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Preface

The pharmaceutical industry, in the course of drug discovery and clinical
development, is continuously challenged to simultaneously reduce costs, timelines,
and the risk of attrition for clinical development compounds. These challenges
persist and by many accounts continue to mount, despite decades of technological
advances that have brought about improvements across all areas of pharmaceutical
research and development. Over the past 10 years, much emphasis has been placed
on the development and application of new and improved screens to aid in drug
discovery efforts and minimize clinical development risks. As a result, pharmaceu-
tical scientists are better able to screen out less desirable compounds and guide
discovery efforts toward drug candidates better suited to achieve the clinical
performance criteria across the variety of disciplines represented on the
discovery team.

Development organizations have also continually improved drug product plat-
forms and solubility enhancement technologies to address challenges associated
with the absorption of poorly soluble drugs. Innovation in the fields of novel oral
and non-oral drug delivery systems supports a range of molecular modalities,
enabling the delivery of drug candidates to specific target sites within the body.
However, application of these technologies has been mostly limited to a small
number of niche products.

Venturing into the more complex and uncharted territories of druggable but
non-validated pharmacological targets, discovery teams have had to retool their
strategies to: (a) establish a clear understanding of the relationship between target
engagement and the pharmacodynamic response, (b) develop relevant measurable
biomarkers across species, and (c) understand the relationship between ADMET
(adsorption, distribution, metabolism, excretion, and toxicology) parameters and
the SAR (structure activity relationship) of drug candidates, in a manner that
rapidly informs discovery efforts. To this end, remarkable strides have been made
in the development and utilization of recombinant technologies, imaging tools,
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ex vivo pharmacology models, and numerous in silico modeling and simulation
tools. In addition, the need for clinical validation of novel targets has necessitated
greater creativity in the design of early clinical studies in order to provide rapid
feedback to discovery teams engaged with backup drug candidate efforts.

Precompetitive partnerships among companies, open innovation industry-
academia collaborations, and other constructs are becoming increasingly prevalent.
These interactions have helped accelerate the pace of innovation and technology
development in various fields of drug discovery and development.

The digital age has also brought about significant changes to patient lifestyles
and caregiver profiles. It has revolutionized our ability to generate, share, and
analyze unprecedented amounts of data more efficiently than ever before. These
changes, along with changes in the payer profiles across the globe, global regulatory
requirements, and the large global partnership networks, have ushered in a new era
in the business of pharmaceutical research. In order to be successful in this new
playing field, it is essential that the pharmaceutical industry adapt to the changing
environment as outlined below and described in further detail in the chapters that
follow.

Once targets of interest have been identified, discovery efforts must also develop
a clear understanding of the patient, care provider, and payer profiles, projected out,
to the extent possible, to the estimated time of launch of the product. They must
have a good understanding of how the new therapeutic agent compares with or
complements the prevailing standard of care. This information must be used to
guide the definition of the product profile, which should then inform the
corresponding optimum molecular property space that medicinal chemistry efforts
need to target.

ADME and toxicology assessments should be fully integrated with the chemistry
and pharmacology trajectories in order to provide meaningful input into molecular
design, as well as a sufficient understanding of translatability to clinical studies.
Developability assessments require a judgment-based approach encompassing solid
form, drug product design, and performance evaluations, within the context of
potential challenges to clinical and commercial development, patient centricity,
cost, and other business considerations.

Clinical studies must be designed to provide high-quality information on the
safety, efficacy, and tolerability of the drug candidate as early as possible. Innova-
tions in clinical and ultimately commercial drug products are also needed to ensure
they are as simple and inexpensive as possible in order to rapidly inform further
development and/or provide feedback for subsequent backup efforts. New modal-
ities require drug delivery technologies that better cater to patient needs while
simultaneously improving compliance and therapeutic efficacy.
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This book is intended to provide pharmaceutical scientists across multiple
disciplines with additional background and insights to enhance their effectiveness
in their respective roles and thereby achieve greater success in the discovery and
development of new drugs.

Indianapolis, IN Shobha N. Bhattachar
Wallingford, CT John S. Morrison
Indianapolis, IN Daniel R. Mudra

Indianapolis, IN David M. Bender
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Chapter 1
Pharmaceutical Industry Performance

David C. Swinney

Abstract Good health is a priority for all. Medicines are an important aspect of
maintaining good health. However, medicines are very difficult to discover,
develop, and provide to patients. There are many more failures than successes
resulting in high attrition rates. Analysis shows there is more than one way to
discover medicines. As a consequence, the pharmaceutical industry is continuously
reshaping itself to address the challenges of high attrition. This introductory chapter
will highlight some of the challenges to pharmaceutical industry productivity, how
they are currently addressed, and how the industry is reshaping itself to address
these challenges. It is concluded that addressing these challenges creates many new
opportunities for innovation.

Keywords Pharmaceutical industry productivity » Degree of innovation ¢ Learn
and confirm cycle « Mechanistic paradox ¢ Precision medicine ¢ Drug discovery

1.1 Introduction

Good health is a priority for all, and medicines are an important aspect of
maintaining good health. The goal of the pharmaceutical industry is to continue
to provide safe and effective medicines for patients. However, these new medicines
are becoming more difficult and costly to discover, develop, and deliver. There are
many more failures than successes, and as a consequence, the pharmaceutical
industry is continuously reassessing its strategies to address the high attrition rates.

The hope of the industry and medical research has been that a greater under-
standing of the basis for disease enabled by new molecular technologies will lead to
new medicines that address all these challenges. While the implementation of these
new technologies has greatly increased the extent of disease biology knowledge and
enabled more precise use of approved medicines, it has not dramatically increased
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Fig. 1.1 New molecular entity (NME) approvals, by innovation category [1]

the number of new molecular entities (NMEs) approved by the US FDA [1]
(Fig. 1.1). Accordingly, the adjusted cost of developing a new medicine through
to regulatory approval has dramatically increased [2—4].

The consensus reason for the decrease in productivity is a high attrition or failure
rate [2—4]. A large fraction of drug research and development programs fail.
However, when these drug candidate failures occur at later stages in development
(phase III clinical trials), the costs are significant. There have been many proposals
and associated actions to address the attrition, many of which have been incorpo-
rated into the discovery and development process. Some of these processes have
reduced attrition due to specific issues, but none have yet improved overall
productivity [5].

Perhaps the biggest challenge to industry performance is translating molecular
understanding of diseases into medicines that can be effectively and efficiently used
to treat disease in patients. This is confounded by a mechanistic paradox:

while the knowledge of mechanism (e.g. how a drug works) is very helpful to discover and
precisely use medicines, paradoxically the knowledge initially available is rarely suffi-
ciently complete to provide a blueprint for discovery and initial use of the medicines.

The current vision for medicinal health is precision medicines that customize
healthcare, with medical decisions, practices, and/or products tailored to the indi-
vidual patient. It is envisioned that new genetic information and advances in
computation science and chemistry will enable this goal. However, knowledge of
how a drug works and how it can be precisely used only becomes available after it
has been discovered and tested; consequently the mechanistic paradox provides a
significant long-term challenge to achieving this objective.

This introductory chapter first lays out the general background of drug discovery
and development, providing some important definitions, emphasizing unmet
medicinal needs, highlighting recent success rates, and describing the process that
has evolved to identify safe and effective medicines. The later part of this chapter



1 Pharmaceutical Industry Performance 5

addresses some of the knowledge gaps contributing to high attrition rates that
provide challenges to implementing the vision of the Precision Medicine Initiative.

1.1.1 Definitions

Performance. Broadly defined as the action or process of carrying out or
accomplishing an action, task, or function. When applied to the pharmaceutical
industry, performance is typically defined as providing new medicines for patients.
The performance of the pharmaceutical industry has remained relatively constant in
terms of new molecular entities (NMEs) approved by the US FDA over the past
several decades (Fig. 1.1), despite considerable increases in expenditures. As a
consequence, the productivity (or ratio of performance/expenditures) has decreased
over this time. A number of excellent articles have been written to address the
decrease in productivity [2—4].

Attrition. The process of gradually reducing the effectiveness of something through
sustained pressure. Attrition in the pharmaceutical industry is the failure of poten-
tial medicines to be approved for use in patients by regulatory agencies and
ultimately reach the marketplace. These failures result in very significant financial
losses (1) due to research expenditures on failed projects which (2) were not
invested in projects that could have led to approved medicines and thereby
increased performance and productivity. There are many reasons for attrition with
the most common being the inability to show efficacy and the lack of tolerable
safety in human clinical trials [5] (Fig. 1.2).

Process. A series of actions or steps taken in order to achieve a particular end. For
example, a process has been installed in drug discovery and development across the
pharmaceutical industry to ensure that medicines submitted to regulatory agencies
are sufficiently safe and efficacious to be effectively used in patients. The process
usually involves initial preclinical testing to identify potentially safe and efficacious
drug candidates, followed by evaluating safety and efficacy in human clinical trials
(Fig. 1.3). More details of this process are discussed below in Sect. 1.1.1.

Precision medicine. Precision medicine refers to the tailoring of medical treatment
to the individual characteristics of each patient [6]. It does not literally mean the
creation of drugs or medical devices that are unique to a patient but rather the ability
to classify individuals into subpopulations that differ in their susceptibility to a
particular disease, in the biology and/or prognosis of those diseases they may
develop, or in their response to a specific treatment. Preventive or therapeutic
interventions can then be concentrated on those patients most likely to benefit,
sparing expense and side effects for those who will not. Although the term “per-
sonalized medicine” is also used to convey this meaning, that term is sometimes
misinterpreted as implying that unique treatments can be designed for each indi-
vidual. The discovery and precise use of medicines is a long-term goal of medical
research.
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Innovation. The introduction of something new. Innovation is commonly confused
with invention and creativity. Creativity is the ability to generate original ideas,
concepts, and objects. It spurs invention, which is most evident in the areas of
technology and business. Artists enjoy creativity, whereas engineers and scientists
focus on inventions. But innovation demands an additional ingredient: market
success.
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In a recent opinion in Nature, Kuziak stated that the path to innovation is
currently more art than science, which might explain why it is shockingly ineffi-
cient: the chance of an invention attaining enough commercial or social success to
be recognized as an innovation reaches no more than low single percentages. In the
US Small Business Innovation Research program, a very low proportion of grants
results in a viable economic activity, product, or service. In markets that are
saturated, such as those of mobile phones or medical discoveries, the success rate
is even lower [7].

The goal to discover, develop, and market innovative new therapies is arguably
the grand challenge of medical research. As noted above, there is a clear process to
ensure therapies that reach the market are safe at effective doses; however, this
process does not ensure that new therapies will be innovative. This aspect occurs
earlier in the basic research and discovery phases and will be discussed in more
detail in Sect. 1.1.2.

1.1.2 Unmet Need

The primary goal of the pharmaceutical industry is to provide medicines for unmet
medical needs. The priority unmet medical needs for Europe and the world in 2013
were identified in a report from the WHO (World Health Organization) [8]. The
report identifies:

» The population of Europe and the world is aging, with more people—especially
women—Iiving beyond the age of 80. Since 2004, for the first time in Europe,
there are now more people over the age of 65 than under 15 years. With this
aging, there is a marked increase in diseases of the elderly such as osteoarthritis,
lower back pain, hearing loss, and Alzheimer’s disease.

e Ischemic heart disease, stroke, depression, chronic obstructive pulmonary dis-
ease (COPD), and alcoholic liver disease were all considered as areas for priority
research as was the need for specific biomarkers which could be used to identify
potential pharmaceutical products, diagnose and monitor the progression of
disease, or assess the effect of treatment.

¢ Tobacco use, alcohol abuse, and obesity are risk factors that underlie many of the
most common serious noncommunicable diseases (NCDs) affecting both Europe
and the world. While prevention efforts must take precedence, the report stated
that research is needed on pharmaceutical methods to address these risk factors
and the pathologies exacerbated by these risk factors (e.g., COPD, various
cancers, alcoholic liver disease, osteoarthritis, and diabetes).

» Antibacterial resistance and pandemic influenza remain major threats to global
public health. Malaria and tuberculosis (TB) represent major threats, especially
in low- and middle-income countries. Antimicrobial resistance will remain a
threat until primary prevention with vaccines occurs. Diarrhea, pneumonia,
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neonatal conditions, and maternal mortality are major contributors to the global
burden of disease. For neglected tropical diseases and rare diseases, establishing
new mechanisms to promote the translation of basic research into clinically
important products remains a priority. The report identified that while progress
has occurred since 2004 in the treatment of Buruli ulcer, other diseases such as
leishmaniasis, trypanosomiasis, and dengue still require substantial research.

The report also stated that pharmaceutical innovation should encompass special
groups of patients such as the elderly, women, and children, who have particular
needs in relation to dosage forms and products. The development of appropriate
formulations for children and the elderly needs to be supported. Progress has been
made in some oral forms but more is needed. Furthermore, research is needed on the
use of electronic health records (EHRs) to deliver much-needed information on
safety and effectiveness of medicine use in these populations.

1.1.3 NME:s and the Degree of Innovation

Pharmaceutical performance for all novel therapeutics approved by the FDA
between 2005 and 2012 was evaluated using a framework established by the
FDA to classify the degree of innovation: first-in-class, advance-in-class, and
addition-to-class [9]. Although innovation can be measured in different ways,
drugs with novel mechanisms of action (first-in-class) are largely considered to
be the most innovative. Drugs that provide important clinical benefits despite not
being mechanistically novel (advance-in-class) may be equally important innova-
tions in terms of their clinical promise [1]. The report compared the use of priority
review and accelerated approval regulatory pathways, regulatory review times, and
characteristics of pivotal trials, including number, design, primary end point,
duration, and size, for novel therapeutics stratified by degree of innovation
(Fig. 1.4). Between 2005 and 2012, the FDA approved 188 novel therapeutics:
70 (37%) were first-in-class, 42 (22%) were advance-in-class, and 76 (40%) were
addition-to-class. Over half of the biologics (56%, 19 of 34) were first-in-class;
nearly half of the small molecules (46%, 70 of 154) were additions-to-class and
accounted for 73% (51 of 70) of first-in-class therapeutics. Almost two-thirds of
therapeutics approved for autoimmune and musculoskeletal diseases (64%, 7 of 11)
were first-in-class, as were one-third of therapeutics for cancer (36%, 14 of 39) and
less than one-quarter of therapeutics for psychiatric disease (22%, 2 of 9). The
authors concluded that the FDA was consistently applying existing regulatory
levers to support and accelerate the review and approval of drugs considered
mechanistically innovative (i.e., first-in-class therapeutics) as well as those antici-
pated to provide substantial clinical advances (i.e., advance-in-class therapeutics
acting through existing mechanisms of action) [1].
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Fig. 1.4 Characteristics of novel therapeutics approved by the FDA between 2005 and 2012,
stratified by degree of innovation. Data for first-in-class therapeutics are shown in green, advance-
in-class therapeutics in orange, and addition-to-class therapeutics in blue. (a) Use of special
regulatory pathways. Lighter circles represent the total number of therapeutics, whereas the darker
circles nested within the lighter circles illustrate the proportion of therapeutics approved through the
special regulatory pathways. (b) First review and total regulatory time. (¢) Characteristics of pivotal
efficacy trials, aggregated to account for all trials supporting the FDA indication approval [9]

1.2 Drug Discovery and Development Overview

1.2.1 Learn and Confirm Cycle

The creation of medicines to treat unmet medical needs involves an iterative cycle
of testing and learning. Figure 1.5 describes some of the important phases of this
process in which research, discovery, and development activities are initiated to
provide a treatment for disease. Physiological, genetic, and chemical knowledge are
generated and used to understand the disease, and this knowledge helps identify
translation biomarkers to evaluate the effectiveness of the potential medicine.
These activities represent the research phase (12 to 3 o’clock in Fig. 1.5).
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Fig. 1.5 Learn and confirm cycle of drug discovery and development. Drug discovery and
development cycle. The approval of a medicine to treat an unmet medical need including a rare
disease involves an iterative cycle of testing and learning. This figure describes some of the
important phases in the process. The process of discovery and development of a new medicine is
initiated in response to an unmet medical need to treat a disease. Physiological, genetic, and
chemical knowledge provide an understanding of the disease. This knowledge will lead to the
identification of translation biomarkers that are used to evaluate the effectiveness of a potential
medicine. The available knowledge informs drug discovery strategies which are used as starting
points for the practical process of discovering a new medicine. Target-based drug discovery
(TDD) is associated with modulating a specific gene product known as the target, and phenotypic
drug discovery (PDD) is a strategy driven by assays which measure phenotypes associated with the
disease. Ideally these phenotypes will be associated with the translational biomarkers. These two
strategies generally are focused on small molecules and are medicinal chemistry intensive, in
contrast to biologics which use recombinant proteins and antibodies as therapeutics. It should be
noted that the knowledge to choose a strategy is generally incomplete; however, the more
iterations that occur in the drug discovery/development cycle, the more complete the knowledge
and the better chance that a molecule will make it to registration. The discovery strategies will
result in a lead molecule, ideally with activity against the translational biomarker. The molecule
will work by a molecular mechanism of action (MMOA) that provides an optimal therapeutic
index. These molecules will then be optimized for biopharmaceutics properties and safety to
provide a drug candidate. At this point, the process of drug discovery is complete, and the
molecule should succeed or fail based on its own merit. Opportunities to improve efficiency in
drug discovery will increase the probability that clinical candidates will make it to registration.
The left hand of the circle (from 6 to 12 o’clock) is the development phase of drug discovery which
involves testing for safety and efficacy in humans leading to registration. Multiple iterations are
generally required before a medicine with sufficient efficacy at a safe dose is discovered, tested in
humans, and registered

The objective of the research phase is to generate knowledge that will inform the
discovery phase. In the most effective processes, the discovery and development
phases further refine this knowledge and provide feedback for continued research.
There are many types of knowledge important to drug discovery and development: the
cause of the disease, including the genetic contributions, pharmacological mecha-
nisms of action that can safely modulate the disease, the most appropriate therapeutic
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molecular modality (small molecules, biologics, nucleic acids), and the pharmaceuti-
cal properties of these molecules. Initially there are gaps in this knowledge base, and
processes have been put in place to bridge or de-risk these gaps. An important feature
of a productive R&D paradigm is to efficiently use the available knowledge and to
effectively integrate new knowledge as it becomes available.

The knowledge obtained during the research phase is used to inform the discov-
ery phase (3 to 6 o’clock in Fig. 1.5) and establish strategies that will be used as the
practical starting points for creating new medicines. Target-based drug discovery
(TDD) is associated with modulating a specific gene product or target, whereas
phenotypic drug discovery (PDD) is a strategy driven by assays which measure
phenotypes or observable characteristics associated with the disease. Ideally these
phenotypes are also associated with translational biomarkers. Both of these strate-
gies are primarily small molecule focused and medicinal chemistry intensive, in
contrast to biologics which use recombinant proteins and antibodies as therapeutic
moieties. The knowledge required to choose a specific strategy is initially incom-
plete; however, further iterations in the research/discovery/development cycle add
to the knowledge base and improve the chances that a molecule will possess sufficient
efficacy and safety to survive to registration. Successful discovery strategies result in
lead molecules with a molecular mechanism of action (MMOA) that provides an
optimal therapeutic index and which ideally provides activity against translational
biomarkers. These lead molecules are then further optimized to improve
biopharmaceutics properties and safety which yield a drug candidate for clinical
assessment. At this point, the drug discovery phase is complete, and the molecule
must succeed or fail based on its own merit with no further structural modification.

The left-hand portion of the cycle (from 6 to 12 o’clock in Fig. 1.5) represents
the development phase of the process in which the drug candidate is tested for
safety and efficacy in humans and if successful ultimately leads to registration.
Multiple iterations of the entire research/discovery/development cycle are often
required before a medicine is created with sufficient efficacy safety.

1.2.2  Process to Identify Safe and Effective Medicines

As noted above, a key challenge of drug discovery is to identify molecules that are
safe at efficacious doses. Since it is impossible to a priori predict all interactions of a
medicine within a patient, a process has evolved that first identifies potential drug
candidates and then de-risks these molecules in numerous tests.

This process of drug discovery involves the identification of molecular struc-
tures, synthesis, characterization, and screening in assays for therapeutic efficacy
and safety. Compounds demonstrating beneficial activity in these tests begin the
process of drug development leading to clinical trials. This process has evolved
over time to identify molecules that are safe as well as efficacious as further
outlined below (Fig. 1.3).
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Target identification and validation. This is the typical starting point for drug
discovery programs. There is currently much debate regarding the role of this
step in the process, which is discussed further in Sect. 1.4. Armed with an idea,
researchers work to identify biological targets for a potential medicine. A drug
target is a molecular structure in the body that, when it interacts with a potential
drug compound, produces a clinical effect (e.g., treatment or prevention of a
disease). The investigators conduct studies in cells, tissues, and animal models to
determine whether the target can be influenced by known medicinal agents.

Lead identification. After learning more about underlying disease pathways and
identifying potential targets, researchers seek to narrow the large field of potential
compounds to one lead compound. This promising molecule provides activity
against the target and has the potential to become a medicine. Candidate molecules
are created from living or synthetic material and tested with high-throughput
screening techniques.

Lead optimization. Lead investigational compounds that display sufficient potency
to survive the initial screening are then “optimized” or structurally altered to
improve efficacy and safety. By changing the structure of a compound, scientists
can modulate its properties. Hundreds of different variations or “analogues” of the
initial leads are produced and then tested and ranked in multiple assays. The
resulting “best” compound that meets the required profile criteria becomes a drug
candidate and undergoes extensive further testing and analysis before potentially
being reviewed for approval by regulatory agencies.

Preclinical safety testing. Scientists carry out both in vitro and animal tests to assess
the compound’s safety. Through these techniques, researchers strive to understand
what potential side effects may occur in humans. Techniques for making a drug on
small-scale preclinical stage may not translate easily to larger production. There-
fore, during this stage, scientists must also determine how sufficiently large quan-
tities of the drug candidate can be produced for toxicity studies as well as to support
clinical trials. Further production will also be required once the medicine is
approved for use in the general patient population.

Investigational new drug application and clinical trial planning. Before any clin-
ical trial can begin, drug sponsoring organizations must file an investigational new
drug (IND) application with the FDA. The application includes the results of the
preclinical work, the candidate drug’s molecular structure and properties, details on
how the investigational medicine is thought to work in the body, a listing of any
potential side effects indicated from the preclinical studies, and manufacturing
information. The IND also provides a detailed clinical trial plan that outlines
how, where, and by whom the studies will be conducted.

Phase I clinical trial. In phase I trials, the candidate drug is tested in people for the
first time. These studies are usually conducted with a small number of healthy
volunteers, generally 100 individuals or less. The main goal of a phase I trial is to
assess the safety of the medicine when used in humans. Researchers explore the
human pharmacokinetics of a drug: how it is absorbed, distributed, metabolized,
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and eliminated (ADME) from the body. They also study the drug’s intended and
unintended pharmacodynamics (potential side effects). These closely monitored
trials are designed to help researchers determine a safe dosing range and if the
candidate medicine warrants advancement to the next stage of development.

Phase II clinical trial. In phase II trials, researchers evaluate the candidate drug’s
effectiveness in 100 to 500 patient volunteers with the disease or condition under
study. Many phase II trials evaluate patients receiving the drug candidate versus a
comparator treatment, either an inactive substance (placebo) or a different drug that
represents the standard of care for the disease. At this stage, researchers analyze
optimal dose strength and dosing schedules. Possible short-term side effects
(adverse events) and risks associated with the drug are also investigated. Drugs
that continue to show promise are advanced to much larger phase III trials.

Phase Il clinical trial. Phase III trials generate statistically significant data about
the safety, efficacy, and the overall benefit-risk relationship of the investigational
medicine. Phase III trials may enroll 1000 to 5000 patients or more across numerous
clinical trial sites around the world. This phase of research is essential in
establishing whether a drug is safe and effective. It also provides the basis for
labeling instructions to help ensure proper use of the drug (e.g., information on
potential interactions with other medicines, specific dosing instructions, etc.).

FDA review and approval of marketing application. Once the clinical trials have
demonstrated that the drug candidate is both safe and effective, the sponsoring
company submits a new drug application (NDA) or biologics license application
(BLA) to the FDA requesting approval to market the drug. These applications
contain the results and data analysis from the entire clinical development program,
as well as the earlier preclinical testing and proposals for manufacturing and
labeling of the new medicine. These documents can run 100,000 pages or more.

1.3 How Medicines Work

The process of drug discovery evolved to ensure that drug candidate molecules
address an unmet medical need without compromising patient safety. Knowledge of
how a drugs works (e.g., its mechanism of action) is helpful to translate under-
standing of the disease to treatment for the patient. For instance, a specific mutation
in a gene that results in cancer can inform the selection of a target as well as the
patient population for clinical testing. As an example, c-Abl is a kinase that when
mutated causes chronic myelogenous leukemia and can be treated with the inhibitor
imatinib [10]. Some forms of melanoma are caused by a mutation in BRAF kinase,
which are treated with the BRAF inhibitor vemurafenib [11].

It has been long recognized that pharmacological action begins with an interac-
tion between two molecules (a drug and a target). Ehrlich noted in 1913 that a
substance will not work unless it is bound, corpora non agunt nisi fixata [12]. How-
ever, target binding alone is not always sufficient for a substance to initiate the
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desired physiological process. For example, two similarly structured molecules can
bind to:

1. An enzyme with similar affinity; however, only the molecule that binds in a
suitable manner will initiate the catalytic reaction.

2. A receptor with similar affinity; however, an agonist will initiate a response,
whereas an antagonist will block the response.

The molecular mechanism of action (MMOA) through which binding is coupled
to the pharmacological response affects dose-response relationships and the thera-
peutic index. But simply knowing the parts of an efficient machine, be it a watch,
automobile, or computer, is not sufficient to understand how it works. The parts
must collaborate in precise ways to provide the desired accurate outcome: time,
reliable transportation, or processed information.

Analogously an MMOA is the interaction between a drug and its target
(or targets) that creates a specific response. These specific molecular interactions
link structure to function in such a manner as to provide a therapeutically effective
and safe response. As such, an MMOA differs from a mechanism of action (MOA),
which only describes the process from the context of the physiological response
(such as antihistamines, anti-inflammatory, etc.). There are many facets to this
interaction that ultimately result in the desired therapeutic outcome. For example,
the particular site of interaction (allosteric or orthosteric), molecular descriptors of
the binding interaction (such as affinity and binding kinetics), the functional impact
(receptor agonism, modulation, or antagonism), and the specificity of the functional
outcome (activation of specific signaling pathways) all contribute to the MMOA
and affect the ultimate pharmacological response. Possible MMOAs at a target are
listed below, together with selected examples of drugs that act through these
MMOA:s.

(a) Kinetic mechanisms.
For kinetic mechanisms, a pharmacological response to the drug is primarily
driven by binding kinetics and residence time at the target [13—17].

 Equilibrium binding. The response is determined by the equilibrium dissoci-
ation constant (K;) of the drug to the target. Binding has sufficiently rapid
association and dissociation rates (k,, and ko) that allow equilibrium to be
reached, and this process is therefore sensitive to competition with physio-
logical substrates and/or ligands. Examples include bosentan, an endothelin
receptor antagonist, and aliskiren, a renin inhibitor [18, 19].

» Slow kinetics. Non-equilibrium and irreversible mechanisms involve slow
association and/or dissociation rates (k., and k.g) that do not allow equilib-
rium to be reached, and these processes are less sensitive to competition with
physiological substrates and/or ligands. Examples include orlistat which
binds irreversibly to the active site serine of pancreatic lipase, azacitidine
which irreversibly binds to DNA methyltransferases, and candesartan which
has a slow dissociation rate from the angiotensin II receptor [13—17, 20-22].
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(b) Conformational mechanisms.

For conformational mechanisms, drug binding results in a conformational
change in the target that elicits a response. Examples include sirolimus which
binds to the peptidyl-prolyl isomerase FKBP12 and stabilizes a conformation
that subsequently inhibits the kinase activity of mammalian target of rapamycin
and fulvestrant which induces a conformation of the estrogen receptor that is
subsequently degraded [13, 23-27].

* Noncompetitive inhibition and/or antagonism. This MMOA involves drug
binding to a target at a site that is distinct from the physiological substrate,
and/or ligand-binding site, and results in an inhibition of the response.
Caspofungin is believed to be a noncompetitive inhibitor of 1,3-p-p-glucan
synthase, owing to the observation that its ICsq (half-maximal inhibitory
concentration) is not influenced by substrate concentrations [28].

» Uncompetitive inhibition and/or antagonism. An uncompetitive MMOA is
contingent on prior activation of the target by a physiological effector (the
substrate or the ligand). As a consequence, the same amount of drug blocks
the response to a greater degree at higher versus lower concentrations of the
physiological effector. Memantine is an uncompetitive antagonist that binds
only to the activated form of the NMDA receptor. The potency of the
inhibition of the NMDA receptor by memantine increases at higher concen-
trations of glutamate (the physiological ligand [29, 30]).

o Full agonism. Maximal efficacy is produced following drug binding to a
receptor and subsequent receptor activation. For example, ramelteon mimics
the activity of melatonin for the melatonin receptor through binding at the
orthosteric site with efficient coupling to activate specific signaling
pathways [31].

» Partial agonism. This form of MMOA produces only partial efficacy fol-
lowing drug binding to the orthosteric site on the receptor. Examples include
aripiprazole as a partial agonist of the dopamine D, receptor and varenicline
as a partial agonist of the nicotinic acetylcholine receptors [32-34].

» Allosteric modulation. This mechanism involves regulation of the biological
activity of the target by binding of a drug at a site distinct from the site for
the endogenous substrate and/or ligand (allosteric site). Cinacalcet is an
allosteric modulator of the calcium receptor by binding to the allosteric
site [35].

(c) Redox mechanisms.

Reduction-oxidation (redox) reactions produce a pharmacological response
to the drug as a consequence of electron transfer between the drug and a
physiological target. For example, generation of hydroxyl radicals by
verteporfin is thought to contribute to its ability to damage cells, and the
antiprotozoal activity of nitazoxanide is believed to be due in part to interfer-
ence with the pyruvate ferredoxin oxidoreductase enzyme-dependent electron
transfer reaction, which is essential to anaerobic energy metabolism [36, 37].
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A major challenge in the identification of safe medicines is to identify molecular
mechanisms of action (MMOAS) that provide both sufficient efficacy and safety
[13, 24, 38—41]. These MMOASs can be thought of as “pharmacological hot spots.”
Due to the dynamic complexity of physiology both at the molecular and systems
level, it is difficult to a priori predict the exact interactions and molecules that will
elicit a safe, therapeutically useful response.

1.4 Drug Discovery Strategies: How Medicines
Are Discovered

Medicines come in many forms (biologics, small molecules, etc.) and are discov-
ered in different ways. The generally preferred drug discovery process involves
utilizing whatever knowledge of a molecular mechanism is available to help
identify potential new medicines. Unfortunately, in many cases, this knowledge is
incomplete, most notably for first-in-class medicines. As a result, one of two drug
discovery strategies to increase this knowledge base is pursued:

1. Target-based drug discovery (TDD). For target-based drug discovery, a “thera-
peutic hypothesis” refers to the concept that perturbing a particular target in a
given manner will benefit patients with minimal (or at least acceptable) toxicity.
Ideally, the data for validating such a therapeutic hypothesis is derived from the
patient population of interest as a result of direct perturbation of a target with a
known function. However, strictly speaking, the only truly validated targets are
those that are already successfully modulated by a safe and effective
therapeutic [42].

2. Phenotypic drug discovery (PDD). Phenotypic assays measure a phenotype
response in a physiological system (e.g., animals, cells and biochemical path-
ways) [43, 44]. A phenotype is the physical appearance or biochemical charac-
teristic of an organism as a result of the interaction of its genotype and the
environment. Phenotypic assays provide an empirical method to probe effects in
physiological systems with minimal assumptions as to the molecular details of
how the system works. The phenotype most relevant to the practice of drug
discovery is a phenotype that directly translates to the clinical disease (transla-
tional biomarker).

Phenotypic assays have always played an important role in drug discovery
[40, 45]. Much of early pharmacology and drug discovery was based on phenotypic
assays, which were used to identify lead compounds that provided the desired
efficacy. In his Nobel lecture entitled “Selective Inhibitors of Dihydrofolate Reduc-
tase,” George H. Hitchings Jr. stated “Those early, untargeted studies led to the
development of useful drugs for a wide variety of diseases and has justified our
belief that this approach to drug discovery is more fruitful than narrow targeting”
[45]. In the final decades of the twentieth century, the emphasis of drug discovery
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changed to a more reductionist, target-based approach, with phenotypic assays used
primarily to confirm efficacy and evaluate safety. This was driven by the molecular
and genetic revolutions with the capabilities to identify many new drug targets and
the potential toprovide numerous new medicines. Though not explicitly stated, the
drug targets were also intended to be biomarkers for the disease. In this paradigm,
the central features are (1) identification of a molecule that binds to the selected
target and (2) optimization of the biopharmaceutics properties such that the drug
concentrations in the body are sufficient to ensure that the drug is available to bind
to the target throughout the dosing interval. This target-based paradigm was
envisioned to provide a more rational approach to drug discovery, analogous to a
design and engineering approach in other industries.

The general lack of productivity with the TDD approach has led to a reemerged
interest in the last few years for using phenotypic assays to drive discovery.
Swinney and Anthony analyzed the discovery strategies for NMEs approved by
the US Food and Drug Administration (FDA) between 1999 and 2008 [41]. Of the
259 agents identified, 75 were first-in-class drugs with new MMOAs, and of these,
50 (67%) were synthetically derived small molecules versus 25 (33%) that were
biological agents produced in cells. The results also showed that the contribution of
phenotypic screening to the discovery of first-in-class small-molecule drugs
exceeded that of target-based approaches—with 28 and 17 of these drugs coming
from these two approaches, respectively. This discrepancy is especially notable in
an era in which the major focus was on target-based approaches. A more recent
analysis by Swinney and Xia showed a similar trend of success with phenotypic
strategies. Between 1999 and 2012, there were 102 NMEs approved for rare
diseases. Within the first-in-class NMEs, 15 used phenotypic drug discovery,
12 used target-based drug discovery, and 18 were biologics [46]. The Swinney
and Anthony analysis suggested that compound identification using a phenotypic
approach can also be effective (function-first/phenotypic drug discovery (PDD)). It
was concluded that the function-first approach was valuable for uncovering new
molecular mechanisms of action (MMOAs) that a priori were difficult to
identify, and this contributed to the success of phenotypic assays for first-in-class
medicines [41, 47].

Clearly the pharmaceutical industry and medical research are heavily invested in
the target-based approach for both technical and intellectual reasons. When this
process works (in other words when the target/MMOA are validated), it provides a
rational approach for discovering and developing medicines, analogous to engi-
neering. The ability to apply structure-based design to a specific target allows
optimization of efficacy and drug-like properties in a rational way. A target-based
approach also aligns with the potential for genetics to explain the cause of disease
and provide biomarkers for discovery and clinical evaluation. This in turn allows
better selection of patients for clinical trials and increases the probability of success.
The clinical pharmacology directly relates dosing to target occupancy in order to
maximize the therapeutic index. And finally, a target provides an understandable
metrics to communicate mechanism of action to the stakeholders across the value
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chain, from researchers in discovery biology and medicinal chemistry to drug
developers and program funders.

Despite these benefits, there are two major challenges for the TDD approach.
First is the necessity of identifying and validating the target. Second, as described
earlier in this chapter, the MMOA of an effective medicine must provide a safe and
effective response. This process is more complex than simple occupancy of a drug
target and is difficult to a priori predict. The renewed interest in phenotypic
screening provides new opportunities to address these challenges through integra-
tion of the systems (PDD) approach with the current target-centric (TDD) approach.

Two recent manuscripts by Moffat et al. and Eder et al. provided two different
perspectives to this issue [48, 49]. The Moffat paper addresses the challenges of
relating a target and genetics to a well-defined phenotype [48], while the Eder work
focuses on the processes that successfully led to identification of first-in-class
medicines [49].

Moffat et al. investigated the contribution of phenotypic screening toward
oncology therapeutics, an area in which target-based approaches have been partic-
ularly prominent. In many cases, disease-causing genes also provided patient-
specific biomarkers for clinical evaluation [48]. The authors defined pure pheno-
typic screening to be a discovery process identifying chemical entities able to
produce desirable biological and therefore phenotypic effects on cells or organisms
without prior knowledge of the biological activity or mode of action against a
specific molecular target(s). However, the authors noted that in practice many
projects are not target agnostic and conversely many target-based discoveries rely
heavily on phenotypic assays. They concluded that recent phenotypic screening in
cancer drug discovery has been hampered by a reliance on “classical” nonspecific
drug phenotypes such as cytotoxicity and mitotic arrest. They instead proposed that
mechanism-informed phenotypic drug discovery (MIPDD) provides a basis to
better identify the causal relationships between target inhibition and phenotypic
effects. Such mechanistically informed phenotypic models can provide some con-
firmation that the targeted agents have the necessary MMOA. Additionally knowl-
edge of the drug target enables diagnostic hypotheses and the development of
pharmacodynamic biomarkers [50].

Eder et al. performed a very thorough analysis of the origins of first-in-class new
drugs, emphasizing the processes that led to identification of the new drugs [19]. To
this end, phenotypic screening was defined as the testing of compounds in a
systems-based approach such as cells, tissues, or animals using a target-agnostic
assay that monitors for a phenotypic change. This definition assumes that no
mechanistic information is available. The analysis by Eder shows that the majority
of first-in-class drugs were discovered with target-based approaches as opposed to
the finding in the Swinney and Anthony 2011 paper in which the majority were
categorized as being discovered by phenotypic screening. This discrepancy is
partially resolved by Eder as being due to the categorization, in which they included
biologics as target based as well as drugs discovered using a chemocentric
approach. The category ‘“chemocentric” was used to categorize systems-based
approaches in which an active component had been identified previously, such as



1 Pharmaceutical Industry Performance 19

isolation of aspirin from willow bark. Eder et al. concluded that phenotypic
screening and target-based screening were complementary strategies not requiring
researchers to choose between the two [49].

Ultimately the conclusions of the Moffat and Eder groups depended on the
definitions used for phenotypic screening, and it is the differences in the definitions
and corresponding interpretations that provide interesting insights. In the Swinney
and Anthony 2011 paper [41], the term ‘“phenotypic screening” was used to
describe any approach in which the MMOA that provides a tolerable therapeutic
index is not assumed. In this context, phenotypic screening is empirical and
includes all screening that is not target based. This definition focused on synthetic
small molecules and excluded biologics as well as natural substance-based medi-
cines. This is primarily because the question addressed in the analysis was “what
type of mechanistic knowledge led to the identification of MMOAs that provide
safe and effective medicines.” The work by Moffat et al. recognized this issue and
specifically addressed the concern with a new category that bridges between TDD
and PDD, mechanism-informed PDD (MIPDD) [48]. The paper by Eder et al. did
not address this aspect [49].

Many of the features important for successful drug discovery are relevant to both
the PDD and TDD strategies. This includes the necessity of progressing forward
with an incomplete understanding of the disease pathobiology, chemistry, and
mechanisms of drug action. It remains a continued challenge to relate the molecular
aspects of drug action to a safe and therapeutically useful response in patients.
Moffat and coworkers ultimately conclude that very few recent cancer drug dis-
covery success stories can be described as purely TDD or PDD, and PDD therefore
remains a crucial activity in selecting, validating, and developing cancer drugs with
optimal MMOAs [50]. Accordingly an integrated view of drug discovery that links
molecular drivers to molecular targets to well-defined phenotypes is recommended.
While Eder et al. highlight the success of TDD, they also discussed the promise of
phenotypic screening to uncover new therapeutic principles and molecular path-
ways for currently untreatable diseases. They even proposed that phenotypic
screening be considered as a new discipline [49].

It is clear that the strengths of PDD and TDD compliment their respective
weaknesses. The strengths of TDD include the tools to optimize molecular inter-
actions and translate between genetics and clinical disease markers. TDD is facil-
itated by complete and accurate knowledge of physiology, chemistry, and
pharmacology, which is both a strength and a weakness. Alternatively, the empir-
icism of PDD can compensate for the often incomplete knowledge available for
TDD. However, as both studies noted, PDD requires validated biomarkers and
robust physiological relevant assays (Fig. 1.6). As proposed by Moffat and
coworkers [50], better integration of the empirical/phenotypic and molecular/tar-
get-based approaches is needed with a mind-set to identify an effective molecule.
Using this mind-set, the target becomes a tool rather than an outcome.

Clearly, effective integration of drug discovery disciplines is needed, in which
different approaches with both strategies and tools are used as appropriate for a
given project based on available knowledge. As mentioned previously, the
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Fig. 1.6 Complementarity of target-based drug discovery (TDD) and phenotypic drug discovery
(PDD) strategies

complementary strengths of TDD and PDD should help compensate for their
respective weaknesses, with the ultimate goal of improving drug discovery
productivity.

1.5 Mechanistic Paradox and Precision Medicine

From the above discussions outlining how medicines work and how they were
discovered, it is clear that the relationship between a gene (with a mutation) and
pharmacological modulation of the gene product (drug target) to provide a phar-
macological response is both complex and unique. The knowledge of how a
particular drug works, the patient population in which it works, and how it is best
used comes only after it has been discovered and tested clinically. Consequently,
this presents a mechanistic paradox in drug discovery:

while the knowledge of mechanism (e.g. how a drug works) is very helpful to discover and
precisely use medicines, paradoxically the knowledge available during drug discovery is
rarely sufficiently complete to provide a blueprint for the discovery and initial use of
medicines.

Addressing this paradox is an important challenge for pharmaceutical industry
performance and translating molecular understanding of the diseases into medi-
cines that effectively and efficiently treat disease in patients. Toward this goal, the
Precision Medicine Initiative was implemented in 2015 [6]. The underlying concept
of precision medicine is to refine the understanding of an individual illness based on
their specific genetic makeup and other personalized medical data. The aim of the
initiative, according to US President Obama, is to usher in a new era of medicine
that harnesses data to support and advance research, technology, and policies as
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well as empowering healthcare providers and patients. The goal of precision
medicine is to “get the right treatment to the right patient at the right time,”
providing more personalized care and ultimately resulting in better outcomes at
lower costs.

The initiative has two main components: a near-term focus on cancers and a
longer-term aim to generate knowledge applicable to the whole range of ill health
and disease. Both components are now within reach because of advances in basic
research, including molecular biology, genomics, and bioinformatics. Furthermore,
the initiative taps into converging trends of increased connectivity, through social
media and mobile devices, and Americans’ growing desire to be active partners in
medical research [6].

Such a varied array of research activities will propel our understanding of
diseases—their origins and mechanisms and opportunities for prevention and
treatment—Ilaying a firm, broad foundation for precision medicine. It will also
pioneer new models for doing science that emphasize engaged participants and
open, responsible data sharing. Moreover, the participants themselves will be able
to access their health information and information about research that uses their
data [6].

Therapies with safe and effective pharmacological mechanisms will need to be
identified in order to realize the full potential value of the Precision Medicine
Initiative toward connecting the understanding of the causes of disease to treatment
of patients. Unfortunately, what we have learned in the last 20 years is that
identification of a gene rarely directly identifies a drug therapy. It will be important
to address the knowledge gap of the previously described mechanistic paradox. One
approach is to continue acquiring more complete knowledge to provide a drug
discovery and development blueprint. However, the magnitude of this challenge is
enormous as it involves understanding every dynamic interaction in physiology, as
well as how they change with time and between individuals. The cost and time
needed to acquire this knowledge and determine its importance will be
considerable.

How can drug discovery become more innovative and productive given the
inherent knowledge gaps? The drug discovery and development process has
evolved over time to better ensure efficacy and safety of medicines in patients.
These processes do not however ensure innovation, and it can be argued that they in
fact limit innovation. The key challenge is to address the mechanistic paradox:
although the pharmaceutical industry is enabled by knowledge and needs this
knowledge for precise use of medicines, this knowledge is unfortunately always
incomplete.

When successful, the Precision Medicine Initiative will categorize patients more
precisely into smaller groups based on the specifics of the disease. In doing so, these
diseases may begin to have patient subpopulation numbers similar to rare (orphan)
diseases. An orphan disease is categorized by the US FDA as one with less than
200,000 patients. Analysis of drug discovery in orphan diseases provides some
insights into the successes and challenges that will need to be addressed including
how treatment options can be identified and/or created in a patient relevant time
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frame. The most obvious way is to identify an approved medicine that could be
repurposed or, if warranted, used off-label. Another more direct option is to
discover a medicine specific for that disease. However, currently only a few
medicines are discovered each year for rare diseases. A recent analysis by Swinney
and Xia in 2014 found that only 46 first-in-class medicines were approved for rare
diseases over a 14-year period [46]. In this analysis, the impact of genetic knowl-
edge on successful drug discovery was assessed since over 80% of rare diseases are
genetic. It was concluded that genetic contributions (25%) were underrepresented
with respect to the number of genetic diseases. This analysis of NMEs approved for
orphan rare diseases provided further insights into factors important to bridge the
knowledge gap in drug discovery. It was concluded that knowledge of most
diseases and the underlying molecular causes is incomplete. An additional chal-
lenge is that knowledge of the cause, for instance, a genetic defect or multiple
genetic defects, rarely provides a specific molecular solution. Plenge, Scolnick, and
Altshuler recently noted most preclinical research programs have incomplete
supporting material to accurately inform the drug discovery strategy [42].

The successful genetic approaches, while being fewer than expected based on
the number of genetic diseases, were in disease areas with substantial supporting
knowledge to facilitate drug discovery. For example, the success of kinases for
cancer and enzyme replacement therapy for inborn errors of metabolism was due to
significant preexisting research which provided an understanding of both molecular
and physiological challenges. Perhaps most interesting were the examples where an
understanding of regulatory pathways involved in diseases provided knowledge
that led to successful therapeutic strategies [46] (e.g., hereditary angioedema/HAE
and cryopyrin-associated periodic syndromes/CAP [51]).

1.6 Opportunities

The challenge of improving pharmaceutical industry performance requires signif-
icant innovation. While the complete knowledge needed to draft a blueprint for the
discovery and use of an innovative first in class medicines is unlikely be available
for many diseases, there are opportunities to innovatively bridge the knowledge
gaps. These involve collaborations as well as cross-discipline initiatives and teams.
Some examples at different stages of drug discovery and development include:

¢ The Precision Medicine Initiative (discussed above) which will provide disease
biomarkers and help identify underlying genetic causes of diseases [6].

¢ The European Lead Factory, established in 2013 to find valuable, lead candi-
dates that can be utilized to develop novel treatment options for patients [52].

¢ Quantitative Systems Pharmacology (QSP) defined as an approach to transla-
tional medicine that combines computational and experimental methods to
elucidate, validate, and apply new pharmacological concepts to the development
and use of small-molecule and biologic drugs [53].
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BioRam, a biopharmaceutics risk assessment roadmap that optimizes drug
product development and performance by using therapy-driven target drug
delivery profiles as a framework to achieve the desired therapeutic outcome [54].

These initiatives represent a snapshot of the many aspects of drug discovery and

development that are not addressed in this introductory chapter but will be
discussed in subsequent chapters.
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Chapter 2
New Product Planning and the Drug
Discovery-Development Interface

Robin Reagan

Abstract The pharmaceutical industry is under increasing pressure to deliver safe
and innovative drugs more quickly without incurring unsustainable R&D costs.
Regulatory hurdles have risen in tandem with customer expectations making it
essential that the science and commercial functions partner early and effectively
throughout a molecule’s march from target concept to an optimized, market-ready
drug. Unfortunately, numerous examples exist of failures to achieve this key, cross-
functional collaboration resulting in well-intentioned drugs paving the road to
disappointed hopes. Here we review the key variables and timing of the collabora-
tion between discovery, development, and commercial (new product planning).
A successful collaboration ensures that the best molecule is identified and devel-
oped resulting in a successful launch, rapid adoption, and broad use over its life
with a positive impact on human health.

Keywords New product planning ¢« Pharmaceutical marketing

2.1 Overview and Introduction

The pharmaceutical industry’s productivity rate on a background of increasing
competition and payer pressures requires optimal teamwork across the pharmaceu-
tical value chain over a long period. While every function brings critical compe-
tencies to the drug development journey, one of the most important partnerships in
early development is for research and development (R&D) and commercial to
co-officiate in marrying science to unmet market needs. When scientists and new
product marketers work effectively together, the benefits to customers are far
ranging while simultaneously creating a competitive advantage to the firm.
Ironically, new product marketers and early development scientists have much
more in common in some respects than new product marketers have with their
global and brand management colleagues. Global marketers typically engage when
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a drug is several years prior to launch so expectations for its efficacy, safety,
tolerability, formulation, and delivery are fairly set. Local country brand managers
usually work from a centrally developed brand plan which they are tasked to
execute in their market over 12-24 months. Early new product marketers, like
their development colleagues, operate with considerable uncertainty over a signif-
icantly longer timeframe, especially when in a therapeutic area new to the com-
pany. The high failure rate in early development requires both scientists and early
marketers to focus on advancing the science or gaining and reapplying new
knowledge.

Marketers involved in early drug development manage uncertainty through a
variety of tools and techniques to identify the highest potential drug development
ideas from the perspective of the customer. Though these techniques are different
from those deployed in the lab, both the marketer and scientist combine statistically
validated research with qualitative insight gained from internal and external experts
to understand and predict the future. In this chapter we will review how marketers
define value by understanding the disease, customer needs, the science, and oppor-
tunities and threats concluding with a brief discussion of the development and
marketing partnership and ways to make it more productive.

e Marketing’s job is to translate customer needs into actionable information
for R&D. In turn, R&D must help marketing understand the disease and
tools (drugs, formulation, delivery, devices, and packaging) that could
meet those needs. Customers win when science and marketing come
together with solutions to very specific unmet needs.

