that a combination of BBB permeability

and brain tissue binding determines the time to reach brain equilibrium, which is

supported by experimental observations. Theobromine has a low to moderate PS

(23 mL/h/kg) and a high fu,brain (0.61), resulting in a PS∙fu,brain of 14 mL/h/kg. In

contrast, fluoxetine has a high PS (619 mL/h/kg) and a low fu,brain (0.00094),

resulting in a PS∙fu,brain of 0.6 mL/h/kg. Consistent with a higher PS∙fu,brain product,
the observed t1/2eq,in for theobromine (~0.1 h) was shorter than that of fluoxetine

(~1 h) [187]. Similar conclusions were made by Syvanen et al. [188].

BBB permeability and brain tissue binding are likely correlated [187]. For

example, lipophilic compounds tend to have high BBB permeability and brain

tissue binding, while hydrophilic compounds have low permeability and tissue

binding. For many CNS drug-like molecules, plasma concentrations can quickly

equilibrate with brain concentrations despite substantial variability in BBB perme-

ability. In a study reported by Liu et al. [187], the brain concentration of six out of
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seven model compounds equilibrated with plasma concentration within 2 h post-

subcutaneous dose. Similar conclusions were drawn from a brain microdialysis

study in which compounds with much different BBB permeability values were

quickly able to reach brain equilibrium [189]. As a result of these data, a lead

compound should not be eliminated as a candidate compound for quick brain

penetration solely on the basis of low BBB permeability.

6.4.1.2 Extent of Brain Penetration

Kp,uu is a measure of the level of free brain concentration relative to the free plasma

concentration; therefore, understanding the factors governing Kp,uu is important in

drug design. In general, these factors can be identified through a compartment-

based pharmacokinetic analysis. For CNS pharmacokinetics specifically, a simpli-

fied physiologically based three-compartment model that incorporates the plasma,

brain, and CSF can be used.

According to this three-compartment model (Fig. 6.9), Eq. 6.17 can be derived at

steady state when the plasma, brain, and CSF concentrations remain constant.

Cluptake and Clefflux are the active uptake clearance and efflux transport clearance,

respectively, at the BBB. Clbulk is the clearance due to brain interstitial fluid bulk

flow and Clmetabolism is the brain metabolic clearance. According to Eq. 6.17, the

extent of brain penetration, Kp,uu, can be augmented by either increasing Cldiffusion
or Cluptake or reducing Clefflux, Clbulk, or Clmetabolism. The plot is from Liu

et al. [190].

Fig. 6.9 Three-compartment model for CNS drug disposition
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Kp,uu ¼ CldiffusionþCluptake

CldiffusionþCleffluxþClbulkþClmetabolism

ð6:17Þ

Cluptake can be enhanced by designing a compound to be a substrate of brain

uptake transporters. For example, the large neutral amino acid transporter 1 trans-

ports L-DOPA and gabapentin across the BBB. Although L-DOPA has been

available for several decades, the same success in increasing brain penetration

has rarely been replicated in other drugs, except for its close-in analogs. Effective

in vitro approaches have yet to be developed to screen brain uptake transporter

substrates that deliver drugs through the uptake transporters at the BBB for com-

pounds that are not closely related to endogenous substances. However, as

explained below, it is more feasible to design lipophilic compounds (high Cldiffusion)

without significant efflux transport (low Clefflux) than to design compounds as

uptake transporter substrates (high Clup).

Clbulk can play an important role in decreasing Kp,uu for low permeability

compounds. Clbulk is estimated to span the range of 0.2–0.3 μL/min/g [191]. Take

the example of mannitol, a compound of low permeability with a Cldiffusion value of

less than 1 μL/min/g. Bulk flow becomes significant compared to its permeability,

resulting in a low Kp,uu (0.01). Clbulk, however, is not an important factor for typical

CNS lead compounds, which generally have moderate to high Cldiffusion. For

example, Cldiffusion for caffeine is approximately 13 μL/min/g. In this case, Clbulk
is much lower than the permeability and has an insignificant effect on caffeine’s
Kp,uu (1.0) [192].

Brain metabolism, Clmetabolism, can also play a significant role in reducing Kp,uu.

Metabolizing enzymes such as monoamine oxidases (MAOs), flavin-containing

monooxygenases (FMOs), cytochrome P450s, and glucuronosyltransferases have

been identified in brain endothelial cells and brain tissue [193–196]. Hence, the

metabolic stability of a compound in brain tissue needs to be examined in early drug

discovery. If a compound is not stable in brain tissue, its impact on brain penetration

assessment, such as brain/plasma ratios, and free brain concentrations need to be

investigated.

For most CNS compounds, the uptake drug transport, bulk flow within the brain

tissue, and the metabolism in the brain is insignificant compared to the diffusion

process. In typical CNS drug discovery programs, the main mechanism that impairs

brain penetration of small molecules is efflux transport mediated by drug trans-

porters at the BBB, which is quantified by efflux clearance, Clefflux. In this situation,

Eq. 6.17 can be simplified to Eq. 6.18.

Kp,uu ¼ 1

1þ Clefflux=Cldiffusion
ð6:18Þ

It is clear from Eq. 6.18 that compounds with high diffusional permeability

(high Cldiffusion) are desirable so that the impact of the efflux transport does not

reduce Kp,uu significantly.
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6.4.2 Drug Transporters at the BBB

Efflux transporters such as P-glycoprotein (P-gp, gene symbol Abcb1), breast

cancer resistance protein (Bcrp, Abcg2), multidrug resistance-associated proteins

(Mrp, Abcc), and several organic anion transport polypeptides (Oatp, Slco) as well

as the organic anion transporter (Oat3, Slc22a8) have been identified at the BBB

and/or the BCSFB in preclinical species and humans [55, 197, 198]. Yousif et al.

[199] examined the gene profile and expression for Mdr1a, Mdr1b, Bcrp, Mrp1–5,

and Oatp1a4 (Oatp2) in rat brain and found that the gene profiles of only Mdr1a,

Bcrp, Mrp4, and Oatp1a4 were similar to those of endothelium markers, indicating

the presence of these transporters at the BBB. In the past few years, significant

progress has been made in using a proteomic approach to assess the transporter

expression at the endothelia from various species. Teresaki and coworkers deter-

mined the absolute drug transport proteins at the BBB using LC-MS/MS [200–

202]. Figure 6.10 shows the relationship between monkey and human and between

mouse and human transporter protein expression levels. The protein expression

level of MDR1 was not significantly different between brain capillaries of human

and monkey (left panels). In contrast, MDR1 expression in human was 43% of that

in mouse (right panels). The lower protein expression of MDR1 in human and

monkey brain capillaries would suggest a higher brain distribution of MDR1 sub-

strates in human and monkey than in mice. In contrast, the protein expression of

breast cancer resistance protein (bcrp)/ABCG2, which is also a drug efflux trans-

porter at the BBB, was 1.7-fold greater in monkey but 1.9-fold lower in mouse

compared with human brain capillaries. Considering the variability of the observed

data, the functional importance of different transporter expressions among various

species remains to be examined. However, quantitative-targeted proteomic analysis

provides clear molecular evidence for species differences in the BBB, which is

important when predicting drug permeability across the human BBB from animal

and/or in vitro data.

Although many drug transporters at the BBB have been reported in the literature,

majority of the data reveals that only P-gp and in some cases Bcrp are functionally

important in limiting drug distribution to the brain. The functional activity of drug

efflux transporters at the BBB is normally quantified by the brain-to-plasma ratio in

knockout (KO) animals versus the brain-to-plasma ratio in wild-type (WT) animals,

abbreviated as the KO/WT Kp ratio.

Figure 6.11 shows the importance of P-gp in limiting brain penetration of its

substrates and, to a lesser extent, the importance of Bcrp in limiting the brain

penetration of its substrates. Citalopram is not a substrate of P-gp or Bcrp and its

KO/WT Kp ratio is within or near twofold error of unity. Amprenavir, digoxin,

loperamide, quinidine, and verapamil are P-gp substrates, and their KO/WT Kp

ratios are much greater than unity in the P-gp KO mice (blue bars); however, in

Bcrp KO mice (brown bars), their KO/WT Kp values are near unity. In this data set,

sulfasalazine is the only Bcrp substrate, but its brain drug level is below the

quantitation of the assay in the Bcrp KO mice. Therefore, it is difficult to assess
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the functional importance of Bcrp at the BBB. Elacridar, imatinib, and prazosin are

dual P-gp and Bcrp substrates. For these substrates, knocking out Bcrp alone has

little impact on brain penetration, but knocking out P-gp alone has a clear effect on

the brain penetration for some of these compounds such as elacridar and imatinib.

The greatest effect, however, is from knocking out both P-gp and Bcrp. This

observation is consistent with many studies reported in the literature [205–207].

P-gp is considered to be the most important efflux drug transporter at the BBB,

and therefore, any CNS drug that is also a P-gp substrate will have a reduced

therapeutic window. The reduced therapeutic window occurs because P-gp-medi-

ated efflux at the BBB normally cannot be saturated and a high plasma free

Fig. 6.10 Comparison of protein expression levels in brain capillaries between human and

monkey and human and mouse. (a) Human-monkey and (b) human-mouse. Upper panels:
comparison of absolute protein expression levels of membrane proteins between humans and

animals. The solid line passing through the origin represents the line of unity, and the broken lines
represent threefold differences. Each point represents the mean 	 SD. The molecules on the

horizontal (mouse, monkey) or vertical (human) axis are below the limits of quantification. Lower
panels: ratio of expression levels of membrane proteins in animals to those in humans. The broken
lines represent threefold differences. Each bar represents the mean 	 SD. The molecules were

ordered according to their expression levels. ULOQ means that the expression was under the limit

of quantification in the indicated brain capillaries. INSR insulin receptor, TfR transferrin receptor.

Plots are from Ohtsuki et al. [203]
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concentration is necessary to compensate for the efflux transport and drive the free

concentration in the brain to the efficacious level. In this situation, the higher

plasma concentration can increase the risk of peripheral toxicities. An ideal CNS

drug, therefore, is not a good substrate for P-gp efflux; however, scarce literature

data are available to define the level of P-gp-mediated transport that is acceptable

for drug candidates. In a comprehensive study, P-gp transport of the 32 most

prescribed CNS drugs were examined in mdr1a/1b KO and WT mice. In all, 22%

of the compounds showed an efflux ratio of unity, 72% had values between 1 and

3, and 6% had values between 3 and 10 [208]. These results indicate that the

majority (92%) of CNS drugs tested show no to weak P-gp-mediated transport.

These data support the conclusion that “good” P-gp substrates should be avoided as

CNS drugs. On the other hand, P-gp-mediated drug transport per se would not be

the sole reason to terminate the development of a candidate if a large therapeutic

window is projected in humans.

Several examples indicate the benefits of developing P-gp substrates as periph-

eral targeted drugs to reduce CNS side effects. First-generation H1 antagonists such

as diphenhydramine, triprolidine, and hydroxyzine produce histamine blockade at

H1 receptors in the CNS and frequently cause somnolence or other CNS adverse

effects. However, second-generation H1 antagonists such as cetirizine, loratadine,

fexofenadine, and desloratadine produce relatively little somnolence or other CNS

side effects at recommended doses. Chen et al. [209] demonstrated that the first

generation of H1 antagonists are non-P-gp substrates and the second generation of

H1 antagonists are P-gp substrates. The first generation of these drugs, therefore,

Fig. 6.11 Effect of P-gp and Bcrp on brain penetration in mice. The solid line represents unity.

The broken lines represent twofold error from the line of unity. The concentrations of Ko143 and

sulfasalazine are below the quantitation of the assay. Data are from Liu et al. [204]
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displays high brain concentrations, while low brain concentrations are seen for the

second-generation drugs. Similar observations were made by several other

groups [210].

The literature is not consistent on species differences for P-gp activity. One

study showed a difference in P-gp ATPase binding affinity between rhesus monkey,

dog, and human [211]. Further, the Km values of diltiazem exhibited approximately

16.5-fold differences among human, monkey, canine, rat, and mouse P-gp-

transfected cell lines [212]. Yamazaki et al. [213] reported different efflux ratios

between mouse and human P-gp-transfected cells, suggesting species differences

for P-gp activity. In contrast, a study using a set of 3300 compounds demonstrated a

93% overlap between mouse and human P-gp-mediated transport [214]. Thus,

significant mouse-human differences in P-gp activity may be a rare phenomenon.

6.4.3 Integrated Approaches in Assessment of Brain Drug
Delivery

6.4.3.1 In Silico Methods

There are generally two types of in silico models for the BBB: one is used to predict

the brain-to-blood ratio, Kp, and the other is a rule-based model for CNS drugs.

Most BBB in silico models were developed to predict Kp. The main limitation of

these models is that Kp is not a good parameter for characterizing brain penetration,

as Kp is determined by both Kp,uu and plasma and brain tissue binding. For example,

Kp for the 32 most prescribed CNS drugs ranged from 0.1 to 24 in mice. A

compound having a Kp value as low as 0.1, such as sulpiride, can still be a

successful CNS drug, demonstrating the difficulty in assessing brain penetration

on the basis of Kp alone [208]. To address the limitation of the Kp model, Gratton

et al. [215] and Liu et al. [216] developed a BBB, permeability-surface area product

(PS) model using the data generated by the in situ brain perfusion method. The

logPS model may be used in conjunction with in vivo PS. An observed permeability

that is substantially lower or higher than the predicted value indicates that efflux or

uptake transporters modulate brain penetration for the tested compound. For exam-

ple, in a study of BBB permeability, the PS values of the uptake transporter

substrates phenylalanine and levodopa were underpredicted, and the PS values of

P-gp substrates, digoxin, CP-141938, and quinidine, were overpredicted [216].

In practice, rule-based models are more useful as they can be easily understood

and used by medicinal chemists in drug design. Rule-based models are based on the

observation that many brain-penetrant compounds exhibit different physicochemi-

cal properties than non-brain-penetrant compounds. Although these rule-based

models have their own limitations, they are useful in defining the chemical space

based upon known CNS drugs or drugs with CNS activities. These rules are similar

to Lipinski’s rule of five, but are generally more stringent. A compound is likely to

penetrate into the brain if its molecular weight is less than 500 Da, it has fewer than
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two to six hydrogen bond acceptors, it has fewer than two to three hydrogen bond

donors, and its clogP or logD is in the range of 2–5. In addition, its polar surface area

(PSA) should be in the range of 40–90 Å2 and its pKa less than 10 [217–220]. These
properties are based on strong scientific rationale and can be either directly observed

from the chemical structure or readily calculated using commonly available soft-

ware, and therefore, the rule-based model is widely used in CNS drug design.

6.4.3.2 In Vitro Methods

Brain capillary endothelial cells (primary cell cultures and derived cell lines) have

been used as models to study CNS penetration for many years, particularly to

explore mechanistic questions involving drug transport [221]. However, these

brain-derived systems are challenging to use because of culture variability and

the need to repeatedly isolate cells. They also exhibit increased paracellular per-

meability, which has limited their broad use as a tool to study BBB permeability.

Recently, BBB endothelial cells derived from human pluripotent stem cells have

been isolated and shown to exhibit many BBB attributes, including low paracellular

permeability; however, the utility of this model in predicting BBB drug transport

remains an active area of investigation [222]. Typically, cell lines from noncerebral

origins are used as in vitro models for prediction of BBB transport. MDCK and

LLCPK1 cell monolayers that stably express transporter proteins such as P-gp and

Bcrp are the most common systems because they efficiently form tight junctions,

are easy to culture, and are predictive of the extent of BBB efflux. Since these cell

lines do not originate from cerebral endothelial cells, however, they do not reca-

pitulate the transport characteristics of the BBB other than those of the specific

transfected transporter. It is, therefore, important to consider what question is being

explored when selecting a noncerebral cell line to characterize CNS penetration of a

drug. An ideal in vitro model should have similar paracellular permeability and

transporter characteristics as the BBB and should be easily set up for routine drug

screening. More research is needed to develop such an in vitro BBB model.

6.4.3.3 In Vivo Methods

Several methods are used to estimate Kp,uu. Brain microdialysis is a direct approach

to determine free brain concentration. However, the utility of microdialysis in the

drug discovery setting is limited because the method requires extensive resources

and is not easily applied to highly lipophilic compounds. In drug discovery, Kp,uu

can be readily estimated using Eq. 6.19

Kp:uu ¼
f u,brain
f u,plasma

� Kp ð6:19Þ

216 B.M. Liederer et al.



where fu,plasma and fu,brain are the plasma and brain unbound fraction, respectively,

and Kp is the total brain-to-plasma ratio. The fu,plasma and fu,brain values can be

estimated using in vitro equilibrium dialysis approaches with plasma and brain

tissue homogenate, respectively, and Kp can be determined from in vivo studies

[223]. A good correlation exists between the Kp,uu determined using microdialysis

and the Kp,uu estimated from Eq. 6.4 [224]. A potential caveat in using brain tissue

homogenate to estimate fu,brain is that homogenization may change binding proper-

ties by unmasking binding sites that are not accessible to a drug in vivo. These

concerns may be addressed by using a brain slice approach in which the brain

structure remains intact [225, 226].

A cassette dosing approach has been developed to increase throughput for

determining Kp in in vivo studies [204, 227]. Although drug transporter substrates

and inhibitors may incidentally exist in one cassette and the brain penetration for

the drug transporter substrates could be modified by the inhibitors, we hypothesized

that if cassette dosing is conducted at a low dose of 1–3 mg/kg, the possibility of

drug-drug interactions at the BBB is probably low. To test this hypothesis, we

selected a set of 11 compounds including known potent P-gp and Bcrp inhibitors

and typical P-gp and Bcrp substrates to create the “worst” scenario of potential

drug-drug interactions at the BBB; we observed no difference in the Kp values

between individual and cassette dosing in mice (Fig. 6.12).

Fig. 6.12 The relationship between Kp determined from discrete dosing and cassette dosing of

nine compounds. The solid and dotted lines represent unity and twofold error. A amprenavir,

C citalopram, D digoxin, E elacridar, I imatinib, L loperamide, P prazosin, Q quinidine,

V verapamil. The brain concentrations of sulfasalazine and Ko143 and the plasma concentration

of Ko143 were below the lower limit of quantitation. These results demonstrate that drug-drug

interactions at the BBB are unlikely to occur at a subcutaneous dose of 1–3 mg/kg, and they

support the use of a cassette dosing approach to assess brain penetration in drug discovery. The

plot is from Liu et al. [204]
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Kp,uu may also be estimated in drug discovery from CSF drug concentration,

assuming that the CSF drug concentration represents the free brain concentration.

Shen et al. [228] observed that CSF concentration approximates free brain concen-

tration for moderate to high permeability compounds, but this relationship does not

necessarily hold true for low permeability compounds. Our results indicate that

CSF concentration is typically between plasma free concentration and brain free

concentration [227, 229]. Although the cellular location of P-gp suggests that it

pumps substrates from plasma into the CSF [230], the in vivo functional importance

of the transporter at the BCSFB seems limited. The free brain/CSF concentration

ratios of three typical P-gp substrates, loperamide, verapamil, and quinidine, in

P-gp KO and competent mice were 1.5, 1.9, and 3.6, respectively, which are much

less than the Kp,KO/Kp,WT ratios of 9.3, 17, and 36, respectively [208]. However,

other transporters, such as Mrp1, do not play a significant role at the BBB but are

important at the BCSFB [231]. Therefore, in drug discovery settings in which

in vitro or in silico data have demonstrated that compounds are not substrates for

efflux transporters, plasma free or CSF concentrations provide a simple way to

estimate Kp,uu. This approach is useful in the lead optimization of highly lipophilic

compounds when measurement of the free fraction is difficult and the unbound

brain concentration cannot be calculated from the observed total brain

concentration.

6.4.4 Summary

The optimization of brain penetration in lead optimization needs to consider the

time to reach equilibrium and the extent of brain penetration. For CNS drugs whose

indications require a quick brain penetration, a short time to reach brain equilibrium

is essential. This can be achieved by screening compounds for a combination of

high permeability and low brain tissue binding. For all CNS projects, compounds

with high predicted human Kp,uu should be selected by screening out very poorly

permeable compounds and, more importantly, efflux transporter substrates. Many

drug transporters are expressed at the BBB; however, the available data point to the

importance of P-gp, and in some cases Bcrp, in limiting the brain penetration of its

substrates in vivo. For other drug transporters at the BBB, more research is needed

to reveal their in vivo significance. CNS drug discovery screens should, therefore,

be used to eliminate good P-gp and Bcrp substrates; however, special consideration

should be given to weak or moderate P-gp and Bcrp substrates as potential CNS

drugs if a large safety margin exists.
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Chapter 7

Developability Assessment of Clinical
Candidates

Shobha N. Bhattachar, Jeffrey S. Tan, and David M. Bender

Abstract The role of the developability (aka preformulation) scientist at the

discovery development interface has been extensively discussed in the literature.

In response to shifting trends in discovery and the continued push to shorten

timelines and reduce costs, the engagement of the developability scientist on

discovery teams has steadily moved upstream over the past two decades. In this

new and continually changing role, the developability scientist has the opportunity

to influence the selection of chemistry scaffolds entering the lead optimization

phase and subsequently the selection of developable compounds for clinical testing.

In its current state, developability assessment of clinical candidates is an assessment

of the physicochemical and biopharmaceutical properties of the compound, carried

out with due consideration to the patient in question, the clinical testing plan, and

the commercial landscape. This chapter describes the dynamic and integrated

nature of this assessment, along with a description of the in silico, in vitro, and

in vivo tools used, and illustrative case studies. Key areas of focus include:

(a) Solid form design and selection.

(b) Characterization of the physicochemical properties associated with the solid

form, such as solubility, stability, and dissolution properties.

(c) Absorption modeling, including the definition of clinical product performance

criteria and the need (if any) for absorption enhancement.

(d) Assessment of absorption enhancement potential using technology platforms

that lend themselves to commercial development (including in vivo evaluation

where relevant).

(e) The assembly of a comprehensive data package that includes an assessment of

potential risks to clinical and commercial development.
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7.1 Introduction

The term “developability” has been steadily gaining acceptance in the pharmaceutical

industry over the past 5–8 years [1]. It takes its roots from the older and more

well-known concept of “preformulation” but is different in that it is a far more

comprehensive assessment of the development potential of a compound into a

drug product that meets specific and well-defined criteria.

The term “preformulation” has long been used to describe activities governing

the assessment of physicochemical properties of drug substances, with a view to

inform formulation development. Formulation development for new molecular

entities (specifically small molecules) has generally been accepted to mean imme-

diate release of solid oral dosage forms. Accordingly, for a number of years, the

standard preformulation package has been a detailed assessment of measured pKa,

log P, solubility and stability in aqueous buffers, and solid form properties includ-

ing crystallinity, thermal, and vapor sorption properties [2]. Historically, in addition

to assembling the preformulation package, the role of the preformulation

(developability) scientist has been to profile the physicochemical properties of

compounds entering the discovery funnel and also to apply their knowledge to

provide as-needed advice on formulations for pharmacology and ADME studies.

Over the years, shifts in discovery paradigms have driven gradual but big

changes in the business of preformulation and the role of the development scientist

[3]. The advent of high-throughput biological screening in the late 1980s has been

widely known to bias compound selection toward more potent compounds (aka the

high-affinity trap) that have subsequently been found to pose significant

druggability and developability challenges due to molecular size, lipophilicity,

etc. [4]. In a move to address these issues and to stay abreast of discovery efforts,

computational tools and high-throughput physicochemical property screens have

been developed and used as tools, along with preset criteria, to filter out compounds

with undesirable properties from progressing through the discovery flow schemes

[5]. As a result, the gap between discovery and development has narrowed signif-

icantly. However, preformulation scientists have largely operated with a rule-based

mindset, generating valuable data to inform the downstream organization of devel-

opment risks, without directly facilitating or influencing the discovery engine.

The growing complexity of biological targets, the continued push to increase

productivity, the influence of increasing partnerships, and in-licensing and

out-licensing activities have ushered in a new development paradigm. In concept,

this new paradigm is built on the foundation of critical drug product attributes that

are derived from the patient/caregiver profile and is a comprehensive assessment

encompassing the clinical and commercial development potential of a compound in

terms of synthesis of the drug substance, physical properties as they pertain to

isolation, handling, product performance, stability, absorption, the toxicology for-

mulation, and drug product parameters. Lastly, but equally important, the assess-

ment is also designed to provide the program team and the downstream

development organization with relevant information on developability and risk

profile as it relates to impact on timelines, flexibility, and costs.
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7.2 Components of Developability Assessment

The various components of developability assessment are described in the

paragraphs below. The screens and tools used to address these components are

not new and have been previously described in the literature. However, the distinc-

tive difference between the integrated approaches described in this chapter and a

“rule-based” approach is that the integrated approach applies these components in

the holistic context of the project and not based on simple rules set for individual

parameters. This approach looks at developability as it pertains to early clinical

development, but with a longer-term line of sight to commercial development. Thus

it takes into account the required patient/product profile, knowledge of the target

(first in class/best in class), risk tolerance based on business drivers, and impact of

recommendations on downstream activities (see Sect. 7.6 for details).

It is important to note that while the integrated approach provides a fair degree of

flexibility based on scientific judgment, it operates on the premise that all assess-

ments are ultimately tied to the clinical and commercial development potential of

the compound and risks associated therein. Accordingly, the integrated approach

specifies critical attributes (Table 7.1) that must be satisfied for a compound to be

selected for clinical development.

7.2.1 Synthetic Complexity of Drug Substance

Consideration of the synthetic complexity of a molecule is an important aspect of

drug design, as this parameter can have a significant impact on the cost to produce

the drug substance as well as on development timelines. While interest in this area

has grown over the past several decades, the topic has remained somewhat contro-

versial, due at least in part to the fact that there remains a degree of uncertainty in

what the term complexity means. For example, a molecule may be inherently

complex while still being readily accessible, as is the case with corticosteroids

which are typically manufactured starting from raw materials that are derived from

natural sources. Synthetic complexity can also change over time, as a result of novel

synthetic designs as well as advances in organic synthesis. For example, when the

molecule strychnine was first synthesized by Woodward in 1954, it required a total

Table 7.1 Critical attributes of a developable compound

1. Has no physical or chemical stability issue that would preclude development and when

formulated using reasonable means (Sect. 7.2)

2. Has a maximum absorbable dose that will allow exploration of the full clinical dose range

(Sect. 7.2)

3. Has demonstrated technical feasibility for an enabled formulation if needed for absorption

(Sect. 7.2)

4. Absorption parameters are well characterized and understood (Sect. 7.4)
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of 30 steps [6]. Since this original publication, a number of other researchers have

published improved routes to this molecule, the most recent of which was reported

in 2012, in which the total number of synthetic steps had been reduced to six [7].

The costs associated with the production of a pharmaceutical product as referred

to as cost of products sold (COPS) or more commonly cost of goods sold (COGS).

Based on data collected between 1975 and 2007, these costs represent a significant

percentage of total sales (mean COGS/sales ¼ 35.95%) [8]. As molecules enter

commercial development, an assessment of COPS becomes increasingly important

to ensure that these costs are appropriate for the therapeutic class. For example,

COPS for a novel oncology asset are significantly less important than for a glucose-

lowering agent, in which the cost per day of therapy that the current market will

support is much lower. Costs to produce drug substance are even more significant

during clinical development, when routes used to produce drug substance have

likely not been optimized for large-scale production. Development timelines are

arguably more important than costs during this phase of development. In many

cases, project teams find themselves working in very crowded space with compet-

itors, making it is very important to complete clinical development and reach the

market as soon as possible. As a result, it has become increasingly important to

begin to assess complexity of chemical scaffolds under investigation during the

discovery phase to ensure that molecules brought forward carry with them an

appropriate amount of complexity relative to the competitive landscape as well as

to the therapeutic area to which they are targeted.

A number of different approaches have been used to estimate complexity. Early

in the discovery and development process, a simple “bucketing” method may be

appropriate, in which the complexity of new molecules is simply classified as high,

medium, or low. This method, while not detailed, does provide some general

guidance to project leaders and company stakeholders as to the high-level impli-

cations of the complexity of a given molecule in development. This type of

assessment is best considered in the context of other historical projects and

would, therefore, be expected to be different across different companies.

Complexity Costs Timelines

High Above average Above average

Medium Average Average

Low Below average Below average
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The bucketing approach relies on the knowledge of the individual(s) conducting

the assessment and, as a result, is highly subjective. However, given even a small

set of parameters (number of synthetic steps, number of chiral centers, method of

isolation, etc.), an assessment can be made that should provide a reasonable

estimate of the challenges likely to be encountered when first preparing the drug

substance during clinical development.

In an ideal setting, computational tools could be used to assess complexity,

which would remove subjectivity and bias that arises from the knowledge and

backgrounds of individual chemists. Such QSAR models of complexity have been

explored for several decades. The first significant report of the development of a

synthetic complexity index using graph theory was published in 1981 by Bertz at

Bell Laboratories [9]. Bertz’s complexity index C(η,ε) is still in use and is reported
for all chemical structures in PubChem. Work in this area has continued. Recently,

B€ottcher reported [10] on the development of a new model based on an additive

approach. It utilizes the evaluation of the microenvironment of each individual

atom, ion, and molecule and summation of the properties of each atom into an

additive complexity score. Other more empirically based computational approaches

have been reported such as those by Barone and Chanon [11]. These models assess

complexity of a chemical structure by counting structural features (i.e., number of

heteroatoms, rings, chiral centers, etc.) and multiplying them by optimized

weighting factors. In another approach, Kjell et al. reported on the use of a model

of process mass intensity (PMI) as a surrogate for complexity [12]. PMI is defined

as the mass of materials consumed divided by the mass of product. A synthetic

scheme with a lower PMI would be considered a more efficient one than a

corresponding route with a higher PMI. In a somewhat hybrid version of these

approaches, authors from Merck have recently reported the results of a

crowdsourcing approach. In this study, a total of 386 chemists were asked to assess

2681 molecules taken from a combination of public and internal structure data-

bases. This manual assessment was then used to construct a QSAR model of

complexity in which additional structures could be assessed. While there was

considerable disagreement among different chemists, the authors demonstrated

that it was possible to utilize this dataset to build a self-consistent QSAR model

of complexity.

There will likely be a continued interest in the area of complexity determination.

Based on work in the current literature, a combination of different approaches may

ultimately be needed to fully assess complexity of new molecules. Due to the

increasingly complex nature of new biological targets as well as the compounds

designed to target them, this work will continue to play an important role in the

selection and development of new medicines.
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7.2.2 Physicochemical Properties

Generally, physicochemical properties include pKa, log P, solid-state properties,

solubility, and stability. As needed, additional assessments such as counterion

analysis (to confirm stoichiometry of salts) or Karl Fischer analysis (to confirm

hydration state) may be carried out to gain a deeper understanding of the solid form

of the compound. For a detailed treatment of the individual properties and structure-

property relationships, the reader is referred to sources in the literature [13]. The

importance of a deep understanding of these fundamental aspects cannot be

overestimated as it is essential for appropriate planning of studies and application

of results.

The means used to assess some of these properties may include in silico tools at

an initial stage, followed by in vitro screens of increasing depth as compounds

advance through the discovery flow scheme. The goal of these activities is to

initially triage compounds to support discovery efforts, followed by more rigorous

but phase-appropriate assessments to support clinical studies and toxicological

assessments as smaller numbers of compounds progress toward candidate selection.

In simple terms, the overarching goal of assessing physicochemical properties is

to understand (a) the dissolution and solubility of the compound under bio-relevant

conditions; (b) the solid form properties as they relate to isolation, handling, and

storage of drug substance; and (c) the impact of properties on drug product

attributes including formulation options. Ultimately, this understanding is directly

tied to the critical attributes of the compound that must be met for developability.

Table 7.2 lists the material requirements for assessing these properties, the tiered

manner in which they can be assessed, and the information that can be gleaned from

the data. Figure 7.1 describes the relationship between physicochemical properties

of drug substance, biopharmaceutical properties, and drug product performance.

For orally absorbed compounds, the primary goal is to ensure that absorption is

not a limiting factor for achieving the desired plasma exposures in clinical studies

(and beyond). This depends on the solubility (dissolved concentration in the

gastrointestinal tract) and permeability of the compound across the intestinal

membrane. Compounds that have aqueous solubility greater than 2 mg/mL across

the pH range of 2–8 and human intestinal permeability greater than 1.25 � 10�4

cm/s may be deemed highly absorbable provided the solubility is associated with a

developable solid (crystalline) form of the compound. (Developability criteria for

solid forms in this context will be described in detail later in this section.) For

compounds that do not fit this definition, a more detailed assessment of the

absorption potential has to be made, taking the projected clinical dose range into

context. These details are discussed in Sects. 7.3 and 7.4.

The secondary goals include the physical and chemical attributes of the com-

pound relevant to manufacturing of drug substance and drug product. Assessment

of physicochemical properties using a judgment-based integrated approach there-

fore is focused on achieving the primary goal while striking a reasonable risk-

benefit balance with the secondary goals. To some extent, the definition of
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Table 7.2 Developability assessment: physicochemical properties

Property

Minimum

material need

(mg) Place in flow scheme Implications and comments

pKa 1–2 mg Tier 1: in silico

Tier 2: measured (as needed;

UV spectral shift [14] and

capillary electrophoresis

[15] commonly used)

If compound has basic

pKa(s) �4 or acidic pKa

(s) �7:

Compounds with basic pKa

(s) may have large variabil-

ity in oral dose PK in dogs

depending on intrinsic solu-

bility and dosing conditions.

Gastric pH may impact oral

absorption. Extent of impact

will depend on the intrinsic

solubility and pKa(s)

Potential for salts to

improve physical properties

and/or dissolution rate

Log P and

Log D

1 mg Tier 1: in silico

Tier 2: measured (as needed;

miniature “shake flask” [16]

or HPLC ([17, 18]) are com-

monly used)

Log P �~3 may be accom-

panied by solubility limita-

tions and poor druggability

[19]

Log P range, in combination

with solid form properties,

can have significant impact

on enablement potential of

poorly soluble compounds

[20]

Crystallinity/

phase purity

Tier 1: 1 mg

Tier 2: 5–10 mg

(non-destructive)

Tier 3: 5 mg

Tier 1: polarized light

microscopy (PLM)

(in combination with aque-

ous solubility)

Tier 2: powder X-ray dif-

fractometry (PXRD)

Tier 3: differential scanning

calorimetry and

thermogravimetric analysis

(DSC and TGA) [21]

Tier 1 (PLM)

Birefringence under PLM

generally characteristic of

crystalline solid. However,

additional characterization

of crystalline state will be

required as compound

advances through flow

scheme

If measured aqueous solu-

bility is associated with

non-birefringent (amor-

phous) solid, solubility

could drop ~�10x upon

crystallization of solid

Tier 2 (PXRD)

Characterizing crystallinity

and solid form of compound

Useful for assessing form

changes associated with

solubility values

When run as a variable

temperature or variable

humidity measurement, can

be used along with thermal

and/or vapor sorption data

(continued)
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Table 7.2 (continued)

Property

Minimum

material need

(mg) Place in flow scheme Implications and comments

to understand form changes

Tier 3: DSC and TGA

When used along with

PXRD and PLM, provides

valuable information on

solid form, form transitions

upon heating and thermo-

dynamic aspects

Compounds with melting

points >200C and/or high

heats of fusion may point to

aqueous solubility limita-

tions

TGA (with MS) provides

valuable information on

residual solvents, solvates/

hydrates, and decomposi-

tion temperature

Solubility 5–50 mg Tier 1: in silico or high-

throughput measurement

Tier 2: thermodynamic (plate

based automated or more

manual screens) [22]

A variety of screens avail-

able for Tier 1 assessment,

mostly to guide SAR and/or

to bin compounds into high/

med/low solubility bins [23]

Tier 2 should be designed to

understand bio-relevant sol-

ubility, pH-solubility rela-

tionships, solid form-

solubility relationship, and

preliminary information on

supersaturation potential

[24]

Stability 5–10 mg Tier 1: in silico

Tier 2: solution stability

Tier 3: solid form stability,

forced degradation, degrada-

tion mechanism, and excipi-

ent compatibility

Autoxidation potential

assessment based on calcu-

lations of bond dissociations

energies [25–27]

Solution stability (chemi-

cal): generally covering

bio-relevant pH range and

oxidizing agents. Incubating

at 40C with sample time

points through 24 h useful.

May add light conditions.

Informs bio-relevant, han-

dling, and storage aspects

Solid form stability: chemi-

cal can be coupled with

physical (PXRD, SSNMR,

or other) to inform drug

product formulation and

manufacturing
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developability for the secondary parameters is a function of the goals for the clinical

program, the patient profile, and business considerations. These aspects will be

discussed in detail in Sect. 7.6.

7.2.3 Solid Form Criteria for Developability

The solid form parameters described here pertain to the isolation, handling, storage

and formulation aspects of the drug substance, and implications on product

manufacturing and performance. As with the rest of this chapter, the discussion is

focused on the application of these parameters to developability assessment. In

order to gain a more fundamental understanding of the basic scientific aspects that

are essential for working in this field, the reader is encouraged to refer to the

abundant literature on these topics [28–30].

7.2.3.1 Crystallinity: Polymorph Landscape and Associated

Thermodynamic Interrelationships

The basic goal of solid form screens in the lead optimization phase is to find a

stable, well-behaved form of the compound for development. Solid form screens

are generally designed to promote crystallization of compounds from slurries of

Fig. 7.1 Relationship between physicochemical properties of drug substance, biopharmaceutical

properties, and drug product performance
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various solvents and solvent-anti-solvent mixtures. The crystalline hits obtained

from such a screen are analyzed initially by microscopy and then powder X-ray

diffractometry (PXRD) in order to obtain preliminary information on the solid

form. The first evidence of the existence of polymorphic forms generally comes

from PXRD patterns, with thermogravimetry (TG) and TG with mass spectroscopy

(TG-MS) typically used to determine their solvation/hydration states. The thermo-

dynamic relationships between forms are generally elucidated from melting point

and heat of fusion data obtained from differential scanning calorimetry (DSC)

experiments. As a general rule, for monotropic systems, the highest melting form

is the most desirable as it is the most thermodynamically stable form. For

enantiotropic systems, it is important to determine the transition temperature and

whether this temperature is conducive to reproducibly isolating and handling the

form that would be thermodynamically stable under ambient conditions. Solid form

landscapes and the thermodynamic interrelationships between forms can be com-

plex with far-reaching implications on the regulatory submissions [31],

manufacturing process [32], and safeguarding intellectual property. However, all

activities leading up to selecting developable solid form(s) must always be done

with a clear understanding of the impact of the form properties on the absorption

parameters of the compound (see Sects. 7.3. and 7.4 for details) .

7.2.3.2 Hydrated and Solvated Forms

Solvated forms are generally not acceptable for development. The occurrence of

solvates in preliminary screens is typically a strong indication that the compound is

a prolific solvate former. Organic solvates are generally unacceptable for clinical

use and also limit the crystallization design space. In addition, solvated forms tend

to be more soluble in aqueous systems than non-solvated forms, and therefore, it is

both essential to find the means to isolate non-solvated forms and to assess

absorption parameters based on bio-relevant solubilities of these non-solvated

forms. Hydrated forms are generally less soluble than anhydrous crystalline forms

of compounds. The biggest risks with hydrated forms, however, have to do with

their physical stability under standard conditions of isolation, handling, and storage

of drug substance and drug product. Therefore, the stoichiometry of hydrates and

the potential for interconversion between the desired and undesired hydration states

must be tested with appropriate rigor for any changes in the water activity range of

0.2 to 0.8. If there is any evidence of instability, the risks and benefits of

recommending such hydrates for development must be carefully evaluated and

addressed. For example, a compound that may form a hydrate at critical water

activity levels >0.6 may be physically stable for reasonable durations of time as

drug in capsule when exposed to 40 �C/75% RH conditions but may convert

(to varying extents) to the hydrate when subjected to a fluid bed granulation process

that uses water as the granulation fluid. When using a judgment-based approach, the

risks versus benefits of recommending forms that do not meet these criteria must be

appropriately assessed and well understood.
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7.2.3.3 Isolation Mechanism

The preferred means to isolate the desired form of the drug substance is filtration.

Crystalline forms of compounds are generally amenable to isolation by filtration,

but oily liquids and amorphous materials that cannot be crystallized may be isolated

by evaporation or spray drying processes or through adsorption into inert porous

silica or other matrices [33, 34]. When non-filtration processes are necessary for

isolation, the development organization needs to be appropriately informed of

equipment needs, cost implications, and impact on scale and drug product presen-

tation. In addition, impact of the utilization of solid matrices on the physicochem-

ical and biopharmaceutical properties of the compound need to be properly

assessed and understood.

7.2.3.4 Chemical Stability

For the purpose of developability assessment, the potential for a compound to

undergo photodegradation, autoxidation, or degradation in aqueous or organic

systems must be well understood. For compounds that are unstable, the mechanism

of degradation, known genetic toxicity of degradants, implications on isolation,

handling and storage, and impact on packaging configurations (including in-use and

shelf-life stability) must be thoroughly assessed. If it is established that the risk of

degradation is significant, the regulatory implications on the impurity profile of the

drug substance and risk of degradation on practical time scales despite special

protection (light, oxygen, and humidity control) must be thoroughly evaluated. Any

special needs and restrictions must be fully communicated with the development

organization, in order to facilitate appropriate considerations for development

decisions based on business priorities for the compound/product.

7.2.3.5 Particle Morphology

While particle morphology is not a primary criterion in the solid form selection

process, particles with large aspect ratios can pose significant challenges with

isolation of drug substance by filtration and also in solid dosage form development

due to poor flow properties.

7.2.3.6 Particle Size Specifications

For orally administered solids that have an aqueous solubility <1 mg/mL, particle

size has a direct impact on dissolution and therefore the rate and extent of absorp-

tion [35]. Details of dissolution rate on absorption are discussed in Sect. 7.3.2, but

basically, particle size specifications must be set with due consideration given to the
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desired absorption profile and the resulting pharmacokinetic profiles in the clinic.

When particle size specifications are narrow and restrictive, impact on manufactur-

ing operations such as crystallization and milling processes, special facilities that

may be needed, limitations on scale, material specifications, robust processes to

meet the material specifications, etc. must be appropriately assessed and its impli-

cations communicated to the development organization.

7.2.4 Solid Form Selection for Absorption Enhancement

7.2.4.1 Salts and Co-crystals

Crystalline solids of neutral forms of compounds are generally the simplest and

therefore the most preferred forms when viewed in the context of drug substance

isolation and handling and drug product formulation processes. In some instances,

salt or co-crystal forms may be selected over neutral forms due to favorable solid-

state properties. However, as is often the case, a more important goal with solid

form selection is to find a crystalline salt or co-crystal form with improved

absorption parameters of the compound for clinical development, relative to the

neutral form of the compound. Whenever possible therefore, the risks versus

benefits of a developable crystalline salt or co-crystal form should be assessed

[29] relative to more expensive and complex systems for absorption enablement.

For compounds that have ionizable functional groups such that they have at least

one basic pKa � 4 or an acidic pKa � 7, salt formation is an attractive means to

enhance the rate and extent of absorption and to minimize gastric pH effects on the

rate and extent of absorption. These beneficial effects of salts are often the result of

reduced energy barriers to dissolution relative to the neutral forms of the compound

[36, 37]. In addition, the fact that dissolution of salts is often driven by their

microenvironment pH, the dissolution process is less sensitive to bulk fluid pH

conditions [38]. The importance of this latter attribute of salts is further explained in

Sect. 7.3.2. Salt formation can also be an effective method to counter solid-state

stability observed for the neutral compound.

The solubility and dissolution behavior of salts are more complex than those of

neutral forms of the compound as will be described in Sect. 7.3.2. In addition to the

physical properties that apply to neutral forms of compounds (as described in the

paragraphs that follow), salts are also susceptible to disproportionation within solid

dosage forms. The propensity to disproportionate when combined with standard

formulation excipients and implications thereof must be carefully studied and

addressed [39–41] before selecting salt forms to go into development. This

becomes even more important if the salt form is critical for the dissolution proper-

ties necessary for absorption [42] where a drug product with disproportionated salt

can lead to a subtherapeutic absorption. In assessing salts therefore, sufficient time

and material must be allocated in order to gain a thorough understanding of their

physicochemical and biopharmaceutical properties.
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Lastly, in selecting counterions for salt formation, due consideration must be

given to the safety of the counterions, impact of its molecular mass on the dose, and

dosage form of the drug product. For example, 1-hydroxy-2-naphthoic acid is

acceptable as a counterion for the long-acting inhaled drug salmeterol due to the

low, twice daily dose of 50 μg of this drug in the inhaled product. However, the

toxicology of this acid at higher doses may preclude its use in drug products that

may have to be dosed in milligram quantities (Lilly internal data). Similarly, maleic

acid is acceptable in low-dose products such as enalapril maleate, chlorpheniramine

maleate, and prochlorperazine maleate but carries renal safety issues [43] that may

make it unsuited for drugs that require doses greater than ~100 mg. Therefore, in

general, while the absorption profile and solid form properties of the selected salt

form are always the main focus, a toxicology opinion of the selected counterion

must always be obtained as safety overrides all other aspects of salt form selection.

For compounds that do not have ionizable functional groups, co-crystal forma-

tion is an option for improving solid-state, stability, and/or dissolution properties of

compounds [44, 45]. For a comprehensive description of standard co-formers used

to make co-crystals, screening and characterization techniques, phase diagrams,

merits, limitations, and recent examples, the reader is referred to reviews by Brittain

and Williams et al. [46, 47]. In addition, the reader is also referred to the recent

regulatory guidance on this topic [48].

In some instances, the dissolved concentrations of salt or co-crystal forms may

result in very high degrees of supersaturation relative to their solubility in the

intestinal luminal milieu. In order to stabilize the supersaturation that is thus

achieved, and facilitate the absorption enhancement that these forms were designed

to produce, these high energy solid forms of compounds are formulated as blends

with functional excipients [49, 50]. Generally, these functional excipients serve to

inhibit precipitation of the supersaturated solution and/or increase the microenvi-

ronment solubility and include polymers, complexing agents, or pH-modulating

agents [51]. For compounds that lend themselves to this approach, this form of

absorption enablement is a cheaper and simpler alternative to amorphous solid

dispersions. However, as part of the developability assessment, it is very important

to make sure that these solid forms and functional excipients that may be essential

for dissolution enhancement (and absorption) have acceptable physical and chem-

ical compatibility with the compound in question.

7.2.4.2 Amorphous Solid Dispersions

Over the past decade, amorphous solid dispersions have been extensively discussed

as a means to enhance the apparent solubility (and thus absorption) of compounds

formulated as solid oral dosage forms [52–54]. They are generally produced by spray

drying a solution of the active drug and polymer, such that the resulting powder is a

solid solution of amorphous drug homogeneously dispersed in the polymermatrix. In

some instances, a surfactant or other agent is also included in the mix in order to

further enhance the solubilization of the compound and/or stabilization of the
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system. The polymer(s) in these systems serve to stabilize the drug substance in an

amorphous state for a reasonable duration of time to support manufacturing and

product shelf life when stored under appropriate conditions of temperature and

humidity. They can also function to varying degrees as solubilizing agents and/or

as precipitation inhibitors that sustain supersaturation of the dissolved compound in

the aqueous environment of the gut, thus maximizing the potential for absorption.

While spray drying is still the mainstream technology for producing solid

dispersions at this time, hot-melt extrusion technologies are developing as a viable

alternative when compound and polymer properties are amenable to the

process [55].

If it has been determined that enablement through amorphous solid dispersions is

essential to achieve the target absorption profile required for the clinical develop-

ment of a given compound (Fig. 7.2), then the feasibility of developing a viable

amorphous solid dispersion system that would be suited for the intended drug

product must be fully investigated through appropriate screens. This includes

screening for polymers and other excipients used in the system to ensure an optimal

degree of interaction (and compatibility) with the drug substance, such that there is

no crystallization and/or phase separation during handling and storage. It must also

be confirmed that the glass transition temperature of the resulting system is suffi-

ciently high to ensure that there is no risk of crystallization during the product’s
shelf life [56, 57]. In addition, the mechanism through which the polymer (and any

additional excipients) impacts dissolution and supersaturation in vivo must also be

Fig. 7.2 Illustration of solid form and absorption potential screening in lead optimization
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well characterized and understood [58]. Finally, these systems must be optimized

for the largest possible drug loads so as to strike a suitable balance with product

stability and dissolution performance [46]. Typical drug loads in these systems

range from 20–30%, while 2 and 50% would be considered to be the lower and

upper limits based on stability and dose size.

7.2.5 Integrated Developability Risk Assessment
and Feedback to Discovery Teams

The solid form and formulation platform selection activities to support clinical (and

commercial) development must progress hand in hand with other activities in the

lead optimization phase. As the pharmacology, ADME properties, and toxicology

of a given compound become better understood and the discovery team increases its

level of investment in the compound, the critical developability attributes of the

compound must be assessed in a commensurate manner. Figure 7.2 illustrates the

interrelationship between solid form development activities and absorption poten-

tial assessment screens. Absorption potential assessment is discussed in detail in

Sect. 7.4. As data on the solid form properties and absorption potential is gathered,

challenges for development must be communicated with discovery teams and the

downstream development organization, such that risks and benefits can be weighed

appropriately against the competitive landscape and any unmet medical needs. If

the challenges are such that the compound is deemed to be not developable by

reasonable means (Table 7.1), it is important to inform the discovery team in order

to either impact the SAR activities or to aid with the selection of appropriate

compounds for development.

Thus the screens used in developability assessment should be designed such that

they answer critical questions using the minimum amount of material and time and

are performed in a staged and phase-appropriate manner, so as to maintain an active

feedback loop to discovery. If compound properties point in the direction of

enablement screens, an increased compound requirement must be anticipated and

the discovery teams informed so appropriate funds and chemistry resources can be

planned. Data generated from these screens should be interpreted in the context of

the larger goals of the project and clinical development plans and proper judgment

applied in decision-making.

7.2.6 Clinical and Commercial Formulations

Clinical and commercial formulations are described in detail in Chap. 10. This

section carries a very brief overview of developability risk assessment of com-

pounds in the context of clinical and commercial formulations.
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Every organization has its own strategy for clinical and commercial formulation

design and development. But in general, clinical formulations are simple in

composition and in the process of “manufacture.” In view of the fact that attrition

in Phase 1 (and in Phase 2) is relatively high, the goal of these studies is to quickly test

the clinical hypothesis, ADME parameters, and safety margins to the desired clinical

exposures. As these initial studies are small and of short duration, the demand for

drug product is generally small enough such that it can be met using simple

formulations that can be produced through manual compounding operations in the

clinical pharmacy or manufactured using simple processes in a GMPmanufacturing

facility. Key considerations influencing the drug product presentation and the means

to produce the supplies for these studies include geographical location(s) of clinical

testing site(s), healthy volunteers versus patients, and clinical study design aspects

such as duration of studies and any seamless transitions to the next phase.

In instances where special formulation, handling, and packaging (e.g., humidity

and/or light conditions) are necessary to accommodate stability issues, the risk of

degradation of the drug substance and drug product and the implications thereof

need to be evaluated and fully understood. When milling or other means of particle

size control are essential for product performance, the implications on the

manufacturing process and the handling properties of the milled material (in terms

of stickiness, tendency to agglomerate, flow properties, etc.) need to be evaluated

and appropriately addressed. If the compound belongs to a special containment class

due to occupational exposure hazards, the choice of manufacturing sites that are

equipped to handle the material might be limited and therefore factored into devel-

opment plans. In addition, the development organization needs to be informed if any

of these properties pose potential risks to commercial development.

For orally administered drugs, clinical formulations include simple drug in bottle,

drug in suspension or solution, neat powder in capsule, dry blend powder in capsule,

and, less commonly, tablets and powder or granules in a sachet. Transdermal

formulations are typically simple gels or solutions with or without occlusion by a

patch. Formulations such as orally disintegrating tablets, modified release tablets,

and buccal and sublingual tablets may be used in small clinical studies to answer

specific questions pertaining to drug product design, absorption parameters, and the

resulting pharmacokinetic profiles essential for the desired clinical outcome. Details

on developing these and other formulations are discussed in chapter 14.

7.3 Drug Product Performance

7.3.1 Product Performance Criteria in the Context of PK-PD

The PK-PD relationship of the compound is the projected relationship between

plasma (or other target tissue) drug exposure and the pharmacodynamic response.

These projected relationships are generally based on clearance and volume of
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distribution estimated from preclinical data and come with a certain level of

uncertainty. As a result, the dose that is projected to result in efficacious plasma

exposure is typically not a well-defined value, but a range defined by the assump-

tions of the underlying models. In addition, in Phase 1 studies, it is standard practice

to explore doses beyond the projected efficacious dose range to assess safety and

tolerability (while staying within the limits enforced by regulatory agencies).

Typically, this amounts to a minimum of three- to fivefold over the upper end of

this dose range. It is the responsibility of the development scientist to have some

understanding of how these estimated ranges are arrived and, more importantly, to

make sure that the drug product will have an acceptable absorption profile (i.e., rate

and extent of absorption) that will cover this dose range with adequate separation of

exposures across the doses. This concept is illustrated in Fig. 7.3.

7.3.2 Solubility and In Vitro Dissolution

Solubility is an extremely important physicochemical property as it has a direct

bearing on the absorption potential of compounds. It is a very simple concept on the

surface but prone to lead the investigator to wrong conclusions unless proper

techniques are used for measurements and proper principles applied for interpreta-

tion of results. For details on solubility and solubility measurement as they pertain

to pharmaceuticals, the reader is referred to reviews on the topic [59].

In actual practice, the challenge that the developability scientist faces is that

due to the nature of the discovery workflow, solubility measurements and the

Fig. 7.3 Desirable relationships between administered dose and amount absorbed and/or plasma

exposure
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judgment-based decisions made from the results take on a tiered approach that

spans the entire lead optimization phase. The earliest assessment of solubility

generally comes from computational predictions. In our experience, these predic-

tions are best suited for flagging compounds with low solubility in aqueous buffers.

Once material actually becomes available, measured solubility data is usually

collected using high-throughput assays. Results from the high-throughput assays

generally do not come with adequate (or any) information on the associated solid

form and impurities of the compound, and so, they should be used with an

appropriate level of caution. This is especially true when the initial measured

solubility value is in the 0.01 to ~0.1 mg/mL range because it can sometimes fuel

false hopes among chemists who are striving hard to improve the solubility of their

compounds. Material made in discovery is often amorphous, partially crystalline,

and metastable crystalline form or an organic solvate. Until the compounds pro-

gress through the flow scheme and are made in gram quantities for additional

testing to become a potential clinical candidate, they do not warrant extensive

solid form characterization. However, consistent with the Tier 1 approach outlined

in Table 7.2, simple assessments such as PLM might still be beneficial. When

solubility is measured using more refined techniques and with developable crystal-

line solids, there is a high propensity for the values to be far lower relative to initial

results. Thus as a rough rule of thumb, judgment on solubility results from initial

measurements should be based on tolerance for a tenfold drop in the value [60].

There is abundant discussion in the literature on the use of bio-relevant media for

solubility measurements [61]. While there is general acceptance that Dressman’s
recipes [62] are well researched and most relevant, there are also numerous

examples of the use of alternate recipes with isolated examples of success in

understanding in vivo solubility [63]. In reality, simulated fluids are valuable but

do not always mimic the mechanism of solubilization and/or supersaturation that

occurs in vivo [64]. In addition, there is large interindividual variability in the actual

composition of gastric and intestinal fluids [65], pH, fluid volumes, transit times,

etc. Therefore, when the solubility of a compound is highly sensitive to bile-salt

concentration in simulated fluids, it is extremely risky to rely heavily on a single

value such as fasted- or fed-state simulated intestinal fluid (FaSSIF or FeSSIF)

solubility unless it is supported by robust in vivo data (described in Sect. 7.4).

7.3.2.1 In Vitro Dissolution

While solubility is a fundamental parameter for absorption and is used as a key

input in the most basic estimations of maximum absorbable dose [66], actual

dissolved drug concentration at the absorption site that is achieved in a

bio-relevant time frame is often different from equilibrium concentrations (i.e.,

solubility). More generally, dissolution, supersaturation, and precipitation (for

basic compounds, solution formulations, etc.) will impact actual dissolved drug

concentrations at the absorption site. For compounds that have the potential to

become clinical candidates, therefore, in vitro measurement of dissolved drug
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concentrations in a simulated bio-relevant setting (under dynamic or non-sink

conditions) provides essential information for absorption modeling [67].

In vitro dissolution testing in developability assessment is centered on

understanding the biopharmaceutical properties of the drug substance and/or drug

product. Accordingly, these tests are generally conducted under non-sink condi-

tions that simulate stomach and intestinal fluid composition, pH, volume, mixing,

etc. The compound being tested in these systems has the “opportunity” to dissolve

in the simulated gastric environment before it enters the absorption environment. At

a basic level, standard fasted conditions of pH, compositions, etc. are simulated.

Thereafter, physiologically relevant changes to these parameters are made, and

dissolution performance under these conditions is further evaluated.

There is no standard guidance on conducting these dissolution studies. The

ORBITO project conducted an extensive study of the literature on this topic and

published a comprehensive review that describes the pros and cons of the existing

tools and practices [68]. It is a generally accepted fact that regardless of how the

experiments are conducted, the aim is to understand the mechanism of dissolution

and the impact of bio-relevant boundary conditions on the system. This information

ultimately feeds into drug product design, where the goal is to ensure that the rate

and extent of absorption of the compound under testing conditions described in the

protocols will meet the needs of the clinical program.

In our experience, the “two-step” dissolution system [69] and the artificial

stomach and duodenum (ASD) [70] are well suited for biopharmaceutical assess-

ment in the lead optimization phase. Variations of these models include the pH

dilution model [71] and the gastrointestinal simulator (GIS) [72]. The two-step

dissolution system has a greater throughput and provides an initial read on the

potential for supersaturation of compounds. The ASD has a lower throughput but

serves as a tool for a better understanding of dissolution/supersaturation/precipita-

tion phenomena as a function of various physiological conditions. One limitation of

both systems, however, is that for highly permeable compounds, they might be

more biased toward precipitation relative to in vivo conditions.

Despite the advances in bio-relevant dissolution testing and in silico absorption

modeling technologies, predicting absorption in humans might sometimes require

some form of in vivo confirmation to assist with clinical formulation platform

selection [73].

7.4 Absorption Modeling

7.4.1 Basic Principles and Commonly Used Tools

Absorption modeling is an important tool for the developability scientist as it allows

for the translation of physicochemical properties such as solubility and permeability

to in vivo performance measures such as the amount or fraction of drug absorbed
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and the instantaneous systemic drug concentration. The level of detail of the model

output dictates the complexity of the model. Absorption models consist of simple

mathematical expressions such as the maximum absorbable dose (MAD) equation

[66] to sophisticated compartmental models [74] such as that utilized in the

GastroPlus™ commercial software package (Simulations Plus Inc., Lancaster,

CA). Both provide an estimate of a molecule’s absorption potential but differ in

the level of detail used in describing the mechanisms involved in the absorption

process and as a result what one can learn from applying the model. According to

the MAD equation, the maximum absorbable dose is defined as

MAD ¼ S� Ka � SIWV� SITT

where S is the intestinal solubility, Ka the permeability, SIWV the small intestinal

water volume, and SITT the small intestinal transit time. While simplistic, the

MAD equation takes into account some of the key components contributing to

absorption albeit with gross approximations. When interpreted in conjunction with

estimates of clinically efficacious dose and the intended clinical testing dose range,

it can provide a preliminary assessment of the absorption potential of a molecule.

Furthermore the simplicity of the model allows for a high-throughput assessment of

absorption alongside the optimization of druggable properties in the discovery

engine. If sufficiently reliable in silico global or preferably SAR specific models

are available for S and Ka, it is also possible to consider including absorption

potential as a parameter in de novo design. The limitations of solubility measure-

ments during early discovery as described elsewhere in this chapter as well as the

uncertainty in accuracy of in silico models utilized should be fully integrated into

the interpretation of data from such a high-throughput absorption assessment

system.

While the MAD equation can be a powerful screening tool to assess absorption

early in discovery, its utility becomes limiting in activities related to the design and

development of a drug product for optimal clinical performance, manufacturability,

and commercialization. The limitations of the MAD equation can be effectively

summarized as limited mechanistic details in its integration of physicochemical and

physiological properties. These shortcomings have been addressed by various

improvements such as compartmental absorption transit models, microscopic

mass-balanced absorption models [75], bile-salt solubilization models [76], and

ultimately the implementation of the GastroPlus ACAT model which integrates

many of these advances into an easy-to-use commercial software package. The

reader is referred to numerous in-depth reviews for details of the various mecha-

nisms that are currently represented in absorption models, their strengths and

shortcomings, and their complex interdependence on one another [77]. At a high

level, the GastroPlus ACAT model can be summarized in Fig. 7.4.

In addition to being highly mechanistic, the true utility of such models comes

from their integration with pharmacokinetic models (non-compartmental, multi-

compartmental, and physiologically based), metabolism models, and multispecies

physiological models, thus providing the developability scientist the ability to test
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hypotheses related to drug product performance against in vivo preclinical and

clinical data.

A key area of absorption modeling for the developability scientist is in evaluat-

ing the effects of defining the solid-state and its associating properties such as

particle size which affects the solid’s surface area and the kinetics of dissolution.

While the MAD equation assumes the equilibrium solubility is realized instanta-

neously, in the in vivo setting, the intestinal concentrations achieved from an oral

dosage form are initially limited by the dissolution of solid as described by the

Nernst-Brunner equation:

dC

dt
¼ DS

Vh
Cs � Cð Þ

where D is the diffusion coefficient (diffusivity), S is the surface area of solids, V is

the volume of the dissolution media, h is the diffusion layer thickness, Cs is the

solubility, and C is the concentration at time t. Absorption modeling allows for

sensitivity analysis of in vivo exposure changes to drug product particle size

changes. This is an important assessment as a small particle size requirement

optimal for absorption and product performance may be suboptimal in flow prop-

erties critical for manufacturability. Similarly one can remove a development

constraint by realizing a drug product’s absorption has little or no particle size

sensitivity in which case the particle size specification is driven solely by manu-

facturability. Absorption modeling can also provide an assessment of relative

bioavailability changes frommodifications to the drug product unit formula through

the development of mechanism-based IVIVx models [78, 79].

Fig. 7.4 GastroPlus advanced compartmental absorption and transit (ACAT) model
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7.4.2 Absorption Parameters from Modeling

While in vitro solubility and permeability measurements can provide an early

assessment of absorption and performance of a drug or drug product, it is never-

theless an important exercise to confirm that these absorption parameters are in vivo

relevant and that clinical performance can be predicted with high confidence. In the

case of solubility, it has been observed that solubility measured in bio-relevant

simulated fluids generally is representative, but there are instances where there are

significant differences in comparison to measurements made in extracted bio-fluids

[80]. As such, it is important to confirm absorption parameters using in silico tools

such as GastroPlus models. This can be achieved by building an absorption model

with in vitro parameters and comparing the predicted results with preclinical in vivo

data. For cases where predictions from an absorption model using in vitro absorp-

tion parameters agree well with preclinical in vivo data, it can be concluded that the

in vitro data are representative and can be used to predict clinical performance with

confidence. If on the other hand there is poor agreement, the initial in vitro

absorption parameters can be optimized to obtain maximum agreement between

predicted and preclinical in vivo data. This set of optimized in vivo parameters can

now be used to predict clinical performance. This general scheme is summarized in

Fig. 7.5. Two case studies are included for illustration.

Fig. 7.5 In silico absorption modeling and in vivo absorption parameters
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7.4.2.1 Case Study 1

Molecule A is a weak acid with measured pKa of 4.74. Solubility in bio-relevant

media was measured to be high (0.1 mg/mL in SGF and 0.393 mg/mL in FaSSIF).

Passive permeability was predicted to be high (2.99 � 10�4 cm/s).

Figure 7.6 compares predicted concentration-time (Cp-time) profile from

models using in vitro solubility measurements (“un-optimized absorption model”)

and optimized solubility values (“optimized absorption model”) with measured

in vivo Cp-time profiles in rats. It was observed that measured stomach and

intestinal solubilities of 0.1 mg/mL and 0.393 mg/mL, respectively, overpredict

observed measured in vivo concentrations (R2 ¼ 0.523). An optimized absorption

model was built using stomach and intestinal solubility of 0.001 mg/mL and

0.025 mg/mL, respectively. Passive permeability remains unchanged. This model

provided good agreement with measured in vivo data (R2 ¼ 0.935).

Given an absorption model for rat, one can readily utilize the model to predict

performance in human by applying human physiological parameters. Such a model

can be utilized to answer a range of clinical performance questions. In this case an

early assessment of Fa vs dose was conducted to evaluate absorption potential.

Figure 7.7 shows relative absorption as measured by the ratio of amounts absorbed

from both optimized and un-optimized absorption models. Relative clinical absorp-

tion is defined as

AUC0�t
i

AUC0�t
0

¼
Fai� 1�εð Þ�Dosei

Cl
Fa0� 1�εð Þ�Dose0

Cl

¼ Fai � Dosei
Fa0 � Dose0
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Fig. 7.6 Case Study 1: In silico predicted and actual in vivo PK profiles of molecule A in rat
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Also shown is the relative absorption as measured by the ratio of AUC0 – t from

clinical data. As can be seen, the optimized solubility model agrees best with the

clinical data. The optimized absorption model predicted an exposure plateau to

occur between 100 and 150 mg doses due to solubility-limited absorption. This is

reflected by the clinical data at the 150 mg dose. Conversely the un-optimized

model predicts dose-linear exposure up to and beyond 450 mg.

7.4.2.2 Case Study 2

Molecule B is a weak base with low solubility in bio-relevant media (2 mg/mL in

0.01 N HCl and 0.018 mg/mL in FaSSIF). The passive permeability of this

compound is predicted to be moderate-high (1.15 � 10�4 cm/s). The oral bioavail-

ability of molecule B in rats and dogs as estimated from this study was 64% and

60%, respectively. An absorption model built using the in vitro solubility and

permeability values did not provide a good fit to the in vivo Cp-time data. There-

fore, the smallest possible optimization of both parameters was performed.

Figure 7.8 shows an overlay of the experimental Cp-time profile with the

simulations obtained from the initial (“un-optimized”) and optimized permeability

and solubility (“optimized”) from rats and dogs. The optimal absorption parameters

are 2 mg/mL and 0.031 mg/mL for the gastric and intestinal solubility, respectively,

and 3.8 � 10�4 cm/s for the permeability.
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Fig. 7.7 Case Study 1: Predicted and actual relative absorption of compound A in humans based

on optimized and un-optimized models
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As was conducted previously, the optimal preclinical absorption model was

utilized to predict absorption in humans for a given dose range.

Figure 7.9 shows the predicted relative absorption of molecule B in humans as a

function of dose using both the optimized and un-optimized absorption models.

Also shown in the plot is the relative clinical AUC0-t of the compound as a function

of dose. As can be seen, the optimized absorption model is the best predictor of the

dose-exposure relationship observed in clinical data.

7.5 Toxicology Formulation

The topic of toxicology formulations has been covered in detail in the literature

[81]. In the context of developability assessment, toxicology formulations are

assessed in terms of their acceptability for long-term toxicology studies and the

level of complexity associated with the formulation. For example, formulations that

use solid dispersions of the drug substance would be considered more complex and

expensive, requiring longer lead times and additional material (to compensate for

manufacturing losses) relative to crystalline material that can be dosed as aqueous

suspensions.
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7.6 Developability Summary

Most companies require a comprehensive summary of the developability assess-

ment of new molecular entities when they are nominated as candidates for the

clinical development. Integrated developability assessment, the subject of this

chapter, includes the following major components and their interrelationships:

(a) drug substance and drug product parameters, (b) patient-centered design param-

eters, and (c) business parameters.

7.6.1 Drug Substance and Drug Product Parameters

These have been described in sufficient detail in Sects. 7.2 and 7.3. In the overall

developability summary, these assessments must be organized in a manner that

captures all the information in a manner that is meaningful to both the discovery

and development organizations. Table 7.3 shows one such format. Each

subcomponent of this assessment may further be scored depending on how they

compare with what might be considered “standard” and/or the potential impact of

the parameters on cost, timelines, and flexibility of clinical and commercial devel-

opment activities.
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Fig. 7.9 Case Study 2: Predicted and actual relative absorption of compound B in humans based

on optimized and un-optimized models
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7.6.2 Patient-Centered Design Parameters

This parameter refers to the design parameters of the drug product as they relate to

the disease state, patient, and caregiver profiles. For example, if a given drug

product is intended for use in mild cognitive impairment, the patient population

might generally be expected to be able to self-administer the drug as a conventional

orally dosed tablet of reasonable dose. Twice daily dosing, while not preferred,

might still be acceptable. However, if the compound is intended for use in severe

dementia associated with Alzheimer’s disease, the patient might have swallowing

difficulties and also be dependent on a caregiver in a nursing home to administer the

drug. Thus once daily dosing of a very small swallowable tablet, an orally

disintegrating tablet, or a transdermal patch might be a requirement for the product

to be commercially viable. Generally speaking, patient-centered design parameters

must be taken into account in building lead optimization flow schemes and setting

the critical attributes for a clinical candidate.

7.6.3 Business Parameters

These include a complex matrix of parameters such as the extent of understanding

of the biological target (i.e., novel versus validated), the competitive landscape,

priority in the company’s pipeline, potential development costs, etc. Generally,

novel targets that are of high priority to the company are geared toward meeting the

near-term goals of clinical target validation through target engagement and dem-

onstration of a pharmacodynamic response. Such “first-in-class” assets often enter

development as long as the clinical development criteria are met, even though

commercial viability may be uncertain.

When viewed in the context of all three parameters described above, the

compounds nominated as clinical candidates fall into four major categories as

shown in Fig. 7.10.

Table 7.3 Drug substance and drug product developability summary

Parameter Assessed in terms of

Drug substance Synthetic complexity, cost, demand, and containment class

Physical properties Solid form properties as they pertain to isolation, handling, and

storage

Drug product design Efficacious dose, Phase 1 dose range and biopharmaceutical

properties

Drug product

manufacturing

Product platform, manufacturing and packaging, any special

facilities

Toxicology formulation “Standard” versus “nonstandard” formulations
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7.7 Case Studies/Illustrative Hypothetical Scenarios

The concepts presented in this chapter are best exemplified by examining the

development histories of molecules that have progressed through clinical

development.

7.7.1 mTOR Inhibitors Rapamune® (Sirolimus) and Afinitor®

(Everolimus)

The introduction of inhibitors of the mammalian target of rapamycin (mTOR) over

the last several decades highlights the role of developability concepts in the

development of novel medicines. In 1999, the first commercial formulation of

sirolimus (Rapamune) became available. The compound was formulated as an

oral solution of 1 mg/mL in Phosal 50 PG and polysorbate 80. This formulation

was required to overcome the very poor physical properties of the compound (logP

4.3, aqueous solubility 2.6 μg/mL), which limited oral absorption. Despite the use

of this solubilizing formulation, the compound still showed high variability in

patients, with some subjects having ~8� higher exposure than others. Oral bio-

availability of the solution formulation was estimated to be ~14% [82]. From a

patient standpoint, this formulation also suffered from having an unpleasant taste

and required refrigerated storage and protection from light. In addition to the

inconvenience these requirements impart to the patient, it is arguably more

concerning that any noncompliance with the recommended storage conditions

could lead to degradation of the compound. Failure to follow the prescribed dosing

regimen could also negatively impact the compound’s efficacy. With reference to

Fig. 7.10, this drug product presentation would put Rapamune in the D category.

Fig. 7.10 Schematic depiction of clinical candidates based on drug substance and drug product

(DS and DP) attributes, patient centricity, and business factors
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To provide an alternate dosage form, an oral tablet formulation of sirolimus was

later developed utilizing NanoCrystal® technology from Elan Corporation, which

greatly improved patient convenience in terms of taste and ease of administration

and storage.

Given these clear hurdles to development, at first glance it may be surprising that

this compound advanced into clinical development at all. The fact that a molecule

such as sirolimus was taken to market, despite having significant development

challenges, highlights the influence of important business drivers and a recognition

that the compound filled an unmet medical need. The compound was able to

advance, despite the added cost and complexity required for its development.

Research has continued in the development of additional inhibitors of this

pathway. Everolimus (Afinitor) is a synthetic derivative of rapamycin, which was

designed to have improved pharmacokinetic properties relative to sirolimus, in part

through improved solubility, which would provide more consistent oral bioavail-

ability. The compound was developed as an oral tablet consisting of a solid

dispersion (SDD) with HPMC. In addition to the tablet formulation, everolimus is

also available as a tablet for oral suspension (Afinitor Disperz), for use in pediatric

patients.

7.7.2 BEZ-235 (PI3K/mTOR Inhibitor)

Another example of a compound developed as an inhibitor of the

phosphatidylinositol 3-kinase/mTOR (PI3K/mTOR) pathway is represented by

BEZ-235 (dactolisib), which first entered clinical development for the treatment

of cancer in 2006. The compound was shown to be well tolerated and was found to

elicit partial responses in some patients. However, the PK data showed significant

intersubject variability as well as low oral bioavailability when the compound was

dosed as a simple powder filled into hard gelatin capsules. An MTD was not

established during this study, due to an observed plateau in exposure. This poor

in vivo behavior was attributed to the compound’s poor aqueous solubility, espe-
cially at pH>4. As a result, clinical development was delayed to allow for addi-

tional formulation development to identify a more suitable formulation.
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In a subsequent Ph1/1b study, several formulations, including the original

gelatin capsule formulation, two solid dispersion capsule formulations, and a

solid dispersion sachet, were all evaluated. The sachet formulation outperformed

the others in terms of variability and permitted the identification of an MTD of 1600

mg. Additionally, BID dosing was explored in this study, which provided an

equivalent AUC and lower Cmax when compared to QD dosing. However, this

change to the dosing schedule did not produce changes to the tolerability or efficacy

of the compound. In 2015, it was reported that the compound was no longer in

active clinical development.

The example of BEZ-235 highlights the critical role of assessing developability

of compounds prior to their entry into clinical development. The results obtained

with this molecule may not be surprising given the selection of a powder in capsule

formulation platform for a poorly soluble compound with a high target dose range.

While the innovator ultimately responded by bringing forward several enabled

formulations, this was likely done at considerable cost in terms of dollars and

several years of development time and resources. This investigation also required

additional clinical studies to optimize the formulation and corresponding pharma-

cokinetic profile.

7.7.3 BRAF Inhibitors (Vemurafenib: Zelboraf)

Following the discovery that the BRAF gene was mutated in a number of different

types of cancer [83], this target became a major focus of drug discovery and

development. While a large number of structural scaffolds had been identified as

part of kinase programs across the industry, none of them possessed the structural

requirements for inhibition of BRAF. A scaffold-based screening approach was

used to identify novel chemical space that showed modest activity for this target,

and these compounds served as the starting point for SAR efforts [84]. From these

efforts, the compound vemurafenib was identified as a candidate for clinical
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development [85]. The compound possessed sufficient potency and selectivity and

was shown to demonstrate acceptable efficacy and toxicology in preclinical species

to warrant further development. The compound formally entered the clinic in 2006.

The physical properties of the compound were not ideal, but given the other

attributes listed above, as well as a strong scientific rationale that this mechanism of

action should be explored for the treatment of cancer, a sufficient justification to

move forward existed. To accelerate the start of Phase 1 clinical studies, the drug

product selected for first-in-human studies consisted of a blended powder in

capsule, with excipients that were selected to increase oral bioavailability. Dosing

started at 200 mg per day and was dose escalated to a top dose of 1600 mg/twice per

day. After observing a plateau in exposure, a reformulation effort was undertaken

which resulted in the development of an amorphous drug product, which provided a

sixfold increase in bioavailability relative to the crystalline formulated capsule

[86, 87]. This reformulation work was carried out in a very efficient manner and

only required a ~6-month suspension of clinical dosing. Significant efforts in

modeling and simulation were utilized to predict therapeutic plasma levels based

on translation of in vitro assays and animal efficacy models, which supported the

hypothesis that the amorphous formulation would provide the desired exposure to

drive efficacy. Vemurafenib was ultimately approved by the FDA in 2011, only

5 years after filing of the investigational new drug application (IND) [88]. This

rapid clinical development could only be accomplished through close collaboration

between cross-functional partners. This example highlights the type of speed and

efficiency that can be obtained when strong business drivers overlap with science to

deliver a profound benefit to patients.
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7.8 Conclusion

Developability assessment of clinical candidates has evolved in the recent past into

a multifaceted function. As a key component of the discovery development inter-

face (DDI), it serves the dual role of supporting discovery projects by providing

essential preclinical formulation support to run in vivo studies while tracking the

trajectory of physicochemical and biopharmaceutical properties of compounds

progressing through flow schemes. Overlaying these functions, however, is the

seminal role it plays in influencing the selection of compounds entering clinical

development, based on business priorities, commercial viability, and custom-

defined criteria for drug product attributes based on the target patient population.

On the technical front, it involves solid form selection and physical properties

design and formulation platforms selection guided by in vitro and in silico tools to

predict in vivo performance. All of these activities are performed in a tiered and

phase-appropriate manner, to drive sound decision-making that culminates in the

selection of a compound that lends itself to clinical and commercial development.

The need for continued improvement of the tools and technologies, along with

strategies to enhance speed and efficiency in the discovery and development

timelines, offer ample opportunities for innovation in this field.
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Chapter 8

Lead Optimization, Preclinical Toxicology

Marcus H. Andrews and Vincent L. Reynolds

Abstract Nonclinical Toxicology During “Lead Optimization”.

The major deliverable from a “lead optimization” (LO) tox package will be a

high-quality candidate compound, suitably characterized to enable judgment-based

selection of clinical candidates destined for further development and preparation for

initial clinical investigation. For small molecules, the LO phase of development

typically represents the first opportunity to characterize the novel chemistry using

an integrated approach that collectively scrutinizes a molecule’s overall

“druggability,” with a focus on characterization of all the physical chemistry

properties that may influence drug disposition, safety and tolerability, and dose

prediction (with the underlying assumption that the hypothetical biological mech-

anism of action remains intact).

In keeping with the 3R principles, modern safety assessment continues to

explore the potential risks and liabilities associated with the chemical structure

via various predictive in silico screens that tackle both intrinsic toxicophore iden-

tification, in addition to structural similarity assessment of chemical moieties

appearing in other structures with known adverse event profiles, and a battery of

cell-based profiling assays that enable characterization of tolerability based on

chemical properties, in addition to bespoke cell models that afford characterization

of functional risk (e.g., induced pluripotent cell lines for different target organ

systems). Collectively, these data are used to better inform investigators on the

potential in vivo risks which may manifest in the preliminary multidose studies,

which are designed to not only corroborate the in vitro predictive assessments but

also identify the degree of monitorability (and subsequently, manageability) of on-

and/or off-target toxicities associated with different drug exposures, in the context

of a developable clinical dosing range.
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8.1 Overview

The successful development of a drug requires a careful and continuousmultifaceted

assessment of the risk-benefit profile of the agent(s) under consideration. Toxicol-

ogy studies in the lead optimization (LO) phase of drug development are conducted

to provide essential information on the “risk” side of this ratio. It is important to

appreciate that there is no predetermined value that defines a priori an acceptable

level of risk. Rather, pharmaceutical development requires the consideration of a

range of variables such as the intended indication; preexisting medical conditions,

morbidities, and the potential for concomitant medications in the intended patient

population; synthetic complexity and chemical stability of the pharmaceutical

agent; and comparative benefits and risks relative to existing standards of care.

These and other factors are collectively used to determine the degree of risk that is

acceptable at each stage of development.

Toxicology assessments, then, are an important component in a larger palette of

factors that are considered when accepting or rejecting molecules for development

as pharmaceutical agents. Blomme and Will [1] put forward an interesting histor-

ical perspective describing the change in industry attitudes from the time when LO

safety assessment was still in its infancy to the current philosophy of “kill early, kill

often.” This approach deliberately front-loads toxicity evaluations of compounds

into LO development workflows and provides differentiation by safety through

empirical testing. It is now well recognized that current practice of including

toxicity assessments in LO contributes directly to reductions in later attrition due

to safety concerns which may manifest themselves after drug candidates progress

into clinical trials [2].

LO toxicology has evolved to include sophisticated strategies which include

predictive modeling and structural similarity assessments (e.g., tools described in

Chap. 6) along with screening studies and successive repeat-dose toxicity studies of

increasing rigor that allow cautious and staged exploration of chemical scaffolds to

guide informed decisions about whether specific compounds should be either

discontinued or carried further in development.

Before proceeding forward with the conduct of nonclinical safety assessment

studies, it is important for the LO toxicologist to pause and appreciate the wealth of

existing information that may already be available regarding potential toxicity

liabilities with the drug target under study. Although definitive information regard-

ing doses, exposures, and various commonly accepted toxicology endpoints will in

most cases be lacking at this early stage of development, there may nevertheless be

a substantial amount of information on adverse target-related effects that can be

reasonably expected to occur. In addition to the predictive modeling which can

directly support medicinal chemistry structural design (see earlier chapter), this
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information can be used to tailor the design of safety assessment studies so that

potential target-mediated toxicities receive an additional measure of attention and

scrutiny throughout development.

A characteristic feature of the LO phase of drug development is that there are

often numerous molecules under evaluation at any given time. To complicate the

challenge of connecting structure with activity with pharmacological outcome

(both positive and negative), there may be only a very small amount (as little as a

few milligrams) of any given molecule available for study. This is particularly true

during the very early phases of LO. Thus, the LO toxicologist is immediately faced

with the logistical challenge of generating a broad array of key data needed to guide

decision-making, but often in the face of having only very limited amounts of test

material available for use. Consequently, nonclinical safety assessment studies in

the LO phase almost invariably rely on a series of successive studies which increase

in complexity (and test material requirements) as compounds proceed further along

in LO development. Throughout the LO phase, the overall goal is to gather a

sufficient body of evidence to support not only the “druggability” of the target

but also the suitability of one or more molecules to continue further in development.

Without the availability of historical precedents from previous efforts to use as a

guide, toxicology information early in LO for new targets and/or chemical classes

may rely on a range of in silico evaluations, in vitro screens, or cell surrogate

profiling (e.g., assessments of cytolethality, phospholipidosis, and other endpoints

of potential concern explored through in silico evaluation and in vitro test systems;

see earlier chapter for a more detailed description of this technology). It is readily

recognized that the output from these studies clearly cannot provide a comprehen-

sive assessment on potential toxicity concerns. However, these early screens can be

used effectively to support a rank ordering of multiple compounds and thereby

assist in prioritizing those compounds with desirable properties which should be

selected for further study as well as identifying undesirable compounds for which

development activities should be discontinued.

As compounds with undesirable properties are identified and filtered

out/excluded, the LO toxicologist can focus a greater degree of scrutiny on a smaller

number of compounds which may be still under consideration. At this point, in vivo

screening studies with abbreviated dosing schedules can be conducted. Results from

the initial in vivo screening studies can provide critically important toxicity data in a

range of tissues which may be helpful in identifying any acute on- or off-target

toxicities as well as essential pharmacokinetic data to understand whether the study

molecule possesses the requisite absorption, distribution, metabolism, and excretion

(ADME) properties to warrant continued investment.

An important logistical point to consider when planning the initial in vivo

toxicology studies is the high likelihood that the availability of test compound

may be very limited, particularly for molecules that have complex or difficult

synthetic routes. This can affect decisions on the choice of the test system, the

dosing duration, and dose selection for the initial in vivo screening pilot studies.

The test system for the initial in vivo screening pilots is almost always a rodent,

which provides two distinct advantages. First, this provides an opportunity to

protect higher-order species from compounds with uncharacterized (and therefore
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potentially high) toxicity. Second, studies in rats or mice require smaller amounts of

test compound than comparable studies in nonrodents (see Tables 8.1, 8.2, 8.3, and

8.4 for a listing of test material requirements for screening pilot studies in rats with

different dosing durations and dose levels). When considering the optimal dosing

duration, the intended pharmacology of the molecule may dictate the need for

lengthier durations for these initial studies. For example, a very short dosing

duration for agents that are intended to act via changes in gene expression (e.g.,

nuclear hormone receptors) may not be adequate to detect slowly developing

adverse changes associated with excessive pharmacology. Finally, the dose levels

to be studied may be defined by test compound availability. To some extent, the

limitations in test material availability may be mitigated by conducting the initial

in vivo pilot studies with small group sizes (e.g., n ¼ 3/sex/group), by conducting

the study in only one sex, and by collecting toxicokinetic (TK) data via dried blood

spot analysis (which requires only 20–40 μL of blood per sample) from the main

study animals instead of adding a satellite TK group. Despite efforts to minimize

the amounts of compounds needed, it should be expected that the design of the

initial in vivo toxicology screening pilot studies will be defined in most cases by

balancing what is feasible based on test material availability against what is

desirable based on the pharmacology and expected toxicities of the molecule.

This balancing act generally results in a development plan in which the initial

in vivo screening pilots are done in rodents treated for somewhere in the range of

4–7 days. Importantly, the frequent necessity for a compromise between logistics

and optimal study designs underscores the value of maintaining close communica-

tions with others (particularly the chemists) on the development team so that overall

team needs can be met.

Historically, it has been shown that a significant amount of attrition due to

toxicology occurs in the preclinical phase which includes the aggregate of all

nonclinical studies conducted prior to the start of Phase 1 clinical trials. Therefore,

one of the key benefits of the LO toxicology workflow is the flexibility it allows. The

initial short-duration in vivo screens in rodents can then be followed up either with

longer pilot toxicology studies for more promising compounds or with more short-

duration studies on other compounds if the lead compound is deemed to be

unsuitable for further development. Overall, the primary goal of the LO toxicology

work is to produce a data package which identifies candidate molecules which are

worthy of continued advancement toward clinical development. A secondary goal is

to guide dose selection for the definitive nonclinical safety assessment studies that

will be needed later to support those clinical trials. Concomitant with the above-

described in vivo toxicology assessments, additional toxicity profiling work may be

done to identify potential genetic toxicity liabilities or other toxicity problems

known or suspected to be associated with the pharmacologic target under study.

In summary, LO toxicologists frequently work from a commonly used

“template” of studies. However, this should not obscure their thinking at any

point. They should ensure that any nonclinical safety assessment work is truly “fit

for purpose” and focused on guiding decision-making. Departures from a template

approach should be taken whenever dictated by properties of the target or com-

pounds under study.
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8.2 The LO Toxicology Workflow

A priority of the LO workflow is to simultaneously reduce the levels of uncertainty

and the numbers of molecules under study pertaining to the pharmacological

modulation of the drug target of interest. Different institutions have different

approaches to LO toxicology which are shaped largely by their prior experience,

logistics, and target-related concerns that may require special attention. However,

the overall workflow for LO toxicology across the pharmaceutical industry is driven

by the common dual themes of reducing or resolving uncertainties related to safety

while at the same time moving from screening studies with numerous compounds to

more intensive toxicology studies with a much smaller number of compounds (see

Fig. 8.1). Ultimately, a successful LO toxicology effort will support the identifica-

tion of one or a few compounds with which safety uncertainties have been suffi-

ciently resolved that a decision to proceed forward into human testing can be

supported.

For simplicity, we have divided the LO workflow into three distinct periods of

development (early/mid/late), each of which containing a discreet set of goals and

activities. Early LO challenges a project team to “place the right bet” with their

chemical scaffold. The focus is not so much about predicting toxicity (see Chap. 6),

but rather on how to avoid it. During early LO, iterative evaluations of structure-

activity relationships are predicated on the premise that minimizing intrinsic chem-

ical features associated with toxicities will increase the likelihood of producing a

successful clinical candidate. As efforts progress into mid-stage LO, attention

gradually shifts to exploring the breadth of possibilities within a more limited

zone of chemical space. It is during this time that lead optimization really earns its

name, as themajority of issues that threaten the identification of candidatemolecules

are resolved in this mid-stage phase. Because toxicology is a key driver of attrition, a

series of pilot toxicity studies with multiple compounds is not uncommon during

mid-stage LO. Finally, the goal of late-stage LO activities will be to refine toxicity

profile of the candidate molecule not only to increase the level of confidence that the

molecule can advance safely in human trials but also to guide decisions on study

design and dose selection for the Phase 1-enabling nonclinical safety assessment

studies.

8.2.1 Early-Stage LO Toxicology Activities

While the earlier pre-lead phases of drug discovery focus on testing biological

hypotheses with targets and molecules from chemical scaffolds which may or may

not ultimately be “druggable,” the LO phase represents a period when at least one

molecule from at least one chemical scaffold has been identified which demon-

strates—at least in principle—that the intended drug target can be pharmacologi-

cally modulated. With this promising information, confidence is bolstered that the
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desired pharmacology can be harnessed to bring therapeutic benefit to a defined

patient population. This confidence, in turn, justifies the further investment of effort

and resources from biology, chemistry, drug disposition, toxicology, and others in

development activities where the end goal is to identify molecules which meet or

exceed the internally established requirements of a clinical candidate. Despite this

confidence, however, uncertainty remains high, molecular options are still numer-

ous, and the amounts of individual molecules available for study are low. Thus, the
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Fig. 8.1 A general depiction of the drug development paradigm (typical of small molecules),

including conceptual interpretation of the progression of risk assessment occurring during lead

optimization. Three key points to consider are the (1) ability to provide a detailed risk assessment

of target- and/or compound-related risk is inversely related to the chemical space being consid-

ered; (2) the number of compounds should dramatically reduce in number as data is generated to

either create or support hypotheses pertaining to the target, indication, and chemistry; and (3) the

ultimate goal of the LO is to produce a clinical candidate compound suitable for further GLP

testing, based on studies which identify target organs and putative margins of safety
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LO toxicologist must address multiple and often shifting challenges in order to help

the drug development team.

In the time period immediately following identification of a lead molecule, the

medicinal chemistry efforts typically focus on exploring a range of structure-activity

relationships (SARs) in an effort to identify molecules which retain the desired

pharmacologic properties, but which also possess improvements in a range of other

properties (e.g., potency, solubility, chemical stability, etc.) which collectively

increase the likelihood that druggable molecules can be identified. As the SAR is

explored, a series of molecules from one or more chemical scaffolds will emerge, and

the LO toxicologist will be asked to assist in “filtering” the stream of molecules to

remove compounds with unacceptable liabilities. This filtration process is an essential

feature of the broader range of LO activities and is particularly applicable to LO

toxicology efforts. It can be readily appreciated that conducting a full range of

toxicology studies and tests on every molecule in the stream emanating from the

medicinal chemistry laboratories would be prohibitive on both a cost and logistical

basis. Moreover, conducting in vivo toxicology studies across the full range of

molecules comprising a developing SAR would contradict the 3Rs principle which

calls for reducing, refining, and replacing the number of toxicology studies done in

animals (Russell, 1959 (as reprinted 1992); see also Tannenbaum and Bennett [3]). In

an effort to minimize these concerns while at the same time allowing early safety

assessment to assist LO teams, the careful and judicious selection of compounds for

toxicology screening studies has developed and become well recognized as an impor-

tant and effective way to filter undesirable molecules from a SAR. Consequently, LO

toxicology has evolved from being largely absent during the LO phase to being a key

player where early identification of molecules potentially unacceptable or

unmanageable toxicity liabilities brings great value to teams by allowing them to

focus their energies and resources on other compounds with a higher probability of

success in later phases of development.

One of the challenges mentioned previously was that the amount of test material

available for use in toxicology assessment during this period of development may

be quite scant. Because only very limited amounts of any given molecule might be

available for study, the early-stage LO toxicology evaluations generally involve

in vitro screens or evaluations using cell-free test systems (see Chap. 6). Although

there are no specific requirements that prescribe exactly what toxicity screens

should be performed, many pharmaceutical companies rely on a relatively standard

battery of core assays and study types to define their pre-LO and LO toxicology

activities. The list of toxicity evaluations is generally defined by two rather flexible

considerations: a list of assays that the particular institution has relied upon in the

past and any additional tests that are designed to address specific concerns that may

be raised by existing information on the target. Thus, the design of the LO

toxicology plan is largely tempered—for better or worse—by institutional experi-

ence within individual institutions themselves (not by overarching regulatory

guidelines) and by the amount of investment in money and time that is deemed

appropriate to frame the clinical relevance and manageability of compound- or

target-related toxicities. Early LO toxicology efforts are, not surprisingly, most
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often oriented toward in vitro screens, which can capitalize on the technologies

described earlier in this volume: as described in Chap. 6, the in vitro test systems are

an ideal starting point as they generally require only very small amounts of the test

drugs (as little as 4 mg dry test material per assay) and can be set up to provide high-

throughput testing of large numbers of molecules. The range of screens included in

the workflow will vary across different institutions as well as across different

development teams within the same institution, depending on the specific needs

and concerns at hand. As Stark and Steger-Hartmann [4] observed, the “extent of

screening largely depends on the need for differentiation between candidates as

well as the need for early de-risking of specific liabilities.”

It should be recognized and accepted that the in vitro test systems themselves

may have notable inherent deficiencies (e.g., inability to take into account absorp-

tion parameters, metabolic differences, etc.) compared to intact in vivo mammalian

test systems. The in vitro results can nevertheless provide great value to develop-

ment teams by rank-ordering compounds and guiding prioritization decisions to

determine which molecules should be terminated and which should be continued in

development.

8.2.2 Mid-Stage LO Toxicology Activities

As drug development teams move from early- to mid-stage LO in developing and

assessing their emerging SAR, the number of compounds requiring toxicology eval-

uations will (hopefully!) begin to diminish. Some molecules will have been

de-prioritized by the earlier in vitro toxicology screens, whereas other compounds

may have been found to be unsuitable because of pharmacodynamic insufficiencies,

chemical instability, synthetic complexity, or other reasons. Regardless of the reason

(s), the de-prioritization of some compounds means that more intensive evaluations of

smaller numbers of other molecules can now be undertaken. With this movement into

the mid-stage of LO development, the toxicologic scrutiny can increase as molecules

can now start to be evaluated in the initial in vivo repeat-dose toxicology studies.

Repeat-dose toxicology studies are often viewed as the centerpiece of

nonclinical safety assessment. Goals of repeat-dose studies include target organ

identification, establishment of a dose-response (or exposure-response) relation-

ship, differentiation between on-target toxicities (i.e., excessive pharmacology) and

off-target toxicities, determination of kinetic parameters, and the development of

biomarkers of toxicity that can be leveraged to improve the efficiency of safety

assessment for other compounds under study. When approaching the first set of

repeat-dose studies, the LO toxicologist will face several key decisions which will

have a substantial impact on subsequent nonclinical safety assessment. These

include selection of the rodent and nonrodent species that will serve as the test

systems, dose selection, and biomarkers which can be leveraged to identify

hyperpharmacology or to define and validate change that can be used in a premon-

itory way to enhance clinical safety through the early detection of incipient adverse
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effects. Of these considerations, biomarker selection should be leveraged by an

examination of the intended pharmacology and will often overlap with the typical

endpoints collected in pilot studies (see Tables 8.5 and 8.6); as these are likely to be

disease specific, general strategies for selection will not be discussed here.

Table 8.5 Typical pathology assessment parameters applied to rodent LO toxicology studies

Abbreviated rat multidose Pilot LO toxicology

General design

principles

No organ or terminal body weights are collected Organ weights—col-

lected only if control

animals are included

in study and n � 2

Descriptive statistics

(mean, sd, % change)

if controls are

included in study and

n > 2

Collect pretreatment

and end-of-treatment

hematology, clin

chem, coagulation,

and urinalysis

Group size N ¼ 3/sex/group; may use only one sex N ¼ 5/sex/group; both

males and females

used

Duration 4 days 14 days

Study endpoints

Hematology Blood cell morphology

Absolute differential leu-

kocyte count (not percent)

Erythrocyte count

Hematocrit

Hemoglobin concentra-

tion

Mean corpuscular

hemoglobin

Mean corpuscular

hemoglobin concentra-

tion

Mean corpuscular vol-

ume

Platelet count

Absolute reticulocyte

count (not percent)

Total leukocyte count

In addition to the end-

points listed for

abbreviated studies:

Bone marrow smear

Coagulation N/A Prothrombin time

Activated partial

thromboplastin time

Clinical

chemistry

Alanine aminotransferase

Albumin

Albumin/globulin ratio

Alkaline phosphatase

Aspartate aminotransfer-

ase

Blood urea nitrogen

Calcium

Chloride

Cholesterol

Creatine kinase

Creatinine

Gamma-glutamyl

transferase

Globulin

Glucose

Inorganic phosphorus

Potassium

Sodium

Total bilirubin

Total protein

Triglycerides

(continued)
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Table 8.5 (continued)

Abbreviated rat multidose Pilot LO toxicology

Urinalysis Total protein Specific gravity

Organ weights Typically not collected due to low numbers of

animals

Adrenal

glands

Brain

Heart

Epididymis

Kidney

Liver

Ovaries

Prostate

Spleen

Testes

Thymus

Uterus

Histopathology Adrenal glands

Bone sternum

Brain stem

Cerebellum

Cerebrum

Heart

Ileum

Injection/infusion site (if appropriate)

Jejunum

Kidney

Liver

Lung

Muscle

In addition to the end-

points listed for

abbreviated studies:

Epididymis

Eyes

Nerve (sciatic)

Ovaries

Prostate

Testes

Thyroid

Uterus

Vagina

Table 8.6 Typical pathology assessment parameters applied to nonrodent LO toxicology studies

Large animal dose escalation Pilot LO toxicology

General design

principles

No organ or terminal body weights are

collected

Pathology parameters (typically collect

pre-study, before each dose, and 48 h after

each dose)

No histopathology performed (dose range

considerations for the pilot study are based

on overt clinical observations/tolerability

as well as evidence of exposure separation

between doses)

Organ weights—collected only

if control animals are included

in study and n � 2

Descriptive statistics (mean, sd,

% change) if controls are

included in study and n > 2

Collect pretreatment and end-of

treatment hematology, clin

chem, coagulation, and

urinalysis

Group size Generally 1/sex/dose; M and F used Group size generally varies

from 1 to 3/sex/dose; M and F

used

Duration Staggered group design, duration depends

on washout period (contingent on com-

pound’s physical-chemical properties)

7 days

Study endpoints

Hematology Blood cell morphol-

ogy

Absolute differential

leukocyte count (not

percent)

Erythrocyte count

Hematocrit

Mean corpuscular

hemoglobin con-

centration

Mean corpuscular

volume

Platelet count

Absolute

In addition to the endpoints

listed for abbreviated studies:

Bone marrow smear

(continued)
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Table 8.6 (continued)

Large animal dose escalation Pilot LO toxicology

Hemoglobin concen-

tration

Mean corpuscular

hemoglobin

reticulocyte count

(not percent)

Total leukocyte

count

Coagulation N/A Prothrombin time

Activated partial thromboplas-

tin time

Clinical

chemistry

Alanine aminotrans-

ferase

Albumin

Albumin/globulin

ratio

Alkaline phosphatase

Aspartate amino-

transferase

Blood urea nitrogen

Calcium

Chloride

Cholesterol

Creatine kinase

Creatinine

Gamma-glutamyl

transferase

Globulin

Glucose

Inorganic phos-

phorus

Potassium

Sodium

Total bilirubin

Total protein

Triglycerides

Same clinical chemistry battery

collected as in dose-escalation

studies

Urinalysis Total protein

Specific gravity

In addition to the endpoints

listed for abbreviated studies:

Bone marrow

smear color

Clarity

pH

Protein

Glucose

Occult blood

Ketone

Bilirubin

Urobilinogen

Microscopic

examination

Organ weights Typically not collected due to low numbers of animals

Histopathology Adrenal glands

Bone sternum

Brain stem

Cerebellum

Cerebrum

Colon

Epididymis

(dog)

Eyes

Heart

Ileum

Injection/infu-

sion site

(if appropriate)

Jejunum

Kidney

Liver

Lung

Muscle,

quadriceps

femoris

(dog)

muscle, pec-

toral (mon-

key)

Nerve, sci-

atic

ovaries (dog)

Pancreas

Prostate

(dog)

Spleen

Stomach

Testes (dog)

Thymus

Thyroids

Uterus (dog)

Vagina (dog)
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8.2.2.1 Species Selection for Mid-Stage Toxicology Studies

Perhaps the decision with the most impact on future nonclinical activities is the

choice of the mammalian species to be used for the in vivo repeat-dose toxicology

studies [5]. While regulatory guidelines are silent regarding which species should be

used for LO toxicology studies, the International Committee on Harmonization

(ICH) guidelines are clear that the later definitive toxicology studies needed to

support regulatory filings and clinical trials must be completed in both rodents and

nonrodents ICH Guidelines M3(R2). As with other regulatory requirements, the

guidance is not overly prescriptive and leaves the species selection decision with the

drug sponsor whowill ultimately be accountable for the collection and interpretation

of data. Interestingly, toxicology data sets based on rodent and nonrodent species are

referred to in ICH M3(R2) (link to ICH M3(R2)) without any detailed historical

context on why this expectation exists apart from ensuring justification of the

appropriateness of species selection. Additional detail on test species selection is

included in the discussion around general principles of study design (including dose

justification, dosing route, and frequency of administration) in the European guid-

ance on repeat-dose toxicology studies (Doc. Ref. EMEA/CHMP/SWP/488313/

2007). This guidance refers to selection from “the usual spectrum of laboratory

animals used for toxicity testing” which should naturally hold some degree of

clinically translatable value, in terms of general safety profile and capacity to

respond to the intended pharmacological effects of the substances being tested.

This guidance does propose that repeat-dose toxicity studies should be carried out

in two species, including both rodent and nonrodent unless a sound argument can be

made justifying the use of only one nonclinical test system.

The recommendations appearing in the guidance documents mentioned above

apply specifically to the definitive safety assessment studies required to enable

clinical investigation. The data collected during the LO phase are generally less

important to the regulatory reviewers, but hold greater appeal to project teams who

are focused on defining and ranking multiple compounds’ developability as poten-

tial clinical candidates. There are, of course, exceptions where submission of LO

toxicology data is requested by a regulatory agency. For example, if later good

laboratory practice (GLP) toxicology studies fail to characterize fully the toxicol-

ogy profile by not establishing the maximum tolerated dose level, then earlier pilot

data may be requested by regulatory reviewers to ensure that dose selection in the

GLP toxicology studies was justified and that the GLP studies themselves are

indeed valid.

Confidence in candidate molecule selection (i.e., confidence that the candidate

will successfully “pass” through a GLP toxicology package that is supportive of

initial clinical investigation) is increased when based on critical toxicology end-

points evaluated in multiple species. Indeed, regulatory guidelines specify the need

for toxicology studies in both rodent and nonrodent test systems as a prerequisite for

human clinical trials. Therefore, in order to guide the design of subsequent defin-

itive toxicology studies, it is advisable that pilot in vivo studies of some form be
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conducted in both rodents and nonrodents at some point during LO. The most

commonly used rodents are rats and mice, and the most commonly used nonrodents

are dogs and monkeys. Other options for in vivo mammalian test systems may be

considered, if justified.

The LO toxicologist should make a carefully reasoned decision on which rodent

species to be used, as it is very likely that this species will continue to be used to

support future repeat-dose toxicology studies throughout the later development of

the molecule. In the mid-stage of LO development, it is not uncommon for repeat-

dose toxicity assessments to rely primarily (if not solely) on a rodent test system,

usually the rat. However, a decision regarding the nonrodent must also be made.

There are several critically important points that must be considered when selecting

the mammalian species for repeat-dose toxicology studies.

• Kinetic differences. Differences in absorption, distribution, or excretion path-

ways across different mammalian species may result in exposure limitations that

preclude the ability to establish adequate margins of safety needed to ensure

human safety in clinical trials. For the LO toxicologist, the estimation of

exposure margins is complicated by the fact that human exposures—in partic-

ular, the exposures needed for adequate efficacy—have not yet been determined.

Thus, the LO toxicologist must rely on PK-PD modeling to provide estimates of

efficacious exposures in humans.

• The potential for metabolic differences. The nonclinical metabolic profile of the

molecule being studied should include the metabolites that are expected to form

in humans. Not only should the metabolites be present, but they should also be

present at levels that “cover” the human exposure to these metabolites. It is

recognized that, because human trials would not yet have been conducted during

the LO phase of development, definitive human metabolite profiles would not be

established. However, in vitro evaluation of early metabolite profiling data from

human and nonhuman microsomes or liver slices may help guide the selection of

species for the toxicology studies. The level of confidence emerging from the

in vitro metabolite work may be enhanced by including metabolite profiling in

nonclinical pharmacokinetic studies to provide in vivo data which may also be

informative.

• Unique species sensitivities. Some nonclinical test systems are known to be

particularly sensitive to certain classes of drugs or to certain components which

may be present in the formulation. For example, hamsters have been used in the

development of some agents with potent peroxisome proliferation activity since

the liver of hamster is less prone to injury from this class of compounds than the

livers of rats or mice. Dogs are known to have a high incidence of anaphylactic

reactions to Cremophor©, an ingredient used in some formulations [6]. If an

alternative formulation cannot be identified, then the dog would not be a suitable

choice as the nonrodent test system for toxicology studies.

• Pharmacologic responsiveness. At least one (and preferably both) of the

nonclinical test species used in safety assessment studies should be responsive

to the pharmacologic activity of the test molecule. A clear understanding of
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on-target versus off-target effects of a molecule is often invaluable to the

medicinal chemists on the development team. On-target toxicities (i.e., adverse

effects resulting from excessive pharmacology) may be ameliorated by relaxing

the pharmacologic potency/engagement for the intended target. Off-target tox-

icities, on the other hand, can often be minimized by increasing the potency of

the molecule for the intended pharmacologic properties.

• Class-specific regulatory requirements. Occasionally, members of a new drug

class will be found to cause a dose-limiting toxicity (DLT) in a nonclinical

mammalian test system that is not deemed to be relevant to humans. In such

cases, the DLT can limit the ability to test nonclinical doses that are high enough

to establish a sufficient safety margin to support clinical development. For

example, some molecules in PPARα/γ dual agonist class of insulin sensitizers

were found to be poorly tolerated by dogs. The adverse findings in dogs were not

predictive of effects seen in human clinical trials with earlier members of this

class. Consequently, the US FDA issued advice to the pharmaceutical industry

that monkeys would be a more suitable choice as the nonrodent for toxicology

studies with these agents. Subsequently, the FDA acknowledged that this shift

may have been a mistake and that what was initially viewed as an example of a

unique species sensitivity actually anticipated important clinical safety issues.

The LO toxicologist should, therefore, maintain an awareness of the evolving

external and regulatory landscape and be prepared to make appropriate

adjustments.

• Sensitivities regarding nonhuman primates (NHPs). Recently, there has been a

gradually increasing desire to minimize the use of NHPs for nonclinical safety

assessment studies. Where possible, it is recommended to use dogs rather than

NHPs as the nonrodent test system. The dog provides other advantages that

warrant consideration in species selection independent of these societal pres-

sures, which include ease of dosing using typical routes of administration,

simplified animal husbandry and housing needs, easily interpretable clinical

observations, and accumulation of rich class-specific data sets which contribute

to evaluation/comparison of toxicities with newer generation compounds.

8.2.2.2 Dose Selection and Other Study Protocol Considerations

in Mid-Stage Lead Optimization

Another important decision for mid-stage LO toxicology work is dose selection.