» The rise in payer power may be the single most important market change
in pharmaceutical marketing over the past 10 years. R&D and marketing
ignore this at their peril when embarking upon an early program.

* R&D and marketing, however, must be fully aligned beginning with
preclinical data generation on a plan for staggered educational messages
that ultimately addresses key unmet customer needs.

e Whether R&D’s goals are revolutionary innovation, incremental benefit,
or simply a “me-too,” marketing should identify and share customer needs
to ensure that R&D can translate those needs to possible solutions from
which the best molecule is selected.

» From the “inside out,” groundbreaking or novel science is exciting and
seems valuable. From the “outside in,” the question is whether that novel
science translates into a benefit or solution the customer doesn’t have
today.

» Working with marketing early can prompt ideas for assays or preclinical
studies to explore hypotheses that increase the probability of identifying
and achieving a bundle of benefits in the clinic valued by one or more
customer groups and target patients.

(continued)
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* R&D input into profile testing in the context of the competitive environ-
ment for qualitative and quantitative market research is enormously help-
ful, especially if the marketer is new to the disease state or early product
development.

» The new product planner must anticipate and plan, years in advance, for
the impact of regulatory changes, competitor events, and environmental
trends with the entire team’s expert input.

» It’s much better to conduct research prospectively grounded in a firm
understanding of unmet customer needs than to be fairly advanced and
attempt to retrofit a drug’s benefits and risks to a customer.

» Early program scientists and marketers should be natural allies in the
pursuit of satisfying customer needs. Each function brings valuable, spe-
cialized expertise to the partnership, which can be a highly combustible
combination for igniting innovation.

2.2 Understanding the Disease State

Scientists spend years studying a disease, a drug target, or how to translate bench
science into an actual drug. Unfortunately, this doesn’t always guarantee a com-
mercially successful product. The marketer is R&D’s essential link to the customer
dealing with the disease, patients, health-care providers (HCPs), and payers, in
addition to allied stakeholders such as regulatory authorities, professional organi-
zations, patient advocacy groups, and, in many cases, government agencies. An
agile marketer can quickly learn the basics of the science involved in a disease and
then focus on understanding the current treatment model and what patient and HCP
needs remain unmet. Marketing’s job is to translate customer needs into actionable
information for R&D. In turn, R&D must help marketing understand the disease
and tools (drugs, formulation, delivery, devices, and packaging) that could meet
those needs. Customers win when science and marketing come together with
solutions to very specific unmet needs.

Unfortunately, not every disease is well understood (e.g., fibrotic disorders) nor
does every professional medical society have straightforward guidelines or treat-
ment recommendations. The treatment of many diseases remains a blend of judg-
ment and science based on the best available data, which is then individualized to
the patient. Barring a disease with no treatment options, new therapies take time to
be evaluated in real-world clinical settings, gain reimbursement, and prove safety in
broad use across much more diverse patients than typically seen in clinical trials.
Even with older drugs, data may be lacking to prove benefit or risk because the cost
of testing a widely held belief is expensive, impractical, or unethical. In other cases,
HCPs are reluctant to accept a single trial as sufficient evidence for changing
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medical practice for a new or an old drug. Hormone replacement therapy (HRT) is a
good example of this. There have been wide ranging opinions regarding the safety,
indications for use, and efficacy of HRT products. The clinical trials ranged from
the original studies by manufacturers to government-funded studies such as the
Women’s Health Initiative. Some HCPs found reconciling the different data impos-
sible, so they rely on their own experience informed by reputable sources. This
leads to a wide variation in usage. Understanding the human motivations and
beliefs behind current treatments and potential future options for both HCPs and
patients is a key marketing responsibility.

A basic disease understanding and knowledge of current treatment guidelines is
the starting point after which new product marketers conduct exploratory qualita-
tive market research to understand actual practices in a product-agnostic manner,
especially in dynamic disease states. Understanding HCP beliefs about the disease
and current treatment options is the next step to evaluate whether emerging science
will challenge or complement current thinking. Marketers seek to clarify whether,
how much and when treatment follows or deviates from current standards. Once
marketers have this understanding, they turn their focus to a deeper understanding
of customer needs (HCP, patient, caregiver, and payer) using a variety of analytical
and statistical tools and methods to gather, organize, and analyze information in a
systematic manner.

2.3 Customer Needs

The customer for an ethical pharmaceutical differs from consumer products for
several reasons. Most notably, the patient or end user is rarely the drug decision-
maker who is typically, though not always, a health-care provider. In addition, other
important customers influence the drug decision including payers and, for some
diseases, a caregiver. Balancing the many, sometimes conflicting, needs of these
multiple customers isn’t always easy and in some cases is impossible. A novel drug
has a much better chance at success when R&D and marketing work closely
together to maximize customer satisfaction within complex boundaries. So while
the patient is the ultimate consumer and can choose not to fill a prescription (due to
cost) or take a drug (because it’s too difficult or the side effects too bothersome), the
choice of drug is made by the HCP within the constraints payers and sometimes
caregivers raise. Factor in the need to meet regulatory requirements heavily
weighted toward safety, and the result is a more complicated matrix of customers
than what is involved in motivating a consumer to pick one product vs. another on
the store shelf.

Marketers use primary and secondary research to understand these multiple
customer needs. Primary research is conducted by the company starting from a
blank slate and focuses on very specific objectives. Secondary research is
conducted by others using a variety of sources and can range from syndicated
research and data mining sold to multiple customers to free sources from
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government databases such as the National Health and Nutrition Examination
Survey (NHANES) which assesses and tracks changes in health over time. Both
primary and secondary research can be qualitative and quantitative. Qualitative
market research seeks to understand the “why” behind the customer’s response and
in early drug development can be conducted as in-depth, individual interviews,
focus groups, and expert advisor input gained individually or in an advisory board.
Quantitative market research uses validated statistical tools and techniques to get at
hard facts such as the likelihood to prescribe a new drug compared to current
treatments or the relative value of different benefits.

In early drug development, a key quantitative technique to understand customer
needs is segmentation market research. This market research builds on a qualitative
disease state understanding to identify and prioritize customer needs in order to
group their characteristics, beliefs, and needs for guidance on which customer
groups might be best suited for a new drug. In contrast to science, where data are
hoped to provide a clear answer, marketers segment, or group, customers to identify
unique, identifiable, and actionable differences. There’s no single “right” way
customers could be grouped, but it’s the best way for purposes of understanding
the disease or evaluating how novel drugs may solve their needs with an acceptable
level of risk. Grouping anti-hypertensive patients by their degree of hypertension is
unlikely to be unique. Grouping them by a mix of their comorbidities, coping
mechanisms, or support network would likely generate a more actionable segmen-
tation scheme. An, obese middle-aged mother will have different priorities for
managing her hypertension than an aged male stroke survivor in assisted living.
Segmentation does not look solely at rational, clinical factors (type and stage of
disease, family history, age, etc.), but also psychosocial factors and patient-centered
(ethnographic) needs.

HCPs similarly and routinely consciously and subconsciously group patients in
order to individualize care. In addition to “hard” clinical data, HCPs assess many
“soft” factors before changing or intensifying treatment such as a patient’s
demeanor (upbeat vs. negative), self-care (neat vs. untidy), and motivation (coop-
erative vs. combative), among others. While no physician will fail to treat a patient
appropriately, they avoid pushing a patient to the point where they won’t return and
may reserve extra effort or innovative drugs for patients who have the resources—
physical, mental, financial, and family, to follow the HCP’s orders. Understanding
this dynamic, how big the different segments are, and consistency across geogra-
phies ensures that marketing can propose the best groups of patients for a novel
drug and appropriately forecast its market potential.

When scientists or marketers forget the needs of the target patient, it’s possible
to register a drug and then withdraw it from the market due to commercial failure.
For example, eliminating injections is a high priority need for needle-phobic,
insulin-dependent patients. However, the number of people with truly debilitating
needle-phobia appears to be small. Based on the low, slow adoption of inhaled
insulin, the majority of people with diabetes appear to view the safety concerns,
hassle, and cost of inhaled insulin as not worth eliminating the injection.
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Segmentation market research changes over the course of a drug’s development
from the brand-agnostic approach outlined above to increasingly specific research
framed around the drug in development and its emerging profile. As noted previ-
ously, development scientists and new product marketers share the need to assess
and plan despite uncertainty around a drug’s benefit-to-risk profile. Marketers
manage this in early development by testing both ranges and different bundles of
effects with physicians, patients, and payers to see the impact on the likelihood to
prescribe, take, and reimburse, respectively. Until Phase 3 results are available;
however, neither the marketer nor the scientist knows the actual profile which has
significant implications for speed of uptake, sales volume, and all the operational
requirements necessary to have a drug ready to succeed at launch and beyond.

In some therapeutic areas, HCPs and patients are surprisingly consistent around
the world in their unmet clinical and emotional needs. In contrast, payers vary
significantly and demand different types and levels of proof to meet their expecta-
tions. The most obvious difference is in countries with single payers, typically the
government, and those with multiple insurers. However, even among single payer
systems, there can be key differences in the type of data required before a novel drug
is reimbursed. Payer-specific data needs are not always easily satisfied in Phase
3 clinical trials which must meet regulatory requirements focusing on safety. Yet
failure to meet payer requirements can result in patients never receiving an innovative
drug due to poor or slow reimbursement. The rise in payer power may be the single
most important market change in pharmaceutical marketing over the past 10 years.
R&D and marketing ignore this at their peril when embarking upon an early program.

No drug, no matter what level of innovation, sells itself. At a minimum, medical
education is necessary simply to make customers aware of a novel drug. Marketing
can determine, with R&D’s help, what other scientific knowledge needs to be
reinforced, created, or changed to prescribe the drug appropriately. If the drug
establishes a new class or introduces a different treatment approach, then it is
particularly important for R&D and marketing to collaborate on the customer
medical education strategy. It’s a given that the timing and disclosure of proprietary
science require coordination across multiple functions over time. R&D and mar-
keting, however, must be fully aligned beginning with preclinical data generation
on a plan for staggered educational messages that ultimately addresses key unmet
customer needs.

The more R&D can understand the needs of these different customer groups,
then the more their deep expertise and creativity can be unleashed for solutions that
a marketer could not conceive. Whether R&D’s goals are revolutionary innovation,
incremental benefit or simply a “me-too,” marketing should identify and share
customer needs to ensure that R&D can translate those needs to possible solutions
from which the best molecule is selected. Once a chemical structure becomes a
candidate, clinical trials become the primary lever to influence its profile. While
downstream formulation chemists can try to fix molecular shortcomings through
their genius, it’s not always possible to solve problems cost-effectively or quickly
enough to prevent costly delays. Early, healthy R&D/marketing collaboration
enables scientists to design customer needs into the molecule increasing the prob-
ability of technical success in the clinic.
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2.4 Does Science Matter?

Sometimes it seems like the most fundamental difference between R&D and
marketing centers around the value of scientific innovation. This is a perfect
example of the difference of an “inside-out” vs. “outside-in” perspective. From
the “inside out,” groundbreaking or novel science is exciting and seems valuable.
From the “outside in,” the question is whether that novel science translates into a
benefit or solution the customer doesn’t have today. It’s also a key to avoid the
expert’s bias against science that seems incremental or “clunky,” but is safe and
delivers high-value benefits.

So of course science matters. But how it matters is in the clinical value it brings
to patients, not simply in being new. Remarkable, elegant science that offers no
benefit over current options will be viewed as another, more expensive tool with
unproven safety. Working with marketing early can prompt ideas for assays or
preclinical studies to explore hypotheses that increase the probability of identifying
and achieving a bundle of benefits in the clinic valued by one or more customer
groups and target patients.

This is a key area where R&D, working in partnership with marketing, can
translate innovative science into satisfying existing and new customer needs both
obvious and subtle. One consumer goods example of this is the OXO Good Grips
brand of kitchen utensils. Originally conceived as a solution for cooks with manual
dexterity issues, the brand has thrived as consumers of all ages realized and valued
the utensils’ ease of use, quality, and modern design. Importantly, the company
understood and met the needs of their primary target customer, before they
expanded to broader customer groups [1]. The “science” of designing an easier-
to-use tool mattered, but customer insights ensured incorporation of other elements
such as avoiding the stigma of a “handicapped” tool that ultimately expanded their
sales to many more customers.

Science matters, but we need curious scientists and marketers to collaborate in
translating science into customer-centered solutions. Further, this collaboration
must continue throughout the R&D value chain and over time as ways to create
customer value exist across every function. If you’ve ever struggled to open plastic
clamshell packaging, you know that no matter how great the product, the company
lost their customer focus at the final step of packaging and the first point of product
experience.

2.5 The SWOT Team or How to Look Critically at Your
Program

A SWOT analysis, evaluating your program (strengths and weaknesses) in the
context of the general and specific market issues (threats and opportunities), is a
common planning tool across companies and functions. In early drug development,
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the SWOT analysis forces team members across R&D, clinical, and commercial to
look critically at their program and their company’s capabilities for positives and
negatives. For example, the drug may have the potential for superior efficacy
(strength), but must be dosed twice a day (weakness), or research has discovered
an exciting drug candidate (strength), but in a therapeutic area where the company
has no clinical design experience (weakness). Analyzing strengths and weaknesses
focuses on factors that the company can directly affect while evaluating threats and
opportunities examines external trends and potential events, e.g., the rise in geno-
mic profiling or a drug class proving a significant benefit such as a cure similar to
what hepatitis C drugs have recently achieved.

Market research into the impact of the drug’s profile as it advances is necessary
to stay current with the market because counterintuitive opportunities and issues
can easily arise. For example, if every treatment for a disease has significant,
unpleasant side effects and a novel treatment does not, then HCPs may perceive
the drug as weak. Market research could establish what trials or data were necessary
to prove potent efficacy in addition to tolerability and safety. Further, once one drug
has proven a benefit, customers are likely to expect that from subsequent drugs in
that class and anything else new unless they offer an offsetting benefit. The bar for
customer expectations typically only rises. There are exceptions when a side effect
emerges in a leading drug class after widespread use. A well-executed SWOT
analysis will capture both “inside-out” factors (program and company strengths
and weaknesses you can affect) in addition to “outside-in” factors (threats and
opportunities over which you have less control).

Because of differences in expertise, filters, and market knowledge, it’s essential
that a broad functional group works together to ensure a robust SWOT analysis. The
presence of R&D, marketing, medical, and operations in this exercise ensures that
the analysis is thorough and diverse. A comprehensive SWOT analysis allows the
early development team to work together to monitor the market and account for
contingencies while putting in place plans to reinforce strengths and mitigate
weaknesses. Late-in-the-game commercial requests can be minimized or at least
land on receptive development colleagues prepared to respond positively due to
early identification of and planning for that scenario.

2.6 Those Pesky Competitors

Another important, iterative marketing tool throughout drug development is an
analysis of the competition. Once the disease state, the unmet needs of groups of
patients with that disease, and physician attitudes and beliefs are understood, then
it’s necessary to understand the attractiveness of current and future treatments and
how a novel drug compares. R&D input into profile testing in the context of the
competitive environment for qualitative and quantitative market research is enor-
mously helpful, especially if the marketer is new to the disease state or early
product development. Moreover, observing qualitative market research, such as
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in-depth interviews or advisory board discussions between key thought leaders, can
be very valuable for the R&D team. The use of webcams, remote interviews, and
virtual meetings makes this much easier and less expensive than just a few years
ago when most market research and advisory board meetings were conducted in
person. The primary caveat for R&D (or any function) participating in qualitative
market research or advisory board discussions is to resist drawing conclusions from
a small subset of interviews or opinion leaders who don’t reflect “real-world”
clinical knowledge or practice. It may be helpful to view qualitative market
research and advisory board discussions as proof of concept testing, while quanti-
tative market research, like early clinical trials, addresses key questions based on
statistically powered data from a more representative customer sample.

New product marketers evaluate a slew of competitor activities including the
impact of new entrants (based on assumptions around their profile), launch order
(who is first, second, third, etc.), launch timing (how much of a lead do the first and
subsequent market entrants have), approved indications, and price and reimburse-
ment assumptions. Due to its size and pricing freedom, the USA has always been
central for long-term product planning, but even in the USA, more uncertainty has
entered in some therapeutic areas as the Federal Drug Administration raised higher
hurdles than their regulatory counterparts in other countries and regions. The new
product planner must anticipate and plan, years in advance, for the impact of
regulatory changes, competitor events, and environmental trends with the entire
team’s expert input. Japan, for example, has modernized their regulatory process in
recent years to enable more rapid availability of innovative products. More rapid
access to newer, more expensive drugs in a super-aged society, however, may
prompt significant changes to the Japanese reimbursement system in the future.
The new product marketer in partnership with pricing and reimbursement experts
assesses these opportunities and risks to inform early development in order to
increase the probability a new drug will be competitive at launch years in the future.

Marketing leads planning for changes in the competitive landscape, but plans
will likely be inadequate if R&D is not a strong collaborator throughout the process.
Given that regulatory agencies and payers frequently demand remediation in the
form of additional clinical work or process changes, it is in the best interest of R&D
to engage closely with marketing to ensure frequent, informed market monitoring,
analysis, and scenario planning at the research-development interface. Fortunately,
the benefit to anticipating competitor moves and market events accrues not just to
the most advanced drug but also to those earlier in the pipeline.

2.7 How to Have an R&D and Marketing Marriage Made
in Heaven

Perhaps the single most important thing R&D can do to work effectively with new
product marketing is to take every opportunity to understand customer needs. The
best marketers understand the customer’s importance and should respond
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enthusiastically to development partners who join them with creative ideas to meet
their needs. When everyone has serving the customer as their “true north,” then it
becomes remarkably easy to navigate across cultures, functions, geographies,
personalities, and styles. Even if your company designs and incents R&D and
marketing to collaborate, the quality and ease of partnering when everyone is
aligned on what’s best for the customer will be higher. Your task is much harder
if your company has not created processes and rewards for collaboration, but it’s
still possible to succeed if you seek to understand each other’s constraints and work
together to overcome them on behalf of the customer [2].

If your firm has structured and funded drug development to enable early,
productive collaboration with marketing, then your main effort may be simply to
do your job well. Unfortunately, the benefits of early development-marketing
partnerships are not immediately obvious to everyone in an organization. Down-
stream pressures to fund new launches or marketed products can force reduced
headcount and resources necessary for development and marketing to work effec-
tively together. If you’re in an environment where marketer sightings at team
meetings are infrequent or unknown due to organizational design, resources, or
culture, then reach out to marketing formally or informally for a consultation to
learn more about the customer and whether your target and/or ideas resonate. It’s
much better to conduct research prospectively grounded in a firm understanding of
unmet customer needs than to be fairly advanced and attempt to retrofit drug’s
benefits and risks to a customer.

Meet with your marketing partners prepared to translate science into layperson
terms and the “so what” of novel biology or innovative chemistry. Recognize that
your marketer may be fairly new to early drug development and require coaching to
recognize when they need to pay attention. Development milestones are obvious
points of engagement, but there can be other, subtle moments that ping your
marketer’s radar such as a dose that is predicted to be large or druggability hurdles
that increase active drug ingredient cost. This is an area where marketers and
development chemists should jointly challenge the team to improve potency or
pursue less difficult synthesis pathways.

Recognize that the majority of marketers are further downstream and may have a
very different focus as they work to launch and promote drugs on the market. Most
new product marketing groups are smaller and may cut across several therapeutic
areas. This can be understandably frustrating to scientists who’ve spent years to
become experts and want an equally experienced and competent marketing partner.
Experts can be fairly intimidating for marketers who are trained in transferable
skills and are expected to learn quickly how to apply them in new therapeutic areas.
As a scientific leader, you can help your marketing colleagues by providing mini-
tutorials or easy-to-understand references for their use to level the playing field.
What the marketer brings to the partnership is a profound understanding of the
customer and the environment in which our drugs will compete. Help your marketer
accelerate up the scientific learning curve, and they’ll reciprocate by deepening
your customer understanding potentially igniting your scientific creativity in ways
you may never have considered.
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2.8 Should R&D and Marketing Collaborate Early or
Late? Yes!

Academic researchers have explored this topic from the perspective of collabora-
tion between different functions and cultures, timing, and even whether the product
represents an incremental or breakthrough innovation [3]. Mix all of these impor-
tant elements with a high dose of variability driven by individual personalities, and
there seems to be evidence for a variety of successful approaches. If R&D is well
guided directionally by deep customer understanding and strategic guardrails, then
one could argue that new product marketing is valuable in early development
primarily for occasional consults and updates as the market changes. However,
the health-care market is dynamic with constant, rolling changes in customer
perceptions and expectations. Combine this with employee turnover and new
science offering up novel targets with bundles of benefits previously unavailable,
and collaborating early and regularly is wise. In addition, competitive hurdles don’t
always rise. When unexpected safety issues arise in a marketed drug or HCPs report
lower than expected real-world efficacy, then a program with a previously
noncompetitive benefit-to-risk profile may be possible to revive.

2.9 R&D and Marketing Are Allies, Not Enemies

Early program scientists and marketers should be natural allies in the pursuit of
satisfying customer needs. Each function brings valuable, specialized expertise to
the partnership, which can be a highly combustible combination for igniting
innovation. Unfortunately, differences in culture, inadequate processes, misaligned
incentives, lack of trust, and poor understanding of each other’s constraints and
timelines can result in an equally explosive recipe for frustration, resentment, and
hostility. Scientists are bright, creative, and solution oriented. The best, however,
are those able to translate their complex, technical world into benefits the marketer
and the customer can understand. Motivated marketers will work hard to learn a
new disease state or pathway, but generous R&D colleagues can translate and
interpret how their function can create additional benefits. Similarly, if you place
the customer first and seek out your marketer to help meet their needs through
innovative science, then there’s no need for you to become a marketing guru. Your
marketer will happily bring you along resulting in rich rewards from your construc-
tive R&D/marketing collaboration for our customers, our companies, and yourself.
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Chapter 3

Target Engagement Measures in Preclinical
Drug Discovery: Theory, Methods, and Case
Studies

Timothy B. Durham and Michael R. Wiley

Abstract Target engagement (TE) in drug discovery is generally defined as the
interaction of ligands with their target biomolecules. Understanding TE allows
research teams to design and interpret quality in vivo experiments, providing a
more refined assessment of target validation. It can also orient teams toward
delivering molecules that better enable clinical studies by focusing SAR efforts
on the optimization of projected human performance characteristics. In this chapter,
theoretical aspects of TE and its importance for addressing drug discovery issues
like selectivity and the relationship of pharmacokinetics to pharmacodynamics are
addressed. Methods to measure TE directly are reviewed along with a discussion of
how to estimate TE based on pharmacokinetic data. The principles outlined within
the chapter are then demonstrated by application to a theoretical drug discovery
effort focused on validation of a novel protein target. Finally, two case studies are
discussed in which application of these principles was used to optimize compounds
toward desired human performance characteristics in one instance and to drive a
target de-prioritization decision in another.

Keywords Biological target engagement ¢ Target engagement ratio
Pharmacodynamic response ¢ Target validation

3.1 Introduction

Target engagement (TE) in drug discovery, sometimes expressed as target occu-
pancy, describes the physical interaction of a drug molecule with its corresponding
biological target [1]. Having a clear understanding of the time course of TE in vivo
is a prerequisite for achieving quality hypothesis testing in the execution of
meaningful efficacy studies, both in preclinical models and in patients [1]. Recently,
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much has been written about the often poor translation of preclinical data into
clinical outcomes and its impact on the cost and efficiency of the drug discovery
process [2—7]. In fact, the failure to achieve efficacy in phase 2/phase 3 clinical
trials is now the most common and by far the most costly contributor to the
technical failure of clinical candidates. Therefore, it is critical that efficacy exper-
iments are designed to deliver the most useful information possible, to either
validate or invalidate specific mechanisms of drug action, given the commitment
of resources and time needed to complete them.

To that end, research teams that focus on developing a reliable understanding of
TE from their inception are better able to design effectively, learn efficiently, and
act decisively in the prosecution of both preclinical and clinical research. For
example, this approach impacts a team’s ability to make quality decisions regarding
the selection of specific tool compounds, along with appropriate doses and dosing
regimens, for conducting informative preclinical efficacy studies [8]. Subsequently,
those data can be used to more effectively design projected human efficacy exper-
iments, as well as the performance characteristics of drug candidates required to
carry them out [9]. Finally, by rigorously focusing SAR efforts to deliver those
performance characteristics as early in the program as possible, teams have the
opportunity to minimize the number of iterative learning cycles and thus maximize
the speed and efficiency of the candidate selection process.

In this chapter, our first objective is to review the basic concepts that drive TE
in vitro and in vivo. Then we discuss how research teams can use those concepts to
design and analyze studies to explore the relationship of TE with efficacy in more
complex biological systems. Finally, we provide a couple of illustrative examples
from our own research efforts. Of course unique issues will be encountered with
each research team/project, depending on the specific disease area, target family,
and mechanism of drug action under investigation. However, this perspective
should serve as a useful guide to initiate cross-functional dialogue as teams
deliberate on strategies to pursue their targets of interest.

3.2 Basic Concepts

For drugs having reversible, rapidly equilibrating binding interactions with their
biological targets, TE can be easily estimated with reliable knowledge of both the
drug concentration under study and the affinity constant for the particular drug-
target pair. For most drug discovery programs, apparent binding parameters are
usually derived from in vitro data which define the concentration-dependent effect
of the drug on a relevant biological activity parameter. For example, consider the
case represented by the drug-protein complex and corresponding concentration-
response curve illustrated in Fig. 3.1. In this simple model system, the protein exists
in either a free/active state or a drug-bound/inactive state. Although this example
illustrates a small molecule that functions as an inhibitor, the analysis applies
equally, regardless of the functional consequences of drug-target binding. Upon
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Fig. 3.1 Reversible drug-binding model. (a) Reversible drug-binding model. (b) Concentration-
response curve with Hill coefficient (h) = 1

visual inspection, the theoretical concentration-response curve shown in Fig. 3.1b
represents a high-quality data set based on several criteria. At low concentration,
several data points across a significant concentration range demonstrate a lack of
biological activity and therefore an apparent lack of TE. At the high end, several
data points demonstrate saturation of the observed biological activity. In between,
the transition from the onset of TE through target saturation occurs over a concen-
tration range of about 100-fold. A more detailed inspection of this concentration-
response curve reveals the data points are well represented by the mathematical
concentration-response model known as the Hill equation, which describes the
relationship as follows:

OTE — — 120 (3.1)

h
] ECs
( [L]O)

where & is the Hill coefficient (often referred to as the Hill slope) and [L] is the
concentration of the ligand [10]. The Hill coefficient is a term which reflects the
stoichiometry of ligand binding. For the vast majority of small molecule drug
discovery efforts, desirable mechanisms of drug action rely on a single drug
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molecule binding to the biological target, and therefore / values of 1 are viewed as
ideal. If a concentration-response curve is observed with # = 2, this implies that two
molecules of the drug must bind to the protein to produce activity [10]. Thus,
discovery scientists often use the Hill coefficient to triage compounds following up
on screening campaigns, flagging those whose concentration-response curves
appear overly “steep” upon visual inspection [11]. Compounds having values of
h outside of the range 0.5—1.5 may be deprioritized based on the perception that
they are more likely to act via undesirable or “nuisance” mechanisms [11].

Given access to a quality concentration-response curve, the relative amount of
TE can be easily estimated for any given drug concentration, as illustrated by the
red dotted lines on the curve shown in Fig. 3.1b. It can be useful to think of TE
either in terms of the apparent percentage of target bound (%TE) or as a ratio of the
drug concentration relative to the ECs,. In this case, a target engagement ratio
(TER) may be defined as follows:

L]
ECsg

TER = (3.2)

Table 3.1 provides a comparison of these approaches for defining TE, over a
wide range of drug concentrations, for an ideal curve with Hill coefficient of 1. The
same data is presented in graphical form in Fig. 3.2, which illustrates several key
points that will be important in the design of experiments in more complex
biological systems.

First, the attributes of a quality plot of TER vs biological activity mirror those of
any other quality concentration-response curves, such as the transition from a lack
of TE through target saturation over a concentration range and slope consistent with
the expected drug-target binding interactions. Such plots offer the additional
advantage that multiple compounds, with diverse structures but common mecha-
nisms of action, can be included on the same graph in order to confirm the
consistent translation of TE into biological activity (Fig. 3.3).

In further examining the relationship of the TER to %TE, the graph clearly
highlights the diminishing returns provided by further increases in drug concentra-
tion as the system approaches saturation (Fig. 3.4). For example, the first tenfold

Table 3.1 TER and %TE

TER %TE
0.01 1
0.03 2
0.1 9
0.3 23
1 50
3 75
10 91
30 97
100 99
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increase in TER relative to the ECs raises the %TE from 50% to 91%. However,
beyond that point, another tenfold increase in TER (total TER of 100) produces
only an additional 8% increase in %TE.

Thus, incremental increases in %TE at the high end require a much larger
increase in drug concentration. Said another way, at the high end of the TE range,
large increases in drug concentration will likely provide little meaningful increase
in TE. For this reason, it is important to carefully consider the dose/concentration
range used to test mechanistic hypotheses in complex biological systems (e.g., cell-
based assays and in vivo). Using a drug concentration much higher than needed
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Fig. 3.4 Curve illustrating the relationship of TER to %TE at high vs low TE
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provides little additional impact on TE, yet may erode the “effective selectivity” for
engagement of the desired drug target vs other proteins.

For example, consider the two concentration-response curves for the drug
illustrated in Fig. 3.5. As measured at the ECsgs, the affinity of the drug for
Target A is 100-fold more potent than the corresponding affinity for Target B,
seemingly a high-level of selectivity. The dotted lines on the figure highlight
the “effective selectivity” for engagement of Target A relative to Target B at
several different drug concentrations. The blue line illustrates that at the ECs,
concentration for Target A, TE for Target B is expected to be insignificant.
The highest selectivity would appear to be achieved at a TER of 10 for Target
A (green line). At this concentration, ~90% TE is expected for Target A, with
only ~10% TE for Target B. Then as the concentration continues to rise, the
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effective selectivity erodes. At TERs of 100 (red line) and 1000 (purple line)
for Target A, %TEs are not substantially different from each other, saturated
at ~99%. However, the %TE for Target B at those concentrations continues to
rise, from ~50% to ~90%, respectively. Thus, in spite of the apparent high
in vitro selectivity, a lack of attention to detail in the experimental design
could significantly erode the actual selectivity of TE for this drug in vivo.
This could create ambiguity in the evaluation of the efficacy hypothesis and
introduce safety risks, or both, dependent on the impact of engaging Target B
in vivo.

3.3 Target Engagement in Vivo

If the assay used to establish the concentration-response relationship in vitro
provides a meaningful representation of the drug-target functional interaction, it
should also be useful for estimating target engagement in vivo, where the same
drug interacts with the same biological target to produce analogous effects, just in
a more complex biological environment. If this assumption is true, then the
challenge of estimating TE in vivo is reduced to the challenge of defining the
concentration of the drug in vivo. Thus, quality estimates of TE in vivo require
quality pharmacokinetic data, and toward that end, a number of points are
important to remember.

First, the relevant concentration for estimating TE in vivo should be the “effec-
tive” drug concentration actually available to interact with the target [12]. Fre-
quently, this will not be well represented by the total drug concentration measured
in vivo due to nonspecific interactions that reduce the fraction of “free” drug
available to the target. For example, plasma proteins such as albumin can be a
significant source of nonspecific protein binding [13—17]. Given the fact that such
nonspecific interactions can vary significantly across a related series of compounds,
teams need to understand the extent to which nonspecific protein binding may occur
and consider adjusting TE estimates accordingly [18-20]. Typically, it is assumed
that nonspecific binding to plasma proteins or brain tissue is predictive of
nonspecific binding in other tissues. For these proteins, the free fraction (f,) is
easily measured in vitro and can be used as a corrective factor to establish free drug
concentration. Thus, using the equation below, one can estimate TER:

Ju X (L],
TER =14 “total 3.3
ECa (3.3)

where [L]io 1s the total ligand concentration and ECs is the absolute concentra-
tion of ligand in the in vitro assay that delivers 50% of the maximal response.

An alternative to this approach is to divide the total plasma concentration by a
functional ECs, value determined under conditions in which the nonspecific inter-
actions are already taken into consideration (Eq. 3.4).



48 T.B. Durham and M.R. Wiley

(L]
TER = ot 3.4
ECspfunctional (3:4)

Examples may include assays run in whole blood, or in buffers which include
physiologically relevant concentrations of albumin as a surrogate. In these cases,
the compound is already overcoming the relevant nonspecific interactions in
order to produce activity in the functional assay. Thus, incorporation of an
additional f, term into the TE calculation would incorrectly underestimate target
engagement.

Another important set of issues to consider derives from species differences
that can significantly impact the projection and interpretation of TE in vivo. For
most drug discovery teams, the primary assays used for characterizing target
affinity as well as for predicting ADME properties logically utilize human pro-
teins. However, species differences in the affinity of drugs for both specific
target proteins and nonspecific plasma proteins can be very difficult to predict,
even with respect to highly homologous target family proteins [18-20]. In fact,
even within the same species, discrepancies due to differences in strains or
disease states have been reported [21, 22]. In addition, such selectivity differ-
ences can vary with subtle structural changes across a series of related drug
molecules. Therefore, it is important for the quality design/interpretation of
in vivo experiments (and for the translation of preclinical results to projected
human properties) that assays are enabled to characterize both the binding
interactions and the effective drug concentration in the species utilized for the
in vivo proof-of-concept studies.

It is also important to consider the drug concentration in the compartment in
which the biological target resides. This can be particularly challenging when
the distribution of the drug is significantly impacted by active transporters
[23, 24]. In such a case, the direct measurement of drug concentration in the
target tissue may be required. This can be costly, time consuming, and exper-
imentally challenging, thus limiting the team’s ability to collect meaningful
data points. However, when active transport mechanisms are not involved,
the picture can be simplified by the application of the free drug hypothesis
[13, 16, 17]. It states that the concentration of free drug on either side of a
permeable membrane should be the same in the absence of active transport
processes. Therefore, the assessment of the free drug concentration in plasma is
often a useful approximation of the free drug concentration in tissues. Given
that plasma protein-binding assays (human as well as most of the species
routinely used in preclinical research) are readily accessible, experimental
assessment of the free drug concentration is relatively straightforward. How-
ever, even with compounds in which active transport is not anticipated, it is
important to periodically confirm that drug concentrations in the target tissue
are as expected before making decisions based on TE using plasma drug levels.
Such validation is especially important in the case of target compartments
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Fig. 3.6 PK/TE vs time for a reversible ligand. In the example shown, the ligand has an
EC50 =10 nM

where active transporters function most commonly, such as the CNS or the
liver [23-25].

A final, very important issue to consider in assessing TE in vivo is its time course
[8]. For drugs that have rapid-reversible binding interactions with their biological
targets, TE in vivo will change rapidly in response to changing drug levels. Given
that a drug’s concentration in vivo changes over time, moving through peaks and
troughs during each dosing period, it is important to understand how TE changes at
meaningful intervals over the full time course explored in any in vivo efficacy
experiment. For the example depicted in Fig. 3.6, the %TE is expected to fluctuate
between ~80% at the high end and insignificant levels at the low end over the course
of the experiment. Assessing the exposure and pharmacology of drugs with this
type of profile at single time points would likely have limited applications and could
potentially be misleading.

While the time course of TE is tightly linked to the time course of drug exposure
for rapid-reversible ligands, this is not the case for drugs that are released slowly
from binding interactions with their corresponding targets [26—29]. In the most
extreme case, the ligand protein interaction is irreversible, as with the example
illustrated in Fig. 3.7 [30-33]. For an irreversible ligand, the parameters that
characterize the binding event are K and k.. K7 is the concentration of inhibitor
that produces 72kj,.c (analogous to the term Ky, for enzyme substrates), and kjpacq 1S
the kinetic constant that describes the maximum rate at which the irreversible
inactivation occurs (usually through formation of a covalent bond) [34]. [Note: K
has a different meaning than K; for competitive inhibitors.]



50 T.B. Durham and M.R. Wiley

i c mad 0

Protein Drug Protein-Drug complex Covalently Modified Protein
Biological Effect Biological Effect

Fig. 3.7 TIrreversible drug model

1.6 - - 80
1.4 - - 70 _
12 —[Drug] free (nM) L 60 2:_.;
- —Target Engagment o
z 1 L 50 &
5 5
£ 0.8 - 40 @
B 4
2 06 - 30 W
= B
0.4 - 20 @
=

0.2 - 10

G . 0

-1 4 9 14 19 24

Time (h)

Fig. 3.8 Plot of exposure and target engagement for a theoretical irreversible ligand. For this
example, kin../Ki = 392,000, f, = 0.016, and the half-life of protein turnover is >24 h

TE for irreversible drugs is controlled by both concentration and time. The
percent target engagement can be described by the equation:

_ (kinaclll‘])f
%TE = 100% x | 1 —e \A*" (3.5)

(For derivation of Eq. 3.5, see Box 1 [34, 35].) Note that Eq. 3.5 is a reasonable
mathematical description when Ky > [L] > [T] and the rate of target protein
resynthesis is slow relative to the experimental window. Figure 3.8 illustrates the
PK-TE relationship for a drug with an irreversible mechanism of action as defined
by Eq. 3.5. As the graph illustrates, increasing drug concentration at early time
points leads to increasing TE. However, as the binding is irreversible, TE continues
after the drug is cleared from the system. In this case, recovery of biological activity
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in the system depends primarily on the rate at which new target protein is
resynthesized. Thus, an apparent disconnect between the time course of drug
exposure and the time course of TE is expected for drugs that operate by an
irreversible mechanism of action [8, 26-29]. It is important to underscore here
that both reversible and irreversible mechanisms are well precedented in medicine
with numerous examples of successful, effective drugs. Each approach has different
potential advantages and risks, which should be carefully considered in weighing
strategic options for the prosecution of each unique project. This discussion high-
lights the differences expected in translational pharmacology and thus the critical
importance of experimentally characterizing the full time course of PK and biolog-
ical activity to enable a clear understanding of the system under investigation.

Box 1. Derivation of Eq. (3.5) for Irreversible Inhibitors

The amount of target-ligand covalent complex (TL*) can be described by the
equation:

TL* = [T]Total(l _ eikow) (36)

where [T];ora1 1S the total concentration of target, k. 1S the measured rate, and
t is time. The rate ks can be defined for irreversible inhibitors as

kinact [L]
Ky + [L]

kobs = (3.7)

where [L] is equal to the concentration of the ligand. If we substitute Eq. 3.7
into Eq. 3.6, the resulting Eq. 3.8 can then be solved for target engagement

([TL*)[T)totan):
_( Kinact[L] '
TL* = [T]Tolal (1 —¢€ <Kl+[L]> ) (38)

TL* _ (kinacl [L])
TE = = (1 _ e \ma)! (3.9)

[T] Total

Equation 3.9 can then be converted to Eq. 3.5 by multiplying both sides
by 100%.
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3.4 Application to In Vivo Experimental Design

Target validation (TV) lies at the heart of drug discovery and is particularly
important for the exploration of novel targets in which the connection to disease
biology is the major point under investigation [36—39]. Given the large number of
clinical programs that fail due to lack of efficacy, it is critical that efficacy
experiments are designed to deliver the most useful information regarding TV as
early as possible. In doing so, precious resources can be efficiently focused to
accelerate efforts that have the highest probability of delivering all the way to
patients [2, 3, 5, 7]. At a high level, the goal of a TV exercise is to establish the
pharmacological consequences of engaging the desired target via an acceptable
mechanism, at a useful level, for a suitable duration, and with acceptable selectivity
[36-38]. Drug discovery efforts are generally undertaken because there is some
level of biological evidence that supports a connection between a target and disease.
This can come in many forms, for example, genetic information such as knockout,
knockdown, or knock-in experiments in animals or cellular systems. The available
evidence in turn supports a hypothesis that selective pharmacological manipulation
of that target will produce a desirable outcome. However, this preliminary infor-
mation is often limited in resolution with respect to both the level and the time
course of target manipulation [39]. Therefore, the goal of the study design is often
to explore the full range of TE over the full time course of the efficacy study.

By definition, if such a study were successfully designed and executed, it would
either establish the level and duration of TE needed to produce efficacy or it would
reliably invalidate the drug target (at least by the mechanism of action for the drug
tested) if it failed to deliver the required pharmacological results. In our experience,
a sustained TE of >90% (or a TER > 10) should be sufficient to test the transla-
tional pharmacological hypothesis in most systems. In the event that >90% TE is
sustained in an efficacy experiment and no pharmacological signal is detected, it is
likely that the TV hypothesis is disproven. Further, by demonstrating that the
expected TE was achieved in such an experiment, teams can feel confident that
the hypothesis was successfully tested, and the lack of efficacy was not due to any
inadequacy in the performance characteristics of the tool molecule (e.g., the
compound wasn’t “potent” enough). As a result, a crisp termination decision can
confidently be made, saving the time and resources required to identify “better” tool
molecules. Such termination decisions can sometimes be viewed negatively within
the culture of some research teams. However, driving TE informed TV decisions as
quickly as possible ensures technical resources are efficiently applied to the most
valuable target opportunities, which is clearly in the best interest of both patients
and research organizations.

To illustrate the application of these principles, consider the following example
of experimental design to explore the pharmacological validation of a typical early
drug discovery target.

Target X is a hypothetical peripheral protein reported to have significant poten-
tial impact on a human disease. The published data supporting this hypothesis
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consists of embryonic knockout of Target X in rodents showing protection in
preclinical efficacy models used to simulate the disease state. For this example,
we assume those efficacy models will require multiple days of drug treatment, and
thus the relevant time course of TE for design purposes will be 24 h periods of time.
The research team’s goal is to identify a compound that can be used to demonstrate
that modulation of Target X in vivo (in this case through inhibition or inactivation)
can produce a similar protective effect in the efficacy models.

In pursuit of this goal, the research team established a recombinant protein
biochemical assay and a functional assay for Target X. The functional assay utilizes
rodent albumin at a quantity which should be sufficient to account for nonspecific
protein binding. Using compound screening, followed by some SAR optimization, a
potential tool compound with encouraging potency (see Table 3.2) and drug-like
properties has been identified. Kinetic assessment shows that the compound demon-
strates rapid-reversible binding kinetics. The drug also has measurable activity
against the related Target Y. Based on the biological function of Target Y, significant
modulation could produce effects that confound the efficacy readout for Target
X. Therefore, the potential for erosion of selectivity in vivo must be taken into
account in any pharmacological validation experiment. Accordingly, rodent in vitro
assays have been enabled to ensure that the level of in vivo TE for both Target X and
Y can be reliably projected and interpreted in the efficacy studies. Interestingly, the
rodent in vitro data demonstrate that the affinity of the drug for rodent Target X is
five-fold weaker than human. However, the selectivity for rodent Target X vs Y is
ten-fold greater than for human Target X vs Y, suggesting a greater potential for
selective engagement of Target X in the preclinical efficacy POC experiment.

As an initial step in the process of in vivo characterization of the tool compound,
a PK study was conducted in the rodent species to be used in the preclinical model.
As shown in Fig. 3.9, a reasonable oral dose (10 mg/kg PO) produced an oral
exposure curve which showed encouraging absorption but almost complete clear-
ance from the plasma by 24 h. Combining this PK data with the EC5ys from either
the biochemical assay (corrected by f,) or the functional assay, TER values for
Target X and Y at several time points can be projected (Table 3.3). Again, it is
important to re-emphasize that for the purposes of the preclinical proof of concept,
the f, and assay values from the appropriate efficacy species should be used for
projecting TERs in the design of the efficacy experiments. If the program is
successful and continues forward, the human values will of course be critical for
projecting human properties, prioritizing compounds, and ultimately selecting the
best clinical candidate for patients.

Table 3.2 In vitro data for potential in vivo tool compound

Rodent f, = 0.18 Biochemical ECs, Functional ECs,

Target X Human = 4 nM Human = 20 nM
Rodent = 20 nM Rodent = 100 nM

Target Y Human = 40 nM Human = 200 nM
Rodent = 2000 nM Rodent = 10,000 nM
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Fig. 3.9 Rodent PK for a potential tool molecule following a 10 mg/kg, PO dose

Based on the biological validation data (embryonic KO) and the duration of the
in vivo experiment, evaluation of full sustained target engagement (TER >10)
throughout the experiment is needed to drive a definitive decision on the pharma-
cological validation of Target X. However, to maximize the likelihood that any
observed efficacy signal is coming primarily from modulation of Target X, a design
that minimizes concomitant engagement of Target Y during the efficacy study is
highly desirable. As shown in Table 3.3, the equations discussed previously were
applied to project TERs based on the corresponding plasma concentrations from the
PK experiment using measured rodent f,, and the rodent functional assay. In our
research programs, we have found it advantageous to develop simple computational
tools to facilitate the evaluation of potential tool molecules to explore the relation-
ships between TE and biological activity in vivo. Software such as Microsoft Excel
allows one to build spreadsheets from Eq. (3.4) to allow data from PK experiments,
in vitro assays, and protein-binding assessments to be instantly converted to TERs.
These same tools can also be used prospectively to determine what dose one
expects will deliver the desired levels of target engagement. Simple computational
tools like these allow chemists and pharmacologists to readily determine the
suitability of tool experiments for specific studies and to identify what performance
parameters might need to be improved. Similarly, we have built tools in our
organization that can be used to determine the suitability of compounds for use in
osmotic pump experiments from Eq. (3.12) (vide infra). Note that the functional
and biochemical TER values closely agree. Therefore, to simplify the remainder of
the example, we will only show functional TER values.

In assessing the data, it is clear that the potential tool compound could not
sustain a sufficient TER at Target X with a single daily oral dose 10 mg/kg, as the
24 h TER is much less than 1. However, using the assumption that exposure will
vary in a linear, dose-dependent fashion, the team can project other doses and
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Table 3.4 Projected PK and TER values (Targets X and Y) for dosing 100 mg/kg PO, QD, and
3 mg/kg PO, BID

Projected exposure/TER: Projected exposure/TER:
100 mg/kg PO, QD 3 mg/kg PO, BID
Total Target X Target Y Total Target X Target Y
(nM) TER runctional TER Functional (nM) TERFunctional TERFunctional
0.5 610 1833 18 0.2
1 120,000 @A) 3667 37 0.4
4 120,000 WP 3667 37 0.4
8 61,000 | 610 6 1833 18 0.2
12 33,000 | 330 3 1000 10 0.1
24 280 3 0.03 2000 20 0.2

dosing paradigms for design purposes. Table 3.4 illustrates such a projection for the
larger QD dose of 100 mg/kg. At this dose, the compound sustains a minimum TER
of ~3 for 24 h; however, it comes at the cost of very high drug exposure at Ci,.x,
resulting in >50% engagement of Target Y for >12 h. Further, Target Y is inhibited
by >90% for at least 4 h (see red boxes in Table 3.4).

To address excessive engagement of Target Y, BID dosing was evaluated.
Inspection of the 12 h values in Table 3.3 reveals a TER of ~30 with the 10 mg/
kg dose. This suggests that with BID dosing, the dose could be lowered by a factor
of ~3 relative to 10 mg/kg and still sustain a TER >10. Accordingly, the dose of
3 mg/kg BID was projected. As the data in Table 3.4 illustrate, this dose/regimen is
not only expected to sustain the desired TER for Target X over 24 h, but the %TE
for Target Y should not rise to even 30% during the full course of the efficacy
experiment (see green boxes in Table 3.4).

Figure 3.10 shows plots for all three of these experimental designs overlaid in
one graphical representation. Such illustrations are often quite useful for comparing
the relative strengths and weaknesses of design options prior to making the final
selection of dosing conditions. It is important to note that this type of analysis is
generally useful for choosing doses/regimens to explore the upper end of the in vivo
dose response. However, if efficacy is observed, it is equally important to explore the
lower limits of efficacy detection as well. Just as with in vitro concentration-response
curves, evaluating the full range of the in vivo concentration response adds confi-
dence that the observed pharmacology derives from the expected mechanism of drug
action. Establishing the minimum effective level and duration of target engagement
may also have important implications for the appropriate definition of safety margins
should the team advance molecules on to toxicology studies [8]. Dose fractionation
is one useful strategy to define the minimum level and duration of exposure needed
to drive efficacy in vivo. Reference 8 (Tuntland et al.) has an overview of dose
fractionation methodology with some additional leading references. PK/PD experts
can help teams determine when and how to conduct such studies.

The preceding vignette illustrates that by using these design principles, the team
was able to design a quality efficacy experiment to achieve their objectives. By
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Fig. 3.10 Overlay of experimental design options: the time course of TERnciona Using different
doses and dosing regimens

carefully considering the in vivo selectivity issues associated with Target Y, they
minimized the risk of generating misleading efficacy data by using a too high dose.
By exploring multiple dosing paradigms, they avoided spending additional time
and resources in search of improved tool molecules with better selectivity versus
Target Y, or with PK profiles having smaller differences in peak-trough ratio.
Frequently, drug hunting teams face the challenge of needing to establish pharma-
cological validation for targets armed with tool molecules that may not be fully
optimized in terms of potency and/or pharmacokinetic properties. In the next
section, we address one approach that can help to expedite TV experiments using
technology to achieve TE in vivo and overcome tool molecule limitations.