Because the availability of test compound may be limited, dose selection for these

studies frequently requires a compromise that balances several competing concerns.

The LO toxicologist does have the ability, however, tomake some adjustments to the

mid-stage LO study protocols that can providemore flexibility when selecting doses.

A well-established paradigm common to many toxicology studies supporting

clinical development calls for at least three dose levels as well as a concurrent

control group. The high dose should define the maximum tolerated dose (MTD), the

mid-dose should provoke an intermediate (or “graded”) toxic response, and the low
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dose should be a no-observed-adverse-effect level (NOAEL). Inter-dose intervals

may be based on maintaining a defined degree of separation between doses (e.g.,

log or half-log intervals), on multiples of doses associated with efficacy in

nonclinical models, or on some other rationale. Because the high dose usually

requires the majority of drug used in a toxicology study (for a study with three

dose levels separated by half-log intervals, approximately 70% of the compound

would go to the high dose group), it is particularly important at this stage of

development to recognize and appreciate several points related to high dose selec-

tion. In the absence of any other considerations, the high dose for repeat-dose

toxicology studies is usually the so-called limit dose of 1000 mg/kg (ICH M3

(R2); see also Organization for Economic Cooperation and Development (OECD)

Test Guideline No. 408, No. 408, No. 409, and No. 452).

In mid-stage LO, however, there are virtually no constraints on how to design a

toxicology study. This means that unconventional study designs and dose levels

may be appropriate, as long as the scientific hypothesis can still be challenged. The

opportunity to explore fully the best study design (conventional or not) should be

embraced by the LO toxicologist. This may mean considering study designs

including multiple dose groups in order to refine a dose-response curve as well as

inclusion of nonstandard endpoints to address specific molecule- or class-specific

concerns. As discussed previously, the data generated in mid�/late LO are critical

to building confidence that the best candidate molecule is selected for the requisite

nonclinical safety assessment studies needed to support the initial clinical investi-

gation. In many cases at this stage of development, compound availability prohibits

administration of a limit dose, and even the establishment of an MTD may be

difficult, if not impossible. However, the LO toxicologist should always be looking

forward to future studies and recognize that identification of an MTD will decrease

the upper limit of the dosing range and substantially reduce the amount of test drug

needed for future toxicology studies.

The dosing route for nonclinical safety assessment studies should in almost all

cases be selected to match the intended route of administration in humans. Occa-

sionally, exceptions to this general rule may be justifiable. For example, if an

adverse gastroenteropathy occurs following oral dosing, then a parenteral dosing

route might be used to investigate whether the GI toxicity occurred as a result of a

local effect on the enterocytes (i.e., from a luminal exposure) versus a systemic

exposure via the circulatory system following absorption.

When pursuing the goal of obtaining the maximum amount of toxicology data

with only a minimum amount of test compound, the LO toxicologist must be both

innovative and thrifty in the design of the mid-stage LO studies. Studies can be

staged, with rodent studies (which require less test material) preceding nonrodent

studies. For compounds that fail to give satisfactory results in the rodents, a

termination decision may be appropriate which would preclude the need to conduct

a nonrodent study at that point. The size of the study can be controlled by limiting

the number of animals used. Smaller studies may require group sizes of only three/

sex/group. Using only one sex for the initial tox studies would also decrease the size

of the study with a concomitant reduction in the test material needed. If a validated
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bioanalytical assay exists such that toxicokinetics (TK) can be assessed using very

small blood volumes by dried blood spot (DBS) analysis, then perhaps TK could be

measured in the main study animals rather than a separate group of rodents

dedicated solely for TK. Finally, the dosing duration can be adjusted in response

to limited compound availability. However, the dosing duration should be scientif-

ically justified. A duration that is too short may not allow adequate time for the

development of histologic indications of adversity or for specific toxicities known

or suspected to be associated with the target. On the other hand, dosing durations

that are unnecessarily lengthy can cause significant logistical problems for the

chemical synthesis group.

One final point regarding dose selection for mid-stage LO studies deserves

mention. If the dose-response and toxicity profiles show promise that the target

organ toxicities are manageable and are likely to be accompanied by adequate

exposure margins relative to projected human exposures, then further development

activities with that particular molecule may be considered. Establishing a

no-observed-adverse-effect level (NOAEL) is needed in order to calculate a safety

margin, which even at this stage may affect early clinical study design to some

extent (assuming human dose predictions are available). On the other hand, if the

initial repeat-dose toxicology study data indicate that unacceptable findings

occurred with inadequate exposure multiples, then a termination decision for the

molecule may be made.

8.2.2.3 Nonrodent Studies in Mid-Stage LO

As noted previously, repeat-dose studies in rodents are often sufficient to support

decision-making in the mid-stage of LO. Studies in nonrodents frequently require a

substantial amount of test compound that simply presents too great of a logistical

hurdle at that point for the development team. However, there are some situations

where safety data in a nonrodent is desirable. It is generally not good practice to

assume that dose-exposure profiles and kinetic parameters will be similar across

different species. Consequently, data from rodent studies should not be used to

guide expectations for study outcomes in nonrodents. In situations where nonrodent

data are desired in mid-stage LO, a dose-escalation pilot study in the nonrodent may

be considered. These studies are generally conducted such that one animal of each

sex receives single ascending doses (e.g., doses of 1, 3, 10, 30, 100, 300 mg/kg or

even higher doses if deemed necessary). A twice-weekly dosing schedule is often

sufficient, as it would provide a time interval of several days separating the

administration of successive doses. A longer time interval between doses should

be used if there is reason to believe that the molecule has a long half-life of

elimination. Endpoints on these studies typically include assessments of survival

and tolerability, hematology, serum chemistry, and toxicokinetics. Necropsies and

histopathology evaluations are not usually included due to the discontinuous dosing

schedule. In situations where the availability of test material is particularly limited,

the nonrodent dose-escalation study may be deferred to a later stage in LO.
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8.2.3 Late-Stage LO Toxicology Activities

As drug development teams approach the latter stages of LO activities, two goals

emerge that are of paramount concern for the LO toxicologist. First, any remaining

safety concerns must be adequately addressed in order to bolster confidence in the

future developability of the molecule or class of molecules under study. Second, a

toxicology data set must be generated that will provide guidance for the optimal

design of the Phase 1-enabling nonclinical safety assessment studies. These two

concerns generally call for toxicology studies that are more robust than the screening

work and pilot studies conducted earlier in LO. The need for more intensive

toxicology studies might seem initially to present a logistical hurdle for the devel-

opment team. However, the great majority of potential drug candidate molecules

should have been filtered out for one reason or another (e.g., inadequate efficacy,

poor chemical stability, inferior salt forms, formulation difficulties, etc.) in earlier

stages of LO, leaving only a few molecules still under consideration. Thus, the

workflow at this point should have evolved from the rapid screening of multiple

compounds and chemical scaffolds that was characteristic of early LO to more

rigorous studies with only a very few compounds. This shift allows the LO toxicol-

ogist to focus and bring a more intense level of scrutiny to the molecule(s) before the

development team recommends triggering the substantial expenditures that will be

needed to prepare a drug candidate molecule for entry into clinical trials.

8.2.3.1 Species Selection for Late-Stage Toxicology Studies

The final LO pilot toxicology studies most commonly include repeat-dose studies in

rodents and nonrodents (please refer back to Sect. 8.2.2.1). The need for both rodent

and nonrodent test systems is indirectly mandated by the ICH M3(R2) guideline

(ICH 2009). As noted above, the ICH M3(R2) guideline is, strictly speaking,

applicable only to nonclinical safety assessment studies needed to support clinical

investigations. However, the need for rodent and nonrodent toxicology studies to

support Phase 1 clinical trials effectively means LO pilot toxicology work should

assess the potential for adverse changes in the same nonclinical test systems that

will subsequently be used later in the development. While it is a common practice to

defer studies in nonrodents from early- and mid-stage LO activities, a repeat-dose

study in the nonrodent test system is generally viewed as an essential component of

late-stage LO.

An exception to the need for both rodent and nonrodent toxicology studies in

late-stage LO and even during clinical development may arise in some cases with

biotechnology-derived pharmaceutical agents. For example, in a situation where

when the epitope for monoclonal antibody drug candidate is expressed in only one

nonclinical species and unintended cross-reactivity with nontarget tissues is not

expected, then toxicology studies in a second test system may not be appropriate

(ICH S6(R1)).

8 Lead Optimization, Preclinical Toxicology 287



8.2.3.2 Dose Selection

Once the test systems have been determined, the singlemost important consideration

for late-stage LO toxicology studies is dose selection (see Fig. 8.2). Careful thought

is recommended when selecting not only the low dose but also the high dose. The

departure point when selecting the low dose should be to consider the projected

human efficacy exposure. Although there may be a substantial degree of uncertainty

with human dose and exposure projections for molecules that are still in the LO

phase of development, these projections nonetheless assume great importance as

they become firm numerical values uponwhich nonclinical dose selection and future

clinical planning will be based.

Using the projected human exposure as a denominator, the low dose should be set

to define a no-observed-adverse-effect level (NOAEL) that will meet previously

agreed upon criteria regarding the magnitude of the safety margins (i.e., the ratio of

the exposures in the nonclinical studies to the projected human exposure) that will be

needed to support continued development. If the low dose is set too low, the

likelihood of establishing a NOAEL increases, but the safety margin with an exces-

sively low NOAEL may not be adequate to support continued development. On the

other hand, overzealous efforts to define unnecessarily high safety margins may

result in the selection of a low dose that is high enough to provoke adverse findings.

In late-stage LO, an increased level of care and attention should be directed at

selection of the high dose in toxicology pilot studies. At this point in development,
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Fig. 8.2 Graphical depiction of a typical dose-setting strategy for LO toxicology studies.

(a) Represents the predicted clinically efficacious exposure estimated by PK-PD modeling.

Adverse effects at or below this exposure (i.e., at exposures lower than the predicted clinical

dose range) will likely result in termination of further development of this compound for most

indications (with oncology indications being a notable exception). (b) Optional low dose group to

establish a “no-observed effect level” (NOEL). The exposure here may be too low to support

continued development. (c) Typical low dose group, needed to establish an exposure multiple (i.e.,

margin of safety) to support continued development. (d) Ideal mid-dose range, which will likely be

associated with some graded or intermediate degree of toxicity. Characterization of these findings

(i.e., monitorability, clinical translatability, likelihood of reversibility) will be key to support

further clinical development. (e) High dose range to establish maximum tolerated dose (MTD)
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identification of a maximum tolerated dose in the pilot studies allows the upper

boundary of the dose range for subsequent toxicology studies to be “fixed.” As a

result, the breadth of the dose range under consideration for the Phase 1-enabling

safety assessment studies can be narrowed which can greatly optimize their design.

There are no established regulatory requirements regarding the size of safety

margins. Rather, the margins are set based on safety concerns inherently associated

with the drug target, the intended patient population, the nature and severity of the

adverse finding(s), the availability of premonitory markers that can be used to

monitor for incipient adverse effects, and the likelihood that the anticipated toxic-

ities would be reversible. For some toxicities (e.g., cardiac arrhythmias,

CNS-mediated convulsions), margins should be based on maximum concentration

(Cmax) parameters, whereas for other toxicities (e.g., organ toxicities more com-

monly associated with longer exposure durations), margins should be calculated

using area-under-the-curve (AUC) values. For non-oncology drugs, safety margins

of tenfold or greater are common. For oncology drugs, safety margins may be

lower, and margins based on a NOAEL are often not feasible. However, a mini-

mally toxic dose (MinTD) with a manageable toxicity profile should be determined.

At the other end of the dosing range, the high dose for late-stage LO toxicology

studies may be guided by any of several considerations. First, if earlier screens

suggest that an MTD exists [e.g., if a dose-limiting toxicity (DLT) was identified in

earlier screens], then the high dose for the later-stage pilot toxicity study can be

selected to determine whether the MTD might decrease with longer dosing dura-

tions. If prior data demonstrate that an exposure plateau occurs with higher doses

due to absorption limitations or other reasons, then the high dose for the late-stage

pilot study may be chosen as a dose at which further increases in exposure cannot be

achieved, even when higher doses are administered. In some cases, an argument

may be made that the high dose should be based on formulation limitations,

particularly if the physical-chemical nature of the drug under development is

such that the formulated test material becomes too viscous or is otherwise not

capable of being delivered to the test species. However, it should be recognized that

arguments based on formulation limitations may be met with skepticism by regu-

latory agencies, and development teams should try to avoid invoking this as a

reason to limit high dose selection. Finally, in the absence of other reasons, the high

dose in repeat-dose toxicology studies for most pharmaceutical agents can be based

on the limit dose of 1000 mg/kg/day (ICH M3(R2); see also Test Guideline

No. 407, 408, 409, and 452 from the Organization for Economic Cooperation and

Development). However, in the LO time frame, it is often not possible to predict

with any degree of certainty what the Phase II and Phase III clinical doses will be.

8.2.3.3 Dosing Duration and Dosing Route

For non-oncology drugs, daily dosing for 2 weeks in rodents and at least 1 week in

nonrodents is common for several reasons. First, these durations are often sufficient

to provide guidance on the design of 1-month repeat-dose toxicology studies which
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are commonly used to support Phase 1 clinical trials for non-oncology drugs.

In addition, a recent analysis of attrition in the pharmaceutical industry noted that

many “stopping toxicities” identified in later toxicology studies could be presaged

from 14-day studies, suggesting dose-ranging studies of this duration may minimize

attrition of compounds after being nominated as clinical candidates [2]. However,

while study durations of 7–14 days in late-stage LO are often sufficient, the LO

toxicologist should remain alert to the specific pharmacologic, toxicologic, and

kinetic characteristics which differentiate one class of compounds from another.

These properties may dictate changes in the duration of dosing to ensure that the

study is indeed “fit for purpose” and will provide data that can be used with

confidence to support or reject a recommendation for continued development.

For agents with oncology indications, the dosing duration and dosing schedule

(i.e., daily dosing or intermittent dosing) may be much more variable and should be

customized to support the intended dosing schedule for the candidate molecule.

This may require additional treatment groups to ensure that the various dosing

schedules being contemplated by the Phase 1 medical staff are assessed.

The route of administration for the nonclinical studies with both non-oncology

drug and oncology drugs should match the intended clinical dosing route. In all

cases, the LO toxicologist should be communicating closely with the medical staff

who will be designing and overseeing the clinical development plan so that the

nonclinical study durations and dosing routes are ideally set to guide the subsequent

definitive repeat-dose toxicology studies that will be needed to support that

clinical plan.

8.2.3.4 Endpoints for Repeat-Dose Toxicology Studies

During Late-Stage LO

Institutional variation in study endpoints is certainly to be expected, in particular

when considering the variety of disease areas that are currently being investigated

for potential novel pharmacological solutions. However, the list of endpoints

evaluated in the vast majority of repeat-dose toxicology studies has been defined

and codified in test guidelines issued by the OECD. A summary of these endpoints

is presented in Tables 8.5 and 8.6, and the reader is referred to their website for

additional information.

The listings in Tables 8.5 and 8.6 should not be viewed as exclusive. It is

important that the LO toxicologist considers the specific biological effects that

may be reasonably anticipated to accompany the intended pharmacology of the

agents under study. Depending on the pharmacologic class, the inclusion of addi-

tional endpoints may be warranted. Accurate measurements of serum biomarkers

with short half-lives (e.g., cardiac troponin I) may require changes to the clinical

pathology sampling schedule. Additional tissue sections or specialized stains may

be needed to resolve questions about specific target organ effects. Electron micros-

copy on some tissues may be needed to characterize ultrastructural changes.

Collectively, the data from these various toxicity endpoints must be woven into a
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cohesive account that provides a clear account of the risks that will need to be

included in the overall risk-benefit analysis so that a decision to terminate or

continue development of the molecule can be made with confidence.

8.2.4 Additional LO Toxicology Activities

There are several additional subdisciplines of toxicology that are commonly

included in LO safety assessment. These include genetic toxicology, safety phar-

macology, and profiling assays to assess the pharmacologic selectivity of the

molecules under study.

8.2.4.1 Genetic Toxicology

Genotoxicity testing is done to assess the potential for a molecule to damage DNA

by various mechanisms (ICH S2(R1)). It is well accepted that serious diseases such

as cancer have been associated with agents that damage DNA [7]. Not surprisingly,

therefore, the identification of a genotoxicity liability with a molecule can cause

serious disruption of a drug development program. The sooner that mutagenicity

risks can be assessed and discharged, the less costly and painful the disruption will

be. Thus, it is prudent that LO toxicology assessments should include screening

studies for genetic toxicity.

The three primary genotoxicity endpoints can be defined as follows:

1. Gene mutations (also called point mutations) include any submicroscopic

changes in the primary DNA base-pair sequence.

2. Structural chromosomal aberrations (SCAs) are changes to the appearance of

chromosomes when viewed microscopically. Compounds that cause SCAs are

referred to as clastogens.

3. Numerical chromosome aberrations (NCAs) occur with the gain or loss of one or

more entire chromosomes. Molecules that cause NCAs are referred to as

aneugens.

Because there is no single assay that is capable of reliably detecting all three

primary genotoxicity endpoints, assessments for genetic toxicity rely on a battery of

several tests. There is no overarching requirement on which genetic toxicity screens

should be included in the test battery, but the LO screens generally include a gene

mutation study in bacteria (an “Ames assay”) and an in vitro test in mammalian

cells for SCAs (either a cytogenetics assay or a micronucleus test) in mammalian

cells. Conducting in vivo genetic toxicology studies in LO is relatively unusual and

would most likely be done only if previous work with the chemical scaffold and

SAR indicated a need.

Many contract testing laboratories offer miniaturized versions of the standard

genetic toxicology tests. While the timing of genotoxicity testing is flexible, their
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relatively low cost, rapid turnaround times, and low test compound requirements

(as little as 100 mg per assay) generally allow these studies to be placed in the

workflow with other early-stage LO toxicology activities. Alternatively, these

screens can be completed at the beginning of the mid-stage of LO. Regardless, it

is recommended that the genotoxicity screens be completed prior to starting any

in vivo repeat-dose pilot toxicology studies.

Collectively, the results from the test battery are used to develop a weight of

evidence regarding the potential genetic toxicity hazard associated with a molecule.

However, when dealing with the multiplicity of compounds that typifies the LO

phase of drug development, the LO toxicologist most often recommends that

development teams simply discontinue work on test compounds that are positive

in any of the genotoxicity screens used. This is particularly true for non-oncology

drugs where the tolerance for risks is low. For drugs intended for the treatment of

advanced cancer, genotoxicity studies are not considered to be essential for clinical

trials (ICH S9). However, some genetic toxicity testing may be desirable to help

ensure workplace safety for manufacturing as well as for labeling during shipping.

Many institutions will, at a minimum, complete bacterial mutagenicity testing on

compounds as they move through LO.

8.2.4.2 Target Selectivity Screening

Small compounds are often evaluated in commercially available selectivity screens

that assess the potential of the molecule to interact with a panel of different

enzymes and receptors that are not intended targets for the agent under study.

The list of enzymes and receptors in the panel may vary with different institutions

depending on prior experience and immediate concerns, but even very extensive

receptor pharmacology screening panels require only a very small amount of test

material (as little as 10–25 mg). Because of their low test material requirements as

well as their relatively low cost, target selectivity screening is often included in

early-stage LO, but their actual timing is flexible. The results of these selectivity

screens are very useful for identifying off-target activity that may be predictive of

unintended (deleterious) activity and responses. Their value is underscored by a

series of computational analyses on structure-activity relationships of compounds

reported by Mestres et al. [8] who proposed that any given small molecule may

demonstrate activity up to six targets. This analysis was taken further into a

longitudinal assessment of “promiscuity progression” over time by Hu and col-

leagues [9] who plausibly assumed that small molecules can specifically interact

with multiple targets. This clearly has implications on patient safety and the long-

term prospects for a successful drug development program continuing all the way to

submission of the New Drug Application (NDA).

Due to the negative impact cardiotoxicity has had on drug development, selec-

tivity screens for small molecules almost invariably include specific assays

designed to predict negative cardiovascular outcomes. The most common of these

assays is aimed at predicting the notorious torsades de pointes (TdP) phenomenon,

292 M.H. Andrews and V.L. Reynolds



an abnormal arrhythmia associated with prolonged QT interval that can lead to

sudden death [10]. Several drug products have been withdrawn due to incidence of

TdP, the first being terfenadine, which was recalled in February 1998 (http://www.

fda.gov/ohrms/dockets/ac/98/briefingbook/1998-3454B1_03_WL50.pdf). A com-

prehensive of drugs associated with QT effects can be found online at https://

crediblemeds.org. Drug-induced QT prolongation has been linked to blockage of

the Kv11.1 alpha subunit of the potassium ion channel in cardiac tissue. An in vitro

assay in human embryonic kidney HEK293 cells expressing the human

ether-�a-go-go-related gene (hERG) that codes for the protein associated with this

ion channel is commercially available and is now routinely incorporated in drug

target selectivity screens specifically to address potential risks for drug-induced

arrhythmias [11]. When assessing hERG results, a good rule of thumb is that the

hERG IC50 should be at least 30� greater than the projected Cmax for nonprotein-

bound drug concentrations in humans.

8.3 Communications with the Development Team

While all pharmaceutical agents are intended to confer clinical benefit to a defined

patient population, it is axiomatic that these same agents also carry risks. As drugs

move from discovery through early development and into clinical trials, ethical

considerations and regulatory requirements mandate the need to conduct

nonclinical safety assessment studies prior to any testing in a human population.

Consequently, the identification of unwanted side effects, toxicities, and risks

must necessarily precede any evaluation of the potential clinical benefits. The LO

toxicologist must therefore be keenly aware that the initial view of risks and

benefits will be very heavily weighted toward the “risk” side of the ratio. It is

important for the LO toxicologist to anticipate this situation and to be prepared to

offer the proper background and context for medicinal chemists and other key

stakeholders to help maintain a balanced perspective on emerging toxicology

data. An overly lurid description of initial toxicology findings may incite unnec-

essary anxiety among stakeholders and internal customers, and the energies

needed to manage these anxieties may become a significant distraction. A bal-

anced—but still accurate—approach when communicating is recommended. A

key tool to assist the LO toxicologist in this regard is the information that may

exist in internal records or external literature which can help identify toxicities

which are known or suspected to accompany the intended pharmacologic action

(agonism or antagonism) at the drug target under study. Such information can be

leveraged in advance to manage the expectations of other members of the devel-

opment team as well as stakeholders and to help keep new and emerging toxicol-

ogy findings in perspective.
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Part IV

Early Clinical Development of Drug
Candidates



Chapter 9

Design of Clinical Studies in Early
Development

Margaret S. Landis

Abstract There is growing philosophy in the realm of drug discovery that rapid

feedback from strategic and tactical early clinical studies is one of the most vital

components to optimizing the cycle of successful drug design. The current early

development paradigms however do not always support the rapid relay of this vital

clincal information to early drug discovery teams. Several industrial, government

and academic initiatives are underway to improve the efficiency of the discovery to

clinical information feedback loop, thereby increasing the number of drug therapies

ultimately commercialized. Success will lie in early, proactive clinical biomarker

and diagnostics identification and/or co-development, an early and sustained focus

on predictive model development, application of early, adaptive clinical design

strategies, and the use of fully integrated information technology (IT) and knowl-

edge management (KM) systems.

Keywords Pharmaceutical industry initiative • Adaptive clinic trial • Translational

medicine • Predictive model • Knowledge management system • Biomarker •

Diagnostic

9.1 Introduction

The overall success rate for market authorization of drugs entering clinical trials for

all indications is circa 10.4% [1]. The contemporary reasons cited for the overall

poor success rate include unbalanced regulatory risk-benefit assessments, higher

regulatory efficacy hurdles, commercial and financial decisions driving project

termination, and the increased complexity and cost of clinical trials [2, 3]. According

to the same reports, success in Phase 2 efficacy testing is the lowest of the three

phases, at 32.4% (n ¼ 2268). This success rate was critically lower than for either

Phase 1 (64.5%, n ¼ 1918) or Phase 3 (60.1%, n ¼ 975). While multiple reasons
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have been cited for overall poor success rates, the most predominant causes of

investigational drugs not surviving to marketed status are due to failures in achiev-

ing overall efficacy markers or diminished safety to efficacy ratios [4].

The antiquated, unintegrated, inefficient clinical trial processes that have been

utilized by the industry for decades contribute to these failures. Clinical trials of old

have utilized the distinct phases approach to progress candidates, where key

development decisions are made on small patient cohorts, short time frame studies,

and highly dichotomized data outcomes. These paradigms are often complicated by

slow clinical data analysis and inefficient clinical data transfer and dissemination,

where data is distributed to the research teams in a hierarchical fashion, severely

limiting the value gained by collective knowledge discussions within the whole of

the research teams. Most times, the basic researchers and clinical researchers are far

removed in temporal and physical space, as well as working in separate information

technology (IT) systems. More recently, the basic researchers and clinicians may

even be employed by different companies, thereby furthering the divide and

disconnection of the scientists and teams which need to collaborate for success.

There is a strong, emerging philosophy that strengthening the link between drug

design teams in early drug research with early clinical investigation teams will help

address the alarming clinical attrition rates. There are many opinions regarding

detailed solutions for this problem. In fact, a number of key cross pharmaceutical

industry initiatives aimed at addressing the potential sources of the “pipeline

problem” have evolved mainly within the last two decades and are discussed further

below.

9.2 Key Cross Pharmaceutical Industry Initiatives

Several initiatives aimed at facilitating the rapid, bidirectional flow of information

from early clinical studies to teams involved in the cycle of drug design are

currently in play. These include the US Food and Drug Administration (FDA)

Critical Path Initiative, various aspects of the Pharmacological Audit Trail (PhAT),

recommendations from the newly developed Biopharmaceutics Risk Assessment

Roadmap (BioRAM) process, the National Institutes of Health’s Bench-to-Bedside
(B2B) funding program, as well as the whole of the translational medicine

movement.

9.2.1 US Food and Drug Administration (FDA) Critical Path
Initiative

The US Food and Drug Administration Critical Path Initiative (CPI) was launched

in March 2004 and outlined a strategy to enable more beneficial medicinal products

to be delivered to patient populations. A recently published, detailed report
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Innovation or Stagnation: Challenge and Opportunity on the Critical Path to New
Medical Products [5] systematically evaluated the disconnect between the vital

scientific progress made in advanced basic biology, biomedicine, genomics, bio-

marker identification, bioinformatics, bioimaging, and material sciences in key

disease areas (cancer, Alzheimer’s disease, and diabetes) and the lack of effective

medical treatments. The report corroborates the numerous contemporary critical

analyses that cite the hurdle for demonstrating the medical utility (efficacy) of a

new product for beneficial treatment of human disease as a primary source of

“innumerable failures” in the drug development process. It called for a “collective

action” to “modernize scientific and technical tools as well as harness information

technology to evaluate and predict the safety, effectiveness, and manufacturability

of medical products.” The report recognized the need for enhanced information

technology (IT) systems to improve data and information flow and recommended

the creation of new tools to assess the effectiveness (efficacy) of new products more

rapidly and at lower costs. The disconnect between “drug discovery” and “product

development” must be remedied using new, advanced predictive biomodeling,

improved biomarkers and new, more rapid and efficient clinical evaluation

paradigms.

This focus on demonstration of drug efficacy and effectiveness is again

highlighted in the second element of the “Three Dimensions of the Critical Path”

under the “Demonstrating Medical Utility” heading (Fig. 9.1). Here, the clearly

stated objective is boldly and simply defined as “Show that the product benefits

people”. This sub-initiative heading clearly outlines the vital importance of the

preclinical to early clinical connection of drug discovery and development

advancement. The report dictates that preclinical activities need to more efficiently

“select appropriate design (devices) or candidate (drugs) with high probability of

effectiveness” and links this to the corresponding clinical imperative to “show

effectiveness in people”.

Demonstrating medical utility of a drug asset includes the successful application

of in vitro and in silico predictive tools during prototype design/discovery phase

and successful employment of translational in vivo and in silico capabilities during

preclinical development stages. Ultimately, this should lead to more successful

human efficacy evaluations during the clinical development stage. The intercon-

nectivity of the tools utilized during the prototype design/discovery stage must be

integrated with the initial clinical planning and subsequent development stages.

This approach is expected to provide a paradigm where “better tools are used to

identify successful products and eliminate impending failures more efficiently and

earlier in the development process”. Critical Path research in government, acade-

mia, and industry will be able to provide these necessary “publicly available

scientific and technical tools — including assays, standards, computer modeling

techniques, biomarkers, and clinical trial end points”. Future success of this

approach may require all researchers to engage in more collaborative,

noncompetitive sharing of tools and data [6], which may ultimately prove mutually

beneficial in the collective scientific progress against human disease.
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9.2.2 The Pharmacological Audit Trail (PhAT)

Similar to the Critical Path recommendations that mandate the strong bidirectional

flow of data, the Pharmacological Audit Trail (PhAT) [7] provides a template of key

questions, milestones, and measures to address along the transition from drug

candidate selection to preclinical evaluation and ultimately clinical trials. This

framework includes information, tools, and knowledge from drug design and early

research to design of key early clinical efficacy and safety markers and the guidance

frames critical performance criteria to address along the development path. This

framework poses categorical questions that directly address the proof of concept

(POC) principle, which can ensure rigorous testing of the mechanistic hypotheses.

The ultimate aim of the framework is to select the best drug candidate(s) for further

evaluation and be able to provide an adequate “risk of failure” assessment. As

compounds progress through the rationally designed framework, the “likelihood

of drug attrition” should decrease as the “hierarchy of sequential questions are

successfully answered”. In planning for success, significant early investment in

evaluation tools, such as biomarkers and genomics assays, should be considered

early to lay the groundwork for successful evaluation and progression of the drug or

therapy.

The early version of the Pharmacological Audit Trail included specific but basic

information, including the physical-chemical aspects of the drug candidate, drug

pharmacokinetics, pharmacodynamics, biochemical pathway modulation,

Dimension Definition Examples of Activities
Assessing Safety Show that the

product is
adequately safe for
each stage of
development

• Preclinical: show that the
product is safe enough for
early human testing

• Eliminate products with
safety problems

• Early Clinical: show that
product is safe enough for
commercial distribution

Demonstrating
Medical Utility

Show that the
product benefits
people

• Preclinical: Select 
appropriate design (devices) 
or candidate (drugs) with 
high probability of 
effectivenessClinical: Show 
effectiveness in people

Industrialization Go from lab 
concept or 
prototype to a 
manufacturable 
product

• Design a high-quality 
product
o Physical design
o Characterization
o Specification

• Develop mass production
capacity
o Manufacturing scale-up
o Quality control

Fig. 9.1 The three dimensions of the FDA Critical Path Initiative (reproduced from Ref. 5)

300 M.S. Landis



achievement of biological effect, and associated clinical response [8]. Subsequently,

the Pharmacological Audit Trail has been updated and expanded [9] to include

additional important translational aspects. Key aspects are patient population identifi-

cation, aspects of drug targeting, validation of predictive assay for molecular aberra-

tion, important and vital understanding of pharmacokinetic-pharmacodynamic

(PK-PD) relationships, biochemical pathway modulation, achievement of biological

effect, hypothesis testing using intermediate end points of clinical response,

reassessment of molecular alterations at disease progression, inhibition of resistant

biological pathways to further explore and understand drug attributes, and drug action,

thereby ensuring a higher probability of success and reduced attrition of the drug

candidate in subsequent clinical evaluations (Fig. 9.2).

Fig. 9.2 Original and

updated version of the

Pharmacological Audit

Trail (PhAT) (used with

permission from Ref. 8)
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9.2.3 National Institutes of Health (NIH) Bench-To-Bedside
(B2B) Initiative

Sponsored by the National Institutes of Health (NIH), this multimillion-dollar

funding source was created to “speed translation of promising laboratory discov-

eries into new medical treatments” [10, 11]. The initiative aims to address the gap in

important contemporary discoveries in genomics, metabolomics, pharmaco-

genomics new disease target identification in key, underrepresented disease areas.

Similar to the previous initiatives discussed, the ultimate goal continues to be

enhancing the link between advances in basic biomedical research to positive

clinical outcomes, which ultimately leads to transformative new medicines being

available to humankind.

One of the key aspects of the initiative is focused on strengthening the bond

between research scientists in laboratories (Bench) with clinical researchers eval-

uating efficacy in patients (Bedside). The Agency’s ability to link intramural
science efforts (research conducted at an NIH site) with extramural science efforts
occurring globally at NIH-funded institutions is a vital keystone for the efficient and

rapid flow of information. The strong multidisciplinary reach of the NIH is another

critical caveat to the success of this approach and allows for a coordinated effort to

be applied to the collaborative paradigm. It emphasizes and promotes the ideas that

success lies not only in the progression and commercialization of the scientific

advancements but must be supported by the corresponding organizational and

network infrastructure. These facilitated interactions and common communication

platforms enhance the flow of information, enable facile idea exchange, and

promote critical aspects of scientific discussion, which vastly improves the poten-

tial and possibilities for any new drug candidate or therapy.

In order to funnel funding to the most critical areas of need, current initiatives

are funded in the focus areas of AIDS, rare diseases, behavioral and social sciences,

minority health and health disparities, women’s health, rare diseases drug develop-
ment, and pharmacogenomics. Award criteria focuses on scientific quality, poten-

tial for clinical trials, and potential for offering a new medical treatment or better

understanding an important disease process.

9.2.4 Translational Medicine Paradigms

The concept of translational medicine was first introduced circa 2003 as a response

to decades of investment in basic biomedical research failing to produce expected

medical breakthroughs needed to treat or cure a variety of devastating human

diseases, including Alzheimer’s disease, diabetes, and cancer. A key review article

states that “. . .translation, describes the transformation of knowledge through

successive fields of research from a basic science discovery to public health

impact—a complex process that requires both research (e.g., bench-work and
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clinical trials) and non-research activities (e.g., implementation)” [12]. This excerpt

again highlights that not all hurdles in the Bench-to-Bedside process lie in just the

research areas. Support provided with facilitated interactions, organizational sup-

port, and information management are proposed to be critical in the successful

process of translational interactions.

Several aspects of the current early development paradigms however do not

always support the rapid relay of this information and collaboration of the early

research teams involved in developing the drug and drug target landscape. In

addition to limitations in practicalities of research, information technology, and

organizational hurdles, the hurdles associated with building a collaborative trans-

lational team are “lack of qualified ‘translationalists’, career pathways and poor

career incentives, the lack of alignment of clinical goals of the researcher, clinician,

and developer and the lack of designated research time for research-clinicians”

[13]. Program hurdles can also include intense competition for early resources,

staff, and funding, a common environment encountered when there are many other

research programs in play. Additionally, the bureaucracy associated with the

execution of clinical trials is also often cited as a major impediment for effective

translation [14].

Several articles [15–17] cite the need for more interdisciplinary collaboration in

the critical periods of drug discovery and initial clinical trial planning and execu-

tion. Budge et al., in a recent article [13], invoke the use of new types of “collective

intelligence” in the forms of open innovation and crowdsourcing measures to

identify and facilitate the exchange of translational ideas. Gathering new and

potentially beneficial ideas from different fields within biomedical research, sci-

ence, clinical science, and engineering and tapping into the wisdom of practicing

healthcare professionals is expected to deliver the “evidence-based innovation”

needed to revitalize the process of translational medicine.

From the review of the pertinent literature, it is proposed that the key temporal

phase of establishing these key connections lies in the drug discovery and nascent

clinical development stages where basic researchers are in direct connection with

early clinical scientists. Here, the teams are relatively smaller, and there is more

nimble and decisive decision-making. Generally, the smaller, more focused teams

experience less of a bureaucracy burden and are able to drive the planning of studies

with scientific learning as the main goal. This early development space and time

frame is thus theorized to be the most dynamic and critical period of translational

power, and the basic science-to-practical clinical translation potential should be

maximized through the use of collaborative team intelligence. The framework for

the collaborative discussions should fully utilize the tools described in the Pharma-

cological Audit Trail [8] and the Biopharmaceutics Risk Assessment

Roadmap [18].
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9.2.5 The Biopharmaceutics Risk Assessment Roadmap
(BioRAM)

This Roadmap [18] was recently developed as a multidisciplinary, systems-based

scoring approach and focuses on the integration of all aspects of bioperformance to

drug substance and drug product design. The goal of this framework is to provide

guidance to determine the optimal and desired drug delivery rate, drug exposure

profile, and pharmacodynamic response of a therapeutic entity. The Roadmap helps

to optimize the development of the clinical (and ultimately commercial) drug

product using iterative approaches that parallel and are ideally synergistic with

the tenets of “Learn and Confirm” clinical trial approaches [19]. The BioRAM

advocates the evolution and leveraging of in vitro, in vivo, and in silico modeling

and simulation tools as key factors for achieving success. The BioRAM paradigm

again highlights the importance of the basic science, but also the knowledge and

data management components in a successful drug and clinical development

process.

The Roadmap provides an integral platform that begins at the earliest drug

discovery stages, when the program, drug, or therapy is initially conceived. It served

as the collective knowledge database of the program and drug target that connects

the early discovery/development information to clinical development (Fig. 9.3). The

continued application of the Roadmap early in clinical study planning, where the

Fig. 9.3 How the BioRAM integrates early discovery/development with clinical development

(reproduced from Ref. 18)
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desired exposure profile may not be completely understood, will provide the ability

to probe the mode of action of a drug substance using a number of different

pharmacokinetic-pharmacodynamic (PK-PD) scenarios. This will lead to the iden-

tification of optimal delivery profiles that are desired for the most positive thera-

peutic outcome(s). This process can serve to identify the critical aspects of the drug

and formulation as it is related to early efficacy and safety end points.

The current Roadmap details the examination of four basic and relatively

common therapy-driven drug delivery scenarios. It provides a transparent rationale

for decision-making, assures product quality in all stages of development and

commercial production, and develops the robust linkages of drug target, drug

substance, and drug product to clinical outcomes. Progressive application of the

Roadmap in the later clinical development process can be used to optimize the drug

product further, in a quality-by-design (QbD) approach to achieve most or all of the

quality target product profile (QTPP)-driven specifications.

Implementation and consistent use of this BioRAM tool in the drug development

process is key to delivering more positive clinical and commercial outcomes. It will

also serve to build a framework for collective knowledge that can be utilized and

shared across an organization and potentially across the industry. Common plat-

forms, transparent frameworks, and rationale decision-making in drug and disease

therapy development will enable more transformative medicines to reach the

market and ultimately benefit the patient.

9.2.6 Other Related Pharmaceutical Industry Initiatives

The pipeline problem has spurred many initiatives to drive more productive inves-

tigation and translation of key discoveries to valuable and desperately needed

disease therapies. Additional organizations, funding sources, and initiatives

include:

• The National Institutes of Health (NIH) Roadmap, September 2004 [20]

• National Cancer Institute’s (NCI) Specialized Programs of Research Excellence

(SPOREs) [21]

• MdBio, a private nonprofit corporation that supports the growth of bioscience [22]

• The EuropeanOrganization for the Treatment ofCancer (EORTC) initiatives [23]

• The National Translational Cancer Research Network (UK) [24]

• The programs and initiatives administered by National Institutes of Health

National- Center for Advancing Translational Sciences [25] which include:

– Bridging Interventional Development Gaps (BrIDGs) program

– Clinical and Translational Science Awards (CTSA) program

– Discovering New Therapeutic Uses for Existing Molecules (New Therapeu-

tic Uses) program

– Extracellular RNA (exRNA) Communication program

– Genetic and Rare Disease Information Center (GARD)
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– NIH/NCATSGlobal Rare Diseases Patient Registry Data Repository/GRDR®

program

– Pfizer’s Centers for Therapeutic Innovation (CTI) for NIH Researchers

– Rare Diseases Clinical Research Network (RDCRN)

– RNA interference (RNAi)

– Therapeutics for Rare and Neglected Diseases (TRND) program

– Tissue Chip for Drug Screening (Tissue Chip) initiative

– Toxicology in the Twenty-First Century (Tox21) initiative

9.3 Early Development Themes to Address Better Clinical
Outcomes

The broad initiatives discussed above have highlighted the “pipeline problem”

currently facing the pharmaceutical and biomedical industry. These initiatives

have proposed detailed new process, roadmaps, and scoring systems to facilitate

choosing the right drug candidates. A common theme across all these initiatives

involves laying out a framework for understanding the mechanistic target and

disease. Very often however, the in vitro, in vivo, and in silico tools needed to

answer the key questions posed in these roadmaps may not exist or may have to be

developed simultaneously as the drug asset is being investigated. This often leads to

a scenario where there is intense program competition for limited resources. While

the early discovery-development/preclinical space is challenging to manage from

this perspective, it does offer the most potential to set the stage for clinical success.

There are several key concurrent themes in the initiatives cited above that involve

specific activities in the early drug discovery and development interface space

which can improve the chances of better pharmacological to pharmaceutical trans-

lation and understanding.

9.3.1 Biomarker and Diagnostics Identification
and Co-Development

As discussed in many of the initiatives above, access to reliable, validated clinical

biomarkers and diagnostics for both safety and efficacy can be invaluable to the

success of drug candidates in preclinical and clinical development. More specifi-

cally, the CPI opportunities report cites this aspect as one of the key solutions to

address the Critical Path Initiative (CPI) “pipeline problem” [5].

For early research teams exploring relatively novel targets, the lack of validated

biomarkers dictates that interdisciplinary teams must consider the prospect of

co-development of biomarkers and diagnostic systems during the drug development

process [26]. While the burden of this co-development approach has been discussed

previously in terms of resources and project priorities, there is a general tenet that
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“the more information known about the biology, the greater the strength of

association between an analytical signal and clinical result, the more efficient and

less risky the development process will be” [27]. Predictive-type biomarkers are

cited as being highly valuable for clinical understanding as well as decision-making

and serve to identify patients who will benefit most from the drug therapy. Suc-

cessful examples, such as the HER-2/neu testing in breast carcinoma [28], have

demonstrated that proactive or even concurrent investment into the development of

the drug and biomarkers/diagnostics is the new development paradigm in the

industry. It has been reported [29] that there is actually an increase in the FDA

submission rate for diagnostics, including these types of predictive biomarker tests.

Because diagnostics and devices have a completely different regulatory and

approval path than drug therapeutics, they suffer more from a “front-end problem”

[29] than traditional drug development processes. The development of these valu-

able tests and devices must compete within the program for the same resources and

funding as the resources for actual drug development, so their importance can,

unfortunately, often be downgraded in relation to the drug asset.

A synergistic addition to traditional diagnostic biomarkers in clinical trials may

be the incorporation of electronic and mobile health monitoring devices. Incorpo-

ration of even simple devices that can confirm basic health related measures can

provide feedback of real time patient status, safety and compliance. Ultimately

these technologies have the potential to record individual pharmacokinetic or

pharmacodynamic patient information to assess effects of target modulation. Incor-

poration of electronic monitoring devices in trials is becoming the new paradigm in

clinical trial execution [30–33]. These nonsubjective, noninvasive observations and

measurements rapidly gather and analyze data to detect early signs of efficacy,

safety end points, or adverse events. Furthermore, they are generally considered

more reliable than qualitative, human clinical assessments [34]. Real-time moni-

toring of various clinical signals can be funneled to research teams to inform and

adapt early in vitro and in vivo and in silico models. These types of electronic

monitoring data may ultimately uncover novel diagnostic and biomarker criteria. It

is expected that a holistic systems-based knowledge platform will be needed to

process and incorporate critical information for successful drug development in the

current environment. Additionally, the availability of real-time patient data could

greatly enable and accelerate the adaptive clinical trial paradigms that have been

additionally proposed as a partial solution to the pipeline problem.

The emergence of the practice of conducting small, key, informative clinical

methodology studies concomitantly to clinical drug evaluation often brings the

basic research teams in more direct contact and discussion with the clinical devel-

opment teams. With the objective of better understanding the biological target and

pharmacological interaction of the drug candidate in the human body, detailed

discussions of how to assess the key drug and drug target attributes can help

facilitate the flow of information between biological researchers and clinical inves-

tigators. These exploratory-type clinical studies can address the clinical target

“unknowns” and provide important guidance on how to conduct effective clinical

trials on the actual drug assets, thereby, either improving their chances for
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success or providing key, discriminating decision points for deprioritization of

unacceptably risky drug assets. Such methodological clinical investigations can

be evaluated in a Phase 0 exploratory approach and may include probe compound

evaluations [35], investigational, noncommercial formulations of the drug asset

[36], and/or screening of additional closely related potential drug candidates [37].

9.3.2 Early Focus on Predictive Model Development
as a Key Success Factor

One of the key success factors highlighted in the translational initiatives mentioned

previously was the focused integration of all aspects of the drug and drug target

landscape, including the incorporation and co-development of correlations and

models either prior to or during the drug development process. Traditionally, the

establishment of structure-activity relationships (SAR), property correlations, and

safety correlations represents the basis for some of the earliest and most basic

predictive models. This process begins very early in the drug discovery process. For

example, correlations of LogP to plasma protein binding [38] and correlations of

LogD and aromaticity values to solubility [39] serve as the basis for predictions of

expected physical-chemical properties for structurally related compounds within a

given molecular series. These early correlations and trends often guide the deci-

sions on potential molecules to further pursue in the course of lead drug candidate

identification and selection in the early discovery phase.

Enhanced efforts are required in order to utilize all early experimental data and

begin to build large correlation models and structure-property relationships. These

models can ultimately be incorporated into full “systems” models [40], including

building comprehensive, holistic platforms for the understanding of the drug target,

the design of relevant chemical matter and dosage forms, understanding the intri-

cacies of drug efficacy, and safety modeling [41]. As experimental data is acquired

around the drug candidates and drug target, these models should be capable of

“learning” such that all subsequent predictions are improved as more data is

added. All early experimental data should be captured and fed into learning models

to build the initial knowledge base around the drug and drug target [42]. As

suggested by the BioRAM initiative discussed earlier in this chapter, the types of

models that can be considered among the whole systems composite include but are

not limited to biological modeling based on structural biology, pharmacological

modeling including pharmacokinetic-pharmacodynamic relationships, and statisti-

cal modeling of most preclinical and clinical studies. Efforts made to support this

model development in the early space may be a key success factor in the program

progression and iterative design capabilities available for the development program.

Methodology studies may be used to bolster and test hypotheses related to the

safety and efficacy of drug and drug targets. The results from these studies, if

included in the systems model, will further develop the predictive modeling power
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of the program. Therefore, investigational clinical methodology studies, potentially

in the form of microdosing studies [43], may actually employ probe compounds as a

method to obtain rapid clinical information on new targets and mechanisms

without necessarily incurring a delay to optimize the compounds for oral adminis-

tration [37]. Methodology studies may involve the use of several potential drug

candidates [44]. These compounds will contain attributes that allow investigation of

the methodological hypotheses and provide knowledge and learning to the larger

knowledge base of the drug target landscape. This knowledge base can then be used

adaptively by the research and clinical teams to address the key mechanistic

questions posed in the Biopharmaceutics Roadmap and Pharmacological Audit

Trail hierarchy.

Greater reliance on information gained from evaluating probe compounds [35]

as well as multiple probe or candidate compounds will become more of the standard

clinical evaluation paradigm to address efficacy readouts and safety end points.

This approach represents a more realistic drug development situation where cus-

tomized plans for different molecules to answer specific efficacy or safety questions

will result in a greater likelihood of clinical success.

9.3.3 Application of Early Adaptive Clinical Design
Strategies

Many of the industry-wide initiatives cite the employment of adaptive design

strategies as a key solution to addressing the “pipeline problem” for translating

new biomedical discoveries into human medicine and disease treatment. The

process of adaptive design involves learning, selecting, and confirming aspects of

drug research and must proceed rapidly, efficiently, and seamlessly in the design

process.

Adaptive clinical trial design is an initiative highly endorsed by both the Food

and Drug Administration [45] and the European Medicines Agency (EMA) and is

intended to give the clinical trial investigator many options to explore the safety and

efficacy aspects of the drug therapy. The integral component of the framework is

flexibility, with the adaptive designs allowing for preplanned modifications and

changes to the trial based on various emerging data, biomarker data, and other end

points. Modifications occur based on unblinded data and can include halting a trial

early due to safety, futility, or efficacy at interim analysis without the need to file

time-consuming amendments. There are several adaptive clinical trial paradigms

available including a randomization design, a group sequential design, a sample

size re-estimation design, a drop-the-loser design, an adaptive dose-finding design,

a biomarker-adaptive design, an adaptive treatment-switching design, a hypothesis-

adaptive design, an adaptive seamless Phase 2/3 trial design, and a multiple

adaptive design [46]. The advantages of this process are the more efficient use of

clinical trial participants, a quicker path to success or failure, and the saving of

9 Design of Clinical Studies in Early Development 309



valuable time and resources. Cited disadvantages of this approach include the need

for complicated and complex adaptive clinical trial design protocols, which can be

costly and time-consuming to prepare.

One of the tools that can be efficiently utilized in the adaptive clinical design

process is microdosing. As discussed previously, microdosing trials [47] are typi-

cally utilized for obtaining human pharmacokinetic information on investigational

new drugs quickly, so that key inputs may be communicated back to both the drug

and clinical design teams. Historically, these studies provided little or no informa-

tion on drug safety and efficacy; however, more recently, the application of

microdosing schemes to positron emission tomography (PET) studies [48] has

enabled the determination of both plasma and tissue drug concentrations. More

enhanced information on tissue concentrations and human plasma/tissue distribu-

tion profiles are direct corollaries to efficacy and can be important parameters for

subsequent pharmacokinetic-pharmacodynamic modeling and prediction. The

results from these pseudo-efficacy studies can be used to adapt the next stages of

the clinical trials or reiterate a clinical evaluation with additional drug candidates.

More advanced applications of microdosing for non-radiolabeled drug systems

have even been expanded to effectively increase the understanding of pharmaco-

kinetic fates and biodistribution of drug metabolites, as well as simultaneously

characterize several lead drug candidates and/or investigational tool probe com-

pounds via highly efficient “cassette dosing” schemes [49, 50].

Microdosing should be considered as an important tool in the early drug devel-

opment space as a method of rapidly relaying important information on drug

parameters to both research and early clinical teams. This includes employing

traditional microdosing studies into early adaptive clinical design plans for a drug

asset or assets, where key information on the human pharmacokinetic fate of

investigational drug assets is sought. Additionally the use of PET microdosing

studies is to provide important early biomarker information on temporal tissue

distribution to inform efficacy parameters.

As can be gleaned by the discussions of flexible adaptive clinical dosing and

microdosing with various drug candidates, probes, and tracers, the cornerstone of a

successful adaptive clinical design program must include flexible formulation

design and drug delivery. Early formulation scientists will be required to support

a variety of diverse formulations necessary to address all the aspects of adaptive

clinical designs. For example, designs that include microdosing evaluations may

need specific low-dose oral, intravenous, or combination dosage forms of one or

several investigational drug assets, typically known as cassette doses. Due to the

flexibility aspects, dosage form platforms need to accommodate wide dose ranges,

and enabled dosage forms may be needed for adequate dose delivery. Extempora-

neous preparation is one means to ensure wide-range dose flexibility [51] and can

be utilized to prepare modified release dosage forms [52]. It is important to fully

consider all dosage forms that can support exploring complex PK/PD and PK/safety

relationships. This includes short- and long-duration modified release, combina-

tions of immediate and controlled release dosage forms, as well as combinations

of oral and subcutaneous or intravenous administration [53]. Eventually, rapid
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small-scale, robust GMP manufacture using small-scale equipment or pod-based

manufacturing [54] may be implemented to explore a variety of dosage forms for

continually larger clinical populations.

Adaptive clinical trial formulation needs are typically therapeutic area specific.

For example, the general clinical paradigm for oncology utilizes oral solid dosage

formulations in patients for Phase 1 clinical trials, but may also include traditional

intravenous infusion (chemotherapy)-type dosage form. Some adaptive oncology

clinical trials are now designed to combine novel drug therapies with marketed

standard of care cancer treatments [55] ormay utilize molecular imaging biomarkers

that may require significant, additional formulation and drug delivery efforts [56].

Alternatively, early clinical assessments for central nervous system (CNS)

therapeutics may require the concurrent intravenous delivery of drug asset-related

PET tracers and probe compounds distinct from the drug asset [57]. Clinical trials in

metabolic diseases may require the delivery of various dosage forms (e.g., con-

trolled release) to provide varied exposure profiles to assess key safety studies. In

general, there is a strong correlation between early flexible formulation and the

more popular trends of personalized medicine. In these cases better biomarkers and

genetic screening may dictate dosage levels and safety margins. Successfully

achieving efficacy and safety end points may lie in the ability to probe and learn

about the drug assets and targets through flexible formulation paradigms available

in the early clinical development space.

While the concept of adaptive design is most often focused on impacting clinical

design and speedier patient outcomes, there are other aspects of adaptive design in

the drug discovery and development processes. Most recently, adaptive design has

also been invoked as a method in the design of active drug substances. In the cited

example [58], a desired poly-pharmacological profile was achieved using an auto-

mated, adaptive design approach. Using this process, analogues were generated and

prioritized against a set of objectives and demonstrated an impressive 75% success

rate for in vivo target engagement. Overall, the adaptive design process is consid-

ered the new hallmark of drug discovery and development for new therapeutic

innovations. Supported by the Critical Path Initiative recommendations, the derived

benefits are expected to be shortened drug development timelines, more efficient

use of resources and ultimately the faster, more efficient delivery of transforma-

tional medicines to patients.

9.3.4 Use of Fully Integrated Information Technology
(IT) and Knowledge Management (KM) Systems
as a Key Success Factor

There is a tremendous amount of data and information generated in the drug

discovery and clinical evaluation process, and an integrated, robust knowledge

management system is vital for the early collaborative research process. Starting

from very early in the discovery stage, knowledge bases are needed to capture,
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organize, and make available all the relevant data information gathered on the drug

targets and drug assets as they become available.

The systems must be capable of rapid data acquisition and processing, as

efficient and accessible knowledge management systems are essential for cross-

functional team collaborations. These systems will also be useful in the proposed

cross industry sharing of target, probe, population, and placebo data in

nonproprietary fashion [35, 59]. As stated previously, establishing these integrated

systems and platforms in the early development interface will help ensure that

predictive models are accessing the most current data in real time. Additionally, if

these models are established early, they can “learn” with each new informational

input and become more powerful and predictive for specific drug programs

[19, 42]. An integrated information platform facilitates the collaborative nature

and holistic systems aspects that will facilitate clinical and translational success.

9.4 Summary

In summary, most solutions to the pipeline problem can be correlated to key actions

that begin in the early development space, strengthening the interactions and links

between basic laboratory researchers and clinical practitioners. These collaborative

interactions must involve a bidirectional communication and coordination of key

drug asset development studies, incorporating insights from a variety of interdisci-

plinary internal and external participants. Building comprehensive learning models

may involve nontraditional early development activities including the early clinical

evaluation of several key lead molecules (i.e., cassette-type microdosing) and the

co-development of key, biomarker, and diagnostic systems for newly emerging

disease targets. The increasing use of pilot methodology studies to more fully

understand drug action and drug target engagement is expected to continue and

facilitate deeper clinical understanding. More rapid progress of drugs to clinical

trials and ultimately to the market is expected to occur from key early development

activities. These include early biomarker and diagnostics identification and

co-development, early predictive model development and integration, application

of early adaptive design strategies utilizing flexible formulation approaches, and

integration of information technology and knowledge management systems for

efficient collection and sharing of vital drug asset and drug target information and

learning.
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Chapter 10

Design of Clinical Formulations in Early
Development

Catherine M. Ambler, Avinash G. Thombre, Madhushree Gokhale,

and John S. Morrison

Abstract Thoughtfully designed early clinical formulations not only meet the

needs of the study at hand and inform the development of the commercial product,

but can influence the direction of the clinical program as well as provide further

guidance to potential backups still in exploratory stages. This chapter focuses on the

various types of early clinical formulations, why they are developed, and how the

preclinical formulation space helps to guide initial clinical formulation selection.

Impacts on clinical program development will be presented through case studies

and examples in context of the types of clinical studies being supported: what is the

goal of the clinical study, what questions need to be answered, and how will the

information be used in subsequent development? Additional factors influencing

formulation selection such as patient needs, the practicality of switching between

dosage forms, and commercialization potential will be reviewed.

Keywords Extemporaneous preparation • Modified release (MR) • Solubilization •

Clinical formulation • First in human (FIH) • Probability of technical success

(PTS) • Accelerated development • Case studies

10.1 Introduction to Early Clinical Studies

The primary goals of a first-in-human (FIH) clinical study are to assess safety and

tolerability of a new chemical entity. In general, FIH studies are not intended to

evaluate therapeutic effect; however, the incorporation of biomarker monitoring
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where possible is not uncommon. First-in-human programs are generally conducted

as small, in-house studies, where the subjects can be carefully monitored by trained

medical professionals. The subjects are typically healthy volunteers at this stage,

which allows safety to be assessed independent of other preexisting medical

complications and in the absence of concomitant medication. However, in certain

therapeutic areas such as oncology, where life-threatening disease, narrow thera-

peutic windows, and more severe side effect profiles may be expected due to the

mechanism of disease treatment, FIH studies are typically conducted with patient

populations. Placebo control groups are also utilized in early clinical trials, with

matching formulations developed to maintain “blinding” during the study.

Though a number of study designs may exist to accomplish the goals of these

initial Phase I clinical trials, they typically include some form of stepwise single-

and multiple-dose escalation in order to establish initial human PK data, evaluate

any toxicity/adverse events associated with the test compound, and establish a

maximum tolerated dose. Factors to consider when selecting an appropriate design

include known and/or predicted information on the behavior of the compound of

interest, such as pharmacokinetic parameters, dose range to be evaluated, and safety

data available, as well as related aspects such as anticipated dropout rates; statistical

considerations in data interpretation; incorporation of additional study arms for

evaluation of parameters such as food effect, dose frequency, or alternative formu-

lation approaches; and the flexibility to adjust the clinical plan to real-time data as

needed.

A high-level overview of the main study design strategies for early clinical trials

is presented in “First in Human Studies: Points to Consider in Study Placement,

Design and Conduct” [1]. In general, early clinical strategies likely fit into a

parallel- or a crossover-type design. A parallel study design is a standard approach

in FIH, in which dose escalation occurs stepwise over several cohorts of subjects

with each cohort receiving one dose of the investigational compound. This design is

illustrated in Fig. 10.1. Here, each cohort may consist of 8–12 subjects, two of

which are randomized to placebo. In a single ascending dose (SAD) escalation, a

single dose of one dose strength (i.e., Dose 1) is administered to Cohort 1, and the

subjects are monitored for the determined period before completing their involve-

ment with the study. The next cohort of individuals would then repeat the process

Cohort Period
1 2 3 4 5 6 7 8

1 Dose 1
2 Dose 2
3 Dose 3
4 Dose 4
5 Dose 5
6 Dose 6
7 Dose 7
8 Dose 8

Fig. 10.1 Parallel study design for first-in-human single ascending dose escalation protocol
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with the next sequential dose strength and so forth until reaching a predetermined

endpoint in dose escalation or other stopping criteria.

Alternatively, a crossover study design as illustrated in Fig. 10.2 allows for study

subjects to receive additional single doses of the test compound during the dose

escalation process. This crossover design can be beneficial in allowing for direct

comparison of differing dose levels, formulations, or administration frequencies

within single subjects (i.e., the subject is their own control group), but may not be

appropriate in instances, for example, where PK profiles require extended washout

periods between dosing intervals. In this example, similar numbers of subjects may

be enrolled in each cohort as compared to the parallel design, and both active and

placebo doses are incorporated into the randomization strategy. However, as each

cohort receives more than one dose level during the escalation process, fewer total

subjects may be required.

In the case of either design, a similar strategy could also be applied to a Phase I

multiple ascending dose (MAD) study, though each dosing period would be longer

(e.g., 14 days of dosing at the given dose strength instead of 1 day as for SAD).

Other design types, or modifications of those above, are also available to meet

the needs of a given study. Key to each Phase I study, however, is the ability to

slowly increase the amount of compound administered to the subject while moni-

toring for safety and obtaining key information about the human pharmacokinetic

profile of the investigational material.

Initial starting dose levels are selected based upon careful review and under-

standing of preclinical safety, pharmacokinetic, and pharmacodynamic data. In

particular, the no observed adverse effect level (NOAEL) from the most relevant

species in preclinical toxicology studies is weighed heavily in the dose selection

process [2]. In cases where there is a precedence for the mechanism of action and

known pharmacology, historical review of data may also be used to adjust the

starting dose accordingly.

Prior to clinical evaluations, a prediction of the human pharmacokinetic

(PK) profile is made based upon both in vitro assays and scaling of data obtained

from in vivo testing in preclinical species. Though these predictions provide the

starting assumptions of how the drug candidate will perform in humans and allow

for estimations of dose requirements, there are limitations to these methods. Early

human PK data is therefore highly valuable in refining these dose estimations, and

adjustments to dosing strategies based upon earlier predictive tools may need to

be made.

It is important to note that this increased understanding of human PK not only

impacts the progression of the current clinical candidate, but potential backup

Cohort Period
1 2 3 4 5 6 7 8

1 Dose 1 Dose 3 Dose 5 Dose 7
2 Dose 2 Dose 4 Dose 6 Dose 8

Fig. 10.2 Crossover study design for first-in-human single ascending dose escalation protocol
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strategies as well as related therapeutic targets. Information can be fed back into

early discovery to design around newly discovered deficits or improve predictive

models to assist in more effective compound selection. For example, a longer than

expected human half-life of a clinical compound that was projected to be cleared

very quickly could lead to consideration of additional molecular substrate that was

previously considered less than ideal from this perspective, allowing for efforts to

focus on improvements of other aspects of the backup API profile. Alternatively,

plasma exposures that are significantly different than expected for the clinical

candidate could lead to increased understanding of transport mechanisms that are

underrepresented in preclinical species, potentially leading to greater understanding

of their role and better predictive tools or screening methods for subsequent

chemical substrate.

10.2 First-In-Human (FIH) Phase I Clinical
Formulation Design

There are many types of formulations available that will enable the Phase I clinical

program. Most approaches can be divided into one of the two categories: speed to

Phase I [3] or early positioning for final formulation [4]. Proponents of the first

approach cite the high attrition rate observed in clinical trial progression, with

statistics suggesting only around 13% of small-molecule clinical candidates pro-

gress from Phase I to NDA approval (based upon an evaluation of industry-

progressed compounds in the 1993–2004 time frame) [5]. These approaches gen-

erally favor less resource burn in early clinical development. The second strategy

aims at greater initial investment in a more robust formulation strategy, with more

rapid progression to the commercial space for those candidates that survive. In

either case, however, consideration of both the study design and goals, as well as

the physical and chemical properties of the candidate of interest, must be consid-

ered in selecting the appropriate formulation design. For example, will the formu-

lation need to support extremely low or high dose levels? What does the stability

profile look like? Where is the study to be conducted, and what is the anticipated

duration of dosing? Does the compound display high solubility, or are there

limitations that require an enabling technology to deliver the dose range required?

In addressing some of these questions, information obtained from dosing formula-

tions used in the preclinical space can significantly inform the selection of clinical

formulation options. Preclinical efficacy models may offer information on effec-

tiveness of solution dosing or handling concerns with high viscosity suspensions,

for example. Enabling formulations may have been required for adequate preclin-

ical exposures, which may be pursued clinically for similar reasons. Likewise,

challenges faced with high doses in toxicology studies may translate to similar

challenges in high dose escalations in the clinic. Was a dose proportional increase

in exposure achieved or did exposure plateau during escalation, and if so, why?
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Many dosage form options exist for progressing early clinical studies.

Formulation options which can cover broad ranges of dose strengths and allow

for greater flexibility in dose adjustment offer significant benefit to early stages of

clinical development. As mentioned above, preclinical predictions do not always

translate to human PK performance, and the ability to quickly adjust to changing

needs or explore additional dosing strategies (such as dose frequency/divided

dosing, dose timing, with or without food, etc.) as the need arises is extremely

helpful in this early space.

10.2.1 Simplified Manufactured Dosage Forms

Perhaps the most simplified formulation approach is an aqueous solution or sus-

pension of the clinical candidate. Commonly referred to as a powder-in-bottle (PIB)

or drug-in-bottle (DIB) formulation, the active pharmaceutical ingredient (API) is

contained in a drinking vessel ready for constitution at the time of dosing. Little

development work is required for this type of approach, aspects such as stability

programs are streamlined due to the absence of additional excipient components in

the formulation, and multiple contract organizations offer services for the rapid

manufacture of the supplies. A similar approach can be taken by filling

unformulated API powder into capsules (PIC) or drug in capsule (DIC), which

can add convenience in dose preparation and administration. These formulations

are most suited to compounds with favorable physical/chemical properties, there-

fore not requiring enabling formulation to achieve desired exposures.

10.2.2 Traditional Manufactured Solid Dosage Forms

Traditional formulated solid oral dosage forms such as immediate release tablets or

capsules may fit the flexibility requirement described above through the manufac-

ture of several dose-strength options. Administering multiple-dose units from a few

strength options during a given dosing interval can cover a range of potential dose

needs. For example, in a study described by Ku [4], three dose strengths (1, 10, and

100 mg) of a capsule formulation were manufactured to support a single or multiple

ascending dose (SAD or MAD) study requiring a range of 1–800 mg doses. Tablet

combinations for the single ascending dose study are shown in the table below

(summarized from original text [4]) (Table 10.1).

This strategy generally requires longer initial lead times (to account for greater

development, analytical characterization, stability data, manufacturing, and pack-

aging needs) and estimation of dosing ranges earlier than other strategies. However,

it can also position the program for more rapid progression into future clinical

studies as solid dosage forms more easily support larger or longer-duration study

needs, as well as those requiring out-patient use. These same formulations may be

10 Design of Clinical Formulations in Early Development 321



readily progressed through to Phase II studies and beyond, potentially without

further development required. Additionally, time savings can be realized by the

elimination of bioavailability studies required to switch between formulation types

later in development [4].

10.2.3 Extemporaneously Prepared Dosage Forms

Extemporaneous preparation (EP) is a process wherein a formulation consisting of a

drug or combination of drugs and/or excipients is prepared under the supervision of

a licensed pharmacist. This creates a customized medication dosage form in

accordance with the clinical protocol. Extemporaneous preparation provides an

additional option for formulation support in early clinical trials. It removes the

manufacturing and packaging components of a traditional supply chain process, as

well as the extensive stability requirements associated with most pre-manufactured

dosage forms. Increased speed, decreased cost, and lower bulk supply requirements

are some of the advantages, as is a high degree of flexibility to meet changing dose

requirements. Doses are prepared “just in time” to meet the specific dose strength

required for an individual subject in a given escalation period or cohort of a study.

An EP-osmotic capsule is the extemporaneously prepared version of the tradi-

tional osmotic capsules [6], developed to enable rapid testing of an modified release

(MR) dosage form in a Phase 1 setting. It can also be used to evaluate whether the

drug present in an MR formulation requires solubilization. Since the drug candidate

is released from the EP-osmotic capsule further down the GI tract, it can be used to

evaluate colonic absorption potential. The capsule body and cap are manufactured

under GMP conditions and stored as inventory so that they are readily available

when needed. The drug layer is compounded and the capsule assembled at the

clinical site (hence, called EP-osmotic capsules). At Pfizer, the capsules are rela-

tively large (equivalent to a size #00 gelatin capsule) because they are designed to

deliver any dose in the 1–200 mg range. Since the permeability of the capsule shell

determines the rate of drug release and the capsule shell is premade, there is very

Table 10.1 Dosing table illustrating tablet requirements for a single ascending dose study

1 mg 10 mg 30 mg 100 mg
fasted

100 mg
fed

200 mg 400 mg 800 mg

1mg 
tablet
10mg
tablet
100mg
tablet

1

1 3

1 1 2 4 8
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limited flexibility in the drug release rate. The Pfizer capsules provide either a short

(80% released in about 6 h) or a long (80% released in about 14 h) duration.

For early clinical candidates, the EP process is also appropriate when an early

comparison of immediate vs. modified release (IR vs. MR) delivery profiles is

desired or when an MR formulation is most appropriate for the compound, but for

business reasons, a traditional MR development is not endorsed. The EP process

has been applied to MR formulations such as matrix tablets and osmotic capsules

[7] to address this need as discussed in the case studies section.

The EP process can be applied to an extensive variety of formulations,

encompassing simple solution or suspension options, enabled formulations, hand-

filled capsules, and even tablet formulations. A few examples are provided in the

case studies section.

10.3 Understanding Modified Release Formulations
in Early Clinical Studies

10.3.1 General Considerations

Data from the FIH or other early clinical studies in healthy volunteers may highlight

the need for an oral modified release (MR) formulation to modulate the pharmaco-

kinetic profile of a drug candidate and enable its continued clinical progression. The

translation of the medical need to the design attributes of the most appropriate MR

dosage form needs to be considered carefully against the potential limitations of the

MR dosage form. Ideally, in order to effectively develop an MR formulation, it is

important to have an understanding (or at least a hypothesis) of the mechanism of

action for the drug candidates and the PK–PD relationship, in order to assess the

impact of the release rate on the exposure-response framework. Some broad

guidelines are provided below, but a careful case-by-case analysis is required

based on the particular PK characteristics and the pharmacology of the drug

under consideration.

An extended release (ER) dosage form with relatively long delivery duration

(12–16 h) has the potential to reduce dosing frequency and increase patient conve-

nience/compliance. The formulation type can also increase the duration of effect by

maintaining a certain Cmin while decreasing systemic side effects by lowering the

Cmax/Cmin ratio. Alternatively, if the objective is a reduction in Cmax-related side

effects, an ER dosage form providing a relatively short delivery duration (6–8 h)

with or without a time lag may suffice.

A delayed release (DR) dosage form, such as enteric-coated tablets or

multiparticulates, with an approximately 2 h time lag followed by relatively short

delivery duration (2–4 h), has the potential to decrease local GI side effects by

reducing the gastric and duodenal exposure to the drug candidate. Acid-labile

molecules can also benefit from a DR dosage form. A longer time lag would be
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required for a locally acting drug candidate with a site of action in the lower GI tract

(i.e., the colon).

Depending on the pharmacokinetics and pharmacodynamics of the particular

drug under consideration, complexMR delivery profiles may need to be considered.

For instance, an IR + ER combination may be needed to rapidly achieve steady

state. Alternatively, if only a brief ligand-receptor interaction is required several

times a day or if tolerance produced by continuous exposure is a concern, an

IR + DR combination or pulsatile delivery profile may be sufficient.

Two examples of commercially marketed MR dosage forms with complex drug

release profiles are Ambien CR® (Sanofi-Aventis) indicated for the treatment of

insomnia [8] and Concerta® (Janssen) indicated for the treatment of attention deficit

hyperactivity disorder (ADHD) [9]. For Ambien CR®, the product profile goals

were to treat patients having trouble with sleep onset or sleep maintenance while

reducing the residual drug effects on cognitive or psychomotor functioning after

awakening in the morning. This translated to an MR product with a rapid initial

release to produce sleep onset, extended release beyond 3 h to support sleep

maintenance, and no release after approximately 4 or 5 h to minimize residual

effects. For Concerta®, the product profile goals were to reduce the dosing fre-

quency from two or three times per day (BID or TID) regimen to improve

compliance, as the target patient population was children requiring dosing during

school hours. This translated into a drug release pattern that consisted of quick

initial release for rapid onset of efficacy, increasing release during the day to

maintain efficacy without developing tolerance, and gradual tapering in the late

afternoon to early evening.

The following considerations are important in the decision to pursue an MR

dosage form for a drug candidate. Additional considerations may be necessary on a

case-by-case basis:

• Is the onset of action important? Due to slower absorption, the Tmax with an ER

dosage form is generally longer.

• Is the drug poorly absorbed in the lower GI tract? For drugs with poor colonic

absorption, the bioavailability of an ER formulation could be lower than the IR

formulation (for the same dose).

• Does the drug have a high first-pass metabolism? The bioavailability of the drug

candidate could be significantly reduced due to a slower release rate.

• Does the drug have significant P-gp efflux or gut wall metabolism? These factors

can also negatively impact the bioavailability of the MR formulation relative to

an IR formulation.

• For MR formulations containing more than double the IR dose, is the formula-

tion technology robust? Dose dumping is a concern for drug candidates with a

narrow therapeutic index.

• Are the adverse events related to Cmax or local GI irritation? In these cases an

MR formulation is a potentially resolution. However, for drug candidates with

adverse events (AEs) due to toxicity associated with a certain threshold plasma

concentration, an MR formulation may not resolve the issue.
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10.3.2 Ideal Drug Candidate for Modified Release
Formulations

The physicochemical, biopharmaceutical, and pharmacokinetic properties that

make for an ideal candidate for MR are highlighted in Table 10.2 with the desirable

range of the attributes highlighted.

Additional data that can help assess the feasibility of an MR dosage form include

(1) solubility, pKa, and pH-solubility profile; (2) stability including pH stability and

potential for oxidative degradation (since many MR dosage form excipients can

undergo oxidative degradation and initiate drug candidate degradation); and (3) per-

meability, including Papp (e.g., in RRCK cells) and P-gp/efflux liability (e.g., Papp

B ! A/Papp A ! B in MDR1-transfected MDCK cells).

This information can be used at the lead development and candidate selection

(LD/CS) stage to establish a suitable candidate for development if it is known that

MR will be needed. This information is also useful in selecting backup molecules

for a drug candidate already in early clinical development.

10.3.3 Strategic Considerations in Modified Release
Deployment

Frequently, project teams must decide the appropriate stage of compound develop-

ment for MR technology deployment. This is a strategic question, and the answer

will depend on the particular candidate under consideration as well as the particular

organization making that decision. Figure 10.3 presents one general framework for

analyzing the situation depending on the stage of development, which may influ-

ence the decision to deploy MR.

A framework to analyze whether or not to deploy MR technology is presented in

Fig. 10.4. “Confidence in MR” refers to how likely is that an MR formulation will

meet the medical/clinical need for which it is being considered (i.e., how strong is

the rationale for an MR dosage form). This is often dependent on how well the drug

target, pharmacology, and PK-PD relationship are understood or precedented.

The term “probability of technical success” (PTS) refers to the availability of

appropriate MR technology. If the physicochemical, biopharmaceutical, and PK

properties of the drug candidate are ideal and well developed, mature platform

technologies, such as hydrophilic matrix tablet, osmotic technology, and

multiparticulates, can be deployed to achieve the desired release profile, PTS is

considered to be high. At the other extreme, if new technologies need to be

developed to achieve the target profile, the PTS is considered to be low.

If there is low confidence in MR, investments should be made to increase the

confidence, and if the PTS is low, investments should be considered to increase PTS.

In Tables 10.3 and 10.4 several real-world examples are presented in which the

framework described above was applied to make decisions regarding pursuit of

the development of MR formulations with proprietary Pfizer drug candidates.
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Table 10.2 Physicochemical, biopharmaceutical, and pharmacokinetic properties of an ideal

candidate for MR (Adapted slightly from Ref. 10)

Factor Criteria Comments

Physicochemical

factors

Dose < 1 mg Greater development complex-

ity (potential drug content uni-

formity issue)

> > 250–300 mg May need more than one tablet

to accommodate the drug load

10–250 mg Average degree of difficulty

Dose/solubility

ratio (highest

dose/lowest solu-

bility in the pH

range 1–7.5 for

bases and 5–7.5

for acids)

< 1 ml Several technology options exist

for CR development

1–100 ml Average degree of difficulty

100–1000 ml MR development will be chal-

lenging but feasible

>1000 ml Requires solubilization and MR

development will be difficult

>10,000 ml MR development practically

impossible

Stability Generally stable

as a solid/solution

and with common

MR excipients

Predict average degree of

difficulty

Compound shows

or is predicted to

have significant

degradation

Predict higher degree of

difficulty

Biopharmaceutical

factors

Absorption

mechanism

Transcellular

passive diffusion

Average degree of difficulty

Other mecha-

nisms including

efflux

Performance may be difficult to

predict

Regional perme-

ability (colonic

absorption)

Poor absorption,

Papp, RRCK

<10�6 cm/s

MR formulations with

prolonged delivery duration

may not be feasible. Typically

will not be bioequivalent to IR

Moderate absorp-

tion, Papp, RRCK

10�6–10�5 cm/s

MR development challenging but

feasible. May or may not be

bioequivalent to IR

Good absorption,

Papp, RRCK

>10�5 cm/s

MR development should be fea-

sible. Likely to be bioequivalent

to IR

PK factors Half-life <1–2 h Half-life too short for MR

development

2–10 h Acceptable half-life

> > 10 h Compound may not need MR

for reducing dosing frequency

Metabolism and

efflux

High presystemic

or first-pass

metabolism

Relative BA of MR formulation

may be low

Compound is

P-gp or CYP3A4

substrate

MR performance difficult to

predict (depends on dose and

Km, Vmax)
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Fig. 10.3 Strategic considerations in deciding when to deploy MR technology

High 
PTS

Invest to increase confidence 
in MR

- Analyze on a case to case basis.

- Probe feasibility of MR using EP-
matrix tablets or EP-osmotic 
capsules.

- Consider multiple IR 
administration to achieve POC.

- Develop a PK-PD relationship to 
determine what is required from 
the MR formulation.

Deploy MR

Low 
PTS

MR not
recommended

Invest to increase PTS
- Consider API particle size, pH 
behavior, complexation, stability, 
solubility, crystallization behavior, 
melting point, physical form (SDD, 
salt form, CD complex, etc.).

- Consider pro-drugs and other 
discovery approaches (back-up 
compounds) that may be more 
suitable for MR.

Low Confidence
in MR

High Confidence
in MR

Fig. 10.4 Strategic considerations for MR deployment (probability of technical success

vs. confidence in MR technology)



Table 10.4 Additional case studies and examples of applying the framework Modified Release

(MR) formulations deployment framework for MR formulations in earlyand late-stage clinical

development

Drug X Drug Y Drug Z

MR rationale Maintain C > Ceff

QD dosing a MUST

QD dosing QD dosing to be

competitive

Dose (mg) 30 and 120 mg 82.5/165/330 mg 20 mg

D/S (mL) 85 and 350 mL <10 mL 100 mL

Stability No issue expected Known

incompatibilities

Oxidation (¼no PEG/PEO)

Absorption

mechanism

Transcellular High permeability Moderate permeability

Colonic

absorption

Unknown Reduced due to

active transport in

upper GI

Unknown

Effective half-

life

~5 h ~6 h ~3 h

Metabolism/

efflux

CYP3A4 Negligible

metabolism

CYP3A4/P-gp efflux

Confidence in

MR

High High High

PTS for MR High High High

Recommendation Short EP-osmotic

capsule because

limited API)

followed by SCT

GR matrix tablet Short and long EP-osmotic

capsule to define optimum

MR followed by ECS

Table 10.3 Case studies and examples of applying the framework for MR formulations in early-

and late-stage clinical development

Drug A Drug B Drug C

MR rationale Improve efficacy by increasing

Cmin w/o increasing Cmax

Reduce AE Reduce AE related

to high peak/trough

Dose (mg) 10 mg 5 mg 200 mg

D/S (mL) 15 mL 45 mL 880 mL for API

500 mL for SDD

Stability No known issue No known issue No known issue

Absorption

mechanism

Transcellular Transcellular Transcellular

Colonic

absorption

Unknown Unknown Unknown

Effective half-

life

~4 h ~8 h ~3 h

Metabolism/

efflux

MDCK AB ratio: 14.7 Unlikely P-gp

substrate

Highly effluxed

ER ¼ 42

Confidence in

MR

Low Low Low

PTS for MR High High Moderate

Recommendation Short and long EP-osmotic

capsule

Short and long

EP-osmotic

capsule

Short and long EP

matrix tablet
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10.3.4 Translation of Modified Release Options from Early
to Later Development

Frequently, in order to rapidly initiate a POC study, particularly for first-in-class

compounds, multiple tablets or capsules are dosed. Such “fit-for-purpose” formu-

lations allow for rapidly answering the POC feasibility rather than delay the

collection of this crucial information for formulation optimization. The most

important factor to consider in the translation of MR formulations from early

clinical development to late-stage development and commercialization is the

dose. Typically, the quality target product profile (QTPP) requires a single dosage

unit (tablet or capsule) to be administered. It can be impossible to develop a single

unit tablet or capsule that is swallowable, if the dose is greater than 750 or 800 mg.

In such cases, the dosage form/formulation platform needs to change. For example,

a powder for oral suspension was used to deliver a 2 g dose in the case of

azithromycin extended release [11, 12]. Figure 10.5 graphically depicts the doses

that are clinically viable vs commercially viable.

10.4 First-In-Human Case Studies

The following case studies are provided to illustrate some formulation examples

with contemporary proprietary drug candidates. These examples do not include

structures, therapeutic targets, or extensive physicochemical and biological data.

Clinically Viable to 
Test Mechanism

Commercially Viable 
per Product Concept

0 mg per 
dose

0 mg per 
dose

250-300 mg 
per dose

500-600 mg per 
dose Enabled with 

Multiple tablets

700-800 mg 
per dose

Fully Enabled with 
Conventional MR 

Technology; Low Risk

Enabled with High Dose 
Platform; Medium to High 

Risk

2 g per dose
Enabled with 

Sachet, e.g., Zmax

Impossible to Enable Single 
Unit Tablets/Caps750-800 mg per 

dose with 
multiple tablets Assumptions

• max tablet wt 1125 mg
• matrix tablet technology
• no solubilization
•4-8 h delivery duration
• API available in sufficient qty

Fig. 10.5 Enabling versus commercially viable doses in modified release formulations
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10.4.1 Study A: Powder in Capsule

Compound 1 was a free-flowing, nonhygroscopic crystalline material, with high

solubility and high permeability. Some degradation in aqueous media occurred over

time, limiting the effective use period of a solution or suspension dosage form. The

anticipated clinical dose covered a range of 1 mg to 200 mg in a Phase I clinical

study. Extemporaneously prepared powder in capsule (EP-PIC) is selected as the

formulation for the FIH program, which allowed for rapid advancement to the

clinic. This formulation option avoided potential solution stability concerns,

required minimal dose preparation efforts and no manufacturing activities, and

maintained flexibility to adjust doses in real time during the course of the clinical

evaluation. As compared to other solid dosage forms, the EP-PIC also did not

require additional excipient compatibility studies, as it was comprised of only API

in a capsule shell.

10.4.2 Study B: Enabled Formulation

Compound 2 was a crystalline-free acid, with high lipophilicity and low solubility.

A dose escalation strategy was anticipated to cover a broad dose range, between 1 and

1000mg, though significant difficulty in predicting clinical PKwas anticipated for this

molecule. Therefore, a high degree of flexibility in dose selection and the ability to

adjust dose level during the clinical study were desired. An enabling formulation such

as a spray-dried dispersion (SDD)may be utilized to overcome solubility and resulting

bioavailability limitations. An EP suspension of the SDD formulation allowed for

greater flexibility in dose adjustments in response to real-time clinical data. This

maintained the ability to reach high dose strengths as required during escalation,

which would be difficult to deliver in traditional solid dosage form options.

While EP offers many benefits to an FIH program, it is a strategy that may not be

so suitable for longer-term progression. Preparation of individual unit doses can be

highly tailored for use in small studies, but resource requirements can limit the

applicability in studies with larger cohort sizes or long durations. EP may also not

be suited to compounds with significant stability concerns, such as limited solution

stability, or situations which may necessitate additional storage or packaging

requirements, such as hygroscopicity limitations or photostability challenges. How-

ever, it can be used to quickly reach certain key decisions in a program, to explore

variables that may be of key importance to later development, or to answer

questions that are needed to inform backup programs still in discovery, for example,

influence of particle size on bioavailability, taste profiles and masking options, or

influences of solubility vs. dissolution.
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10.4.3 Study C: Particle Size Evaluation

In this study, an immediate release formulation was being progressed through an

FIH program with Compound 3, a free base with low solubility and moderate

permeability. An evaluation of the effect of particle size on the bioavailability of

the compound was necessary to decide on a product profile for later clinical and

ultimately commercial solid dosage forms. Extemporaneously prepared suspen-

sions were produced at the clinical site using small quantities of API milled to

different particle size specifications and dosed as part of a crossover cohort inserted

in a single-dose escalation protocol. This approach allowed for minimal resource

utilization while providing an understanding of the particle size effect for the drug

candidate and permitted doses to be selected and inserted into the clinical program

based upon real-time data. Results of this study directly informed solid dosage form

development efforts, as well as backup discovery efforts.

10.4.4 Study D: EP-Osmotic Capsule (Adapted from Ref. 7)

An IR formulation of a candidate for the treatment of type 2 diabetes showed dose-

dependent gastrointestinal (GI) side effects. There was a possibility that these

effects could be mechanism related; hence, the confidence in MR resolving the

issue was considered to be low. However, MR formulations are known to reduce GI

side effects. The dose and solubility properties of the compound were such that the

probability of technical success (PTS) was considered to be high. Therefore, a

colonic absorption study using EP-osmotic capsules was undertaken with two

different release durations to determine MR feasibility with minimal investment

in API and dosage form development. In the PK study, the Cmax was blunted as

expected, but the AUC was lower compared to an IR control (and this AUC

lowering was even worse with the long-duration formulation). On the basis of the

data, we concluded that an MR formulation with a short delivery duration had the

best chance of mitigating the GI side effects.

10.4.5 Study E: Modified Release (Adapted from Ref. 7)

An IR formulation of an anti-infective in development did not meet the target

pharmacokinetics (PK) criteria to maintain a sufficient threshold plasma concen-

tration (Cmin) or steady state greater than the minimal efficacious concentration

(MEC) with a dose of less than 1 g. PK simulations indicated that MR formulations

could overcome these issues. However, there was insufficient API for traditional

MR development and manufacture of clinical supplies. Therefore, evaluating the

feasibility of a MR formulation was performed with two matrix tablet formulations

extemporaneously prepared at the clinical PK study site. The results showed that
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both MR formulations met the desired progression criteria, as predicted by the

simulations. Unfortunately, the development of this compound was terminated

owing to an adverse toxicological finding in preclinical studies.

10.5 Formulation Design Following First-In-Human
Studies

10.5.1 General Considerations

Moving into the next phase of clinical development introduces greater focus on

efficacy, and with this, the endpoints and parameters of the studies change. For

example, a move from healthy volunteers to patient populations. The inclusion of

patient populations in a clinical trial brings additional complexity to the study

design and execution. Design aspects such as larger cohort sizes and more extended

dosing intervals, longer recruitment periods, multiple study sites, and out-patient

study designs must be considered not only for the program as a whole but also when

selecting an appropriate dosage form to support the clinical evaluation. Logistical

aspects of the supply chain play a greater role, as do other facets such as used period

and expiry dating, ease of self-administration, etc.

Some formulation options which are readily applicable to FIH study usage

become less desirable for later stage of clinical trial development. For example,

while an extemporaneously prepared solution in bottle may be a perfect fit for a

1 day in-house dosing during an FIH dose escalation study, it becomes much less

practical for patients to take home and store a month’s supply. Not only does it

become more cumbersome for the patient, it places a much greater demand on the

resources of the pharmacy supporting the study. The benefits of speed and flexibil-

ity for dose adjustment are no longer the focus, whereas the need for larger

quantities, longer expiry periods, and broader distributions are desired.

Additionally, the unique needs of the patient population play a role. Is the patient

able to swallow a tablet or capsule? Patients with dysphagia, for example, may

require alternative dosing options. Perhaps the patient requires administration of

medication through a nasogastric tube. Pediatric or geriatric populations may also

find more traditional dosage forms, a challenge from this perspective, and other

options may be more practical. If more specialized dosage forms are anticipated,

understanding the available formulation space in discovery and early development

can benefit the later progression of the drug candidate. This allows for more

development time to optimize the dosage form to meet the patient needs. By the

same token, this is an area where later-stage development can also influence early

discovery programs. Gaining knowledge about the target product profile of com-

pounds in a given therapeutic area or for specific patient populations can be highly

useful in designing new chemical substrates, where specific properties can be built

into the molecules to enable greater compatibility with the target drug product.
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Whether trial endpoints to identify a positive outcome are achieved in a short

time period versus a prolonged evaluation also requires consideration. For example,

reduction in postoperative pain may be assessed more easily over a relatively short

study time frame and is likely to be studied within a controlled clinical or hospital

setting. Alternatively reduction in inflammation associated with an autoimmune

disorder may require many months or years to evaluate. In the former, a fast onset

formulation may be ideal, some dosage form manipulation could be acceptable

given the setting of the patient use, and feedback on dosage form performance is

likely to be quick. In the latter example, however, more complex release profiles

may be desired. Patients will be self-administering over a longer duration so the

dosage form must be convenient and straightforward. Consequently, opportunities

for optimization may be limited due to the prolonged interval of performance-

indicating data collection.

Related questions of dosing duration, frequency, and compliance may need to be

addressed as well. Based upon the human PK parameters determined in FIH, for

example, is once daily dosing feasible or will BID dosing be required to achieve

anticipated efficacious plasma concentrations? Can the dosing interval be supported

for the duration of the trial, and is it commercially feasible?

Well-thought-out and carefully designed formulations at each stage of a drug

candidate’s progression will answer many of these questions, not only informing

the ultimate development of commercializable products, but positioning the drug

candidate for more efficient progression through clinical development as well as

helping to guide discovery efforts toward new molecule design and selection based

upon that knowledge.

The desired or critical PK parameters vary depending on indication and mech-

anism of action. In some cases, for immediate onset of action, rapid attainment of

therapeutic concentrations is required, whereas for some other cases where target

exposure is needed to be maintained over a longer period of time after repeated

dosing, the steady-state concentration (Css) and lowest concentration at the end of

dosing (Ctrough/Cmin) are the most important PK parameters.

The robustness of the target product profile defined prior to FIH depends on a

number of factors. For instance, how much is known about the pharmacological

class of molecules and translatability from preclinical PK (absorption/clearance),

PD, and disease models? As exposure data from FIH becomes available, the target

product profile, formulation strategy, and dose are further refined.

The choice of formulation and drug delivery technology can significantly impact

the drug release, absorption, pharmacokinetic (PK) profile, and ultimately pharma-

codynamic response. Thus, formulation plays a crucial role in development efforts.

Alignment between discovery, preclinical efforts, and development is critical, as

the routine use of in vitro screening tools and in silico PK modeling provides

potential biopharmaceutical risk assessments early in the process. Clinical studies

and formulation strategies are designed to address these risks via tailored

formulations.

Some common pharmaceutics-related problems observed during first-in-human

single ascending dose studies include variable or low exposures, Cmax-related
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adverse effects, food or pH effects, and PK profiles dramatically different from

preclinical projections. An a priori assessment of these potential outcomes and

backup strategies with flexible clinical protocols are beneficial, but not always

feasible. A translational approach to development with a quick feedback loop into

the clinic is an attractive opportunity to address these concerns. Some organizations

manufacture drug candidate formulations immediately prior to dosing at a

colocated GMP production and clinical testing facility. Using this approach, the

drug product can be manufactured within days without the need for extensive scale-

up and stability assessments. The clinical data from one study period can be quickly

reviewed and used to select the next formulation option to be delivered. This

flexibility of CMC aspects and real-time feedback from the clinic enables faster

selection of an optimal formulation to advance into commercial development.

Salts or crystal engineering approaches to design cocrystals, micronization to

reduce particle size, use of amorphous material or lipid-based self-emulsifying

systems, and complexation with cyclodextrins are approaches to overcome solubil-

ity limitations and improve in vivo exposures.

As first-in-human data becomes available and the dose range is refined, the

formulation development efforts may move toward either an enabled formulation or

consider a conventional dosage form depending on the direction of dose

adjustment.

Computational simulations using physiology-based pharmacokinetic modeling

software (e.g., GastroPlus, Simulations Plus, Inc., Lancaster, CA) are routinely used

to assess impact of interacting formulation and physiology on drug candidate

exposure profiles. These models are revised and refined iteratively with additional

human PK data, allowing for better predictions and formulation optimization.

Kesisoglou et al. present an example where in silico modeling PK absorption

modeling approaches were used to fit data from the FIH studies and generate PK

parameters [13]. The model was then used to predict effect of particle size. The

authors presented a case study in which dissolution-limited absorption was assessed

based on early human data, incorporating dissolution rates from final drug product

rather than just primary particle size data. This in vitro dissolution data for API with

different particle size distributions (PSDs) was used in the model to identify an

optimal PSD for the desired in vivo exposures.

Amorphous solid dispersions with polymeric carriers and/or surfactants are

prepared by spray drying, hot-melt extrusion, and lyophilization or through the

use of supercritical fluids. These amorphous solids have a higher energy than

crystalline material leading to solubility improvement which can be several orders

of magnitude greater and hence can increase in vivo exposures significantly.

Several reports in literature highlight the improved exposures and PK seen by the

use of amorphous solid dispersions compared to crystalline materials [14–18].

Self-emulsifying drug delivery systems (SEDDS) are another enabling technol-

ogy to improve oral absorption of lipophilic drugs [19]. Lipid-based formulations

(LBFs) may be composed of oils, cosurfactants, and cosolvents that solubilize a

drug candidate. These systems can rapidly form oil-in-water (w/o) fine emulsions

when dispersed in aqueous phase under mild agitation, and depending on particle
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size of droplets formed, they can be either classified as microemulsifying or

nanoemulsifying. Since the drug is in a solubilized form, these lipidic systems

bypass dissolution and can result in supersaturated levels of free drug in the lumen

providing bioavailability enhancement and can overcome a pH or food effect.

These systems can also potentially overcome low and variable PK issues. Addi-

tional types of lipid formulations are also possible. Chakraborty et al. [20] provides

an in depth review of lipid-based formulations and related in vitro and in vivo

considerations.

Another enabling approach is nanocrystal formation in which the particle size of

crystalline material is reduced to the nanometer range with wet-milling with beads,

high-pressure homogenization, or controlled precipitation. Physical stability of

these suspensions is typically improved by the use of hydrophilic polymers or

surfactants. The use of nanocrystal technologies has shown enhanced bioavailabil-

ity ranging between 1.7–60-fold and 2–30-fold for Cmax and AUC compared to

micrometer range of crystalline solids for various molecules [21–23]. Commercially

though very few nanocrystal oral formulations using NanoCrystal® (Elan Drug

Technologies) and IDD-P® (SkyePharma) are available.

To reduce timelines between various clinical studies and enable quick changes

to formulations, probe arms using alternate formulation strategies can be built into

the FIH studies. For example, in cases where enabling technologies such as spray-

dried dispersions are typically included as the primary first-in-human approach, a

probe arm using crystalline API may be included to provide an early assessment.

This provides the opportunity for a quick formulation development “pivot” if doses

significantly change beyond FIH.

Additional aspects that can be explored as an extension of first-in-human studies

or to further probe absorption liabilities for a given drug include food effect

evaluation, absorption site studies, or comparison across various formulations

which typically is done as a relative BA study in a crossover controlled limited

subject study design. These studies feed into formulation strategies for beyond

Phase I to address any PK-related issue that can be fixed by formulation.

A preliminary food effect study is also evaluated as part of Phase 1 studies

typically at the expected efficacious doses. This enables an early read of potential

food effect as well as enables incorporation of instructions for food related to

dosing in future clinical protocols. If a food effect is identified, typically solubilized

formulations or amorphous dispersions can all be potential strategies for mitigating

food effect.

Some drug candidates display regional-specific absorption. If the absorption

occurs primarily in the proximal intestine rather than the entire GI, any differences

in upper GI concentration will impact absorption and ultimately the exposure

profile. In such cases, site of absorption studies are conducted to guide further

drug product development. These can be conducted in a noninvasive way using

timed delivery capsules with a radiolabel included in the drug reservoir for locating

the capsule via gamma scintigraphy. When the capsule reaches the desired location

in the gastrointestinal tract, the capsule drug reservoir contents are expelled. PK

profiles from delivery to various sections of the GI are obtained and compared to the

10 Design of Clinical Formulations in Early Development 335



original reference study to assess for regional absorption. This information is

incorporated into absorption models to optimize and guide formulation develop-

ment. This is especially useful for drug candidates with very short half-lives for

which extended release dosage forms are considered as a potential option.

10.5.2 Other Specific Considerations

As mentioned previously, Phase 1 formulations are typically focused on enabling a

quick path to the clinic and may not be viable commercial formulations. More

robust, commercially relevant formulations must be developed for the drug candi-

date to proceed, and bridging studies are often required. Some examples include a

change in API form, formulation technology, or supplier of the active raw material.

In the latter case, if the material has a different impurity profile, additional toxicol-

ogy studies may be needed.

The pharmaceutical development section of the eCTD outlines these changes to

formulation and any data supporting its comparability. Sometimes preclinical

studies are also done ahead of clinical bridging studies to show that proposed

changes are either still consistent with the Phase 1 PK or provide any desired

altered PK if that is the driver for the formulation change.

Bridging across formulations can also be performed as an extension of the Phase

I study, with the new formulation introduced at a given dose along with the current

formulation to assess PK. However, more frequently bridging studies across for-

mulations are performed as part of well-controlled relative bioavailability

(BA) studies. Relative BA studies are typically designed as crossover two sequence

studies of test and reference formulation. Relative BA studies are typically

conducted as an internal risk assessment. Bridging or adjusting the dose based on

the improved formulation may not require the strict regulatory criteria of statistical

power for typical bioequivalence (BE) studies.

The main purpose of BA studies is to support and facilitate formulation devel-

opment and optimization efforts. Food effect assessments are typically performed

with this study format, especially for solubilized or lipidic formulations. Food can

alter BA by various means, including delayed gastric emptying, stimulated bile

flow, altered gastrointestinal (GI) pH, increased splanchnic blood flow, altered

luminal metabolism, and physical or chemical interaction with dosage form. In

general, meals that are high in total calories and fat content are more likely to affect

GI physiology, thereby resulting in a larger effect on the BA. Modified release

formulations are tested for both food effect and dose dumping which is especially

important for pediatric formulations [24]. Typically, these studies are conducted in

normal healthy volunteers to minimize any other considerations such as disease

state or co-medications.

Pediatric formulations are a key area of development and rather complex and time

and cost intensive given the differences in age/weight, physiology differences in

adults versus children, route of administration, excipients, importance of taste
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masking, volume, and size of dosage form. To avoid delays in clinical studies in

children, often simple enabling formulations like powder mixes, granulates, or pellets

in bottles are used to start early pediatric assessment in non-pivotal studies. Since these

formulations are not optimized for commercial viability, further formulation devel-

opment specifically designed for pediatrics is required. Various bridging options can

be considered for pediatric development depending on overall strategy development

incorporated different formulations, age groups, and physiology groups.

Palatability is another key consideration assessed for pediatric development.

Most often due to ethical consideration, extensive biopharmaceutical data across

formulations is not available in pediatric population, and by default adult relative

BA studies in healthy volunteers (except in certain cases like oncology where

disease adult patients are relevant) are used for supporting pediatric development

studies as mentioned above.

Other considerations for pediatric formulations include palatability and the

potential for excipient interaction with the drug candidate or pediatric patient

physiology [25]. The latter is important as transport systems (e.g., P-gp transport

inhibitors), first-pass metabolism (e.g., CYP inhibitors), and GI pH (e.g., pH

modifiers) may not be fully mature in pediatric population. Initial relative BA

studies comparing adults and children with the standard formulation must be

completed prior to any additional PK manipulating dosing option studies.

Occasionally, formulation bridging can occur without conducting human PK

studies if the change being proposed is minor and in vitro evaluations are deemed

sufficient. The SUPAC document provided by the FDA has guidance around the

nature of changes for IR or MR formulations and criteria for justifying a waiver for

any clinical bridging studies. For example, a high-solubility, high-permeability

BCS Class 1 drug product undergoing a minimal formulation changes may have a

bridging study waived if a simple dissolution test demonstrated equivalence to the

original formulation. Alternatively, in vivo animal model bridging study may be

required to verify that the efficacy or safety of the product is consistent with what

has been produced throughout the development program. Bridging study may also

be waived for pediatric formulations based on in vitro dissolution data and adult PK

data so long as linear PK is anticipated. Also, for drugs that are in the same dosage

form or the same manufacturing process and composition as adult formulation and

solution formulations and where excipients are not expected to impact the pharma-

cokinetics, bridging studies may be waived [26, 27].

10.6 Summary

Early clinical formulation design must simultaneously balance many factors,

providing appropriate exposure profiles to evaluate the safety, efficacy, and ulti-

mately commercializability of a promising drug candidate. Prior to first-in-human

(FIH) studies, the design must be sufficiently flexible to accommodate the drug

candidate physicochemical and biopharmaceutical properties as well as the

projected but unknown pharmacokinetic profile, dose amount, and frequency.
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Dose manufacturing options typically pursued at this stage may be a simple

powder in bottle (PIB) or powder in capsule (PIC), as well as the more traditional

formulated capsules or tablets. Specialized modified release options may also be

pursued for drug candidates with gastrointestinal stability issues, specific site of

action or site of absorption concerns, or requiring alternative exposure profiles.

Extemporaneously prepared formulations for on-site compounding (OSC) allow for

greater speed and flexibility in the clinical plan and can even include preparation of

osmotic capsules.

Following the initial FIH studies, alternative concerns such as gastric pH,

coadministration with food, impact of particle size, dose escalation, and specialized

patient populations such a pediatrics are often investigated. These factors may

require even more specialized formulations, including amorphous solid dispersions

(ASDs) or lipid-based formulations (LBFs) to achieve the desired exposure profiles.

Ultimately, clinical formulation design plays a key role in enabling better drug

design. Gaining and transferring early knowledge of the compatibility, capability,

and limitations of the formulation as well as the drug candidate safety and efficacy

readouts back into the discovery space enable research scientists to optimize drug

candidate structural properties and maximize the likelihood of achieving an

approved medicine.
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Chapter 11

Translational Research: Preclinical
to Healthy Volunteer to Patient

Brinda Tammara, Sangeeta Raje, William McKeand,

and Joan M. Korth-Bradley

Abstract The development of medicines involves not only the translation of

information collected in preclinical in vitro and in vivo experiments to clinical

studies in healthy volunteers, also known as T1 translation, but additionally the

optimization of the new medication within the environment of medical care, the

translation from healthy volunteer to patient, also known as T2 translation. How do

the pharmacokinetic parameters vary with different doses? What is the best dose?

Can the new medication be combined with other therapies? This chapter begins

with a discussion of the overall strategy and individual steps to determine a drug

candidate’s pharmacology, absorption, distribution, metabolism, and elimination

(ADME), and drug-drug interactions in clinical studies, as well as subsequent

evaluation of preclinical predictions. Integration of concentration-time data to

develop population pharmacokinetic models and the use of biomarkers in clinical

studies are discussed. Biomarkers can be particularly helpful in diseases where

obvious clinical pathology may lag behind changes in laboratory values or other

more easily measured surrogates. Case studies are also presented illustrating appli-

cations of translational research in the development of possible therapeutic agents

for the treatment of osteoporosis and Alzheimer’s disease.

Keywords Clinical pharmacology • Biomarkers • T1 translation • T2 translation •

ADME • Drug-drug interactions

11.1 Introduction to Clinical Pharmacology Studies

Translational research has been defined as the interpretation of discoveries made in

nonclinical experiments into clinical interventions for the diagnosis, treatment,

prognosis, or prevention of disease with a direct benefit to human health [1]. This

process begins with the basic premise that observations made in one experimental
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condition may be predictive of outcomes of similar experiments performed under

different circumstances. For example, the pharmacokinetic parameters of an anti-

biotic observed in mice are expected to be predictive of the pharmacokinetics of the

same antibiotic in dogs, and both preclinical estimations of parameters are expected

to be predictive of the parameters observed in humans [2]. Successful and efficient

drug development makes use of all available information so that new medications

are approved in a timely manner with reasonable use of resources. The goal of drug

development is to provide new medications to treat unmet medical needs in a wide

variety of patients using convenient, safe, and effective dosing, within an environ-

ment of meals, work, other medications, and non-pharmacological treatments.

Information from unsuccessful drug development programs is also studied to gain

a better understanding of the reasons for failure and what changes in the develop-

ment program would be more likely to result in an effective and safe medicine. Two

roadblocks to translation of new knowledge into clinical practice were identified by

a group of researchers at the Institute of Medicine who reviewed a large number of

translational research studies [3]. The first roadblock occurs between basic bio-

medical research and clinical science. This is referred to as T1 translation and much

of this book is devoted to this stage. The second roadblock occurs between clinical

science and knowledge versus improved health and is referred to as T2 translation.

This chapter also explores the various studies that are conducted during the T2 stage

of translational research, which expands upon early clinical data to the information

needed to integrate a new medication into routine clinical practice.

During the conduct of drug candidate studies in human subjects, data are

collected that expand treatment knowledge of disease and under ideal circum-

stances result in a new approved medication. The low number of ultimately

successful drug development projects is well known; as most promising high school

athletes fail to play in professional leagues, most new chemical entities entering

phase 1 of clinical development will not be approved and launched. However,

thoughtful analysis of clinical studies with potential medications that fail to achieve

their goals can still contribute to improving the general care of patients. This

information can be used to develop new methods and new understandings that

will in turn influence the development of subsequent better compounds.

11.1.1 Preliminary Clinical Development Plan
and First-In-Human Study Design

An outline of the clinical plan is drafted at the earliest stage of drug development,

soon after there is some evidence of physicochemical stability, suitable pharmaco-

kinetics, pharmacological activity, and tolerability. The clinical plan assures that

development project planning provides sufficient time and resource support. Reg-

ulatory guidances are available for some indications and define the necessary

evidence required to show efficacy. A precursor to the clinical development plan
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is the target product profile [4]. The target product profile describes the minimum

acceptable and ideal attributes of the new medicine: indication, target population

(including geographical location), efficacy, safety, drug-drug interaction profile,

formulation, dosage, stability, and cost. The target profile can also be described

through a mock-up of an optimal prescribing information summary.

Long before the first subject is enrolled in the initial clinical study, the devel-

opment team drafts idealized prescriber information for the proposed product. This

includes the dosing regimen and directions needed for dose adjustment due to

administration with food or other medications, as well as differences in age, size,

gender, ethnic or racial background, and other sources of differences in response.

Considerations are made with respect to the current standard of care for the disease

and what factors contribute to dissatisfaction by prescribers and patients. Then the

team expands the idealized prescribing information, outlining the clinical trials that

are needed to support the desired statements in the various sections. Next, each

discipline, including biostatistics, clinical, clinical pharmacology, medical, preclin-

ical drug metabolism, pharmacokinetics, and safety, among others, assesses each

clinical trial to determine what specific information is required. The necessary

pharmacokinetics, pharmacodynamics, safety, and efficacy data are reviewed to

reasonably design each clinical trial and specify what the source of the information

will be. The end result is a clinical development plan, which may evolve as studies

are conducted and new information is acquired and incorporated. Efficient clinical

development requires contingencies and mitigation strategies if unexpected results

arise.