3.4.1 Compound Delivery via Pump as a Means to Facilitate
Target Validation

Conducting in vivo studies to establish target engagement is a resource-intensive
effort. In the best scenarios, compounds with a combination of suitable potency and
pharmacokinetics are readily available. However, for many drug discovery efforts,
available tool molecules are insufficient in terms of either potency or PK perfor-
mance. Resolving those issues through SAR development requires the application
of medicinal chemistry, ADME, and biology resources to identify suitable tools
through iterative rounds of optimization. The resource requirements and timelines
for these efforts can be significant. Therefore, any strategy a team can devise to
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allow the use of “suboptimal” tool compounds can facilitate significant time/cost
savings, especially if the TV exercise ultimately fails to validate the target.

Pump delivery presents a powerful tool for enabling interrogation of the rela-
tionship between PK and efficacy [9, 40-43]. There are multiple types of implant-
able infusion pumps that can be used. Some newer electronic pumps allow the
control of compound delivery via a user input program. These programs can be
designed to vary the rate of compound dosing over the course of the study, such as
with cases in which dosing alignment with circadian cycles is desirable. Some
pump systems can even be refilled during the course of an in vivo experiment. This
can drastically extend accessible duration of infusion, eliminating the need for
multiple surgeries which can compromise efficacy studies. Currently, these systems
are just emerging, and we would anticipate that their use will continue to increase
over time.

Nonelectronic osmotic pumps provide a less expensive but still powerful tool for
conducting sustained delivery. Figure 3.11 shows a simplified diagram of how a
mechanical osmotic pump works [40—43]. The pump consists of a drug reservoir
that is made of an impermeable membrane. This is encased within a semipermeable
membrane housing. Between the two membranes is an osmotic engine that acts to
push fluid out of the outlet at one end of the pump. For use in vivo, the pump
reservoir is filled with drug solution, and the pump is implanted into the test animal,
under the skin in the subcutaneous space. Water from the animal tissues slowly
diffuses through the semipermeable membrane into the osmotic engine. This causes
the volume of the engine to increase which in turn applies force against the drug
reservoir. This pushes the drug solution through the outlet. Usually, after a short
induction period, this reaches a steady rate that continues until all the pumping
capacity has been exploited. Time ranges for infusion are dependent on the type and
size of the pump used but can last from days to up to 4 weeks.

—— Outlet

— L
@ ®
‘@ — Semi-permeable membrane ‘
‘\\:\ Drug Reservoir Wa#) [‘
> (‘ ‘\ Drug Molecule
_,,‘ Osmotic Engine %
‘ C\\ Impermeable membrane &

S— ]

Fig. 3.11 Diagram of an osmotic pump
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3.4.2 Designing an Osmotic Pump Study

To conduct a continuous infusion study using an osmotic pump, several design
factors need to be considered. Most importantly, the team needs to define the
concentration of drug in plasma needed to achieve the desired TE in the target
compartment. Once the desired plasma level is defined, studies can be designed
with a few simple pieces of experimental data. Steady-state plasma concentrations
can be projected with the following information:

1. The IV clearance of the drug in the efficacy species.

2. The maximum solubility of the drug in an acceptable vehicle.

3. The manufacturer’s rating information for the available pumps, which includes
the infusion rates, reservoir volume, and maximum duration of use.

From this information, a researcher can determine if any available osmotic pump
will be acceptable for the study design. Using the desired steady-state plasma levels
of drug and the clearance, one can determine the necessary level of solubility using
the following equation:

Ce XClx W

R =S (3.10)
where Cy is the desired plasma steady-state level, Cl is the IV clearance, W is the
body weight of the animal, R; is the rate of infusion of the pump, and S is the
concentration of the drug solution in the pump [9]. If we replace L in Eq. (3.3) with
C,s, we can then solve for Cg; and substitute this expression into Eq. (3.10) to give
the following modified equation:

[T—ER;ECSO} % Cl x W

u

=5 (3.11)

R infusion

Note that as discussed above, in cases where the in vitro assay incorporates
nonspecific protein binding in the experiment, application of f,, is not appropriate,
and the equation simplifies to

TER x ECsofunctional X Cl x W _

S (3.12)

Rinfusion

Using the above approach, tool compounds and experimental designs can be
evaluated prior to costly in vivo efficacy experiments.

Thus, if a potential in vivo tool compound is identified, the team needs to
measure the in vitro potency and the IV clearance (both in the efficacy species)
as well as the solubility limit in the vehicle anticipated for pump use. With this
information, an in vivo concentration-response study such as the one illustrated in
Fig. 3.12a can be designed. First, Eq. (3.10) can be applied to project the upper limit
of accessible steady-state exposure and thus the upper limit of the TER that can be
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Fig. 3.12 Biological response vs target engagement ratio experimental design. (A) TER vs time
for an infusion pump multidose study. (B) Plot of Biological Response (%) vs TER overlaid with
the theoretical TERs from the doses illustrated in panel A. A dose-response experiment achieving
these TER values would provide a sufficient number of points to enable estimation of the
concentration-response curve in vivo

sustained with the tool compound being considered. If this step is encouraging, the
design can be completed by adding lower doses in half log units to explore the
lower levels of the in vivo concentration-response curve. Figure 3.12b illustrates
the application of the strategy to a hypothetical efficacy experiment and shows how
the PK might translate in vivo.

Clearly the use of pump technology has a number of practical advantages for the
design and execution of efficacy studies. By eliminating the variation of exposure
levels during the course of the study, it enables a very clear definition of the
relationship between steady-state drug concentration and the associated biological
response. Further, this method minimizes the potential for erosion of selectivity
in vivo which can come from large increases in peak vs trough drug exposure with
oral administration. For chronic (multiple days) efficacy models, pumps also
eliminate the need for oral dosing. This can be particularly valuable for some
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models in which repeat oral dosing can result in significant stress for the study
animals and compromise experimental results.

However, the use of pump technology is not ideal for every application, as there
are caveats. For example, severe solubility limitations of drug molecules may
eliminate them as candidates for pump studies, or may cause pumps to fail during
efficacy experiments. Also, some in vivo efficacy protocols are not compatible with
the need for implant surgery. In such cases, administering drug with in-food or
in-water formulations can also be a useful, practical alternative [44]. However, the
potential benefits of both accelerating proof-of-concept studies and achieving high-
quality in vivo concentration-response relationships suggest this technology is an
important strategic option that teams should aggressively consider in the early
prosecution of their drug discovery programs.

3.4.3 Approaches to Measuring Target Engagement In Vivo

The previous sections describe methods for estimating in vivo TE based on the
combination of quality in vitro and PK data. Often, such methods are the only
practical options available for research teams. However, when feasible, the exper-
imental demonstration of TE is a powerful method for building confidence in the
analysis and interpretation of efficacy experiments. In this section, we highlight a
few of the emerging methods for biophysical characterization of drug-target com-
plexes in vivo.

Cellular thermal shift assay (CETSA) is a relatively new biophysical technique
that allows assessment of TE in both cells and animals [45-50]. This approach
relies on the same thermal stability assay used broadly in structural biology to
assess compound binding to proteins. In a CETSA experiment, cells or animals are
dosed with compound or vehicle. Cells/tissues are then harvested for analysis from
each group. Cell aliquots from these harvested pools are then incubated at various
temperatures for a fixed time. Under heating, native proteins not associated with the
compound denature and precipitate at lower temperatures than those bound to
compound. The cells are lysed and the amount of soluble target protein remaining
is quantified by immunoblotting. The quantity of soluble target protein then pro-
vides an indication of TE. Measurement of TE in a dose-responsive fashion,
referred to as ITDRFcgtsa, has also been achieved.

The developers of CETSA demonstrated its value by comparing the clinical
PARP-1 inhibitors iniparib and olaparib [48]. Iniparib failed to meet phase 3 effi-
cacy endpoints, while olaparib was recently approved by the FDA. Using CETSA
the authors demonstrated that iniparib did not engage PARP-1. Conversely,
olaparib did show positive TE of PARP-1 in the CETSA assay. These results
suggest that iniparib may act through an alternative mechanism.

Recent coupling of the CETSA approach to tandem MS capabilities has resulted
in a technique dubbed thermal proteome profiling (TPP) (Fig. 3.13) [51-53]. This
variation leverages tandem mass tag (TMT) labeling. The power of this approach is
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Fig. 3.13 Process diagram for thermal protein profiling

it allows assessment of TE for a given compound within the entire measurable
proteome. Briefly, cells are treated with compound or vehicle and then heated and
lysed, and soluble protein fractions are separated as in the previous CETSA
approach. The difference is that rather than immune quantifying the protein using
a target-specific antibody, the lysates are digested with a protease and labeled with
TMT reagents. Mass spec analysis of the TMT-labeled peptides from treated versus
control groups then allows identification of the proteins interacting with the target
using standard proteomics methods.

An alternative to direct biophysical characterization is to measure target occu-
pancy by competition with a tracer ligand of known affinity for the drug target.
Positron emission tomography (PET) imaging and LC MS/MS techniques have
proven to be highly valuable examples of this approach. PET is a particularly
powerful technique because it enables direct assessment of target occupancy
in vivo [54-62]. For example, PET has been a powerful tool for the clinical
evaluation of TE in patients, particularly in the CNS. However, it requires the
development of radioligands (with the radiolabel introduced at a very late stage in
the synthesis) and access to specialized equipment, which increases the cost of
enablement. During a PET experiment, the study drug is administered to the subject
followed by a radiolabeled ligand which then competes for the target. The level of
target occupancy can then be assessed by radiographic imaging. PET ligands need
to meet specific pharmacokinetic and potency criteria. This often requires invest-
ment of medicinal chemistry resources to develop and characterize suitable ligand
candidates.

LC MS/MS techniques provide a lower-cost option to assess target engagement
that might be more attractive for early preclinical work, especially when target
validation has not been confirmed [54]. These methods have advanced significantly
in recent years. LC MS/MS works similarly to PET but does not require the
synthesis of radioligands. This allows it to be easily incorporated into standard
medicinal chemistry programs as a parallel activity. This technique has been used in
many drug discovery efforts for both GPCRs and enzymes [54, 63—65].

Approaches to measuring target engagement using specially designed chemical
agents have also been developed [1]. This can be a powerful method to assess TE,
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Fig. 3.14 Btk inhibitor CC-292 and tool compound CNX-500

and recent examples of the use of this approach with covalent irreversible kinase
inhibitors have been described. These approaches can be applied at any point in a
project life cycle, from early discovery efforts into the clinic. However, the methods
require the development of chemical tools.

As a recent example, Bruton’s tyrosine kinase (Btk) is a target of interest for
autoimmune and B-cell malignancies [66]. Because cysteine 481 in Btk is not
conserved in many other kinases, inhibitors which can react with this cysteine
have been pursued as an alternative to reversible ATP competitive inhibitors.
Celgene has disclosed a clinical candidate, CC-292, which uses this approach
[66]. To measure TE with CC-292, Celgene developed CNX-500 which is a
biotinylated inhibitor capable of competing with CC-292 for Btk (Fig. 3.14)
[66]. CNX-500 has been used to assess target engagement in both mice and
human subjects. Plasma B-cells of treated animals/patients are isolated. Treatment
of the lysate of these B-cells with CNX-500 inactivates any Btk not already
covalently bound to CC-292. The CNX-500 ligated protein is then captured and
quantified using ELISA. Using this approach Celgene was able to establish time-
lines for Btk protein turnover, CC-292 PK-PD relationships, and CC-292 target
engagement efficacy relationships in a collagen-induced arthritis model in mice.

3.4.4 The Relationship of TE to Pharmacodynamics

As discussed previously, the characterization of TE in vivo links the time course of
drug concentration (PK) with the time course of target binding. Although methods
for the direct measurement of in vivo TE continue to advance, most frequently TE is
inferred based on the measurement of some resulting biological activity, or phar-
macodynamic activity (PD) [8]. The characterization of PK/PD relationships and
the construction of mathematical models to describe them represent a challenge of
sufficient detail and scope that it comprises an independent discipline unto itself.
Numerous sources are available to provide a thorough and effective treatment of the
fundamental principles of PK/PD and their application to drug discovery, and it is
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Fig. 3.15 Time course of drug exposure and TE and PD response for a direct concentration-
response system

certainly not our intention to try to exhaustively review that work [8, 64, 67-69].
Actually, the practical purpose of learning to understand the time course of TE is to
gain greater control over the modulation of biological activity via drug action. So to
some, distinctions between the time course of TE and PD may seem rather arbitrary.
However, the terms are sometimes used interchangeably (mistakenly), and there are
some subtle yet important differences between the two that can impact study
design, interpretation, and iteration. Therefore, we highlight here a few key terms
and principles to consider in the design of efficacy experiments.

Several factors combine to determine how the time course of an in vivo bio-
marker readout may change in response to changes in drug concentration. Two
examples include (1) the time required for signaling between the point of TE on the
biological pathway and the biomarker being measured and (2) the rate at which that
biomarker is cleared from the compartment of measurement. If the transmission of
the biological signal being measured in vivo occurs quickly, relative to changes in
drug exposure, a so-called direct concentration-response relationship between PK
and PD will be observed [8]. Figure 3.15 shows a hypothetical example of such a
profile, illustrating the relationship between a PK curve (blue) and both a TE curve
(red) and a resulting PD response curve (green). In this case, the interaction of the
drug with its biological target is characterized by rapid-reversible binding kinetics.
Thus, as shown previously in Fig. 3.6, changes in the time course of TE respond
rapidly to changes in the time course of drug exposure. Subsequently, due to the
rapid transmission of TE into a biological signal, changes in PD activity for this
system basically mirror changes in TE. Direct concentration-response systems have
the practical advantage that experimentally they are more straightforward to char-
acterize in vivo relative to corresponding indirect systems.
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Fig. 3.16 Time course of drug exposure, TE and PD response for an indirect concentration-
response system. In this example, the drug and target are the same as those represented in
Fig. 3.15; however, the PD biomarker has a reduced clearance rate

On the other hand, if transmission of the biological signal being measured is
slow relative to changes in drug levels, an apparent disconnect or hysteresis is
observed, between the time course of drug exposure (PK) and the time course of the
corresponding PD readout [8]. One example of such an “indirect” PK/PD relation-
ship is shown in Fig. 3.16. In this example, both the drug molecule and the
biological target are the same as from the example in Fig. 3.15 (note that the time
course of both drug exposure and TE are identical in the two figures). In fact the
only difference in the example depicted in Fig. 3.16 is a reduction in the clearance
rate of the biomarker generated in the process. The figure clearly illustrates the
difference between the time course of drug exposure (also TE) and the time course
of PD that results from this subtle change in the system.

Figure 3.16 also highlights the significant risks inherent in evaluating PK/PD at
single time points in such a system. The red dotted line illustrates the time point
associated with the C,,,.x for drug exposure. The C,,.x is frequently selected as the
time point to evaluate in the design of single time point efficacy screens. However,
in this case, due to the slow equilibration of the biomarker, the amount of change in
the biological signal observed at C,,,.x would appear insignificant, in spite of the fact
that TE in this system is effectively saturated at that specific time point. Conversely,
if the team evaluated the PK and PD at the 10 h time point (green dotted line), in this
system it would appear that a significant biological effect was observed, but with an
insignificant drug concentration (and actually at an insignificant level of TE).
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Of course there are numerous different experimental conditions that could
produce indirect concentration-response relationships. As discussed previously,
the effect of slow dissociation of the drug from the target protein (Fig. 3.8) is
such an example. Thus, this section underscores again the importance of under-
standing the full time course of both PK and PD, through the full range of TE, as
early in projects as possible. If the system under investigation has a direct PK/PD
relationship, it should be relatively straightforward to build in vivo relationships
linking TE with efficacy. If not, the team should be sure to seek collaboration (at the
very least consultation) from a PK/PD professional.

3.4.5 Case Studies in Using TE

In this section we highlight two examples of drug discovery projects in which TE
analysis is used to address key questions regarding pharmacological target valida-
tion. In one example, efficacy experiments are designed to provide insight into the
in vivo function of insulin-degrading enzyme (IDE), a target of interest for diabetes.
In the second example, an in vivo concentration-response relationship is developed
for an osteoarthritis (OA) drug program, and that data is used to refine the desired
performance characteristics to focus SAR efforts toward the selection of a clinical
candidate.

3.4.5.1 Application of TE in a Program Exploring Insulin-Degrading
Enzyme as a Potential Target for Insulin Sensitization [70]

Insulin-degrading enzyme (IDE or insulysin) is an evolutionarily conserved zinc
metalloprotease belonging to the cryptidase family [71]. Members of this protease
family contain a large active site (~15,700 A®) referred to as a crypt, which can fully
enclose substrates. In vitro, IDE binds and cleaves a diverse array of substrates,
including insulin, glucagon, amyloid beta-peptide (Ap1-40 and Ap1-42), ubiquitin,
amylin, insulin-like growth factor II, atrial natriuretic peptide, and transforming
growth factor alpha [71-79]. Of its many substrates, IDE is exceptionally effective
at degrading insulin (K, = 85 nM and kea/Km = 2.42 min~' pM ") [74].
Although significant biochemical characterization of IDE had been completed,
the role of IDE in the physiological regulation and action of insulin had not been
clearly defined at the time we became interested in the target. The majority of prior
efforts exploring the in vivo role of IDE came from gene deletion studies. Several
research groups have evaluated IDE ™/~ mice, but the phenotypes reported for the
knockouts have varied. In some IDE~/~ mouse cohorts, increased insulin levels
were observed, but in other cohorts no change in insulin levels occurred [80—-82].
Because IDE had been claimed to be the primary regulator of insulin clearance
in vivo, we hypothesized that inhibiting IDE activity could reduce insulin
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Fig. 3.17 IDE inhibitors

breakdown and prolong insulin action (i.e., IDE inhibitors would act as insulin
sensitizers) [70]. At the time our work was initiated, suitable pharmacological
inhibitors were not available for in vivo studies, and thus tool molecules needed
to be identified. In support of the program, a biochemical assay and a cell lysate
assay of insulin degradation were developed. This cell lysate assay served as a
functional assay and contained large amounts of protein, allowing assessment of
inhibitor activity within an environment where an opportunity for substantial
nonspecific protein binding existed.

To identify small molecule inhibitors, a medium throughput screen was
conducted, which yielded two weak partial inhibitors (compounds 1 and 2) that
were successfully co-crystallized with IDE (Fig. 3.17). Based on the binding
location of the two molecules in proximal exosites on the protein, compound
NTE-1, a potent, full inhibitor of insulin degradation was designed (Fig. 3.17).
NTE-1 is a reversible tight-binding inhibitor (Table 3.5) and fortunately has
suitable PK properties in rodents to support in vivo studies using SC dosing. This
compound also had equivalent potency in mouse, rat, and human enzyme systems.

Treatment of DIO mice with NTE-1 followed by oral glucose challenge resulted
in lower glucose excursion, increased plasma amylin, and slightly increased insulin
(Fig. 3.18). Plasma TER levels >10 (based on the lysate assay) were sustained over
the time course of the experiment, suggesting >90% inhibition of IDE function
in vivo.

These initial results were encouraging because glucose excursion in the treat-
ment arm was lower in the oral glucose tolerance test (OGTT), as would be
expected with an insulin sensitizer. However, the fact that insulin changes were



68 T.B. Durham and M.R. Wiley

Table 3.5 IDE inhibitor characterization

Compound 1 2 NTE-1
hIDE insulin ICsq (nM) 2000 2000 4+2
Rat hepatocyte lysate insulin degradation ICsy (nM) ND ND 18
Kogr (min ") ND ND 0.0047
t12 (h) ND ND 2.45

ND = not determined
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Fig. 3.18 Effects of NTE-1 treatment on plasma glucose, amylin, insulin, and glucagon in DIO
mice after an oral glucose challenge. Fasted mice received a 15 mg/kg dose of NTE-1 SC followed
by an oral glucose load. NTE-1 treatment produced statistically significant increases in glucose
clearance and plasma amylin levels. Plasma insulin was elevated but did not reach statistical
significance. Inset graphs represent analyte AUC. (A) Whole blood glucose; (B) Amylin; (C)
Glucagon; (D) Insulin. + = p < 0.05 vs vehicle by RM-ANOVA and * = p < 0.05 relative to
vehicle by Student’s #-test

not statistically significant was concerning. Additionally, amylin (which is also an
IDE substrate) is known to slow gastric emptying which could suppress glucose
excursion [72, 74, 83]. Thus, while we had evidence of TE, the relative contribu-
tions of IDE inhibition to glucose lowering via amylin and insulin could not be
determined in this experiment.

Therefore, we conducted a euglycemic clamp study in SD rats to allow us to
focus solely on the impact on insulin action of IDE inhibition. The design of this
clamp study is shown in Fig. 3.19. In this experiment, SD rats were surgically fitted
with catheters to allow infusion of multiple substrates. After recovery from surgery,
the rats were connected to infusion pumps that delivered a sustained level of drug or
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Fig. 3.19 Euglycemic clamp study

vehicle in addition to radiolabeled glucose (to allow measurement of hepatic
glucose production (HGP)) and somatostatin (to suppress endogenous insulin and
glucagon production). The dose of NTE-1 was chosen to sustain a TER of >130
and 110 in the biochemical and cell lysate insulin degradation assays, respectively.
In this case, we selected this high target engagement goal because the likelihood of
confounding pharmacology due to inhibition of other cryptidases was anticipated to
be very low [71].

Once the fixed infusion was started, a second adjustable pump was used to
deliver glucose. The glucose infusion rate (GIR) was adjusted until the animals’
plasma glucose was constant at 105 mg/dL. At this point, a fixed dose of insulin was
added to the steady infusion pump, causing the animals’ plasma glucose to drop.
The glucose infusion rate was then increased until the animals once again had a
steady plasma glucose level of 105 mg/dL. By comparing the difference in GIR
and/or HGP in the stabilized/clamped animals before and after insulin challenge,
any effect of NTE-1 on reducing insulin clearance or enhancing insulin action can
be quantified. To ensure that the compound had inhibited IDE, we measured NTE-1
concentration in the liver at the termination of the experiment and found that the
liver concentration was ~70 mg/g (approximately 95 mM). TE was further
supported by strong inhibition of insulin degradation in liver lysates made from
tissues of the treated animals (Fig. 3.20b).

Notably, NTE-1 did not have any impact on insulin action or clearance in this
experiment as revealed by assessment of the GIR or HGP (Fig. 3.20a and b).
Because of our confidence in the TE we achieved in this experiment, we concluded
that the majority of the impact on glucose we observed in our OGTT studies were
driven by inhibiting IDE-mediated amylin clearance. Based on these data, IDE
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Fig. 3.20 NTE-1 treatment
effects in a euglycemic
clamp in Sprague Dawley I
rats. (A) Average glucose
infusion rate (GIR) during
the last hour of a
euglycemic clamp. (B)
Hepatic glucose production
(HGP) during basal and
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inhibitors would not be anticipated to be effective insulin sensitizers [70]. Thus, a
quality data package was generated from a tool molecule with poor ADME
properties relative to what would be expected for a candidate for diabetes therapy.
This enabled a decision to deprioritize further investment in the development of this
target in favor of efforts with a higher probability of technical success.

3.4.5.2 Use of TE to Establish Clinical Candidate Performance
Characteristics for Aggrecanase Inhibitors as Disease-
Modifying Treatments for Osteoarthritis [9, 84]

Osteoarthritis (OA) is a disease characterized by the degradation of joint cartilage
leading to pain and loss of function. The societal impact of this disease is signif-
icant, including a major economic burden on healthcare systems and compromised
quality of life for patients. Current treatments for OA include symptom relief
(NSAIDs) and surgical joint replacement. Unfortunately, no treatment regimen
which can directly affect the progression of OA has yet been approved.
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At the structural level, the joint contains both cartilage and synovial fluid, a
non-Newtonian fluid composed of water, hyaluronic acid, and lubricin. The process
by which nutrients and waste products are exchanged between plasma and the joint
space is believed to be diffusion controlled [85]. Cartilage is a nonvascularized
tissue composed of type II collagen and aggrecan. One hypothesis for OA progres-
sion is that the rate of extracellular matrix (ECM) synthesis versus degradation
becomes unbalanced. Therefore, it has been hypothesized that ECM protease
inhibitors could halt or reverse the progression of OA.

ADAMTS-4 and ADAMTS-5 (aggrecanase 1 and aggrecanase 2) are zinc
metalloproteases that are known to have a specific and primary role in aggrecan
degradation [86—91]. The hypothesis that inhibition of ADAMTS-4 and ADAMTS-
5 in humans could impact OA is supported by data generated in genetically
modified mice (animals with either ADAMTS KO or stabilized aggrecan substrate)
as well as in human chondrocytes [91-94]. Notably, the active sites of ADAMTS-4
and ADAMTS-5 share significant active site similarity with the matrix
metalloproteases (MMPs) [96]. There are 28 MMPs known, all of which have a
high level of homology at the catalytic site. In fact, several MMPs have been
described as ECM proteases and have been nominated as potential drug targets
for OA. However, due to the significant selectivity challenges associated with
developing small molecule inhibitors of this class, off-target toxicity has been a
barrier to clinical success to date. Therefore, a drug discovery effort to develop
inhibitors of any member of this enzyme class would need to have high MMP
selectivity, to facilitate a quality test of the efficacy hypothesis, and to avoid
potential off-target toxicology.

Our efforts to discover aggrecanase inhibitors led to a series of hydantoins found
to be potent, dual inhibitors of ADAMTS-4 and ADAMTS-5 with high MMP
selectivity (Fig. 3.21). Compounds such as 3 were found to be efficacious in an
acute PD model (mono-iodoacetate, MIA) and in a more resource-intensive surgical
efficacy model of OA, with joint damage induced by meniscal tear [84]. Having
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established a qualitative linkage in vivo between PD activity in the MIA model and
efficacy in the surgical model of disease, we wanted to develop a more quantitative
relationship between TE parameters and PD activity in the MIA in order to more
effectively define performance characteristics for compounds that would be desir-
able for clinical study [9].

To that end, rat oral exposure data were collected for compound 3, as well as
several analogs, in order to enable the TE-based design of MIA experiments. As the
representative data in Fig. 3.21 illustrate, in vitro potency was measured in the
presence of rat plasma in order to obtain a functional assessment of the drug
concentration needed to overcome the relevant nonspecific protein binding
in vivo. To ensure that species selectivity of target affinity was accounted for, rat
ADAMTS4 potency was evaluated for all compounds studied in vivo and was
found to be indistinguishable from the corresponding human potency. Because
synovial fluid is generally known to present low barriers to the passive permeation
of small molecules and is not under the influence of active transporters, the free
drug hypothesis was applied [85]. Thus, plasma levels from the rat PK studies were
used in combination with rat plasma ICsos to approximate TERs in the target
compartment. Finally, due to the fact that the MIA model requires several days of
drug treatment, 24 h time intervals were considered as the relevant time course for
TE in the experimental design.

As shown in Table 3.6, at a dose of 10 mpk/PO compound 3 produces a TER of
>200 at Cj,ax, but by 8 h the TER dropped to ~6. Thus, in order to ensure that TE
would be sustained over each 24 h period during the time course of the efficacy
study, BID dosing was indicated. Using this design strategy, compound 3 and
several similar analogs were evaluated in the rat MIA model of cartilage degrada-
tion. In this assay, animals are injected with MIA which causes protease release into
the synovium. After an incubation period, animals are treated with compound BID,
PO for 4 days. Sacrifice of the animals 4 h post final dose and lavage of the knee
allows assessment of aggrecan degradation by NITEGE fragment quantification
using ELISA. As can be seen in Fig. 3.22, this study design yielded a range of PD
activities which gave reasonable correlation to the TE in plasma.

Based on the evaluation of this data set, the MIA ECs( appears to correspond to a
TER of ~150, when measured at a single time point of 4 h. However, inspection of
the full PK curves for the compounds in Fig. 3.22 shows that the plasma concen-
trations of the inhibitors are expected to differ by >2 orders of magnitude between
Crnax and Cy;, over the course of the efficacy experiment [9]. Thus, in order to
eliminate the significant variation in exposure levels and to minimize any potential

Table 3.6 Rat pharmacokinetics®

Rat plasma Target 8h 8 h target
hADAMTS-5 AUC Chmax | €ngagement plasma | engagement
Compound | IC50 (nM) (nM h) | (nM) | ratio at Cpax (nM) ratio
3 35 20,000 | 7600 |220 220 6.3

“Data based on a 10 mg/kg PO dose in Lewis rats
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Fig. 3.22 MIA NITEGE inhibition versus target engagement ratio at 4 h. Data shown is pooled
from dose-response experiments using compound 3 (highlighted with blue circles) and several
analogous inhibitors of similar structure, potency, selectivity, and PK properties

for erosion of selectivity vs MMPs in vivo, an infusion pump design was evaluated.
Compound 3 was found to have solubility (30 mg/mL in PEG300) and rat IV
clearance properties making it ideal for use in such an experiment. It also showed in
lab simulation that it maintained consistent release from the osmotic pump over the
required dosing period. Thus, for the TE/PD study design, four dose groups were
utilized, with a high dose of 30 mg/mL followed by half log reductions down to a
low dose of 1.44 mg/mL. This dose range was estimated to provide a range of
steady-state TERs from ~100 down to ~3, respectively.

As shown in Fig. 3.23, osmotic pump infusion of compound 3 produced consis-
tent plasma levels throughout the time course of the MIA experiment. A plot of the
PD activity versus the steady-state TER of compound 3 produces a logarithmic
curve (Fig. 3.24, R? = 0.8). Thus, from these experiments we concluded that the
high TERs achieved at C,,, in the previous oral experiments were not required to
drive PD efficacy. Further, the role of in vivo selectivity erosion was eliminated as
contributing factor as well, as estimates of in vivo TERs for all other MMPs
measured never rose above ~0.01 over the course of the study using the pump
design. In fact, a compound capable of sustaining a minimum TER in plasma >10
will produce an EDsq effect in the MIA model. This is particularly noteworthy since
EDsgs in the MIA model were found to correlate with statistically significant
improvement in total joint score in the challenging surgical model [84].
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Based on this analysis, further SAR efforts were focused on the development of
an inhibitor with a combination of human potency and projected human ADME
properties sufficient to sustain a free drug concentration > 10 times above the
human biochemical ADAMTS-4 and ADAMTS-5 ICs, with an attractive projected
oral dose QD in man. This strategy led to the identification of compound
4 (Fig. 3.25), which showed an attractive combination of potency, selectivity,
MIA efficacy, and projected human PK properties supporting the prediction that
it would deliver the desired level of human TE at a dose of 45 mg/PO, QD. By
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comparison, compound 3 was projected to require an oral dose of 600 mg QD in
man to achieve the same level of sustained TE [9].

This example illustrates the utility of osmotic pumps to enable the efficient
development of a TE/PD relationship in our preclinical model, with nonoptimal
compounds. Subsequently, that information was used to guide our efforts to identify
a molecule with performance characteristics supportive of human clinical study.
This stands in contrast to previous efforts in which the same TE concepts described
in this chapter were used to invalidate several of the MMPs which had been
nominated as potential therapeutic targets for OA. In these cases, potent but poorly
selective tool compounds demonstrated efficacy in both PD and surgical efficacy
models. However, unlike our aggrecanase inhibitor program, as target engagement
with high selectivity was achieved for the MMP targets of interest (to improve
toxicology profiles), efficacy in preclinical models was lost. Like the IDE program,
in these cases the disconnection of selective TE from the desired efficacy facilitated
prioritization decisions to focus resources on higher potential efforts.

3.5 Conclusion

In summary, the proactive development of a reliable understanding for the time
course of in vivo TE represents a powerful strategy for driving timely/quality
decision-making across the value chain for cross-functional drug discovery
teams. At the front end, TE analysis can dovetail with lead generation technologies
to accelerate the identification of useful tool compounds for the design of quality
in vivo studies that enable preclinical target validation. In this phase, the use of
alternative dosing methods such as infusion pumps can be particularly impactful for
accelerating data acquisition without the need for costly compound optimization
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cycles. On the back end, TE analysis can be employed to refine desired performance
characteristics for candidate selection, to improve the patient focus and efficiency
of lead optimization efforts and more rapidly enable clinical experiments. Thus, the
application of TE-based drug discovery strategies represents a critical link in the
collaborative process of efficiently translating molecules into medicines.
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Chapter 4
In Silico ADME Techniques Used
in Early-Phase Drug Discovery

Matthew L. Danielson, Bingjie Hu, Jie Shen, and Prashant V. Desai

Abstract The process of drug discovery and development is time consuming and
expensive. In silico tools, in combination with in vitro and in vivo models, provide a
valuable resource to improve the efficiency of this process. In this chapter, we
provide an overview of various in silico tools and models used to identify and
resolve absorption, distribution, metabolism, and excretion (ADME) challenges in
drug discovery. In general, structure-based in silico techniques such as docking and
molecular dynamics simulations have limited applicability in the ADME space due
to the promiscuity of many ADME targets and the limited availability of high-
resolution 3-D structures. Pharmacophore models, a ligand-based in silico method,
can be used to identify key structural features responsible for the interaction with
the target of interest. However, due to broad ligand specificity and the probability of
multiple binding sites in many ADME targets, pharmacophore models have limited
prospective applicability across structurally diverse chemical scaffolds. Con-
versely, quantitative structure-property relationship (QSPR) models are capable
of extracting knowledge from a wide variety of chemical scaffolds and have
prospectively shown utility as predictive models for many ADME endpoints mea-
sured in the pharmaceutical industry. QSPR models, especially those based on
machine learning techniques, are known to have limited interpretability. To address
this challenge, the use of QSPR models is typically coupled with information
derived from trends between ADME endpoints and physicochemical properties
(e.g., lipophilicity, polar surface area, number of hydrogen bond donors, etc.)
during drug discovery. Furthermore, knowledge extracted by the matched molec-
ular pair analysis (MMPA) of ADME data provides insight that is used to identify
fragment replacements to improve the ADME characteristics of compounds.
In conclusion, an effective amalgamation of in silico tools is necessary to influence
the design of compounds that will possess favorable ADME properties. Finally, in
silico tools should never be used in isolation; they make up one arm of the
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integrated and iterative learning cycle that is comprised of in silico, in vitro, and
in vivo models that we recommend using to effectively drive a drug discovery
project.

Keywords In silico ADME ¢ Quantitative structure-property relationship models ¢
Matched-molecular pair analysis * Predictive models ¢ Physico-chemical properties

The drug discovery and development process is time consuming and expensive,
encompassing approximately 15 years and over two billion dollars to bring a drug
to market [1]. Stage-appropriate use of models is an integral part of the drug
discovery process. Early-phase drug discovery uses various in silico and in vitro
models to explore potency, ADME properties, and safety. As drug discovery pro-
gresses, preclinical in vivo animal models are used to estimate how a compound
will behave in humans, and ultimately model situations are created in a controlled
clinical environment (clinical models) before the compound is approved for use in
the general population.

In an attempt to reduce the time and cost associated with the drug discovery
process, in silico tools are one class of models employed throughout this process. In
silico tools have a direct impact on how drug discovery progresses and are espe-
cially useful in the early-phase of drug discovery where a clinical candidate is being
pursued and optimized. These tools are used to design and prioritize the synthesis of
compounds with desirable affinity, specificity, a multitude of ADME properties,
and safety with the goal of delivering the best possible compound to test in the
clinical setting.

In this chapter, we provide an overview of various in silico models and tools
employed to identify and resolve ADME challenges during the process of drug
discovery. Generally speaking, in silico ADME tools are classified into two major
categories, structure-based and ligand-based. Each class of in silico tools are
addressed in subsequent sections.

4.1 Structure-Based In Silico Models

When sufficient structural information exists on the protein of interest, generally in
the form of a nuclear magnetic resonance or crystallographic X-ray structure,
structure-based drug design techniques are used in early-phase drug discovery. In
structure-based drug design, interactions between the protein and the ligand are the
focus of the study, and this is commonly referred to as rational drug design. Novel
ligands can be designed de novo, meaning the interactions between a hypothetical
ligand and the protein are optimized with the goal of creating a compound with high
affinity and selectivity. Molecular docking can be used to orient a ligand within
the active site of the protein to provide an estimate of the protein-ligand interaction.
However, molecular recognition between a protein and a ligand is a complex process



4 In Silico ADME Techniques Used in Early-Phase Drug Discovery 83

that does not occur in a static structure. Molecular dynamics (MD) and Monte Carlo
(MC) simulations are computational techniques used to create trajectories that
model the protein-ligand fluctuations and dynamics in atomic detail [2, 3].

4.1.1 Molecular Docking

The goal of molecular docking is to model the potential interaction between a
protein and a ligand [4]. Although several docking programs exist [4—11], each
docking program can be broken down into two general parts: the search function
used to orient and place the ligand inside the binding pocket (binding pose gener-
ation) and the scoring function used to quantify the protein-ligand interaction and
predict the binding affinity (binding affinity prediction). This chapter provides an
overview of the current status of molecular docking but does not go into detail on
search algorithms or scoring functions, both areas of active research.

For certain protein targets, the search algorithm may generate bioactive binding
poses (root-mean-square deviation <2 A) during the search process for 90% of
compounds, but this percentage can be as low as 40% for other protein systems
[12]. This is especially challenging for ADME targets that are known to bind a
diverse array of compounds and are promiscuous in nature. For many ADME
targets, factors such as the size of the binding pocket (relatively large and hydro-
phobic), the water network within the active site, and protein flexibility lead to
significant challenges while utilizing molecular docking. Figure 4.1 illustrates this
point on one class of ADME targets, the cytochrome P450 (CYP) family of
enzymes. CYPs are estimated to be involved in the metabolism of approximately
75% of drugs currently on the market with CYP3A4 known to metabolize approx-
imately 50% of such compounds [20]. While several publications exist on CYP3A4
docking [21-26], the abovementioned problems limit its use in early-phase drug
discovery programs outside of qualitative idea generation.

In instances where the docking search algorithm identifies a bioactive binding
pose, current scoring functions are not accurate enough to reliably predict the
binding affinity [27-29]. The correlation between the experimentally measured
and predicted binding affinities for a series of compounds binding to the same
protein target is usually weak and often influenced by the size of the ligand rather
than the underlying physicochemical contributions to the binding affinity
[30, 31]. Therefore, bioactive binding poses are not always ranked as the most
energetically favorable (or top ranked) during the docking procedure [12]. In
addition, the lack of accuracy and separation in binding affinity prediction makes
it challenging to predict the binding affinities of compounds within a structure-
activity relationship (SAR) series let alone in silico de novo-designed compounds.
A recent review by Lill [32] discusses many of the current problems and challenges
of molecular docking and goes into greater depth on techniques used to overcome
such obstacles.
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Fig. 4.1 Reproduced from Danielson et al. Potentially increasing the metabolic stability of drug
candidates via computational site of metabolism prediction by CYP2C9: The utility of incorpo-
rating protein flexibility via an ensemble of structures. Eur ] Med Chem 2011 Sep.;46(9):3953-63.
Copyright © 2001 published by Elsevier Masson SAS. All rights reserved [13]. Examples of
protein flexibility in cytochrome P450 enzymes: (a) Changes in Arg47 side-chain rotamer in P450
BM-3 depending on the bound ligand (palmitoleic acid and corresponding protein in blue,
PDB-code: 1FAG [14]; N-palmitoylmethionine and corresponding protein in magenta: 1Z09
[15]). (b) Alternative loop conformations are observed in CYP119 when different ligands are
bound. Compared to the apo structure of CYP119 (F/G loop in orange: 1107 [16]), the F/G loop
adapts distinct configurations when 4-phenylimidazole (ligand and loop in magenta: 1F4T [17]) or
imidazole (blue: 1F4U [17]) is bound. (¢) In CYP3A4 significant protein flexibility occurs in the
F/G portion of the protein (apo: orange, ITQN [18]; erythromycin bound: blue, 2JOD [19]) to
accommodate erythromycin and part of the F-F' loop becomes disordered. This motion causes the
solvent-accessible volume of the binding site to significantly increase and can dramatically affect
ligand binding. (d) CYP3A4 exhibits a protein breathing motion increasing the size of the binding
pocket to accommodate two ketoconazole (ligands in magenta, protein in blue: 2VOM [19])
compounds without significant conformational changes of the helices or loop regions composing
the binding pocket (apo: orange: 1TQN [18])

Post-processing is one such technique designed to overcome the problem of
using simplistic scoring functions in docking and can significantly improve the
successful prediction of binding affinities [33, 34]. Post-processing techniques
incorporate dynamic information of the protein-ligand system after the docking
process has been completed. The top-scored binding pose, or several favorably
scored poses, is used as input to subsequent MD simulations. In combination with
free-energy methods such as free-energy perturbation [35], thermodynamic inte-
gration [36], molecular-mechanics Poisson-Boltzmann or generalized Born surface
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area [37], or linear interaction energy analysis [38], a more accurate estimation of
the free energy of binding is possible [33]. However, this process is relatively time
consuming and requires that the bioactive binding pose is within the top-ranked
binding poses in order to limit computational time, a criterion that is not always
evident when carrying out molecular docking studies on large and rather promis-
cuous ADME targets.

4.1.2 Molecular Dynamics

Molecular dynamics (MD) is a computational technique used to study the physical
movement of atoms. The first MD simulation of a biomolecular system was done in
1977 on bovine pancreatic trypsin inhibitor using a simplistic molecular mechanics
potential to describe the properties of the system [39]. Although this simulation was
only performed for 9.2 ps, it was a groundbreaking study that showed that integrat-
ing Newton’s equations of motion over a series of very short-time steps (usually one
or two femtoseconds) could transform a once static X-ray structure into a dynamic
trajectory from which time-averaged properties could be calculated. Underlying
any MD simulation is a physics-based force field that defines all parameters of the
system. Several force fields and MD programs exist [40—46], and the parameters are
usually defined by high-level quantum chemical calculations or empirically fit to
experimental properties. In addition to the force field parameters, a potential
function, or mathematical relationship, is needed to describe how the individual
atoms of a system interact during the MD simulation. Most force field potentials
describe the interactions between atoms in the system in terms of a five-component
description of intra- and intermolecular forces. The AMBER force field potential is
shown in Eq. (4.1) and consists of bonded (bonds, angles, and dihedral terms) and
nonbonded (van der Waals and electrostatic terms) components [42].

V(’JV) = ZbondsKl' (I‘ - I'eq)2 bond term
+ ZanglesKe (9 - eeq)z angle term

V., )
+ Zdihedrals?(l + cos [ng —y])° dihedral term

B
+ Zio,mb = —=2 van der Walls term
Ry Rj
+ Ei‘i‘}ms %qj electrostatic term
(4.1)

In this type of potential, intermolecular bonds are treated as a simple Hooke’s
law springs with a characteristic force constant K. and equilibrium bond length rq.
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The angular term accounts for bond angle bending in the system, and the dihedral
term represents the intrinsic torsional energy due to twisting about bonds. The van
der Waals term accounts for the attractive London dispersion and repulsive van der
Waals nonbonded forces and is calculated by a 12-6 Lennard-Jones potential. Force
field assigned atomic partial charges are used to calculate the nonbonded electro-
static interaction between two atoms by solving Coulomb’s law. Summing over all
pairs, triplets, and quartets of atoms in the system, the force field potential provides
an estimate of the energy of the system at a particular configuration. A more
detailed description of MD and the algorithms associated with this technique can
be found elsewhere in the literature [3, 4143, 47-49].

Currently, MD simulations are performed on macromolecular systems com-
prised of thousands of atoms, and several different explicit and implicit water
models exist to solvate the system [47-53]. The nanosecond time scale is routinely
reached in MD simulations, and in specialized instances protein systems have even
been simulated up to the millisecond time scale [54, 55]. With increasing computer
power and advances in technologies and methods, millisecond time scale simula-
tions may become routine in the near future. However, this also brings with it
additional challenges such as storing, analyzing, and interpreting such a vast array
of data. Despite the previously mentioned problems, MD simulations are routinely
used to turn a static X-ray crystallographic structure into a dynamic system.
Snapshots taken from the MD simulation provide some estimate of protein flexi-
bility and can be used as alternative templates for molecular docking, and this
technique has been utilized in several CYP isoforms [13, 56-61]. While MD
simulations have become routine in the computational chemistry field, their appli-
cation in early-phase drug discovery has not. This is especially true for ADME
targets due to very limited number of high-resolution X-ray crystallographic struc-
tures and their promiscuous nature. Additionally, the time and resource intensive
nature of MD simulations and the rather fast-paced movement of chemistry SAR on
project teams further limit the application of MD simulations during this phase.

4.2 Ligand-Based In Silico Models and Tools

4.2.1 Quantitative Structure-Property Relationship (QSPR)
Models

Quantitative structure-activity relationship (QSAR) models are one of the com-
monly employed ligand-based techniques to predict the activity of compounds. The
field of modern QSAR can be traced back more than 50 years to a model produced
by Hansch [62]. QSAR sophistication has grown from its early application on a
small congeneric series of compounds using simple linear regression to now being
applied to data sets comprised of thousands of diverse compounds utilizing a wide
variety of statistical and machine learning algorithms.
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When such models are used to predict various properties, including ADME
endpoints, they are referred to as quantitative structure-property relationship
(QSPR) models. Given the promiscuity and limited structural knowledge of
ADME targets, QSPR models are commonly used in the pharmaceutical industry
to address ADME-related challenges. The basic premise of QSPR methodology is
to develop a relationship between an observed property and structural features of a
compound. Considering a set of compounds with observed experimental data
(training set), a model is developed that can be used to predict the activity of
other compounds (test set) not included in the initial training set. Compounds are
represented using a variety of molecular descriptors that describe the chemical
structure and properties of the compound. A relationship between the molecular
descriptors and the observed response is computed using mathematical techniques
such as linear regression, artificial neural network, support vector machine (SVM),
and random forest (RF). A general description of such algorithms is summarized in
Sect. 4.2.1.4. Figure 4.2 illustrates the general process of building and applying
QSPR models to a group of compounds, and each step of the process is further
explained below.

Generalized equation representinga typical QSPR model
P =f(X)

[P = Value of property being modeled ]

* Example: Solubility, microsomal clearance, LC50 for hepatocytes

[f = statistical function / method ]

« Linear- Multiple Linear Regression, Linear Discriminant analysis

* Non-Linear/Machine learning - Recursive partitioning (random forest), Support vector machine (SVM)

[X = molecular descriptors ]

* Examples: MW, no. of hetero atoms, charge, no. of valence electrons on certain atoms, surface area, distance

between certain features, hydrophobicsurface area etc.
Test set

Measured property
Molecular descriptors

Statistical method

Prediction of test set

Fig. 4.2 Schematic representation of key components when building and applying QSPR models.
The top section shows the generalized equation representing a typical QSPR model and lists key
components required to derive such an equation for a given data set. The bottom section depicts a
typical workflow used to build and use a QSPR model
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4.2.1.1 Data Set Selection and Curation

The first step to create any QSPR model is the selection of the data set that the
model will be built upon. A key consideration when choosing any data set to create
a model upon is that the data should be accurate, reliable, reproducible, and
measured using identical experimental conditions for all compounds. This can be
a significant challenge when building QSPR models based on public databases
compiled by collating data from multiple labs spanning a variety of experimental
protocols. Stouch et al. demonstrated that models based on data sourced from
multiple labs showed poor predictive capabilities for compounds tested in a rigor-
ous and consistent manner [63]. For example, in the case of a hERG inhibition
model provided by an external vendor, the data were collated from several different
laboratories using a variety of assay conditions: different cell types expressing the
hERG channel and different activation potentials for the channel, along with
combining binding and inhibition data. The predictions from the vendor model
had a poor correlation coefficient of 0.01 and a high root-mean-square error
(RMSE) of 1.3 log units for the test set evaluated by the authors.

Following the selection of data, the importance of data curation cannot be
overemphasized. In order to create the best possible QSPR model, it is critical to
minimize the inclusion of potentially erroneous data. The potential sources of
erroneous data include false positives/false negatives, under-/overestimated
responses, spurious results (e.g., microsomal stability >100%), incorrect structural
representation of compounds, data below the analytical detection limits, and impure
material. For example, while building a classification model for P-glycoprotein
(P-gp) efflux, Desai et al. excluded compounds reported as non-substrates
displaying >60% inhibition of a fluorescent P-gp substrate, very slow passive
permeability, and very low cell partitioning (all cases suggesting potential false
negatives) in addition to compounds with poor mass recovery (potentially spurious
data) [64]. When feasible, it is good practice to find and utilize analytical data
related to identity and purity of compounds. Such information is commonly avail-
able in an industrial setting but not easily found for data compiled from multiple
sources and available in public databases like ChEMBL. In a previous study,
several public and commercial databases were investigated, and error rates in
chemical structure annotation ranged from 0.1% to 3.4% [65].

In order to properly curate the assay data that will be used to build a model, it is
critical to understand the experimental protocol and potential caveats associated
with that given measurement. One of the common issues leading to potentially
erroneous results is poor solubility of the compound in the medium used for the
assay (e.g., none or very little of the compound is in solution giving an incorrect
assay value). This can potentially be addressed by running a parallel experiment to
measure the solubility of the compound in the buffer used for the ADME assay. For
example, at Eli Lilly and Company, aqueous kinetic solubility in pH 7.4 phosphate
buffer is measured for all compounds tested in high-throughput ADME assays. This
information is used to curate the data for various ADME endpoints wherein
compounds that are not in solution at the concentration used for the given ADME
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assay are not included in the QSPR model. To summarize this section, while it is
often an overlooked and underappreciated step, data curation based on detailed
understanding of the experimental measurement is a critical step in building high-
quality QSPR models.