Successful completion of the clinical plan will provide the information needed to

demonstrate the safety and effectiveness of the new molecular entity (NME) in

patients requiring treatment. It is recognized that there will be gaps in this knowl-

edge, as it is impossible to perform an exhaustive evaluation of all potential

demographic characteristics of patients, severity of disease, and combinations of

medications that may be coadministered. These knowledge gaps are first bridged

through systematic investigation of the most likely causes of pharmacokinetic

variability that determines the drug exposure patients will experience. Models are

also developed to describe exposure and response relationships related to efficacy

and safety. Any remaining gaps in knowledge may be addressed in post-approval

commitments in the form of additional studies, registries, risk management plans,

and safety surveillance. The clinical development plan is broken into phases [5]:

• Phase 1—information is gained about the pharmacokinetics and safety of the

NME across a broad range of doses.

• Phase 2—preliminary evidence for clinical responses of both efficacy and safety

is collected in patients who are representative of the larger population with the

disease of interest, across a range of doses lower than those used in phase 1.

• Phase 3—confirmation of efficacy and safety is collected in an even more

narrow range of doses, but usually across a more heterogeneous collection of

patients with the disease of interest.
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The first-in-human (FIH) trial marks an important step in drug development.

Immediately prior to the start of the study, a regulatory package known as an

investigational new drug (IND) application is submitted. This document includes

in vitro and preclinical assessment of pharmacological activity, pharmacokinetics,

safety, and toxicokinetics, as well as the proposed FIH protocol describing the

subjects, dosing, and observations to be made. A key component of the IND is the

protocol with the proposed first dose and subsequent dosing escalation plan in the

FIH study. The preclinical studies of efficacy and toxicity are carefully reviewed to

identify the no observed adverse effect level (NOAEL) and the minimal anticipated

biological effect level (MABEL). Simulations of the anticipated human exposure

are translated from the preclinical observations, developed using allometric scaling,

or physiologically based pharmacokinetic (PBPK) models. With the growing num-

ber of monoclonal antibodies and other biological therapeutics in development,

target-mediated drug disposition (TMDD) is also an important tool in predicting

exposure [6]. The planned dosing escalation is chosen to envelop the anticipated

clinically effective dose as well as maintain a sufficient safety margin below the

dose anticipated to be associated with unacceptable side effects [7].

FIH studies sequentially enroll small groups of healthy volunteers or patients

into cohorts, numbering 6–8 individuals, where all subjects in the same cohort

receive the same, single dose of active drug or placebo in a blinded, randomized

fashion. Subsequent groups of subjects are enrolled upon assessment of safety. An

example of this study type, also referred to as single ascending dose (SAD) studies,

is discussed by Muralidharan et al. [8]. In cases where there is specific concern

about the potential safety of the investigational drug product, each individual

subject will be dosed in sequence, rather than dosing all individuals in the group

at the same time. The initial dose administered is usually much lower than that

anticipated for clinical efficacy. Dose escalation continues until the likely thera-

peutic range of exposure is achieved or until there is an unacceptable incidence or

type of adverse reaction. The goals of the FIH study are primarily safety: deter-

mining the maximum dose with an acceptable safety and tolerability profile as well

as any observed dose-limiting adverse events. Single-dose pharmacokinetic param-

eters are also investigated, providing a first assessment of pharmacokinetic and

possible concentration-effect information.

Since each individual receives only a single dose and the FIH studies generally

involve small numbers, intersubject variability can confound the results. There are

generally only five or six different dose levels, with approximately six individuals

receiving each dose and two or three additional subjects receiving a placebo in each

group. These data can be combined and used to develop a model to validate

preclinical simulations as well as to simulate different designs for subsequent

multiple ascending dose (MAD) studies as well as other single-dose study designs

of doses and conditions not tested. FIH studies may be expanded to include other

cohorts if early information is needed for subsequent development. For instance, a

cohort of subjects may receive the drug after consuming a meal instead of in the

fasted state, or a cohort of Asian subjects may be enrolled to facilitate early

inclusion of Asian patients in a subsequent global trial. Collecting and evaluating
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electrocardiograph (ECG) data may permit an early assessment of potential

cardiovascular safety signals [9].

Another important use of FIH study data is to evaluate the in silico pharmaco-

kinetic predictions made prior to the availability of clinical data. The reasons for

inaccurate predictions can be then investigated and used to improve future pre-

dictions. The concentrations observed in the subjects are compared to preclinical

exposures to confirm whether human pharmacokinetics will achieve concentrations

sufficient for efficacy but below concentrations associated with unacceptable tox-

icity. Biomarkers may also be assessed as well as evidence of efficacy and toxicity

to begin establishing a concentration-effect relationship that will guide subsequent

study design and ultimately patient dosing. The range of concentrations evaluated

in these FIH studies is usually the largest of any in the clinical portion of drug

development.

11.1.2 Research Goals and Study Design of Phase 1 Clinical
Pharmacology Studies

The FIH and MAD studies are primarily directed toward T1 translation research,

seeking confirmation of safety and pharmacokinetic parameter estimates from

preclinical data across a range of doses used to subsequently guide phase 2 and

phase 3 studies. In contrast, other phase 1 studies have T2 translational research

goals and are conducted to gain information that will optimize exposure in patients

with different intrinsic and extrinsic factors. Such studies to evaluate altered

pharmacokinetics include food effect studies, drug-drug interaction studies, the

effect of renal or hepatic impairment, the effect of gender, the effect of age (either

advanced or pediatric), metabolic studies, and the effect of dosage form design or

manufacture on pharmacokinetics. The effect of race, such as Asian or black or

white, or ethnicity, such as Hispanic, may be studied in phase 1 clinical trials, but

also may be investigated using population pharmacokinetic analyses of combined

studies. Examples of the questions that may be asked are shown in Table 11.1.

Despite the many different goals, essentially all phase 1 clinical pharmacology

studies contain the same elements (subjects, dosing, and observations) and ulti-

mately are analyzed similarly. Enrolled phase 1 subjects are generally healthy

volunteers, or if they have some clinical pathology such as renal impairment,

their condition is relatively stable, so that participation in a short clinical study

does not pose a serious health threat. The test medication is administered as either

single doses or multiple doses, but always within a clinically relevant range. The

FIH/SAD and MAD studies have the broadest range of doses and should represent

all subsequent exposures observed in the clinical program. Doses used to assess the

effect of coadministration with food, other medications, or the impact of end-organ

impairment should fall within the ranges tested in the FIH and MAD studies. These

doses must also be adjusted to account for predicted exposure changes to retain the
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safety margin and protect the subjects participating in the clinical trial. Other than

the FIH, MAD, and some drug-drug interaction studies, most phase 1 studies are

designed as 2-period crossover studies of single-dose administration under standard

versus test conditions. The observations made throughout phase 1 trials include

safety assessments of vital signs, laboratory chemistry, hematology, and urinalysis;

informative biomarkers that may signal efficacy or safety concerns; blood and urine

drug concentration analyses; as well as, in the case of biologics, antidrug antibodies

or neutralizing antibodies. Pharmacokinetic and pharmacodynamic parameters are

calculated, and the comparisons between the test and standard conditions are

summarized using inferential statistics. Data collected for all studies are frequently

amalgamated using population pharmacokinetic methods to extract a robust

description of the pharmacokinetic parameters, their variability, and important

causes of intersubject variability. To permit analyses across studies, data about

the dosage form used must be carefully recorded, including lot and batch number,

bioanalytical method, and dissolution testing.

Study protocols are developed by a small group of individuals, including clin-

ical, clinical pharmacology, statistical, and operations expertise. The FIH and MAD

studies are conducted consecutively, although there may be some overlap as once

the safety of a particular dose is completed in the FIH, the MAD may begin at a

daily dose not exceeding the dose originally administered in the FIH. For example,

if a dose of 100 mg was safely administered to subjects in the FIH, doses of 25 mg

twice daily may be initiated in the MAD study without waiting for the completion

of all cohorts in the FIH. Once the FIH and MAD studies are completed and the

Table 11.1 Example of T2 translational research studies with tigecycline

Research question Study

Does administration of tigecycline with food change the

pharmacokinetics?

Muralidharan et al. [8]

Does prolonging the length of the infusion decrease the incidence of

nausea or vomiting caused by tigecycline?

Muralidharan et al. [8]

How is tigecycline metabolized and excreted? Hoffmann et al. [10]

Do the recommended doses of tigecycline change oropharyngeal and

intestinal microflora?

Nord et al. [11]

What are the pharmacokinetics of tigecycline in Chinese subjects? Jiang et al. [12]

Are the concentrations of tigecycline in the lung adequate to treat

pneumonia?

Conte et al. [13]

Does renal impairment change the pharmacokinetics of tigecycline? Korth-Bradley et al. [14]

Does hepatic impairment change the pharmacokinetics of

tigecycline?

Korth-Bradley et al. [15]

What are the concentrations of tigecycline in tissues? Rodvold et al. [16]

Does tigecycline coadministration change the pharmacokinetics of

digoxin?

Zimmerman et al. [17]

Is there a difference in tigecycline pharmacokinetics between men

and women or between young and old adults?

Muralidharan et al. [18]

Does tigecycline prolong corrected QT intervals in healthy subjects? Korth-Bradley et al. [19]
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collected data interpreted, all of the other planned phase 1 studies may be initiated

in parallel. However, given the expense and purpose of these studies, they may be

staggered such that new data become available just in time to inform the next study.

Studies intended to optimize treatment in phase 3 are conducted prior to those

required for final registration. Phase 1 studies in vulnerable populations such as

pediatric subjects or lactating women are not usually conducted without a compel-

ling need, such as information being required to initiate a phase 3 clinical trial

involving the same group.

11.1.3 Data Analysis and Interpretation

The end product of a clinical study is a study report summarizing the resulting

observations. Pharmacokinetic parameters are summarized as are the safety findings

and any other observations found. The results of these studies are then used to make

decisions previously identified as important in the clinical plan. For instance, were

the effective or toxic exposures observed in preclinical models observed in the

subjects studied? Were dose-limiting side effects observed? Were the single-dose

observations predictive of the observations after multiple-dose administration? Do

the pharmacokinetic parameters change significantly when the medication is admin-

istered with food or other medications compared to when administered alone? The

responses to these questions are used to design the phase 2 and phase 3 clinical trials.

11.2 Drug-Drug Interactions

Few patients, especially those with chronic conditions take a single medication. A

survey of almost 7000 Irish citizens aged 50 years and older, who lived in the

community, rather than residing in a nursing facility or long-term hospital, reported

that 17% took more than five medicines each day [20]. With aging, the frequency of

polypharmacy and the potential for drug-drug interactions (DDI) increases. Almost

60% of a group of Belgian seniors, aged 80–100 years, who lived in the community,

took more than five medications, and 9% took more than ten each day [21].

Understanding potential drug interactions between an NME and other medica-

tions that may be used concurrently is an integral part of the NME safety assess-

ment. If an NME is shown to increase or decrease the exposure of concomitantly

administered medications, unanticipated safety (toxicity) or reduced efficacy could

occur, respectively. Conversely, the NME exposure may be altered as a result of

other medications. In the past, conducting drug-drug interaction studies was

empiric and based upon either the likelihood of medications being coadministered

or to establish a potential advantage over other medications if a lack of interaction

could be shown. For example, the prescribing information for the nonsteroidal anti-

inflammatory drug (NSAID) etodolac, approved in 1991, lists ten potential drug
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interactions, three of which are negative, showing no impact of either medication

on the pharmacokinetics of the other. There is little detail in the prescribing

information about the specific routes of metabolism, but concern is raised about

potential for interactions due to the extensive protein binding of etodolac. In

contrast, the prescribing information for the NSAID celecoxib, approved in 1998,

lists information for many of the same potential drug interactions listed for

etodolac, but also indicates metabolism primarily occurs by CYP2C9 oxidation.

With better understanding of the role of Biopharmaceutics Drug Disposition

Classification System (BDDCS) [22] and metabolic pathways with respect to

potential drug-drug interactions, fewer empiric drug interaction studies are

performed. Additionally, the drug-drug interaction studies that are conducted

provide further information about specific metabolism and transporters. The regu-

latory guidances on the investigation of drug interactions provide detailed direc-

tions to systematically approach the potential for drug interactions [23, 24]. While

the study of a particular combination of interacting medications may have specific

applicability to patients taking them, the results of drug-drug interaction studies

also have more general contributions to clinical practice. For instance, drug-drug

interactions aid in establishing the particular pathways by which NMEs are metab-

olized and eliminated by CYP450 enzymes or transporters, respectively. Metfor-

min, for example, is a medication commonly used as the first pharmacotherapy for

patients with type 2 diabetes. It is also recommended as a probe substrate for OCT2

transporters, despite not being associated with drug-drug interactions of current

clinical importance [24].

The availability of PBPK models developed using results from nonclinical

studies combined with human pharmacokinetic data from the FIH studies offers

the first simulation of the metabolic pathways for an NME [25]. These data are also

useful for prioritizing drug-drug interaction studies.

11.3 Pharmacokinetics in the Patient

Most phase 2 and phase 3 studies will include assessment of the exposure obtained

in the patients who participate in clinical trials. Some phase 2 and 3 studies will

have pharmacokinetic substudies that collect a complete pharmacokinetic profile in

a subset of patients participating, while other studies will collect a smaller number

of samples from some or all of the patients and perform a population pharmacoki-

netic analysis [26]. In patient populations that are small in number, such as in the

study of rare diseases, or in patients who cannot be easily studied, such population

pharmacokinetic studies may also provide information that is normally assessed in

a phase 1 study, such as impact of race/ethnicity or a concomitant medication [27]

on pharmacokinetics. Exposure-response may also be explored using the concen-

tration data along with observations of efficacy and/or adverse events. Alterna-

tively, the concentration data collected in phase 3 studies may simply be

summarized or compared to what has been previously described in phase 1 studies

in healthy volunteers.
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11.4 Biomarkers in Clinical Development

The Biomarkers Definitions Working Group, which is comprised of members from

FDA, NIH, academia, and industry, has defined a biomarker as “[a] characteristic

that is objectively measured and evaluated as an indicator of normal biologic

processes, pathogenic processes, or pharmacologic responses to a therapeutic

intervention” [28]. The working group also defined the following end points for

biomarkers:

• Clinical end point: A specific characteristic or variable of the disease that reflects

how a patient feels or functions or how long a patient survives.

• Surrogate end point: A biomarker intended to substitute for a clinical end point.

A clinical investigator uses epidemiological, therapeutic, pathophysiological, or

other scientific evidence to select a surrogate end point that is expected to predict

clinical benefit, harm, or lack of benefit or harm.

Biomarkers are used in drug development to increase the probability of the

clinical efficacy signal [29]. Depending on the stage of development, biomarkers

can be used for different purposes. In very early stages of development, they help

identify targets that correlate with clinical benefit. In the later stages of develop-

ment, they help identify subpopulations most likely to respond to the drug candidate

[30]. Some biomarker terms commonly used in the literature are:

• Diagnostic biomarkers, which provide the means to define a population with a

specific disease

• Prognostic biomarkers, which correlate with health outcomes

• Predictive biomarkers, which define populations that might respond more favor-

ably to a particular intervention from an efficacy or safety perspective

Although biomarkers are typically associated with efficacy measurements, bio-

markers of safety and tolerability are also important [31]. One such example is the

QTc interval prolongation which has been accepted by regulatory authorities as a

safety marker for the potential of a drug to cause torsades [32].

The following subsections provide some examples of biomarkers in drug devel-

opment from a few disease areas.

11.4.1 Biomarkers of Bone Health

Osteoporosis is a major health issue in postmenopausal women as it is associated

with bone fractures. The prevalence of osteoporosis in developed countries is

estimated to be 40% in women in their sixties and 70% in women in their eighties

[33]. Bone turnover markers have been widely used in clinical trials for developing

drugs to treat osteoporosis. Markers of bone turnover can be stratified regarding

their origination from the bone mineral unit (BMU) (Fig. 11.1).
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Bone resorption markers measure collagen type I degradation products released

during osteoclastic resorption of bone. The most common markers of bone resorp-

tion measure peptide fragments deriving from collagen type I, such as CTX-I, NTx,

ICTP, and pyridinolines [34]. Bone formation markers measure enzymatic activity

of osteoblasts, bone proteins, and fragments of procollagens released during bone

formation. The common bone formation biomarkers most often evaluated are bone-

specific alkaline phosphatase, osteocalcin, or PICP/PINP [34]. Phase 2 and phase

3 trials of antiresorptive treatments have shown changes in bone turnover markers

in as little as 3 months after drug administration and a negative correlation between

most treatments and markers [35]. Several studies have demonstrated the correla-

tion between plasma levels of bone formation versus bone resorption markers and

risk of fracture [36–39]. Additionally, with antiresorptive treatments, the correla-

tion between 6-month change in uCTX and 4-year change in spine and hip bone

mineral density (BMD) was r ¼ �0.41 and r ¼ �0.42, respectively (P < 0.001)

[40]. Bone biomarkers therefore provide valuable information in choosing the

correct treatment and regimen by helping determine the efficacy of treatment

early on.

Fosdagrocorat is a first-in-class, selective, high-affinity, dissociated agonist of

glucocorticoid receptor (DAGR), in development to retain anti-inflammatory effi-

cacy of glucocorticoids while reducing the unwanted side effects which include

bone loss [41]. It is currently also under investigation for the treatment of rheumatoid

arthritis. In phase 2 proof of concept trial, bone turnover markers procollagen type

1 N-terminal peptide (P1NP; bone formation) and urinary N-telopeptide/urinary

Fig. 11.1 The bone remodeling cycle. Medical Illustrator: Ross Papalardo. Reprinted with

permission from Singer FR, Eyre DR. Using biochemical markers of bone turnover in clinical

practice. Cleve Clin J Med. 2008; 75:739–750. Copyright © 2008 Cleveland Clinic Foundation.

All rights reserved.
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creatinine ratio (uNTx/uCr; bone resorption) were included as primary end points in

addition to the clinical primary efficacy end point of ACR20 responses in a study to

provide information on bone loss. Prednisone dosed at 5 and 10 mg daily were used

for comparison of the bone loss effects. The results showed that suppression of bone

formation biomarkers with fosdagrocorat 1, 5, and 10 mg was non-inferior to

prednisone 5 mg daily [42]. The primary end point results support the underlying

transrepression/transactivation ratio with fosdagrocorat different from that observed

with prednisone in this clinical setting and may provide an improved benefit-risk

ratio as it appears that fosdagrocorat causes less bone loss than prednisone.

11.4.2 Biomarkers in Inflammatory Diseases

11.4.2.1 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by

persistent inflammation and joint damage with a variable course of symptom

improvement and worsening and different pathogenic mechanisms leading to

common signs and symptoms [43]. Rheumatoid factor (RF), an antibody not

found in the serum of healthy people, is one of the most widely used biomarkers

in RA diagnostics [44] and is elevated in 60–80% of established and 50–60% of

early RA cases. Anti-citrullinated protein antibodies (ACPAs) have recently

emerged as highly sensitive and specific serological markers of RA, providing a

superior alternative to the RF test in the laboratory diagnostics of RA. ACPAs

production can precede the onset of RA symptoms by years and ACPA-positive

individuals with undifferentiated arthritis have shown higher risk of developing RA

[45]. Since ACPAs are associated with pronounced radiographic progression, they

also have an important prognostic role [46]. Another class of novel antibodies in

RA patients are the anticarbamylated protein (anti-CarP) antibodies [47]. These

antibodies were detected in about 45% of RA patients and also in approximately

30% of ACPA-negative patients [47]. A novel algorithm, named a multi-biomarker

disease activity (MBDA) score, has been developed based upon concentration

measurements of 12 serum biomarkers (SAA, IL-6, TNF-RI, VEGF-A, MMP-1,

YKL-40, MMP-3, EGF, VCAM-1, leptin, resistin, and CRP) to assess disease

activity [48]. The MBDA score was significantly associated with the conventional

disease activity score, which is a composite index of the number of swollen and

painful joints [49]. Changes in MBDA scores were able to demonstrate clinically

relevant reductions in disease activity scores, suggesting that this test has the

potential to more quantitatively evaluate disease activity. Developing such bio-

markers can help the clinical management of RA patients, both with regard to the

prognosis and follow-up of patients during treatment.
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11.4.2.2 Psoriatic Arthritis

Psoriatic arthritis (PsA) is an inflammatory arthritis condition associated with

psoriasis. Approximately one-fourth of patients with psoriasis of the skin also

develop PsA [50]. Identifying biomarkers, including genetic, blood, tissue, and

transcriptional markers, would help in assessing the pathogenesis, diagnosis, and

therapy of PsA. Increased serum concentrations of inflammatory markers like CRP,

P-selectin, and haptoglobin and proinflammatory cytokines such as TNF, IL-6,

IL-8, and IL-12 have been reported in studies with psoriatic patients [51]. Alenius

et al. [52] have shown that serum IL-6 levels are elevated in PsA patients compared

with psoriasis-only patients as well as that serum IL-6 correlated well with joint

counts, ESR, CRP, and serum IL-2Rα. A combination of biomarkers that include

Hs CRP, osteoprotegerin, matrix metalloproteinase 3, and CPII:C2C ratio has been

suggested by Chandran and Gladman [53] to differentiate between PsA and

psoriasis-only patients. Patients with PsA have also been shown to have higher

concentrations of Dkk-1 and M-CSF levels compared to healthy controls [54]. It is

anticipated that utilizing biomarkers such as these will aid in the diagnosis and

treatment of PsA.

11.4.2.3 Inflammatory Bowel Disease

Inflammatory bowel disease (IBD) involves chronic inflammation of all or part of

the digestive tract. IBD primarily includes ulcerative colitis and Crohn’s disease.
The diagnosis of ulcerative colitis (UC) and Crohn’s disease (CD) is largely based

on endoscopic and histologic assessment of the inflamed tissue. Noninvasive,

economical tests that can accurately rule in or rule out IBD as well as differentiate

CD from UC would provide a valuable clinical resource [55]. Concentrations of

fecal calprotectin, lactoferrin, and CRP have each been correlated with histologic

and endoscopic disease activity in patients with UC and CD [56, 57]. Roseth et al.

[58] demonstrated that patients with CD or UC who had remission following

medical therapy demonstrated large reductions in levels of fecal calprotectin

(to below 50 μg/g). Biomarkers have also been developed to identify patients that

are likely to experience disease recurrence after treatment. Several studies have

shown that in patients with quiescent disease, increased concentrations of fecal

calprotectin predict disease relapse within 12 months, particularly in patients with

UC [59, 60]. PR3-ANCA was proposed by Mahler et al. [61] as a novel biomarker.

When tested by highly sensitive assays, PR3-ANCA was preferentially detected

only in patients with UC and not in CD and therefore has clinical diagnostic and

prognostic significance for IBD patients.
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11.5 Case Study: Development of Bazedoxifene
for the Prevention and/or Treatment
of Postmenopausal Osteoporosis

The bazedoxifene case study is presented as an example of a traditional develop-

ment plan that proceeded in a conventional manner. The target indication was well

described and effective treatments available. Osteoporosis is a skeletal disorder

characterized by compromised bone strength and increased risk of fracture [62]. A

significant proportion of individuals with osteoporosis are postmenopausal women.

After menopause, it is believed that the associated decline in estrogen production

leads to an increased rate of bone turnover, with the net bone loss contributing to

reduced bone strength and an increased risk of vertebral and other fractures

[63]. One of the major determinants of bone strength and osteoporotic fracture

risk is bone mineral density (BMD), as assessed by dual-photon absorptiometry

(DPA) or dual-energy X-ray absorptiometry (DXA). BMD is reported as a T-score

(��1.0 is normal, between �1.0 and �2.5 is osteopenia, ��2.5 is osteoporosis).

Additionally, biochemical markers of bone turnover (e.g., serum type 1 collagen

C-telopeptide [CTx]) are increased in metabolic bone disease that involves accel-

erated bone loss. Currently available pharmacologic agents for postmenopausal

osteoporosis either maintain or increase BMD and decrease the rate of bone

turnover.

Nonsteroidal selective estrogen receptor modulators (SERMs) are tissue selec-

tive agents, which act as estrogen receptor agonists in some tissues and as estrogen

receptor antagonists in others [64]. Estrogens and SERMs are implicated in a

variety of functions in the body, most notably the reproductive system, skeletal

remodeling, and vasomotor functions, and they exhibit their mechanism of action

by binding two types of estrogen receptors (ERs): ERα and ERβ. An ideal SERM

would have beneficial agonistic effects on bone as well as the cardiovascular system

to prevent bone loss and cardiovascular events without inducing hot flashes. The

SERMs would also have antiestrogenic effects on the breast and endometrium to

reduce the risk of breast and endometrial cancers. Bazedoxifene acetate is a SERM

that is approved and marketed as Conbriza® or Viviant™ in a number of European

and Asian countries for the prevention and/or treatment of osteoporosis in post-

menopausal women. It was developed based on preclinical screening criteria,

including favorable skeletal effects without adverse stimulation of endometrial or

breast tissue.

In addition to showing an effect on BMD, regulatory guidances for developing

drugs to treat or prevent osteoporosis require clinical demonstration of reduced

fractures in postmenopausal women, which unfortunately is not directly measurable

in a nonclinical setting [65]. For purposes of clarity and simplicity in discussing

efficacy, this case study will focus primarily on BMD and bone turnover markers

and no other efficacy measures such as vasomotor symptoms.
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11.5.1 In Vivo Pharmacology: Effects of Bazedoxifene
on Bone Repair in Monkeys and Rats

In a preclinical study with aged cynomolgus monkeys, bazedoxifene was evaluated

for safety and efficacy toward preventing ovariectomy (OVX)—induced bone loss

[66]. Animals (18 per group) underwent OVX and were administered bazedoxifene

(0.2, 0.5, 1, 5, or 25 mg/kg/day) or vehicle, by daily oral gavage for 18 months.

Animals in the second control group were sham operated and vehicle administered,

also by daily oral gavage for 18 months.

Bone turnover markers were assessed at 6, 12, and 18 months, along with bone

densitometry using DXA and peripheral quantitative computed tomography. Ani-

mals were sacrificed after 18 months, and uterine and pituitary weights were

evaluated. Additionally, histomorphometric and biomechanical measurements

were performed. OVX monkeys receiving vehicle showed increased bone turnover

associated with osteopenia and slight decreases (not statistically significant) in

biomechanical strength parameters at the lumbar spine and femoral neck.

Bazedoxifene partially preserved bone mass by preventing the OVX-induced

increases in bone turnover. Although the response was similar among all

bazedoxifene-treated groups, the strongest efficacy was observed at 25 mg/kg/

day. Treatment with bazedoxifene did not adversely affect measures of bone

strength and was well tolerated; there was no evidence of uterotrophic activity,

mammary tissue was unaffected, and there were no adverse effects on plasma

lipids. The results of this study indicated that treatment of ovariectomized

cynomolgus monkeys with bazedoxifene at least partially prevented changes in

bone remodeling that correlated with increases in bone mineral density while

maintaining bone strength and a favorable safety profile.

In a 6-week OVX rat model study [67], bazedoxifene was effective in

maintaining bone mass at doses as low as 0.1 mg/kg/day, reaching maximal

significant efficacy at a dose of 0.3 mg/kg/day. This dose maintained vertebral

compressive strength (a surrogate for a reduced incidence of fracture) equivalent or

better than the sham-operated animals. The histological quality of bone (assessed at

the proximal tibia) was maintained and correlated well with the increases in BMD

and compressive force data. In particular, bazedoxifene treatment prevented the

loss in trabecular bone and prevented the increase in turnover markers induced by

OVX, without affecting dynamic parameters of bone formation compared with

sham-operated animals.

11.5.2 Preclinical Pharmacokinetics

Following administration of 0.2 mg/kg IV bazedoxifene to OVX female rats, the

large volume of distribution (16.8 mL/kg) indicated wide tissue distribution.

Plasma clearance (3.9 L/h/kg) was high, and the elimination half-life (t1/2) was
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short (3.8 h) [68]. Bazedoxifene was orally absorbed at a moderate rate in rats,

reaching a mean maximum peak concentration of 4.7 ng/mL, at 2 h from a 1 mg/kg

dose. The absolute bioavailability in rats was approximately 16%, based on the

AUC0–1 values obtained after the oral and IV dosing,

Following intravenous or oral administration of 1 mg/kg of radiolabeled [14C]

bazedoxifene to female rats, the mean elimination plasma half-life assessed by total

radioactivity was approximately 29 h, showing the persistence of radiolabel on

metabolites, compared with the previous assessment of 3.8 h, above. The plasma

concentration versus time profiles following both intravenous and oral administra-

tion showed secondary peaks. This suggested either enterohepatic circulation or

absorption from both small and large intestines, possibly mediating a relatively long

elimination half-life and the slow total elimination of bazedoxifene-associated

radioactivity.

Several aspects of the disposition of bazedoxifene in rats appear to be similar to

those observed in postmenopausal women following oral administration. The

absolute bioavailability after oral administration was low in both species: approx-

imately 6% in women after a 10 mg dose (~0.14 mg/kg) and 16% in rats [69]. The

pharmacokinetic profiles of bazedoxifene in women and in rats were indicative of

enterohepatic recirculation, which may contribute to a long t1/2 (approximately 30 h

in women). Bazedoxifene was extensively metabolized in male and female rats, as

well as in postmenopausal women through the glucuronidation pathway to yield

bazedoxifene-5-glucuronide as the major circulating metabolite in both species.

Little P450-mediated metabolism was evident in rats or humans. This observation

was also supported by in vitro incubations of bazedoxifene in rat liver microsomes,

which showed bazedoxifene-5-glucuronide was formed at a higher rate than

bazedoxifene-40-glucuronide. However, in humans bazedoxifene-40-glucuronide
was the predominant metabolite in hepatic microsomes [70].

11.5.3 Translation to Clinical Evidence of Efficacy

Two large, prospective, global phase 3 trials of bazedoxifene for osteoporosis

prevention and treatment have been completed [71, 72]. Both studies were random-

ized, double-blind trials and included a placebo as well as a positive control

(raloxifene).

In the 2-year study by Miller et al. [71], a total of 1583 healthy postmenopausal

women were enrolled. These patients had either bone mineral density T-scores at

the lumbar spine or femoral neck between�1.0 and �2.5 or clinical risk factors for

osteoporosis and were randomly assigned to one of five groups: bazedoxifene

10, 20, or 40 mg/day, placebo, or raloxifene 60 mg/day. All the women received

daily elemental calcium (600 mg) supplementation. Compared with placebo, all

doses of bazedoxifene and raloxifene prevented bone loss at all four skeletal sites

evaluated. The mean percent change differences in lumbar spine bone density from

baseline at 24 months relative to placebo were 1.08% � 0.28%, 1.41% � 0.28%,
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and 1.49% � 0.28% for BZA 10, 20, and 40 mg, respectively (P < 0.001 for all

comparisons). All the bazedoxifene treatment groups had significantly greater bone

mineral density over the total hip in comparison with the placebo group at 6, 12,

18, and 24 months. Significant reductions in serum levels of osteocalcin and cross-

linked CTx from baseline and relative to placebo were observed for all doses of

bazedoxifene treatment by 3 months and were sustained until the end of the study

(P < 0.001).

In a 3-year study by Silverman et al. [72], 7492 healthy postmenopausal women

aged 55–85 years with osteoporosis were enrolled. These patients were defined by

low bone mineral density or radiographically confirmed vertebral fractures and

were randomized to treatment with bazedoxifene 20 or 40 mg/day, raloxifene

60 mg/day, or placebo. All the subjects received daily oral calcium (�1200 mg)

and vitamin D (400–800 IU) supplementation. The primary end point was the

incidence of new vertebral fractures after 36 months, and secondary end points

included nonvertebral fractures, bone mineral density, and bone turnover markers.

Treatment with bazedoxifene 20 and 40 mg and raloxifene 60 mg significantly

increased lumbar spine and total hip bone mineral density, as well as reduced serum

levels of osteocalcin and CTx compared with placebo. Among 6847 subjects in the

intention-to-treat population, which includes every subject who is randomized and

ignores noncompliance, protocol deviations, or withdrawal, the incidence of new

vertebral fractures was significantly lower (P < 0.05) for bazedoxifene 20 mg

(2.3%), bazedoxifene 40 mg (2.5%), and raloxifene 60 mg (2.3%) compared with

placebo (4.1%). Relative to placebo, bazedoxifene 20 mg and 40 mg and raloxifene

60 mg reduced the risk of new vertebral fractures by 42%, 37%, and 42%,

respectively. There were no significant differences in the incidence of new vertebral

fractures between the bazedoxifene and raloxifene treatment groups. The incidence

of nonvertebral fractures with bazedoxifene 20 mg (5.7%) and 40 mg (5.6%) and

raloxifene 60 mg (5.9%) did not differ significantly from placebo (6.3%). However,

in a post hoc analysis of a subgroup of women at higher fracture risk (femoral neck

T-score��3.0 and/or at least one moderate or severe vertebral fracture or multiple

mild vertebral fractures; n ¼ 1772), bazedoxifene 20 mg showed 50% and 44%

reductions in nonvertebral fracture risk relative to placebo (P ¼ 0.02) and raloxi-

fene 60 mg (P ¼ 0.05), respectively. A similar reduction in nonvertebral fracture

incidence was observed with bazedoxifene 40 mg, but the difference was not

statistically significant.

Subjects who completed the 3-year study were eligible to enroll in a preplanned

2-year extension study [73]. Of the 4991 women who completed the initial 3-year

study, 4216 chose to enroll in the extension study. In the extension study, subjects

receiving bazedoxifene 40 mg were transitioned to bazedoxifene 20 mg after

4 years (40/20 mg), while those receiving bazedoxifene 20 mg continued. At

5 years, the incidence of new vertebral fractures in the intent-to-treat population

was significantly lower with bazedoxifene 20 mg (4.5%) and 40/20 mg (3.9%)

versus placebo (6.8%; P < 0.05), with relative risk reductions of 35% and 40%,

respectively. Nonvertebral fracture incidence was similar among groups. In a

subgroup of higher-risk women (n ¼ 1324; femoral neck T-score � �3.0 and/or
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�1 moderate or severe or �2 mild vertebral fracture[s]), bazedoxifene 20 mg

reduced nonvertebral fracture risk versus placebo (37%; P ¼ 0.06); combined

data for bazedoxifene 20 and 40/20 mg reached statistical significance (34%

reduction; P < 0.05). As shown in preclinical studies, as well as 2- and 3-year

clinical studies, the effect of bazedoxifene continued for 5 years of treatment,

significantly increasing BMD and reducing bone turnover versus placebo

(P < 0.05) and was generally safe and well tolerated.

11.5.4 Translation of Preclinical to Clinical Evidence
of Safety

Consistent with the nonclinical findings, women receiving bazedoxifene in the

phase 3 trials had incidence rates of both common and serious adverse events

similar to those for subjects receiving raloxifene or placebo. Additionally, there

were no observed cardiac conduction safety signals. Measurement of QTc duration

from ECGs collected from subjects in phase 1 thorough QT study at both thera-

peutic (20 mg) and higher (120 mg) doses did not reveal prolongation of the interval

in subjects receiving bazedoxifene.

In the 2-year phase 3 study [71], serum concentrations of total cholesterol and

low-density lipoprotein cholesterol were decreased with bazedoxifene and raloxi-

fene treatments compared with placebo, whereas serum levels of high-density

lipoprotein cholesterol were elevated after treatment with both SERMs. Although

significant increases from baseline in the median concentrations of triglycerides

were observed among women receiving bazedoxifene 20 mg and 40 mg and

placebo, there were no significant differences between the groups.

In the 3-year phase 3 trial [72], bazedoxifene 20 mg and 40 mg doses were well

tolerated. The incidences of adverse events, serious adverse events, discontinua-

tions because of adverse events, and deaths in the bazedoxifene groups were

generally similar to those in the placebo group. The most common adverse events

were abdominal pain, accidental injury, arthralgia, back pain, flu syndrome, head-

ache, hypertension, infection, and pain. The incidences of vasodilatation (hot

flushes) and leg cramps were similar among the bazedoxifene and raloxifene

treatment groups, but both were significantly higher than those in the placebo

group. Most cases of vasodilatation were mild to moderate in severity and did not

pose a safety concern sufficient to warrant discontinuation of therapy.

The overall frequencies of cardiovascular events and stroke were low and evenly

distributed among the groups. The incidence of venous thromboembolic events

(deep vein thrombosis and/or pulmonary embolism) was higher in the active

treatment groups than in the placebo group, primarily because of an increased

incidence of deep vein thrombosis, although the overall incidence of venous

thromboembolic events in the active treatment groups was very low (<1%).
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There was no significant difference in the incidence of venous thromboembolic

events among the bazedoxifene and raloxifene treatment groups.

Breast and endometrial safety is an important issue in the clinical development

of new SERMs. Special attention was paid to evaluation of the reproductive tract

and breast safety in the phase 3 studies of bazedoxifene. In the 2-year phase 3 trial

[71], bazedoxifene was not associated with a significant change from baseline in

mean endometrial thickness compared with placebo. There was no confirmed

diagnosis of endometrial hyperplasia or malignancy in the bazedoxifene and ral-

oxifene groups. Furthermore, there were no significant differences among the

groups in the change from baseline in ovarian volume, number or size of ovarian

cysts, or incidence of ovarian cancer. Reports of breast pain and breast cancer were

low and evenly distributed among the groups.

In the 3-year phase 3 trial [72], there were no significant changes in the mean

endometrial thickness from baseline or in the incidence of endometrial hyperplasia

and endometrial carcinoma among the groups. There were no clinically important

changes from baseline in number or size of ovarian cysts among the groups. No

significant difference was reported in incidence of breast cancer among the groups.

There was a significantly lower incidence of fibrocystic breast disease for

bazedoxifene compared with raloxifene. Mammogram analyses after 24 months

of therapy revealed that the mean percent changes in breast density from baseline

were low and did not differ significantly among the groups. In the 2-year extension

study [73], bazedoxifene showed no evidence of endometrial or breast tissue

stimulation over 5 years of therapy, consistent with findings at 3 years. Fewer

cases of endometrial carcinoma were reported in the bazedoxifene group compared

with the placebo group.

11.5.5 Summary

As may be seen by review of the previous case study, although there was no use

made of PBPK modeling, population pharmacokinetic analyses, or exposure-

response analysis to provide a quantitative underpinning of the development pro-

gram, safety and efficacy were demonstrated in the clinical program.

11.6 Case Study: Development of Bapineuzumab
for the Treatment of Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia, characterized by

a gradual decline in cognitive functioning and memory [74]. Approximately 5.4

million Americans are affected by this illness. Thirteen percent of persons 65 years

of age and older have AD, with 1275 new cases per 100,000 patients (65 years of

358 B. Tammara et al.



age and older) reported annually [75]. Advanced age is found to be the greatest risk

factor for AD, although baseline mild cognitive impairment, previous head trauma,

family history, and genetics also play a role [74]. The genetic factor, apolipoprotein

E-ε4 (APOε4) genotype in particular, has been linked to late-onset AD. Inheriting a
single ε4 allele increases the risk of late-onset AD by a factor of 4, whereas

inheriting two alleles increases the risk by a factor of 19 [75–77].

The etiologic mechanism of AD is unknown; however, several postulated

theories involve the formation and accumulation of amyloid beta (Aβ) peptide

plaques in the cerebral vasculature. These peptides coincide with and appear to

influence many of the abnormalities that result in the cognitive decline observed in

patients with AD. Amyloid beta peptides are neurotoxic and drive the aggregation

of cytotoxic tau proteins, also known as neurofibrillary tangles. Impaired choliner-

gic transmission (resulting from amyloid beta peptides) further fuels tau protein

formation. Mitochondrial functioning also becomes impaired as a result of amyloid

beta peptides and yields reactive oxidative species that mediate vascular inflam-

mation and injury. The degree of amyloid beta plaque accumulation correlates with

severity of disease [74].

Ever since the discovery that Aβ is the major constituent of amyloid plaques in

AD and that familial AD results from mutations in the gene for amyloid precursor

protein (APP) or in genes responsible for processing APP to Aβ [78], there has been
a push to develop anti-amyloid therapeutics. Driven in part by the success of

antibody therapies to target and destroy tumor antigens in neoplastic disease and

by the absence of competition from less costly small molecules, immunotherapy

against Aβ emerged as the industry’s best hope for the first marketable disease-

modifying agent for AD. Strategies to develop disease-modifying therapies for AD

have been explored with the goal of reducing the formation of cerebral amyloid beta

plaques via passive immunity or immunization to cause development of anti-

amyloid beta antibodies.

In this section, we will discuss the example of bapineuzumab (AAB-001, Pfizer

Inc./Janssen Pharmaceutical), a recombinant humanized monoclonal IgG1 antibody

against the β-amyloid (Aβ) N-terminus( Aβ1–5), based on the murine antibody 3D6

and intended to promote Aβ clearance from the brain (molecular weight,

148,764 Da). Translational research for this compound was challenging as it is a

biologic, rather than a small molecule, and its mode of action precludes its admin-

istration to healthy volunteers.

11.6.1 In Vivo Pharmacology

Bapineuzumab, a monoclonal antibody, is produced by a recombinant Chinese

hamster ovary (CHO) cell culture process. It contains 1334 amino acids and is

composed of two heavy chains and two light chains, which are disulfide bonded to

form a tetramer. Each heavy chain is fully glycosylated and contains N-linked

oligosaccharides of the type commonly observed in mammalian IgG antibodies.
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Bapineuzumab selectively binds human Aβ peptide and was thought to provide

passive immunity, reducing the formation of Aβ plaques and slowing disease

progression.

Studies have been conducted to show that subcutaneous administration of

murine monoclonal and polyclonal antibodies directed to the N-terminal region

of Aβa1–42 are capable of reducing amyloid burden in PDAPP mice

[79, 80]. Schenk reported that immunization of the young animals essentially

prevented the development of Aβ plaque formation, neuritic dystrophy, and

astrogliosis. Treatment of the older animals also markedly reduced the extent and

progression of these AD-like neuropathologies. Janus et al. [79] demonstrated that

immunization by administration of the monoclonal antibodies 3D6 and 10D5,

which recognize Aβ amino acids 1–5 and 3–7, respectively, bound to plaque and

significantly reduced amyloid burden, as did a polyclonal antibody preparation to

Aβ1–42.1. These results raised the possibility that immunization with amyloid-β
antibodies may be effective in preventing and treating Alzheimer’s disease.

Morgan et al. [81] showed that in a transgenic model for AD in which mice

develop learning deficits as amyloid accumulates, vaccination with Aβ protects

transgenic mice from the learning and age-related memory deficits that normally

occur in this model for AD. During testing for potential deleterious effects of the

vaccine, all mice performed superbly on the radial arm water-maze test of working

memory. Later, at an age when untreated transgenic mice show memory deficits,

the Aβ-vaccinated transgenic mice showed cognitive performance superior to that

of the control transgenic mice and, ultimately, performed as well as non-transgenic

mice. The Aβ-vaccinated mice also had a partial reduction in amyloid burden at the

end of the study. From these results, the authors concluded that this therapeutic

approach may prevent and, possibly, treat AD. Because human IgG1 is most similar

to mouse IgG2a, bapineuzumab was engineered as a human IgG1 isotype to retain

the properties attributed to antibody isotype.

11.6.2 Preclinical/Clinical Comparison of Pharmacokinetics

Pharmacokinetic behavior of bapineuzumab was evaluated in mice, Sprague-

Dawley rats, New Zealand White rabbits, and cynomolgus monkeys. PK data in

all animal species tested showed a biphasic decline after IV administration, dose-

dependent increases in bapineuzumab area under the curve (AUC) and peak plasma

concentration (Cmax), a long elimination half-life (t1/2), and limited distribution

(primarily to the vascular compartment), characteristics that are typical of mono-

clonal antibodies. Simulations based on the minimal effective serum concentration

needed for efficacy in the PDAPP mouse and the PK parameters in animal species

indicated that a human dose in the range of 1–5 mg/kg would maintain the desired

serum levels at or above 3.7 μg/mL for approximately 1 month.

In clinical studies of humans, bapineuzumab was administered intravenously

and reached peak concentrations at the end of the 1-h infusions. Both single-dose
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and multiple-dose pharmacokinetic studies were performed. After single doses

administered to patients with Alzheimer’s disease [82], a threefold increase in

dose from 0.5 to 1.5 mg/kg resulted in approximately sixfold greater exposure,

while the additional increase from 1.5 mg/kg to 5 mg/kg resulted in an increase of

only 2.6-fold higher. The volume (Vss) was small (69.7 � 10.1 mL/kg), clearance

low (0.190 � 0.040 mL/h/kg), and half-life long (24.0 � 4.0 days) after a single

0.5 mg/kg dose.

A population pharmacokinetic analysis of the samples collected as part of the

phase 3 studies, where patients received doses every 13 weeks for a total of six

doses of 0.5, 1, or 2 mg/kg, infused over 1 h, confirmed the pharmacokinetic

characteristics observed in the single-dose phase 1 study [83]. Although there was

an observed impact of body weight on both volume and clearance, there was no

evidence that APOε4 carrier status affected the clearance of bapineuzumab, and the

target concentration appeared to be maintained.

There was no investigation of the potential for drug-drug interactions because

monoclonal antibodies such as bapineuzumab are generally considered to be catab-

olized and eliminated by processes involved in the turnover and degradation of

endogenous immunoglobulins [84]. Such monoclonal antibodies are degraded to

constituent amino acids, which can then be reincorporated into newly synthesized

proteins or utilized as an energy source. They are not metabolized via cytochrome

P (CYP) 450 systems, but are degraded to individual amino acids, no reactive

metabolites are generated. Consequently, traditional metabolism, elimination, or

drug-drug interaction studies, as would typically be conducted for small-molecule

drugs, are not considered necessary or useful for biologics such as

bapineuzumab [24].

11.6.3 Preclinical/Clinical Evidence of Efficacy

Assessment of cognition is difficult in preclinical models. Healthy volunteers can

be assessed and serve as positive control subjects. Validated efficacy assessment

scales for AD include the Mini-Mental State Examination (MMSE), Alzheimer’s
Disease Assessment Scale—Cognitive Subscale (ADAS-Cog), and Disability

Assessment for Dementia (DAD). These tools are designed to evaluate several

areas of function, including cognition, functional capacity, behavior, general phys-

ical health, and quality of life. MMSE and ADAS-Cog assess cognitive areas

whereas DAD is a functional test.

Most assessment tools are designed to be completed either by the patient (in the

early stages of disease), the caregiver, or the patient’s primary healthcare provider.

Most often, a combination of tests is needed to complete an evaluation of the

patient’s overall condition. Assessments given by the primary caregiver often

evaluate not only the patient’s condition but also the caregiver’s own well-being,

which can be an important factor in deciding whether a particular treatment strategy

has proven beneficial.
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For patients with Alzheimer’s disease or a related dementia, there is no single

test that can simultaneously assess all areas of functioning. The aim of such tests is

to better understand the actual efficacy of treatments and to develop a comprehen-

sive, practical assessment that can be administered quickly by a clinician.

The first phase 2 study [85] enrolled 234 patients, randomly assigned to receive

placebo or bapineuzumab in four dose cohorts (0.15, 0.5, 1, or 2 mg/kg). Patients

received six infusions, 13 weeks apart, with final assessments at week 78. The

prespecified primary efficacy analysis assumed linear decline and compared treat-

ment differences within dose cohorts on the ADAS-Cog and DAD scales. No

significant differences were found in the primary efficacy analysis. Exploratory

analyses combined dose cohorts and did not assume a specific pattern of decline.

These exploratory analyses showed potential treatment differences (P < 0.05,

unadjusted for multiple comparisons) on cognitive and functional end points in

study “completers” and APOε4 noncarriers. Reversible vasogenic edema, detected

on brain magnetic resonance imaging (MRI) in 12/124 (9.7%) bapineuzumab-

treated patients, was more frequent in higher-dose groups and APOε4 carriers.

Six vasogenic edema patients were asymptomatic; six experienced transient symp-

toms. Overall, primary efficacy outcomes in this phase 2 trial were not significant.

However, the potential treatment differences in the exploratory analyses were

encouraging and supported further investigation of bapineuzumab in phase 3 with

special attention to APOε4 carrier status.

A second phase 2 multicenter, placebo-controlled, double-blind, ascending-dose

study [86] was conducted in 28 patients 50–80 years of age who received doses of

0.5, 1, or 2 mg/kg or placebo. As in the previous study, patients received up to six

infusions 13 weeks apart and underwent positron emission tomography (PET) scans

at baseline and at weeks 20, 45, and 78 in order to determine the retention ratio of

Pittsburgh compound B (11C-PiB), which is thought to reflect the clearance of

amyloid beta peptides, in predefined cortical areas of the brain. Even though

bapineuzumab patients experienced reduced cortical 11C-PiB retention from base-

line, increased retention was observed in the placebo group. The clinical impact of

this phase 2 study was unclear, and further investigation was deemed necessary for

possible translation into clinical benefit.

Treatment response in patients with the APOEε4 genotype versus patients

without the APOEε4 genotype was assessed in two phase 3, multicenter, random-

ized, double-blind, placebo-controlled studies [87]. The first study, enrolling 1331

patients without APOEε4, compared active treatment, 0.5 and 1 mg/kg of

bapineuzumab, each administered as six infusions, 13 weeks apart, to placebo.

The second study enrolled 1121 patients with the APOε4 genotype and compared

responses after six infusions of bapineuzumab (0.5 mg/kg) given 13 weeks apart to

placebo. The co-primary end points for each trial were the changes in ADAS-Cog

and DAD scores from baseline. Secondary end points included brain amyloid

burden on PiB-PET, cerebrospinal fluid (CSF) phospho-tau, and MRI brain volume.

Neither study found any statistically significant differences in the co-primary

efficacy end points of ADAS-Cog nor DAD scores versus placebo in APOε4
carriers and noncarriers. However, a secondary end point analysis revealed a
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reduction in amyloid plaques on PET imaging in APOε4 carriers in mild AD

patients. Similar results were also reported by a pooled analysis of the two trials

in both co-primary and secondary end points. In addition, significant decreases in

CSF phospho-tau concentrations in APOEε4 carriers receiving 1 mg/kg, were

observed in a subgroup analysis of patients with mild and moderate AD. Pooled

analyses also revealed a decline in MRI brain volume. However, based on the lack

of clinical efficacy in ADAS-Cog and DAD scores in these two studies, phase

3 trials investigating the long-term efficacy and tolerability of bapineuzumab over a

4-year period were halted.

11.6.4 Evidence of Safety

Adverse events that were reported as being greater than 5% (and twofold higher

than placebo) in the phase 2 study [85] included back pain, anxiety, vasogenic

edema (VE), paranoia, vomiting, hypertension, weight loss, skin laceration, gait

disturbance, and muscle spasm. Vasogenic edema was the only event noted to be

dose related; it was detected on MRI in 12 patients (9.7%), but it was not detected in

any patients receiving placebo. Ten of the 12 cases of VE were detected in APOε4
carriers, and incidence rates increased as bapineuzumab doses were escalated. Half

of these patients were symptomatic, with most patients commonly reporting head-

ache, confusion, vomiting, and gait disturbances. Symptoms resolved in the major-

ity of patients after bapineuzumab was discontinued.

In the second phase 2 study [86], adverse events were reported in 19 of

20 bapineuzumab-treated patients and in all eight placebo-treated patients. The

events most commonly reported (in 10% or more of bapineuzumab patients) were

headache, fatigue, nasopharyngitis, diarrhea, urinary tract infections, falls, abra-

sions, and muscle spasms. Most adverse events were generally mild to moderate

and transient; however, serious events were reported in four bapineuzumab-treated

patients and in three placebo-treated patients, with no relation to dose. Two patients

in the 2 mg/kg bapineuzumab group experienced cerebral VE, as identified on MRI

scans, and were found to be APOε4 carriers. Both patients were asymptomatic and

developed VE after the first bapineuzumab dose. The edema resolved after treat-

ment was discontinued.

Both phase 3 studies reported a higher rate of VE in both the APOε4 carriers and
the noncarriers after treatment. Treatment-emergent vasogenic edema was

observed in 15.1% of the APOε4 carriers receiving bapineuzumab versus 0.2% of

patients receiving placebo. Of the noncarriers, 4.2%, 9.4%, and 0.2% of patients in

the 0.5, 1 mg/kg, and placebo groups, respectively, were affected. Of the APOε4
carriers and noncarriers found to have VE, 2.4% and 1.5% reported symptoms.

Other adverse events such as syncope, dehydration, and pneumonia occurred at

similar rates between patients receiving bapineuzumab and placebo in both APOε4
carriers and noncarriers.
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As noted above, bapineuzumab was found to cause vasogenic edema (VE) of the

brain in some subjects. This term describes a radiographic finding detected as high

signal intensity on fluid-attenuated inversion recovery (FLAIR) MRI sequences.

Recognition of what was labeled VE in early trials of bapineuzumab led to the

institution of MRI assessments at prespecified time points. However, the term VE

was problematic since it was used to include FLAIR hyperintensities seen both in

the brain parenchyma (consistent with cerebral edema) and in cerebral sulci (indic-

ative of extraparenchymal effusion).

The MRI signal abnormalities observed in VE are believed to be related to

movement of amyloid from the parenchyma into the perivascular space as well as

removal of vascular amyloid. It is hypothesized that these shifts in amyloid result in

extravasation of fluid, which in turn manifest as several amyloid-related imaging

abnormalities (ARIA), including edema (ARIA-E) and hemosiderin deposition

(ARIA-H) , either within the brain parenchyma or within cortical sulci.

The smaller findings of ARIA-H are microhemorrhages and are seen with

increased incidence in patients with AD. Small hemosiderin deposits occur spon-

taneously in up to 19% of normal elderly people 3 and up to 32% of AD

patients [88].

ARIA-E and ARIA-H can occur spontaneously or in the course of treatment with

amyloid-lowering agents [89]. Most cases of VE have not been associated with

clinical observations. However, some cases of VE have been associated with

clinical observations such as altered mental status, seizures, gait difficulties, visual

disturbances, elevated blood pressure, vomiting, headache, fatigue, dizziness, syn-

cope, weakness on one side of the body, and irritability. Mild increases in white

blood cells and elevated protein levels have been reported in the cerebrospinal fluid

(CSF) of some subjects with VE who have undergone lumbar puncture. VE

generally is observed after the first or second infusion, although it has been

observed after later infusions in some subjects. In individual subjects, MRI findings

may vary over time, but VE usually improves gradually. In some subjects, neuro-

logical deficits have persisted after MRI resolution of the VE. Although symptoms

have improved in most subjects, not all subjects have recovered, and it is possible

that complications associated with VE could lead to chronic disability and/or death.

Although the underlying pathophysiological mechanisms for ARIA are

unknown, it has been proposed that a reduced vascular integrity caused by an

aggressive lowering of both central and vascular Aβ might be involved [90]. Addi-

tionally, these ARIA phenomena are not associated with evident restricted diffu-

sion, tissue necrosis, or other evidence of cytotoxic edema. It is assumed that they

represent transient breakage of the blood-brain barrier (BBB).

Findings from using the PDAPP mouse model imaged with gadolinium-

enhanced dynamic MRI resulted in detection of numerous BBB disruptions upon

anti-Aβ immunotherapy. However, PDAPP control and wild-type mice showed no

evidence of leakage; these disruptions can occur within a week of treatment

initiation and resolve quickly, within 7 days, despite persistence of antibodies,

and these experiments support the hypothesis that treatment with bapineuzumab

leads to leakage from amyloid-laden vessels consistent with ARIA in PDAPP mice.
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The authors concluded that this methodology may be useful to explore the

underlying biological mechanism of BBB leakage and assess the safety profile

(ARIA) of other anti-Aβ compounds.

11.6.5 Biomarkers

AD is a progressive neurodegenerative disease characterized neuropathologically

by cerebral neuronal loss, deposits of extracellular amyloid beta (Aβ) plaques, and
intraneuronal neurofibrillary tangles with accompanying decreases in CSF of Aβ
and increases in CSF tau proteins such as total tau and phosphorylated tau. The

effect of bapineuzumab on CSF biomarkers reflecting Aβ homeostasis, neuronal

degeneration, and tau-related pathology, in the patients enrolled in the previously

described phase 2 studies was reported by Blennow et al. [91]. Within the

bapineuzumab group, at the end of the study, a decrease was found both for CSF

T-tau (�72.3 pg/mL) and P-tau (�9.9 pg/mL) compared with baseline. When

comparing the treatment and placebo groups, this difference was statistically

significant for P-tau (P ¼ 0.03), while a similar trend for a decrease was found

for T-tau (P ¼ 0.09). No clear-cut differences were observed for CSF Aβ. The
authors concluded that CSF biomarkers may be useful to monitor the effects of

novel disease-modifying anti-Aβ drugs in clinical trials.

As mentioned previously, carbon-11-labeled Pittsburgh compound B (11C-PiB)

PET is a marker of cortical fibrillar Aβ load in vivo. In the first phase 2 study

described above, patients had 11C-PiB-PET scans at baseline and at weeks 20, 45,

and 78. The primary outcome was the difference between the pooled bapineuzumab

group and the pooled placebo group in mean change from screening to week 78 in 11

C-PiB cortical to cerebellar retention ratio averaged across six cortical regions of

interest. It was concluded by the authors that 11C-PiB-PET seemed to be useful in

assessing the effects of potential AD treatments on cortical fibrillar Aβ load in vivo.

11.6.6 Exposure-Response Analyses

Exposure-response (ER) analyses evaluate relationships between drug concentra-

tions or exposure (AUC) and relevant response or pharmacodynamics end points,

including the study of the impact of covariates, defined as variables that may be

possibly predictive of the response.

Samtani et al. [92] established a population-based pharmacodynamic disease

progression model using pooled data from the phase 3 studies described above. This

model estimated longitudinal changes in disease progression, measured by ADAS-

Cog/11 scale, after bapineuzumab treatment, and identified covariates contributing

to the variability in disease progression rate and baseline disease status. The

analysis showed no effect of bapineuzumab on ADAS-Cog/11 progression rate,
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consistent with the lack of clinical efficacy observed in both studies. Sex, APOEε4
carrier status, and years since disease onset significantly influenced baseline

ADAS-Cog/11 scores, while age, years since disease onset, and APOε4 carrier

status had significant effects on disease progression rate. The influence of

bapineuzumab exposure on disease progression was not significant.

An ER analysis using a disease progression model for the DAD end points was

conducted using data from the two phase 3 studies described previously [93]. It

evaluated longitudinal changes in DAD scores, baseline factors affecting disease

progression, and bapineuzumab effect on disease progression. Similar to ADAS-

Cog, the estimated treatment effect of bapineuzumab was not significant, consistent

with lack of clinical efficacy observed in the primary analysis. The model suggested

however that progression of DAD tended to decrease with increase in

bapineuzumab exposure. The ER relationship was similar regardless of the

APOε4 status but more pronounced in patients with mild AD. Baseline disease

status, age, memantine (a concomitant medication indicated for Alzheimer’s dis-
ease) use, and years since onset had significant effects on baseline DAD scores.

11.6.7 Summary

The extensive analysis of the data collected in the clinical studies conducted to

investigate the effectiveness of passive immunization in the treatment of

Alzheimer’s disease was unfortunately unable to identify patients for whom treat-

ment would be successful, despite early demonstration of promise of limiting

disease progression. The clinical trials were informative with respect to assessing

efficacy, tolerability, biomarkers, and imaging techniques. Exploratory analyses

showed hints at cognitive benefit in mild patients, and an alternative baseline for the

Mini-Mental State Examination suggested a benefit [94]. Perhaps treatment would

be effective if administered earlier, and perhaps it is important to better understand

the impact of APOε4 carrier status [95].

11.7 Conclusions

T2 translation research refers to those later-stage clinical studies that are aimed at

translating knowledge from preclinical and early-stage clinical observations of

healthy volunteers into patients and ultimately toward treatment plans. As has

been described in this chapter, the repeated use of careful experimental design,

followed by appropriate analysis, modeling, and simulation to describe pharmaco-

kinetic parameters in humans, can help in the efficient and robust development of

medications. Significant learnings can also be gained from drug candidates and

studies that were not successful. While careful observations of safety signals and

evidence of efficacy must be made in patients treated in clinical trials, future
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translational activities are greatly aided by attempts to link clinical observations to

data from previous preclinical models (T1) as well as those in healthy volunteers

participating in the FIH trials (T2).
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Chapter 12

Regulatory Aspects at the Drug Discovery
Development Interface

Lynn Gold and Ken Phelps

Abstract While discovery scientists are interested in proof-of-concept data, regu-

lators seek key safety data prior to advancing new drug candidates into first-in-

human (FIH) clinical trials. Safety as well as therapeutic activity data continues to

be collected and evaluated at each subsequent clinical trial stage of a program to

gain proof of concept. This requires clear research and development targets to help

guide the development pathway to provide phase-appropriate investigational new

drug (IND) submissions.

In early discovery a customized development target product profile (dTPP)

describing the key attributes of the proposed product is recommended. This dTPP

defines the important aspects of the discovery target that guide the development

program, and as it evolves, it becomes aligned with what regulatory reviewers have

outlined as the key information for ultimate approval of the proposed product.

These details provide scaffolding for a development pathway with appropriate

regulatory targets and a foundation for the initial IND submission. The IND is the

detailed description of the sponsor’s safety data, clinical study design, and drug

product.

The goal of early studies in humans is the generation of sufficient data to

transition to the next critical milestone and eventually to a safe, therapeutically

beneficial, and therefore marketable drug product. Ultimately, this necessitates

developing a product that keeps all stakeholders in mind: the innovator, the patient

or end user, and regulators. Essential to achieving that goal is a strong foundation

that is described in the IND.
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12.1 Introduction

The focus of drug discovery is on evaluating and optimizing compounds that can

provide a therapeutic effect against a specific disease state. In addition to efficacy,

drug candidates must also demonstrate appropriate safety and pharmacokinetic

profiles. Extensive datasets are generated in preclinical species to provide confi-

dence that the compound is worthy of advancement into the resource-intensive

clinical space. However, none of this work receives regulatory scrutiny until the

compound is ready to be advanced into clinical trials.

For a promising drug candidate to become a commercially viable drug product,

it must receive approval from the specific regional regulatory agency in which the

product is to be marketed. Approval requires testing under controlled settings in

clinical trials designed to evaluate safety and efficacy. This applies to both syn-

thetically prepared new chemical entities (NCEs) and new biological entities (NBE)

produced from recombinant cell lines. While the regulatory concepts for both

therapeutic modalities are similar, the specific requirements are distinctly different.

This chapter focuses on NCEs.

There are different regulatory agencies for different countries or regions in

which the first-in-human (FIH) study may be performed. Examples include the

US Food and Drug Administration (US FDA); the European Medicines Agency

(EMA); Health Canada; the Ministry of Health, Labour and Welfare (MHLW) in

Japan; and Brazil’s National Health Surveillance Agency (Anvisa). All regulatory

agencies review preclinical efficacy, safety/toxicology, and pharmacokinetic data

as well as the proposed clinical plan.

First-in-human (FIH) testing requires a great amount of scrutiny, as there are

many unknowns at this stage. In the USA, the FDA requires the submission of an

investigational new drug (IND) application to advance to FIH studies. The IND is

discussed further below.

12.2 US FDA Regulatory Expectations and Guidelines
for a Phase 1 FIH Clinical Study

A new drug candidate must meet regulatory requirements prior to human testing. If

the new drug candidate is a new chemical entity, defined in 21 CFR §314.108(a) as
a drug that contains no active moiety that has been approved by the FDA in any

other application submitted under Section 505(b) of the Federal Food, Drug, and

Cosmetic Act (see Example 1), then an IND will be required to allow the first-in-

human (FIH) clinical study to proceed. The FDA also classifies these drugs as new

molecular entities (NME). The key is the definition of active moiety per 21 CFR

§314.108 (a); an active moiety is the molecule or ion, excluding those appended

portions of the molecule that cause the drug to be an ester, salt (including a salt with

hydrogen or coordination bonds), or other non-covalent derivatives (such as a

374 L. Gold and K. Phelps



complex, chelate, or clathrate) of the molecule that is responsible for the physio-

logical or pharmacological action of the drug substance.

Example 1

An instructive example distinguishing a new chemical entity is the drug

product Vyvance® (NDA 021977 February 23, 2007), containing the drug

substance lisdexamfetamine dimesylate. The active moiety of this compound,

dextroamphetamine, was previously approved in a new drug application

(NDA) for Dexedrine® (NDA 017080, August 2, 1976). However

lisdexamfetamine is a lysine prodrug of dextroamphetamine, requiring met-

abolic cleavage of the lysine amide bond to release dextroamphetamine, as

shown in Fig. 12.1. As such, lisdexamfetamine is a new chemical entity and

has been classified as a new molecular entity by the FDA.

Terminology can differ among the regulatory agencies. The EU has published a

position paper on this topic, along with a description of when exclusivity can be

obtained for a new active substance (March 2015). Article 10.2.b of Directive 2001/

83/EC states, “The different salts, esters, isomers, mixtures of isomers, complexes

or derivatives of an active substance shall be considered to be the same substance

unless they differ significantly with regard to safety and/or efficacy.”

Regulatory agencies have developed guidance documents to aid researchers in

advancing NCEs to FIH studies. Guidance documents can be found here: the FDA

website for guidances, the International Conference on Harmonisation (ICH)

website for harmonized guidances, and the European Medicines Agency (EMA)

website for human regulatory guidance documents. Further information can also be

obtained from the pharmacopeia in the region in which the FIH studies are planned.

The FDA’s guidance documents are based on information gathered from the

FDA’s vast experience with a wide variety of development programs across the

pharmaceutical industry, which no one individual drug sponsor organization pos-

sesses. Discovery organizations can benefit from these guidance documents, which

are continually drafted, published, and updated by the FDA to enable the optimal
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Fig. 12.1 Lisdexamfetamine to dextroamphetamine (Vyvance® NDA 21977)
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and most efficient translation of molecules to medicine. Prior to clinical testing, an

investigational new drug (IND) application must be submitted. This in turn requires

establishing a development plan based on the development target product profile

(dTPP) to achieve the IND target, as shown in Fig. 12.2.

12.3 The Drug Development Plan

A development plan establishes a pathway to an IND. This chapter primarily

focuses on the US filing requirements and may also reference the United States

Pharmacopeia and National Formulary (USP/NF) for any available methods and

monographs describing active pharmaceutical ingredients (APIs), analytical

methods, dosage forms, container closures, and excipients. Other pharmacopeias

may be referenced in specific cases depending on the supporting data and circum-

stances. An IND may be prepared that contains completely novel information and

therefore does not reference anything in the USP/NF, except possibly the general

chapters. The value of the USP/NF is as a benchmark for aspects of development

programs.

All sponsors with development programs at the interface between the early-stage

development and the FIH studies should brainstorm the various alternative devel-

opment pathways available. Key nonclinical studies provide a mechanism for

establishing safety guidelines prior to the FIH study initiation. Consideration should

be given to all aspects that are known and potentially unknown about the drug

product under development. Think about the impact on safety regarding the use of

the proposed new drug product (Example 2).

dTPP

API characterization

Development 
Plan

• Nonclinical
• Dosage form attributes
• Safe starting dose 

Data will be added to dTPP

INDIND

Fig. 12.2 The development target product profile (dTPP) drives the development plan based on

the gaps needed to support the IND filing goal for the proposed new drug product
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Example 2

At the time of this work, a tragic example of the potential consequences of

unknowns in a phase 1 (FIH) study of the investigational drug BIA 10–2467

(an inhibitor of fatty acid amide hydrolase or FAAH) involving healthy

volunteers is currently being investigated to understand the cause(s). The

FDA is participating in a thorough evaluation of the early safety data gener-

ated to support the Bial-Portela & Ca. SA of Sao Mamede do Coronado,

Portugal, study of the investigational drug BIA 10–2467, conducted in

France, resulting in a halted clinical study with the death of one healthy

volunteer and neurological injury to four others (FDA January 31, 2016). The

lessons learned from this program will inform the expectations for develop-

ment programs for early safety studies for new chemical entities (NCEs) in

the future. Close attention to the evolution of these learnings is warranted.

The FDA will also collect and review safety information pertinent to FAAH

inhibitors under investigation in the USA.

12.4 Development Target Product Profile

A team of research and development scientist needs a common target for their

product development, which is represented by the bulls eye in Fig. 12.3. The target

product profile (TPP) summarizes the product to be developed; desired features,

studies, and activities necessary to demonstrate safety and efficacy; and

distinguishing features that provide a competitive advantage. An early version of

the TPP is a development (d)TPP, represented by the blue ring of the target in

dTPP = development Target Product Profile
QTPP = quality Target Product Profile

QTPP

Fig. 12.3 Target product

profile bulls eye
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Fig. 12.3. The early development target requires refinement as additional knowl-

edge is gained. As the discovery process evolves, the dTPP also evolves, through

versions that become closer and closer to the quality (Q)TPP, which represents a

safe and efficacious drug product (depicted by the bullseye in Fig. 12.3). A TPP

helps communicate the development intentions for a new program to all stake-

holders, which at an early stage are representatives of various scientific disciplines

on a project team and possibly regulatory reviewers. The FDA documents Guid-
ance for Industry and Review Staff Target Product Profile—A Strategic Develop-
ment Process Tool (March 2007) and Guidance for Industry: Q8
(R2) Pharmaceutical Development (November 2009) both describe the use of

TPPs.

A TPP is customized to the sponsor’s development program, with the concept of

the labeling for the commercial drug product in mind. As the TPP evolves, it may

eventually become the package insert. Often, a sponsor will work backward from

the desired labeling drug attributes and cautions to determine optimum develop-

ment choices. This approach supports the design of efficacy, safety, and toxicology

studies as well as critical quality attributes for the proposed drug product.

At a minimum key attributes initially included are indication and usage, dosage

and administration, and dosage forms and strengths under consideration. Eventually

the TPP is expanded to include dosage forms and strengths that represent the

commercial target, contraindications, adverse reactions, clinical pharmacology,

nonclinical toxicology and clinical studies, warnings and precautions, drug inter-

actions, use in specific populations, drug abuse and dependence, over dosage,

description, how supplied, storage and handling, and patient counseling

information.

The first steps in the preparation of a dTPP are to define the known attributes of

the new moiety and to consider what the patient and regulatory needs are as dictated

by the phase of development the product is in. This begins with a dTPP that outlines

the known characteristics of the drug substance, including physical and chemical

attributes, some of which are inherent and others based on the current route of

synthesis. Characteristics such as impurity profile and particle morphology can be

critical especially if the route of administration is a solid oral dosage form. In

contrast, if the proposed product is an oral solution, the impurity profile is impor-

tant, but the particle morphology is less critical. The initial development priority to

achieve the IND is safety. This takes the form of a well-characterized impurity

profile in the early nonclinical studies for a potential oral dosage form and sterility

if the dosage form is intended to be parenteral.

It is also important to consider which attributes might be altered during the

development program and the impact of these alterations. For example, an early

development program may begin with a parenteral solution formulation to gain

critical human pharmacokinetic data such as volume of distribution and clearance.

Subsequently it may advance to an oral dosage form such as drug in bottle (DIB) or

drug in capsule (DIC) for further development. As a result, bridging studies are

typically required to demonstrate the similarities and differences in the systemic

exposure from the different delivery paradigms. Additionally, bridging of the purity
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and potency for the different dosage forms and formulations is critical to support

the exposure levels established in the various early development studies.

Nonclinical studies using relevant and comparable dosage forms also provide

guidance for clinical studies toward establishing dosage formulation specifications.

Example 3

Example development target product profile (dTPP) for an oral solution

evolving into an example quality target product profile (QTPP) for a solid

oral dosage form

Item dTPP QTPP

Description Solution for injection White film-coated oval tablet

embossed with “logo” on one

side and plain on the other

Active pharmaceutical

ingredient (API)

Chemical name Chemical name

Chirality Racemic S-Enantiomer

Polymorphic form Unknown Amorphous form

Impurities NMT 5% Not more than 2%

Dosage form Parenteral solution Solid oral dosage form

Strength 100 mg/10 mL 50 mg, 100 mg, and 200 mg

Dosing instructions One infusion of 10 mL

per day

Take one tablet twice a day for

2 weeks

Assay 90.0–110.0% 92.0–110.0%

Impurities/related

substances

Total impurities NMT 5%

Unknown impurities NMT

0.1%

Total impurities NMT 2%

Unknown impurities NMT

0.1%

Specified impurities NMT 1%

Dissolution Not applicable 85% of the drug is dissolved in

15 min

Uniformity of content According to USP <905> According to USP <905>

Packaging 10 ml Vial 14 tablets per blister

Two blisters per carton

Particulate matter Per USP<788> Not applicable

Microbial evaluation Not applicable USP<61> and <62>

Bioburden USP<85> Not applicable

Sterility USP<71>; terminal

sterilization

Not applicable

Storage conditions Store at room temperature

per USP definition

Store at room temperature per

USP definition

Retest data/expiration

date

12 months, room

temperature

36 months, room temperature

In addition, the quality of the API and the excipients in a new drug product

for the early development studies should be considered and documented.

Some excipients can impact the release of the drug or the gastric retention

(continued)
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of the drug and others may not. For example, peppermint flavor is known to

reduce gastric motility. Careful consideration of all attributes will allow for a

more complete interpretation of the experimental data that are obtained.

Target product profiles are living documents intended to provide an overall

goal for the safety and efficacy of a new investigational drug. They should

provide an accurate snapshot of attributes at a specific stage in development

and are modified as new learnings are provided from the ongoing research

program and throughout the life of the product.

12.5 The Investigational New Drug (IND) Application

Once an internal drug candidate has been selected for development-based target

activity, efficacy, physicochemical properties, pharmacokinetics, safety, tolerabil-

ity, and/or toxicity profile, the next milestone is the first-in-human (FIH) clinical

trials. For FIH studies targeting the US market, an investigational new drug (IND)

submission is necessary to demonstrate the safety of the compound. It is valuable

and instructive to conduct a pre-IND meeting with the FDA.

12.5.1 Pre-Investigational New Drug (PIND) Submission
Meeting

Prior to preparing an IND submission, a gap analysis is recommended to establish a

risk assessment for the program. The identified risks provide key questions that can

be vetted with the FDA review division in a pre-IND (PIND) meeting (May 2009).

This is also an excellent opportunity to engage the FDA review division and clarify

the nonclinical and clinical requirements for the investigational new drug (IND)

application.

Profiles which represent high risk include:

– New disease areas with no current FDA guidance documents.

– New targets which pose safety and efficacy concerns.

– New drug classes which invoke pharmacokinetic, pharmacodynamic dosing and

duration of action concerns.

– -New dosage forms which may invoke pharmacokinetic, pharmacodynamic

dosing and duration of action concerns.

– New manufacturing processes which pose yield, formulation, and cost of goods

questions.

– Uncertain intellectual property which casts doubt on the potential return on

investment.
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If the proposed drug is to be used in a new therapeutic area, this will require

significant background and justification. However, a drug targeting a well-

established therapeutic area with a straightforward animal species model can be

justified based on the current available literature.

A PIND meeting request includes a list of questions to be reviewed and

addressed by the appropriate FDA division. This may result in a face-to-face

meeting, a teleconference, and written responses only (WRO), the meeting request

may be denied, or a different approach may be suggested depending on the

perceived risk profile of the drug candidate and the therapeutic area. When a

meeting is granted, a PIND meeting package must be provided containing back-

ground information regarding agency questions as well as the draft dTPP. Written

responses to the sponsor’s questions are provided prior to the meeting, and meeting

minutes are typically provided by the FDA following the meeting. The PIND

meeting minutes contain information from the FDA for the sponsor to consider

prior to the investigational new drug (IND) submission.

12.5.2 IND Introduction

The simplest and currently recommended approach to the construction of the IND

submission is to follow the electronic common technical document (eCTD) format

(GFI May 2015). Commercial INDs may still be filed as paper applications up to

May 15, 2018. From that date forward, commercial INDs will be required to be in

eCTD format for FDA review.

In addition to the IND relevant CFR section references, the current FDA

guidance documents can be found on the FDA website. A list of some guidance

documents, relevant to an IND to support a FIH study, is provided in the supple-

mental information at the end of this section. These guidance documents provide a

framework for the structure and content of an IND at the various stages of

development. The overall structure of an eCTD-formatted IND is well defined;

however, each IND submission is a unique work product.

12.5.3 IND Preparation

The current version of the Comprehensive Table of Contents Headings and

Hierarchy (Version 2.3, 2014) describes the appropriate module and section for

all information in an IND and NDA. The IND in eCTD format will have five

modules (also all covered in the paper submission). A list, description of the

modules, and a reference to the appropriate guidance document are provided in

Table 12.1. The reference column lists the International Conference on

Harmonisation (ICH) Harmonised Tripartite Guideline describing content and

structure of the various modules of the CTD. It is also noted that the FDA
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Table 12.1 Description of modules in eCTD

Module Description Comment Referencea

1 Administration

and prescribing

information

Required form 1571

Prior final FDA correspondence (final

pre-IND meeting minutes)

Cover letter

Environmental analysis

Clinical label

Investigator brochure

The eCTD backbone

files Specification for

Module 1b

2 Overall summa-

ries for Modules

2, 3, 4, and 5

Section 2.3: summary of DS and DP

from Module 3

Section 2.4: summary of nonclinical

study reports

Section 2.5: summary of clinical

protocol

M4Qc

M4Sc

M4Ec

3 Quality-drug sub-

stance and drug

product

• Drug substance characterization, syn-

thesis, critical quality attributes, and

stability

• Contract sites supporting documenta-

tion for the API

• Quantitative drug product formulation

• Contract sites supporting documenta-

tion for the drug product

• Drug product formulation history

table including what was dosed in any

nonclinical studies and the batches to

be used in the proposed clinic trial

(pharmaceutical development sum-

mary)

• Assessment of excipients at the max-

imum expected dose for the clinical

study versus the values in the IDD

• Summary of status of methods and

certificates of analysis

• Overview of process and any critical

in-process testing as appropriate

• Ongoing stability data to support the

length of the clinical study (1 to

3 months accelerated and long-term

storage data)

M4Q(R1)c

4 Nonclinical study

reports

Nonclinical study reports supporting

the established starting dose with a

safety margin

M4Sc

5 Clinical study

reports

The FIH clinical protocol

Form 1572

Investigator CVs

M4Ec

aFDA guidance documents found at www.fda.gov and the United States Pharmacopeia and

National Formulary (USP/NF) serve as resources for the content of these sections
bModule 1 is regional information; this reference is the FDA document for the US requirements
cInternational Conference on Harmonisation (ICH) Harmonised Tripartite Guideline
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Guidance for Industry (GFI) documents should be consulted as well as the current

volume of the United States Pharmacopeia and National Formulary (USP/NF) for

methods and best practices for various drug substances, excipients, and drug

products. The USP/NF does not provide a monograph describing the testing for

a new drug substance but includes descriptions of the standard methods that may

be used to characterize a new drug substance. The USP/NF also has information

pertaining to various dosage forms and the important testing criteria to be con-

sidered during development.

12.5.3.1 Module 1

The information requirements for Module 1 are regional requirements (not harmo-

nized) and are not included in the ICH Harmonised Tripartite Guideline. A refer-

ence to the FDA specifications for Module 1 is provided in Table 12.1. Section 1.2

should include a cover letter to the appropriate FDA review division, including the

sponsor’s point of contact for the review division. The letter should also refer to any

key discussions that have occurred with the review division prior to this submission.

Any points that are critical to the reviewer’s understanding of the contents of the

IND should be described in the letter or separately in a reviewer’s guide. Admin-

istrative and prescribing information is also provided in Module 1.

All available letters of authorization (LOA) for the FDA to reference active Drug

Master Files (DMF) in the IND are included in Section 1.4.1. Drug Master Files are

dossiers that have been prepared by suppliers of components that a sponsor is using

in a particular drug product. A DMF is a tool for a supplier to protect any

proprietary information that is crucial to their business. Most suppliers have active

DMFs to support their products. These files contain proprietary information defin-

ing the starting materials, process, safety, test methods, specifications, container

closure, stability, and other tests supporting the safe use of the subject of the DMF.

Often the drug substance section of the application will reference a supplier’s DMF;

however, this is not mandatory. Examples of DMFs that should always be included

are those that support the container closure material, unless the container is a new

item. Excipients are often supported by a DMF, but the supplier may require a

supply agreement prior to committing to support the submission with an LOA for

the initial IND. In cases in which the supportive data for the component are readily

available for incorporation into the IND, a DMF would not be required. This

however must be assessed on a case-by-case basis.

An environmental analysis or claim for exclusion is required in Section 1.12.14.

Draft labeling for the active and placebo (if the study design describes one)

investigational drug product should be included in Section 1.14.1.2, and the inves-

tigator brochure as described in the FDA GFI: Good Clinical Practices for Inves-

tigator’s Brochure is included in Section 1.14.4.1. A general investigational plan for

the sponsor’s initial IND is provided in Section 1.20.
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12.5.3.2 Module 2

Module 2 contains summary sections; Section 2.2 is the overall summary introduc-

tion. Section 2.3 is discussed with Module 3, sections 2.4 and 2.6 are discussed with

Module 4 and Sections 2.5 and 2.7 are discussed with Module 5.

12.5.3.3 Module 3

A full Module 3 (Quality-Chemistry Manufacturing and Controls (CMC)) consists

of the drug substance and the drug product documentation.

The drug substance Section 3.2.S includes details about the source of the drug

substance, the starting materials, receiving specifications, synthesis, in-process

controls, purification, release test methods, release specifications, stability test

methods, stability specifications, and shelf life for the active pharmaceutical ingre-

dient (API). At the FIH stage of development, the analytical support for the drug

substance is required but does not need to be fully validated; as the program

advances to efficacy studies (phase 3), the API methods must be validated and

provided in the IND.

The drug product Section 3.2.P typically includes the proposed quantitative drug

product formulation to be used in the clinic, safety of the excipients, impurities in

the drug product, discussion of the novelty of the dosage form, container closure

components, analytical methods, and stability of the packaged final dosage form.

The listing of the maximum potency for all components in the drug product found in

the FDA Inactive Ingredient Database for the intended dosage form is typically

included to support the safety of the final dosage form. At the FIH stage of

development, the drug product analytical support is required but does not need to

be fully validated, as described above for the drug substance. As the program

advances to efficacy studies, the drug product methods must be validated and

provided in the IND.

Section 2.3 is a summary of all of the CMC information on the drug substance

and drug product and is typically limited to 40 pages or less. In the early develop-

ment, an entire Module 3 may be represented in Section 2.3 within the 40-page

limit, and in such cases in the initial IND submission, Section 2.3 often replaces the

entire Module 3. In contrast, when a sponsor has a significant pharmaceutical

development “story” for the initial IND, a full Module 3 (e.g., greater than

40 pages) is provided and Section 2.3 only includes a high level summary.

12.5.3.4 Module 4

Module 4 contains the nonclinical study reports supporting the IND submission.

These include single-dose toxicity studies and repeat dose toxicity studies in

appropriate species, which allow the estimation of the appropriate safe starting
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dose. The translation of animal exposure into human exposure with the human

equivalent dose estimation and justification is necessary, and the FDA Guidance for

Industry: Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for
Therapeutics in Adult Healthy Volunteers, July 2005, provides additional informa-

tion for performing this translation with drug products intended for systemic

exposure. The exact content is based on the indication, target population, dosing

regimen, and length of clinical study proposed and the amount of supporting

information currently available to support the opening protocol dosing.

Section 2.4 is a summary of nonclinical data supporting the IND with the safety,

primary and secondary pharmacology, pharmacokinetics, pharmacodynamics, and

toxicology of each of the components as well as the proposed drug product for use

in clinical trials as described in Module 4. In the early stages of drug development,

the draft versions of the nonclinical study may be included in the IND, with the

agreement of the FDA prior to the submission and the understanding that the

submission will be updated when the final reports are completed. PIND meetings

provide an opportunity for preliminary comments from the agency about the

available nonclinical study data.

More detailed summaries and tabular listings of the nonclinical data are pro-

vided in Section 2.6.

12.5.3.5 Module 5

Module 5 contains the clinical study protocol supporting the IND submission.

Typically this module includes the opening FIH protocol for the IND and any

supporting literature references.

A summary of the clinical overview is provided in Section 2.5, describing the

planned clinical study to support the IND submission. Included in this section is an

overview of the product development rationale, biopharmaceutics clinical pharma-

cology, efficacy, safety, and a risk benefit summary for the proposed drug product

for use in the clinical trials as described in Module 5.

Additional detailed summaries and tabular listings of the clinical data that are

provided in Section 2.7 will not be applicable at this stage of development.

12.5.4 IND Submission

In parallel with the submission of an IND, the clinical study protocol is reviewed by

the Institutional Review Board (IRB). An IRB is a group designated to review

biomedical research involving human subjects to assure the protection of the rights

and welfare of those subjects. IRBs may approve or disapprove the proposed

research as well as request modifications to the clinical study protocol prior to

allowing the study to be conducted.
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The agency has a 30-day review period from the acknowledged receipt of the

submission to allow the proposed clinical program to proceed or to place the

program on clinical hold. The sponsor may receive questions from the agency

during this review period; they will only allow brief periods of time for the answers

to be provided. Delay in responding to these requests from the agency can result in

clinical hold responses. A response from the agency that states a program is on

clinical hold means that the clinical program to evaluate the investigational drug

product in humans may not proceed until the stated items in the letter are resolved to

the agency’s satisfaction. There can be many reasons for clinical hold such as not

enough details associated with the drug product characterization, an impurity that

the agency knows to be at a toxic level, a request for additional toxicology data

prior to dosing humans, or concern that the starting dose or dose escalation is not

appropriate to name a few.

The IND goes into effect 30 days after the agency receives it unless the agency

notifies the sponsor that the investigations described in the IND are subject to

clinical hold per 21 CFR § 312.42. This notification could be provided by tele-

phone, by other means of rapid communication, or in writing. This will be followed

as soon as possible and no more than 30 days after imposition of the clinical hold,

with a written explanation of the basis for the hold. The sponsor can request in

writing that the clinical hold be removed once a complete response to all the clinical

hold issues identified in the clinical hold order has been provided to the agency. The

FDA will have 30 calendar days after receipt of the request to respond to the

sponsor in writing.

If the agency does not notify the sponsor of any clinical hold issues within

30 days after acknowledged receipt of the submission, the sponsor may proceed

with the clinical study activities (such as shipping of clinical supplies to the clinical

site, or screening of subjects.). Subjects may receive doses of clinical trial material

once the IND is in effect provided that the IRB has reviewed and approved the

clinical study protocol.

12.5.5 IND Maintenance

Subsequent submissions to the IND should be numbered in sequence. These sub-

missions will include protocol amendments, information amendments, and safety

reporting. Information amendments can include new formulations, updated stability

data, updates to manufacturing information, nonclinical study reports, and new

clinical protocols. Annually, within 60 days of the anniversary date when the IND

went into effect, a Data Safety Update Report should be submitted. E2F Develop-

ment Safety Update Report: Guidance for Industry (GFI), August 2011, provides

details on the preparation and submission of this report.

As the development program progresses, updates or revisions to the develop-

ment target product profile are made with the appropriate nonclinical or clinical

study data. The subsequent milestones are an End-of-Phase 2 meeting with the

review division at the agency and/or the Pre-NDA meeting (GFI May 2009).
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12.6 Summary

Early discovery is often thought to be far removed from regulatory submissions and

human studies. However development programs require well-defined development

target product profiles, which bridge the gap between discovery and regulatory

submissions. Development programs can benefit from effective communication at

appropriate milestones with the FDA in terms of guiding the project team on the

journey toward an accepted IND submission.

References and Supplemental Information

1. FDA works with regulatory partners to understand French-based Biotrial

phase 1 clinical study. http://www.fda.gov/Drugs/DrugSafety/ucm482740.htm?

source¼govdelivery&utm medium¼ email&utm_source¼ govdelivery, United

States Food and Drug Administration. Accessed 31 Jan 2016.

2. Reflection paper on the chemical structure and properties criteria to be consid-

ered for the evaluation of New Active Substance (NAS) status of chemical

substances, European Medicines Agency. draft. 26 March 2015.

Code of Federal Regulations: The FDA’s portion of the Code of Federal Regula-

tions (CFR) interprets The Federal Food, Drug and Cosmetic Act and related

statutes. The following sections of the CFR are relevant to IND applications.

Section 21 CFR § 312 and 21 CFR § 314 both contain information regarding

IND applications. Orphan drugs regulations are provided in 21 CFR § 316. Good

lab practices for nonclinical laboratory (animal) studies are provided in 21 CFR §
58. The protection of human subjects regulations are provided in 21 CFR § 50.

Institutional Review Board regulations are provided in 21 CFR § 56. Drug labeling
regulations for INDs are provided in 21 CFR § 201 and financial disclosures by

clinical investigator regulations are provided in 21 CFR § 54.

Website links for various International Regulatory Agencies:

FDA: http://www.fda.gov/Drugs/default.htm

ICH: http://www.ich.org/home.html

EMA: http://www.ema.europa.eu/ema/

Health Canada: http://www.hc-sc.gc.ca/index-eng.php

MHLW: http://www.mhlw.go.jp/english/policy/health-medical/pharmaceuticals/

Anvisa: http://portal.anvisa.gov.br/wps/portal/anvisa-ingles

List of Guidance Documents that may be relevant for IND preparation can be

found on the FDA website (www.fda.gov/regulatoryinformation/guidances/), some

are listed below;

(a) CGMP for Phase 1 Investigational Drugs; Guidance for Industry, July 2008.

(b) Exploratory IND Studies; Guidance for Industry, Investigators, and Reviewers,

January 2006.

(c) Content and Format of Investigational New Drug Applications (INDs) for

Phase 1 Studies of Drugs, Including Well-Characterized, Therapeutic,

Biotechnology-derived Products; Guidance for Industry, November 1995.

12 Regulatory Aspects at the Drug Discovery Development Interface 387

http://www.fda.gov/Drugs/DrugSafety/ucm482740.htm?source=govdelivery&utm
http://www.fda.gov/Drugs/DrugSafety/ucm482740.htm?source=govdelivery&utm
http://www.fda.gov/Drugs/DrugSafety/ucm482740.htm?source=govdelivery&utm
http://www.fda.gov/Drugs/default.htm
http://www.ich.org/home.html
http://www.ema.europa.eu/ema/
http://www.hc-sc.gc.ca/index-eng.php
http://www.mhlw.go.jp/english/policy/health-medical/pharmaceuticals/
http://portal.anvisa.gov.br/wps/portal/anvisa-ingles
http://www.fda.gov/regulatoryinformation/guidances/


(d) Content and Format of Investigational New Drug Applications (INDs) for

Phase 1 Studies of Drugs, Including Well-Characterized, Therapeutic,

Biotechnology-derived Products, Questions and Answers; Guidance for Indus-

try, October 2000.

(e) Safety Reporting Requirements for INDS and BA/BE Studies; Guidance for

Industry and Investigators, December 2012.

(f) Bioavailability and Bioequivalence Studies for Orally Administered Drug

Products-General Considerations, Draft Guidance; Guidance for Industry,

July 2002.

(g) Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs–Gen-

eral Considerations, Draft Guidance; Guidance for Industry, March 2014.

(h) IND Exemptions for Studies of Lawfully Marketed Drug or Biological Products

for the Treatment of Cancer, Revision 1; Guidance for Industry, January 2004.

(i) Guideline for Drug Master Files; Guidance for Industry, September 1989.

(j) Required Specifications for FDA’s IND, NDA and ANDA Drug Master File

Binders.

(k) Immunotoxicology Evaluation of Investigational New Drugs; Guidance for

Industry, October 2002.

388 L. Gold and K. Phelps



Part V

Evolution of the Drug Discovery/
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Chapter 13

Alternate Routes of Administration

Neil Mathias and Srini Sridharan

Abstract Patients, caregivers, payers, drug developers, and the continually

evolving standard of care all play a critical role in shaping the drug product and

formulation requirements to better meet unmet medical needs of patients. A

significant area of growth in recent years has been in the non-oral route of

administration (alternate route and injectable route of administration, RoA). The

use of drug products for alternate route of administration or the use of drug-device

combination products offers an opportunity to enable a product in situations where

there are significant oral challenges, such as extensive gastrointestinal metabolism,

low oral bioavailability, suboptimal oral PK, local gastrointestinal toxicity, or other

adverse reactions. Additionally, drug-device combination products (both injectable

and non-injectable for alternate route products) present an opportunity to consider

an enhanced product that improves patient compliance and increases treatment

options to manage diseases.

In this chapter, alternate routes of administration such as intranasal, inhalation,

buccal/sublingual, and transdermal approaches for delivery of drug candidates to

systemic molecular targets are discussed. The rationale for each route of adminis-

tration, including their strengths and limitations, drug molecule developability

criteria, and recommended preclinical testing experiments to enable such products,

is reviewed.

There has been a steady trend over the past decade in which self-administration

has become more and more prevalent among patients. As a result, devices are being

developed that incorporate more patient requirements, such as portability, intui-

tiveness, ease of use, and other human factor considerations. In addition, with the

growth of mobile health applications, devices are becoming more connected with

mobile devices, enabling better patient compliance with treatment regimens and

advancement in standards of care. Product trends and recent advances are outlined

in this chapter together with strategies to consider for clinical testing.
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administration • Drug-device combination • Non-invasive • Invasive injectable

Abbreviations

B/SL Buccal/sublingual

BCS Biopharmaceutical classification system

CVC Central venous catheters

DPI Dry-powder inhaler

ID Intradermal

IM Intramuscular

IN Intranasal

INH Inhalation

IV Intravenous

MDI Metered-dose inhaler

MN Microneedles

NME New molecular entity

PD Pharmacodynamic

PFSs Prefilled syringes

PICCs Peripherally inserted central catheters

PK Pharmacokinetic

RoA Route of administration

SC Subcutaneous

TD Transdermal

13.1 Opportunities for Non-oral Routes
of Administration (RoAs)

The successful discovery and development of new medicine hinges on the medi-

cine’s ability to treat a disease meet patient requirements, physician expectations,

and regulatory requirements. Through this process, drug discoverers/developers are

continually challenged to produce new molecular entities (NMEs) and advance

them through long and expensive clinical trials. The high rates of attrition are

typically attributed to lack of adequate safety, lack of measurable efficacy, unde-

sirable pharmacokinetics, or insurmountably poor biopharmaceutical properties

(solubility, solid- and solution-state stability, low bioavailability) [1, 2]. This has

led scientists in biopharmaceutical and specialty drug delivery fields to seek new

ways to deliver drugs and explore innovative strategies beyond the oral route of

administration, thereby creating new product opportunities and treatment

paradigms [3].
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To examine the trends in product options, a snapshot review of approved and

clinical-phase products between 2010 and 2015 was conducted using an online

product tracking database, PharmaCircle [4]. Some interesting trends emerged:

1. The ratio of small molecule to macromolecules (peptides, biologics, RNA/DNA

therapeutics, etc.) has been steadily decreasing over the years (Fig. 13.1), a

reflection of significant advances in overcoming delivery issues associated with

the new molecular types.

2. Seven of the top ten best-selling medicines in 2014–2016 are biologic

medicines.

3. There is a greater willingness to develop NMEs for difficult to treat disease

areas, such as targeting intracellular or nuclear targets, targeting specific organs,

or using device technologies to achieve a desired target product profile [5].

4. The distribution of different routes for approved products is injectable products

24%, non-oral, non-injectable products 28%, and oral products roughly 48%.

13.1.1 Challenges to Oral Delivery

At the drug discovery-development interface, unexpected preclinical findings from

oral route delivery can preclude advancement of a clinical drug candidate. Local

toxicity in the gastrointestinal (GI) tract, physical/chemical instability in the GI

tract, poor intestinal absorption, dose-limiting efflux, slow onset of action (delayed

absorption), extensive gut and hepatic first-pass metabolism, suboptimal or

highly variable PK profile, and high-dosing frequency/compliance issues are com-

mon scenarios that impede drug candidate progressions through development.

A proven and successful strategy to circumvent these problems is to deliver drugs

systemically via an alternate route of administration such as intranasal (IN),
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Fig. 13.1 Comparison of small molecule and biologics that are approved or in active clinical

development programs
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buccal/sublingual (B/SL), pulmonary (P), or transdermal (TD) or injection via a

drug-device combination product directly into the body [6]. This creates new

product opportunities with distinct benefits over the oral route and has the potential

to rescue a drug candidate originally intended for oral administration.

13.1.2 The Needs of the Patient, Caregiver, and Payer
in Drug Product Design

Each route of administration offers unique and distinct drug product/dosage form

opportunities that can be tailored to the disease state, designed to meet or improve

on the existing standard of care drug products and adapted to leverage the physi-

cochemical properties of the drug candidate. Several examples of approved drugs

exist that highlight such unique synergies: intranasal triptans (sumatriptan,

zolmitriptan) offer rapid-onset relief of migraine-related pain in minutes that is

not achieved with an oral tablet; intraoral (B/SL) and TD opioid products eliminate

GI-related adverse reactions of the oral products; and insulin- and GLP-1-based

injectable products reduce injection frequency from daily to weekly or longer. On

the other hand, there are scenarios where a non-oral alternate route of administra-

tion may not be viable, for instance, high dose may not be feasible for certain routes

have dose amount or volume limits, or unfavorable physicochemical properties for

a drug candidate to deliver the dose, or drug-induced irritancy reaction at the site of

administration, or unfavorable product costs and payer economics for specialized

drug products. Therefore, it is prudent to consider the selection of the appropriate

route of administration and drug product design elements to be founded on not just

biopharmaceutical and drug delivery principles, but also patient/caregiver prefer-

ences and the macroeconomic environment to maximize the chances of a drug

candidate becoming a successful drug product.

13.1.3 Non-Oral Product Opportunities

This chapter describes the delivery considerations and factors in developing strat-

egies to pursue non-oral alternate routes of administration (RoAs) for systemic

delivery. The RoAs are divided into two categories:

1. Noninvasive, non-oral routes such as intranasal (IN), buccal/sublingual (SL),

inhalation (INH), and transdermal (TD)

2. Invasive, injectable routes such as intravenous (IV), subcutaneous (SC), intra-

dermal (ID), and intramuscular (IM) injections

In the following sections, the benefits and limitations of each RoA (Table 13.1),

the delivery criteria unique to that route (Table 13.2), and generally preferred
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physicochemical properties for a drug candidate (Table 13.3) are described. One of

the main challenges in biopharmaceutical research is to demonstrate delivery

feasibility or developability potential of an RoA by correlating data from experi-

mental models (in vitro, in vivo, and in silico) that are to some extent predictive of

performance in humans. For each route, the preclinical methods available to assess

delivery feasibility and safety at the site of dosing, as well as ways to assess the

viability of specific drug product dosage form options, are highlighted. It is not the

intent of this chapter to detail all facets of each route, but rather emphasize those

that are generally more amenable and provide a holistic view of product develop-

ment options at the discovery-development interface.

Table 13.1 Advantages and limitations of alternate routes of administration

Route Pros Cons

Intranasal – Highly permeable epithelia

– Well-perfused mucosa

– Convenient dosing with spray device

– Commercially available nasal spray

devices

– Amenable to small molecules and

peptides

– Limited dose and volume

– Rapid mucociliary clearance (short

duration for absorption)

– Taste/sensory liability

– Irritation potential in the sensitive

nasal mucosa

Buccal/

sublingual

– Easy access, convenient dosing

– Good patient compliance

– More robust mucosa that is less sen-

sitive to irritation

– Several dosage form options (rapidly

disintegrating tablet, wafer film, loz-

enge, spray, patch, tablet, etc.)

– Amenable to small molecules and

small potent peptides

– Limited dose and volume

– Poor retention of dose in oral cavity

– Clearance by saliva

– Potential taste/sensory liability

– Selective permeability

– Potential local toxicity of adhered

dose

Pulmonary/

Inhalation

– Large surface area for absorption

– Thin epithelial barrier with moderate

permeability characteristics

– Very well perfused

– Amenable to small molecules and

macromolecules

– Limited dose and volume

– Challenge to achieve reproducible

deposition in deep lung

– Particle clearance by mucociliary

blanket and macrophages

– Risk of safety signals or affected

lung function with chronic dosing

– Potential taste/sensory liability

– Complicated drug-device product

development

Transdermal – Easy access, convenient to dose

– Good patient compliance

– Skin least sensitive barrier

– Large surface area for treatment

– Amenable to small molecules.

Peptides require active TD delivery

(discussed in TD section)

– Low rate and extent of dose delivery

(requires good potency)

– Toughest barrier to penetrate

– Toxicity/irritation at site of applica-

tion due to API or occlusion from a

patch-based product or device
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Table 13.2 General considerations for non-injectable, non-oral RoAs

Route

Consideration IN B/SL INH TD

General

patient

preference

Good Good Fair Good

Therapeutic

considerations

(PK/PD)

Rapid onset Rapid onset,

pre-gastric or in

testinal

absorption

Rapid onset Slow, sustained

plasma levels

Delivery

options

Solution (spray) Solution or solid

dosage form

(buccal tablet,

patch, or lozenge)

Inhalation prod-

uct (powder,

solution, or

suspension)

Patch or topical

presentation

(ointment/spray)

Typical device Single or

multidose

metered spray

device

Patch system,

metered spray

device, or solid

dosage form

Nebulizer,

metered-dose

inhaler, or

dry-powder

inhaler

Patch system

(active or passive)

Permeability Highly

permeable

Moderate relative

to nasal

Moderate

relative to nasal

Poor permeability

Surface area �150 cm2 �215 cm2 >75 m2 ~2 m2 a

Selectivity for

absorption

Small hydro-

philic or hydro-

phobic mole-

cules and

peptides

Small molecules

with greater

lipophilicity

Small mole-

cules and

macromolecules

Small lipophilic

molecules

(passive), small

charged molecules

(active)

Vascular

perfusion

Well perfused,

drains into the

vena cava

Well perfused,

drains into the

internal jugular

Complete

perfusion,

drains into

pulmonary vein

Slow perfusion,

drains into the

peripheral

capillaries

Aq. solubility

requirements

Good

aq. solubility

Good

aq. solubility

Moderate

solubility

Low aq. solubility

Mucosal

environment

Lining fluid

pH 5.5–7.4

Saliva 5.8–7.4,

volume ~ 0.9 ml,

0.1 mm thick film

Lung surfactant

containing lin-

ing fluid, pH 6.9

Hydrophobic

stratum corneum,

pH 5.5

Aq. pore-size

radii

7 nm – 5 nm 0.5–3.4 nm

Patient preference rating is based on criteria such as ease of dosing, convenience of dosing device/

dosage form, patient compliance, complexity of usage instructions, and patient control of delivery

[9–13]
aInjectable patch devices like patch pumps can be applied to the abdomen, back, upper arms

(triceps), thighs, and buttocks
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13.2 Selecting Alternate Routes of Administration

The first step is to understand the drug target location and whether it can be

accessed by local or systemic administration. Injectable routes typically deliver

drug candidates invasively into the systemic circulation, whereas non-invasive

RoAs can be considered for both systemic and local delivery. RoA for local

delivery introduces the drug directly at the disease site, for example, intravitreal

injection into the eye for macula retinal diseases (ranibizumab) or inhaled anti-

asthmatic drugs dosed to the diseased respiratory airways. For systemic delivery,

the choice of route is based on a variety of factors, such as properties of the

molecule, desired pharmacokinetic and pharmacodynamic profile, and point of

therapy (administered by a healthcare professional (HCP) in a hospital or doctor’s
office vs. self-administration at the patient’s convenience). This chapter focuses on
non-oral RoA for systemic delivery only and excludes local targeting.

To assess a drug candidate’s developability potential for an alternate RoA, a

good understanding is required of:

1. Therapeutic area considerations: location of the molecular target; need for

chronic, sub-chronic, or acute treatment; desired PK profile (immediate release,

pulsatile, or extended release); sensitivity to the diseased state (e.g., inhalation

delivery when lung capacity is compromised); and standard of therapy.

2. Patient population considerations: at home or hospital/doctor’s office dose

administration; compliance to improve treatment outcomes (e.g., reduced fre-

quency of dosing); specialized population preferences, e.g., pediatric or geriatric

requirements; and disease co-morbidities or hindrances (e.g., reduced dexterity

for arthritis patients).

3. Knowledge of physicochemical characteristics: molecular weight, ionization

state, aqueous solubility, partition coefficient (log P), absorption kinetics, and

solid-/solution-state stability.

Table 13.3 Summary of criteria and generalizations for each alternate route of administration

Criteria IN B/SL INH TD (passive)

Max dose 20 mg 20–30 mg ~20 mg 10–20 mg

Volume (liquid

formulation)

50–150 μl <500 μl <200 μl <300 μl

BCS class BCS I, III BCS I–II BCS I–

III

BCS I–II

Preferred physicochemical properties:

• MW <1000 <500 <10,000 <500

• Log Pa 1–4 2–4 �1 to 2 >2–5

• pKa 4–9 4–9 4–9 Unionized

• pH range 4–7 3–8 3–7 4–7

Typical device/

dosage form

Nasal

sprayer

Mouth spray, patch, film, solid

dosage form, etc.

Inhaler Patch, topical

sprayer, cream
aExceptions to these generalizations exist (e.g. nitroglycerine, nicotine)
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4. Biopharmaceutical performance assessed through in vitro, in vivo and in silico

assessment that informs the absorption potential, PK profile, and overall viabil-

ity of a particular RoA.

5. Deliverability assessment: knowledge of the human dose requirements and the

typical dose range anticipated. Generally, large doses are better suited to some

injectable routes and the oral route. Most non-oral RoAs have limitations on the

total volume or amount that can be dosed, which influences the overall target

product profile that outlines the formulation and dosage form requirements.

For ease of discussion and comparison between RoAs, they have been catego-

rized into two: noninvasive (non-injectable) and invasive (injectable) routes.

13.2.1 Non-injectable Routes of Administration (RoAs)

Each of the noninvasive RoAs (IN, B/SL, INH, and TD) and their general consid-

erations are listed in Table 13.2. Patient and disease considerations, dosing regi-

men, and competitive landscape play a prominent role in selecting a viable RoA.

Acute therapies are generally more amenable to some routes of delivery, while

chronic therapies require a long treatment duration with significant regularity which

tend to preclude some RoAs (IN, INH, and B/SL). Due to the nature of the mucosal

barriers, IN, B/SL, and INH delivery favors rapid systemic absorption leading to a

spike in plasma levels that must be reasonably well tolerated. These routes apply to

both acute and chronic therapies such as pain management, migraine, cardiovascu-

lar disease, glucose control, smoking cessation, etc., where immediate relief is

desired and a favorable PK-PD relationship exists. On the other hand, for TD

products, a drug depot is formed at the site of dosing which leads to slow, sustained

PK profiles and a low Cmax-to-Cmin ratio. Therefore, TD delivery is more suited to

sub-chronic or chronically administered therapies such as chronic pain, chronic

CNS disorders (depression, Parkinson’s, dementia, and attention deficit-

hyperactivity disorder), and hormonal therapies (contraception, hormone replace-

ment, menopause, and osteoporosis).

The greatest limitation to broad application of noninvasive, non-oral RoAs is the

maximum deliverable dose of 20–30 mg. For an NME entering clinical develop-

ment, estimating a therapeutic dose for that route can be a challenge. As with any

first in human (FIH) studies, interspecies allometric scaling is used to predict

human PK parameters (clearance, volume of distribution, and plasma half-life)

and estimate a human dose range that is based on the Cmax, AUC, and bioavail-

ability from that specific RoA. More sophisticated variants of these methods have

also been well published in the literature as well as in an FDA guidance document

[7, 8]. Additionally, knowledge of the target therapeutic plasma levels from pre-

clinical efficacy studies helps define the target PK profile for the indicated route.