4.2.1.2 Training Set Selection

Following data curation, the next logical step of creating a QSPR model is selecting
compounds to construct and train the model. What size or how many compounds
needed to be in the training set is a precarious question that is sometimes asked. No
easy answer to the question exists, and the size of the training set needed to build a
useful model depends on the complexity of the endpoint and the intended use of the
model. For example, for models intended to be applied prospectively to compounds
spanning a wide range of structural diversity, the training set should reflect similar
structural diversity and perhaps as much diversity as possible. Prospective model
performance, meaning how well the model predicts compounds not in the training
set, also depends on whether the training set encompasses the entire range of the
assay response. For models such as microsomal metabolic stability that are based
on a continuous response (assay range from 0% to 100%), the ideal situation is to
have a training set containing compounds spanning the entire 0—100% range and
uniformly distributed if possible. For categorical response such as low or high, an
even or close to even distribution of compounds between the categories is desired.

Models constructed with training sets that span a narrow spectrum of the entire
assay response (e.g., a training set containing 95% of compounds that have micro-
somal metabolic stability of >90% when the assay range spans 0—100%) or with a
highly skewed distribution of the categorical response (e.g., 95% of compounds in
the training set belong to the “high” class) are likely to result in QSPR models with
limited utility when used prospectively.

4.2.1.3 Molecular Descriptors

Following data curation and training set selection, molecular descriptors must be
calculated in order to derive the mathematical relationship between chemical
structure and assay activity. Molecular descriptors are numerical parameters
derived from chemical structures, and a wide variety of descriptors are used to
build QSPR models. Physicochemical (e.g., log P, pK,, MW), topological (e.g.,
atom connectivity), constitutional (e.g., number of nitrogen), and quantum chem-
ical (dipole moment, atomic charges) are few examples of common types of
descriptors. To gain a deeper understanding and comprehension of molecular
descriptors, the reader is referred to a publication by Todeschini and Consonni [66].

In addition to molecular descriptors, molecular fingerprints are often used to
represent chemical structures [67, 68]. A molecular fingerprint is comprised of a
series of substructures, and the presence/absence of such substructures determines
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Fig. 4.3 Snippet of MACCS fingerprint of diazepam

the numerical code for the molecular fingerprint [69—71]. For example, Molecular
Access System (MACCS) fingerprint uses a set of structural features to code the
compound into a binary representation [72]. Figure 4.3 shows an example snippet
of the MACCS fingerprint representation for the drug diazepam. The column titled
“key positions” in the figure assigns a number to a particular chemical feature,
listed under “fragment description.” The “fingerprint code” is a binary value
associated to the absence (assigned zero)/presence (assigned one) of the chemical
feature. Using the “key positions” and “fingerprint code,” one can derive the final
fingerprint shown in Fig. 4.3. Only “fingerprint codes” that are present in the
compound are kept in order to keep the fingerprint code vector sparse.

Typically, when constructing a QSPR model, a large collection of molecular
descriptors and a variety of fingerprints are calculated. The descriptors and finger-
prints are subsequently evaluated using statistical approaches to select the optimal
combination to relate chemical structure to the activity of the endpoint. When
constructing a model for the first time, several versions of the QSPR model may
be built using various combinations of descriptors or fingerprints followed by
several iterations of prospective model evaluation (Sect. 4.2.1.5) to identify the
optimal collection of descriptors or single best fingerprint [73].

4.2.14 QSPR Model Training/Building

After data curation, training set preparation, and descriptor/fingerprint selection, the
QSPR model is ready to be built. Mathematic algorithms such as linear regression,
artificial neural network, SVM, and RF are routinely used to train and build QSPR
models [74]. Linear regression (for continuous response) or discriminant (for
categorical response) models assume that the measured property value is an addi-
tive response to the underlying molecular descriptors. For example, in the QSPR
model for solubility shown in Eq. (4.2) [75], it is assumed that solubility is linearly
dependent on lipophilicity (log P) and topological polar surface area (TPSA).
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logS = —1.0377logP — 0.0210TPSA + 0.4488 (4.2)

Besides prediction, linear models may provide mechanistic insight and can be
interpretable in nature as long as the molecular descriptors are “simple” and
intuitive. Thus, in case of the solubility model in Eq. (4.2), the negative coefficient
for log P suggests that an increase in the lipophilicity of compounds is expected to
decrease solubility.

Given the complexity of most ADME-related responses, linear models appear to
only be applicable over a relatively narrow spectrum of compounds that contain
conserved structural motifs. In practice, such models are rarely useful prospectively
due to their inability to extrapolate and predict compounds outside their immediate
domain of applicability. Machine learning methods such as RF [76, 77] and SVM
[78, 79] have been applied to QSPR models to combat the abovementioned
limitations and are capable of elucidating more complex relationships between
structural descriptors and the observed response.

In general terms, RF models are based on several iterations of the recursive
partition approach, and SVM models identify a hyperplane in the high-dimension
descriptor space to enable maximum separation of observed responses. Within the
pharmaceutical industry, a large amount of ADME data are generated in a consis-
tent manner, and therefore such machine learning methods are preferred to build
“global” QSPR models that are designed to be applicable across multiple drug
discovery projects that cover a broad spectrum of chemical space [80]. In our
experience, such models typically outperform linear QSPR models in extracting
structure-property relationship knowledge from large sets of diverse compounds.
However, given the complexity of RF and SVM models, they are relatively less
interpretable compared to linear models and often offer limited mechanistic insight
to go along with predictions. Although generally less interpretable, it should be
noted that it is possible to get an estimation of the most influential descriptors for
RF models, in turn providing some understanding of key molecular characteristics
influencing a given endpoint. For example, in case of an RF model for P-gp efflux,
Desai et al. identified that molecular features related to the number of hydrogen
bond donors (HBD), TPSA, and hydrogen bond strength were most influential in
terms of P-gp efflux of compounds [64].

4.2.1.5 QSPR Model Evaluation

The performance of a QSPR model is evaluated using a variety of parameters
depending on the type (continuous vs. categorical) and the intended use of the
model. Performance parameters are typically calculated at three stages of the model
building process. For example, after building a continuous response model, the first
stage is to assess the ability of the model to fit the training set compounds. This
metric is commonly referred to as > in the QSAR/QSPR literature. The second
stage evaluates the ability of the model to predict the set of compounds left out of
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the model building process in an iterative manner (called cross-validation,
leave-one-out, or leave-some-out) is referred to as ¢°. The third stage is known as
external or prospective validation, and the model’s ability to predict compounds
that were not used during any stages of the model building process is evaluated.

The ability of the model to fit the training set simply serves as a feasibility
assessment. It does not provide an assessment of the model’s ability to predict
compounds outside the training set and therefore isn’t particularly useful
[81]. Cross-validation is based on prediction of compounds left out of the model
but is still an internal validation as it derives the test set from the existing pool of
compounds. Depending on the modeling method employed, the cross-validation test
set can bias the choice of descriptors and other model-related parameters [82]. Many
experts in the QSAR community believe that this type of validation often over-
estimates a model’s ability to predict a true external or prospective test set. Therefore,
in order to comprehensively evaluate the utility of a QSPR model, it is critical to
assess its predictive ability against an external prospective test set [64, 83—85].

For QSPR models based on continuous data, the square of the correlation
coefficient (%) between the observed and predicted value (referred to as q2 when
used in the context of cross-validation) is the most common performance parameter
reported. RMSE between the observed and predicted values is another key param-
eter used to assess continuous response model performance. Higher values of 1~
(maximum 1 for a perfect model) and smaller values of RMSE are desirable [86]. In
many cases, Spearman’s rank correlation coefficient (p) is also reported as an
indicator of model performance [87]. Depending on the intended use of the
QSPR model, one or more of these parameters may be utilized to determine how
well a particular model is preforming. For example, if the goal is to identify a model
wherein predictions are correlated with the observations (not necessarily to predict
the absolute value of the property), the 7% of a prospective test set would serve as a
useful parameter. On the other hand, to simply rank order the prospective com-
pounds, a model with high p value would be sufficient. If the goal is to accurately
predict the absolute value of the property, a model with low RMSE would be
necessary. The ideal QSPR model would have favorable performance values for all
of the abovementioned metrics.

Classification QSPR models have a different set of performance metrics com-
pared to regression models. Commonly reported performance parameters for clas-
sification models are based on the fraction/percent of correct predictions (overall
accuracy), the accuracy of each experimental class (sensitivity and specificity), and
the accuracy of each predicted classes (PPV and NPV). Table 4.1 provides details to
calculate the abovementioned parameters and is referred to as a contingency table
or confusion matrix. In addition to these widely used metrics, parameters such as
the kappa index are often reported to assess the agreement between prediction and
the experimentally determined category. A kappa value of 1 indicates perfect
agreement between predictions and experimental values, —1 suggests complete
disagreement, and O indicates the prediction is no better than random chance. In
general, a kappa value >0.4 is considered an indicator of reasonable model
performance with useful predictive power [88, 89].
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Table 4.1 Contingency table with equations for a classification QSPR model

Experiments
Predictions | Positive Negative
Positive TP FP Positive predictive value (PPV) | TP/(TP + FP)
Negative FN TN Negative predictive value TN/

(NPV) (TN + FN)

Sensitivity Specificity Overall accuracy = (TP + TN)/N

TP/ TN/

(TP + FN) (FP + TN)

TP, TN = true positive, true negative; FP, FN = false positive, false negative; N = total number of
compounds

4.2.1.6 Interpretation of Model Prediction

In addition to the abovementioned parameters for model evaluation, several other
factors should be considered when assessing the utility and/or applying a QSPR
model to a given drug discovery project. In the case of a continuous response
model, an applicability domain-related parameter should also be considered in
addition to the predicted value if available. Meaning a parameter that indicates if
the QSPR model can, or should, predict a compound of interest based on what the
model was trained on. If the compound of interest is vastly different than all
compounds in the training set, it is expected that such an applicability domain
parameter would be unfavorable. Several methods to estimate the applicability
domain for a QSPR model have been described in the literature, and they generally
provide a qualitative indicator of the confidence for each prediction or a quantita-
tive estimation of the confidence interval around the predicted value [90-93].

In addition to the standard contingency table metrics commonly reported (see
Table 4.1), if one is evaluating a classification QSPR model built with a machine
learning method (e.g., RF or SVM), the predicted scores of each compound give an
estimation of the relative confidence or reliability of prediction [64, 77, 94]. For
example, for two compounds predicted to be in the same category, the compound
associated with higher score is assumed to be a more reliable prediction compared
to the other.

In addition to the abovementioned numerical parameters reported to determine
QSPR model applicability/reliability, in order to conduct a thorough assessment of
the utility of a model for a given chemical scaffold or drug discovery project, one
should always consider:

« The inherent experimental variability in the measurement, especially in case of
the high-throughput ADME assays. Model performance has been shown to be
directly related to the inherent variability in the measurement of the given assay
parameter [95]. For regression QSPR models built on continuous data, one
should evaluate the performance of the model based on the proportion of
predicted values that falls within the experimental variability of the measured
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response and not just rely on an * value. For example, if the inherent variability
of an assay is threefold, a model built on these data should be evaluated with this
variability in mind. One should check the proportion of the prospective test set
that are predicted within threefold of the experimental values. A regression
model may not have an % value of 0.9 for this model, but if 90% of the predicted
compounds are within threefold of the experimental values, then that model will
still be useful.

Due to the variability in ADME high-throughput assays, we build and advise the
use of categorical QSPR models for such data.

The QSPR model should be evaluated on a prospective test set that spans the
entire spectrum of the response, or in the case of a categorical model, the test set
should have a balanced distribution of compounds from each category or one
that mirrors the training set distribution.

The assessment of a QSPR model should not be based on a small fraction of
compounds, only the most recent compounds, or only the potent compounds
from a given chemical scaffold or drug discovery project.

A QSPR model should not be evaluated based on its performance against a
second experimental endpoint not directly predicted by the model. For example,
comparing predictions from a QSPR model built on in vitro microsomal meta-
bolic stability data against an in vivo clearance outcome should not be done
without establishing if this is permissible. The compound and scaffold of interest
may be cleared by mechanisms other than microsomal metabolism, and an in
silico microsomal clearance QSPR model should not be expected to accurately
predict the in vivo clearance value for such cases.

4.2.2 ADME QSPR Models Used at Eli Lilly and Company

Over the past couple of decades, many publications pertaining to the application of
QSPR models for ADME-related physicochemical properties and in vitro/in vivo
endpoints have been published. In an attempt at brevity, the reader is referred to review
articles that summarize this area of research [96-98]. Table 4.2 provides a brief
summary of ADME QSPR models developed and used at Eli Lilly and Company.
The data set for each individual model was generated by/for Eli Lilly and Company
using consistent experimental conditions for each individual ADME in vitro or in vivo
assay. Total data set size ranges from 2,000 to 80,000 depending on the throughput of
the particular assay. All ADME QSPR models are built using an SVM algorithm with
an optimum molecular fingerprint selected for each assay endpoint.
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Table 4.2 Representative list of ADME QSPR models used at Eli Lilly and Company

Training set Model type:

size Classification (C)

Endpoint

Data source

(in thousands)

Continuous (R)

Kinetic aqueous
solubility

Solubility of DMSO stock
diluted at various concentra-
tions in phosphate buffer
(pH 7.4)

80

C

High-throughput Solubility of DMSO-dried sam- | 30-32 C

solubility ple in buffers at pH 2, 6, and 7.4

Passive permeability Passive permeability across 15 Cand R
MDCK cells

Hepatic microsomal Stability in hepatic microsomes | 20-80 Cand R

stability (human/

mouse/rat/dog/

monkey)

Cytochrome P450 % inhibition of CYPs at 10 uM | 65 C

competitive inhibition

(CYP3A4/CYP2D6/

CYP2C9)

CYP3A4 time- Time-dependent inhibition of 10 C

dependent inhibition CYP3A4 at 10 pM

P-glycoprotein sub- Efflux by human P-glycoprotein | 4 C

strate recognition overexpressed in MDCK cells

In vivo mouse brain Unbound concentration of 2 R

unbound concentration | compound 5 min post-IV dose

In vivo mouse brain: brain:plasma partition coeffi- 2 Cand R

plasma partition coeffi- | cient of unbound drug (Kpuu) in

cient of unbound com- | mouse 5 min post-IV dose

pound (Kpuu)

Fraction unbound Equilibrium dialysis at 1 pM 6-8 R

(plasma, brain,
microsomes)

incubation

4.2.3 Prospective Validation of ADME QSPR Models
at Eli Lilly and Company

In an industrial drug discovery paradigm where new pharmacological targets are
constantly explored, it is important to update global QSPR models to ensure their
applicability and prospective prediction performance. Figure 4.4 highlights the
outcome of this chronological process at Eli Lilly and Company where prospective
performance of ADME QSPR models was maintained for several classification
models used over the past several years.

As drug discovery project teams synthesize and test new compounds in various
ADME in vitro assays, the global models are updated by curating and adding the
new data to their respective training sets. Before updating any particular model, the
existing model is prospectively evaluated to measure its predictive performance
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Fig. 4.4 Prospective validation of ADME QSPR classification models used at Eli Lilly and
Company. Average PPV and NPV over the last 8-10 versions are shown. Error bars represent
the standard deviation. All models were applicable for ~80% of prospective test sets when score
cutoffs were used to “accept” a prediction

against data generated after the model was built. The result of this assessment for a
set of seven Eli Lilly and Company ADME models is shown in Fig. 4.4. The
training set for these models range from ~4,000 to 75,000 and increases in number
with every model update cycle. Focusing on the mouse metabolic turnover model,
the oldest version of the QSPR model in Fig. 4.4 was built using ~40,000 com-
pounds. Before updating the model, it was prospectively evaluated against an
additional ~4,000 compounds, and after showing suitable performance, the new
data were added to the training set of the existing model to build the next version
containing ~44,000 compounds.

All models in Fig. 4.4 are SVM models using fingerprints as descriptors and
provide categorical predictions, along with a score representing the reliability of
such a prediction. As explained in Sect. 4.2.1.6, predictions associated with higher
scores are expected to have greater likelihood of aligning with the measured
response. Based on the prospective validation results, suitable score cutoffs (typi-
cally 0.7 on a scale of 0—1.0 for both prediction categories) are assigned to “accept”
a given prediction, while predictions with scores below the cutoffs for a given
category are labeled as “indeterminate.” The PPVs/NPVs shown in Fig. 4.4 are
calculated for compounds with ‘“acceptable” scores. For all models listed in
Fig. 4.4, >80% of the test set compounds had “acceptable” scores, and thus the
models were applicable for >80% of the test sets. As shown in Fig. 4.4, the average
PPV/NPV for the ADME models ranged from 75% to 85% in prospective testing.
Given such consistent prospective performance, the ADME QSPR models are
routinely used to design and prioritize compounds for synthesis and testing during
early-stage drug discovery. The performance of various versions of the global P-gp
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efflux model and its application in identifying and addressing challenges related to
central nervous system (CNS) drug discovery projects is described in detail by
Desai et al. [64].

4.2.4 Trends Between Calculated Physicochemical
Properties and ADME Parameters

To complement the usefulness of ADME QSPR models, the physicochemical
properties of compounds influencing ADME properties is well documented. One
of the earliest analysis of ADME properties was performed by Lipinski leading to
the “rule of five” suggesting that poor absorption and permeability are more likely if
the molecular weight (MW) is >500, the number of NH and OH hydrogen bond
donors is >5, the calculated log P (i.e., clog P) is >5, and the number of N and O
atoms is >10 [99]. The goal of this guideline was not necessarily to rule out certain
synthetic ideas but rather steer the synthetic chemistry effort toward chemical space
that is more likely to yield compounds with superior ADME properties. Subse-
quently, several analyses describing the trends between calculated physicochemical
properties and in vitro/in vivo ADME parameters have been reported [100—103]. In
an exhaustive analysis of a large and structurally diverse set of preclinical com-
pounds profiled at GlaxoSmithKline, Gleeson reported relationships between sev-
eral ADME assays and calculated physicochemical descriptors [100]. This included
in vitro ADME endpoints like solubility, permeability, rat brain tissue and plasma
protein binding, P-gp efflux, and inhibition of the CYP isozymes. Several in vivo
ADME parameters like oral bioavailability, clearance, volume of distribution, and
CNS penetration in the rat were also analyzed. Some of the calculated physico-
chemical descriptors used in this analyses were clog P, clog D, the number of
hydrogen bond acceptors (HBA) and donors (HBD) (typically counted as number
of N + O for HBA and NH + OH for HBD), positive and negative ionization states,
molecular flexibility, molar refractivity, MW, TPSA [104], and the number of
rotatable bonds. From this descriptor list, ionization state, clog P, and MW were
identified as the most influential physicochemical properties for ADME properties.
The paper suggested that compounds with a MW of <400 and a clog P of <4 were
preferred with regard to maintaining a favorable ADME profile. In another report
by Varma et al. [102], ionization state, lipophilicity, and polar descriptors were
found to be the physicochemical determinants of renal clearance in human based on
a compiled data set of ~400 marketed drugs. It is important to keep in mind that the
conclusions about correlations between physicochemical and ADME properties can
be strongly influenced by the size and nature of the database employed. Moreover,
many of the physicochemical parameters are not independent of each other. For
example, an increase in MW is likely to be associated with increase in the number
of heteroatoms like N and O, which in turn are associated with TPSA.
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Fig. 4.6 Experimental MDCK permeability vs clog P. Green = rapid permeability, red = slow.
Global data analysis suggests that compounds with clog P between 2 and 4 are more likely to have
rapid permeability

Figures 4.5, 4.6, 4.7, and 4.8 along with summary Table 4.3 detail Eli Lilly and
Company’s ADME in vitro data in relation to key physicochemical properties over
the past 2 years. Figure 4.5 shows the trend that as clog P increases so does
microsomal unbound intrinsic clearance (Cly,,) [105]. This analysis indicates
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Fig. 4.8 CYP3A4 inhibition vs clog P. Green = low inhibition, red = high inhibition. Global data
analysis suggests compounds with clog P of <4 are more likely to have low inhibition of CYP3A4

that compounds with clog P value <4 are more likely to have slow unbound
intrinsic clearance (Fig. 4.5) and a low CYP3A4 inhibition potential (Fig. 4.8).
Similarly, compounds with clog P between 2 and 4 (Fig. 4.6) and TPSA <100 A?
(Fig. 4.7) are more likely to have rapid permeability across MDCK cells. Desai
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Table 4.3 Trends between calculated physicochemical properties and ADME endpoints from Eli
Lilly and Company data

Physicochemical Desirable

parameter range Trends with ADMET properties

clogD atpH =174 <3 Higher kinetic aqueous solubility, slow microsomal

(Chemaxon) metabolism and unbound intrinsic clearance (Cliy ), low
CYP inhibition potential, high unbound CNS exposure

1-3 Rapid passive permeability

clog P (Chemaxon) <4 Slow microsomal metabolism and unbound intrinsic
clearance (Clint,u), low CYP inhibition potential, high
unbound CNS exposure

2-4 Rapid passive permeability

Most basic pK, <74 Lower risk of P-gp efflux

Molecular weight <400 Da | Higher unbound CNS exposure

TPSA 60-90 A> | Rapid passive permeability, lower risk of P-gp efflux,
higher unbound CNS exposure

Number of NH + OH | <3 Rapid passive permeability, lower risk of P-gp efflux,

groups higher unbound CNS exposure

Number of N + O <8 Rapid passive permeability, lower risk of P-gp efflux,

atoms higher unbound CNS exposure

Number of negatively |0 Higher unbound CNS exposure

charged atoms

et al. have previously published physicochemical trends for efflux by the P-gp

transporter and reported having the most basic pK, < 8.0 and TPSA <60 A” as key
physicochemical properties of P-gp non-substrates [64].

4.2.5 Pharmacophore Modeling

Another ligand-based modeling technique that is used in drug discovery is
pharmacophore modeling. The word pharmacophore has several definitions asso-
ciated with it despite the concept being around for over 40 years. A medicinal
chemist may define a pharmacophore as a structural fragment or functional group
related to a chemical compound or series of compounds. Computational chemists
often define a pharmacophore as a collection of hydrogen bond acceptors, hydrogen
bond donors, aromatic rings, charged atoms, and hydrophobic regions of com-
pounds that provide affinity and specificity to a particular target. The official
IUPAC definition states, “A pharmacophore is the ensemble of steric and electronic
features that is necessary to ensure the optimal supramolecular interactions with a
specific biological target structure and to trigger (or to block) its biological
response” [106].

No matter the definition, the concept of pharmacophore modeling is simple and
even intuitive to medicinal chemists working in early drug discovery. The
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technique models the interaction between a ligand and a binding site, thereby
producing a model of the spatial arrangement of molecular features essential for
biological activity. The central premise of a pharmacophore model states that if a
compound contains the needed molecular features in a spatial orientation that
matches the model, the compound should bind to the target of interest.
Pharmacophore models have been created for several ADME targets along with
being used to predict activity, selectivity, toxicity, and enrichment in high-
throughput screening experiments [20, 74, 107-110].

The scope of this chapter provides an overview of pharmacophore modeling and
will only briefly introduce the two general parts of any pharmacophore modeling
program. However, extensive literature has been published that describes
pharmacophore models in greater detail [111-113]. In general, pharmacophore
modeling can be broken down into two general steps: (1) molecular super positioning
of ligands and (2) scoring how well a ligand matches the pharmacophore features.

The molecular super positioning (also known as alignment) of ligands is time
consuming and represents a significant challenge to creating any pharmacophore
model. This step inherently involves the alignment of flexible compounds that have
multiple possible conformations. Precomputing ligand conformers is common in
many of the pharmacophore program available today [111-113]. When conformers
are pre-generated, pattern-matching techniques are then used to create the ligand
alignment. Many pharmacophore programs use a rigid-body alignment technique
that is some type of a maximum common substructure search [114] implemented
with the Bron-Kerbosh clique detection algorithm [115] that accounts for the spatial
arrangement of pharmacophore features. Scoring functions differ between software,
but they generally account for things such as number of matching pharmacophore
points along with the spatial orientation and the internal energy of the matching
ligand conformer along with some sort of volume or binding site matching term.
Throughout the pharmacophore building process, several parameters must be set and
optimized, thereby complicating the process of creating an optimal pharmacophore
model or one that the entire community uses or accepts for that matter. The reference
ligand, or set of ligands, used to create the pharmacophore alignment is often
subjective and requires the skill and knowledge of a computational expert.

However, it can be especially challenging to create useful pharmacophore
models for targets that are known to be flexible and promiscuous in binding many
compounds. Most ADME targets fall into this class, but there is no lack of
pharmacophore models published for such targets [107, 109, 116—118]. For exam-
ple, pharmacophore models have been published for several CYP enzymes, includ-
ing CYP3A4, that are known to be extremely flexible and recognize diverse
compounds. Figure 4.9 displays a pharmacophore model for the organic anion-
transporting polypeptide 1B1 (OATP1B1), a liver-specific uptake transporter that
lacks high-resolution structural information.

While many pharmacophore publications exist, in many instances
pharmacophore models are created using a small subset of compounds known to
bind to such targets (10—15 compounds maximum). Such models may perform well
on very similar compounds (meaning if the alignment was done with a statin
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Fig. 4.9 Reproduced from Ekins et al. Comparative pharmacophore modeling of organic anion-
transporting polypeptides: a meta-analysis of rat Oatplal and human OATP1B1. J Pharmacol Exp
Therap 2005, 314(2):533-541 [116]. Pharmacophores generated from substrate data for human
OATPI1BI1 expressed in oocytes (showing bilirubin mapped to features) (a), human embryonic
kidney cells (showing bilirubin monoglucuronide mapped to features) (b), rat Oatplal expressed
in oocytes (showing aldosterone mapped to features) (c), CHO cells (showing BSP mapped to
features) (d), HeLa cells (showing taurohyodeoxycholate mapped to features) (e), merged
OATP1B1 model using pharmacophores described in a and b (f), meta-analysis model using all
cell type compound data for human OATP1B1 (showing bilirubin mapped to features) (g), and
merged Oatplal model using pharmacophores described in ¢, d, and e (h), showing aldosterone
mapped to features (i). Pharmacophore features include hydrophobes (cyan), negative ionizable
(blue), and hydrogen bond acceptors (green)

compound, the pharmacophore model more than likely will predict other statin-like
compounds as likely to interact with the target), but they are not particularly useful
in a drug discovery setting where diverse chemistry is being explored on many
projects.

The other extreme also is problematic for ADME targets, meaning creating a
pharmacophore model based on hundreds of compounds. This is due to the fact that
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generating a “unique” pharmacophore pattern for ligand binding is extremely
challenging given the diversity of compounds. More often than not, the number
of unique matching pharmacophores for several hundred diverse structures will be
very few and limited. For example, a pharmacophore model constructed on 500
OATPIBI inhibitors may only have three pharmacophore points that match the
majority of the 500 compounds. When this occurs, the pharmacophore model is not
useful as it is incapable of differentiating between active and inactive compounds in
the data set. In order for any pharmacophore model to be useful, it has to be shown
to not only differentiate active vs inactive compounds but additionally it must have
predictive power that informs the design of de novo compounds. This validation
criterion is not examined in many published ADME pharmacophore models, and it
is essential to evaluate before making the claim that a useful model has been
created.

4.2.6 Site of Metabolism Prediction

Understanding and modulating drug metabolism is one of the fundamental concepts
of ADME. Several computational techniques exist to predict the site of metabolism
(SOM) on compounds. It should be noted that publications and research on SOM
prediction exist for metabolizing enzymes other than CYPs [119-122]. However,
due to their significance in metabolizing compounds, SOM predictions by CYP
enzymes dominate the published literature and will be the focus of this section.

Prior studies predicting SOM of compounds interacting with CYPs have utilized
a variety of computational methods such as quantum chemical calculations,
pharmacophore models, QSAR, molecular docking, MD simulations, and basic
empirical/chemical rules [13, 121, 123—-138]. Recent reviews published on CYP
SOM prediction provide a good summary of prior studies and techniques used
[139, 140]. Although previous studies have been performed to predict SOM, there is
no consensus about which method performs “best.” In general, the top performing
methods claim to accurately predict the experimental SOM 80% of the time or
greater.

Recent thinking suggests that the SOM of a compound is influenced by two
factors: (1) the intrinsic reactivity of each site in the compound to oxidation and
(2) the accessibility of individual atoms to the CYP heme group, the site where
oxidation occurs in the enzyme. The intrinsic reactivity is normally estimated using
Hartree-Fock, semiempirical methods such as the Austin Model 1, or density
functional theory quantum mechanical calculations of the chemical reaction.
Accessibility to the CYP heme group is routinely estimated with solvent-accessible
surface area calculations, molecular docking, and other structural features.

Several commercial SOM prediction programs exist that allow users to profile
compounds to overcome metabolic liabilities. While this may be possible, caution
should be used when proposing such a strategy using SOM tools in isolation. In a
publication by Vaz et al. [141], they address problems associated with the metabolic
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“blocking” strategy. Metabolic “blocking” occurs when a halogen atom, typically a
fluorine atom, is attached to the atom/region of the compound susceptible to
metabolism in order to reduce the metabolic turnover. Despite literature examples
where this strategy was shown to be successful, the general strategy of “blocking”
typically shifts the SOM to another atom or region of the compound due to the
promiscuous nature of CYPs. In many instances, halogenating a site, typically an
aromatic ring, makes the compound more lipophilic. This ultimately can lead to no
change, or even increase, in affinity for CYPs and thus expose other sites on the
compound to oxidation. In addition, the more lipophilic compound could poten-
tially fit the CYP pocket better and hence become potential CYP inhibitors. By
possibly fixing one ADME problem (metabolism) by introducing additional
lipophilicity through “blocking,” another problem may also arise in the form of
solubility limitations.

When trying to mediate metabolic ADME problems, we suggest that multiple in
silico tools and methods are used to provide a balanced ADME profile of a
compound. In addition to SOM prediction software, in silico models of unbound
intrinsic clearance, metabolic stability, log P, and solubility should be monitored
with any proposed structural change to mediate a metabolic liability. Besides
altering the reactivity of a particular site, we suggest evaluating options to reduce
the affinity of a compound for CYPs as well. A reduction in log P by modifying
hydrophobic groups into polar moieties and/or removing hydrophobic fragments
from the compound is more likely to provide the reduction in metabolic turnover
needed for a particular project.

4.2.7 SPR/STR Knowledge Extraction Using Matched
Molecular Pair Analysis

Knowledge-driven modification of compounds is desirable to achieve the optimal
potency and ADME properties. For each drug discovery project, a useful QSAR/
QSPR model is able to accurately predict the activity of a compound. However, the
model provides limited information pertaining to what modifications should be
made to the compound in the next cycle of drug design. The matched molecular pair
analysis (MMPA) technique is a promising approach to address this issue. MMPA
was first coined by Kenny and Sadowski [142] to describe any systematic method of
identifying structural matched molecular pairs (MMPs) from a set of compounds
and associated property change. In this context, MMPs are generally defined as
pairs of compounds that differ only by a single, localized structural transformation,
and Fig. 4.10 shows an example [144].

The basic premise of MMPA is essentially an extraction of information within a
chemical series featuring a common core. The property of interest can be plotted
against the substituents at a given position of the core in order to identify the effects
of the structural transformation on the property [145]. Various automated methods,
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Fig. 4.10 Permission to use from Papadatos et al. [143]. Example of a matched molecular pair.
The transformation is H to CF; (a single-point change) and is highlighted in blue. The asterisk in
the context denotes the attachment point

including supervised and unsupervised methods, have been developed to identify
MMPs and quantify the associated biological changes on large data sets. Supervised
methods require predefined molecular transformations to identify the MMPs in the
data set [144, 146]. However, any possible MMPs that are outside the predefined
structural transformation dictionary cannot be identified. Unsupervised methods
have the potential to identify all MMPs within a compound data set without a
predefined molecular transformation dictionary [147—-151]. It decomposes the com-
pounds into fragments first and then indexes the fragments for rapid sorting and
identifies the core scaffolds and R-group substituents. For a more detailed summa-
rization of current MMPA methods, the reader is referred to a review by Griffen
et al. [145].

After the MMPA algorithm identifies all possible MMPs, the results are tabu-
lated to show differences between MMPs for a measured endpoint. The effect of a
specific chemical substitution is typically summarized by the mean response
change, the sample standard deviation of the response change, and the standard
error of the mean for each endpoint. The total number of pairs identified for each
substituent is also reported to assess the significance of the effects. Leach et al.
recommended at least 20 MMPs should be identified for a useful molecular
transformation [144]. More recently, Kramer et al. have recommended the use of
paired r-test to calculate the number of pairs necessary to achieve statistical
significance with a given average activity difference. They also demonstrated the
importance of building pairs from identical assays measured in the same
laboratory [152].

To provide quick and easy understandable guidance, the effects of a molecular
transformation on different endpoints can be summarized by a simple symbolic
colored arrow or circle that informs the medicinal chemists what compounds to be
synthesized [153]. In addition, the structural transformations information can be
summarized as rules in a knowledge database. By querying a compound of interest
against the knowledge database with MMP rules in place, virtual compounds can be
proposed to determine if the property of interest is likely to improve with the
associated structural modification.
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MMPA methods have been used to assess the mean effect of different sub-
stituents on various ADME parameters such as solubility [143, 144, 154], perme-
ability [147, 149], clearance [149], and CYP inhibition [147]. Not surprisingly,
common structural modifications, such as replacing hydrogen with a methyl group
or changing a methyl to an ethyl substituent, were the most frequently observed
MMPs [149].

In general, the structural changes that displayed favorable changes for an
endpoint could also be explained by the associated change in physicochemical
properties. For example, Gleeson et al. reported that replacing an aliphatic hydro-
gen atom with a hydroxyl, ethyl, or benzyl group leads to a decrease in CYP3A4
pIC50 > 0.2 log unit in 55%, 15%, and 10% of MMPs. This finding correlates well
with the change in clog D (pH 7.4) of the substituents [147], meaning that as the
compound becomes less lipophilic, it is less likely to be an inhibitor of CYP3A4.
This observation is aligned with our internal analysis of trends between
lipophilicity and CYP3A4 inhibition (Fig. 4.8).

Leach et al. also found that the addition of heavy halogens on aromatic rings was
detrimental to solubility and a numerical estimate for such effects was also calcu-
lated. For instance, adding bromine to an aromatic ring led to over an order of
magnitude reduction of aqueous solubility [144]. Therefore, if a drug discovery
team is trying to increase the solubility of their scaffold, they should avoid adding
heavier halogens, such as bromine, to their compounds.

While molecular substitutions that track closely with the molecular properties
can be useful in guiding the design of new compounds, they may not be overly
insightful to a well-versed medical chemist. It is more interesting to identify the
substituents that display changes not associated with their physicochemical prop-
erty changes. For example, despite the considerable increase in lipophilicity caused
by phenyl substitutions of an aliphatic hydrogen (Aclog D at pH 7.4 of +1.8 log
units), the average change in pICsg of CYP1A2 inhibition for 147 pairs of com-
pounds was quite insignificant (ApICsq of 0.11) [147].

Another type of MMP is called “switch” transformations, which acts to turn on
or turn off the activity. Regardless of the starting value of the endpoint, such MMP
transformation results in approximately the same ending value. For example, it was
reported that the replacement of a hydrogen by a 4-piperidine group resulted in a
microsomal clearance value of ~20 pL/min/mg for all the studied compounds
regardless of the starting microsomal clearance values [149].

One should be aware that MMPA results depend on both the transformation and
the chemical context. This is manifested by the observation that although many of
the molecular transformations are statistically significant with large mean activity
changes, most of them also have high variability [149]. Therefore, making conclu-
sions based on the average activity change across the entire MMPA data may be
misleading for the chemical series of interest [143, 147]. For example, global
context independent MMPA indicated that substituting a pyrimidine for a hydrogen
atom increased CYP2C9 inhibition [147]. However, when the same substitution
occurred for an aliphatic hydrogen (context dependent), a decrease in CYP2C9
inhibition was observed [147].
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Fig. 4.11 Permission to use from Papadatos et al. [143]. Global and local MMPA distributions for
the piperidine to morpholine transformation for a solubility data set. The colors reflect the effect of
each transformation with red, amber, and green denoting unfavorable (decrease), zero, and
favorable (increase) changes in solubility. Different outcomes are observed depending on the
context of the compound; if the attachment point is a polar aromatic ring [V], then there is an
increase in solubility, while if the attachment point is a positively ionizable aliphatic ring [Y], then
solubility decreases

Another example also showed the importance of the chemical context for the
MMP transformation. It was observed that transforming a piperidine ring into a
morpholine ring has conflicting effects on solubility depending on whether the
transformation was added to a polar aromatic ring or a positively ionizable aliphatic
ring (Fig. 4.11) [143]. Several recent publications have proposed adding two
dimensional contextual information about the compound or three dimensional
(3-D) information pertaining to binding environment into the MMPA analysis to
address the issue of context dependency in MMPA [155, 156].

4.3 Integrated and Iterative Use of Models in Early Drug
Discovery

As mentioned in the introduction to this chapter, the application of in silico, in vitro,
and in vivo models is inherent to the drug discovery process. It should be noted that
the use of such models in isolation is unlikely to be fruitful and may even be
misleading. Therefore, models should be applied in an integrated and iterative
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Fig. 4.12 Integrated and iterative use of models in early-phase drug discovery. The left schematic
shows the recommended process to identify and integrate in silico, in vitro, and in vivo models.
The schematic on the right illustrates the importance of the iterative learning cycle

fashion to build structure-activity and structure-property knowledge toward identi-
fying the best clinical candidate possible for any given drug discovery project.

Once a scaffold has been identified that interacts with the desired pharmacolog-
ical target, to assess the applicability of in silico ADME models for that particular
scaffold, one needs to select a set of compounds that will be tested in vitro. As
depicted in Fig. 4.12, this representative set should span the range of predicted in
silico values, include various physicochemical characteristics, and include as much
structural diversity as possible in order to systematically evaluate in silico model(s).
While it would be preferred to select “active” compounds against the biological
target for this assessment, this is not a requirement. It is more important to focus on
including diversity as mentioned above. The in silico-in vitro analyses will help
assess whether the in silico model(s) are applicable for a particular scaffold or along
with predicted physicochemical properties can be used to guide and prioritize the
synthesis of compounds. In an analogous manner, it is equally important to explore
the relationship between in vitro ADME models and the in vivo profile of com-
pounds in order to select an appropriate suite of in vitro tools to prioritize the
selection of compounds for in vivo assessment. This iterative learning cycle (shown
in Fig. 4.12) provides an efficient strategy to identify and resolve various challenges
related to optimizing compound potency and ADME properties rather than using a
filtration approach where only the active compounds progress for in vitro and
in vivo ADME measurements.

To detail how this integrated and iterative process unfolds in the pharmaceutical
industry, consider this example. The typical goal of most small compound drug
discovery project is to identify compounds that can attain, and maintain, sufficient
in vivo unbound concentration to engage the pharmacological target following oral
dosing. To that end, it is important to balance compound potency with key ADME
parameters like solubility, permeability, and clearance from the body. For this
example, let us assume that the discovery project team has access to global QSPR
models for solubility, permeability, and microsomal stability.
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The first step to establish the in silico-in vitro connectivity is to select a set of
compounds from the scaffold and subsequently compare the outcome from
corresponding in vitro measurements. This set of compounds should represent a
range of predicted property (solubility, permeability, and microsomal stability),
calculated phys-chem properties (e.g., clog P, TPSA), and be structurally diverse.
This step will determine if the global ADME QSPR models are applicable for the
scaffold in question and if they provide reasonable predictive performance to
enable the prioritization and design of compounds predicted to have a balanced
ADME profile in terms of the three ADME endpoints mentioned above.

Before implementing this strategy, it is important to test a small set of com-
pounds spanning a range of measured solubility, permeability, and microsomal
stability in the in vivo models to determine whether the oral exposure of these
compounds is aligned with their in vitro profile. For example, if the in vivo
clearance is rapid for compounds with low microsomal turnover in vitro, it would
suggest that the primary clearance mechanism for such compounds is likely to
involve non-oxidative pathways and/or excretion via renal or biliary route. Typi-
cally, elimination routes outside the oxidation pathway would not be identified
using a microsomal stability assessment (in silico or in vitro). In such cases, one
might consider testing the compounds in an in vitro hepatocyte clearance model
(that will account for various non-CYP metabolic enzymes) to see if better align-
ment is observed with in vivo clearance. Once a suitable suite of in silico and
in vitro tools have been identified that align with key in vivo characteristics, an
efficient and robust strategy to integrate these models in an iterative manner can be
implemented.

4.4 Summary

In this chapter, a variety of structure- and ligand-based in silico methods used to
identify and resolve challenges related to the optimization of key ADME properties
have been described. Given the promiscuity of many ADME targets and the limited
availability of high-resolution 3-D structures, structure-based in silico techniques
like docking and MD simulation have significant challenges and therefore have
limited applicability for this purpose. Ligand-based in silico methods such as
pharmacophore models can be useful to identify key structural features responsible
for the interaction with the target of interest. However, due to broad ligand
specificity and likelihood of multiple binding sites (e.g., P-glycoprotein) for many
ADME targets, pharmacophore models also have limited prospective applicability
across structurally diverse chemical scaffolds.

QSPR models, especially machine learning models, can extract knowledge from
a wide variety of chemical scaffolds and a large number of compounds enabling
their utility as predictive models for many ADME endpoints. Not surprisingly,
QSPR models are one of the most commonly employed in silico tools for ADME
optimization during the drug discovery process, especially in an industrial setting
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where a large number of structurally diverse compounds are routinely measured in a
variety of ADME assays. At the same time, QSPR models have limited interpret-
ability and thus typically don’t provide direct clues to design new compounds to
address ADME challenges.

To address that limitation of QSPR models, trends with calculated physicochem-
ical properties like molecular weight, clog P, TPSA, and others are effectively
utilized during the design process to optimize the ADME characteristics of a given
chemical scaffold. Similarly, knowledge extracted by the MMPA of existing
ADME data also provides clues that identify fragment replacements toward
improving the ADME characteristics.

To summarize, an effective amalgamation of in silico tools is valuable in guiding
the design of compounds with favorable ADME properties on a drug discovery
project. These models must be verified to show they provide valid predictions or the
integrated in silico-in vitro-in vivo cycle breaks down. Finally, in silico tools should
never be used in isolation. They make up one arm of the integrated and iterative
learning cycle that we recommend using in order to effectively drive a drug
discovery project.
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Chapter 5
Discover Toxicology: An Early Safety
Assessment Approach

Thomas K. Baker, Steven K. Engle, Bartley W. Halstead,
Brianna M. Paisley, George H. Searfoss, and Jeffrey A. Willy

Abstract Early safety assessment efforts from target identification to lead
development have undergone rapid growth and evolution over the last
10 years. In this chapter, we will discuss the current development trends driving
the need for early safety assessment practices. We will discuss the key areas of
focus which include target-related, off-target-related, and chemical property-
related toxicities. We will offer an overview of the various scientific approaches
being utilized in each of these focus areas along with an organizational frame-
work that has proven effective in de-risking the early portfolio. We will con-
clude with some perspectives on application within the project team setting and
traps associated with data over interpretation.

Keywords In silico safety pharmacology ¢ In vitro toxicology endpoint ¢ In vivo
toxicology prediction ¢ Livery injury ¢ Toxicogenomics ¢ Gene editing ¢
Microphysiological culture systems ¢ Heart injury cell models ¢ Injection site
irritation ¢ Skeletal muscle injury cell models ¢ Gastrointestinal injury cell models

5.1 Introduction

Drug safety is an integral part of the drug development process and represents a key
set of experiments that enable investigational new drug (IND) and new drug
application (NDA) submissions (The Federal Food, Drug and Cosmetic Act).
Ideally, the drug discovery process should culminate with the delivery of a candi-
date drug with the widest possible margin of safety. To achieve this key deliverable,
toxicology organizations within the pharmaceutical industry are constantly evolv-
ing to deliver candidate drugs with an optimized safety profile. As a result, many
toxicology organizations are integrating with discovery efforts once a validated
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target enters the portfolio. This chapter will discuss discovery phase toxicology
activities that can be applied to facilitate the delivery of optimized drug candidates
into the drug development process. Key focus areas for this chapter will be target-
based toxicology risk, structure-based toxicology risk, early safety pharmacology
assessments, in silico and in vitro safety screening, and application of early in vivo
biomarker screens.

5.2 Toxicology Target Evaluation and Assessment

Potential drug targets are estimated to be approximately 8000 with 482 molecular
targets hit by known marketed drugs [1]. Target classification, based on approval,
includes enzymes, receptors, ion channels, transporter proteins, metabolites,
nucleic acids, and chromatin binding proteins. The target can be defined as a
molecular structure that will undergo specific chemical interactions with candidate
drug molecules that result in a desired clinical effect—ultimately for the treatment
of a disease. Unfortunately, pharmacological interaction of some targets may result
in unacceptable side effects for the given disease indication. Building awareness
and understanding of potential safety liabilities of targets are important for the
selection of targets with a higher probability of technical success.

Each of the target classes has unique biological and pathway consequences that
pose a challenge when assessing on-target or target-related toxicological risk. A
thorough literature characterization of the target is the primary line of understand-
ing toxicity risk associated with molecular interactions with the target. At the same
time, a complete understanding of the biology associated with modulation of the
target could include thorough analysis with data mining tools inclusive of the
following areas: genomic, phenotypic, preclinical, and clinical data. Description
of the target and understanding mechanism of action related to a particular disease
indication can be explored through search of scientific publications and exploration
of biomedical and genomic information sources like the National Center for
Biotechnology Information (NCBI). Table 5.1 describes some useful publically
available tools for exploring potential drug targets, biological pathways, and iden-
tification of potential animal models to characterize risks associated with target
modulation. Stepwise characterization of the target can be simplified in the follow-
ing linear path: description of the target gene or protein — mechanism of action/
indication — tissue level distribution — toxicological effects associated with
manipulation — selectivity of subtypes or closely related targets (kinases, recep-
tors, etc.) — prior experience or previously published information. This stepwise
linear strategy as depicted in Fig. 5.1 offers a strategic approach for conducting a
thorough risk assessment of the target.

After research of the target, various studies are utilized to elucidate predicted
and experimental effects of target modulation. Studies utilizing organ- or tissue-
specific in vitro models confirm any on-target risk and identify tool molecules that
can be used to test hypotheses in preclinical in vivo studies utilizing wild-type and



Table 5.1 Assessment of target and building a risk assessment and mitigation strategy in early
safety development are possible by utilizing web-based tools for complete characterization of
pathway, disease, and genomic models

Target

URL

Utility

Biological, pathway, and
disease information

OMIM

Online Mendelian Inheritance in Man®
(An Online Catalog of Human Genes and
Genetic Disorders)

NCBI

The National Center for Biotechnology Infor-
mation advances science and health by pro-
viding access to biomedical and genomic
information

RefSeq

Provides annotated summaries based on
function

PubMed

PubMed comprises more than 23 million cita-
tions for biomedical literature from
MEDLINE, life science journals, and online
books. Citations may include links to full-text
content from PubMed Central and publisher
web sites

The Human
Protein Atlas

Good mRNA/protein expression data (please
review Ab validation with caution)

Mouse Genome
Informatics

Mouse knockout phenotype and animal model
description

PubCHEM Chemistry and structural focused search
Project

Genomic and molecular

information

Ensembl Sequence alignments and orthology searches

Genome

Browser

NCBI Homol- A list of all NCBI databases and tools for

ogy Guide sequence alignment and comparison

NCBI Useful tool for rapid % homology comparison

HomoloGene of the target protein/RNA sequences against all
species (NB after inputting your target of
interest)

NCBI BLAST Finds regions of local similarity between bio-
logical sequences, compares nucleotide or
protein sequences to sequence databases, and
calculates the statistical significance of
matches. BLAST can be used to infer func-
tional and evolutionary relationships between
sequences as well as to help identify members
of gene families

UniProt The mission of UniProt is to provide the sci-
entific community with a comprehensive, high-
quality, and freely accessible resource of pro-
tein sequence and functional information

Selectivity, target subtype, | PharmaPendium | A collection of regulatory documents, preclin-

prior experience,
regulatory

ical and clinical data that encompasses safety
ADME, and drug interactions
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[ Description of the target gene or protein ]

4

[ Mechanism of Action / Indication ]
[ Target Distribution ]

4

[ Toxicological Effects Associated with Manipulation ]

U

Selectivity of related Targets or subtypes
(eg. Kinases)

@

[ Prior experience or previously published data ]

U

Strategic Package for Toxicity Risk Assessment and Mitigation
during Candidate Preclinical Development

Fig. 5.1 A linear, stepwise approach to the characterization of on- and off-target safety in Target
to Lead Development

knockout (KO) animals. Genetic editing and deletion of target genes of cell-based
or whole animal systems are essential for identification of candidate development
risk and strategy building. Gene KO and knockdown (KD) animal models are an
excellent tool to exploit toxicological effects associated with target manipulation or
direct “on-target” consequences of pharmacological modulation of the target of
interest (step 4, Fig. 5.1). At the extreme, these knockout or knockdown
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experiments help define embryonic lethality and organ or tissue development
failure. Alternatively, these systems help understand how to balance target modu-
lation or “titer” pharmacologic activity to balance the potential “on-target” safety
profile. Understanding target modulation with KO or KD technology is both helpful
for gauging overall toxicity risk with target modulation and critical to building a
strategy for candidate development. Additional detail of gene editing technology is
discussed in Sect. 5.7.1.3, Technologies. Taken together, these studies are
conducted to better understand the risks associated with a given target activity.
With this knowledge, a strategy can be developed to establish the margin of safety
early in the discovery process and where appropriate define opportunities such as
dosing frequency or modified absorption and distribution properties that can be
utilized to optimize the margin of safety [2].

5.3 Off-Target Assessment

While modulation of an intended target may have unintended consequences, tox-
icological effects can also result from modulation of unintended pharmacology. It is
estimated that adverse drug reactions cause 100,000 fatalities annually in the USA
at a cost of $177 billion per year [3]. Therefore, in silico and in vitro profiling of
adverse drug receptors (ADRs), pharmacological modulation that results in adverse
effects, can help scientists identify and avoid detrimental adverse drug reactions.
ADRs can come from isoforms of the target protein, proteins within the same target
class, proteins with similar binding sites, or general promiscuity across target
classes. Here we will present examples of anti-targets, in silico and in vitro screen-
ing options of ADRs, and considerations on how to apply these data to molecules in
drug discovery.

5.3.1 In Silico Safety Pharmacology

It has been estimated that there are approximately 21,000 protein-coding genes in
the human genome with just over 17,000 encoded proteins currently identified
[4, 5]. It is unknown what percentage of proteins result in adverse effects when
modulated with an agonist or antagonist, and it is not feasible to run a potential
therapeutic in enzymatic or biochemical assays for all known proteins. Even
prioritizing in vitro pharmacology profiling to the list of known ADRs can be a
costly endeavor, so screening molecules through in silico pharmacology models can
inform scientists with a refined list of potential off-targets to screen in vitro. In
silico models to predict ADRs can be built-in house, found in the literature, or
licensed from companies that specialize in building tools to predict pharmacology.

Loss- or gain-of-function mutations in potassium voltage-gated channel subfamily
KQT member 1 (KCNQI1), caveolin 3 (Cav3), sodium voltage-gated channel alpha
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subunit 5 (SCN5A), human ether-a-go-go related gene (hRERG), and other genes have
been associated with long QT syndromes. Inhibition by hERG, a voltage-gated
potassium channel, by pharmaceutical agents, has also demonstrated the ability to
prolong QT intervals. Astemizole, grepafloxacin, terfenadine, and cisapride are
examples of small molecules with unintentional hERG inhibition that caused cardiac
arrhythmias associated with QT interval prolongation resulting in their withdrawal
from the market [6]. Efforts to develop predictive models of hERG blockers have
been largely successful due to it being a promiscuous protein with binding largely
influenced by lipophilicity, aromatic moieties, and basic nitrogens. Due to the wide
structural diversity of ligands that result in hERG blockade, the more successful
hERG quantitative structure-activity relationship (QSAR) models tend to be classi-
fication models using molecular descriptors, rather than 3D docking models [7].

Endocrine disruption is one in vivo toxicology endpoint that groups are trying to
forecast using QSAR models of in vitro pharmacological endpoints. Endocrine
disruption involves interference in the hormone (or endocrine) system, which may
result in developmental or functional effects. Endocrine toxicity may manifest as
reproductive, carcinogenic, or immunogenic effects. QSAR models of estrogen
receptors (ER), ERa and ERf, androgen receptors, and 17f-hydroxysteroid dehy-
drogenase 3, to name a few, have been developed to attempt to predict the
likelihood of endocrine disruption in novel chemistry [8—10]. Several groups
have used a comprehensive approach by combining the QSAR models of multiple
targets associated with endocrine disruption to predict a molecule’s risk for hor-
mone perturbations.

To evaluate a specific QSAR model’s prediction, it is first important to understand
the performance of that QSAR model in measures such as accuracy, predictive
squared correlation coefficient, sensitivity, specificity, positive predicative values
(PPV), and negative predictive values (NPV). Secondly, knowledge of the applica-
bility domain of the model will allow the user to determine if the novel chemistry can
be reasonably predicted by the model. Additional considerations would include
confidence measures for the prediction, internal evaluation of that QSAR model’s
concordance to in vitro outcome against an internal test set, and evaluation of the in
silico-in vitro concordance for other compounds from the same scaffold.

Depending on the degree of confidence in the in silico prediction from the QSAR
evaluation, you can decide how to use that information. If in silico-in vitro concor-
dance of other compounds from that scaffold is high, then it may make sense to use
the QSAR model to prioritize which compounds progress. However, if there is less
confidence in a prediction or no establishment of scaffold-specific in silico-in vitro
concordance, then further progression of the molecule into in vitro enzyme screen-
ing at that ADR may be your best option.

5.3.2 Enzyme Safety Pharmacology

Even with the plethora of advantages of in silico pharmacological screening, there
are several drawbacks to only utilizing QSAR approaches over in vitro assays.
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Given the vast number of protein-coding genes and the fact that a molecule can
modulate a protein via agonist, inverse agonist, antagonist, allosteric, covalent, and
protein-protein disruption interactions, there are more potential endpoints to test
than there are reliable in silico models. As QSAR models are only as good as the
data used to build them and need to have an endpoint that can be modeled, certain
pharmacological endpoints have limited numbers of potent molecules with low
chemical diversity in available enzyme datasets. Furthermore, in silico models may
have poor in silico-in vitro concordance for a given scaffold, thus making an in
silico screening strategy ineffectual for that chemical series. The wide range of
enzymatic screening that can be developed internally or that are available via
contract research organizations allows greater flexibility and confidence in identi-
fying ADR risk in multiple species.

Kinases have shown a wide range of therapeutic potentials with Gleevec
(imatinib) and ibrutinib being marketed examples of oncolytic kinase inhibitors.
Despite the large potential for patient benefit, identifying druggable kinase targets
has been a challenge due to difficulties identifying selective ligands. Active kinase
conformations have a large degree of structural overlap in their binding sites often
with homology spanning kinase subfamilies and groups [11]. Several kinases are
known ADRs for gastrointestinal, cardiovascular, reproductive, and bone marrow
toxicity. Companies like DiscoveRx (DiscoveRx Corporation, USA), ActivX
(ActivX Biosciences, Inc., USA), and CEREP (Eurofins Discovery Services, France)
screen submitted compounds in predefined or customized biochemical or cell-based
assay panels. However, in vitro profiling of concentration response in even one
compound at the roughly 500 kinases can be an expensive prospect, so alternative
approaches have been taken. One approach is to screen compounds in a “sentinel”
kinase panel that includes the more promiscuous or central kinase proteins out of
networks of kinases with high pharmacological similarity [12]. This allows for
estimation of promiscuity rather than specific kinase interactions. Another approach
is to generate single point data at each kinase for compounds and then generate
concentration-response curve values only at those kinases that showed strong single
point responses.

Drug-induced valvulopathy in patients treated with the 5-hydroxytryptamine
receptor 2B (5-HT2B) receptor agonists is a serious ADR that can result in
myocardial dysfunction, congestive heart failure, and sudden mortality. The drug
combination fenfluramine and phentermine, coined fen-phen, resulted in some
patients requiring valve replacement due to 5-HT2B stimulation by fenfluramine.
Valvulopathy seems to be associated primarily with high-affinity 5-HT2B receptor
agonists like ergotamine, pergolide, and fenfluramine rather than 5-HT2B antago-
nists or low-affinity agonists at therapeutic doses [13]. Due to the serious potential
side effects with the activation of this serotonin receptor and the lack of predictive
animal models for drug-induced valvulopathy, in vitro screening remains a key risk
mitigation strategy.

Hepatotoxicity is a key risk in drug discovery and it is important to avoid liver
transferases, bilirubin, and direct hepatic effects in animal and human testing.
Hepatic metabolism regulation by nuclear hormone receptors (NHRs) has been
one mechanism by which hepatotoxicity is suspected in vivo. Due to their
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involvement in expression of transport proteins and metabolizing enzymes, NHRs
like pregnane X receptor (PXR), constitutive androstane receptor (CAR), hepato-
cyte nuclear factor 4-alpha (HNF-4a), farnesoid X receptor (FXR), liver X receptor
(LXR), and peroxisome proliferator-activated receptor (PPAR) play roles in drug
metabolism, bile acid homeostasis, drug transport, lipid homeostasis, cholesterol
regulation, and adipogenesis [14]. Pharmacological counter-screening against NHR
modulation may help to avoid untoward effects on the liver.

Investigation of covalent inhibitor ADR risk can be especially difficult due to the
differing drug kinetics between traditional and covalent inhibitors. Even relatively
weak interactions with an off-target protein may result in covalent modification if
the protein contains the conserved nucleophilic residue and the compound’s elec-
trophile is in the proper configuration to interact. Due to the differing kinetics,
profiling targeted covalent inhibitors in enzymatic pharmacology screens at multi-
ple incubation times and utilizing click-chemistry approaches have been proposed
to provide a more accurate “selectivity” perspective than traditional single time
point screens afford [15, 16].

Other pharmacologies that have been linked to adverse effects include cycloox-
ygenase-1 (COX-1) inhibitor-related abdominal pain, histamine H1 antagonist-
associated sedation, and muscarinic receptor inhibitor-induced SLUDGE (saliva-
tion, lacrimation, urination, diarrhea, GI upset, emesis) to name a few [17, 18]. Dr.
Laszlo Urban is a leading expert in the field of safety pharmacology with an
extensive list of publications on in silico and in vitro ADR screening strategies.
Urban and colleagues have nicely described ADRs and the possible adverse effects
associated with modulating these targets. These sources would be valuable for those
wanting to explore a more comprehensive list of ADRs and their connection to
preclinical and clinical toxicities.

Once activity at an ADR has been identified, then several considerations must be
made to determine the impact on a molecule’s progression. Although an ADR by
definition can result in an adverse toxicity, the degree of tolerability of that toxicity
must be considered with regard to the severity of the disease state being modulated,
brain penetration for ADRs beyond the blood-brain barrier, patient population,
duration and frequency of treatment, and the adverse toxicity itself [18]. Nausea
and vomiting side effects may be more acceptable if the medication is dosed weekly
for the complete remission of a late-stage terminal cancer, than for daily adminis-
tration to help minimize seasonal allergy effects. The potency of the drug for the
ADR in comparison to the on-target potency and the in vivo pharmacokinetic
profile of the molecule can determine whether modulation of the ADR is likely
within an in vivo setting. Taken together, in vitro ADR profiling and the consider-
ations discussed above can help reduce the risk of non-tolerable side effects.

5.3.3 Summary

In silico and in vitro safety pharmacology screens are pivotal to identifying ADR
risks early in safety assessment. Unintentional modulation of an ADR can put the
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patient’s safety at risk and delay the delivery of valuable therapeutics to patients. In
silico pharmacology screens should be used to inform enzymatic testing to identify
ADREs early and avoid preclinical and clinical safety liabilities. An understanding of
patient population, disease state, toxicokinetics, tolerability, and structure-activity
relationships helps to inform the dosing, progression, and/or chemical modification
of molecules with ADR risks.

5.4 In Silico Preclinical Predictive Modeling

Developing novel, timely, and informative approaches for toxicity risk assessment
is imperative with the push for reduction of animal usage. This push comes from
three main fronts: the advent of the Tox21 vision and strategy for the future of
toxicology, the concern for ethical treatment of animals, and the financial impact of
increasing costs associated with preclinical in vivo toxicity studies [19, 20]. These
fronts have created an increased emphasis on computational approaches to assess
the risk of molecules.

Utilizing QSAR models of in vitro and in vivo toxicological findings in early
safety assessment can help in prioritization of molecules in early phases of drug
discovery. Computational approaches are particularly appealing due to their ability
to be high-throughput with minimal resources. Prior to chemical synthesis, virtual
compounds can be screened using QSAR models to determine the potential risks
associated with the chemistry. This can save chemists valuable time and resource
by de-prioritizing synthesis of compounds with high predicted toxicological risk.
As with any QSAR model, limitations include, but are not limited to, the:

Quality of the data for the endpoint in which you are modeling

Diversity of the compounds used to make the model

Balance of compounds with positive and negative results for the modeled
endpoint training set

Performance of the QSAR model in cross-validation and prospective test set
evaluations

Applicability domain of the novel compound to the training set compounds

Here we will discuss the application and considerations when using computational
tools and data trends to forecast in vitro and in vivo safety risk. We will emphasize the
use of physicochemical properties, QSAR, and structural tools to assess risk. Finally,
we will discuss approaches to forecast in vivo adverse toxicities.

5.4.1 Physical and Chemical Properties

Molecules have inherent physicochemical (physchem) properties associated with
them. Many biological processes of drugs are driven or contributed to by the
physchem properties of the drug. The ionization, lipophilicity, protein binding,
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solubility, and polar surface area are some of the physchem properties that affect
the ADMET properties of drugs.

Manipulating physchem parameters do not always affect ADMET properties
and efficacy equally, so optimization of one parameter may be at the expense of
another parameter. Lipophilicity, aka hydrophobicity, is one such parameter where
the magnitude or direction of change is not consistent from one parameter to the
next. For example, increases in mitochondrial uptake have been shown to correlate
with increased lipophilicity [21]. Therefore, improved efficacy via mitochondrial
targets may be driven by increasing log P, a measure of lipophilicity. Conversely,
increased lipophilicity has been reported to be correlated with the risk of decreased
cell viability as measured by depletion of cellular ATP [22]. Using an internal
cytolethality dataset of rat primary hepatocyte (RPH) LC50 values generated from
lactate dehydrogenase (LDH) release calculations, the trend of higher measured
log P being associated with increased cytolethality risk can be observed (Fig. 5.2).
Promiscuity, activity at non-intended targets, has also been demonstrated to have a
strong correlation to lipophilicity increasing the potential of pharmacologically
mediated toxicities [23]. Thus, multiparameter optimization is crucial to develop
safe and efficacious drugs.

The extent of ionization at a basic amine is determined by the pK, of that basic
group and the pH of the system, so the degree of ionization would differ between
the stomach and the large intestines. Higher pK, values indicate more basic
functional groups and molecules may be comprised of multiple basic centers.
Ionization state is crucial for determining absorption of a molecule as protonated
basic molecules are less lipid soluble, thus limiting transport across a biological
membrane. Increased basicity of molecules has been associated with increased
apparent volume of distribution and tissue partitioning, which would increase a
compound’s distribution into non-target tissues possibly increasing the chance for
off-target toxicity [24]. Accumulation of basic compounds within lysosomes is
known as lysosomotropism or lysosome trapping; the acidic nature of lysosomes
results in basic molecules becoming protonated and trapped within the lysosome.
The relationship between basicity and lysosomal accumulation has been well
documented [25], and an example of this relationship is shown in Fig. 5.3.

As physchem properties are drivers of many in vitro and in vivo toxicity
endpoints, it is no surprise that physchem descriptors often rise to the top when
identifying optimal descriptors for toxicology in silico or rule-based models.
Research by Hughes et al. found that calculated log P (clogP) and total polar
surface area (tPSA) showed strong correlations to adverse outcomes that were
suspected to not be related to the primary pharmacology of the molecule
[26]. This finding was coined the 3/75 Rule. Since that time, some other companies
have reported that the 3/75 Rule did not hold for their internal chemistry, which
could be the result of differences in analyses or chemical space. Thus, it is always
important to evaluate what works best for your own unique chemistry.
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Fig. 5.2 Influence of lipophilicity on cytolethality risk. Individual molecules are separated into a
low cytolethality (>100 pM) and high cytolethality (<50 pM) risk bins based on RPH LC50
values. High-cytolethality-risk compounds have an average log P of 3.9, while low-cytolethality-
risk compounds have an average log P of 2.7 for this internal dataset. There is a significant
difference in log P between the high-risk and low-risk groups of —1.2 (95% CI, —1.3 to —1.1)
using the ¢ test

5.4.2 Structural Risk Assessment

Structural risk assessment is a broad catchall term to describe the information we can
derive around toxicological risk from chemical structure alone. Much of structure risk
assessment is focused on using historical knowledge to identify relationships between
substructure, structure, or reactive metabolites and a given toxicity endpoint.
Matched molecular pair analyses won’t be discussed here but do show promise in
identifying viable replacements to functional groups or cores associated with toxicity
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Fig. 5.3 Relationship between lysosomotropism and most basic pK,. Internal data from HepG2
cells treated with compounds and LysoTracker Green DND-26 (Molecular Probes) to measure
maximum fluorescent object count (Rmax). Molecules were classified as lysosomotropic if
Rmax > 1000 at a concentration <40 pM, while non-lysosomotropic molecules had Rmax < 200 at
concentrations >40 uM. Lysosomotropic molecules had an average most basic pK, approximately
five units higher than non-lysosomotropic molecules

risk. While structural risk assessment can provide valuable, testable hypotheses early
in a compound’s development, utility may also be derived in later stages when
unexpected toxicities are identified via in vivo toxicology studies.

One important piece of structural risk assessment is determination of structural
reactivity. The intrinsic reactivity of certain functional groups, like quinones,
alkynes, nitrosamines, acyl halides, or epoxides, present in parent or in a reactive
metabolite formed from the parent compound, has been associated with drug-
induced liver injury (DILI), genotoxicity, and carcinogenicity. Fortunately, many
of these overtly reactive groups in parent molecules are known and filtered out by
medicinal chemists. Reactive metabolites are less likely to be caught until identified
using site-of-metabolism prediction, glutathione trapping, or other liquid
chromatography-mass spectrometry (LC-MS) detection tools [27, 28]. However,
the presence of a reactive metabolite does not necessarily translate to toxicity, so
other factors like dose burden must be considered.

Just as reactive metabolite presence does not imply toxicity, the results of
structural risk assessments need to be considered holistically with dose, exposure,
and available in vitro or in vivo data. This section will focus on two areas of
structural risk assessment, similarity and substructural analyses, to identify poten-
tial risks associated with molecules.

5.4.3 Similarity Analyses

Structural similarity is a measure of similarity or distance of one compound versus
another compound. These parameters are calculated using algorithms that look at
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the characteristics that are similar or dissimilar between the two molecules. Struc-
tures may be mapped to molecular fingerprints (i.e., bit strings of 0 and 1 to indicate
the absence or presence of each described molecular feature, respectively) or
mapped using field-based functions to determine 3D molecular similarity to calcu-
late similarity or distance measures. Tanimoto similarity and Euclidean distance are
two of the more common measures to determine similarity with the range of
similarity values being between O and 1. Despite having the same range, they
have an inverse relationship. As Tanimoto similarity approaches “1,” the molecules
are closer in similarity, while as Euclidean distance approaches “1,” the molecules
are less similar to each other. It is important to know which measure you are looking
at to interpret the result.

Chemical similarity can be measured and interpreted in many different ways;
thus the concept of “similarity” may vary person to person. Structural similarity, the
similarity between structures, is the more common interpretation of chemical
similarity. With structural similarity, the molecule is deconstructed into substruc-
tures or fingerprints to enable comparison between molecules. However, within a
scaffold of high similarity minor functional group, changes can greatly affect the
property similarity between compounds. Addition of a carboxylic acid can drasti-
cally alter the binding and electronics surrounding a molecule, thus making the
molecules dissimilar from a property standpoint. Biological similarity may also
vary with minute chemical modifications, such as addition of an acrylamide,
resulting in molecules that may have high structural and property similarity, but
that vary greatly in biology. In contrast, two molecules may differ greatly in
structural similarity, yet share property and/or biological similarity due to the steric
properties of those molecules [29].

Read-across is one evolving approach that considers more than just structural
similarity alone to make a prediction on toxicological risk. Those developing read-
across methods identified that structural similarity alone was not enough to impact
regulatory decisions. More recent read-across analyses consider property, bioavail-
ability, metabolism, and biological similarities alongside structural similarity to
guide risk predictions [30]. Given the novelty of chemicals in drug discovery,
satisfying the multiple measures of similarity seems unlikely in practice.

There are advantages that both internal and external similarity searches can
provide in early safety assessment. Many companies have chemical libraries of
molecules that are used to screen “hits” in active assessment screens. One com-
pound may end up being a “hit” for multiple projects; thus a given library could
have a wealth of historical pharmacological, ADME, and toxicology data associ-
ated with it. Identifying structural similarity to internal chemistry with historical
knowledge can provide valuable information on potential risks to enable early
mitigation strategies to be formed. External tools for similarity searches can
provide valuable information on literature and marketed compounds:

e MetaDrug (Thompson Reuters Corporation, USA)—expert-checked summari-
zation of property, biological, and/or toxicity data on over 700,000 compounds
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Fig. 5.4 Illustrations of the structures of (a) zolpidem and (b) alpidem

» ChemSpider (Royal Society of Chemistry, UK)—free, comprehensive database
of freely available property and/or toxicity data on 35 million compounds from
almost 500 data sources

e PharmaPendium (Elsevier B.V., USA)—preclinical, clinical, and post-
marketing toxicity data from approval documents

Using external sources for similarity searches greatly expands the chemical
space and information sources to further probe risks for early chemistry.

While structural similarity can provide potential insights into the risk for newer
chemistry or to explain in vivo adverse effects, one should be weary of using
similarity alone to guide their decisions. Just as minute changes in chemical
structure can result in a detrimental loss of potency, minor chemical modifications
can greatly alter a compound’s toxicity profile. Zolpidem, a GABA, potentiator
primarily used for the treatment of insomnia, thus produces sedative effects as part
of its mechanism of action. The structurally similar molecule alpidem (Fig. 5.4), a
peripheral benzodiazepine receptor ligand, was prescribed for the treatment of
anxiety. Despite the two molecules sharing similar structural features, alpidem
avoided the sedative effects of zolpidem at therapeutic doses. Furthermore, alpidem
was withdrawn from the market for hepatotoxicity in humans, while Zolpidem is
not hepatotoxic and is still a marketed product [31].

5.4.4 Substructural Analysis: Identification of Toxicophores

The term structural alert was first coined by Ashby and Tennant, who defined
structural features associated with mutagenicity and genotoxic carcinogenicity
[32]. Structural alerts on toxicological endpoints are also known as toxicophores,
which are very similar to the concept of pharmacophores (substructures that are
associated with activity at a certain pharmacological target within a defined con-
text). Toxicophores are substructures that are associated with an increased likeli-
hood for a certain toxicity within a defined molecular or biochemical context. Just
as the presence of a pharmacophore in a structure does not ensure potency, the
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presence of a toxicophore does not guarantee toxicity. Toxicophores may be driving
toxicity risk via reactive metabolism formation, interaction with an ADR, modula-
tion of physicochemical properties, or other mechanisms.

Substructures may be statistically associated with a particular toxicity (i.e.,
“suspect” groups), but they may not necessarily be toxicophores. The true liability
could actually be related to another substructure that is often contained in molecules
that bare the “suspect” group. Another possibility is that the “suspect” group has
only been contained in compounds for a single project that had an on- or off-target
toxicity that was unrelated to the “suspect” group. These confounding factors may
mislead researchers if not identified and interrogated.

For those wishing to identify toxicophores, it is important to set toxicokinetic
exposure limits for the test and training sets. Otherwise, large differences in
exposure could account for the toxicity differences, thus confounding the analysis.
To better separate “suspect” groups from toxicophores, it is important to ensure that
substructures have been in a representative number of molecules and in more than
one chemical series. This will improve the statically robustness of the analysis and
help to mitigate confounding factors mentioned previously.

Determining the context in which a toxicophore has an increased toxicity risk is
an important step to pruning out “suspect” groups. The context of risk may be
related to chemical features on the toxicophore. Some potential chemical features
that may alter the toxicity risk for a toxicophore could include addition of steric
bulk, incorporation of nitrogens into rings, shortening alkyl chains, removal of
electron-withdrawing groups, or addition of ring substituents. Expert alert systems
like Derek Nexus (Lhasa Limited, UK) and CASE Ultra (MultiCASE, USA)
incorporate the context in which a structure has increased toxicity risk into their
predictions; therefore, a furan may be a hepatotoxicity alert for one molecule, while
a different furan-containing compound may not have the alert due to a difference in
surrounding chemical features.

Substructural analyses can provide early alerts to identify genotoxicity, hepato-
toxicity, and other toxicity risks. These tools may also be employed to determine
substructures that may be driving toxicity identified in an in vivo toxicity screen.
Collection of in vivo information for diverse chemistry containing the toxicophore
can enable identification of the context surrounding the toxicophore and/or the
mechanism driving the toxicity. Toxicophore alerts should not halt the progression
of a molecule, but rather guide decisions on chemical modification, in vitro ADR or
toxicity testing screens, or early Ames mutagenicity profiling.

5.4.5 In Silico Models for In Vitro Tox Endpoints

In vitro screening approaches have enabled earlier evaluation of toxicity risks for a
larger number of molecules than plausible with in vivo toxicology studies.
Improvements in technology and screening methods enable higher throughput of
an expanded number of endpoints in cellular systems. Primary cells (primary
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human hepatocytes, rat primary hepatocytes), immortalized cell lines (HepRG,
HepG2, H9c2), and induced pluripotent stem cells (iCell cardiomyocytes, iCell
neurons) are examples of in vitro models used to characterize cellular perturbations
of molecules [14, 33-35]. Functional and cell state endpoints measured in cellular
systems include, but are far from limited to, viability, cell morphology changes,
mitochondrial function, proliferation rate changes, glutathione loss, and QT pro-
longation [36-39].

In silico models of in vitro toxicology endpoints allow chemists to prioritize
lower-risk molecules for chemical synthesis. There are a number of public in vitro
assay datasets that are available to use for toxicology in silico model building. The
EPA ToxCast and Tox21 program generated in vitro toxicology data for thousands
of chemicals at over 800 assay endpoints generating one of the largest public
toxicology datasets. PubChem BioAssay and ChEMBL databases are large public
repositories of multiple assay endpoints including toxicology bioassay outcomes
[40, 41]. In curating data, great care should be taken to ensure data quality,
accuracy, and validity; otherwise any in silico model generated using those data
will contain erroneous information. As efforts expand to identify alternatives to
animal testing, the number of public toxicology datasets continues to proliferate.

Development of in silico toxicology models often involves filtering available
data to those compounds that lack potent cytolethality (for non-cytolethality in vitro
endpoints) and that have favorable solubility relative to the concentration ranges
used in vitro. If one is modeling in vitro phospholipid accumulation, for example,
potent cytolethality may result in artificial phospholipid fluorescent probe signals
that are associated with cellular death and not a true phospholipid response. Using
the same example of modeling phospholipid accumulation, if a compound has very
poor aqueous solubility, it may show no in vitro phospholipid accumulation due to
compound not getting into solution. “Negative” in vitro signals for aqueous insol-
uble compounds could be “positive” in vivo once formulated to better solubilize,
thus resulting in false negative in vitro results. Removing cytolethal and poor
solubilizing molecules from toxicology in silico model datasets will remove some
variability and unknowns from your in silico models.

For novel scaffolds, in silico models can often provide valuable information to
enable selection of compounds for in vitro toxicology testing. Rather than going “in
blind” to in vitro screening for new chemistry, one can select a range of compounds
from each prediction class to assess in silico-in vitro alignment. For example, in
Fig. 5.5, assessing in vitro cytolethality of a new scaffold selection of potent
molecules with QSAR predictions of both “high risk” and “low risk” enables
early understanding of model performance for the novel chemistry. Figure 5.5a
shows a project scaffold where high- and low-risk in silico predictions show good
concordance to in vitro cytolethality risk, so using the in silico model to identify a
lower-risk in vitro chemical space should work well for this scaffold. Figure 5.5b
shows a project scaffold where the in silico model predicts high risk, while the
in vitro risk is generally low to mid risk; therefore, using the in silico model may
overpredict the risk for molecules from this scaffold.
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Fig. 5.5 In silico-in vitro cytolethality model concordance for two different scaffolds. Bars
represent in silico model predictions and bars are colored on the actual in vitro risk. (A)
Representation of good in silico-in vitro concordance indicates in silico prioritization may be
warranted. (B) Representation of poor in silico-in vitro concordance for high-risk predictions and
good connectivity for low-risk predictions. In vitro evaluation of high-risk predictions would be
optimal due to in silico-in vitro differences

5.4.6 In Vivo Tox Prediction

There are many ongoing efforts to predict in vivo toxicity, many of which are led by
the following initiatives or consortiums:

» Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)
» European Partnership for Alternative Approaches to Animal Testing (EPAA)

« Safety Evaluation Ultimately Replacing Animal Testing (SEURAT-1)

« EPA’s Toxicity Forecaster (ToxCast)/Tox21

« eTOX

For example, the eTOX collaboration project to identify novel in silico strategies
and tools to improve toxicological risk assessment in early drug development has
developed the eTOXsys platform. This platform contains a number of in vivo
toxicological in silico models including cardiotoxicity and phospholipidosis
[42]. eTOX has used the concept of combining the multiple Molecular Initiator
Events (MIE) that may contribute to an Adverse Outcome Pathway (AOP) to build
a single model [43]. For example, instead of one model for drug-induced liver
injury (DILI), there may be multiple MIE models (i.e., total bilirubin increase,
hepatocellular necrosis, alanine aminotransferase increase, and bile salt export
pump inhibition) used as a consensus model for a DILI AOP prediction.

Prediction of carcinogenicity risk for compounds is an area that has been heavily
explored. Regulatory requirements for evaluating chemical carcinogenicity involve
2-year rat screening, a prospect that costs valuable time and money in getting
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medicines to patients. Therefore, those in the pharmaceutical industry use in silico,
in vitro, and in vivo models of the easier-to-test endpoints of chromosome aberra-
tion (CAB) and bacterial mutagenicity to screen compounds to determine which
compounds to advance into the 2-year screens. Most in silico models center around
prediction of DNA reactivity as assessed by Ames mutagenicity testing as DNA
reactivity is considered a hallmark of carcinogenicity [44] although data show only
50% of marketed genotoxic (i.e., mutagenic, clastogenic, aneugenic, epigenetic)
compounds result in carcinogenicity [45, 46]. Commercially available Ames muta-
genicity in silico prediction tools that have demonstrated favorable prediction
accuracy include Derek Nexus (Lhasa Limited, UK) and Leadscope (Leadscope,
USA), although it has been demonstrated that the addition of in-house chemistry to
a model training set helps improve model performance [47].

There are a variety of programs available that offer prediction of in vivo
toxicological endpoints including hepatobiliary injury, carcinogenicity, skin sensi-
tization, and acute toxicity. The datasets behind these models are often a combina-
tion of public and proprietary data. Examples of programs to predict toxicological
endpoints are highlighted in Table 5.2. Several of these applications include
non-toxicological endpoints such as absorption, distribution, metabolism, or elim-
ination (ADME) and physicochemical or pharmacological models. A few of the
programs also include or offer the option to license the databases behind these
models.

Table 5.2 Applications for prediction of in vivo toxicological endpoints with brief details on their
offerings

Application Source Details

ACD/Percepta ACD/Labs Predictions for over 25 physchem and ADMET endpoints
(seven of which are toxicological). Model output includes
measures of prediction reliability

ADMET Simulations | Rapid prediction of over 25 toxicological QSAR models.
Predictor Plus, Inc. Model building, visualization, and additional physchem and
ADME model tools also available
Derek Nexus Lhasa Rule-based expert system using chemical structure alerts to
Limited predict over 50 toxicological endpoints
Discovery Stu- Accelrys, Statistical-based QSAR models for 14 toxicological end-
dio TOPKAT Inc. points. Additional predictive science applications available
eTOXsys eTOX Contains 20 toxicology models and 19 safety pharmacology

models where the prediction is the result of the outputs of
multiple models. Ability to query the database behind

eTOXsys
Leadscope Leadscope, Comprised of nine statistical or expert alert models span-
Inc. ning 86 toxicological endpoints. Toxicity databases are also
available
MetaDrug Thompson Over 70 QSAR models to predict ADMET and therapeutic
Reuters activities. Metabolism prediction tools, toxicity pathway
maps, and large comprehensive databases also available
REACH QSAR | Molcode QSAR prediction for 30 endpoints primarily focused on

toxicity risk
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Despite many efforts to predict specific in vivo toxicity endpoints in preclinical
species and humans, these models in general have poor accuracy. The prevalence of
adverse events is <10% for many toxicities, especially when filtering out com-
pounds that cause multi-target organ toxicity driven by poor physicochemical
properties and/or poor selectivity. The low prevalence for compounds to cause a
given toxicity often results in models with low PPV due to a higher proportion of
false positives compared to true positives. An additional complicating factor to
prevalence is that a specific toxicity may result from multiple MIEs, so compounds
resulting in toxicity via a particular MIE may be poorly represented in a model’s
training set. Thus, compounds causing toxicity via an MIE that is poorly
represented may not be predicted positive by the model driving down the NPV.
One additional factor that causes difficulties in building in silico models for in vivo
endpoints is creation of the training and test set used to build the model. This is due
to compounds differing in dose, exposure, intrinsic clearance, plasma protein
binding, CNS penetration, and other crucial ADME properties that make compar-
ison of compounds difficult. For example, “Compound A” may have only been
dosed up to a total Cmax of 1 pM with no cardiac necrosis observed, whereas
“Compound B” may have been dosed higher, and cardiac necrosis was observed at
a dose resulting in a total Cmax of 100 pM. In this example, due to exposure
differences, the endpoint of cardiac necrosis cannot be easily compared between
“Compound A” and “Compound B” at total Cmax concentrations exceeding 1 pM.
Therefore, ADME properties need to be taken into account along with prevalence
when building in silico models of in vivo endpoints.

In recent years, alternative approaches to predicting in vivo toxicity have been
investigated to try to improve accuracy. Incorporation of in vitro concentration
responses as biological descriptors and their maximal responses were shown to
improve acute rodent toxicity QSAR model accuracy [48]. Therefore, combining
in vitro toxicological data with general molecular descriptors may provide for
improved model predictivity. Setting specific exposure cutoffs has been one
approach to improve comparison across compounds when building model training
and test sets [26]. In modeling the total Cmax at the lowest observed adverse effect
level (LOAEL), our group showed that increasing apparent volume of distribution
(Vd, area) and increasing cytolethality drastically reduced the average LOAEL,
while decreasing Vd and cytolethality greatly increases the average LOAEL
[49]. Figure 5.6 shows internal data demonstrating the relationship between Vd,
area, RPH cytolethality, and adverse histopathology in oral dosed rat 4-day toxi-
cology studies. This work has shown the value of incorporating in vitro endpoints,
exposure, and additional ADME parameters to determine toxicological risk.

5.4.7 Summary

Given the push for reduction of animal use in preclinical testing, utilization of
predictors for in vivo toxicological risk is imperative. Physicochemical properties,
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Fig. 5.6 Correlation of Vd, area, and RPH cytolethality to rat oral dosing 4-day adverse histopa-
thology. Internal dataset of 4-day rat orally dosed compounds. Probabilities indicate the proportion
of molecules in that “bin” with adverse histopathology findings in any of the eight primary target
organ tissues examined where at least 20% of the animals had an adverse effect in the same tissue
where the total Cmax at that dose was <10 pM. Those compounds with no adverse effects at a total
Cmax of 10 pM or higher were considered “clean.” These data show that higher Vd, area (5-10 L/
kg), and lower RPH LC50 (<20 pM) internal compounds have historically shown a high proba-
bility of adverse histopathology at total Cmax values <10 pM, whereas lower Vd, area (<5 L/kg),
and high RPH LC50 (>20 pM) internal compounds have shown a low probability of adverse
histopathology at total Cmax values <10 pM

in silico models, and structural risk assessment can be used in conjunction with
in vitro models to identify toxicity risks prior to in vivo screening. These tools show
great value in scaffold risk assessment to identify lower-risk chemical series and in
development of better-informed in vitro, biomarker, or in vivo toxicology screening
strategies. While in silico and structural tools are not a replacement for animal
testing, they do provide opportunities for finding safer molecules earlier in devel-
opment to protect animals and patients.

5.5 Cellular Systems: General Screening and Models
of Key Target Organs

Cell-based models in toxicology have been applied in numerous ways often with
unique strategic intent. The most widely used approach is the evaluation of general
cell health. This phenotypic approach interrogates generalized cellular function in a
higher-throughput screening paradigm which can be applied in a proactive manner
to de-risk chemistry in early discovery. Alternatively, cell-based systems are
applied for cause in a directed screening effort or in a hypothesis-driven target
organ approach to better understand mechanism of action and facilitate lower-
throughput screening efforts.
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5.5.1 General Screening

General cell health screening involves the application of endpoints such as
cytolethality, phospholipidosis, steatosis, mitochondrial membrane potential, and
redox status to name a few. In this paradigm, a cell model is usually chosen that is
both a good general reflection of a mammalian cell of toxicological interest
(hepatocyte) and has the characteristics of reproducibility, robustness, and ease of
culturing (a cell line). The human hepatoma cell line HepG2 is a good example of a
cell model that has those characteristics.

General cell health screens have been applied at various points in the drug
discovery model. Often, you will see these data being generated and applied just
before project teams begin to optimize lead molecules with short-term live-phase
studies. Unfortunately, at this point in the drug discovery process, the available
chemical space has been narrowed leaving little room for structural diversification.
However, if you can integrate your general cell-based safety screening paradigm
into an earlier discovery process where biological hits are being profiled, there is
ample chemical diversity to optimize safety along with target activity, drug dispo-
sition, and biopharmaceutical properties. In this setting, a combination of in silico
and informatics tools as described in Sect. 5.4 along with a few key toxicology cell-
based screens can be effectively applied to improve the outcome of early live-phase
studies.

General cell health screens have been developed using various combinations of
cell systems, analytic reagents, and assay platforms. The simplest platforms rely on
easily maintained cell lines with simple enzymatic-, fluorescent-, or luminescent-
based readouts [50]. These readouts can be single endpoint or multiplexed into
“high-content” platforms [51]. A list of cell systems and key endpoints can be found
in Table 5.3.

Table 5.3 Collection of cell systems used in early safety assessment screening

Cell system | Endpoint Biological function Measurement
Rat pri- Cell death Measurement of enzyme leakage (lactate Enzymatic
mary dehydrogenase) from a cell which has lost

hepatocytes membrane integrity

Rat pri- ATP Measurement of mitochondrial function and | Luminescent
mary cell death

hepatocytes

HepG2 Steatosis Measurement of neutral lipid accumulation | Fluorescent

within the cytoplasm of the cell

HepG2 Phospholipidosis | Measurement of phospholipid accumulation | Fluorescent
within the cytoplasm of the cell

HepG2 Lipodystrophy Measures expansion of lysosomal compart- | Fluorescent
ments with the cytoplasm of the cell
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5.5.2 Focused Cell Screens

Beyond general cytotoxicity screening and broadly applicable phenotypic assays
(phospholipidosis, neutral lipid accumulation, and lysosomotropy), focused cell
models are chosen to reflect the organ and tissue toxicities that are manifested
during late drug discovery and early drug development. The cell model choice may
be based on previous knowledge of the drug’s target organ/tissue distribution and
biochemical/signaling pathway impact or on knowledge derived from animal
model studies. Using hematopoietic stem cells in and a colony forming assay for
screening when the target is a cyclin-dependent kinase is an example of choosing a
cell model based on previous knowledge of the target, while establishing a screen-
ing assay in skeletal muscle myotubes after noting skeletal muscle injury in an
initial rat toxicology study is an example of choosing a model based on study
results.

Once the appropriate cell model is identified, the relevant assay endpoint
(s) needs to be established. These will vary depending on the nature of the injury
(observed or anticipated) and can range from simple cell viability assays, through
mechanism and function based screens, and even global gene expression analysis
[52]. More and more, cellular injury evaluation involves using multiparameter
high-content analysis approaches which incorporate several endpoints and thus
provide both more granularity on the nature of the injury and more selection
power for ranking molecules [51].

As early chemistry and drug safety groups have become more efficient at
identifying inherent compound physical-chemical property-based risk and have
developed in silico predictive models, more molecules with liability based primar-
ily on compound structure properties are removed earlier in the preclinical devel-
opment process. Because of this success, cell injury models and assays today reflect
more mechanistic and functional toxicity screening approaches, where the nature of
the injury is usually more subtle and often reflects a negative impact on cell
function not manifested as overt cytotoxicity. Two examples of these newer
function or mechanism-based cellular injury models would include screening for
compounds that negatively impact vesicular trafficking in retinal epithelial cells
using a high-content imaging-based approach or screening compounds with poten-
tial cardiac arrhythmia risk using cultured ventricular cardiac myocytes and
multielectrode array field potential duration measurements [53].

Another trend in the development of tissue- and organ-based cell models has
been the major move toward the use of human cell models over animal cell models.
The rationale is that human cells will more accurately reflect the biology and thus
relevant molecule risk in the intended treatment population than animal derived cell
models. Until recently, the use of human cell models was limited, in that most of the
available human models are transformed cell lines which have inherent drawbacks
as to their relevance to the in vivo human status. The inability, except in a few cases
such as hepatocytes, to obtain primary cells from humans has until recently limited
the widespread use of human cell models in drug safety screening. New potentials
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for using human cell models have arisen with the advent of technologies that allow
for the production of many differentiated cell types from human-induced pluripo-
tent stem cells (iPSC) generated, relatively noninvasively, from donor’s skin or
blood cells [54]. A number of these human iPSC-derived cell models are now being
evaluated in many drug safety organizations and in a few cases are being routinely
used in drug safety assessment screening [55].

In the following section, we will provide examples of how organ-/tissue-specific
cell models are being used in early drug safety screening and emphasize the
movement toward mechanism and function-based screening approaches as well
as the move toward extensive use of human cell models.

5.5.3 Liver Injury Cell Models

Drug-induced liver injury is the leading cause for adverse toxicity in the clinic and
in severe cases can lead to the need for liver transplantation and sometimes result in
death [56]. Although many compounds causing acute liver failure are identified
during preclinical testing, the use of both immortalized cell lines and primary
hepatocytes during early drug discovery is essential for screening large compound
sets to identify a safe chemical space while maintaining potency at the target of
interest. During later stages of drug development, focused experiments can be
utilized to understand mechanism of on- vs. off-target toxicity using these in vitro
models.

While standard cytolethality screens have been suggested to correlate with
nonspecific organ toxicities [49], these are not clear predictors of liver-specific
toxicity. Nonetheless, it is essential to understand a compound’s in vitro cell death
profile prior to interpreting results of other functional assays. To measure
cytolethality, either primary hepatocytes or immortalized liver cell lines are treated
with a concentration response curve, and cell death is measured by either lactate
dehydrogenase release or high-content imaging using nuclear staining. The con-
centration which results in 50% cell death (LC50) relative to total control is
reported, and compounds within a chemical scaffold are banned from most
cytolethal (low LC50) to least cytolethal (similar to vehicle control).

Following generation of cytolethality curves, further endpoints can be produced
to understand functional changes within the hepatocyte. These endpoints are often
multiplexed within the same well using high-content imaging. Examples range
from understanding relative amounts of neutral lipid accumulation (i.e.,
phospholipidosis or steatosis) to perturbations of vesicular trafficking (i.e.,
lysosomotropism and inhibition of autophagic flux) or mitochondrial function
with either fluorescent probes or fluorescently labeled proteins [57]
(Fig. 5.7). When implementing new functional assays, it is essential to utilize a
test set of molecules known to perturb the cellular system of interest, as well as
negative controls. Having a set of positive and negative controls is essential to set
parameters for data interpretation, such as fold change and relative fluorescence.
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Fig. 5.7 (A) HepG2 cells were treated with either vehicle of 5 pM amiodarone and LipidTox
Green phospholipidosis detection reagent for 24 h, followed by fixation with preference and 5 pg/
mL Hoechst prior to fluorescent imaging on the PerkinElmer Opera. (B) HepG2 cells were treated
with either vehicle of 30 pM amiodarone for 24 h. Following fixation with 5 pg/mL Hoechst, cells
were stained with LipidTox Deep Red for 2 h prior to imaging on the PerkinElmer Opera. (C)
HepG2 cells were treated with either vehicle or a concentration response curve of amiodarone
from 100 to 1 pM and processed as described in (A) and (B)

5.5.4 Gastrointestinal Injury Cell Models

Intestinal epithelial cells (IECs) have a critical function in the absorption of
nutrients and act as a physical barrier between our body and the outside world.
Damage and/or death of the epithelial cells lead to the breakdown of this barrier
function along with inflammation as a result of access of the immune system to the
intestinal flora. Intestinal epithelial damage is frequently associated with various
inflammatory disorders as well as drug-mediated toxicity. The lumen of the gut,
although at first glance may seem to be a simple mucosal epithelia with primarily
absorptive properties, is in reality a much more complex and nuanced system of
multiple cell types, which also interfaces with a complex microbial biome [58].
Most cell lines used for GI toxicity screening purposes are intestinal epithelial in
nature such as the rat IEC-6 and human Caco-2 cell lines and thus reflect primarily
properties of an enterocyte cell [59, 60]. Under proper culturing conditions, the
IEC-6 cell model, having been derived from the crypt region of a juvenile rat small
intestine, can display a mixed cell morphology which reflects multiple cell types
when differentiated over time in culture (Table 5.4). In our laboratory, IEC6 cells
have been able to discriminate GI injury risk with a positive predictivity of 68% that
separates GI toxicants from other more general cytotoxicants.

Intestinal organoids, “mini guts,” are now being generated in culture that better
replicate the GI with cryptal regions giving rise to villous structures [61]. Intestinal
organoids are showing promise as a physiologically relevant surrogate system for
large- and mid-scale in vitro testing of intestinal epithelium-damaging drugs and
toxins and for the investigation of cell death pathways [62].
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Table 5.4 Relative gene expression levels of selected intestinal epithelia genes from the rat IEC-6
cell line at 1 day and 7 days in culture under differentiating conditions

Expression of intestinal mucosal epithelial genes in IEC-6 cells (PCR analysis)

Gene IEC-6 IEC-6

Gene name symbol Predominant cell type 1d 7d
Intestinal alkaline Alpi Enterocyte — ++
phosphatase
Villin Vill Enterocyte ++ ++
Sucrase isomaltase Sim Enterocyte + +
Kruppel-like factor 4 Klif4 Enterocyte, goblet cell ++ +
Kruppel-like factor 5 KIf5 Stem, enteroendocrine, paneth |+ +++

cells
Cholecystokinin Cck Enteroendocrine + ++
Mucinl Mucl Goblet cell + +
Mucin2 Muc?2 Goblet cell — —
Intestinal trefoil factor Tft3 Enterocyte, goblet cell + +
Ephrin type B2 receptor EphB2 Villus + ++
Ephrin B2 ligand Efnb2 Villus +++ +++
Hairy enhancer of split-1 | Hesl Stem, enteroendocrine, paneth | + ++

cells
Musashi-1 Msi2h Stem cell + ++
Notch 1 Notchl Stem cell + ++

5.5.5 Heart Injury Cell Models

Heart injury caused by compound treatment may be due to direct action at the
cardiac myocyte but may also be due to indirect effects on cardiac function, such as
hemodynamic changes, that eventually may lead to cardiac myocyte death.
Mirroring those indirect effects on cardiac myocytes in a single cell in vitro
model is very challenging if not impossible. Until the advent of iPSC-derived
human cardiac myocytes, researchers have been limited to cell models that reca-
pitulate only partially the attributes of an adult cardiac myocyte. Primary cardiac
myocytes are difficult to isolate and maintain in culture; neonatal rat ventricular
myocytes (NRVM) are very fetal in nature and often do not display a uniform
synchronous beating pattern, and the rat H9c2 cardiomyoblast cell line, though
expressing a number of cardiac myocyte-specific genes, lacks the ability to spon-
taneously beat in culture [63]. Now with the availability of human iPSC-derived
cardiac myocytes, many of the shortcomings associated with earlier cardiomyocyte
cell models have been addressed (Table 5.5) [64].
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5.5.6 Skeletal Muscle Injury Cell Models

Skeletal muscles represent a considerable mass in the organism (36—42% of body
mass in human adults) [65] and have a key role in regulating overall organismal
bioenergetics and thus are a major target for xenobiotic-mediated injury. Although
abundant and grossly similar in morphology, skeletal muscles are not a uniform
tissue as location and function of skeletal muscle fibers vary and thus their suscep-
tibilities to toxicants also vary accordingly. “Fast twitch” glycolytic fibers respond
differently than “slow twitch” oxidative fibers, and different muscle groups can be
one form or the other or a mix of both types of fibers. Skeletal muscle, like cardiac
muscle, is a bioenergetically active tissue susceptible to injury either directly or
indirectly. Skeletal muscle injury by drugs such as statins and PPAR agonists can be
mirrored by in vitro models consisting of both cell lines such as the mouse C2C12,
and rat L6 and H9c2 cell lines, and primary myoblasts isolated from animal and
human muscle tissue. The availability of human iPSC-derived skeletal myoblasts
should allow for a consistent source of cells for screening for skeletal muscle injury
risk [66].

5.5.7 [Injection Site Irritation

Injection site reactions (ISRs) are a common occurrence with parenteral drugs, and
few in vitro assays exist which accurately predict the occurrence of ISRs in vivo.
Small molecules are often developed as parenteral compounds to increase bioavail-
ability or to avoid intestinal toxicity, whereas all biologics are developed as
parenteral products. Because ISRs are an acute local toxicity at the injection site,
normal in vitro cytolethality assays, which are designed to predict chronic systemic
toxicities, are not predictive for ISRs. To screen for ISR potential prior to running
in vivo studies with parenteral compounds, L6 rat myoblasts are differentiated into
myotubes and treated with compounds formulated in 5% mannitol and adjusted to
pH 4.0-10.0 to maintain maximal solubility [67—70]. Cell membrane perturbation
is measured by conversion of nonfluorescent calcein-AM to fluorescent calcein,
where lower fluorescence is indicative of higher ISR potential. We have shown that
acute membrane perturbation, as measured by decreased fluorescence, correlates to
a high extent with clinical ISRs for small molecules (Table 5.6). One important
observation is that many of the small molecules inducing clinical ISRs are dosed at
a higher dose concentration than the measured L6 IC50. For example, doxorubicin
is dosed at 2 mg/mL, which causes nearly 100% cell membrane perturbation in the
L6 assay at this concentration in the absence of cell death, but the L6 IC50 is tenfold
lower at 0.2 mg/mL. For this reason, the L6 assay has been used not only to
prioritize compounds for lowest ISR risk but also for optimizing dose concentra-
tions for in vivo experiments as well as selecting alternative formulations to
minimize risk of ISRs. It is important to note that a percentage of ISRs are caused
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Table 5.6 L6 correlates with clinical ISRs

T.K. Baker et al.