Table 13.3 outlines limitations for IN, B/SL, INH, and TD routes based on

dosing volume, mass, or size. Dose escalation via alternate RoAs is relatively
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limited with single administration in most cases. Multiple administrations (spray

actuations) or multiple dosing units could offer some dose flexibility. Nevertheless,

in contrast to oral or injectable delivery, the boundaries are more restrictive,

governed by clearance mechanisms that drain drug from the dosing site or increased

risk of irritation in the local mucosa from a high drug load.

13.2.1.1 Intranasal (IN) Delivery

IN delivery is an attractive option when first considering a non-oral route of

administration. It is non-invasive, relatively painless, and easy to administer; it

does not require sterile processing and can be dosed in commercially available

devices [14]. The leaky nature of the nasal epithelial barrier relative to other

mucosae [15] and reduced metabolic capacity (relative to the gut/liver on a per

gram tissue) can lead to rapid systemic absorption for both small molecules and

peptides [14, 16]. Depending on the physicochemical properties of the drug candi-

date, it may be absorbed through paracellular or transcellular mechanisms or both.

In general, in accordance with the pH-partition theory, small, unionized, lipophilic

drugs tend to show the greatest potential for transmucosal transference

[16, 17]. Molecules deviating from this ideal are more reliant on the less efficient

paracellular pathway; however, limited surface area for diffusion at the peri-

junctional spaces and aqueous pores limits the rate of drug transport [18]. In any

event, drug delivered to the nasal cavity has a relatively short residence time before

mucociliary clearance drains the drug down the nasopharyngeal tract, with a half-

life ranging from 20 to 30 min [19]. Doses must be delivered in a relatively small

volume (~100 μl), requiring drug candidates with high solubility in a non-irritating

aqueous vehicle.

To date, the maximum dose delivered in a single spray actuation from an

approved nasal product (Imitrex®) is 20 mg. Dose escalation is possible by increas-

ing the delivered maximum volume to 150 μl or via multiple actuations per nostril.

Large volumes increase the probability of drug solution loss by nasopharyngeal

drainage and swallowing [20]. Several techniques can be explored to enable

solubility-limited drug candidates: standard preformulation-based salt-screening

studies, formulating with non-irritating amounts of glycol- or glycerol-based

cosolvents, complexation with solubilizing cyclodextrins, or pursuing a hydrophilic

prodrug approach [14, 21]. Most nasal products for systemic delivery are solution-

based formulations. Particulate suspensions (including nanosuspensions), gels,

ointments, and powders can also be delivered, although the short residence time

in the nasal cavity and the added dissolution and/or diffusion from a matrix can

significantly limit the efficient delivery of meaningful amounts to the systemic

circulation. Therefore, BCS I (highly soluble and highly permeable) compounds are

the most amenable to IN delivery. However, BCS II and III drug candidates may be

also suitable candidates if they possess suitable physicochemical characteristics:

MW <1000 g/mol, log P between 2 and 4, and a pKa maximizing the % unionized

at the pH of nasal lining fluid (pH 5.5–7.4, Table 13.3) [16, 17, 22].
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Off-the-shelf spray devices that deliver solution or suspension to the nasal

mucosa are available for proof of delivery in clinical trials. The most commonly

used devices are metered-dose spray pumps that deliver on average 100 μl
(50–200 μl) as either a single dose or multiple doses from a reservoir device

[23]. The latter for formulations with preservatives that limit microbiological

growth over the formulation’s shelf life. Preservative-free devices eliminate the

use of preservatives in the formulation who’s long-term use on nasal mucosa

integrity has been somewhat controversial. Other novel device types are available

with specialized spray pattern deposition for example olfactory targeting in nose-to-

brain delivery, pressurized metered-dose sprayers, or nasal powder inhalers [23].

IN delivery can also be considered as a route to target CNS delivery, via nose-to-

brain route [24]. Drug dosed to the olfactory region of the nasal cavity can be

transported via ensheathed channels along the olfactory or trigeminal nerve to the

cerebrospinal fluid and/or the adjacent regions in the brain, or become systemically

absorbed and transported across the blood-brain barrier (BBB) into the brain

parenchyma. The direct nose-to-brain route has been tested in preclinical species,

but consistent and quantitative demonstration of brain or CSF delivery from nasally

administered drug in humans has been limited [25]. Animal models with propor-

tionally larger olfactory regions (obligate nose breathers like rats, dogs, sheep) tend

to overpredict the CNS delivery potential. Also, the manner in which drug is dosed,

i.e., flooding the nasal cavity vs. aerosolization can yield false-positive results. Poor

absorption of an NME is likely to rule out the nose-to-brain transport pathway,

whereas a positive result signals potential for the route that should be carefully

explored [25].

IN RoA Biopharmaceutical Assessment

Assessment of IN delivery feasibility is typically accomplished with in vitro and

in vivo models. In vitro cell cultures provide useful information about a drug

candidate’s permeability in airway epithelia, it’s metabolic liability, and irritancy

potential in acute cytotoxicity assays [26, 27]. However, the ultimate proof of

systemic IN deliverability is obtained from pharmacokinetic studies in animal

models such as rat, rabbit, or dog. In situ perfusion models estimate nasal absorp-

tion by measuring loss of drug from a buffered drug solution introduced to the nasal

cavity via a cannulated nasopharyngeal duct and exiting via the nares

[22, 28]. Importantly, methodology that mimics IN dosing in humans as closely

as possible is likely to be the most informative. This includes bolus aerosol spray in

a reasonable volume (up to 1–2 μl/cm2 nasal surface area in the test species) in

transiently anesthetized animals to assure drug deposition in the nasal cavity

[20]. The PK profile and overall bioavailability are typically compared against a

reference route (e.g., injectable or oral route). Successful demonstration of systemic

deliverability should be further supported by data that shows no safety, irritancy, or

compromised barrier integrity issues at the nasal epithelium. For the sensitive nasal

mucosa, a lack of irritancy with the drug candidate and formulation composition
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can be assessed with cell cultures or excised tissue models with measurements such

as transepithelial electrical resistance, transepithelial permeability of typically

poorly permeable model compounds, and biomarker of epithelial damage (secretion

of inflammatory mediators, release of cytosolic-enzyme lactate dehydrogenase

(LDH), or release of membrane-bound enzymes). In vivo nasal lavage studies in

a rat model can also indicate sensitivity to mucosal damage or vascular leakage in

nasal secretions [22, 29]. Taken together, a combination of these studies can

provide a good mechanistic understanding of the physical and biochemical

response to the NME and formulation prior to human trials.

13.2.1.2 Buccal/Sublingual (B/SL) Delivery

The general patient acceptance and ease of delivery for noninvasiveness and

painless oral cavity drug dosing make B/SL delivery an attractive non-oral delivery

option. Absorption via the oral cavity can greatly benefit drug candidates that are

extensively metabolized through GI first pass, irritate the GI mucosa, evoke nausea

and vomiting, exhibit poor oral permeability, or show slow-onset pharmacokinetic

profile [30]. Even though the permeability barrier in the oral cavity is significantly

more difficult to overcome relative to the nasal mucosa, drugs with the necessary

physicochemical attributes can be rapidly absorbed [15, 31]. The main differenti-

ating factor between the two mucosae being the approximately 200–500 μm-thick

stratified squamous epithelia with varying degrees of keratinization is the oral

cavity that confers skin-like properties, but is also less prone to mucosal damage

compared to the nasal mucosa [31, 32].

The following sequence of events is necessary to systemically deliver a drug

candidate via the B/SL route: first, the compound must be released from the dosage

form (tablet, patch, lozenge, film, or gel formulation); second, it must rapidly

dissolve in the 0.7–0.9 ml saliva present and be distributed throughout the oral

cavity within a few minutes; third, it must partition into the epithelial lining; forth, it

must diffuse across the epithelial barrier; and lastly, absorbed into the systemic

circulation. Systemically absorbed drug candidates drain into the internal jugular

vein, bypassing gut and hepatic first-pass metabolism which can lead to fairly rapid-

onset PK profile [32].

Despite the formidable mucosal barrier, intraoral drug permeation follows the

same basic principles of drug permeation (pH-partition theory) as the oral epithe-

lium. In general, BCS I and II compounds have the best probability of achieving

significant systemic absorption. The preferred physicochemical attributes that max-

imize delivery include small molecular size (MW typically <500 g/mol),

log P ~ 2–4, and high solubility at a pH that maximizes the fraction unionized in

saliva (Table 13.3). Deviation from these parameters results in a significant drop-

off in systemic absorption. Small molecules between 400 and 700 g/mol typically

have bioavailabilities ranging from 15% to 70%, while peptides are generally

<25% [30]. Although aqueous-based systems are preferred, non-damaging, sol-

vent/cosolvent, and permeation enhancer-based approaches (e.g., alcohol/glycol

solutions, hydroalcoholic solutions, or mixed surfactant micellar systems) and
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mucoadhesive buccal delivery systems can maximize the thermodynamic potential

of lipophilic drugs and facilitate diffusion into the intraoral mucosa [33]. In all

cases, the irritation potential or mucosal damage induced by the drug formulation

and the recovery of the mucosa or reversibility of the epithelial damage is critical to

assure adequate safety/tolerability and good patient compliance [34]. For B/SL

delivery, the transcellular pathway is the shortest and most efficient mechanism of

absorption, while the paracellular pathway involves a more tortuous route leading

to longer lag times. Small molecule drug candidates with balanced hydrophilic-

hydrophobic characteristics are likely to be absorbed by both pathways and show

the best potential for systemic exposure [33].

The primary challenge for B/SL delivery is retention of the drug candidate at the

mucosal surface to facilitate efficient partitioning into the mucosal lining. Several

approaches have been devised to overcome the short residence time limitations:

1. Lozenges/lollipops (e.g., Actiq®) and gums (e.g., Nicorette®) physically remain

in the oral cavity, prolonging drug release over the duration.

2. Mucoadhesive patches/tablets (e.g., Striant®) establish an intimate contact of the

drug/polymer matrix with the absorptive buccal/sublingual mucosa.

3. Sublingual, orally disintegrating tablets release drug candidates in a highly

permeable region.

4. Multiple sprays of a solution formulation maximize deposition throughout the

oral cavity surface area.

Hydrophilic macromolecules show reduced permeability in the B/SL mucosa as

is also the case with other absorptive mucosa. Larger molecular size results in

greater restricted diffusion into the paracellular spaces or aqueous pores. In B/SL

mucosa, a threshold of approximately 20 kDa has been proposed for the epithelial

barrier [35]. Permeation enhancers and mucoadhesive drug retention strategies

(patches, tablets, lozenges) can enhance macromolecular B/SL absorption [34, 35].

B/SL RoA Biopharmaceutical Assessment

Evidence of a drug candidate’s potential for B/SL absorption can be obtained from

in vitro and in vivo models. In vitro cell culture systems and excised tissue in

diffusion chambers provide valuable information regarding the mechanism and rate

of transmucosal drug permeation and stability [36, 37]. For in vivo assessments,

both rabbit and dog are practical animal models with anatomical characteristics

(i.e., keratinization levels) and absorption characteristics that mimic that of humans

[38, 39]. Rat and hamster oral cavities are small and heavily keratinized which leads

to underestimation of absorption, hence a nonideal delivery model [37]. As with the

nasal in vivo assessment, studies should be conducted with either lightly anesthe-

tized or immobilized conscious animals to assure better dose delivery and retention

in the oral cavity. Long-acting anesthesia has been shown to influence PK, resulting

in overestimated bioavailability due to lowered blood flow in the vasculature and/or

altered salivary secretion [40]. A drug candidate can be presented to the oral cavity
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as a solution spray, loaded onto a substrate, or as a powder/solid dosage form.

Employing a dosing technique that simulates the anticipated human dosing scenario

is most likely to provide the most relevant insight. Absorption from different sites in

the oral cavity (sublingual, buccal, or gums) may differ, so will the residence times.

Consequently, the extent of clearance from the oral cavity in the form of swallowed

fraction should be deconvoluted from the PK profile by measuring the PK from

orally dosed drug.

The irritation or sensitizing potential of the drug candidate and dosage form in

the oral cavity is essential to prove safety and tolerability for an intraoral product. In

vitro cell culture and excised tissue experiments can effectively reveal the potential

for a drug formulation to compromise epithelial integrity. These experiments

include transepithelial electrical resistance measurements, transmucosal flux mea-

surement of a poorly permeable paracellular marker, and analysis of biomarkers of

oral cavity mucosal damage such as intracellular enzymes or lipids that are

extracted from the tissue [31, 35, 36]. In vivo, irritancy signals such as erythema,

edema, and eschar formation should be explored for the drug candidate and dosage

form, especially for chronically administered formulations. An added but often

overlooked factor is the taste implications of the drug candidate. Highly bitter taste-

inducing drugs may be difficult to mask for B/SL absorption. Therefore, learning

about the organoleptic properties of the drug candidate in humans is necessary to

guide dosage form and flavor selection in formulation composition design.

13.2.1.3 Inhalation (INH) Delivery

Lung delivery is an attractive RoA offering a pain-free, non-invasive alternative to

deliver drug to a much larger surface area (>100 m2) compared to the IN and B/SL

cavities. The alveolar epithelial barrier being thin relative to other mucosal barriers

can exhibit good permeability properties and modest metabolic capacity [48]. In

general, the lungs are believed to be more permeable to small molecules than the

oral gastrointestinal mucosa [41, 42]. In a series of studies, Schanker and coworkers

have shown that the lung is capable of exhibiting high bioavailability and rapid

absorption for small lipophilic drugs. Small hydrophilic compounds (MW<1000 g/

mol) with a log P < 0 have a mean absorption half-life of approximately 1 h,

whereas lipophilic small molecules with a log P > 0 generally have an absorption

half-life of about 1 min [43]. Molecular size also appears to play a role for

molecules >1000 g/mol. The mechanistic basis for rapid absorption from the

alveolar region and distal airways follows a similar pattern to IN and B/SL delivery

where transcellular diffusion across the large surface area leads to systemic absorp-

tion. Hydrophilic compounds that tend to favor paracellular pathway show slower

transport through the aqueous pores in the regions between cells, where molecular

size and degree of ionization determine the rate of transport [41].

Dissolution and absorption of mild-to-moderately lipophilic drugs are aided by

lung surfactants naturally present in the lung lining fluid [44]. Drugs with very high

log P can become entrapped for hours, days, or weeks, if the solubilizing capacity
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of the lining fluid is overwhelmed [43]. For example, fluticasone propionate (log

P ¼ 3.5) demonstrated central lung tissue concentrations 30–40 times higher than

systemic blood levels 16 h post-dose [45]. Along the same lines, moderately

lipophilic compounds that carry a net positive charge such as pentamidine [46]

and tobramycin [47] can bind to negatively charged proteins on cell surfaces

leading to retention and prolonged release profiles. Evaluating the structure-

absorption relationship and physicochemical profiling of marketed pulmonary

products, Tronde et al. [48] found that passive diffusion accounted for most of

the absorption in the lung, which correlated well with polar surface area (PSA) and

hydrogen-bonding potential. Drugs with high PSA (>120 Å2) are usually excluded

from intestinal and the blood-brain barrier, but readily absorb across the pulmonary

epithelium.

An inhalation drug product represents perhaps the most complicated develop-

ment path of all the routes discussed in this chapter. Accurate dose delivery for

consistent and deep deposition in the lungs is not easily achieved and may not be

applicable in all situations. For an inhalation product, the following sequence of

events must occur: first, an appropriate device needs to be identified early in product

development; the device should generate an aerosol in the 1–5 μm mean aerody-

namic diameter range to facilitate deep lung deposition; the emitted dose should

reproducibly deposit in the lung with little influence from patient breath; solid drug

particles (powders and suspension formulations) should dissolve readily, or solu-

tion droplets diffuse readily into the lung lining fluid; and, finally, the solubilized

drug should partition and permeate the epithelial barrier to reach the systemic

circulation.

Three major types of inhalation devices are typically used each with unique

dosing characteristics, deposition profiles, and patient handling requirements:

(1) nebulizers for solution and suspension formulations, (2) metered-dose inhalers

(MDIs) for solution or suspension formulations, and (3) dry-powder inhalers

(DPIs). Nebulizers are commercially available devices that deliver the dose as an

aerosolized mist that is passively inhaled over 5–10 min. The aerosol is typically

generated by an air compressor or ultrasonic piezo-electronics. Nebulizer devices

are available in a wide variety: more affordable, bulky, non-portable pump devices

or more expensive, discrete, portable, handheld devices with integrated electronics.

MDIs deliver a metered dose of solution or suspension of drug dispersed in a

propellant such as hydrofluoroalkanes (HFAs). Basic devices deliver a high-

velocity spray to the oral cavity, while newer devices minimize oropharyngeal

deposition and provide a more uniform lung deposition profile by using the patient’s
breath to actuate drug dispersion. Dry-powder inhalers deliver micron-sized aero-

dynamic powder particles to the deep lung region, either by patients’ breath

activation or active dispersion of drug doses. They are available as unit dose or

multidose unit with multiple packaging configurations (capsules for capsule-based

devices, e.g., Aerolizer; blister packs for blister-based inhalers, e.g., Advair®; or

drug powder reservoir for reservoir devices, e.g., Turbuhaler®). Each device type
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has newer generation devices that focus on miniaturization for portability,

improved reproducibility in dose delivery or improved patient compliance.

INH RoA Biopharmaceutical Assessment

Several in vitro, in vivo, and ex vivo models are available to assess pulmonary route

delivery feasibility, providing information on lung permeability, absorption, clear-

ance, or metabolic capacity. Primary cell cultures of airway or alveolar epithelium

and well-established cell lines such as Calu-3, A549, and 16HBE14o- provide good

insights toward permeability characteristics and potential for lung absorption

through established in vitro-in vivo correlations [49, 51]. More complex models

such as the isolated perfused rat lung (IPRL) take into account lung absorption and

elimination under controlled conditions [52]. However, the mainstay for lung

delivery assessments is in vivo rodent studies with drug candidates introduced via

intratracheal or nasal aerosol administration [53]. Intratracheal instillation is a

practical method to introduce a known amount of drug to the lung, while aerosol-

ization (from nose cone or aerosol chambers) provides better deep lung deposition

as well as a realistic estimate of the inhalable dose fraction from an aerosol

[43]. Simple aerosolization devices such as a syringe microsprayer or syringe

powder insufflator can effectively achieve suitable dose delivery in the rodent

model for pharmacokinetic assessment of an NME’s pulmonary delivery

feasibility.

Alveolar, bronchial, or tracheal epithelial cell cultures are effective models to

demonstrate safety at the site of deposition. Common tests include assessing the

capacity of a drug candidate to irreversibly disrupt epithelial tight junctions or the

permeability barrier and testing for inflammatory signals via biomarkers released

from the cells over time [50, 54]. Bronchoalveolar lavage studies provide an

additional measure of the biochemical response to an NME with assays for

pro-inflammatory cytokines, polymorphonuclear cell infiltration, and cytosolic

lactate dehydrogenase release as evidence of tolerability of the drug [54].

13.2.1.4 Transdermal (TD) Delivery

Transdermal dosing is an attractive non-invasive alternative to medicines that

require frequent administration or those that elicit strong side effects in the GI

tract or erratic efficacy due to extensive first-pass metabolism. With products like

TD nitroglycerine approved more than 30 years ago, TD delivery has gained

momentum due to the non-invasiveness of the route, ease of administration, and

improved patient compliance especially for elderly or the young that have difficulty

swallowing pills. Two of the most common hurdles for TD delivery are the ability

to deliver meaningful amounts of drug across the stratum corneum at a reasonable

rate and the risk of incompatibility of the NME formulation at the site of application

due to the presence of immune and inflammatory cells in the epidermal/dermal
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tissue. The stratum corneum, the outer cornified layer of the skin, is the toughest

barrier in the body, designed to keep the body safe from the environment and

external material.

For passive TD delivery, the following sequence of events occurs: drug candi-

date is released from the device or patch system; it needs to partition into the SC or

skin appendages (sweat glands or hair follicles); the drug then diffuses across the

lipidic barrier into the dermal tissue along a concentration gradient; en route, it

resists metabolic inactivation and provoking an irritation/sensitization response;

and, finally, it passes into the capillary bed to enter the systemic circulation.

Oftentimes the skin itself acts as a drug depot site gradually releasing drug over

an extended duration which leads to the typical slow sustained blood PK profile.

Continuous resupply of drug from the patch or device to the skin ensures delivery

over a long time frame (hours or days). To control the rate of input and eliminate

variability due to patient’s skin characteristics (thickness, permeability, or hydra-

tion level), patch systems may incorporate rate-controlling membranes to provide

uniformity in delivery [55].

The formidable stratum corneum barrier is approximately 10–20 μm thick

comprised of keratin bundles, lipid-filled corneocytes, and intercellular lipid lamel-

lae tightly packed together. Transport across this barrier is achieved either by

transcellular, intercellular, or trans-appendageal mechanisms. The tortuous

intercellular lipidic pathway typically accounts for majority of drug transported

[55]. Transcellular diffusion is more direct, but requires a challenging sequence of

partitioning between alternating protein and lipid domains resulting in poor overall

efficiency. Similarly, low-density and limited surface area of trans-appendageal

pathway tends to result in low delivery efficiency [55].

Transdermal drug products can be assigned to one of three categories:

1. Passive, reservoir, or drug/matrix patches.

2. Second-generation TD products utilize chemical penetration enhancers or an

energy source such as current (iontophoresis) or ultrasound (sonophoresis) to

drive drug across the SC.

3. Third-generation TD products use novel SC disruption mechanisms, poration,

thermal ablation, radio frequency, cavitational ultrasound, lasers, or micro-

needles to create microchannel disruptions in the SC to augment passive drug

permeation [56].

Passive TD patches release drugs from a solution or gel reservoir across a rate-

controlling semipermeable membrane (reservoir TD systems) or from rate-

controlled polymer matrix (matrix TD systems). Chemical penetration enhancers

are used in creams, ointments, and TD patches to temporarily increase the skin

permeability [57, 58]. Specialized TD delivery strategies such as metered liquid

sprays and topical gel rub-ons deliver solubilized drug formulated with penetration

enhancers to achieve a depot in the skin. For the active systems, iontophoresis

utilizes electrical charge from wearable batteries to drive drugs with the same

charge into the stratum cornuem [59]; ultrasound softens cutaneous lipids with

high frequency waves; cavitational ultrasound, thermal ablation, and poration-

based mechanisms bore small holes or microchannels in the SC. Drug passively
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diffuses across these channels to create a localized depot for both small molecules

and macromolecules. The challenge for a number of these novel delivery technol-

ogies has been to balance the delivery efficiency with safety/tolerability to the

stratum corneum and dermal tissue.

TD RoA Biopharmaceutical Assessment

TD feasibility can be demonstrated with a combination of mathematical prediction

estimates, in vitro skin diffusion studies, and in vivo PK studies. Complex quanti-

tative structure-permeability relationship (QSPR) analyses, multivariate principal

component analyses, neural network, and probabilistic modeling have been used to

parameterize the preferred physicochemical properties for TD delivery in humans

[60]. In vitro skin diffusion studies in Franz-type diffusion chambers determine the

extent of drug transport across pig, rabbit ear, or human cadaver skin. These tissues

mimic the thickness, lipid content, and permeability characteristics of the human

skin. With careful experimental design measure, the drug flux across the skin,

metabolic stability, and skin irritation potential can be assessed under conditions

that resemble human dosing [61]. The preferred animal models for TD studies are

the pig and rhesus monkey being generally more representative of the human skin

[62]. However, commonly available laboratory animal models such as rat (hairless

or shaved) or rabbit may be adequate to demonstrate initial feasibility of the RoA.

Standard in vitro skin transport experiments can also determine the potential for

achieving therapeutic drug candidate levels. If the target therapeutic plasma level

and plasma clearance of the compound are known (i.e., from IV studies), the target

flux rate to achieve therapeutic TD delivery can be determined [63].

The skin irritation/sensitization potential of drug and formulation components are

important to validate the TD strategy. Dermatitis (contact or allergic) is the most

common dosing site adverse effect as a result of an inflammatory response to drug- or

product-induced challenge. In vitro keratinocyte cell culture or human cadaver skin

can be used to assay for biomarkers of immune response (pro-inflammatory cytokines)

and intracellular enzymes (lactate dehydrogenase) to gauge the extent andmechanism

of damage [64, 65].More recently, genomic and proteomic studies have been adopted

to better understand its biochemistry at the cellular level [65]. These models serve as

effective screening tools early in formulation development and can be combined with

more traditional skin tests such as Draize test, transepidermal water loss, SC conduc-

tance, etc., to provide an overall assessment of skin tolerance.

13.2.2 Injectable Drug Delivery

Over the past decade, the injectable drug market has grown several-fold with

product sales expected to reach US$ 326 billion in 2015 [66]. This began approx-

imately 30 years ago with the advent of recombinant insulin and has since grown
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rapidly due to the advances in non-oral therapies such as recombinant proteins,

peptides, monoclonal antibodies, and antibody drug conjugates. The ability to

provide therapies for chronic diseases such as diabetes, rheumatoid arthritis, and

osteoporosis, among others, that substantially improve morbidity of the disease

state and quality of life and lifesaving therapies in the areas of virology (hepatitis C,

HIV) and cancer has driven increased investment by pharmaceutical and biotech

companies leading to over 200 marketed products in these areas.

Non-oral, injectable delivery offers a practical and efficient way to deliver drugs

with direct access to the systemic circulation. Many of the biopharmaceutical factors

that are required to understand drug absorption across a mucosa as with the noninva-

sive, non-oral routes described above may not fully apply. Instead, drug delivery

devices provide the means to administer drug directly into the intradermal (ID) space,

subcutaneous (SC) space, intramuscular (IM) space, or intravenous (IV) space.

Biopharmaceutical assessment of these injectable routes is almost entirely dependent

on in vivo PK and injection site safety studies in rodent or a larger, non-rodent species

(e.g., dog, monkey, or pig). Consequently, this section does not focus on building

rationale for assessing an injectable RoA and the biopharmaceutical assessment

methodology, but highlights the delivery features and delivery devices that are most

frequently used in enabling testing for clinical trials.

A cross-sectional overview of the skin is shown in Fig. 13.2. Through the use of

needle-based delivery devices, drugs can be delivered to the appropriate area of the

Fig. 13.2 Cross section of skin [67]
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skin, ranging from intradermal to intramuscular, by controlling the depth and angle

of insertion of the needle.

13.2.2.1 Intradermal (ID) Drug Delivery

As with TD, intradermal delivery (ID) requires drug candidate delivery past the

stratum corneum, which is the outermost layer of the epidermis. This can be

achieved with a regular hypodermic syringe and needle penetrating the skin at a

very shallow angle (approximately 5–15�) and injecting the drug formulation into

the skin at a depth of 1 mm, a procedure known as the Mantoux technique. Molded

guides are available, such as the ID adapter from West Pharmaceuticals which

make this process easier for patients [68].

An alternate approach is to use microneedles (MNs) to penetrate and deliver the

formulation through the skin. The needle diameters are typically in the micrometer

(μm) range; lengths are approximately 1 mm or less and available as either single

needles or arrays, with the latter much more common. Advances in materials,

design, and manufacturing have led to the development of needles strong enough

to penetrate the skin without losing the drug payload [69]. A key limiting factor to

this type of approach is the amount of formulation that can be delivered without

leakage as the space for bolus delivery is extremely limited in this space. Typical ID

delivery volumes are 0.1 ml or less.

ID delivery is a very popular technique for administering the purified protein

derivative (PPD) skin test for tuberculosis. The antigen is administered into the ID

layer with a tuberculin syringe containing a small volume of the antigen. Admin-

istration of vaccines and hormones has also been driving the growth of ID delivery.

Additionally, in certain populations such as geriatrics or infants where it is difficult

to give the vaccine through intramuscular injections, intradermal delivery is a

viable RoA.

13.2.2.2 Subcutaneous (SC) Drug Delivery

Subcutaneous delivery is a rapidly growing technique largely due to the conve-

nience provided to patients for self-administering therapies in a reliable and cost-

effective manner. Since these injections can be administered by the caregiver or the

patients, the usual administration areas are the abdomen, the upper arm, and

sometimes the upper thigh. The products intended for subcutaneous delivery are

primarily needle-based delivery devices which will be described later. Growth of

this procedure began with the ability of diabetic patients to administer insulin to

themselves and has since become a key factor for drug product differentiation.

Subcutaneous injections require the needle to penetrate the stratum corneum and

the dermis layers to enter the subcutaneous fat layer and be distributed systemically.

The key challenges for subcutaneous administration are delivery depth and

volume. Needle penetration must not be too shallow or too deep to avoid delivering
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drug candidate into either the ID or intramuscular (IM) space, respectively. Typical

penetration depths are around 6–8 mm, with a generally accepted minimum of at

least 4 mm. The thickness of the dermis and subcutaneous layers also varies

considerably between patients [70]. Typically the user performs a “skin pinch” to

ensure sufficient subcutaneous space is presented for injection. The volume of

deliverable medication as a bolus injection is typically 1 ml or less. The SC space

cannot hold volumes larger than 2 ml, and the pain felt from the injection increases

with volume. This presents a significant challenge for biologic drug candidates, as

the often higher doses require an increase in either dose volume or concentration,

with the latter risking protein instability and agglomeration.

13.2.2.3 Intramuscular (IM) Delivery

IM is the most common injection practice for delivery beyond the subcutaneous

space. In order to ensure full penetration of the subcutaneous fatty layer, the

injections are typically delivered at an angle of 75–90� to the skin surface at depths
of ¾ in. or greater. In some larger patients, depths up to 3 in. may be necessary to

ensure sufficient IM penetration. Typical areas for injection include the upper arm,

hips, and gluteal muscle area. These are chosen as a preferred route over intrave-

nous injection as it is faster to administer with lower complications. Relative to SC

route the absorption rates are faster due to greater blood supply in the muscles. The

volumes delivered by this technique are typically larger than for SC, with volumes

of up to 5 ml possible in the gluteal muscle area [71].

13.2.2.4 Intravenous (IV) Drug Delivery

IV is a faster method to deliver medication to the body with 100% bioavailability,

but can be considered a much more complicated injection process compared to ID,

SC, and IM. It is typically performed in a hospital or surgical center setting utilizing

aseptic techniques, for treatments requiring direct delivery into the bloodstream. It

is also necessary for large volume infusions with drug candidates diluted into

normal saline, dextrose, lactated Ringer’s solution, etc.
Delivery is usually accomplished with an IV access device, which can be

connected to an infusion pump for prolonged administering, or to a closed valve

for bolus administration with a syringe push. There are several types of devices

used for venous access. The simplest accesses a vein with a hypodermic syringe and

needle to penetrate the vein and push the medication. This technique requires

training to ensure that the needle is placed accurately within the vein rather than

spearing through the vein. Short peripheral IV catheters with a one-way access

valve can also be used to minimize pain and provide continuous venous access for

infusions or multiday injections.
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Central venous catheters (CVCs) are used for delivery to larger veins, such as the

superior or inferior vena cava or to access the heart directly. This is necessary for

certain medications, such as chemotherapy treatments, where rapid dilution of the

medicine by blood flow prevents drug-induced irritation in peripheral veins. A CVC

can remain in the body for an extended period of time (i.e., multiple months) for

continued therapy. Typically these catheters are implanted through a surgical

procedure with local anesthesia and often have multiple lumens to enable delivery

of multiple drugs simultaneously. Peripherally inserted central catheters (PICCs),

midline catheters, are gaining popularity since they are easier to insert, can be

inserted at the patient’s bedside, and are less intrusive in a patient’s life.
Bacterial infections with such catheters are a potential risk since these catheters

remain in the body for long periods of time. Tunneled catheters, wherein the

catheter is inserted under the skin for some distance prior to venous entry, have

been shown to reduce infection rates.

A summary of the more invasive delivery modes and the features associated with

each of these is shown in Table 13.4.

Table 13.4 Summary of different invasive delivery modes

Route of

administration

Device

examples Drug examples

Administration

sites

Depth of

penetration

Volumes

delivered

Intradermal Tuberculin

syringes

Microneedles

Needle-free

injectors

Hyaluronic

acid (anti-

wrinkle) Botox

Lower arms <1 mm �0.1 ml

Subcutaneous Prefilled

syringes

Pens

Auto-injec-

tors

Needle-free

injectors

Patch pumps

Insulin

GLP-1 analogs

Abatacept

Herceptin

Upper arms

Abdomen

Thigh

4–8 mm <2.0 ml

bolus

Intramuscular Hypodermic

syringes

Needle-free

injectors

Penicillin

Methotrexate

Upper arms

Hips

Gluteal muscles

15–75 mm �5 ml

typically

Intravenous IV catheters Nivolumab Veins (wrists,

upper arms, cen-

tral access)

Into veins Very

large

infusions
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13.3 Self-Administration of Therapy by Patients

This section discusses primarily the different types of devices available for subcu-

taneous injections by patients and the factors that are driving the adoption of such

devices. With diabetes reaching epidemic proportions, more and more patients are

dependent on insulin to manage their disease [72]. This has led to self-

administration of insulin as a subcutaneous injection by patients, spurring to

innovation by drug delivery companies to make the process easier and more

intuitive for patients. Furthermore, patients administering self-therapy lead to a

decrease in the healthcare-associated costs and improved compliance.

The change in the user population from trained healthcare professionals to

patients has led to manufacturers focusing on human factors and interactions with

the device to make the injection process intuitive. Health authorities are increas-

ingly scrutinizing human factor testing before approving injectable products. The

US Food and Drug Administration (FDA) has issued guidance on human factor

testing that includes use-related hazard evaluation [73]. It is now requiring device

and combination product manufacturers to assess the type of user (healthcare

provider, caregiver, trained patient, and untrained patient) and the use environment

(at a doctor’s office, at home) along with the device and interface to establish

usability criteria during design validation activities for inclusion in the new drug

application filing.

13.3.1 Prefilled Syringes (PFSs)

This is the most commonly used type of device for self-administration. Typically,

these syringes are supplied with a pre-attached needle for accurate penetration

depth with the correct dose metered into the syringe by the manufacturer. The

user only needs to uncap the syringe, insert the needle into the appropriate injection

site, and press the plunger to deliver the medication. This market is predominated

with glass PFS as they ensure stability of the drug at an affordable price point due to

the relatively inert nature of glass combined with its excellent resistance to moisture

and oxygen permeability. Other materials such as cyclic olefin polymers (COPs)

and cyclic olefin copolymers (COCs) are also used by a few manufacturers, as they

are easier to manufacture through injection molding and offer better breakage

resistance compared to glass. While these plastics offer good moisture resistance,

oxygen permeability is an issue which can lead to instability of the prefilled drug.

This often requires manufacturers to test the stability of the drug in the PFS from the

very early stages. Adoption of these newer materials for PFS is gradually increasing

in the marketplace. PFSs are used as single-use disposable products with the user

discarding the used syringe into a sharps receptacle after injection. With the advent

of the Needlestick Safety and Prevention Act (the Act) (Pub. L. 106–430) and the
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growing preference from manufacturers, health authorities, and patients/caregivers

to prevent needlestick injuries, additional sharps protection is usually provided for

these syringes. Since the manufacturers must perform extensive shelf life and

stability testing with the drug candidate and formulation in the syringe prior to

product approval, changing the syringe after product approval is an expensive and

time-consuming process. Innovative sharps safety devices in the form of housings

that fit over an existing syringe and plunger rod that can house a retracted needle are

available.

13.3.2 Pens

Pens have grown in popularity as a convenient way of delivering insulin for diabetic

patients. Single-dose delivery pens generally have a permanently attached needle,

whereas removable needles allow for multidose delivery of insulin for the same

patient. The primary container for storing the drug is usually a glass cartridge with a

stopper and a crimp seal at one end and a plunger at the other end. Prefilled

cartridges are loaded into the pen, and the user attaches a fresh needle for each

injection. After dialing in the dose, delivering the injection then removing and

discarding the needle, the user retains the pen and cartridge for the next dose. The

delivered dose is controlled by the calibrated movement of a plunger rod pushing

the stopper a set distance, either dialed in by the user or preset to a fixed dose by the

manufacturer. A typical pen is shown in Fig. 13.3. More sophisticated designs, such

as pens that can hold a lyophilized drug and a diluent separately, until the time of

mixing, have also been developed as shown in Fig. 13.4. Over the years, additional

Fig. 13.3 UnoPen™ from Ypsomed (Courtesy of Ypsomed)

Fig. 13.4 LyoTwist™ pen from Ypsomed (Courtesy of Ypsomed)
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features such as dose counting, electronic pens, and automatic injection have been

added to the pens to drive differentiation in a crowded market. Such advances have

blurred the line between pens and auto-injectors.

13.3.3 Auto-Injectors

These are a further simplification of the injection process of self-administration by

patients. Auto-injectors are powered usually by springs which store mechanical

energy and release it to fully automate the process of injection. Activating the

device merely requires pressing it against the skin and/or depressing a button.

Similar to pens, battery-driven electronic auto-injectors are also available, but are

more expensive and typically single-use disposable devices. These devices are

primarily used by patients for administering growth hormones, fertility treatments,

and biologics intended for subcutaneous delivery. One example of an auto-injector

using a syringe as the drug container is shown in Fig. 13.5.

13.3.4 Patch Pumps

Once again, the needs of diabetic patients for a long-term constant insulin infusion

have led to the innovative development of patch pumps. These devices consist of a

reservoir to store the drug candidate and formulation, which are infused into the

body through an infusion tubing or soft cannula. The soft cannula or infusion tubing

is initially inserted by a needle, which is then retracted to leave only the tubing in

place. For patients who wear this over multiple days, the softer tubing provides

Fig. 13.5 YpsoMate® auto-injector (Courtesy of Ypsomed)
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better comfort compared to a steel needle. One example of a patch pump is shown

in Fig. 13.6.

13.3.5 Needle-Free Injectors

Needle-free injectors have evolved as an alternate way of delivering injections to

the ID, SC, and IM spaces [74]. These were driven initially as a way to avoid issues

associated with needle-based delivery technologies. The drug formulation is pro-

pelled to a high-velocity jet stream that penetrates the skin to the desired depth.

Spring-based systems as well as gas cartridge-based systems have been used to

propel the liquid medication, and by controlling the energy, the depth of penetration

is achieved. They can also be used to deliver powder or liquid formulations.

Fig. 13.6 OmniPod® patch

pump from Insulet

(Courtesy of Insulet)
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13.4 Vision for the Future

When challenges to oral administration are encountered, or non-oral delivery is

required, non-invasive or invasive delivery options need to be investigated.

Although these methods are more complicated from a patient perspective compared

to oral delivery, engineering and scientific advances are making such delivery

modes more intuitive for patients. While injectable products are the most practical

way to dose drugs with direct access to the systemic circulation, non-injectable

alternate RoAs (such as IN, B/SL, INH, TD) continue to gain strong interest in

clinical development. As more complex NMEs emerge, innovative ways to deliver

drugs through new RoAs or technological advances in formulation and drug

product design become paramount. These new delivery strategies take advantage

of advances in understanding the patient and disease state, opening new doors into

novel product options for each of the RoAs. There has been a steady trend over the

past decade toward self-administration becoming more prevalent among patients.

As a result, devices are being developed with more patient-focused human factor

considerations such as portability, intuitiveness, and ease of use. In addition, with

the growth of mobile health applications, delivery devices are becoming more

connected with mobile devices, thereby enabling better patient compliance with

treatment regimens and advancement in standards of care.
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Chapter 14

Outlook for the Future

John S. Morrison and Michael J. Hageman

Abstract The nature of the pharmaceutical industry is constantly evolving. There

is currently a strong demand for new therapeutics to be simultaneously safer, more

effective, and less expensive. These seemingly incompatible expectations will

likely increase over time, and balancing them will require continuous innovation,

such as novel technologies to expand the so-called “druggable” chemical space and

new insights to reduce the number and severity of costly clinical failures. As a

result, the industry has begun pivoting away from the traditional therapeutic

product profile: once-a-day, orally administered small molecule drugs intended

for large patient populations. Instead, there is a renewed focus toward more niche

or specialty areas, using alternative molecular therapeutic modalities administered

with novel delivery technologies, often via non-oral routes to smaller and more

specific patient populations.

The shift from traditional to specialty drug candidates has also resulted in larger

organizations focusing less on establishing new internal drug discovery expertise

and more on leveraging the existing clinical expertise toward new therapies dis-

covered by external partners. Such partners include specialized smaller pharma-

ceutical organizations or academic groups with novel molecular assets, targeting

capabilities or even whole drug discovery platforms. The size and lack of experi-

ence of these small entities often necessitate that their technologies be developed

with the assistance of larger, more established pharmaceutical organizations. The

successful execution of this approach requires a collaborative mind-set to collec-

tively overcome the interconnected drug discovery and development challenges.

This includes assessing the progressability and developability of promising drug

candidates as well as ensuring pertinent clinical information is translated upstream

into continuing discovery efforts.
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Despite implementing significant changes, a number of challenges continue to

impede the industry’s productivity improvement efforts. These include significant

knowledge gaps, effective decision-making in an uncertain environment, and

competing stakeholder interests. This chapter explores how these issues were,

are, and may be addressed in the past, present, and future.

Keywords Pharmaceutical industry productivity • Scientific knowledge gap •

Drug candidate selection • Risk assessment • Stakeholder interests • Drug

discovery • Effectiveness • Efficiency • Attrition

14.1 Introduction

The growth of the pharmaceutical industry, often referred to as “big pharma,”

originated as part of the post-World War II boom [1]. Wartime efforts focused on

soldier/patient treatment for infectious diseases provided a vision for establishing

an improved postwar quality of life for everyone. Many chemical companies saw

the opportunity to shift resources and expertise toward the manufacture and supply

of drugs which during the war were truly lifesaving. These companies began to

grow quickly by capitalizing on the extension of so-called home remedies into

products for manufacture and sale. The earnings of these larger firms were then

used to build research divisions to improve efficiencies of scale and quality control.

In fact, that became one of the key sales pitches and ever-widening distribution of

their products. With even greater financial success, these companies began to

explore opportunities for more innovative research based on improved understand-

ing of disease and its causes [2].

By the mid-1960s, growth was well underway, and research efforts had identi-

fied molecules demonstrating the ability to modify disease processes, either through

serendipity or screening in phenotypic disease models. Once identified, these

molecules were advanced to other parts of the company for manufacture and sale.

The very nature of the screening process yielded molecules with the attributes

necessary for progression into successful therapeutics (i.e., appropriate ADME,

toxicological, and pharmaceutical properties). These early screening models there-

fore provided a dual role, assessing the potential for efficacy against a disease as

well as indirectly selecting for what is contemporarily known as “developability”

properties.

As the analytical tools to probe biology, biochemistry, and molecular properties

improved and permitted assessing responses at a molecular level, the industry

embarked on a scientifically rational reductionist-based path, albeit one that lost

sight of the larger biological system [3]. Current engineering and analytical tech-

nologies have advanced to the point where it is possible to carry out hundreds to

thousands of experiments in high-throughput screening (HTS) and molecular syn-

thesis (combinatorial synthesis). However despite significant advances, the com-

plexities of biological interactions and redundancies are still somewhat outside the
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grasp of the current state of science and require further computational abilities as

well as advanced in vivo experimental techniques to understand these interrelated

events.

The pharmaceutical industry is approaching a critical productivity threshold in

delivering safe and efficacious new therapies, which has been well documented in

the literature [4–7]. Despite advances in understanding disease biology and com-

mitting resources to exploit those advances, fewer new drugs are being approved

while development costs continue to escalate [8–10]. These problems stem from the

difficulties inherent in the drug discovery process [11]:

1. An incomplete understanding of endogenous protein function and activity, as

well as how these proteins can be modulated and whether these efforts translate

to ameliorating human disease.

2. Discovering and optimizing “lead” compounds to specifically interact with the

desired target while simultaneously avoiding unintended off-target interactions.

3. Structurally modifying the “lead” compounds to yield drug candidates with

suitable physicochemical and ADMET (absorption, distribution, metabolism,

excretion, and toxicological) properties while simultaneously maintaining

potency such that the molecules are compatible with the intended delivery

strategy and able to reach the site of action.

Figure 14.1 summarizes the preclinical drug discovery and development process

to help elucidate the inherent difficulties. As a result of these challenges, there is a

high demand for innovative, novel, affordable, and effective therapeutics to treat

unmet and poorly met medical needs. The following work explores the challenges,

typical resolution measures, and alternative options for the future sustainability of

the pharmaceutical industry.

14.2 Causes of Poor Productivity in the Pharmaceutical
Industry

The specific mechanisms of many disease pathologies are poorly understood

[10, 12–16]. Drug discovery efforts venture into the scientific wilderness with

many possible paths but limited resources. Decisions must be made balancing

perseverance versus pragmatism: where to expend resources, how long to continue

the efforts, and when to stop [17]. Against this backdrop, it is unsurprising that

many drug candidates ultimately result in failure. Specifically, success rates for

Phase 1 through regulatory approval vary somewhat but were reported to be

14–18% between 1995 and 2005 for the 50 largest pharmaceutical companies [4],

<5% for anticancer drugs [18], 9.6% between 2006 and 2015, and 11.6% between

2011 and 2014 [17, 19–23].

The rate of decline for pharmaceutical innovation depends upon the particular

definitions and assessment criteria employed [24]. For example, nearly as many
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studies observed an increase in innovation as those determining that innovation was

declining based upon objective measures such as the number of new drug approvals

or patents issued. However, for more subjective assessments of either therapeutic

value or financial outcome, the majority reported a negative trend in innovation.

Regardless of the innovation trend, development costs are definitely increasing.

It has been estimated that producing one drug approval requires screening

5000–10,000 compounds, between 8 and 12 years of intensive R&D, and a total

cost of approximately $1 billion [25]. Morgana reviewed published development

cost estimates between 1980 and 2009 and found a range of $92 million to $884

million [26]. Mullard found that by 2014, the estimated out-of-pocket cost to

develop a successful drug was $1.4 billion [14]. Jogalekar provides a broader

estimate of between $1 billion and $5 billion [27]. The number of new drug

approvals per billion dollars spent (inflation adjusted) has reportedly halved every

9 years since 1950, a sort of reverse Moore’s law which has been dubbed “Eroom’s
law” [10].

Resolving this poor productivity requires defining the problems clearly and

completely. Einstein reportedly stated that if he “had an hour to solve a problem,

[he]’d spend 55 min thinking about the problem and five minutes thinking about

solutions” [28, 29]. The issues can be categorized as resulting from both a lack of

effectiveness resulting in drug candidate attrition and a lack of efficiency or cost

containment [4, 30]. In the current environment, the risk/benefit ratio has become

imbalanced, with an ever-present drive to completely eliminate risk often losing

Step 1: 
Target 
Selection and 
Validation 

Step 2: 
Screening for 
Compound 
“Hits”

Step 3: 
Optimization 
of Candidate 
“Leads”

Step 4: 
Candidate 
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A disease target 
believed to play 
a key role in a 

particular disease 
pathway is 
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Many 
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Once a 
promising 
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and 
pharmaceutics 
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development.

Fig. 14.1 The preclinical drug discovery/development process
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sight of valuable potential benefits. These issues are discussed in further detail in

the next few sections.

14.2.1 Poor Drug Candidate Development “Effectiveness”

Although universally low, approval rates for drug candidates vary by therapeutic

area [4, 5, 22], organizational size [4], modality [22, 23], and the availability of

biomarkers [22, 23]. As the successful innovative drugs become generic and less

expensive, any new therapeutics must be demonstrably better to be competitive.

Consequently pharmaceutical R&D becomes crowded into smaller regions of hard-

to-treat unmet medical needs with greater failure risks. This cumulative effect has

been termed the “bigger than the Beatles” problem [10].

Increased drug candidate attrition has also been frequently associated with

physicochemical properties [7, 31–35]. For example, a recent review of data from

four major pharmaceutical companies linked poor physicochemical properties

with safety-related clinical failures [7]. Over the past two decades, many pharma-

ceutical organizations have emphasized potency and structural uniqueness over

other properties such as lipophilicity and molecular size which influence drug

candidate absorption, distribution, metabolism, excretion, and toxicity (ADMET)

[31, 33, 34].

14.2.2 Poor Drug Candidate Development “Efficiency”

While the rate of drug candidate approvals has either stagnated or declined,

development costs have continued to increase [10, 13]. Several causal factors

have been implicated: a risk/benefit imbalance, late-stage commercial/financial

decisions, biased decision-making, and increased regulatory hurdles involving

more costly and complex clinical trials [10, 12–16, 36]. The lowering of regulatory

risk tolerance has been termed a “cautious regulator” problem, and while increased

regulatory requirements may not necessarily improve safety, they definitely

increase R&D costs [10]. Furthermore, the increased costs can occur in a greater

than proportionate fashion.

Efficiency metrics also counterintuitively depend upon the number of drugs a

company successfully launches [37]. The median development cost for a company

with a single successful drug was $350 million, but this cost continued to increase

to $5.5 billion for companies with more than eight successful drugs on the market.

The reason for this discrepancy is that larger organizations must recoup the costs of

both successes and failures, whereas failed smaller companies disappear and do not

pass along the failure costs. Furthermore, being first to launch is often perceived as

more lucrative and thus encourages greater resource allocation, which has been

termed a “throw money at it” problem [10].
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14.3 Key Challenges to Improving Productivity

Improving both the effectiveness and efficiency of the drug discovery and devel-

opment process requires a better understanding of the key productivity challenges,

which are complex and multifaceted. Significant scientific knowledge gaps hinder

the translation of biomedical research into clinically proven therapies. Collabora-

tion between individuals, groups, and organizations requires bridging very different

goals, cultures, and work processes. Additionally, decision-making in the face of

many unknown variables and with limited resources is also a significant challenge.

These factors are further complicated by incompatibilities and incongruencies as

discussed further below.

14.3.1 Scientific Knowledge Gaps

The term translational medicine began appearing in the literature in the early 2000s,

with the goal of better linking therapeutic targets to human disease causality and

transferring this information from “bench to bedside and back again” [38–40]. A

key challenge is the cycle time between initiating a promising new disease target

program and receiving clinical feedback to validate targets and preclinical models

[39, 41]. This has been estimated to consume 15–17 years of intensive R&D

[42, 43], with preclinical discovery typically requiring 3–6 years [42] and average

clinical cycle times of approximately 9 years [10].

Given such long feedback times, the frequent irreproducibility of initially

exciting biomedical research in new disease areas is extremely frustrating

[39, 41]. This irreproducibility has been reported across the industry by research

scientists at Bayer, Amgen, and MD Anderson Cancer Center [44, 45] as well as the

Center for Open Science in Charlottesville, Virginia [46]. It has been estimated that

50–70% of initial research findings could not be reproduced by either the original

investigator or another researcher [46, 47]. Such faulty execution of science has

been estimated to waste approximately $28 billion annually of critical drug R&D

resources as well as “undermining cumulative knowledge production” [46, 47]. Sev-

eral causes have been proposed for this phenomenon: errors or flaws in reference

materials, insufficient facilities and resources, poor study designs/training/labora-

tory protocols, pressure to publish, inadequate animal models, insufficient valida-

tion and problems with data collection/handling/analysis, and selective reporting

[48–51]. Animal models of disease and their translation to humans can represent

another source of variability and lead to clinical trial failures [52–54], stemming

from simple gender differences [55] to phenotypical differences in spite of identical

genotypes [56].

Safety issues can arise from either an unintended target effect [57] or

polypharmacology involving an off-target [58]. A true preclinical/clinical transla-

tional approach requires better fusion of nonclinical and clinical data to understand
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the contributing factors for adverse effects across chemotypes [59, 60]. For

instance, Wager found that drug candidate efficacious concentrations below a

specific threshold were more likely to survive toxicological studies across all

CNS-focused programs [61].

The drug design process itself represents another productivity challenge. Target-

based drug discovery is scientifically and logically attractive, utilizing high-

throughput screening to evaluate the affinity and selectivity of thousands of

compounds [10, 62]. This focus on target binding does not however represent the

complexity of cellular processes [63, 64]. In contrast, phenotype-based drug

discovery (also known as network or systems biology or even classic pharmacol-

ogy) has historically been more productive for first-in-class therapies, and many

drugs currently on the market were discovered with this lower-throughput approach

[64–73].

Despite amassing large datasets, the ability to effectively and reproducibly

translate this information into successful therapies remains elusive [74]. Rigid

and risk averse organizational structures, continuing to employ legacy procedures

and punishing inevitable failures, also bear some responsibility for the lack of

innovation [75]. Cross-disciplinary discovery teams can be further hindered by a

functional silo mentality, unclear accountability and governance, as well as infre-

quent or ineffective evaluation and feedback [76].

14.3.2 Decision-Making in a Resource-Constrained
and Uncertain Environment

With ultimately finite resources and many unknowns, good decision-making

requires the proper balance between perseverance and pragmatism [17]. The need

to quickly terminate projects likely to fail (the so-called “fail fast” strategy) is

widely understood by researchers; however project teams are often loss adverse (the

“sunk cost fallacy”) [21, 77]. Within a smaller team environment, the loss of both

past resource investment and a potentially marketable medicine appears wasteful

relative to continuing a project to the next decision point. Furthermore, at larger

organizations, the addition of one more risk to the pipeline appears small in the

broader context.

The pharmaceutical industry has shifted to focus more R&D upon unmet

medical needs [9, 78]. However, these novel biological mechanisms are often not

well understood, and this lack of scientific knowledge represents even greater

failure risks. On the other hand, attractive and proven targets can represent a

different type of risk if pursued concurrently by too many organizations. For

instance, multiple PD1/PDL1 programs are currently undergoing clinical evalua-

tion, which presents an additional external risk factor [20]. Furthermore, although

clinical trial subject risks are assessed by institutional review boards (IRBs), the
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individuals comprising these boards often perceive risk in different ways which can

affect how clinical trials proceed or whether they proceed at all [79].