L6% cell
membrane
perturbation
Clinical | Clinical dose at clinical L6% cell death at
ISR concentration dose clinical dose L6 IC50
Drug (Y/N) (mg/mL) concentration | concentration (mg/mL)
Doxorubicin  |Y 2 97 0 0.2
Mitoxantrone | Y 0.5 88 0 0.1
Vinorelbine Y 2 84 2 0.8
Metoprolol N 1 0 0 >10
Atenolol N 0.5 0 0 >10

by large molecules, which have been suggested to have an immune component
associated with the manifestation of inflammation and necrosis at the injection site
[71]. However, while the L6 assay might have utility to understand structure and
charge-related irritation associated with large molecules, ISRs due to immunoge-
nicity might not be picked up with this assay and new tools will need to be explored.

5.5.8 Hematopoietic System and Hematopoiesis

Hematopoiesis is the process by which bone marrow stem cell progenitors give rise
to the mature cell populations of circulating peripheral blood in animals. Injury to
the bone marrow compartment causes hematological toxicity, or hematotoxicity,
and is frequently observed in administration of drugs eliciting antiproliferative
effects. Hematotoxicity, leading to myelosuppression and neutropenia, is the most
common clinical dose-limiting toxicity (DLT) encountered during development of
oncolytic therapies. The antiproliferative effects are often desired pharmacology of
oncolytics but manifest as undesired or off-target pharmacology in other therapeu-
tic classes. In vitro cell-based models such as the bone marrow progenitor or colony
formation unit (CFU) assays are utilized to measure off-target risk for a given set of
candidate drugs, but, perhaps more importantly, to measure and help predict the
clinical risk profile of neutropenia [72].

The in vitro CFU assays are highly specialized clonogenic assays and are
utilized to measure the differentiation and proliferative capacity of specific hema-
topoietic progenitor cells. The assays are guided by incubation with specific
cytokine cocktails that promote differentiation and growth of primitive hematopoi-
etic cells. Qualitative endpoints of hematotoxicity include the following: measure-
ment of multiple lineages, scheduled treatment (continuous vs. pulsed exposure),
combination treatment, multispecies sensitivity, and rank order of a chemical
series [73].
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Although there are many CFU assay endpoints used to measure direct effects on
bone marrow lineage precursors, the key assay endpoints used in early safety
assessment are CFU-GM (myeloid, granulocyte-macrophage progenitor) and
BFU-E (erythroid progenitor). These progenitors give rise to the myeloid and
erythroid cells that differentiate and proliferate to form components of the periph-
eral blood. Drug-induced reduction of hematopoietic progenitors are measured in
each of these assays and used to predict multiple elements of hematotoxicity. The
CFU-GM assay has served as a “gold standard” for predicting the clinical maxi-
mum tolerated dose (MTD) and plasma concentrations where neutropenia is likely
to occur [72].

Under treatment conditions lasting for the duration of the assay, typically 1-10
days, inhibition dose response curves can help the in vivo plasma concentrations
predictive of a clinical grade III neutropenia [73]. Treatment time periods in the
assay are typically continuous that last throughout the 7-10-day assay duration.
However, noncontinuous or “pulsed” followed by washout treatment periods allows
flexible exposure time of the progenitor cells to the test molecule. Pulsed exposure
times, e.g., <24 h, have been applied to investigate effects of targeted (cell cycle
kinase inhibitor) therapies [74]. Differential effects in the CFU assays are observed
with pulsed vs. continuous exposures, and these effects can be applied to predictive
PK/PD models that predict a safer and more effective clinical starting dose
[73]. Additional noncontinuous treatment periods, compounds can be added in
combination and in a pulsed or continuous treatment to evaluate combination
therapy effect on bone marrow progenitors.

Current formats of the assay and utilization of appropriate cytokine cocktails
allow for multispecies comparison. Species-specific effect can be evaluated in order
to help reduce animal toxicity studies and identify the most sensitive preclinical
species that may translate to a clinical risk.

CFU assays are lower throughput and reflect accurate effects on mechanism due
to the longer 7-10-day incubation periods in the culture system. However, when
higher-throughput efficiency is needed to screen potential drug candidates, alter-
native models are useful. Suspension cell cultures using a variety of cell types (e.g.,
mononuclear bone marrow cells, CD34+ cells, myeloblastic cell lines, etc.) are
incubated with compound and assessed for phenotypic changes. Higher content
technologies are used to assess cell viability, cell density, and proliferative index
[75]. Subsequently, these higher content and throughput assays serve as an effective
prefilter to the CFU assay such that only safest profile candidates are evaluated for
predictive neutropenia risk.

Preclinical hematotoxicity may be driven by multiple biological, chemical, and
physicochemical properties. An effective strategy includes the use of multiple tools
to minimize or mitigate hematopoietic toxicity leading to neutropenia or other
cytopenias. Intrinsic chemical properties, like lipophilicity and basicity, overt
toxicity to nonproliferating cells, and higher-throughput viability/proliferation
assays, should be incorporated in a screening strategy prior to subsequent use of
more definitive bone marrow CFU assays. This strategy minimizes expense and
maximizes probability of true positive results by minimizing the number of false
positives due to chemical-based or off-target toxicity (Fig. 5.8).
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5.5.9 iPSC-Derived Cell Models

The advent of human stem cell technologies, especially the ability to produce
induced pluripotent stem cells (iPSC), has provided an opportunity to address
long-standing limitations on the use of in vitro cell models for risk screening,
including the lack of species relevance, lack of phenotype that reflects the in vivo
environment, tumor-derived cells, and high variability/poor reproducibility using
primary cells [76].

The iPSC technology allows for a uniform and continuous source of cells with
the same genetic background which can be used to generate any differentiated cell
population present in the organism, as long as the appropriate factors driving the
differentiation are understood [77]. As the iPSC reprogramming approach can be
done starting with any somatic cell, moral and ethical issues concerning the use of
human embryo-derived cells are avoided. Another significant advantage that the
iPSC approach provides is the ability to generate patient-specific cells, which will
contain the genetic background associated with that patient’s particular condition or
disease, allowing for characterization of toxicity in the context of the disease state
(Fig. 5.9) [78-80].

Several human iPSC-derived cell types of toxicological interest are available in
industrial amounts from commercial sources. The most widely used cell types are
cardiac myocytes, hepatocytes, and neurons. Additional iPSC-derived cell types,
including endothelial cells, skeletal myoblasts, astrocytes, and macrophages, are
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Fig. 5.9 Using iPSC technology, organ toxicity in humans can be assessed in the relevant cell
type from both normal and diseased patient populations (Figure courtesy of Cellular Dynamics
International, a FUJIFILM company)

available or are being developed but have a more limited utility for toxicity
profiling. The ability to more fully characterize functional endpoints such as cardiac
contractility and neuronal synaptic plasticity in an accessible and reproducible
experimental format provides a significant advantage over previous cell models.

Although iPSC-derived human cells have proven to be a valuable tool for in vitro
cell-based safety assessment, there are several negatives associated with the cells,
which may in certain cases impact the overall utility of the cells. Differentiated cells
derived from iPSCs tend to be somewhat immature in nature in their gene/protein
expression patterns and resulting functional attributes. Maintenance of the cells in
culture for longer durations ameliorates the fetal nature of the cells to some degree
but not completely. Possibly related to the somewhat immature nature of iPSC-
derived cells is the observation that their epigenetic marks may differ from a
differentiated cell derived from a pluripotent stem cell of normal embryonic origin
and may actually contain epigenetic marks of the somatic cell used to generate the
iPSC. This may not be a concern depending on the test articles and endpoints being
evaluated but should be taken into account if epigenetic impacts are anticipated.
Finally, from a purely logistical standpoint, the expense and somewhat more
complex culturing conditions of the cells make them a more challenging choice
for extensive screening applications. The iPSC-derived human cells are likely best
used in a tier-2 setting where prefiltered molecules can be evaluated for specific
mechanistically relevant functional endpoints.

The iPSC-derived cell model that has received the most attention and which is
most widely used today in safety assessment is the human cardiac myocyte model.
The ability of the iPSC-derived cardiac cells to beat with spontaneous rhythm when
grown densely enough to form a syncytium provides a useful model for assessing
impacts on contractile function of cardiac myocytes in an in vitro setting. Using
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various analytical approaches, such as measuring cytoplasmic calcium flux, probe-
free cell shape monitoring, and membrane voltage potential change, many groups
have shown that these cells have the ability to correctly identify and categorize
known cardioactive compounds [81-83]. In addition to the iPSC-derived cardiac
myocytes, the development of iPSC-derived human neurons has provided toxicol-
ogists with the ability to grow a homogeneous population of synaptically active
human cortical or peripheral neurons for assessing aspects of neurotoxicity, includ-
ing neurodegeneration, impaired synaptic activity, and seizure induction
[84, 85]. Development of hepatocytes derived from human iPSCs would be a
particularly attractive cell type as drug-induced liver injury (DILI) is a major
drug development concern, and nonhuman in vitro models are poorly predictive
of effects in the human patient population [86].

5.5.10 Microphysiological Culture Systems

Microphysiological organotypic culture systems are rapidly advancing to more
readily create in vitro tissues/organ models by co-culturing in appropriate ratios,
and often in a three-dimensional architecture, defining cell types that comprise an
organ or complex tissue [87]. These platforms incorporate complex factors found
in vivo, including extracellular scaffolding, three-dimensional structure, cellular
interactions, perfusion, biomechanical stresses, electrical stimulation of excitable
tissue, and hormone responses to list a few. These features are present in preclinical
animal models, but some aspects of animal physiology do not accurately represent
those of humans. National Institutes of Health (NIH), Food and Drug Administra-
tion (FDA), and the Defense Advanced Research Projects Agency (DARPA)
collaborated to launch the Microphysiological Systems (MPS) Program in 2012
(http://www.ncats.nih.gov/research/reengineering/tissue-chip/tissue-chip.html).
Ten major organ systems were identified for funding as part of this program (intes-
tine, liver, central and peripheral nervous system, blood-brain barrier, vascular
system, skeletal muscle/innervated motor unit, heart, lung, kidney, and female
reproductive system) along with key contributions from bioengineering, stem cell
biology, cellular and molecular biology, physiology, toxicology, and pharmacology.
In the end, these unique culture platforms are being funded to offer viable options for
surrogate human tissue testing.

5.6 In Vivo Biomarker Screens

Biological markers (biomarkers) are objective indications of disease, injury, or
pharmacology that can be measured accurately and reproducibly in an organism
[88, 89]. When applied during in vivo drug development studies, biomarkers can
give a sensitive and quantitative measure of test article-related tissue injury or
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changes in homeostasis. As part of early safety assessment, the use of in vivo
biomarkers is a step in the progressive dedication of resources as a project
advances. With the goal of assessing a compound’s safety as early as possible,
the inclusion of biomarker measurements makes sense after in silico and in vitro
endpoints have been utilized to prioritize compounds more likely to be tolerated in
animal studies and as soon as in vivo studies are conducted. The use of biomarkers
has been encouraged by the US Food and Drug Administration to reduce the time
and cost of drug development [90].

The “decision gate” analogy is a useful paradigm in drug development. It holds
that drug development can be divided into several go/no-go decisions, including
whether the drug works in humans, and whether it can be marketed [91]. Lead
optimization is an important decision gate, during which a molecule’s suitability for
human dosing is determined by establishing the maximum tolerated dose and dose-
limiting toxicity in nonclinical studies. Early safety assessment supports this pro-
cess by assessing a molecule’s safety as early during development as possible,
helping to narrow the possible candidates to safer choices. Elimination of molecules
with strong structural similarities to known toxicants or undesirable effects on
cultured tissues, such as cytotoxicity, and those that cause changes (often increases)
in safety biomarkers during in vivo studies improves the chances of success in
finding a molecule that will be successful during lead optimization and tolerated in
human studies.

Each tool available during early safety assessment supports application of the
next. As we have discussed, a thorough understanding of the risks associated with
target modulation, based on available literature and previous experience, informs
the entire project, predicting lesser or greater investment of resources based on
lower or higher risk of dose-limiting toxicity and possibly pointing toward specific
target organs. In silico modeling and in vitro screening help initially narrow the
number of molecules to choose from based on previous experience with similar
chemistries and direct effects on cells in culture. After these tools have helped
prioritize which molecules are more likely to be tolerated in human studies, those
with the ability to bind to the target and some measure of bioavailability are chosen
for the first in vivo studies, often in a mouse model of a disease state consistent with
the intended indication for the drug program. As development progresses and
molecules show efficacy and tolerability in mouse models, rat studies may be
conducted at higher doses to begin to identify target organ toxicity and establish
maximum tolerated doses in order to set dose levels for longer duration rodent
studies (e.g., 14 days to 3 months) and studies in larger animals during nonclinical
safety assessment. The application of blood- and urine-based biomarkers during
these initial studies in mice and rats will be the focus of this section.

The use of biomarkers in early safety assessment is dependent on the availability
of assays for safety-related endpoints or the investigator’s ability to develop an
assay for the desired endpoint. Platforms commonly used to measure biomarkers in
blood samples include (but are not limited to) enzyme-linked immunosorbent
assays (ELISA), electrochemiluminescent immunosorbent assays (ECLIA), poly-
merase chain reaction (PCR), mass spectrometry, and enzyme activity assays.
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Common blood chemistries used in human patients can also be included in rodent
assays, including (but not limited to) albumin, total globulins, alkaline phosphatase,
alanine aminotransferase, aspartate aminotransferase, direct and total bilirubin,
blood urea nitrogen (BUN), calcium, chloride, cholesterol, creatinine, gamma-
glutamyl transferase, glucose, iron, phosphate, potassium, total protein, sodium,
triglycerides, and complete and differential blood counts. These endpoints offer
insight into liver function, kidney function, muscle injury, metabolic state, acid/
base balance, immune status, hydration status, and hematopoiesis. They come with
the advantage of decades of investigation into their biological significance with
well-established reference intervals allowing the flagging of concentrations above
or below typical values in healthy animals, including rodents. Results are best
interpreted with the aid of a trained pathologist certified by an organization such
as the American College of Veterinary Pathology.

Safety biomarkers can also include more recently developed “novel” markers,
such as cardiac troponins I and T [92]. In a short (2-day) mouse screen, cardiac
troponin I (cTnl) was used to rapidly explore the structure-activity relationship
(SAR) of a large number of molecules in mice administered two oral doses,
allowing higher throughput than would be possible with histopathology focused
studies [93]. Public-private consortia continue to advance the science of safety
assessment using biomarkers targeted for both nonclinical and clinical studies
[94]. In focus groups dedicated to a specific target organ injury and in collaboration
with the US Food and Drug Administration (FDA), these consortia qualify clini-
cally relevant biomarkers for use in preclinical and clinical drug development
studies [95-98].

Used in conjunction with histopathology, in vivo biomarkers can increase the
sensitivity and quantitative value of early safety assessment studies; however, by
combining multiple biomarkers into panels and forgoing direct examination of
tissues, the number of molecules that can be assessed can be increased. In rat
studies, the relatively greater amount of serum or plasma available (compared to
mice) allows for the combination of multiple novel biomarkers and traditional
clinical chemistries into a more comprehensive biomarker screen. For instance,
the use of kidney injury markers measured in urine, such as osteopontin (OPN) or
kidney injury molecule-1 (KIM1); blood-based markers, such as cardiac and
skeletal troponins I, natriuretic peptides, and microRNA-122 (miR122); and
markers of inflammation, such as lipocalin-2 (LCN2) and tissue inhibitor of
metalloproteinase-2, allows for the detection of major target organ toxicities,
such as kidney, heart, skeletal muscle, and liver, and general or systemic inflam-
mation [99-102]. Expectation of other target organ toxicities through literature-
based target evaluation, in silico modeling, or previous target experience may
require the addition of other biomarkers, or histopathology if no suitable blood-
based markers are available. For example, the use of pancreas-specific microRNAs
may be warranted for targets in the pancreas; however, the expectation of lesions in
the brain may warrant histopathology [103].

Changes in biomarker concentrations outside established reference intervals, or
outside the range established by a control group, should be considered evidence of
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possible organ injury. When used in a panel, cumulative changes in multiple bio-
markers can be regarded as strong evidence of compound-related toxicity. Similarly,
greater magnitude of change from control may indicate more severe injury. Taken
together, molecules that cause changes in multiple biomarkers, or changes of greater
magnitude, can be deprioritized compared to molecules that cause changes in fewer
markers, or changes of lesser magnitude. Preferably, molecules that cause no changes
in biomarkers or clinical chemistries in short duration screens (e.g., 2—4 days) can be
advanced into longer duration safety assessment studies.

5.7 Technologies

5.7.1 Multiplex and High-Content Approaches

The ability to measure multiple endpoints (high content) or multiple targets (mul-
tiplex) in the same sample has become a well-accepted and widely utilized
approach in cellular and molecular biology [40]. Multiple endpoint measurement
is best exemplified by the high-content imaging of cells, where using a set of
probes, each with unique tagged properties and each measuring different cellular
endpoints or components, can provide valuable information about what is occurring
in individual cells or populations of cells. As an example, using the high-content
imaging approach, one can measure viability (nuclei staining), cytoskeleton com-
plexity (actin staining), ROS content, and mitochondrial integrity all in the same
cell. This high-content imaging capability has become possible with the simulta-
neous development of new sensitive and specific fluorescent probes and tagging
approaches coupled with state-of-the-art multi-camera imaging systems
[104, 105]. Multiplexing of analytes (of the same type) has also become common-
place. Examples that come to mind are monitoring the transcriptome by gene arrays
(Affymetrix) and interrogating panels of cytokines by xMAP bead-based technol-
ogies (Luminex). Both of these multiplex approaches have been made possible by
the development of highly specific probes that can reliably detect specific analytes
(mRNAs or proteins) coupled with sensitive detection systems.

Live content imaging of cells, which can be defined as the acquisition, analysis,
and quantification of images from living cells that remain unperturbed by the
detection method allowing for repeated measurements over long periods of time
(days to weeks), is the latest advance in sophisticated high-content cell imaging
approaches [106]. The value of obtaining these kinetic readouts versus endpoint
readouts, particularly for early safety assessment, has not been clearly elucidated.
One case where there may be value for using this approach is in assessing the
impacts of compound treatment over time on neurite outgrowth in neuronal cultures
[107]. The application of both high-content and multiplex approaches in ESA
allows safety screening for more mechanistically based or multifactorial toxicities
where cell viability measurements alone are insufficient for characterizing com-
pound treatment impacts on cells.
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5.7.1.1 Gene Expression Approaches (Toxicogenomics)

A fundamental response of a cell to xenobiotic perturbation is often an alteration of
gene expression. Therefore, monitoring changes in the cell mRNA population is a
useful tool for assessing cellular injury in response to exposure to a xenobiotic
agent. Approaches for the analysis of these gene transcript changes can range from
global analysis of the entire mRNA population via microarrays or RNA sequencing,
DNA sequencing or interrogating individual transcripts using QPCR, or branched-
chain DNA assays.

Global transcript analysis using statistical-based analysis of gene expression
data has allowed for the development of gene signatures that can be diagnostic
for various toxicological endpoints [108]. In addition to using panels of genes as
biomarkers for direct screening, gene expression analysis, because of its high
informational content, can provide insight into mechanisms of compound mediated
toxicity, which can lead to the development of appropriate mechanism-based
screening assays [109]. Various gene enrichment statistical methods, coupled
with extensive gene ontology and knowledge-based systems, allow for the identi-
fication of causal signaling or metabolic pathways and regulatory networks that
may underlie the observed toxicity [110]. Coupled with the development of sophis-
ticated gene expression analysis tools has been the generation of very large com-
prehensive toxicogenomic databases that link gene expression data with extensive
phenotypic and pathology data for a large number of compound treatments in rats.
While these large toxicogenomic databases have enhanced the power of gene
expression analysis for predicting compound treatment-induced injury, coupling
these tools with techniques such as cellular knockouts (i.e., CRISPR/Cas9) and
ChIP-seq will allow for deeper understanding of the underlying mechanisms of
cellular injury [111].

5.7.1.2 In Vitro Measurement of Cellular Electrical Activity

Improvements in relevant cell models and in electrical activity/excitability mea-
surement technologies has provided drug safety scientists with the ability to more
easily evaluate xenobiotic treatment effects on populations of electrically active/
excitable cells (neurons, cardiac and skeletal myocytes). This enhanced ability has
had a significant impact on assessing compound-mediated neurotoxicity and
cardiotoxicity earlier in drug development [112]. The advent of iPSC-derived
human cardiac myocytes and neurons has promoted higher-throughput approaches
for in vitro evaluation of compound treatment impact on electrical activity in
neurons and cardiac myocytes. The advantage to using iPSC-derived human cells
is their consistent phenotype and low variability. Using these cells, coupled with
multi-well multielectrode array technologies (MEA), which sensitively measure
changes in cellular membrane potential, gives researchers the ability to screen large
numbers of compounds for undesired impacts on cellular electrical activity [113].
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5.7.1.3 Gene Editing

Throughout drug development, there is often a need to understand mechanism of
toxicity, such as determining if a given finding is on- or off-target. Recent advances
in molecular biology have allowed for the manipulation of genomic DNA, mRNA,
and even proteins to allow for the interrogation of these concepts. One of the most
basic experiments to understand mechanism of toxicity, in an in vitro system, is to
prevent protein translation of a suspected on- or off-target mRNA by small inter-
fering RNA (siRNA) or short hairpin RNA (shRNA). The resulting protein knock-
down allows for further experimentation, including many of the assays described in
previous sections, to understand if functional changes at the cellular level are due to
the protein of the interest [114]. While siRNA allows for rapid turnaround, shRNA
allows for the generation of stable knockdown cell lines, allowing for the ability to
propagate cells for multiple functional assays.

It is important to note that while both siRNA and shRNA provide results in a
very short time period, they are only knockdowns. Recent advances in molecular
biology have enabled scientists to generate in vitro knockout cell lines and even
perform homologous recombination to generate nonfunctional protein using
CRISPR/CAS9 [115]. CRISPR/CAS9 is composed of two main elements: 1) a
guide RNA (gRNA) which targets a specific sequence and 2) the Cas9 protein
which creates a double-stranded break on the DNA. The Cas9 protein requires a
conserved DNA sequence called the protospacer adjacent motif (PAM) just
upstream of the gRNA binding region. Many newer techniques utilize lentivirus
delivery systems to introduce both the gRNA and Cas9 with selectable markers
prior to clonal selection. If the goal is homologous recombination, several publi-
cations have shown it to be helpful to introduce an inducible version of Cas9
followed by the gRNA with a separate selectable marker in combination with a
nonhomologous end joining inhibitor [116, 117].

Following characterization and functional analysis of either knockdown or
knockout cells, it is often useful to develop a high-content assay using either a
promoter or 5 untranslated region of mRNA tagged to luciferase or GFP for a gene
of interest. This will allow for rapid compound screening after the known mecha-
nism of toxicity has been established. Additionally, proteins within a biological
pathway themselves can be tagged with fluorescent proteins. This is a useful
technique, especially in combination with CLICK chemistry, which enables the
scientist to image co-localization of the molecule itself to a specific organelle.

5.8 Organizational Framework for Early Safety
Assessment Activities

Small molecule drug discovery in general follows a process that is well established
across large pharma. Using this framework, our toxicology organization has built
tools and established cross-functional partnerships to embed early safety
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Fig. 5.10 Organizational framework based on the general pharmaceutical development pipeline

assessment into the general drug discovery process. As depicted in Fig. 5.10, the
elements discussed within this chapter establish an organizational framework
through which early safety assessment can be effectively implemented through
each step of the drug discovery process.

While implementation of screening tools and data generation are key elements
of the organizational framework, one often overlooked element is the application of
these data in a decision-making process. One approach that seems to be most
effective is weight of evidence. In this approach, the data for a given structural
series or scaffolds are combined to make a judgment-based decision. While this
process is more ambiguous, alternative considerations can be included such as
therapeutic indication. An alternative approach is a rule-based approach where
clear cutoffs are defined for individual assays with compounds being classified as
positive or negative. In this rule-based approach, compounds are clearly classified
leaving little room for ambiguity. This approach often suffers from high false-
positive rates to ensure false-negatives don’t slip through the screening process.
The application of biostatistics coupled with decision science principles can be used
to define the best approach given the data streams available to an organization.

5.9 Summary

Safety assessment in early drug discovery has made significant advancements over the
last 20 years through the application of in silico and in vitro models and the develop-
ment of numerous screening modalities such as high-content imaging and genomic
profiling along with the development and application of key target organ-based
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biomarker panels. More recently advances in next-generation sequencing have
enabled the application of RNA-Seq and ChIP-seq technologies along with the
advancement of gene editing tools that can be used to evaluate the impact of gene
silencing. With these advancements, molecules entering live-phase animal testing
have improved properties leading to a higher probability of technical success, thus
reducing animal consumption and overall dwell time before pivotal first in man safety
and efficacy testing.
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Chapter 6
Integrated Lead Optimization: Translational
Models as We Advance Toward the Clinic

Bianca M. Liederer, Xingrong Liu, Simon Wong, and Daniel R. Mudra

Abstract Drug discovery requires the convergence of molecular attributes includ-
ing magnitude and duration of exposure, tissue distribution, target engagement, and
pharmacological action. To this end, during lead optimization, discovery scientists
must leverage integrated data sets and translatable models to offer projections of
clinical performance and thereby make informed decisions on the merits of indi-
vidual molecules. This chapter presents methodologies to predict human clearance,
drug-drug interaction (DDI) risk, and penetration of the blood-brain barrier (BBB)
and exposure to the central nervous system during various stages of discovery with
emphasis on immediate preclinical stages. By focusing on current state and best
practices of the contemporary lead optimization scientist, we discuss the use of
human-derived model systems and multiparameter optimization to drive the dis-
covery of clinical candidates with favorable human ADME/PK properties in mind.
We present strategies to predict and mitigate DDIs at different stages of drug
discovery and development by evaluating CYP involvement in metabolism as
well as achieving an assessment of a DDI’s clinical significance. We introduce
concepts related to brain penetration from the perspective of small molecule drug
discovery and discuss how to effectively address BBB issues in lead optimization.
Emphasis is given to creation and application of preclinical data and methodologies
that provide a mechanistic understanding of drug disposition leading to translatable
models to predict clinical outcomes, assess developability risk, and help address
simple to complex “what-if” scenarios. Predictive models of clearance, CNS
penetration, and DDIs will be presented and discussed including comprehensive
case studies to highlight integrated approaches used to discover drug candidates
suitable for the safe exploration of clinical hypotheses.
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6.1 Introduction

The discovery of molecules suitable for testing pharmacological hypotheses in the
treatment of human disease requires a convergence of attributes including, but not
limited to, safety, magnitude, and duration of exposure, tissue distribution, and
target accessibility. Prior to 1988, unexpectedly poor human pharmacokinetics
(PK) was the leading cause of failure in clinical trials, accounting for nearly half
of all development program terminations [1]. A subsequent analysis revealed that
between 2000 and 2010, out of 157 oral compounds entering phase 1 clinical trials,
only 25 terminations (16%) were due to unexpected human PK [2] suggesting that
technical advances in predicting PK have manifested positive results in clinical
development. However, another report attributed up to 30% of clinical attrition
from 2005 to 2010 to an inability to achieve sufficient exposure at the therapeutic
target and, with that, an inability to achieve clinical efficacy [3] suggesting that
there are still improvements to be made in translating preclinical to clinical data.
Meanwhile, the cost of pharmaceutical research and development (R&D) continues
to increase even as fewer innovative drugs achieve FDA approval [4]. A series of
analyses reviewing the last 25 years of R&D (adjusted for inflation and presented in
2015 US dollars) spending and successful drug approvals demonstrated that the
average cost of bringing a single drug to market increased from $490 million in
1991 to $1.1 billion in 2001 to $3.6 billion in 2013 [5-7]. Together, the evolving
clinical attrition data and the economic statistics illustrate that the research engine
responsible for designing, discovering, and developing novel therapies for human
diseases and disorders is becoming increasingly strained over time and those
responsible for its caretaking must consider if the continued cost of failure will,
at some time, become unsustainable. Therefore, opportunities to improve the
predictive accuracy of clinical performance stand to produce benefits for both the
sustainability of research programs and the patients they serve.

In recent decades, laboratories from around the globe made important advances
in biopharmaceutics and oral absorption [8—10], drug metabolism enzymology [11],
tissue distribution [12—14], and the understanding of drug-disease, drug-food, and
drug-drug interactions [15-17], changing the way discovery scientists evaluate
molecules for potential clinical testing. The subsequent emergence of broadly
accessible, high-quality, specialized tools, such as human-derived systems for the
study of absorption or metabolism, and improved methodologies to better connect
preclinical data with clinical outcomes, for example, in vitro-in vivo extrapolation
(IVIVE) and physiologically based pharmacokinetic (PBPK) models, has begun to
significantly decrease the likelihood that poor human PK or insufficient unbound
drug exposure at the pharmacological target will cause the termination of clinical
development.
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An advanced appreciation has developed within the industry for the importance
of focusing on drug-like properties throughout the course of drug discovery. The
process of molecular design and drug discovery is most often initiated by a
subregion of “drug space” defined by one or more potent target “hits.” And while
the therapeutic target might often bias the structure-activity relationship (SAR) to a
particular region [18], it is the objective of a “hit expansion” phase to test the
regional boundaries of potency and in doing so identify, where possible, regions
that trend toward enhanced drug-like properties. In the past, it was not uncommon
for discovery teams to find themselves discovering molecules in a chemical space
rich with exquisitely potent molecules (e.g., ICsy values <1 nM) but which pro-
duced few, if any, with drug-like properties often as a result of the hydrophobic
character favored by target ligand-binding sites. Such focus on target binding tends
to produce “high-affinity ligands” that bear structural attributes (e.g., high logP)
that impart extensive tissue binding and/or enzymatic lability, resulting in an
insufficient exposure of circulating free drug [19]. The risk of an SAR producing
local minima rich with high-affinity ligands that present with few if any drug-like
properties, also known as a “high-affinity trap” [20], can be lessened by installation
of ADME resources early in the discovery process, in particular at the time of hit
and pre-lead as described by Joshi et al. in Chap. 3 and elsewhere [19, 21, 22]. By
the time a lead is declared, identification of key ADME issues endemic to an
otherwise promising chemical scaffold is critical to establishing vectors in a
chemical space that can result in the convergence of potency and drug-like or
human ADME properties. During optimization of the lead, it is imperative to turn
attention toward integrated data sets and translatable models that offer reliable
projections of clinical performance and thereby permit informed decisions on the
merits and value of individual discovery molecules. Based on these models and the
best available data, if the putative clinical candidate can be expected to perform in a
manner that allows for testing of clinical hypotheses (i.e., safety and efficacy) and
has an acceptable probability to be developed as a drug product, then a decision to
advance to clinical development is reasonable. Alternatively, if the data and models
predict untoward risk in the clinic (be it uncertainty in the projection of human PK
or the likelihood of drug-drug interactions), then a data-driven decision can be
made to return to unexplored chemical options until such time as a suitable
molecule can be found.

This chapter presents the current state and best practices of the contemporary
lead optimization scientist using integrated preclinical data sets, human-derived
model systems, and multiparameter optimization to drive the discovery of clinical
candidates with human ADME/PK properties in mind. Emphasis is given to
creation and application of preclinical data and methodologies that provide a
mechanistic understanding of drug disposition leading to translatable models to
predict clinical outcomes, assess developability risk, and help address simple to
complex “what-if” scenarios. Predictive models of clearance, central nervous
system (CNS) penetration, and drug-drug interactions will be presented and
discussed including comprehensive case studies to highlight integrated approaches
used to discover clinical drug candidates suitable for the safe exploration of clinical
hypotheses.
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Note:

This chapter focuses on the principles and application of a variety of prediction
methodologies including advantages, disadvantages, and applications in the con-
temporary industrial drug discovery setting. It will not, as a general rule, address
technical aspects of assay conduct or variability in underlying laboratory mea-
surements (e.g., in vitro or in vivo models and/or associated bioanalytical
methods). It is acknowledged that technical differences and variability in model
systems can contribute significantly to apparent statistical outliers and/or differ-
ences between laboratories. This is not intended to be an exhaustive delineation of
techniques nor a comprehensive comparison of all available methodologies. For
such information the reader is guided to the numerous references included herein.
Rather, we present a collection of methods demonstrated to present applicability
with integrated in vitro and in vivo data sets with high translatability and predic-
tion accuracy.

6.2 Integrated Approaches to Assess and Predict
Human Clearance

Clearance (CL) is the volume of plasma or blood from which drug is completely
and irreversibly removed per unit time. Expressed in units of volume/time, it is a
simple relationship between the amount of drug in the body (Xo) and exposure as
shown in 6.1

Xo

CL=—<———
AUCy_

(6.1)

where AUC_,, is the area under the concentration-time curve from the time of
dosing to infinity. This expression illustrates that clearance of drug from plasma or
blood is the sole determinant of the dose required to elicit a particular exposure
(AUC = Do/CL). Therefore, if AUC correlates with an efficacious outcome, drug
clearance (assuming intravenous administration; more on oral administration will
be presented later in this section) determines the dose at which efficacy can be
achieved. For this reason, understanding the molecular properties associated with
clearance pathways and the prediction of clearance in humans is often of central
importance in a lead optimization (LO) drug discovery program. Clearance pre-
dictions are typically conducted by one of two distinct approaches. Allometric
scaling is an empirically derived, regressive relationship with which clearance for
a “standard” human (e.g., 70 kg body weight) can be extrapolated or interpolated
from in vivo pharmacokinetics observed in preclinical species [23-28]. Alterna-
tively, physiologically based or mechanistic scaling methods are reductionist
approaches where drug properties (e.g., permeability, intrinsic clearance in micro-
somes or hepatocytes, and plasma protein binding) are applied to mathematical
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models of physiological systems (e.g., systemic and/or organ blood flow models) to
predict pharmacokinetic outcomes [24, 29-36]

6.2.1 Allometric Scaling

Following seminal work by Thompson and later by Snell, both of whom reported on
relationships between body size and anatomical structure, Sir Julian Huxley dem-
onstrated in 1932 that a logarithmic relationship exists between organ weight (Y)
and total body weight (X) across species. Termed the “allometric equation,” this
formula assumes that a given parameter (¥') scales predictably with body weight (X)
across an unlimited range of species (i.e., simple allometry).

logY = blogX + loga (6.2a)
Y = aX’ (6.2b)

As shown in Egs. 6.2a and 6.2b, when organ weights from different species are
plotted on 2D—-log-log axes, a is the y-intercept (at x = 1) and b is the slope of the
line which ranges from 0.70 to 0.99 for a variety of organs including the principle
clearance organs, the kidney, lung, and liver. In addition to organ weights, allome-
tric relationships have been shown to exist for a variety of physiological parameters
including tidal volume (b = 1.0), creatinine and urea clearance (b = 0.69 and 0.72,
respectively), basal oxygen consumption (b = 0.73), and liver blood flow (b = 0.89)
[24, 28, 37-40]. Simple allometry provides reasonably accurate predictions, within
a twofold error, of human clearance for a number of drugs including felbamate,
ketamine, meloxicam, midazolam, nicardipine, propranolol, sildenafil, sumatriptan,
and troglitazone. However, numerous cases exist in which human clearance cannot
be explained by the allometric equation, and simple allometry produces only 50%
of predictions within twofold error (56% within threefold error) [27]. Notwithstand-
ing the statistical uncertainties caused by extrapolation beyond the regression
curve, the term “vertical allometry” has been used to describe cases in which
predicted clearance markedly exceeds the observed data (i.e., human clearance is
overpredicted), typically with a prediction error of tenfold or greater [25, 28,
41]. Examples of drugs that exhibit vertical allometry include antipyrine, diazepam,
reboxetine, susalimod, tamsulosin, valproate, and warfarin with predicted human
clearances for these drugs reported between 10 and 53 times higher than observed
[27, 42]. In order to anticipate cases of overprediction, several structural property
thresholds can be used to alert investigators to compounds that are likely subject to
vertical allometry. Such property alerts include (1) logP > 2 and a ratio of
rat/human plasma protein binding >5, (2) extensive binding to plasma a-1-acid-
glycoprotein (AAG), and (3) large differences between unbound and total clearance
across species [26, 28, 41]. And while such guiding principles can be predictive of
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vertical allometry risk in some compound data sets, to date there are no universally
trusted rules.

Cases of vertical allometry can be seemingly incongruent with the knowledge
that mammalian liver weight, liver blood flow, and total energy consumption (kcal/
day) scale to body weight with the simple allometric exponents (b) of 0.85, 0.89,
and 0.75, respectively [23]. Boxenbaum [23] tested a hypothesis that corrections for
binding and liver blood flow would improve prediction accuracy by allometrically
scaling calculated hepatic intrinsic clearance (CL;,) [43] instead of plasma clear-
ance according to Eq. 6.3

(0 x CLy)

Clinn =7 —~—~
[p(Qn — CLa)

(6.3)

where fi, is the blood binding, Oy, is liver blood flow, and CL,, is hepatic clearance.
CL,,; was calculated for a series of five drugs (antipyrine, bromazepam, clonaze-
pam, chlordiazepoxide, and phenytoin) cleared by the liver and exhibiting varying
degrees of allometric verticality, from 11 different species spanning more than
4-log units of body weight with measured f;, for each and Q;, equated across species
at 1.5 L/min/kg liver weight [23, 37]. Despite this correction for mechanism,
allometrically scaled human CL;,, values were still 4.2—11.4 times higher than the
observed human CL;,,, [23, 44], leading some to hypothesize that humans possess a
lesser intrinsic metabolic capacity compared with other species “lower” in the
evolutionary continuum. Put simply, such hypotheses state that smaller mammalian
species metabolize more rapidly per unit body mass compared with larger species
[23, 44].

6.2.1.1 Neoteny, Dedrick Plots, and the Rule of Exponents (ROE)

The hypothesis that species-specific physiological growth rates contribute to verti-
cal allometry was tested by analysis of plasma concentration-time profiles across
species. Elimination rates for two renally cleared drugs, ceftizoxime and metho-
trexate, the total clearances for both of which are well predicted by simple allom-
etry [28], reveal an equating principle across otherwise disparate physiologies.
Ceftizoxime, an iminomethoxy aminothiazolyl cephalosporin, exhibits markedly
different plasma elimination half-lives (¢;,) across species, ranging from 15 min in
rodents to 50 min in dogs and monkeys to nearly 120 min in humans. Mordenti [24]
demonstrated that rather than expressing ceftizoxime #;,, in minutes but instead by
the number of heartbeats, all species studied eliminated the drug at approximately
the same rate: 50% of the dose in 7253 heartbeats. Similarly, when dose-normalized
methotrexate plasma (or serum) concentrations in mice, rats, dogs, monkeys, and
humans are plotted together on a semilogarithmic plot, concentration-time profiles
are scattered across multiple log units and seemingly not predictive of one another.
As observed with ceftizoxime, elimination was fastest in rodents, moderate in dogs
and monkeys, and slowest in human subjects. In both cases, an empirically
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Fig. 6.1 Semilogarithmic plots of methotrexate plasma and/or serum (a) concentration versus
time in mouse (---), rat (—), monkey (—-—), dog (—--—), and human (——) and (b) concentration
versus time after normalization of the x-axis as time/BW°?> and the y-axis as dose/BW
(Reproduced from [24])

determined biological time constant (i.e., a time frame specific to each species and
distinct from chronological time) scales with body weight (BW) with an exponent
(b) of 0.25, and when the time axis is expressed as time/BW%% | known as a Dedrick
plot, the concentration-time curves from different species are near perfectly super-
imposable [24, 45, 46].

The superimposable nature of methotrexate concentration-time curves through
Dedrick plot analyses (Fig. 6.1) is consistent with the hypothesis that smaller
species possess a quicker physiological “tempo” when compared with larger spe-
cies. According to this hypothesis, in order to relate a chronologically measured
pharmacokinetic event across species, different biological time scales must be
equated by extending the time scales for smaller species and compressing those
for larger species. The varying biological time scales are thought to be a manifes-
tation of neoteny, differences in the relative rates at which physiological events
occur between species, differences that do not scale with body weight. For example,
it has long been understood that humans undergo sexual maturation at a slower rate
than nonhuman species, including laboratory animals. Similarly, humans exhibit
relatively prolonged brain and cranial growth well beyond the developmental time
at which other mammalian species cease to add brain weight (BrW). Simple
allometric coefficients derived from a diverse set of mammals can accurately
predict human total body surface area, liver weight, liver blood flow, and cardiac
cycle. However, simple allometry also predicts a human brain mass of 275 g
(compared to a typical observation of 1200—1400 g) and a human maximum life
span potential (MLP) of only 27 years [45, 47—49].
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The Rule of Exponents (ROE) > Ifb is between 0.55 and 0.70:
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» Ifb>1.0: scale using (CL x BrW)

b=0.55 0.7 1.0 N . . .
» If b <0.55: no allometric approach is

expected to provide reliable scaling

Fig. 6.2 The rule of exponents (ROE) is the systematic application of an MLP or BrW correction
based on the empirically derived allometric exponent (b)

Neoteny is theorized to be one cause of vertical allometric relationships
observed with human drug clearance [45]. In fact, when the antipyrine and benzo-
diazepine data sets were plotted as unbound CL;,,, versus MLP, human CL;,, is well
predicted by a log-linear regression, meaning that unbound intrinsic metabolic drug
clearance decreases as body weight and life span increase [45]. Boxenbaum went
on to suggest that all species have a similar metabolically active mass (the
“ergosome”) and expend that metabolic activity (per kg of body weight) at rates
inversely proportional to their MLP. In short, small animals metabolize at relatively
high rates over short lives, whereas larger animals have slower metabolic rates over
longer life spans [23, 24, 44, 45] As such, it stands to reason that parameters
influenced by neoteny, such as BrW or MLP, could be used to adjust simple
allometric regression and thereby account for cases of vertical allometry.

The rule of exponents (ROE) is a rule-based methodology to determine when
BrW or MLP correction should be applied to a simple allometric regression or when
to apply no correction at all [50]. The ROE states that upon inspection of simple
allometric regression, the value of the exponent (b) determines the correction to be
applied according to the boundary conditions depicted in Fig. 6.2.

In a test set of 37 compounds with simple allometric exponents (b) greater than
0.7, for which 49% were poorly predicted (> twofold error), application of the ROE
improved prediction error (to within twofold) for 72% of the poorly predicted
compounds (13 of the 18) including diazepam, cefpiramide, quinidine, norfloxacin,
propafenone, thiopentone, and warfarin. Notably, a more consistent improvement
in error was observed for compounds with » > 1.0 for which a BrW correction was
applied. However, ROE worsened the accuracy, changing prediction from within a
twofold error to more than twofold error, for 42% of the compounds (8 of 19)
including midazolam, troglitazone, and thiopentone. In theory, an MLP correction
(when b > 0.7 and <1.0) will produce a predicted human clearance (hCL) of 1/3-2/
3 the value derived from simple allometry, whereas a BrW correction (when
b > 1.0) will result in a predicted hCL of 1/5-1/2 that which would otherwise be
obtained from simple allometry [50]. In practice, the prediction change brought
about by MLP or BrW correction is a function of both the number and types of
species selected, which may be an underlying cause for the reported errors
and varying degrees of success realized with ROE-based clearance predictions
[26, 51, 52].
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Regardless of the correction method applied, allometric-based scaling of drug
PK parameters tends to elicit criticism based on its inherent retrospective nature and
the knowledge that the enzymatic and physiological systems underlying the empir-
ical data are multifactorial, and therefore, by nature, predictions based on such data
necessitate a higher dimension of mathematical complexity. It has been challenged
that any physiologically relevant allometric approach ought to encompass the
following features [49]:

1. Empirically derived quantities that permit superimposability of pharmacokinetic
data across species (e.g., Dedrick plots).

2. Defined thermodynamic constants and mechanical terms (i.e., well-understood
biology for all relevant species).

3. A stable set of parameterized equations that accurately model the data across the
relevant geometry describing either intrinsically linear or nonlinear events (i.e.,
a group of models that covers all relevant species, kinetics, and chemical
matter).

Coincidental with the emergence of in vitro tools of drug metabolism, arguments
such as this supported many efforts in drug discovery programs to integrate
mechanistic knowledge of drug or compound clearance and disposition into allo-
metric scaling methods.

6.2.1.2 Semi-Mechanistic Allometry

Inclusion of mechanistic-based corrections to allometric regression based on known
or measurable species differences has become an increasingly common approach in
attempting to improve prediction accuracy of simple allometry. With a set of
marketed drugs for which both preclinical and clinical clearance values were
available, human clearance was more accurately predicted (21 drugs with a
predicted/observed ratio of 0.34-2.2) when scaling unbound clearance
(CL, = CL/fupjasma Where fup,sma is the fraction unbound in plasma) as opposed
to total clearance. A greater improvement in prediction accuracy was reported for
drugs with known species differences in protein binding (e.g., tamsulosin,
remoxipride, cefotetan, and RO25-6833), whereas little improvement was observed
for drugs with lesser differences in binding between species. Of the 27 drugs
investigated, five (propranolol, antipyrine, diazepam, valproate, and midazolam)
exhibited vertical allometry with predicted/actual ratios >9.0. However, without
exception, these poorly predicted drugs exhibited allometric exponents (b) > 0.85,
and when a BrW correction was applied, CL, predictions for these were in line with
the other 22 drugs [42]. Predictions were not improved for highly plasma-bound
drugs (fu < 0.1) with this method; however, applying the ratio of rat-to-human
plasma protein binding (Rfu) demonstrated statistically significant benefit. The
result was introduction of the fraction unbound correction intercept method
(FCIM) in which a is the y-intercept from simple allometry and the exponent (b)
was fixed at 0.77 as seen in Eq. 6.4.
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a 0.77
CL = 33.35 x (Rf> (6.4)

u

With FCIM, total clearance scaled across 61 drugs produced significantly
improved accuracy (78% absolute percentage error, APE) compared with both
ROE and simple allometry (185% and 323% APE, respectively) [26]. A systematic
comparison of 18 allometric methods to predict human clearance for 19 develop-
ment molecules showed FCIM to be the most accurate with more than twofold
prediction error in 72% of cases, opposed to simple allometry which tends to
produce predictions within twofold error only 50% of the time [25, 26]. It is
noteworthy that the FCIM modification is based on the ratio of plasma protein
binding in rat and human, irrespective of which or how many species are included in
the regression. And as accepted as FCIM has become in some drug discovery
programs, this fundamental ambivalence to species selection underscores, despite
appearance, the ignorance of mechanism associated with this methodology.

Testing the hypotheses that allometric prediction accuracy could be improved by
including species-specific metabolism, scientists at Hoffmann-La Roche demon-
strated that inclusion of in vitro hepatocyte clearance improved the prediction
accuracy by regression of observed plasma clearance values corrected by in vitro
data according to Eq. 6.5.

CLhuman(hepatocytes) _

CLapimal X aBW" (6.5)

CLanimal(hepatocytes)

This correction resulted in a marked improvement in prediction accuracy (only
20-40% deviation from observed) along with a decrease in overprediction bias for
ten extensively metabolized compounds (antipyrine, bosentan, caffeine, mibefradil,
midazolam, mofarotene, RO24-6173, propranolol, theophylline, and tolcapone)
when integrating at least three preclinical species [53]. While principally of benefit
to compounds undergoing hepatic metabolism as the primary route of clearance,
this method demonstrates a means to integrate mechanistic in vitro data into the
allometric prediction and offers a rational correction in light of the aforementioned
hypothesis that humans exhibit less metabolic capacity (per kg bodyweight) than
other species included in the allometric regression [45, 53].

The long-standing and widely accepted method of allometry allows investigators
to generate predictions of human plasma clearance based on preclinical in vivo
data. Regardless of the correction method employed, allometric-based predictions
fundamentally rely on the assumption that drug clearance scales in a predicable
manner with body weight, regardless of the species used in preclinical studies.
Correction methods that attempt to standardize for neoteny such as Dedrick plots or
ROE adjust biological time scales across species and may be useful across a variety
of clearance mechanisms (e.g., metabolism, renal excretion, etc.). Other biochem-
ical- and physiological-based corrections to allometric inputs, including the use of
drug- and species-dependent terms such as plasma protein binding or hepatocyte
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CL;,, also offer serviceable correction methods. And while to date there is no
reported methodology known to reduce allometric prediction error universally
across all compounds, such approaches provide discovery scientists with a number
of integrated methods to combine the in vivo relevance of allometry with
mechanism-based knowledge of species differences in drug clearance.

6.2.2 Mechanistic Scaling

It is well accepted that all methods to predict human clearance bear uncertainty and
the utility of any given method is harnessed best when the uncertainty can be
minimized and properly managed to provide meaningful guidance, be it with
decisions to advance or terminate discovery compounds or in crafting designs for
future clinical development trials. Incidences of vertical allometry along with
contemporary knowledge of species differences in metabolism, enzyme and trans-
porter expression, and substrate affinities present challenges to the reliability of a
simple log-linear correlation between body weight and total clearance [11, 24, 49,
54-58]. Furthermore, scaling according to body weight can provide only an esti-
mated value of predicted human clearance with no intrinsic knowledge of the
underlying pathway(s) of drug elimination. A more highly valued prediction
would offer a projection of the operative drug clearance pathways in healthy
human subjects or patients, thereby enabling the forecast of potential drug-drug
interactions and expected PK in special populations (e.g., healthy subjects com-
pared with renally impaired patients compared with hepatically impaired patients).
To this end, a mechanistic approach to a clearance projection will independently
scale, from preclinical data, each elimination pathway for a summation of total
clearance (CL,y,) according to Eq. 6.6.

CLtotal - CLh + CLr + CLother (66)

When a circulating compound is in rapid and free equilibrium with the liver,
meaning the unbound concentration in plasma is equal to unbound concentration in
the liver intracellular compartment (Kpuu = 1), the hepatic clearance (CL;,) can be
simply thought of as metabolic clearance plus the direct excretion of unchanged
parent drug in bile (CL perap + CLy;e). However, when free drug concentration in the
liver is limited by either passive permeability or active uptake into the liver, this
requires a more integrated approach to determining CL,.

6.2.2.1 Clearance Classification Systems

The use of physical-chemical properties to guide the prediction of operative human
clearance pathways is a commonly accepted approach in many discovery programs.
Discovery scientists at Pfizer report the routine application of compound property
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categorization to understand and predict human clearance pathways. Based on the
Biopharmaceutical Drug Disposition Classification System [59], this approach
hypothesizes that for highly permeable compounds, unbound drug in plasma
crosses the hepatocyte sinusoidal membrane establishing a free drug equilibrium
such that the unbound plasma concentration will be equal to the unbound liver
concentration (Kpuuy;,e, = 1). The result is that clearance from circulating plasma is
determined principally by the intrinsic rate of metabolism (CLjy mer). By contrast,
the unbound liver concentration for low permeability compounds is limited by
hepatic uptake, and therefore, while these compounds may undergo metabolism,
clearance from plasma for these compounds is determined by the intrinsic uptake
(influx) into the liver (PSj,, a summation of active and passive transport)
[60]. Additional granularity to this method was offered by introduction of the
Extended Clearance Classification System (ECCS), a categorical approach shown
to be 92% accurate (in a 307 compound test set) at predicting a single predominant
clearance pathway accounting for >70% of total clearance. Using structural prop-
erties including ionization state, molecular weight (MW), and passive membrane
permeability, compounds were categorized according to the grid shown in
Fig. 6.3a.

According to the ECCS, the plasma clearance of highly permeable
(Pappmpck > 5 X 10~° cm/s), basic, and neutral molecules (Class 2) is principally
metabolic, whereas the plasma clearance of low permeability basic and neutral
molecules (Class 4) is principally determined by renal elimination. In the case of
acids and zwitterions (Classes 1 and 3), plasma clearance for low-MW compounds
(<400 g/mol) with high permeability (Class 1A) is metabolic, whereas for low-MW
compounds with low permeability (Class 3A), the free drug does not reach the
intracellular compartment to any substantive degree, and, in turn, clearance from
plasma is dictated largely by renal elimination. The clearance of high-MW
(>400 g/mol) acids and zwitterions is dictated by hepatic uptake or a mixture of
hepatic uptake and renal elimination, Classes 1B and 3B, respectively [61]. While
principally designed to be qualitative in nature, such classification of a discovery
molecule can guide the collection of laboratory data necessary to drive a quantita-
tive prediction of human clearance.

In a similar but further quantitative approach, Novartis scientists presented the
Extended Clearance Concept Classification System (ECCCS, Fig. 6.3b) that pro-
duced >90% accuracy in the prediction of human clearance (within threefold error)
by first determining hepatic clearance (CL;) by the extended clearance model
(ECM) and subsequently incorporating the predicted CL;, into the well-stirred
liver model as shown in Eq. 6.7a

PSinf X (CLint, sec + CLinl,met)

CLiy =
' (Pseff + CLint, sec + CLim, met)

(6.7a)

(Gillette, 1971; Rowland et al. 1973; [34, 62]) to produce a predicted total
human clearance according to Eq. 6.7b
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Fig. 6.3 A comparison of two quadrant-based classification systems. (a) The Extended Clearance
Classification System (ECCS) framework illustrates the predominant mechanism that determines
systemic drug clearance (Reproduced from [61]). (b) The Extended Clearance Concept Classifi-
cation System (ECCCS) illustrates the rate-determining hepatic clearance mechanisms as they
relate to the extended clearance model (ECM) based on expressed property conditions
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o Qh X be X CLin[

CL, = <h X b X Mint
= 0, + fup X CLin

(6.7b)

where Oy, represents hepatic blood flow; fu,, is the free fraction of drug in the blood
(fupiasma/blood/plasma); Cliy see and CLiy me are the in vitro secretory (biliary) and
metabolic intrinsic clearances, respectively; and PS;,; and PS¢ are the hepatocyte
influx and efflux permeabilities, respectively, determined from suspended and
sandwich-cultured hepatocyte systems [29, 35, 54]. Consistent with the qualitative
classification systems, the ECCS demonstrates that for highly permeable molecules
with no active uptake in the liver (Kpuuy;yer < 1), plasma clearance is determined by
CLintmet (ECCCS Classes 1 and 2). However, plasma clearance of compounds
exhibiting active hepatic uptake (ECCCS Classes 3 and 4) is determined by a mix of
hepatobiliary and renal elimination best described by the ECM [29, 33, 35, 54]. As a
discovery team approaches a decision of whether or not to advance a particular
molecule into clinical development, scaling methods that predict the operative
clearance pathways enable risk assessment for a variety of clinical development
scenarios. To afford such opportunity, a thorough understanding of the likely
operative clearance pathways along with a preclinical (in vitro and in vivo) data
package to describe the clearance as quantitatively as possible should be amassed to
produce a mechanistic understanding of total clearance.

6.2.2.2 Structural/Chemical Rationale

Underlying such classification and calculable prediction methodologies is the
physical-chemical and structural attributes of a molecule that determine the
in vivo disposition. Lead optimization design cycles, in the focused pursuit of
potency and selectivity, often drive a lead chemical series toward hydrophobicity
(increased high logP/D) and high molecular weights [20, 63, 64], which in turn bias
compounds toward extensive hepatic metabolism, high nonspecific binding, low
solubility, and other nondrug-like properties as described previously [19, 65-67]. In
many cases, seemingly minor and even one-atom changes in structure can elicit
significant changes in hepatic metabolism. Indinavir, a potent HIV protease inhib-
itor, also potently inhibits cytochrome P450 (CYP) due to a type II binding
interaction between the unhindered pyridyl-N and the CYP heme, which in turn
limits the systemic clearance of indinavir through saturation of metabolism. Merck
scientists demonstrated that structural modification of the pyridyl ring by addition
of gem-dimethyl substituents, direct methyl pyridyl substitution, or even isomeri-
zation of the pyridyl nitrogen resulted in an up to 33-fold increase in the CYP-ICs,
(i.e., less inhibition) and a 12-fold increase in metabolic clearance. Results were
concordant with changes in the P450-binding spectra indicating that the structural
modifications directly altered the manner in which the compounds coordinate with
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Fig. 6.4 (a) The structure-property relationship between indinavir and its structural analogues and
their P450 binding spectra, metabolic clearance, and HIV protease potency (ICsp). (b) The
relationship between metabolic clearance and CYP3A4 inhibition (ICso) upon co-incubation of
indinavir analogues and human liver microsomes (Reproduced from [68])

the P450 heme, changing both drug-drug interaction (DDI) potential and clearance
of the parent drug (Fig. 6.4) [68].

Similarly, scientists at Bristol-Myers-Squibb reported the discovery of a
pyrazole amidine series as potent inhibitors of coagulation Factor Xa due in part
to the compound’s strongly basic benzamidine moiety (pKa 10.7). The lead series
demonstrated 1-10 nM potency against the target but limited potential for clinical
development due to low oral bioavailability (<5%) and short #,, in preclinical
species. In the lead optimization phase, it was recognized that, despite the exquisite
potency that could be achieved, the benzamidine moiety was a significant determi-
nant of low volumes of distributions contributing to short elimination plasma ¢,
[69]. Consequently, medicinal chemistry focused on replacing the benzamidine
with less basic substituents. This strategy increased passive permeability, reduced
hepatic intrinsic clearance (80% decrease), and modulated the distribution, while
achieving adequate potency to drive an in vivo pharmacological effect through
increased oral exposure (>260-fold), relative to the benzamidine. The resulting
benzylamine-containing clinical development compound was orally bioavailable in
humans, with an absence of food effects, a plasma ¢, of 27-35 h, and measurable
increases in prothrombin time [19, 70, 71].

These examples of directed and apparently small structural modifications
resulted in marked changes in in vivo clearance and illustrate the power of under-
standing mechanism in particular in the LO setting as programs traverse chemical
diversity in search of clinically developable molecules.

Hepatic CL;,, and total plasma clearance can be significantly modulated by small
structural diversity within a series, but so too can the contributing elimination
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pathways be substantially altered by changes in structural properties. Most drugs
and discovery compounds with a logP > 4 exhibit high liver microsomal CL;,, that
decreases with lower logP as described previously by Desai et al. in Chap. 4 and
elsewhere [65]. Therefore, during the course of LO, medicinal chemistry design
cycles’ intent on increasing microsomal stability, often by lowering logP/D, tends
to incorporate polar or ionizable groups thereby increasing polar surface area (PSA)
or charge potential (lowering acidic pKa or increasing basic pKa). These types of
structural properties increase the tendency of unbound hepatic CL;,, to underpredict
in vivo clearance due to increased contribution of non-CYP metabolic pathways
and excretion pathways [65, 72, 73] as illustrated by comparison of atenolol and
propranolol. Used in the treatment of cardiac arrhythmias, angina, and hyperten-
sion, these P-adrenergic receptor antagonists exhibit similar human plasma #,,, but
vastly different clearance pathways (Table 6.1; [19]).

Propranolol exhibits no measurable biliary or renal excretion and rather is nearly
completely metabolized to such an extent that its observed clearance from plasma
provides a reliable in vivo estimate of total liver blood flow. Conversely atenolol,
which bears a terminal amide as opposed to propranolol’s naphthalene, undergoes
no measurable metabolism and is eliminated almost entirely by the kidneys,
necessitating clinical dose reduction in patients with renal insufficiency [62, 74,
75]. These differences in clearance pathways may be somewhat surprising based on
the apparent structural similarities between atenolol and propranolol and the lack of
any significant differences in MW or pKa. However, inspection of data from a
larger set of structurally related P-antagonists reveals that within this series the
balance of metabolism and renal excretion of unchanged drug is a function of
differences in logD; 4, carbon SP, hybridization, and PSA with hydrophobicity
driving compounds toward metabolism and increased polarity biasing compounds
toward renal excretion (Fig. 6.5) [19, 60, 67].

Similar inspection of a set of 3-hydroxy-methylglututaryl coenzyme A
(HMG-CoA) reductase inhibitors illustrates how structure and physical-chemical
properties within a chemical series can influence pathways of clearance. Atorva-
statin (Lipitor™), fluvastatin (Lescol™), pitavastatin (Livalo™), and rosuvastatin
(Crestor™) belong to the family of synthetic statins, each with a C;-aliphatic
carboxylic acid linked to an unhindered F-phenyl by a 5- or 6-membered
N-containing mono- or bicyclic aromatic ring system. Common to the clearance
of all four is the role of OATP1B1 and other active hepatic uptake transport
mechanisms, accounting for between 75 and 99% of hepatic uptake. Where these
drugs differentiate is in their fates of clearance beyond that point (Fig. 6.6).
Atorvastatin and fluvastatin (PS;,; of 198 and 544 mL/min/kg, respectively) are
almost exclusively eliminated through metabolism by hepatic CYP enzymes albeit
by differential predominant isoforms, CYP3A4 (atorvastatin) and CYP2C9
(fluvastatin). However, atorvastatin AUC is significantly increased by inhibition
of OATPI1B1 (six- to eightfold increase when coadministered with rifampicin or
cyclosporine), whereas fluvastatin AUC is far less sensitive to OATP inhibitors
indicating atorvastatin’s clearance is dictated by hepatic uptake (PS;,;) and
fluvastatin’s clearance is determined by CL;y me. Conversely, pitavastatin
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(PS;,r = 623 mL/min/kg), which differs from fluvastatin only by the introduction of
a cyclic-propyl-pyridine ring, undergoes minor metabolism and instead is excreted
principally unchanged (78%) in the bile, mediated by MRP2 secretion, and exhibits
three- to fivefold increases in plasma AUC when co-dosed with OATP inhibitors.
Only about 15% of pitavastatin dose is excreted unchanged in the urine, and notably
due to its high passive permeability, pitavastatin is thought to undergo
enterohepatic circulation (biliary excretion followed by reabsorption) giving it the
highest oral bioavailability (51%) of the statins described here. Finally, rosuvastatin
(PSinf = 52 mL/min/kg), the most hydrophilic of the four, undergoes a minor degree
of metabolism (principally by CYP2C9) and is 90% excreted unchanged in feces
(62%) and urine (28%) [76-79].

The chemical diversity illustrated by the series of molecules above is consistent
with the range of structural and property diversity commonly explored in a medic-
inal chemistry LO initiative [65]. By extension, the diversity of clearance pathways
observed within these series, from nearly complete metabolism to nearly complete
excretion of unchanged drug, is representative of the diversity in clearance path-
ways that could be encountered in an active discovery lead series. Even within a
space of highly metabolized compounds (e.g., atorvastatin and fluvastatin), it is not
uncommon to observe significant shifts in the relative contribution, or fraction
metabolized (fm), from different drug-metabolizing enzymes (e.g., CYP2C9
vs. CYP3A4) as well as the processes that determine clearance from plasma
(PSint vs. CLjn¢.met)- As polarity and hydrophilicity are introduced in a chemical
series, metabolism is likely to reduce in contribution to total clearance, and rather
biliary and urinary pathways begin to take over with varied contribution from
secretory transporters (e.g., MRP2 and OATS3). It is those compounds cleared by
hepatic metabolism (in particular CYP metabolism) for which most industrial drug
discovery programs are well positioned to optimize clearance through microsomal
and hepatocyte screening assays, and as such many DMPK programs routinely
invoke scaled in vitro CL;y me In projections of human clearance [11, 31, 80,
81]. The extent to which discovery programs can also include both qualitative
and quantitative knowledge of uptake and excretion mechanisms can lead to
increased prediction accuracy, informed chemistry design cycles, and an overall
improvement in the understanding of compounds advanced into clinical
development.

6.2.3 Mechanistic Prediction of Human Clearance

Categorical approaches such as the ECCS and ECCCS illustrate means by which a
mechanistic projection method can capture contribution from a variety of operative
clearance mechanisms and elimination pathways and, in doing so, predict each
molecule based on its unique properties. A strategy to determine the utility of such
an approach with any given discovery molecule is to quantitatively assess the
accuracy of a mechanistic prediction in preclinical species where with greater the
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Fig. 6.7 A schematic diagram depicting compound evaluation according to integrated classifica-
tion systems (ECCS/ECCCS) and data collection methods to guide and support the mechanistic
scaled clearance pathways leading to the summation of predicted total human clearance

prediction accuracy, the greater the confidence in subsequent human predictions for
that molecule. Provided the summation of scaled pathways (e.g., CL,met + CL,
bile + CL,renal) amounts to 70% or more of total clearance observed in preclinical
species, then the mechanistic approach is considered validated for that compound,
and in turn the summation of scaled pathways can be used with increased confi-
dence for the prediction of human clearance. Compound evaluation for projecting
human clearance, both qualitatively and quantitatively, can be approached in stages
as illustrated in Fig. 6.7.

6.2.3.1 Compound Evaluation: Physical-Chemical and Property Space

A systematic evaluation of physical-chemical and ADME properties can guide LO
teams in both qualitative and quantitative prediction of human clearance and
operative clearance pathways. Independently, the ECCS and ECCCS present meth-
odologies that provide such benefits, and while they do not precisely superimpose in
property endpoints or in categorical cutoffs, the two systems are more alike than
they are distinct, and a reasonable amalgamation by integrating the approaches can
be derived [35, 59-61]. Congruent with both systems (Fig. 6.3a, b), basic and
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neutral compounds as well as low-MW (<400 g/mol) acids and zwitterions that
exhibit high passive permeability and no evidence of hepatic uptake (e.g., in vivo
[liver concentration ppeund/plasma concentrationnpoundl, liver Kputipepaiic < 1) will
have a plasma clearance principally determined by metabolic clearance (i.e.,
CL =~ CL,,.). The clearance of acidic and zwitterionic compounds that exhibit
low permeability (passive and active) will be largely determined by the summation
of hepatic uptake clearance mechanisms (PS;,; from the ECM) and renal elimina-
tion where low-MW compounds will be biased toward renal elimination. Finally,
for bases, neutrals, and small MW acids and zwitterions that exhibit low passive
permeability with a large portion of uptake from active processes (e.g., Kpuu,liver
> > 1), clearance will be dictated by the totality of hepatobiliary clearance (best
determined by the ECM). In all cases, an understanding of the metabolic pathways
of a given molecule is essential to the construction of the mechanistic prediction.

6.2.3.2 Data Collection

Experimental objectives toward qualitative assessment of metabolic pathways are
of two varieties: (1) metabolite profiling and (2) reaction phenotyping. In metabo-
lite profiling it is important to identify the operative metabolic processes both
in vivo across preclinical species and in vitro (hepatocytes) in all species including
human. While not intended to be comprehensive, Fig. 6.7 captures some of the
commonly observed metabolic routes including oxidative, conjugative, and hydro-
lytic. Once the operative pathways are identified (in vitro and in vivo, including
profiling metabolites from excreta; bile and urine), it is important to determine the
enzymes or enzyme systems involved in the observed metabolic pathways. Drug
oxidation pathways are commonly mediated by CYP enzymes located in micro-
somal fractions; they are most abundant in the liver and intestine and catalyze
reactions in an NADPH-dependent manner oxidizing drug substrates by incorpo-
rating elemental oxygen from O,. Commonly observed reactions catalyzed by
CYPs include the hydroxylation of electron-rich carbon (aliphatic or aromatic C),
double-bond epoxidation, and heteroatom dealkylation [11]. The cytosolic enzymes
aldehyde oxidase (AO) and xanthine oxidase (XO) highly expressed in the liver,
lung, and kidney are known to contribute to the oxidation of electron-poor carbons,
such as aldehydes and aromatic carbons within heteroatom cyclic- and bicyclic ring
systems [58]. In order to identify a relevant in vitro system for the study of a given
molecule, it can be very useful to delineate between CYP- and AO/XO-mediated
oxidation by exploring microsomal versus cytosolic function, the ability of the
reaction to incorporate O'® from heavy water (a hallmark of AO/XO-catalyzed
oxidation) or the strict absence of the metabolic pathway in dogs [58, 82].
Non-oxidative pathways are most commonly identified by profiling metabolites in
hepatocyte incubations. Pathways catalyzed by UDP-glucuronosyltransferase
(UGTs), sulfotranferases (SULTSs), N-acetyl transferases (NATSs), or hydrolytic
reactions by carboxylesterases (CESs) and hydrolases can be assessed for their
possible contribution to a compound biotransformation by recombinant-expressed



186 B.M. Liederer et al.

systems or, in the case of hydrolases, blood or plasma stability. Measured hepato-
cyte CLiymet can be deconvoluted through co-incubation of selective inhibitors
against several of the enzymes mentioned. In such experiments, inhibition of
a particular pathway by a selective enzyme will indicate the fraction of total
CL;, attributed to that pathway (fm) according to the equation: fm = (CL;, —
CLintsinhibitor)/CLin.. Caution must be exercised however with respect to inhibitor
selectivity and the concentrations used. For detailed descriptions of experimental
conditions, selection of hepatocyte and subcellular fractions, selectivity of inhibi-
tors and substrates, and information on additional enzymes and enzyme system
readers are directed to the many detailed references on the matter [11, 15, 81-90].

For cases in which CL,, is the primary determinant of plasma clearance
(CL = CL,,e), human clearance can be determined by scaled intrinsic clearance
as described in Fig. 6.7. In the other cases, either CL ~ CLpuake + CL, or
CL =~ CL; + CL,, the projection of human clearance from in vitro data can be
made from the ECM [35, 54, 60, 61]. Establishing the intrinsic metabolic lability of
the molecule is fundamental regardless of the scaling method employed (e.g., well-
stirred or extended clearance model; see Fig. 6.7). Compounds for which the
in vitro human metabolite profile and inhibitor/recombinant studies are consistent
with only oxidative, CYP-mediated metabolism, CL;,, is determined from the
in vitro rate (k) of substrate loss as shown in Eq. 6.8a [81, 83].

g liver

) .1 -1\ __ a1 e -
CLin (ml min" kg™) = & joss (min ") x kg body weight

mL incubation =~ 45 mg protein
X X

. - (6.8a)
mg protein g liver

This equation holds true provided the reaction is conducted under linear condi-
tions, most likely met when substrate concentrations ([S]) are well below the Km
such that (0.5 x [S]/K, < < 0.693. Alternatively, in cases where one or more
non-CYP metabolism pathways contribute a substantial degree (>25%) to total
metabolism, metabolism should be measured in human hepatocytes and CL;,
determined according to Eq. 6.8b.

g liver

' .1 -1\ __ o —1 e -
CLiy (ml min™" kg™") = & joss (min )ng body weight

mL incubation y 120 x 10° cells
cells g liver

(6.8b)

For details on recommended assay conditions, readers are directed to detailed
descriptions on the topic [32, 80, 84, 85, 89]. In application of the ECM, the
CLint.met 1s determined from the in vitro model best suited to capture the relevant
metabolic pathways (e.g., microsomes, hepatocytes); PS; s and PS¢ (active and
passive uptake terms) are measured in hepatocyte suspensions, whereas CLip sec
data are generated from sandwich-cultured hepatocytes as described elsewhere
[29, 35, 54].
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In the absence of the data to determine CL; by the ECM, microsomal or
hepatocyte CL;, scaled to CL,, by the well-stirred model can be added to
predicted human biliary clearance (hCL,) to achieve an estimate of total
hepatobiliary elimination. However, compounds with high permeability are likely
to be extensively reabsorbed across the intestinal epithelia, thereby reducing the
overall contribution of CL, to the total clearance. Therefore, predicted CLy, should
be estimated as follows where CLyjie.qog 18 the biliary clearance of parent drug
measured in a bile duct-cannulated dog and fa is the fraction (of an oral dose)
absorbed across the intestinal epithelia.

hCLy, = CLbjte,d0g X (1 — fa) (6.9)

The (1 — fa) term accounts for the non-reabsorbed fraction of biliary secreted
drug, thereby attenuating the predicted CLy, to capture only the portion irreversibly
eliminated by this pathway. In all cases (whether determining CL;, by ECM or by
summation of CLj, e + CLy), the predicted renal elimination of unchanged drug
should be accounted for by the prediction of human renal clearance (hCL,) for
which a recommended approach is to scale from dog or monkey renal elimination
including a correction for species protein binding.

f uman
hCLr = CLrenal,dog or monkey X (Uh7> (610)

fudog or monkey

Using in vivo observed renal clearance in intact animals with correction differ-
ences in species plasma protein binding, human renal clearance was predicted
within twofold from dog or monkey renal clearance, for a set of 36 chemically
diverse drugs (7> = 0.84) exhibiting either active secretion or net reabsorption. This
scaling approach produced less error and underprediction bias compared with both
simple allometry and Mahmood’s corrected allometric scaling [91].

Considerations for Oral Administration

Most commonly, although not exclusively, contemporary industrial discovery pro-
grams designing and synthesizing small molecule entities are seeking orally bio-
available therapeutic agents. Therefore, the bioavailability (F) of the dose across
the intestinal absorption barrier and the first pass of the liver is of important
consideration for both the oral dose to be administered (oral clearance = CL/F)
and also the enzymatic extraction in both the liver and the gut as it pertains to victim
DDIs. Oral bioavailability (F,oral) is defined in Eq. 6.11

F,oral = F, x Fy X F), (6.11)

where F, is the fraction of dose absorbed from the intestinal lumen, F, is the
fraction of dose escaping the intestine into the mesentery unmetabolized by gut
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enzymes, and Fy, is the fraction of dose available in the portal vein that reaches the
systemic circulation unmetabolized by liver enzymes [32, 36]. The fraction
absorbed is most commonly limited by solubility, dissolution, and/or permeability
properties of the molecule and dose formulation. Compound absorption should be
calculated as described in the previous chapter and the resulting F, determination
referenced for a mechanistic calculation of F as discussed here. Alternatively, the
fraction of dose absorbed can be estimated from rodent or dog F,oral according to
Eq. 6.1.

Fy=F/F, x F, (6.12)

However, this approach assumes that the discovery lot solubility and dissolution
parameters will estimate those observed in the clinic as well as assuming that the F,
in rodents or dogs will be approximately 1.0, a commonly invalid assumption with
monkeys in which CYP3A is highly expressed in the intestinal epithelia
[92]. Extraction by intestinal metabolism requires careful consideration and has
been studied extensively with reliable methods currently employed in many dis-
covery programs. A study of 14 drugs in the perfused rat intestine alongside
48 drugs with rodent and human oral bioavailability demonstrated a high correla-
tion (> = 0.8) for intestinal absorption (F,) but no correlation (* = 0.29) observed
for oral bioavailability, suggesting species differences in metabolic extraction
(Fy x Fy) were largely responsible for lack of predictability from rodent to
human. In fact, intestinal CYP3A and UGT alone were reported to be present at
12- to 193-fold differences between species [93]. Human F, can be projected based
on experimental data according to Eq. 6.13

F _ qut
g O qur + fitgyy X CLint g

(6.13)

where O, is a determination of gut permeability taking into account the blood flow
surrounding the enterocytes, fug, is the fraction unbound in the intestinal lumen
(often assumed to equal 1.0), and CL;y is the unbound intrinsic clearance in the
gut normalized for human CYP3A4 expression [94]. This calculation is based on
human in vitro model systems, whereas to harness preclinical in vivo data, the
following alternate method of calculating F, based on in vivo monkey data has been
proposed:

F o monker
Fg,human = gomonkey (614)

CLipt, tiim
Fg,monkey + (1 - Fg,monkey) X CLint, vt

In Eq. 6.14, CLiy arv and CL;, mrv are the in vitro intrinsic metabolic clearance
measured in human intestinal or monkey intestinal microsomes, respectively
[92]. Given the 2.3-fold higher expression of CYP3A in monkey and human
intestines (in contrast to rodent and dog which bear little to no intestinal
CYP3A), this method utilizes preclinical in vivo data while accounting for the
ratio of metabolic differences (utilizing intestinal microsomal preparations)
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between the model species (monkey) and the prediction species (human). Finally,
following a projection of CL, based on experimentation and calculations described
in Fig. 6.7 (either CL,met + CL,bile or CLh calculated according to the ECM), F, is
calculated according to Eq. 6.15.

Fr=1—(CLn/Qp) (6.15)

The resulting prediction of F,oral should be factored into oral clearance calcu-
lations and oral dose projections accordingly in addition to being considered in
static and dynamic models for projection of potential DDI risk in the clinic (see
Sect. 6.3).

6.2.3.3 Constructing a Mechanistic Profile

Upon conclusion of a mechanistic prediction of human clearance, there is oppor-
tunity to assess the fractional clearance pathways as they relate to clinical disposi-
tion. The following is a hypothetical but representative example of the knowledge
that should be expected for a compound interrogated as described for such a
projected human clearance. In this example, in vivo data for compound A obtained
from dog renal and biliary excretion studies and scaled as described above indicate
that 35% of the total projected human clearance is expected to be through the
excretion of unchanged parent drug (f.x. = 0.35), whereas 65% is expected to be
through metabolism ( f;,.; = 0.65). Of the fraction excreted, the majority (71%) is
expected in the urine with less in the bile. The majority (85%) of total metabolism
in hepatocytes was inhibited by co-incubation with the irreversible and nonselective
CYP inhibitor 1-aminobenzotriazole (ABT) and is, therefore, attributed to CYP
metabolism with 15% attributed to non-CYP pathway(s). Follow-up recombinant
work demonstrated that 90% of the CYP activity is due to CYP3A4 with a small
portion (10%) due to CYP2C9. Therefore, the fm,CYP3A4 is equal to 0.55
(0.9 x 0.65) and the fm,CYP2C9 is 0.06 (0.1 x 0.65).

Given this profile (Fig. 6.8), both the discovery team and the clinical develop-
ment scientists want to understand (as quantitatively as possible) the implications of
renal or hepatic impairment on the clearance of compound A. It would be valuable
to forecast the effect of a concomitantly administered CYP3A4 inhibitor or inducer
on compound A disposition including clearance and half-life. Given such under-
standing of a discovery molecule, a project team may determine that the forecasted
risk is appropriate given the indication (e.g., in the case of an unmet medical need)
and may choose to progress the molecule into clinical development, perhaps with a
modified clinical plan as the risk profile dictates, for example, exclusion of subjects
with moderate or severe hepatic impairment given that 75% of the clearance of
compound A is expected to rely upon the liver (fi,o; = 0.65 + fepye = 0.10). Alter-
natively, a program team may determine the forecasted risk is more than can
be reasonably tolerated (e.g., in the case of a projected high victim DDI risk for
a compound with a narrow therapeutic index) and may elect to revisit the
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Predicted Human Clearance Pathways: Cpd A
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Fig. 6.8 An illustration of a fractional clearance profile on example discovery molecule A derived
from a mechanistic prediction of human clearance

structure-activity relationship in an attempt to discover compounds bearing less risk
in this particular area. Regardless of the ultimate decision, the value of this
prediction method is manifested by availing the team of the forecasted clinical
risk and permitting appropriate clinical progression both for product development
and patient safety-benefit profile.

6.2.4 Summary

In the LO discovery setting, the prediction of human clearance for a molecule or a
lead series of molecules is perhaps the single most important druggability property
available to the discovery scientist. Projected human clearance is essential to
anticipating drug performance in the clinic including the compound’s exposure
(AUCQ), its rate of elimination (#,,,), and by extension the dose required to elicit a
pharmacological response (efficacy). Without a promising or reliable projection of
clinical performance, discovery teams are left only to continue their design-
synthesis cycles until an optimally projected compound can be identified. As for
methods of clearance projection, simple allometry is a historically relied-upon
methodology for many reasons, and in some cases useful prediction accuracy can
be demonstrated over large sets of molecules making its frequency of use not
without justification. Mathematical corrections and modifications based on exper-
imental preclinical data can improve allometric uncertainty and prediction error in
some instances, but there are no universal rules for a correction method that works
for all compounds. Data suggest that for compounds known to be cleared primarily
by hepatic metabolism, correction of allometry by the ratio of animal-to-human
in vitro intrinsic clearance may provide the most promising of the rational, semi-
mechanistic approaches. Given no information on such mechanism, the FCIM
approach provides perhaps the best available correction over all compounds in
terms of reducing uncertainty and risk of overprediction bias (i.e., vertical allom-
etry). On the other hand, mechanistic approaches of clearance prediction provide
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researchers with methodologies that can (1) in some cases provide increased
accuracy in clearance predictions, (2) be validated against preclinical in vivo
data, (3) be informed by data obtained from human in vitro model systems, and
(4) provide a rational prediction of the operative elimination pathways, the rate-
determining mechanisms, and the relative contribution to the total clearance of the
drug. With time, the underlying methods, including in vitro techniques and means
of calculating parameters, will undoubtedly continue to evolve and improve, but
with the steps outlined above researchers can achieve an increase in both prediction
accuracy and utility leading to improved decisions in discovery compound selection
as well as clinical trial design for patient safety and efficacy.

6.3 Integrated Approaches to Assess Drug-Drug
Interactions

Pharmacokinetic drug-drug interactions (DDIs) are one of the most commonly
encountered adverse drug reactions in the clinic and typically occur when one
drug (the perpetrator) alters the metabolism of a coadministered drug (the victim).
DDIs can manifest as an increase in the victim drug’s exposure (and a decrease in
clearance) due to reversible or irreversible enzyme inhibition, or a decrease in the
victim drug’s exposure (and an increase in clearance) due to induction of the
enzymes responsible for its elimination. DDIs can also occur when a compound
alters its own metabolism (autoinhibition/autoinduction), causing changes in phar-
macokinetics following repeat administration. The consequences of these changes
in drug exposure are dictated by the therapeutic window, and serious adverse
reactions can occur when exposure is pushed beyond the efficacious range. Con-
versely, reduction in exposure due to enzyme induction can lead to a reduction or
complete loss in efficacy. Considering the potentially fatal consequences, it is
unsurprising that several high-profile drugs have been withdrawn from the market
due to adverse DDIs.

Since cytochrome P450 (CYP) enzymes are highly susceptible to inhibition and
are responsible for most known oxidative reactions, evaluating the propensity of a
compound to inhibit or induce CYP enzymes is essential in drug discovery and is
ultimately a regulatory requirement. This section focuses on appropriate strategies
to predict and mitigate DDIs at different stages of drug discovery and development
by evaluating CYP involvement in metabolism as well as achieving an assessment
of a DDI’s clinical significance.

6.3.1 Induction

Metabolic enzyme induction is a process in which increased protein synthesis
yields elevated enzyme activity and a subsequent increase in metabolic activity.
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Consequently, the perpetrator will increase the clearance and decrease the exposure
of the victim drug, which can lead to a complete loss in pharmacological effect.
Alternatively, a compound can induce its own metabolism, resulting in lower than
expected exposure after repeat administration. Since the exposure is decreased in
both of these situations, induction generally has a lower potential for adverse
reactions compared to inhibition, and the primary concern in this case is a loss in
efficacy of the victim drug. It is important to note, however, that an unexpected loss
in pharmacological activity can lead to serious adverse effects depending on the
desired therapeutic outcome (or lack thereof). For example, the potent CYP3A4
inducer rifampin can lead to serious adverse effects such as opioid withdrawal
symptoms when administered with methadone [95] or organ rejection when admin-
istered with cyclosporine [96]. One case in which CYP induction could potentially
lead to toxicity is when the formation of reactive metabolites increases, as with the
alcohol-mediated induction of CYP2E1, which has been associated with elevated
hepatotoxicity due to acetaminophen overdose [97]. These examples underscore the
importance of identifying the induction potential of a new chemical entity prior to
clinical nomination, and, consequently, pharmaceutical companies have incorpo-
rated the evaluation of induction potential into standard discovery screening and
lead optimization programs [98—100].

Briefly, the traditional approach for assessment of CYP induction potential
determines the changes in enzyme activity and mRNA expression of the key CYP
isoforms (CYP1A2, CYP2B6, and CYP3A4/5) after treatment of primary cultured
hepatocytes for 48 or 72 h [101]. Several in vitro systems are available for
evaluation of CYP induction [99], and primary cultured human hepatocytes remain
the preferred “gold standard” for the risk assessment of in vivo DDIs. Recently,
high-throughput 96-well techniques have been developed that quantitate CYP
activity, mRNA expression, protein levels, and cytotoxicity from a single well,
all of which is well suited to lead optimization [102].

The two key endpoints determined in a traditional in vivo induction assay are
ECs (an indicator of potency, which is the concentration yielding half-maximal
induction) and E,.x (the maximum fold increase in enzyme activity or mRNA
level). A high degree of variability exists in reported E,.x and ECs, values for
known inducers (such as rifampin) and has been attributed to differences in
hepatocyte donors, cell culture conditions, and other experimental variables such
as buffer type and the use of an overlay. Consequently, several investigators have
recommended calibrating the induction data for new chemical entities using a
positive control, which has yielded improved DDI prediction [103, 104].

Considerations on the risk assessment for induction using steady-state and
dynamic modeling are included in Sect. 4. The remainder of this section will
focus on the mitigation of and risk assessment for adverse DDIs arising from
inhibition of CYP isozymes.
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6.3.2 Reversible (Direct) Inhibition

The vast majority of clinical drugs are metabolized by the CYP enzymes, with
CYP3A4, CYP2C9, CYP2C19, and CYP2D6 responsible for approximately 80% of
known oxidative reactions [105, 106]. Due in part to their broad substrate specific-
ity, CYP enzymes are highly susceptible to inhibition, which can be classified into
two general categories: reversible (direct) and irreversible (time dependent). Direct,
reversible inhibition is characterized by rapid association and dissociation of
inhibitor and enzyme, thus preventing the binding of a substrate to the active site.
Classical competitive inhibition, in which the inhibitor interferes with the binding
substrate (and thus increases the apparent K,,, without affecting V,,,.x), is one of the
most common types of reversible inhibition. In contrast, irreversible inhibition is
characterized by either covalent bonding of the inhibitor to the enzyme or the
formation of a quasi-irreversible metabolite-intermediate complex (MIC). This
type of inhibition will be discussed in Sect. 1.3.

Since metabolism of the inhibitor is not a prerequisite for direct inhibition,
reactive species formation is also not required for this type of inhibition. Conse-
quently, in contrast to mechanism-based inactivators, there are no clear “structural
alerts” for direct inhibitors. In addition, since this type of inhibition is reversible,
the in vivo effects of direct inhibition persist only while the inhibitor is present.
Overall, there have been fewer clinically relevant DDIs due to reversible inhibition
than due to irreversible (time-dependent) inhibition; however, potent reversible
inhibition is still an important liability, and current methodologies to evaluate direct
inhibition and predict the likelihood of an in vivo DDI are summarized in Sects. 2.3
and 2.4.

6.3.3 Time-Dependent Inhibition

Time-dependent inhibition (TDI) refers to an apparent decrease in enzyme activity
with time, caused by either the formation of inhibitory metabolites or the mecha-
nism-based inactivation (MBI) of CYP enzymes. Experimentally, MBI is charac-
terized by both time- and cofactor (NADPH)-dependent decreases in enzyme
activity and can be broadly divided into two categories: (1) quasi-irreversible
inhibition leading to metabolite-intermediate complex (MIC) formation and (2) irre-
versible inhibition due to covalent modification of a CYP heme or apoprotein.
Common to both forms of MIB is the formation of a reactive intermediate that
either coordinates tightly to the heme (in the case of MIC formation) or covalently
binds to the enzyme (in the case of irreversible inhibition). Trends on the reactivity
(and inhibitory activity) of specific functional groups known to cause MBI have
emerged, and the chemical moieties associated with MBI have been the subject of
several excellent and comprehensive reviews [107-109]. A brief summary is
included below.
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6.3.3.1 Quasi-Irreversible Inactivation and MIC Formation

The term quasi-irreversible inactivation originated from the observation that
in vitro dialysis (typically overnight) can restore microsomal CYP activity follow-
ing CYP inhibition due to MIC formation [110]. In addition to dialysis, quasi-
irreversible inhibition can be reversed in vitro by potassium ferricyanide
[111, 112]. Physiologically, however, this process is functionally irreversible
in vivo and, therefore, indistinguishable from other forms of MBI (i.e., covalent
modification of CYP) with respect to clinical DDIs [113]. In vitro, MIC formation
can be readily identified by observing a shift in the characteristic absorption
spectrum to 455 nm from 427 nm, which is due to alterations of the UV absorbance
of the prosthetic heme [114].

Structure alerts for MIC formation include primary amines (and secondary/
tertiary amines susceptible to N-alkylation to a primary amine) and
methylenedioxyphenyl derivatives. Primary amines are converted to a highly reac-
tive nitroso intermediate (via a hydroxylamine metabolite) capable of coordination
with the prosthetic heme [115], whereas methylenedioxphenyl compounds are
converted to reactive carbene intermediates [116].

Compounds susceptible to MIC formation comprise a wide range of chemical
matter and subsequently represent the largest number of clinically relevant DDIs
compared to the other mechanisms leading to MBI. This class of compounds
includes macrolide antibiotics (e.g., troleandomycin [113] and erythromycin
[117]) and calcium channel blockers (e.g., diltiazem [111] and verapamil [110]).

6.3.3.2 Covalent Modification of the Heme Prosthetic Group

Irreversible CYP activation, which cannot be reversed following in vitro dialysis,
can occur via two distinct mechanisms that are differentiated by the site of covalent
modification: the prosthetic heme group or the CYP apoprotein. Although the
nitrogen atoms of the heme prosthetic group are relatively weakly nucleophilic,
generation of the reactive species in the CYP active site in close proximity to the
pyrrole ring can facilitate direct N-alkylation and subsequent CYP inactivation
[109]. Common functional groups associated with heme alkylation include alkenes,
alkynes, hydrazines, cyclopropylamines, and terminal olefins. Clinically relevant
DDiIs arising from heme alkylation are relatively rare; however, several examples
exist of covalent heme modification leading to N-alkylprotoporphyrin IX forma-
tion, which can cause experimental porphyria in animals (for a review, see Marks
[118]). Elucidation of the orientation of the heme within the CYP active site was
advanced through the use of this class of compounds and their ability to selectively
N-alkylate pyrrole nitrogen atoms [119]. In addition, 1-aminobenzotriazole (ABT)
elicits covalent heme modification [120], and even though this modification has not
been associated with clinical DDISs, it is an important tool that has been extensively
used in early ADME discovery programs to understand the contribution of
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CYP-mediated oxidative metabolism to total clearance [121]. The nonselective
CYP inactivation mediated by ABT is postulated to proceed through the formation
of a highly reactive benzyne intermediate capable of binding across two of the
pyrrole nitrogen atoms of the prosthetic heme.

6.3.3.3 Covalent Modification of the CYP Apoprotein

In addition to the heme, the CYP apoprotein is an attractive target for irreversible,
covalent modification by highly reactive species generated within the CYP active
site. This process renders the enzyme functionally inactive or in some cases acts as
a signal for proteolysis. Identification of the specific amino acid residues suscepti-
ble to adduct formation is now possible due to advances in liquid chromatography/
mass spectrometry [122]. For example, the novel CXCR2 antagonist AMG487 was
shown to form a highly reactive species (M4) that was responsible for MBI and
covalently bound to Cys239 of CYP3A4 [123]. Due to the inherent reactivity of
intermediate species, characterization of the putative reactive intermediate
(s) involved in MBI is often achieved in vitro through conjugation with nucleo-
philes (e.g., reduced glutathione (GSH), semicarbazide, or cyanide) and more
detailed structural assignment via NMR.

Common functional groups associated with covalent CYP apoprotein modifica-
tion include furans, phenols, dihaloalkanes, and thiophenes [108]. As observed with
compounds that elicit MIC formation, irreversible inhibitors that show apoprotein
binding span a wide range of therapeutic areas, including the non-tricyclic antide-
pressant nefazodone [124], kinase inhibitors (e.g., imatinib) [125], and
tetrahydrothienopyridines (e.g., clopidogrel) [126].

6.3.4 Strategies for Mitigating DDI-Related Liabilities
6.3.4.1 In Silico Methods

Since common functional groups are known to be associated with various forms of
MBI, attempts have been made to use in silico techniques to predict the likelihood
of CYP inactivation. The interactions at the CYP active site are complex, however,
and the fate of an inactivating compound is determined by the balance between
reactive species formation and metabolism not amenable to MBI. Structure-based
computational models have been developed that successfully predicted MBI, but
these are largely retrospective in nature and rely on an established mechanistic data
set [127].
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6.3.4.2 Reducing Lipophilicity and Introducing Polarity

A general association has been observed between increased lipophilicity and
decreased CYP inhibition [128], and several investigators have demonstrated
success with a strategy of altering lipophilicity to mitigate MBI. Westaway et al.
[129] increased polarity in a series of related compounds to reduce CYP inhibition
liabilities, leading to identification of the first small molecule agonist of the motlin
receptor. Zhao et al. [130] also demonstrated that CYP MBI was attenuated for a
series of GLYT-1 inhibitors through reduction of clogP by 0.6 log units. Similarly,
a net reduction of cLogP from 5.5 to 3.5 decreased the CYP3A4 inhibition liability
for a series of antigen 4 receptor antagonists [131]. While these examples demon-
strate a general trend of improved CYP inhibition profiles with decreased
lipophilicity, it should be noted that these structural modifications may also
decrease desirable properties, such as target potency or other ADME properties.
Consequently, additional, more targeted strategies have been employed to attenuate
CYP inhibition.

6.3.4.3 Examples of Successful Medicinal Chemistry Strategies
to Address TDI

Attenuation of TDI can be accomplished through replacement of (or blocking
access to) the structural motif responsible for reactive intermediate formation
with a metabolically unreactive functional group. To support this strategy, the
putative reactive intermediate is first typically identified as a GSH conjugate via
NMR, leading to synthesis of structural analogs that have various degrees of TDI.
An example of this approach was highlighted by Johnson et al. [132], who reported
successful modification of the indole core of chemoattractant receptor inhibitors to
remove TDI and DDI liability. The mechanistic studies that enabled this successful
medicinal chemistry effort were originally reported by Wong et al. [133], who
showed that the lead candidate (AMGO09, a 2-methylindole containing compound)
elicited TDI through covalent modification. A GSH conjugate was unambiguously
determined via NMR to be GSH adducted to the C-3 position of the 2-methylindole
moiety, and replacement of this motif with an oxindole group prevented reactive
intermediate formation and abolished TDI.

6.3.4.4 Analysis of Concomitant Medications (Conmeds)

In addition to mitigating the potential of clinical DDIs by structural design, clinical
co-medication analysis for target patient populations can help put a presumed DDI
risk into clinical context and diminish it. For example, a drug that inhibits or
induces a certain CYP enzyme is unlikely to cause any clinically significant DDIs
(severe adverse effects) if co-medications for the target patient population are
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primarily cleared by different CYP enzymes. The significance of a clinical DDI also
depends on the magnitude of the interaction. For instance, for a CYP3A4 inhibitor,
the DDI risk with extensively CYP3A4-metabolized co-medications is likely much
higher compared to other, less extensively CYP3A4-metabolized co-medications
unless the co-medications have a wide therapeutic index and/or the associated
clinical effects are manageable or not severe. Potential DDI risks might also be
avoidable if administration of an alternative co-medication is an option, allowing
for a bypass of metabolic pathways dominated by CYPs. For accurate assessment of
the clinical liability and informed decision-making about compound progression,
early cross-functional collaboration between biologists, DMPK scientists, and
clinical scientists is valuable.

Bloomer et al. published an excellent review of how an understanding of
co-medications in target patient populations can help prioritize or deprioritize
DDI assessments and potentially discharge a DDI risk [134]. Common marketed
co-medications are shown along with their varying prescription rates for various
therapeutic targets, demonstrating that the prescription rate of a co-medication
might be zero for a certain target but significant for others. Additionally, drug
interactions of the most clinically relevant enzymes (and transporters) and the
mechanistically corresponding number of co-medications (>300 evaluated) are
shown. The number of co-medications is categorized into strong, moderate, or
weak clinical perpetrators and into severe, moderate, or limited clinical risk for
victims, all based on the “worst-case” scenario. As expected, CYP3A4 metabolizes
the majority of the evaluated co-medications, many of which are strong perpetrators
or victims with a moderate to severe clinical risk and, therefore, have clinically
relevant interactions. The authors emphasize that the determination of clinical
significance of DDI risks also requires a consideration of whether a victim
co-medication has a narrow therapeutic index, in other words if a small change in
exposure can lead to severe clinical outcomes, as well as the frequency of
co-medication use. If the co-medication does have a narrow therapeutic index,
further DDI evaluation is needed, and the question becomes one of overall risk-
benefit. Is the DDI manageable by dose adjustment, drug monitoring, or toxicity
monitoring, is it avoidable by alternative treatment options, or does
co-administration need to be excluded? On the other hand, if the victim does not
have a narrow therapeutic index and the frequency of co-medication use is low (and
no severe toxicities are expected), co-administration is possible and the DDI risk
would be very low.

6.3.5 In Vitro Assessment of DDI Potential

Routine evaluation of the potential for CYP inhibition (both reversible and time
dependent) has become firmly entrenched in ADME screening paradigms com-
monly used in the pharmaceutical industry. As discussed previously, a key require-
ment for a successful medicinal chemistry campaign to reduce DDI liability is a
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rapid, high-throughput assay that supports an iterative approach to attenuating CYP
inhibition. Experimentally complex studies designed to determine kinetic parame-
ters (K;, Ki, or kinae) are, therefore, not suitable in a screening paradigm, since
longer incubations involving multiple time points are required to capture rates of
inactivation at multiple concentrations, all of which is not amenable to a higher-
throughput format. To support the assessment of CYP inhibition in a drug discovery
setting, several abbreviated assays have emerged and are summarized below.

6.3.5.1 Higher-Throughput Evaluation of CYP Inhibition
Single-Point IC50

Early identification of the potential for direct inhibition has become an integral
component of drug discovery screening paradigms. Gao et al. [135] reported an
excellent correlation ( = 0.99) between the percent inhibition at a single test article
concentration (3 pM) and in a traditional ten concentration ICso curve. Abbreviat-
ing an ICsq experiment that requires multiple test compound concentrations to a
single evaluation at 3 pM yields significant time and resource gains in a screening
paradigm. While insufficient for detailed risk assessment, screening data from a
single-point assay allows for rapid compound binning or rank ordering, which
facilitates identification of structure-activity relationships (SARs) and efficient
de-prioritization of potent inhibitors.