Accurate decision-making can be hindered by internal cognitive biases

[36, 80]. The most common biases applicable to drug discovery and development

include “overconfidence” in a project’s ultimate success, “expectation” of results

leading to poor judgment calibration and forecasting, the “availability” of more

recent and/or big results, “pseudocertainty” or excessive focus on apparent cer-

tainty, “interest” in incentives resulting from a successful drug candidate, “pattern

recognition” when evaluating datasets, and “social groupthink”.

Despite acknowledging the existence of these biases, they can be difficult to

counteract in complex fields such as biomedicine and drug discovery due to the

many inherent variables [81]. Researchers attempt to compensate with tighter

experimental controls, which consequently shifts away from the real system

under investigation. The result according to Sarewitz is a failure of internal

controls, over-selection of data, and overreporting of false-positive results. While

research scientists generally appreciate that existence of inconsistencies, including

the ambiguities and uncertainties inherent in complex datasets, the current research

paradigm provides no incentives to report negative results or internally replicate

and validate experiments [81].

14.3.3 Incompatible Stakeholder Interests

The key stakeholders in the discovery and development of new medicines are

scientists, business people, and the public, each of which has very different inter-

ests. Pharmaceutical companies must generate enough revenue to remain profitable

and sustainable. They must fund both business expenses in the short term, as well as

make wise R&D investments that balance risk and reward in order to generate a

return on investment over the long term. Scientists on the other hand seek to

generate and apply new knowledge. Investments in science may be “knowledge

productive” but not immediately “asset productive.” In other words, the new

knowledge gained improves the understanding of whether and how new medicines

may be created but may not immediately provide clinically successful drug candi-

dates. In contrast the public wants therapies that improve health but also with the

contradictory expectations that new drugs be readily accessible, inexpensive, and

completely safe.

Unfortunately the premise that drug companies provide highly valuable products

benefiting patients, the economy, and society in general is not well appreciated. The

cost of a hospital stay or a sub-productive life due to illness is often not sufficiently

taken into account when assessing the value and ultimately the price of a new

medicine [82]. The costs of drug development are also misunderstood and quite

different from manufacturing costs [83]. These development costs are paid up front

before any revenue is generated and continue to increase due to greater scientific

challenges, patent time frames, and regulatory hurdles. Additionally, more testing
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for individual specific efficacy (i.e., personalized medicine) and safety requires

more R&D efforts which further increase costs, sometimes disproportionately so.

The ultimate success or failure of a drug development program cannot be

predicted beforehand but requires significant financial and temporal investment to

determine the answer. Both the successful and unsuccessful programs must be paid

for, and the costs of both are included in successfully marketed drug prices. It has

been argued that this is simply the cost of doing business and a former head of Pfizer

R&D stated “pricing should be based not on R&D costs but on the value a drug

delivers to patients” [84]. Despite this, it is difficult for the public to understand why

innovative medicines are priced much higher than generics, with the latter widely

available for many diseases [85]. The pharmaceutical industry’s public image

would also benefit from better explanations for price increases occurring over the

lifetime of the patent, in some cases increasing twofold or more [86]. Such

increases have been taken to the extreme for some orphan indications by companies

with little to no internal research and development and thus no R&D costs [87],

which tarnishes the reputation of the entire industry in the public eye.

14.4 How the Productivity Problem Has typically Been
Addressed

There have been many advances in the pharmaceutical sciences since the

mid-twentieth century, notably in the areas of drug discovery, ADME, PK/PD,

formulation, regulation, and drug utilization [2]. The so-called big pharma has

played a large role in supporting these advances as the “leading engines” of

innovation [88]. However, productivity has slowed, and the industry perspective

and business models are changing in an attempt to correct this decline [89]. R&D

costs have also increased due to greater regulatory burdens from “societal risk

aversion” as well as the pursuit of high-risk/high-reward therapeutic areas [90]. No

single business entity has the ability or resources to provide the necessary financial,

scientific expertise and bioinformatic investments to interpret and utilize the large

and increasing amount of data collected [91]. As a result, many of the productivity

improvement initiatives undertaken by the industry involve some form of

interorganizational interaction focused on efficiency as discussed further below.

14.4.1 Consolidations and Adopting “Best Practices”

One of the major responses to the drop in productivity has been mergers and

acquisitions. In fact, 42 members of PhRMA in 1988 had been reduced to 11 by

2012 [92]. For smaller companies, the major fate after receiving approval for a new

medicine is to become acquired [93]. Furthermore, since the year 2000, a fairly
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small number of companies control the majority of new molecular entities (NMEs),

including mostly marketing organizations with little to no internal R&D

capabilities [93].

A former president of Pfizer argues that the breadth and diversity of drug

candidate portfolios across many major pharmaceutical companies were histori-

cally the key to generating valuable new medicines, and the decline in drug

approvals correlates with the decreasing number of these companies [94]. Mergers

and acquisitions make apparent short-term business sense with respect to raising

stock prices, producing synergies, and removing duplication to decrease costs.

However, LaMattina notes that this short-term gain is at the expense of long-term

and ultimately more valuable R&D productivity. The “R&D engine” is critical to a

sustainable business as well as benefiting the public but is “especially vulnerable”

to the negative consequences of consolidation. “Lean-focused” reorganizations

from acquisitions, downsizing, and restructuring have had the unintended collateral

effects of employee demoralization and knowledge drain, despite the obvious

caveat that “the process should not contribute to the problem” [42].

Best practices are often enacted to prevent wasting valuable resources by

“reinventing the wheel” [95]. Myatt notes that innovation requires creativity and

haphazardly applying so-called best practices is not a substitute for “wisdom,

discernment, discretion, subject matter expertise, or intellect.” As an example,

attempts to increase R&D productivity by front-loading development tasks in a

parallel fashion in order to reduce cycle times and increase speed paradoxically

have the opposite effect when attrition rates are high [96].

14.4.2 Partnerships and Collaborations

A poor understanding of the complexities of human biology and disease contributes

to the high failure rates in modern drug discovery and development. As a conse-

quence pharmaceutical companies have evolved from a completely independent

and vertically integrated model to a more collaborative and interactive one

[97]. Such partnerships bring together greater expertise and experience, as well as

efficiencies from pooling resources. However different academic and biotech out-

fits as well as small, midsized, and large pharmaceutical organizations have their

own independent operating processes, experience, and expertise [6, 98]. Appropriate

consideration and planning as well as a “collaborative mind-set” and appreciation

for diverse approaches can maximize the benefits and offset the difficulties, risks,

and complexities to ultimately create a “symbiotic model of innovation” [6, 99].

This approach allows pharmaceutical companies to diversify and balance their

drug portfolios with the goal of developing more cost-effective products [6]. In fact,

the increase in collaboration efforts over the past two decades is evident by the shift

in number of pharmaceutical publications from large pharmaceutical companies to

external collaborators [100]. Rafols notes that “big pharma” is transforming from

the primary driver of R&D to the role of “network integrator.” Schumacher defines

430 J.S. Morrison and M.J. Hageman



several new types of innovators which have become differentiated in the

current environment: knowledge creators, integrators, translators, and resource

leveragers [101].

Public/private partnerships (PPPs) across academia, industry, patient advocacy

groups, and government organizations have been successful in combating

HIV/AIDS as well as exploring the Human Genome Project [102]. Another exam-

ple is the European Innovative Medicines Initiative (IMI) which began in 2008 to

boost drug development by facilitating collaboration, and the president’s Council of
Advisors on Science and Technology has advocated for a similar model in the

United States [91, 103]. These endeavors have been critical in overcoming chal-

lenges such as accessing large populations to test statistical significance, resolving

complex regulatory issues, and providing novel insights. They also provide

multidisciplinary expertise and often complex or novel technologies to evaluate

new mechanisms and large complex datasets. Additionally, they can rapidly

address significant public health threats [102].

Outsourcing is another collaboration strategy aimed at reducing costs and

accessing external expertise, which can be used to complement or substitute for

internal R&D [104]. Outsourcing works best when employed as a collaborative

knowledge-sharing endeavor rather than a unidirectional “numbers-only”

approach [105].

In contrast to “closed” outsourcing collaborations, consortia or “open” collabo-

rations with academia and biotech start-ups allow access to external innovation

[106]. This precompetitive information sharing or pooling has resulted in new

insights and discoveries in biomarkers, disease progression trajectories (DPTs),

and clinical outcome assessments (COAs) [107]. Performing more early-stage

research in the precompetitive public arena can free up resources of larger phar-

maceutical companies to focus on later-stage discovery and development

activities [108].

Companies have also downscaled internal discovery efforts and partnered with

academic groups to fill the gap [109]. Academic and industry collaborations can

synergistically combine the curiosity-driven research culture of academia with the

more rigorous discovery practices from industry [110]. For example, academia

provides a unique opportunity to identify, validate, and apply new biomarkers

[111]. Academia is driven to answer “hypothesis-driven” problems in order to

advance scientific knowledge, whereas industry seeks to provide safe, effective,

and commercially viable products. The goals, drivers, cultures, risk/reward assess-

ments, and career advancement considerations of each are unique and if not

properly taken into account can undermine the endeavor [42].

However, these collaborations require aligning incentives, investments, and

efforts to overcome cultural differences and R&D bottlenecks in order to translate

research discoveries into practical treatment therapies [102, 112]. Challenges

include misaligned strategies and objectives with respect to resource allocation,

loss of decision-making autonomy, differing expectations and cultures, as well as

intellectual property allocation [102]. Academia can benefit from a better appreci-

ation of the risks involved with translational research in target selection, assay
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design, medicinal chemistry practice, and preclinical pharmacology [110]. Success-

ful execution will also require better target validation, control over false-positive hit

rates, and improved informatics infrastructure [97].

14.4.3 The Results of Productivity Improvement Efforts

Clearly the pharmaceutical industry must deliver safe, efficacious, and cost-

effective therapeutics which bring value to patients, physicians, payers, and gov-

ernment agencies [113]. The industry also has a responsibility to provide sustain-

able revenue to support the continued development of new therapeutics as well as a

return on investment for shareholders. To do so, the industry must become more

effective and efficient, improving the seemingly contrary speed, quality, and cost

aspects of developing new drugs.

Typically, companies have focused on cutting R&D timelines and cost, with the

unfortunate and unanticipated outcome of reducing quality [113]. This has resulted

from conducting more drug development procedures in parallel, more quickly and

with fewer people. Opportunities to halt unsuccessful molecules before they

incurred large later-stage development costs are lost, resulting in a “development

speed paradox” [90]. While cycle times for successful molecules halved, the cost of

terminating the unfortunately more prevalent “unmarketable molecules” dispropor-

tionately increased. As Lendrem states, “the pharmaceutical industry simply

became really slick at delivering late-stage failures to the market place” [90].

The pharmaceutical industry “industrialized” R&D with the intent to improve

efficiency and retaining quality but instead made changes which resulted in

increased implementation of quantity-based metrics [114]. Such metrics lead to

poor outcomes when they are overabundant or inappropriately focused. The simple

adage “you get what you measure” must be aligned with the desired outcomes

[113]. Quantification metrics can also impede more subjective, but equally valu-

able, aspects of innovation [28]. Alternatively, failures can result from focusing on

the wrong problem. Groups responsible for solving an issue are pressured to do so

quickly, often without spending sufficient time understanding the problem [29].

It has been noted that the decline in productivity and innovation correlates with

the concentration of big pharma R&D within a smaller number of companies.

Following mergers, the subsequent removal of duplications, overlaps, and redun-

dancies reduces the odds of finding successful therapeutics by eliminating differ-

entiated “parallel paths” [88]. Downsizing also frequently results in the loss of

talent, either voluntarily or otherwise [89]. In general, acquisitions over the past

decade have been perceived as not representing an efficient use of capital [115].

The wide adoption of target-based high-throughput screening was due to the

apparent advantages of speed and cost over previous phenotypic-based screening

efforts [10]. Unfortunately, this “serial search, filter, and selection process” did not

increase the “signal-to-noise” ratio for assessing drug candidate pharmacokinetics,

pharmacology, and safety. The lack of improvement in drug approval success rates
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indicates “companies [may have] industrialized the wrong set of activities”

[10]. Focusing on drug/target affinity is better for validated targets, while a pheno-

typic screening may be much more suitable for new or polypharmacology-focused

targets.

Additionally, screening libraries produced by combinatorial chemistry generally

overlap due to limited number of starting materials, reagents, and reactions ame-

nable toward high throughput processes [10]. There is an inherent bias for more

compounds over better compounds as the latter are more difficult to specifically

define at the discovery stage. And finally, the large number of hits are reduced in

serial fashion beginning with potency, since assessing a molecule’s full “biological
potential” is much more challenging and impractical in any sort of high-throughput

fashion.

A review of 142 AstraZeneca development programs (2005–2010) found safety

was the main reason for preclinical IND toxicology and clinical Phase 1 failures,

while lack of efficacy failures was more common in Phase 2 trials [114]. Current

clinical trial design may also be partially responsible for the general industry

productivity decline [10]. This includes (1) narrow clinical search parameters that

may miss other valuable indications; (2) poorly designed, large expensive clinical

trials conducted as a compromise between science, regulation, public relations, and

marketing; and (3) the regulatory push for more clinical trials than in the past.

Artemisinin, an antimalarial therapy, represents an example of a successful drug

for a deadly disease which would be considered undevelopable under the modern

industry paradigm [116]. Although safe and effective, it demonstrated enzyme

induction, cell line toxicity, and neurotoxicity during early drug discovery and

development. Gordi argues that the use of prespecified charts and deselecting

molecules based on undesired properties may lead to “missed opportunities in

bringing best-in-class medications to patients” [116].

Current drug discovery and development processes are not as rational as they

appear [10]. Although each successful therapeutic has a “biology story” in which

the mechanistic understanding appeared to predict the outcome, there are many

more failures than successes with this apparently logical approach. Despite the

industry’s best efforts, productivity may continue to fall if the intersection between

commercial success and approval of drugs continues to diverge [10]. All of this

leads to the key question: what other valuable medicines may current pharmaceu-

tical industrial practices be missing, and how can the industry become more

productive at selecting winners?

14.5 Pathway to a More Successful Future

The pharmaceutical industry is approaching a critical productivity threshold. In

order to remain sustainable and meet the unmet medical needs of today and the

future, the industry must become more effective in developing successful new

medicines as well as more efficient in reducing development costs. To do so, a
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number of contradictions and incompatibilities must be resolved: significant knowl-

edge gaps, drug candidate selection processes, accurate and appropriate risk assess-

ment and management, as well as alignment of disparate stakeholder interests.

These are discussed further below.

14.5.1 Bridging Knowledge Gaps

Translational science is a term frequently invoked as a means to bridge the so-called

valley of death for preclinical to clinical translation [117]. It requires a network or

systems biology approach to understand the normal versus disease state and how a

drug candidate molecule functions within the “global physiological environment”

from both a safety and efficacy standpoint [118–120]. Less discussed, but equally

important, is the concept of “reverse translation” whereby knowledge gained in the

clinic is used to inform drug candidate selection decisions in the drug design phase

and help prevent costly clinical failures [10, 59]. Effective, early, and rapid

bidirectional preclinical/clinical translation requires developing and incorporating

advanced technologies, including wearable tracking devices, biomarkers, models,

and knowledge management systems.

The current explosion of wearable technology and “personal environment mon-

itoring” is also being employed in the drug development process [121]. The wealth

of continuous and real-time data collection can help stratify patient populations

with respect to both efficacy and safety [122]. This information can be further

augmented by incorporating social media feedback to understand patients’ needs
and wants with respect to treatment progress and off-target issues [117].

Biomarkers are also a critical drug development risk mitigation tool being

integrated into the drug discovery and development process [123]. They provide

confidence in the relevance of a molecular target to human disease and, along with

surrogate end points, can be utilized in early proof-of-concept studies, potentially

even in Phase 1 studies [118]. Earlier efforts to establish biomarkers in preclinical

stage increase the likelihood of success in the clinic [113].

The use of wearable tracker and biomarker data along with efficacy and safety

readouts as well as drug candidate exposures can be implemented into predictive

models to better understand the interaction of exposure, target engagement, and

safety and efficacy relationships [121, 123, 124]. These models can be used to

simulate pharmacology, disease progression, and pharmacokinetic/pharmacody-

namic relationships to understand the disease state and the effect of treatment

options [116, 118]. As an example, it was recently reported that implementation

of a PK/PD model for safety and efficacy assessments of CNS and pain programs at

AstraZeneca resulted in decreased animal usage and better understanding of in vitro

and in vivo relationships [125].

Automation may also reduce clinical cycle times, allowing for more rapid

feedback and decision-making. For instance, a new instrument capable of onsite

chemical synthesis, purification, and formulation of drug candidates was recently
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reported [126]. With further development and regulatory acceptance, such an

instrument could be used in the future for onsite compounding simultaneously at

multiple locations, precluding the need for costly and time-consuming scale-up and

stability studies.

The ultimate beneficiary of improved translational science may be the concept of

personalized medicine, an area of increasing focus for both the industry and

regulators [113, 127]. An improved understanding of the heterogeneity of treatment

effect (HTE) will provide a better assessment of the value or benefits and risks of

treatment options [128]. However, the paradox of precision medicine is that finding

the right drug for the right patient at the right time is an intensive effort, benefiting a

small population and at a much higher cost [129, 130].

The translational science initiative will also require interpretation of ever-larger

amounts of data from different patients, geographies, and multiple time points.

Better information and knowledge management systems are needed to integrate and

leverage this collective data [131, 132]. Implementing these knowledge manage-

ment systems will require significant financial, scientific expertise and informatics

investments to effectively utilize the large datasets. Successfully implementing

translational science will also require cross-disciplinary collaboration to develop

new understandings, tools, and regulatory guidances [91, 129, 130]. To share these

burdens and leverage the necessary scientific expertise, expansion of

precompetitive public/private collaborations (PPPs) further into preclinical space

and better translational informatics across all clinical studies to improve modeling

and predictive tools has been recommended [117, 120].

A translational approach will also benefit safety science by incorporating all the

data collected for safety assessments across the industry [59]. This in turn would

support a transition from simple toxicological assessment to drug development

enablement earlier in the discovery space and help move beyond traditional

pharmacovigilance to a broader pharmacosafety vision [120, 133, 134].

14.5.2 Improving Drug Candidate Selection

A better understanding of how biomedical research translates to treating human

disease will also enable better drug candidate selection, minimizing the risks of

pursuing suboptimal candidates [33, 135]. This will require better early screening to

select compounds with efficacy against disease rather than potency against a target,

through a combination of target- and phenotypic-based screening [136]. Histori-

cally, phenotype-based drug design strategies have been more successful and would

complement the current industry standard target-based drug design approach,

especially for novel or polypharmacology targets [10, 63, 109, 136, 137]. Virtual

screening may also prove valuable to augment standard high-throughput

approaches [138, 139].

Improving drug candidates also requires greater molecular diversity beyond

typical small molecular therapeutic or “druggable” space from both a “nature”

14 Outlook for the Future 435



(chemical starting points) and “nurture” (more informed optimization) standpoint.

Doing so will require advancing beyond “rule of 5” restrictions and greater explo-

ration of alternative molecular modalities [33, 135, 140]. A better appreciation of

the role of physicochemical properties in drug candidate design and attrition‘ is also

recommended [141].

Organs on a chip represent a promising time and cost-saving technology to

assess tissue exposure-response and reduce dependence on animal testing [142–

146]. These microfluidic cell cultures, generated using microchip manufacturing

methods, mimic tissue-tissue interfaces as well as physiological microenvironments

of the human lung, intestine, liver, kidney, and heart. These systems can be used for

target identification and structure property relationship assessments.

Complex diseases such as those in neurodegeneration and oncology may have

several interacting pathways or nodes of a network, requiring that multiple targets

be addressed simultaneously [136, 147, 148]. Such polypharmacology can “inten-

tionally” improve efficacy, prevent drug resistance, and reduce target-related

adverse events for multigenetic diseases but also may “unintentionally” increase

off-target adverse events [58]. A convenient starting point for polypharmacology-

focused efforts is the repurposing of existing drugs to take advantage of small

molecule drug promiscuity as well as known physicochemical properties and

similarities in protein family binding sites [58, 149].

14.5.3 Better Risk Assessment and Management

Along with improvements in bidirectional knowledge translation and drug candi-

date selection, critical and accurate decision-making is necessary for appropriate

risk assessment and management. However people require proper tools and infor-

mation to make good decisions and overcome biases and unconscious assumptions

[80, 150]. Often the focus of productivity improvement is on efficiency enhance-

ments, rather than the more difficult challenge of improving effectiveness with

fewer clinical failures [136]. Doing the “right science” to effectively prevent

failures is more important than doing “the wrong science quickly” to efficiently

minimize the consequences of failure [90]. Several strategies have been proposed to

mitigate the risk of clinical trial failures:

1. A “five-dimensional framework” or five R’s strategy to improve drug candidate

decision-making and the potential for project success—selecting the right target,

tissue, safety, patient, and commercial potential [114].

2. A “Three Pillars” strategy to reduce cancer drug attrition rates: better preclinical

models with greater clinical predictability, more predictive and pharmacody-

namically revealing biomarkers, and better collaboration to leverage the inde-

pendent strengths of industry, academia, and regulators [18].

3. A “Three Pillars” strategy to improve clinical drug candidate survival: integrated

understanding of fundamental PK/PD from exposure at the site of action,
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confirmation of target binding, and expression of functional pharmacological

activity [35].

Taken together, these strategies recommend gaining early knowledge of the

disease and therapy, developing better preclinical to clinical translation, greater

collaboration between subject matter experts, and establishing early proof of

concept for the proposed therapeutic efficacy and mechanism.

In addition to the unknown development path for so-called “next-generation”

therapeutics, gaps between bench discoveries and successful new therapeutics have

widened due to the unknown regulatory requirements [91]. Reforms of the regula-

tory and patent systems are needed if critical new drug development for unmet

medical needs is to remain sustainable [91, 151].

14.5.4 Aligning Stakeholder Interests

The future of the pharmaceutical industry also requires aligning the disparate

interests of the key stakeholders to discover the intersection of utility, value, and

sustainability (Fig. 14.2). This necessitates better understanding and communica-

tion of the full drug development costs (including the failures) versus the simple

manufacturing costs of a final product. The development costs also include meeting

regulatory demands, which should ensure sufficient patient safety without unduly

adding to the cost of life-improving therapies [91, 151]. Ultimately minimizing

both safety risks and development costs represents a continuum, and a compromise

between the two must be reached since completely precluding any potential safety

liabilities would incur unacceptably high development costs (Fig. 14.3).

Pay for performance has also been cited as a potential remedy to improve

quality, both from the discovery to development transition and the clinical to

commercial transition. Incentives for academia must change to ensure the quality

and robustness of data in order to resolve the irreproducibility crisis responsible

for significant resource waste and opportunity cost in the drug discovery [152].

Concurrently, payers are increasingly asking for proof of efficacy before

Fig. 14.2 The intersection

of key stakeholder interests
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compensating for costly therapeutics that may only be effective in some patients or

subpopulations [153].

Operational effectiveness or performance requires everyone within an organi-

zation to collaboratively and collectively work together toward the same goal

ensuring quality medicines are produced as rapidly and efficiently as possible

[154, 164]. The Ringel group identified several factors correlating with improved

performance: greater focus on traditional versus rare diseases or personalized

medicines, geographic centralization including less outsourcing, and a functional

rather than business unit-focused structure. Interestingly, the Tollman group arrived

at a different conclusion regarding the latter factor, advocating that program teams

be asset rather than functional focused. Ultimately such discrepancies likely indi-

cate the problem is more nuanced and requires further study.

There is also a difference of opinion as to whether R&D efficiency can be

improved with further standardization, simplification, and removal of duplication

from the drug development process ([154], [164]). Previous efforts focused on

efficiency improvements such as Lean Six Sigma or mergers, and acquisitions

have failed to reduce costly clinical failures [136]. Instead, improving effectiveness

is recommended through executing on strategy in a repeatable and quality produc-

ing manner to create value [155]. Furthermore, any efficiency-focused processes

necessary to support critical activities and business needs must be balanced with the

freedom for scientific exploration to ensure the creativity, intuition, and serendipity

necessary for innovation in drug discovery are not lost [113, 156]. Process imple-

mentation requires effective management (doing things right), while innovation

requires effective leadership (doing the right things and creating a clear and
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Fig. 14.3 The drug development cost versus safety trade-off
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compelling vision). Ultimately, “the process should not contribute to the

problem” [42].

Organizational cultures (including team or department subcultures) are also an

important factor in performance, requiring time and energy investment, whereas

changing a nonproductive culture can be a slow and challenging process [114, 157,

158]. Fostering an optimal and organizational specific culture improves employee

engagement, retention, and productivity but requires trust, transparency, and

rewarding the right behaviors [159, 160, 164]. Learning and development are also

critical cultural elements to ensure employees are able to meet the ever-changing

challenges both today and in the future, including both current and future

employees [44, 161, 162].

14.6 Summary

Resolving the pharmaceutical industry’s productivity crisis will require overcom-

ing multiple contradictions and incongruencies. Just as the concept of translation

science recommends a network or systems biology approach, drug discovery and

development may need to pursue a similar systems network approach. In such a

system, expanded flexibility and knowledge sharing would be prioritized over

efficiency measures which have had a negligible effect on improvement and may

be the enemy of innovation [28, 136]. Knowledge would be accumulated and

shared early to minimize risk, both in preclinical to clinical translation and the

reverse.

While the next scientific breakthrough cannot be predicted, pharmaceutical

scientists’ contributions are critical, and organizational flexibility is necessary to

accommodate creativity and serendipity [2]. The decline in productivity and inno-

vation has been correlated with the concentration of big pharma R&D within a

smaller number of companies, with differentiated “parallel paths” being eliminated

as unnecessary duplication [88]. However the “parallel paths” strategy to diversify

and balance the risk of failure in the face of uncertainty has been historically

successful: the British Longitude Prize, the Manhattan Project, the DuPont’s syn-
thetic nylon fibers, the incandescent light bulb, and the integrated circuit, not to

mention the success of smaller biotechnology-focused companies. Although many

individual efforts may be unsuccessful, the larger collective effort increases the

odds of creating a successful therapeutic.

Ultimately, the contradictions within the current drug discovery/development

paradigm may be unresolvable and require a “scientific revolution” in which

completely new and noncumulative ideas are established and implemented to

solve contemporary challenges [163]. Einstein famously said that if he “had an

hour to solve a problem, [he]’d spend 55 min thinking about the problem and five

minutes thinking about solutions” [29]. Stated alternatively, if a solution to a

problem is not readily apparent, then the problem is not sufficiently understood

and requires further study.
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in silico models, 215

in vitro methods, 216

in vivo methods, 216–218

Blood-cerebrospinal-fluid barrier (BCSFB),

208
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Bone formation markers, 350

Bone Health, biomarkers, 349–351

Bone mineral density (BMD), 350, 353

Bone mineral unit (BMU), 349

Bone remodeling cycle, 349, 350

Bone resorption markers, 350

Bone turnover markers, 350

Bottom-up modeling approach, 205

BRAF

vemurafenib, 260–261

zelboraf, 260–261

Brain drug delivery

in silico methods, 215–216

in vitro methods, 216

in vivo methods, 216–218

Brain penetration, 208–211

BBB (see Blood-brain barrier (BBB))

brain drug delivery

compartment model, 210, 211

time to equilibrium, 209–210

Breast and endometrial safety, 358

Bridging study, 337

Bruton’s tyrosine kinase (Btk), 63
Bucketing method, 234

C
Carboxylesterases (CESs), 185

Cassette doses, 310

Caveolin 3 (Cav3), 123

Celecoxib, 348

Cell health screening, 139

Cell injury models, 140

Cellular thermal shift assay (CETSA), 61

Central nervous system (CNS), 209, 311

Central nervous system (CNS) penetration, 167

Central venous catheters (CVCs), 411

Cerebrospinal fluid (CSF) phospho-tau, 362

CFU assays, 147

ChEMBL, 88

Chinese hamster ovary (CHO), 359

Chromosome aberration (CAB), 136

Clearance Concept Classification System

(ECCCS), 176, 178, 183, 184

CLICK chemistry, 155

Clinical pharmacology, 342

data analysis and interpretation, 347

drug development, 342

FIH study design, 342–345

pharmacokinetic parameters, 342

pharmacokinetics in patient, 348

preliminary clinical development plan,

342–345

research goals and study design , Phase

1 clinical pharmacology studies,

345–347

T1 translation (see T1 translation)

T2 translation (see T2 translation)

translational research, 341

Cmax/Cmin ratio, 323

Co-development, 306

Collective intelligence, 303

Commercializable products, 333

Comparative pharmacophore modeling, 102

Conbriza® or Viviant™, 353

Concerta® (Janssen), 324

Covalent modification, heme prosthetic group,

194

Cremophor©, 283

CRISPR/CAS9, 155

Critical Path Initiative (CPI), 298–299, 306

Crohn’s disease (CD), 352
Crossover study design, first-in-human single

ascending dose escalation protocol,

319

Cross-validation, 92

Crystallinity, 239, 240

Cyclic olefin polymers (COPs), 412

Cyclin-dependent kinase, 140

Cyclooxygenase-1 (COX-1) inhibitor, 126

Cynomolgus monkeys, 354

CYP apoprotein, 195

CYP isozymes, 97

CYP3A4 inhibition vs clog P, 99
CYP3A4 inhibitor, 197

CYP-mediated metabolism, 186

Cytochrome P450 (CYP), 83

Cytolethality screens, 141

D
DAD scores, 362, 363

Dedrick plots, 171, 174

Defense Advanced Research Projects Agency

(DARPA), 150

Degree of innovation, 8

Delayed release (DR) dosage, 323

Developability risk assessment, 234, 235,

246–249

absorption model (see Absorption
modeling)

Afinitor®, 258–259

amorphous solid dispersions, 243–245

BEZ-235, 259–260

BRAF inhibitors, 260–261

chemical stability, 241
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Developability risk assessment (cont.)
clinical and commercial formulations, 245,

246

critical attributes, 233

crystallinity, 239–240

drug product parameters, 256

drug substance, 256

hydrated and solvated forms, 240

isolation mechanism, 241

particle morphology, 241

particle size specifications, 241–242

physicochemical Properties, 236–239

product performance

in vitro dissolution, 248–249

PK-PD, 246–247

solubility, 247, 248

risk assessment and feedback, 245

rule-based approach, 233

salts and co-crystals, 242–243

sirolimus, 258–259

synthetic complexity

“bucketing” method, 234

costs, 234

PMI, 235

QSAR, 235

toxicology formulation, 255

Development target product profile (dTPP),

376–379

Dexedrine®, 375

Dextroamphetamine, 375

Diagnostic biomarkers, 349

Dihydrofolate Reductase, 16

Disability Assessment for Dementia (DAD),

361, 362

Dissociated agonist of glucocorticoid receptor

(DAGR), 350

Dissolution-limited absorption, 334

Dose-dependent gastrointestinal (GI) side

effects, 331

Dose-limiting toxicity (DLT), 146, 284

Dried blood spot (DBS) analysis, 286

Drug candidate selection

complex diseases, 436

target and phenotypic-based screening, 435

Drug development process, 305, 307

Drug development teams approach, 287

Drug discovery, 374, 380, 381, 383–386

clinical trials, 298

drug development plan, 376

dTTP, 377–379

IND application, 380

maintenance, 386

overview, 381

PIND, 380

preparation, 381, 383–385

submission, 385, 386

NCE, 375

Phase 2 efficacy testing, 297

success rate, 297

US FDA regulatory expectations and

guidelines, FIH, 374, 375

Drug discovery and development

chemocentric approach, 18

dihydrofolate reductase, 16

FDA review and marketing application

approval, 13

integration, 19

investigational new drug application and

clinical trial planning, 12

issues, 18

lead identification, 12

lead optimization, 12

learn and confirm cycle, 9–11

molecular interactions, 19

PDD, 16, 17, 19

pharmacodynamic biomarkers, 18

phase I clinical trial, 12

phase II clinical trial, 13

phase III clinical trial, 13

phenotypic screening, 18, 19

preclinical safety testing, 12

product development process, 6

structure-based design, 17

target identification and validation, 12

target-agnostic assay, 18

target-based approach, 17

TDD, 16–19

Drug in bottle (DIB), 378

Drug in capsule (DIC), 321, 378

Drug Master Files (DMF), 383

Drug-drug interactions (DDIs), 194–200,

202–208, 347–348

assessing clinical risk

dynamic models, 204–205

microdosing, 206–208

static mechanistic models, 202–204

CYP inhibition

IC50 shift, 198–199

single concentration activity loss assays,

199–200

single-point IC50, 198

TDI mitigation, 200

induction, 191–192

irreversible (time-dependent) inhibition,

201–202

reversible (direct) inhibition, 193
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strategies, mitigating DDI-related liabilities

concomitant medications analysis,

196–197

in silico techniques, 195

lipophilicity and polarity, 196

TDI, 196

TDI

covalent modification, heme prosthetic

group, 194–195

CYP apoprotein, 195

quasi-irreversible inactivation and MIC

formation, 194

Drug-in-bottle (DIB) formulation, 321

Drug-induced irritancy reaction, 394

Drug-induced liver injury (DILI), 130, 135,

141

Dual-energy X-ray absorptiometry (DXA),

353, 354

Dual-photon absorptiometry (DPA), 353

Dysphagia, 332

E
Early clinical formulation design, 317,

323–329

anticipated dropout rates, 318

API profile, 320

biomarker monitoring, 317

crossover study design, first-in-human

single ascending dose escalation

protocol, 319

dose manufacturing options, 338

FIH (see First-in-human (FIH))

healthy volunteers, 318

MR formulation (see Modified Release

(MR) formulations)

on-site compounding (OSC), 338

Phase I MAD study, 319

PK profile, 319

PK profiles, 319

SAD escalation, 318

therapeutic areas, 318

Early safety assessment approach

5-HT2B receptor, 125

ADR profiling, 126

ADRs, 123

drug targets, 120

in silico-in vitro concordance, 125

Kinases, 125

KO or KD technology, 123

NHR modulation, 126

protein-coding genes, 123

QSAR approaches, 124

QSAR models, 124

QT interval, 124

silico pharmacological screening, 124

Electrical activity/excitability measurement

technologies, 154

Electrochemiluminescent immunosorbent

assays (ECLIA), 151

Electronic common technical document

(eCTD), 381

Electronic health records (EHRs), 8

Electronic monitoring devices, 307

Enabling formulation, FIH, 330

Enteric-coated tablets, 323

EP-Osmotic Capsule, 331

Estrogen receptors (ERs), 353

Euglycemic clamp study, 69

European Medicines Agency (EMA), 309, 374,

375

European Organization for the Treatment of

Cancer (EORTC), 305

Everolimus. See Afinitor®

Exposure-response (ER) analyses

AD, 365

Extemporaneous preparation (EP) dosage

forms, 322–323

Extemporaneously prepared Dosage Forms,

322–323

Extemporaneously prepared powder in capsule

(EP-PIC), 330

Extended Clearance Classification System

(ECCS), 176

Extended Clearance Concept Classification

System (ECCCS), 177

Extended clearance model (ECM), 176

186

Extended release (ER) dosage, 323

External or prospective validation, 92

Extracellular matrix (ECM), 71

F
Fatty acid amide hydrolase (FAAH), 377

FDA Critical Path Initiative, 300

First-In-Human (FIH) clinical study, 374

375

formulation design

absorption studies, 335

amorphous solid dispersions, 334

BA studies, 336

bioequivalence (BE) studies, 336

clinical trial development, 332

CMC aspects and real-time feedback,

334
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First-In-Human (FIH) clinical study (cont.)
commercializable products, 333

commercially relevant formulations,

336

desired/critical PK parameters, 333

dissolution-limited absorption, 334

dosing duration, frequency, and

compliance, 333

dysphagia, 332

eCTD outlines, 336

food effect evaluation, 335

frequently bridging studies, 336

in vivo animal model bridging study,

337

lipid-based formulations (LBFs), 334

nanocrystal formation, 335

palatability, 337

patient populations, 332

pediatric formulations, 336, 337

pediatric or geriatric populations, 332

period and expiry dating, 332

pharmaceutics-related problems, 333

Phase 1 formulations, 336

physiology-based pharmacokinetic

modeling software, 334

PK profiles, 335

preliminary food effect study, 335

PSDs, 334

regional-specific absorption, 335

relative BA studies, 336

salts or crystal engineering approaches,

334

SEDDS, 334

self-administration, 332

short time period vs. prolonged
evaluation, 333

speed and flexibility, 332

spray-dried dispersions, 335

SUPAC document, 337

tablet or capsule, 332

target product profile, 333

timelines, 335

translational approach, 334

MR formulations

anti-infective, 331

API, 331

Enabled Formulation, 330

EP-Osmotic Capsule, 331

MEC, 331

particle size evaluation, 331

Powder in Capsule, 330

Phase I clinical formulation design,

320–323

and Preliminary Clinical Development

Plan, 342–345

Fluid-attenuated inversion recovery (FLAIR)

MRI, 364

Fraction unbound correction intercept method

(FCIM), 173

G
Gastrointestinal injury cell models

IECs, 142

Gastrointestinal injury cell models drug-

mediated toxicity, 142

Genetic editing, 122

Genomic editing, 155

Genotoxicity endpoints, 291

Genotoxicity testing, 291

GI toxicity screening, 142

Global marketers, 27

Global transcript analysis, 154

Glucose infusion rate (GIR), 69

Good laboratory practice (GLP) toxicology,

282

H
Health-care providers (HCPs), 29

Heart injury, 143

Hematopoiesis, 146

Hematotoxicity, 147

Hepatic glucose production (HGP), 69

Hepatic metabolism, 125

Hepatocyte, 141

Hepatocyte clearance model, 109

Hepatotoxicity, 125

HER-2/neu testing, 307

High-affinity ligands, 167

High-affinity trap, 167

Hill equation, 43

Hormone replacement therapy (HRT), 30

Human biliary clearance (hCLb), 187

Human clearance, 169, 175–190

allometric scaling (see Allometric scaling)

mechanistic prediction

constructing, mechanistic profile,

189–190

data collection, 185–189

oral administration, 187–189

physical-chemical and property space,

184–185

mechanistic scaling

clearance classification systems,

175–178
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structural/chemical rationale, 178–183

mechanistic scaling methods, 168

Hydrogen bond acceptors (HBA), 97

Hydrogen bond donors (HBD), 91, 97

Hydrophilic compounds, 403

Hydrophilic macromolecules, 402

Hydrophilic polymers or surfactants, 335

Hydrophilic prodrug approach, 399

3-Hydroxy-methylglututaryl coenzyme A

(HMG-CoA), 180

5-Hydroxytryptamine receptor 2B (5-HT2B)

receptor, 125

I
IC50 shift assay, 199

IDD-P® (SkyePharma), 335

IDE inhibitors, 67

Ideal drug candidate, MR, 325, 326

Imitrex®, 399

Immediate vs. modified release (IR vs. MR)

delivery profiles, 323

In Silico ADME

drug discovery process, 82

integrated and iterative process, early drug

discovery, 107–109

ligand-based techniques

Eli Lilly and Company, 94–97, 100

metabolism prediction, 103–104

pharmacophore modeling, 100–103

physicochemical properties and

parameters, 97–100

QSPR, 86–94

SPR/STR knowledge extraction,

104–107

structure-based drug design

MD, 85–86

molecular docking, 83–85

In silico pharmacokinetic predictions, 345

In Silico preclinical predictive modeling

3/75 Rule, 128

carcinogenicity risk, 135

eTOX collaboration, 135

genotoxic carcinogenicity, 132

in vivo toxicity, 135

ionization, 128

physchem properties, 128

physicochemical (physchem) properties,

127

QSAR models, 127

structural risk assessment, 129

structural similarity, 130

Tox21 vision and strategy, 127

toxicity risk assessment, 127

toxicophore, 133

In silico toxicology models, 134

In vitro cell culture systems, 402

In vitro CFU assays, 146

In vitro cytolethality assays, 145

In vitro screening approaches, 133

In vitro-in vivo extrapolation (IVIVE)

166

In vivo animal model bridging study, 337

In Vivo Pharmacology, 354

Bapineuzumab, 359–360

Induced pluripotent stem cells (iPSC), 148

Inflammatory bowel disease (IBD), 352

Inflammatory diseases

IBD, 352

PsA, 352

RA, 351

Information technology (IT) systems, 298

INH RoA Biopharmaceutical Assessment, 405

Inhalation (INH) Delivery, 403–405

inhalation devices, 404

Injectable Drug Delivery, 407–411

Injection site reactions (ISRs), 145

Insulin-degrading enzyme (IDE), 66–70

Integrated Information Technology (IT),

311–312

International Committee on Harmonization

(ICH) guidelines, 282

Intestinal epithelial cells (IECs), 142

Intestinal organoids, 142

Intradermal delivery (ID), 409

Intramuscular (IM) Delivery, 410

Intranasal (IN) Delivery, 399–401

Intravenous (IV) Drug Delivery, 410–411

Invasive delivery modes, 411

Investigational new drug (IND) application,

12, 119, 344, 374, 376, 380

maintenance, 386

overview, 381

PIND, 380

preparation, 381, 383–385

submission, 385, 386

iPSC reprogramming approach, 148

iPSC-derived cardiac cells, 149

Irreversible drug model, 50

Iterative learning cycle, 108

K
Kidney injury molecule-1 (KIM1), 152

Knowledge Management (KM)

311–312
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L
Lactate dehydrogenase (LDH), 128

LC MS/MS techniques, 62

Lead development and candidate selection

(LD/CS) stage, 325

Lead optimization (LO)

BBB, 208

brain penetration, 218

characteristic feature, 269

data sets and translatable models, 167

design cycles, 178

drug candidates, 206

drug development, 268

drug development teams approach, 287

drug discovery, 275

druggability, 269

Genotoxicity testing, 291

ICH M3(R2) guideline, 287

integrated preclinical data sets, 167

in vitro test systems, 278

Kinetic differences, 283

metabolic differences, 283

NHPs, 284

NOAEL, 288

nonclinical test systems, 283

pathology assessment parameters, 279, 280

pharmaceutical agents, 293

SAR, 277

selectivity screens, 292

TDI potential, 199

test material requirements, 274

toxicologist, 269

workflow, 275

Lead optimization (LO) drug discovery

program, 168

Learn and confirm cycle, 9–11

Life-threatening disease, 318

Linear regression, 90

Lipid-based formulations (LBFs), 334, 338

Lipophilicity (log P), 90
Liquid chromatography-mass spectrometry

(LC-MS), 130

Lisdexamfetamine, 375

Long-acting anesthesia, 402

Lung delivery, 403

Lung lining fluid, 403

M
MACCS fingerprint, 90

Machine learning methods, 91

Manipulating physchem parameters, 128

Mantoux technique, 409

Matched molecular pair analysis (MMPA)

ADME parameters, 106

aliphatic hydrogen atom, 106

aromatic ring, 106

CYP2C9 inhibition, 106

ionizable aliphatic ring, 107

knowledge-driven modification, 104

QSAR/QSPR model, 104

supervised and unsupervised methods, 105

switch transformations, 106

Matched molecular pairs (MMPs), 104

Matrix metalloproteases (MMPs), 71

Maximum absorbable dose (MAD), 250, 251

Maximum life span potential (MLP), 171

Maximum tolerated dose (MTD), 284

MdBio, 305

MDCK permeability vs. clog P, 98
MDCK permeability vs. TPSA, 99
MDR1-transfected MDCK cells, 325

Mechanism of action (MOA), 14

Mechanism-based inactivation (MBI), 193

Mechanism-informed phenotypic drug

discovery (MIPDD), 18

Mechanistic paradox and precision medicine

cancer and enzyme replacement therapy, 22

components, 21

drug discovery, 20

drug discovery and development blueprint,

21

efficacy and safety, 21

gene product (drug target), 20

genetic diseases, 22

goal, 21

NMEs, 22

orphan disease, 21

pharmaceutical industry performance, 20

pharmacological mechanisms, 21

prevention and treatment, 21

Metabolic stability, 84

Metabolic turnover model, 96

Metabolite-intermediate complex (MIC), 193

MetaDrug, 131

Metformin, 348

MIA NITEGE inhibition versus target

engagement ratio, 73

Microdosing, 206, 207, 310

Microneedles (MNs), 409

Microphysiological organotypic culture

systems, 150

Microsomal stability assessment, 109

Mid-stage LO toxicology work, 284

Minimal anticipated biological effect level

(MABEL), 344
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Minimal efficacious concentration (MEC), 331

Mini-Mental State Examination (MMSE), 361

Modified Release (MR) formulations, 325,

327, 328

Ambien CR® (Sanofi-Aventis), 324

Concerta® (Janssen), 324

deployment

framework, 325, 328

probability of technical success vs.
confidence in MR technology, 325,

327

PTS, 325

strategic, 325

development, 323

DR dosage, 323

drug candidates, 323, 324

Early to Later Development, 329

ER dosage, 323

FIH, 329–332

ideal drug candidate, 325, 326

pharmacodynamics, 324

pharmacokinetic profile, 323

pharmacokinetics, 324

PK–PD relationship, 323

POC study, 329

translation, 329

Molecular Access System (MACCS)

fingerprint, 90

Molecular docking, 83, 85

Molecular dynamics (MD), 85–86

Molecular mechanism of action (MMOA), 11,

14

Molecular weight (MW), 97

Monoclonal and polyclonal antibodies, 360

Multi-biomarker disease activity (MBDA)

score, 351

Multielectrode array technologies (MEA), 154

Multiple ascending dose (MAD) studies, 321,

344

Multiple endpoint measurement, 153

Multiple-dose administration, 347

N
N-acetyl transferases (NATs), 185

Nanocrystal formation, 335

Nanocrystal oral formulations, 335

NanoCrystal® (Elan Drug Technologies)

335

Narrow therapeutic windows, 318

National Cancer Institute’s (NCI), 305
National Center for Biotechnology Information

(NCBI), 120

National Health and Nutrition Examination

Survey (NHANES), 31

National Institutes of Health (NIH), 305

National Institutes of Health (NIH) Bench-To-

Bedside (B2B) Initiative, 302

National Institutes of Health National Center

for Advancing Translational

Sciences, 305

National Translational Cancer Research

Network, 305

Nebulizer devices, 404

Necropsies and histopathology evaluations,

286

Needle-free injectors, 415

Needlestick Safety and Prevention Act

412

Negative predictive values (NPV)., 124

Neonatal rat ventricular myocytes (NRVM),

143

Neoteny, 172

Net effect model, 203

Neurofibrillary tangles, 359

New biological entities (NBE), 374

New chemical entities (NCEs), 374

New drug application (NDA), 13, 119, 292,

375

New molecular entities (NMEs), 4, 5, 8, 343,

347, 348, 374, 392

New product planning, 30–32, 35–37

customer needs

brand-agnostic approach, 32

drug decision, 30

eliminating injections, 31

grouping anti-hypertensive patients, 31

HCP, 30, 31

medical education, 32

primary and secondary research, 30

qualitative and quantitative, 31

R&D, 32

segmentation market research, 31

single payer systems, 32

development and marketing partnership,

28, 29

disease state, 29–30

early drug development, 28

global and brand management, 27

Pesky competitors, 34–35

R&D, 27

marketing allies, 37

marketing collaboration, 37

marketing marriage, 35–36

scientific innovation, 33

SWOT analysis, 33–34
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Nicorette®, 402

NITEGE fragment quantification, 72

No observed adverse effect level (NOAEL),

206, 319, 344

Nonclinical safety assessment studies, 268

Noncommunicable diseases (NCDs), 7

Nonelectronic osmotic pumps, 58

Nonhuman primates (NHPs), 284

Non-oncology drugs, 289

Non-Oral Product Opportunities, 394–395

Nonsteroidal anti-inflammatory drug (NSAID),

347, 348

Nonsteroidal SERMs, 353

Nontraditional early development activities,

312

No-observed-adverse-effect level (NOAEL),

285, 286, 288

NTE-1 treatment, 68, 70

O
OATP inhibitor rifampicin, 207

OCT2 transporters, 348

Off-the-shelf spray devices, 400

On-site compounding (OSC), 338

Optimized absorption model, 253

Oral glucose tolerance test (OGTT), 67

Organization for Economic Cooperation and

Development (OECD), 285

Osmotic pump, 58

Osmotic pump infusion, 73

Osmotic Pump Study, 59–61

Osteoarthritis (OA), 70–75

Osteoarthritis (OA) drug program, 66

Osteopontin (OPN), 152

Osteoporosis, 349, 353

Ovariectomy (OVX), 354

OVX rat model study, 354

P
palatability, 337

Palatability, 337

Parallel study design, 318

Parallel study design, first-in-human single

ascending dose escalation protocol,

318

Particle size distributions (PSDs), 334

Patch Pumps, 414–415

Patient centricity, 257, 258

business parameters, 257

PBPK modeling, 348, 358

PDAPP mouse model, 364

Pediatric formulations, 336, 337

PET imaging, 363

Pharmaceutical industry initiative

BioRAM, 304–305

FDA, 298–299

NIH, 302, 305

PhAT, 300–301

translational medicine, 302–303

Pharmaceutical industry productivity, 14, 15

attrition, 5

bridging knowledge gaps, 434–435

c-Abl, 13

characteristics, 9

conformational mechanisms

allosteric modulation, 15

full agonism, 15

noncompetitive inhibition and/or

antagonism, 15

partial agonism, 15

uncompetitive inhibition and/or

antagonism, 15

decision-making, 427–428

drug candidate selection, 435–436

drug discovery, 13, 423, 424

drug discovery and development, 4

effectiveness, 425

efficiency, 425

goal, 3

good health, 3

high attrition/failure rate, 4

improvement efforts, 432–433

industry and medical research, 3

innovation, 6, 7

mechanisms, 423

equilibrium binding, 14

slow kinetics, 14

medicinal health, 4

MMOA, 14

MOA, 14

NMEs and degree of innovation, 8

opportunities, 22–23

partnerships and collaborations, 430–432

performance, 5

precision medicine, 5

redox mechanisms, 15

risk assessment and management, 436–437

scientific knowledge gaps, 426–427

stakeholder interests, 428–429, 437–439

structured molecules, 14

Pharmaceutical industry’s productivity rate, 27

Pharmaceutical marketing, 32

Pharmacodynamic activity (PD), 63

Pharmacodynamic data, 319
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Pharmacokinetic parameters, 318, 342

Pharmacokinetics, 319

Bapineuzumab development, 360–361

clinical pharmacology, 348

Pharmacological Audit Trail (PhAT), 300, 301

Pharmacophore modeling

ADME targets, 101, 102

alignment, 101

Bron-Kerbosh clique detection algorithm,

101

computational chemists, 100

CYP enzymes, 101

definition, 100

IUPAC, 100

ligand-based modeling technique, 100

500 OATP1B1 inhibitors, 103

parameters, 101

pattern-matching techniques, 101

precomputing ligand conformers, 101

steps, 101

Phase I clinical formulation design, FIH

clinical trial progression, 320

EP dosage forms, 322–323

physical and chemical properties, 320

preclinical efficacy models, 320

simplified manufactured dosage forms, 321

to NDA approval, 320

traditional manufactured solid dosage

forms, 321–322

Phase I multiple ascending dose (MAD) study,

319

Phenotypic drug discovery (PDD), 11, 16, 20

Phenotypic screening, 19

Physicochemical properties

absorbed compounds, 236

vs. biopharmaceutical properties, 239

developability assessment, 237, 238

Karl Fischer analysis, 236

physical and chemical attributes, 236

Physiologically based pharmacokinetic

(PBPK) models, 166, 204, 205, 344

Physiology-based pharmacokinetic modeling

software, 334

PI3K/mTOR inhibitor. See BEZ-235
PiB-PET, 362

Pilot methodology, 312

PK/TE vs time, 49

Placebo-treated patients, 363

PMI. See Process mass intensity (PMI)

POC study, 329

Polar surface area (PSA), 180, 404

Positron emission tomography (PET), 62, 310,

362

Post-processing techniques, 84

Powder in bottle (PIB), 338

Powder in capsule (PIC), 330, 338

Powder X-ray diffractometry (PXRD), 240

Powder-in-bottle (PIB) formulation, 321

PR3-ANCA, 352

Precision medicine, 5

Precision Medicine Initiative, 20, 21

Preclinical efficacy models, 320

Predictive biomarkers, 349

Predictive model development, 308–309

Prefilled Syringes (PFSs), 412–413

Preformulation, 232

Pre-investigational new drug (PIND)

submission meeting, 380

Preliminary clinical development plan and FIH

study design

biomarkers, 345

clinical development plan, 343

clinical trials, 343

cohort of subjects, 344

dose escalation, 344

dosing regimen and directions, 343

FIH trial marks, 344

healthy volunteers or patients, 344

IND application, 344

in silico pharmacokinetic predictions, 345

individual receives, 344

investigational drug product, 344

MABEL, 344

multiple ascending dose (MAD) studies,

344

new molecular entity (NME), 343

NOAEL, 344

planned dosing escalation, 344

regulatory guidance, 342

single ascending dose (SAD) studies, 344

target product profile, 343

Preliminary food effect study, 335

Probability of technical success (PTS), 325, 331

Process mass intensity (PMI), 235

Procollagen type 1 N-terminal peptide (P1NP),

350

Prognostic biomarkers, 349

Proof of concept (POC) principle, 300

Protein derivative (PPD) skin test, 409

Psoriatic arthritis (PsA), 352

PubChem BioAssay, 134

Q
QTc, 357

QTc interval prolongation, 349
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Quality target product profile (QTPP), 379

Quality-by-design (QbD) approach, 305

Quantitative structure-activity relationship
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