IC50 Shift

One of the most commonly implemented methodologies for early assessment of
time-dependent CYP inhibition is the ICs, shift assay [136, 137] in which a left
“shift” in the I1Cs (i.e., an increase in potency) is presumed to be caused by TDI. In
this experiment, two ICs, values are compared: (1) a standard ICs, value
representing “direct” inhibition, with a 30 min preincubation in the absence of
NADPH, and (2) a left “shifted” ICsy (in the case of TDI), with a 30 min
preincubation in the presence of NADPH. The fold-shift is calculated as the ratio
between the direct and shifted ICsq values, and an arbitrary threshold of a fold-shift
greater than 1.5 has been proposed to flag compounds as positive for TDI. In
general, the I1Cs shift assay correlates well with TDI potential expressed as kjpaci/
Ky [136, 138, 139]. It is important to note that although the k;,../K; parameter is
frequently used as an indicator of TDI potential as it combines both the potency and
inactivation rate, it has no physiological relevance as a predictor of the magnitude
of an in vivo DDIL.

A key experimental consideration for the ICs, shift experiment is the use of a
dilution, which has been shown to increase the assay sensitivity [140]. Parkinson
et al. [141] summarized the pros and cons of the dilution approach, in addition to



6 Integrated Lead Optimization: Translational Models as We Advance Toward. . . 199

highlighting the key experimental factors to consider when designing an ICs shift
experiment.

Several variations of the ICs( shift assay have been proposed. The area under the
curve (AUC) shift approach [142] addresses the issues associated with weak
inhibitors when an ICs, value (shifted and/or direct) cannot be calculated due to
incomplete inhibition at higher concentrations. The AUC shift approach eliminates
the need for a measurable ICso value by comparing the AUC values from the
percent activity remaining curve and the concentration curve (with and without
NADPH in the preincubation). A threshold value of a percent shift greater than 15%
was proposed to classify a compound as positive for TDI.

Another variation of the ICs, shift assay was proposed by Li et al. [143] in
which, in addition to the two ICsq curves (with and without NADPH) generated
using the traditional method, two additional ICsq values are determined in fresh
microsomal incubations containing extracts from the first two incubations (with any
metabolite formed during the initial reaction). The key readout from this novel
format is that a left shift in ICs, from the incubations containing extracts is due to
inhibition from metabolites and provides additional insight on the mechanism of
inactivation.

Single Concentration Activity Loss Assays (with Dilution)

In contrast to the multiple concentrations required for the ICsy shift assay, an
abbreviated approach that evaluates TDI at single concentration has been
implemented in several drug discovery programs [139, 140, 144]. In one version
of this methodology (referred to as “single k.,s”), a single concentration (typically
set to 10 pM) is preincubated with microsomes and cofactor (NADPH) and then
diluted (typically 1/20) into a selective marker substrate assay to measure residual
activity. A plot of percent activity remaining versus time facilitates calculation of
the inactivation rate (kgps), and this value correlates with kjn../Ky (R2 = 0.74)
[139]. Further evaluation of the single ks approach revealed that, using a database
of 400 reference compounds, a kops value of 0.02 min~' (or 45% inhibition after
30 min) is a good indicator of TDI potential. Wong et al. [145] demonstrated that
the single ks assay can be abbreviated to evaluate percent inhibition at a single
concentration at a single time point (30 min), eliminating the need for multiple time
points required for determining the inactivation rate. Using this method, good
correlations were observed between the percent inhibition at 10 or 25 pM and
kinact/K1. Single concentration TDI assays have also been developed using a cocktail
approach [146], in which the potential inhibition of multiple CYP isoforms is
determined using multiple substrates in a single pooled incubation. A variation on
the single concentration assay approach is the “2 + 2” method originally proposed
by Zientek et al. [147], in which two concentrations of an inactivator are evaluated
at two time points (0 and 30 min). Regardless of the format, abbreviated methods to
identify TDI potential have become important tools in drug discovery and lead



200 B.M. Liederer et al.

optimization, and careful weighing of the resource savings compared to other
methods (such as the ICs shift assay) is required.

Choice of Appropriate Assay to Support TDI Mitigation

Comparison of the various abbreviated assay formats to assess TDI in a discovery
setting has been the subject of several reviews [140, 148]. Practical considerations
related to ease of automation have favored implementation of the ICsq shift
approach; since many pharmaceutical companies evaluate direct (reversible) inhi-
bition routinely, it is relatively simple to also determine an ICs, value with or
without preincubation containing NADPH. Another attractive property of the shift
assay includes its high sensitivity (especially if a dilution is used), which can
minimize the propensity of false negatives, a primary goal for initial screening
assays.

Both the ICsq shift and ks assays are good indicators of TDI potential, but a
recent analysis by Wong et al. [145] suggested that the strong correlation between
shifted ICsy and k;,../K; Was positively biased by the inclusion of potent and
efficient inactivators (kin../K7 > 30). When these strong inhibitory compounds
were excluded, the correlation (R2) between shifted ICsy and k;,,../K; decreased
from 0.8 to 0.6. In contrast, the correlation between single ko,s and kiac/Ky
remained good (R*> = 0.8) even when potent and efficient inactivators were
excluded from the analysis. Therefore, a single concentration assay may be a
more appropriate format to support an iterative medicinal chemistry strategy to
reduce the TDI/DDI liability for a series of structurally related compounds of
similar, but moderate, TDI potential. Several successful implementations of a
single concentration assay approach have been reported [132, 149].

6.3.5.2 Kinetic Determination of K;, Ky, and kit
Direct (Reversible Inhibition)

A useful parameter for describing reversible inhibition is the dissociation constant
K;, which, unlike ICs, (the concentration that yields half-maximal inhibition), is
independent of the substrate concentration. The methodology for determining K;
has been well characterized [150, 151] and involves determining the effect of a
range of inhibitor concentrations on substrate turnover at various multiples of the
K., (typically 0.5, 1, 2, 4, and 5x K,,). Reciprocal plots (Lineweaver-Burk, Dixon,
or Eadie-Hofstee) can aid in the diagnosis of the mode of irreversible inhibition
(i.e., competitive, noncompetitive, or uncompetitive) and determination of K;. The
advent of modern software packages has enabled nonlinear regression analysis to fit
the various forms of direct inhibition to determine the K.

K; determination is not amenable to a high-throughput evaluation (since multiple
substrate concentrations are required), and ICs( values are routinely used as the key
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initial readout for reversible inhibition. A convenient relationship exists between K;
and IC5( for competitive and noncompetitive inhibitors: when the substrate is at its
Ko, K is equal to one half of its ICso. Haupt et al. [152] evaluated the accuracy of
this estimation for 343 compounds, and 92% of the estimated K; values (calculated
as /2 1Csp) were within twofold of the actual K, supporting the use of ICs as the key
parameter for risk assessment for reversible inhibition.

The magnitude of change in victim drug exposure (i.e., the ratio between initial
and final AUC values (AUCR)) can be predicted using a steady-state approach that
takes into account the inhibitor concentration [/] and the K;. The FDA draft
guidance (2012) recommends a threshold value of an AUCR greater than 1.25
(where AUCR = 1 + [I]/K;) to determine the need for a clinical DDI study.
Contributions from direct inhibition are incorporated in the mechanistic static
model (or net effect model) and are discussed in Sect. 4.1.

Irreversible (Time-Dependent) Inhibition

Predicting the change in exposure of a victim drug following TDI requires knowl-
edge of two properties intrinsic to the inhibitor: (1) a measure of the potency, K,
which is the concentration yielding half-maximal rate of inactivation and (2) the
maximum rate of inactivation, ki, The experimental procedure for determining
these kinetic parameters was originally proposed by Silverman [153], and the
fundamental components remain in modern methodologies. Assessment of TDI is
accomplished in a two-step assay in which the CYP, cofactor, and inhibitor are
preincubated in the first stage, followed by a second activity assay in which the
residual enzyme activity from the preincubation is determined. The marker sub-
strate is incubated at saturating conditions to minimize potential direct (reversible)
inhibition, and a dilution (of at least 1/20) is used to reduce the inhibitor concen-
tration in the activity assay. Incubation time for the activity assay is kept as short as
possible (i.e., enough for sufficient marker substrate activity) to reduce the potential
for continued TDI. These strategies (dilution, saturating substrate concentration,
and reduced incubation time) all strive to isolate the enzyme inactivation to the
preincubation stage and minimize any contaminating effect of the inhibitor during
the activity assay.

The key output from the two-step procedure is a series of inactivation rates (kqps,
determined by a plot of the natural logarithm of percent remaining activity versus
preincubation time) at different concentrations. A plot of k., versus inhibitor
concentration typically yields a classic hyperbolic Michaelis-Menten curve in
which Kj is analogous to K, and ki, is analogous to Vi.x.

Due to their kinetic nature, determination of the parameters Ky and ki, is highly
sensitive to experimental conditions such as incubation time, protein concentration,
and dilution. Unsurprisingly, initial literature values for otherwise well-
characterized inhibitors often had unacceptably high variability (for a review, see
[154]). Yang et al. [155] highlighted two factors contributing to uncertainty and
variability: inhibitor depletion and additional (contaminating) inhibition during the
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activity assay. Thus, short incubation times and at least a 1/20 dilution are
recommended, and these considerations have largely been incorporated into the
majority of TDI kinetic studies reported in recent years [156].

Experimentally, one key consideration is the high concentrations that, depending
on the potency, would be required to accurately characterize the kinetic parameters.
For example, assuming that achieving maximal inactivation requires a concentra-
tion of about five times the K, a compound with a K; of 25 pM would need to be in
solution at a concentration of greater than 125 pM. Typically, the final solvent
(DMSO) concentration is recommended to be less than 0.1% to avoid inhibition of
CYP isoforms, translating to a stock solution of 100 mM for this example. Creating
solutions at this level of concentration can pose a problem for compounds with poor
to moderate solubility, and consequently, a common issue associated with adequate
risk assessment for such compounds is the uncertainty associated with an incom-
plete Ki/kinae curve. These limitations should be weighed carefully during the risk
assessment phase.

A key criticism of the standard “two-step” approach to determining kinetic
parameters is that the second stage activity assay is contaminated by continued
inactivation due the incomplete removal of the inactivator. Dilution is the most
common strategy for reducing the inhibitor concentration in the activity assay, but
this approach requires an increase in protein concentration in the initial
preincubation to facilitate sufficient substrate turnover for reliable activity mea-
surement. Increased protein concentration can, in turn, increase the amount of
nonspecific binding and decrease the amount of compound available to interact
with the enzyme. Another method called progressive curve analysis, which
accounts for the change in substrate, inhibitor, and metabolite concentrations in
the context of a TDI assay, provides an alternative approach to determining kinetic
parameters. This “all-in” approach does not require separation of enzyme inactiva-
tion from assessment of remaining enzyme activity, thus eliminating the need for a
dilution. Several investigators report improved accuracy in K and ;. determina-
tion using a progress analysis approach [157, 158]. In addition, recent reports by
Nagar et al. [159] and Korzekwa et al. [160] suggest a numerical method that
directly determines TDI parameters using kinetic schemes which lead to better
estimates of Ky and k... While initial reports are promising, further studies are
required to determine if K; and kj,.. values determined using these modeling
approaches yield improved accuracy in the prediction of in vivo DDI.

6.3.6 Assessing Clinical DDI Risk
6.3.6.1 Static Mechanistic Models
Although advances in high-throughput screening and early evaluation of DDI

potential have enabled successful mitigation strategies and the mechanism that
drives reactive species formation and TDI can be fully elucidated preclinically,
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the necessary structural changes to eliminate a CYP liability are often incompatible
with attributes required for pharmacological activity. In this common scenario, risk
assessment for the likelihood of a clinically relevant DDI is required in order for a
molecule with in vitro DDI liabilities to progress to the clinic.

Initial attempts to predict the in vivo consequences of MBI were first proposed
by Hall and associates [161, 162], who applied fundamental concepts of suicide-
type mechanism-based enzyme activators to CYP enzymes. The primary assump-
tion for this approach is that the inhibitor concentration is constant at steady state,
and, over the past decade, this model has evolved to incorporate contributions from
gut metabolism and competing metabolic pathways. More recently, these efforts
culminated in a “net effect” model that incorporated contributions from direct
(reversible) and time-dependent inhibition and induction [163]. This mechanistic
static model is now recommended by the FDA in its draft guidance (2012) and
consists of three components: (1) reversible inhibition, (2) TDI, and (3) induction.
Interactions at the level of the gut and liver are also incorporated into the model.

Although several investigators have reported on the relative predicative accu-
racy of various input inhibitor concentrations ([I]) in the static model, the FDA
recommends the most conservative approach, which translates to a high estimate of
the input inhibitor concentration (i.e., free hepatic portal C,,.x). This conservative-
ness reduces the propensity for false-negative results (i.e., failing to predict a
clinically relevant DDI), but increases the potential of false positives, leading to
more in vivo studies yielding nonclinically significant results.

The predictive accuracy of static models has been evaluated by several investi-
gators. Fahmi et al. [98] reported that, for a series of 30 clinical DDIs, the combined
net effect model yielded an 88% success rate with a mean-fold error of 1.74.
However, the success rate was low for compounds that were anticipated to be
both inhibitors and inducers, with four out of five such compounds showing
predicted exposure changes of greater than twofold higher or lower than the
observed values. Guest et al. [164] also observed that a static approach yielded
good overall predictions for in vivo DDIs (77% success rate). However, a review
[165] of the multitude of retrospective analyses reveals that conclusions on the
predictive accuracy of static models are highly dependent on the input parameters
(kdeg> Ki/kinact> [1], gut contribution) as well as the perpetrator-victim pairs consid-
ered for each study. In Wong’s analysis, low estimates of certain parameters (such
as kqeo) were shown to affect conclusions on the apparent improved prediction
accuracy when selecting other parameters (such as the input inhibitor concentra-
tion). Thus, the perceived success of the static model is highly dependent on the
selection of input parameters, and conclusions based on the predictive accuracy
using retrospective studies should be caveated by the specific assumptions of the
input parameters selected.

The tendency for static models to overpredict the magnitude of an in vivo
interaction has been observed by several investigators. Vieira et al. [166] observed
that, in general, mechanistic static models tended to overpredict the likelihood of an
in vivo DDI arising from TDI. Kenny et al. [167] reported that, for a series of
12 kinase inhibitors, a traditional steady-state approach generally led to an
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overestimation of DDI magnitude and several false positives. Taken together, these
studies support the FDA’s general opinion that the conservative static approach
minimizes the propensity for false negatives.

A potential drive for the overestimation of in vivo DDI using a static approach is
the inaccuracy of kinetic parameters derived from microsomal experiments as a
result of uncertainties around the actual unbound concentration in the liver with
access to the CYP active site. Mao et al. [168] reported improved predication
accuracy when using K and kj,,. values determined in cryopreserved human
hepatocytes suspended in human plasma, suggesting that accounting for plasma
protein binding and the requirement for delivery into hepatocytes may improve the
effectiveness of a steady-state approach to predict DDI.

Overall, static models tend to minimize the incidence of false negatives, which is
desirable from a safety perspective, but tend to overpredict the likelihood of an
in vivo DDI. In an analysis reported by Prueksaritanont et al. [17], overpredictions
of up to tenfold were observed when using the free hepatic portal concentration as
the input inhibitor concentration recommended by the FDA. These authors com-
ment that, while the guidelines are likely successful in avoiding false negatives,
essentially no clinical DDI study can exclude compounds that demonstrate any
nonnegative inhibitory signal, regardless of the in vitro study outcome.

6.3.6.2 Dynamic Models

In a recent review by Sager et al. [14] of the use of physiologically based pharma-
cokinetic (PBPK) modeling, the highest percentage of literature articles were on
DDIs (27%) followed by clinical pharmacology (23%) and absorption (12%).
These statistics are unsurprising considering that a PBPK approach overcomes
the need to simplify an interaction to static conditions by accounting for changes
in three critical parameters over time: (1) inhibitor, (2) victim, and (3) enzyme
concentration. The basic framework for a PBPK model consists of a series of
compartments representing individual organs or tissues, with the relationship
between these compartments defined by physiological flow (e.g., blood, bile, or
pulmonary ventilation). A system of differential equations describes the rate of
change of drug concentration or active CYP enzyme with respect to time; thus
PBPK models take into consideration the kinetic nature of an interaction involving
a DDI (for reviews, see [169]).

Recognizing the mathematical complexity of a PBPK approach, the advent of
sophisticated software solutions has enabled broader adoption and application of
this technique. Proprietary software systems that are designed for PBPK modeling
include SimCYP (Certara), GastroPLUS (Simulations Plus), PK-SIM (Bayer Tech-
nology Services), and Cloe Predict (Cyprotex Ltd). Of these packages, SimCYP is
one of the more commonly used in the pharmaceutical industry, and this
population-based ADME simulator incorporates PBPK modeling to predict plasma
concentration-time profiles based on input physiochemical and in vitro derived
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parameters [170]. This modeling system has received widespread implementation
in the pharmaceutical industry as well as recognition by the FDA as a useful tool for
assessing DDIs. The application of PBPK modeling in the pharmaceutical industry
has been recently reviewed by Jones et al. [171].

The utility of SimCYP to predict DDIs (arising from CYP inhibition) has been
retrospectively investigated by Wang [172], and he found that the majority of
studies (87%) were predicted within twofold error of observed values. In a similar
retrospective analysis, Einolf [173] demonstrated good (within twofold error)
predictive accuracy of the PBPK approach. Overall, both of these retrospective
studies suggest a modest improvement in predictive accuracy when using a PBPK
approach facilitated by SimCYP compared to the steady-state model, which tended
to overpredict.

With respect to induction, Almond et al. [103] reported that the prediction
accuracy of a PBPK-based approach improved when in vitro ECsq and E,,,,x data
were calibrated using in vivo data (i.e., the maximum fold in vivo induction,
Ind,,.x). These authors emphasized the need for individual laboratories to evaluate
how prototypical inducers respond in their own in vitro system and understand the
relationship between their in vitro system and in vivo induction in order to improve
the risk assessment of induction-mediated DDIs.

In addition to assisting in risk assessment, a key application of dynamic model-
ing is the ability to simulate clinical exposures and assist in DDI trial design. One
example in which PBPK modeling was used to help guide clinical DDI study design
was reported by Jones et al. [171]. Compound Y was a late-stage clinical candidate
that had marked nonlinear pharmacokinetics, with a sixfold increase in dose-
normalized AUC between the 5 and 400 mg doses. It is important to note that
compound Y was primarily metabolized by CYP1A2 and the key DDI concern was
its susceptibility as a victim to CYP1A2 inhibitors, such as fluvoxamine. When
in vitro data was used in a “bottom-up” modeling approach, SimCYP
underpredicted exposures at the higher doses. By leveraging SimCYP’s Bayesian
parameter estimation, a “middle-out” approach determined that threefold higher
estimates of K, and V., were required in order to accurately simulate the
supraportional PK observed in the clinic. The default clinical trial design to
evaluate the potential for a CYP1A2-mediated DDI would have determined the
effect of a 100 mg daily dose of fluvoxamine (a potent CYP1A2 inhibitor) on a low
dose of compound Y. However, the PBPK model, refined using the “middle-out”
approach to accurately capture the nonlinear PK, predicted that unacceptable
CYP1A2-mediated DDIs would occur only at low, subtherapeutic doses of com-
pound Y. With this insight, the clinical DDI trial was designed to include both high
and low doses of compound Y and confirmed a minimal risk for CYP1A2-mediated
DDI at the higher (and more therapeutically relevant) dose. In the absence of PBPK
modeling, only the low dose of compound Y would have been evaluated, and the
positive DDI potential would have terminated the program.
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6.3.6.3 Microdosing

The potential for DDIs can be relatively easily predicted by any of the previously
discussed in silico, in vitro, and modeling and simulation methods. However, the
magnitude of the DDI remains far more challenging to predict. This is particularly
true at the drug discovery stage when preclinical data is prospectively translated
into clinical interactions compared to the early clinical development stage when
clinical DDI data is already available and predictions are made retrospectively.
Depending on the stage at which a drug is in the pipeline and the target of the drug
discovery program, knowing the magnitude of DDIs might not be critical, and the
previously discussed methods would provide sufficient guidance. As drug candi-
dates enter the lead optimization stage and a lead compound needs to be selected
among several others, the ability to confidently predict the potential and the
magnitude of an interaction becomes more and more essential for informed “go/
no-go” decision-making and ultimately for the patients’ safety and therapeutic
benefit. This is particularly true in the case of drug candidates with a narrow
therapeutic index, such as anticancer drugs, for which a relatively small change
in exposure can lead to detrimental clinical outcomes.

Exploratory microdosing in human, a subset of phase 0 studies, is one promising
and emerging tool that can be utilized to predict and quantify the DDI risk based on
CYP inhibition for victim drugs. Microdosing has been successfully evaluated and
used for more than a decade; however, up till now this technique has been
predominantly used for the evaluation of human pharmacokinetics [174]. More
recently, the application of microdosing has spread into the evaluation of DDIs
[175]. Microdosing refers to a dose for a small molecule that is no greater than
100 pg or 1/100th of the no observed adverse effect level (NOAEL), whichever is
lower. Neither therapeutic nor toxic effects are expected to be seen at such a low
dose, enabling drugs to be safely evaluated in humans as part of the exploratory lead
optimization stage rather than the clinical stage. Compared to traditional phase
1 studies, timelines and regulatory requirements, such those needed for preclinical
data, compound amounts, and specifications, are limited for microdosing studies,
and thus these studies can be conducted in a shorter time frame at a lower cost. The
decreased time and cost of these studies is attractive and makes them feasible at the
drug discovery stage as a complimentary tool in the candidate selection process.

Existing published examples for DDIs in human volunteer microdosing studies
are still very sparse, but they support the validity and usefulness of this technique
and encourage their continued application. Croft et al. showed in a proof of concept
study that human microdosing can be used to investigate the DDI risk for victim
compounds [176]. Midazolam (a CYP3A4 substrate), tolbutamide (a CYP2C9
substrate), caffeine (a CYP1A2 substrate), and fexofenadine (a P-glycoprotein
(P-gp) substrate) were given simultaneously at a microdose of 25 pg each ([176]).
PK parameters of the substrates were determined before and after combined,
pharmacologically active, repeat doses of ketoconazole (a CYP3A4, CYP2C9,
and P-gp inhibitor) and fluvoxamine (a CYP1A2 and CYP2C9 inhibitor) were



6 Integrated Lead Optimization: Translational Models as We Advance Toward. . . 207

administered at 400 mg and 100 mg, respectively. These data were compared to the
PK parameters obtained in a traditional, non-microdosing DDI study. The CYP
substrates represent lead compounds, whereas the inhibitors represent
coadministered marketed drugs/perpetrators. The results showed that alterations
in PK due to inhibition in the microdosing study were quantitatively comparable to
those observed in the regular studies. Another example of human cassette
microdosing was published by Maeda et al. [177] and describes the simultaneous
administration of atorvastatin, pravastatin (OATP substrates), and midazolam
(a 3A4 substrate) as a microdose. The PK of the substrates was determined before
and after administration of separate, regular (pharmacologically active) doses of
rifampicin (an OATP inhibitor) and itraconazole (a CYP3A4 inhibitor) at 600 and
200 mg, respectively. The AUC exposure was significantly increased for the
microdosed OATP (pravastatin) and 3A4 (midazolam) substrates in the presence
of its corresponding inhibitor. The atorvastatin AUC exposure significantly
increased only in the presence of the OATP inhibitor rifampicin but not in the
presence of the CYP3AA4 inhibitor itraconazole, suggesting that hepatic elimina-
tion of the compound is predominantly driven by hepatic uptake by OATPs at a
microdose level. For microdose cassette dosing, no interactions are expected among
the compounds in the cassette due to the very low levels of the compounds.

Microdosing studies have also been utilized to evaluate DDIs due to food [178]
or transporters [179]; however, these interactions are not discussed in more detail
here as this section is focused on DDIs due to metabolic enzymes.

Due to the nature of microdosing studies, various highly sensitive analytical
tools (e.g., accelerator mass spectrometry (AMS), positron emission tomography
(PET), and liquid chromatography-tandem mass spectrometry (LC-MS/MS)) are
utilized to quantify the low drug concentration levels [180, 181]. For the purpose of
assessing DDI studies at the lead optimization stage, LC-MS/MS appears to be the
most practical. LC-MS/MS is most widely available, is relatively cost-effective,
and allows for faster and more straightforward sample processing and analysis. In
addition, the sample shipment is less challenging than that for PET studies, which
requires that the PET facilities be in close proximity to the research laboratory
because of the generally short half-life of positron emitting nuclides. Unlike AMS
and PET, LC-MS/MS enables dosing of multiple compounds simultaneously (cas-
sette dosing) and the use of non-radiolabeled material. This is particular important
at the lead optimization stage when a radiolabeled compound is typically not
available. While LC-MS/MS is less sensitive than AMS and PET, an evaluation
of the lower limits of quantitation of 31 diverse drugs suggests that LC-MS/MS is
sensitive enough to quantify plasma levels of most non-radiolabeled drugs in
microdosing studies to a degree that basic pharmacokinetic parameters can be
determined [182]. In practice, LC-MS/MS has already been successfully utilized
as an analytical tool in various microdosing studies, although there are reported
instances where it failed. Compounds with very low bioavailability or a high
volume of distribution might be challenging to analyze via LC-MS/MS [183, 184].

At this point, only a very small amount of published data exists for determining
DDIs of potential victim drugs by human microdosing, and the data is currently
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limited to marketed drugs with no examples of exploratory drugs [175]. More
caveats might emerge and a better understanding obtained of the prediction accu-
racy as more study results become available. However, this approach appears to be
a feasible, safe, and complimentary tool that can add valuable information at the
lead optimization stage if there are limitations or low confidence in other predictive
methods [171]. In this case, microdosing can help to prioritize and select lead
compounds and/or make “go/no-go decisions” efficiently and confidently.

6.3.7 Summary

Evaluating the in vitro propensity of a compound to inhibit or induce CYPs in vitro
allows for identification of potential DDI liabilities and SARs. However, in vitro
potency alone does not reflect the potential risk of a DDI manifesting in vivo.
Achieving an assessment of clinical significance of DDI is an important aspect of
drug discovery and development. Many tools exist to predict clinical DDI using
in vitro data, ranging from simple “rule-of-thumb” assessments such as [/]/K; to
complex PBPK simulation packages such as SimCYP®. These in vitro tools are
used to obtain clear data on DDI potential over conducting in vivo animal studies,
which can lead to variable results due to species differences in enzymes or phys-
iology. In addition, while much less explored, microdosing in human can be
considered in certain instances as a valuable tool at the lead discovery stage to
predict the risk of drugs being victims of DDI. The evaluation of DDIs is an
iterative process throughout drug discovery and development with different
approaches appropriate at different stages and continuous refinement of the simu-
lations as new data becomes available.

6.4 Integrated Approaches to Assess Brain Penetration

The brain is separated from the systemic circulation by two main barriers: the
blood-brain barrier (BBB) and the blood-cerebrospinal-fluid barrier (BCSFB). The
BBB is composed of cerebral endothelial cells that differ from those in the rest of
the body by the presence of extensive tight junctions, the absence of fenestrations,
and the sparse pinocytotic vesicular transport. The BCSFB is formed by a contin-
uous layer of polarized epithelial cells that line the choroid plexus in the brain
ventricles. Both the BBB and BCSFB exhibit very low paracellular permeability
and express multiple drug transporters. These characteristics restrict the entry of
hydrophilic compounds or efflux transport substrates into the brain [185]. In this
section we will introduce the concepts related to brain penetration from the per-
spective of small molecule drug discovery and discuss how to effectively address
BBB issues in lead optimization.
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6.4.1 Pharmacokinetics of Brain Drug Delivery

For drugs that target the central nervous system (CNS), compounds with good brain
penetration should be selected during the drug discovery phase. Drug brain pene-
tration can be quantified by two parameters: the time required to reach equilibrium
between the brain and plasma concentrations and the extent of brain penetration.
These concepts are analogous to the rate and extent of oral absorption [186]. The
time to reach equilibrium is defined by the half-life needed to reach equilibrium
between brain and plasma concentrations [187]. The extent of brain penetration is
defined as the ratio of concentrations between free drug in the brain and free drug in
the plasma at distributional equilibrium, K, ., [188].

6.4.1.1 Time to Equilibrium

An empirical approach to identifying compounds with a quick onset of action
involves the screening of compounds in in vivo studies. In order to understand
the theoretical basis of this practice and develop a rational approach to design a
compound with a quick onset of action, one needs to understand the kinetics
involved in reaching equilibrium between brain and plasma concentrations. The
intrinsic brain equilibrium half-life (#;5¢qin), defined as the time required for the
free brain concentration to reach 50% of free plasma concentration, is used to
quantitate how quickly a compound can enter into the brain [187]. The #;5¢q in Value
is calculated according to Eq. 6.16

Vb In2

Zl/Zeq,m PS 'fu’bm]-n (6 16)
where V), represents the physiological volume of brain tissue, PS is the
permeability-surface area product, and f,, prin 1S the unbound fraction in the brain
tissue [187]. This equation demonstrates that a combination of BBB permeability
and brain tissue binding determines the time to reach brain equilibrium, which is
supported by experimental observations. Theobromine has a low to moderate PS
(23 mL/h/kg) and a high f,, prain (0.61), resulting in a PS+f; pain of 14 mL/h/kg. In
contrast, fluoxetine has a high PS (619 mL/h/kg) and a low f, prain (0.00094),
resulting in a PS+f, prain of 0.6 mL/h/kg. Consistent with a higher PS-f, pr.in product,
the observed #15¢q,in for theobromine (~0.1 h) was shorter than that of fluoxetine
(~1 h) [187]. Similar conclusions were made by Syvanen et al. [188].

BBB permeability and brain tissue binding are likely correlated [187]. For
example, lipophilic compounds tend to have high BBB permeability and brain
tissue binding, while hydrophilic compounds have low permeability and tissue
binding. For many CNS drug-like molecules, plasma concentrations can quickly
equilibrate with brain concentrations despite substantial variability in BBB perme-
ability. In a study reported by Liu et al. [187], the brain concentration of six out of
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seven model compounds equilibrated with plasma concentration within 2 h post-
subcutaneous dose. Similar conclusions were drawn from a brain microdialysis
study in which compounds with much different BBB permeability values were
quickly able to reach brain equilibrium [189]. As a result of these data, a lead
compound should not be eliminated as a candidate compound for quick brain
penetration solely on the basis of low BBB permeability.

6.4.1.2 Extent of Brain Penetration

K, .+ is a measure of the level of free brain concentration relative to the free plasma
concentration; therefore, understanding the factors governing K, ,,, is important in
drug design. In general, these factors can be identified through a compartment-
based pharmacokinetic analysis. For CNS pharmacokinetics specifically, a simpli-
fied physiologically based three-compartment model that incorporates the plasma,
brain, and CSF can be used.

According to this three-compartment model (Fig. 6.9), Eq. 6.17 can be derived at
steady state when the plasma, brain, and CSF concentrations remain constant.
Clypake and Cleux are the active uptake clearance and efflux transport clearance,
respectively, at the BBB. Cly is the clearance due to brain interstitial fluid bulk
flow and Cl,erapolism 1S the brain metabolic clearance. According to Eq. 6.17, the
extent of brain penetration, K, ,,, can be augmented by either increasing Clgigtusion
or Clypuake or reducing Clesaux, Clpuiks O Clmetabotism- The plot is from Liu
et al. [190].

Plasma
Cu, plasma «—* Cplasma
'Y r'y .

BBB...l....J......
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Cl metabolism

Fig. 6.9 Three-compartment model for CNS drug disposition
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Koo (6.17)

Clypake can be enhanced by designing a compound to be a substrate of brain
uptake transporters. For example, the large neutral amino acid transporter 1 trans-
ports L-DOPA and gabapentin across the BBB. Although L-DOPA has been
available for several decades, the same success in increasing brain penetration
has rarely been replicated in other drugs, except for its close-in analogs. Effective
in vitro approaches have yet to be developed to screen brain uptake transporter
substrates that deliver drugs through the uptake transporters at the BBB for com-
pounds that are not closely related to endogenous substances. However, as
explained below, it is more feasible to design lipophilic compounds (high Clyi¢fusion)
without significant efflux transport (low Clegqux) than to design compounds as
uptake transporter substrates (high Cl,;).

Clpuk can play an important role in decreasing K, for low permeability
compounds. Cly, is estimated to span the range of 0.2-0.3 pL/min/g [191]. Take
the example of mannitol, a compound of low permeability with a Cly;grusion Value of
less than 1 pL/min/g. Bulk flow becomes significant compared to its permeability,
resulting in a low K, ,, (0.01). Clyu, however, is not an important factor for typical
CNS lead compounds, which generally have moderate to high Clgsrusion. For
example, Clgisrusion for caffeine is approximately 13 pL/min/g. In this case, Clyy
is much lower than the permeability and has an insignificant effect on caffeine’s
K, u (1.0) [192].

Brain metabolism, Clyeapotism» €an also play a significant role in reducing K, ..
Metabolizing enzymes such as monoamine oxidases (MAOs), flavin-containing
monooxygenases (FMOs), cytochrome P450s, and glucuronosyltransferases have
been identified in brain endothelial cells and brain tissue [193—196]. Hence, the
metabolic stability of a compound in brain tissue needs to be examined in early drug
discovery. If a compound is not stable in brain tissue, its impact on brain penetration
assessment, such as brain/plasma ratios, and free brain concentrations need to be
investigated.

For most CNS compounds, the uptake drug transport, bulk flow within the brain
tissue, and the metabolism in the brain is insignificant compared to the diffusion
process. In typical CNS drug discovery programs, the main mechanism that impairs
brain penetration of small molecules is efflux transport mediated by drug trans-
porters at the BBB, which is quantified by efflux clearance, Clegqyx. In this situation,
Eq. 6.17 can be simplified to Eq. 6.18.

1
1+ Cleﬁlux/Cldiﬂusion

Ky = (6.18)

It is clear from Eq. 6.18 that compounds with high diffusional permeability
(high Clgifrusion) are desirable so that the impact of the efflux transport does not
reduce K, ,, significantly.
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6.4.2 Drug Transporters at the BBB

Efflux transporters such as P-glycoprotein (P-gp, gene symbol Abcbl), breast
cancer resistance protein (Berp, Abcg2), multidrug resistance-associated proteins
(Mrp, Abcc), and several organic anion transport polypeptides (Oatp, Slco) as well
as the organic anion transporter (Oat3, Slc22a8) have been identified at the BBB
and/or the BCSFB in preclinical species and humans [55, 197, 198]. Yousif et al.
[199] examined the gene profile and expression for Mdrla, Mdr1b, Berp, Mrpl1-5,
and Oatpla4 (Oatp2) in rat brain and found that the gene profiles of only Mdrla,
Berp, Mrp4, and Oatpla4 were similar to those of endothelium markers, indicating
the presence of these transporters at the BBB. In the past few years, significant
progress has been made in using a proteomic approach to assess the transporter
expression at the endothelia from various species. Teresaki and coworkers deter-
mined the absolute drug transport proteins at the BBB using LC-MS/MS [200-
202]. Figure 6.10 shows the relationship between monkey and human and between
mouse and human transporter protein expression levels. The protein expression
level of MDR1 was not significantly different between brain capillaries of human
and monkey (left panels). In contrast, MDR1 expression in human was 43% of that
in mouse (right panels). The lower protein expression of MDR1 in human and
monkey brain capillaries would suggest a higher brain distribution of MDR1 sub-
strates in human and monkey than in mice. In contrast, the protein expression of
breast cancer resistance protein (bcrp)/ABCG2, which is also a drug efflux trans-
porter at the BBB, was 1.7-fold greater in monkey but 1.9-fold lower in mouse
compared with human brain capillaries. Considering the variability of the observed
data, the functional importance of different transporter expressions among various
species remains to be examined. However, quantitative-targeted proteomic analysis
provides clear molecular evidence for species differences in the BBB, which is
important when predicting drug permeability across the human BBB from animal
and/or in vitro data.

Although many drug transporters at the BBB have been reported in the literature,
majority of the data reveals that only P-gp and in some cases Berp are functionally
important in limiting drug distribution to the brain. The functional activity of drug
efflux transporters at the BBB is normally quantified by the brain-to-plasma ratio in
knockout (KO) animals versus the brain-to-plasma ratio in wild-type (WT) animals,
abbreviated as the KO/WT K, ratio.

Figure 6.11 shows the importance of P-gp in limiting brain penetration of its
substrates and, to a lesser extent, the importance of Berp in limiting the brain
penetration of its substrates. Citalopram is not a substrate of P-gp or Berp and its
KO/WT K, ratio is within or near twofold error of unity. Amprenavir, digoxin,
loperamide, quinidine, and verapamil are P-gp substrates, and their KO/WT K|
ratios are much greater than unity in the P-gp KO mice (blue bars); however, in
Berp KO mice (brown bars), their KO/WT K, values are near unity. In this data set,
sulfasalazine is the only Bcrp substrate, but its brain drug level is below the
quantitation of the assay in the Berp KO mice. Therefore, it is difficult to assess
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Fig. 6.10 Comparison of protein expression levels in brain capillaries between human and
monkey and human and mouse. (a) Human-monkey and (b) human-mouse. Upper panels:
comparison of absolute protein expression levels of membrane proteins between humans and
animals. The solid line passing through the origin represents the line of unity, and the broken lines
represent threefold differences. Each point represents the mean £+ SD. The molecules on the
horizontal (mouse, monkey) or vertical (human) axis are below the limits of quantification. Lower
panels: ratio of expression levels of membrane proteins in animals to those in humans. The broken
lines represent threefold differences. Each bar represents the mean 4+ SD. The molecules were
ordered according to their expression levels. ULOQ means that the expression was under the limit
of quantification in the indicated brain capillaries. INSR insulin receptor, TfR transferrin receptor.
Plots are from Ohtsuki et al. [203]

the functional importance of Berp at the BBB. Elacridar, imatinib, and prazosin are
dual P-gp and Berp substrates. For these substrates, knocking out Berp alone has
little impact on brain penetration, but knocking out P-gp alone has a clear effect on
the brain penetration for some of these compounds such as elacridar and imatinib.
The greatest effect, however, is from knocking out both P-gp and Bcrp. This
observation is consistent with many studies reported in the literature [205-207].
P-gp is considered to be the most important efflux drug transporter at the BBB,
and therefore, any CNS drug that is also a P-gp substrate will have a reduced
therapeutic window. The reduced therapeutic window occurs because P-gp-medi-
ated efflux at the BBB normally cannot be saturated and a high plasma free
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Fig. 6.11 Effect of P-gp and Berp on brain penetration in mice. The solid line represents unity.
The broken lines represent twofold error from the line of unity. The concentrations of Ko143 and
sulfasalazine are below the quantitation of the assay. Data are from Liu et al. [204]

concentration is necessary to compensate for the efflux transport and drive the free
concentration in the brain to the efficacious level. In this situation, the higher
plasma concentration can increase the risk of peripheral toxicities. An ideal CNS
drug, therefore, is not a good substrate for P-gp efflux; however, scarce literature
data are available to define the level of P-gp-mediated transport that is acceptable
for drug candidates. In a comprehensive study, P-gp transport of the 32 most
prescribed CNS drugs were examined in mdrla/1b KO and WT mice. In all, 22%
of the compounds showed an efflux ratio of unity, 72% had values between 1 and
3, and 6% had values between 3 and 10 [208]. These results indicate that the
majority (92%) of CNS drugs tested show no to weak P-gp-mediated transport.
These data support the conclusion that “good” P-gp substrates should be avoided as
CNS drugs. On the other hand, P-gp-mediated drug transport per se would not be
the sole reason to terminate the development of a candidate if a large therapeutic
window is projected in humans.

Several examples indicate the benefits of developing P-gp substrates as periph-
eral targeted drugs to reduce CNS side effects. First-generation H1 antagonists such
as diphenhydramine, triprolidine, and hydroxyzine produce histamine blockade at
HI receptors in the CNS and frequently cause somnolence or other CNS adverse
effects. However, second-generation H1 antagonists such as cetirizine, loratadine,
fexofenadine, and desloratadine produce relatively little somnolence or other CNS
side effects at recommended doses. Chen et al. [209] demonstrated that the first
generation of H1 antagonists are non-P-gp substrates and the second generation of
HI1 antagonists are P-gp substrates. The first generation of these drugs, therefore,
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displays high brain concentrations, while low brain concentrations are seen for the
second-generation drugs. Similar observations were made by several other
groups [210].

The literature is not consistent on species differences for P-gp activity. One
study showed a difference in P-gp ATPase binding affinity between rhesus monkey,
dog, and human [211]. Further, the K,,, values of diltiazem exhibited approximately
16.5-fold differences among human, monkey, canine, rat, and mouse P-gp-
transfected cell lines [212]. Yamazaki et al. [213] reported different efflux ratios
between mouse and human P-gp-transfected cells, suggesting species differences
for P-gp activity. In contrast, a study using a set of 3300 compounds demonstrated a
93% overlap between mouse and human P-gp-mediated transport [214]. Thus,
significant mouse-human differences in P-gp activity may be a rare phenomenon.

6.4.3 Integrated Approaches in Assessment of Brain Drug
Delivery

6.4.3.1 1In Silico Methods

There are generally two types of in silico models for the BBB: one is used to predict
the brain-to-blood ratio, K, and the other is a rule-based model for CNS drugs.
Most BBB in silico models were developed to predict K. The main limitation of
these models is that K, is not a good parameter for characterizing brain penetration,
as K, is determined by both K, ,,, and plasma and brain tissue binding. For example,
K, for the 32 most prescribed CNS drugs ranged from 0.1 to 24 in mice. A
compound having a K, value as low as 0.1, such as sulpiride, can still be a
successful CNS drug, demonstrating the difficulty in assessing brain penetration
on the basis of K, alone [208]. To address the limitation of the K, model, Gratton
etal. [215] and Liu et al. [216] developed a BBB, permeability-surface area product
(PS) model using the data generated by the in situ brain perfusion method. The
logPS model may be used in conjunction with in vivo PS. An observed permeability
that is substantially lower or higher than the predicted value indicates that efflux or
uptake transporters modulate brain penetration for the tested compound. For exam-
ple, in a study of BBB permeability, the PS values of the uptake transporter
substrates phenylalanine and levodopa were underpredicted, and the PS values of
P-gp substrates, digoxin, CP-141938, and quinidine, were overpredicted [216].

In practice, rule-based models are more useful as they can be easily understood
and used by medicinal chemists in drug design. Rule-based models are based on the
observation that many brain-penetrant compounds exhibit different physicochemi-
cal properties than non-brain-penetrant compounds. Although these rule-based
models have their own limitations, they are useful in defining the chemical space
based upon known CNS drugs or drugs with CNS activities. These rules are similar
to Lipinski’s rule of five, but are generally more stringent. A compound is likely to
penetrate into the brain if its molecular weight is less than 500 Da, it has fewer than
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two to six hydrogen bond acceptors, it has fewer than two to three hydrogen bond
donors, and its clogP or logD is in the range of 2-5. In addition, its polar surface area
(PSA) should be in the range of 40-90 AZ%and its pKaless than 10 [217-220]. These
properties are based on strong scientific rationale and can be either directly observed
from the chemical structure or readily calculated using commonly available soft-
ware, and therefore, the rule-based model is widely used in CNS drug design.

6.4.3.2 1In Vitro Methods

Brain capillary endothelial cells (primary cell cultures and derived cell lines) have
been used as models to study CNS penetration for many years, particularly to
explore mechanistic questions involving drug transport [221]. However, these
brain-derived systems are challenging to use because of culture variability and
the need to repeatedly isolate cells. They also exhibit increased paracellular per-
meability, which has limited their broad use as a tool to study BBB permeability.
Recently, BBB endothelial cells derived from human pluripotent stem cells have
been isolated and shown to exhibit many BBB attributes, including low paracellular
permeability; however, the utility of this model in predicting BBB drug transport
remains an active area of investigation [222]. Typically, cell lines from noncerebral
origins are used as in vitro models for prediction of BBB transport. MDCK and
LLCPK1 cell monolayers that stably express transporter proteins such as P-gp and
Bcerp are the most common systems because they efficiently form tight junctions,
are easy to culture, and are predictive of the extent of BBB efflux. Since these cell
lines do not originate from cerebral endothelial cells, however, they do not reca-
pitulate the transport characteristics of the BBB other than those of the specific
transfected transporter. It is, therefore, important to consider what question is being
explored when selecting a noncerebral cell line to characterize CNS penetration of a
drug. An ideal in vitro model should have similar paracellular permeability and
transporter characteristics as the BBB and should be easily set up for routine drug
screening. More research is needed to develop such an in vitro BBB model.

6.4.3.3 In Vivo Methods

Several methods are used to estimate K, ,,. Brain microdialysis is a direct approach
to determine free brain concentration. However, the utility of microdialysis in the
drug discovery setting is limited because the method requires extensive resources
and is not easily applied to highly lipophilic compounds. In drug discovery, K, .
can be readily estimated using Eq. 6.19

Kp.uu _ fu,brain . Kp (6 19)
fu,plasma
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where f,, plasma and fi brain are the plasma and brain unbound fraction, respectively,
and K, is the total brain-to-plasma ratio. The f; piasma and fy prain values can be
estimated using in vitro equilibrium dialysis approaches with plasma and brain
tissue homogenate, respectively, and K, can be determined from in vivo studies
[223]. A good correlation exists between the K, ,,, determined using microdialysis
and the K, ,, estimated from Eq. 6.4 [224]. A potential caveat in using brain tissue
homogenate to estimate f,, yrain i that homogenization may change binding proper-
ties by unmasking binding sites that are not accessible to a drug in vivo. These
concerns may be addressed by using a brain slice approach in which the brain
structure remains intact [225, 226].

A cassette dosing approach has been developed to increase throughput for
determining K, in in vivo studies [204, 227]. Although drug transporter substrates
and inhibitors may incidentally exist in one cassette and the brain penetration for
the drug transporter substrates could be modified by the inhibitors, we hypothesized
that if cassette dosing is conducted at a low dose of 1-3 mg/kg, the possibility of
drug-drug interactions at the BBB is probably low. To test this hypothesis, we
selected a set of 11 compounds including known potent P-gp and Bcerp inhibitors
and typical P-gp and Berp substrates to create the “worst” scenario of potential
drug-drug interactions at the BBB; we observed no difference in the K, values
between individual and cassette dosing in mice (Fig. 6.12).
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Fig. 6.12 The relationship between K|, determined from discrete dosing and cassette dosing of
nine compounds. The solid and dotted lines represent unity and twofold error. A amprenavir,
C citalopram, D digoxin, E elacridar, / imatinib, L loperamide, P prazosin, Q quinidine,
V verapamil. The brain concentrations of sulfasalazine and Ko143 and the plasma concentration
of Ko143 were below the lower limit of quantitation. These results demonstrate that drug-drug
interactions at the BBB are unlikely to occur at a subcutaneous dose of 1-3 mg/kg, and they
support the use of a cassette dosing approach to assess brain penetration in drug discovery. The
plot is from Liu et al. [204]
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K, . may also be estimated in drug discovery from CSF drug concentration,
assuming that the CSF drug concentration represents the free brain concentration.
Shen et al. [228] observed that CSF concentration approximates free brain concen-
tration for moderate to high permeability compounds, but this relationship does not
necessarily hold true for low permeability compounds. Our results indicate that
CSF concentration is typically between plasma free concentration and brain free
concentration [227, 229]. Although the cellular location of P-gp suggests that it
pumps substrates from plasma into the CSF [230], the in vivo functional importance
of the transporter at the BCSFB seems limited. The free brain/CSF concentration
ratios of three typical P-gp substrates, loperamide, verapamil, and quinidine, in
P-gp KO and competent mice were 1.5, 1.9, and 3.6, respectively, which are much
less than the K, xo/Kp, wr ratios of 9.3, 17, and 36, respectively [208]. However,
other transporters, such as Mrpl, do not play a significant role at the BBB but are
important at the BCSFB [231]. Therefore, in drug discovery settings in which
in vitro or in silico data have demonstrated that compounds are not substrates for
efflux transporters, plasma free or CSF concentrations provide a simple way to
estimate K, ,,. This approach is useful in the lead optimization of highly lipophilic
compounds when measurement of the free fraction is difficult and the unbound
brain concentration cannot be calculated from the observed total brain
concentration.

6.4.4 Summary

The optimization of brain penetration in lead optimization needs to consider the
time to reach equilibrium and the extent of brain penetration. For CNS drugs whose
indications require a quick brain penetration, a short time to reach brain equilibrium
is essential. This can be achieved by screening compounds for a combination of
high permeability and low brain tissue binding. For all CNS projects, compounds
with high predicted human K, ,, should be selected by screening out very poorly
permeable compounds and, more importantly, efflux transporter substrates. Many
drug transporters are expressed at the BBB; however, the available data point to the
importance of P-gp, and in some cases Berp, in limiting the brain penetration of its
substrates in vivo. For other drug transporters at the BBB, more research is needed
to reveal their in vivo significance. CNS drug discovery screens should, therefore,
be used to eliminate good P-gp and Bcrp substrates; however, special consideration
should be given to weak or moderate P-gp and Berp substrates as potential CNS
drugs if a large safety margin exists.
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Chapter 7
Developability Assessment of Clinical
Candidates

Shobha N. Bhattachar, Jeffrey S. Tan, and David M. Bender

Abstract The role of the developability (aka preformulation) scientist at the
discovery development interface has been extensively discussed in the literature.
In response to shifting trends in discovery and the continued push to shorten
timelines and reduce costs, the engagement of the developability scientist on
discovery teams has steadily moved upstream over the past two decades. In this
new and continually changing role, the developability scientist has the opportunity
to influence the selection of chemistry scaffolds entering the lead optimization
phase and subsequently the selection of developable compounds for clinical testing.
In its current state, developability assessment of clinical candidates is an assessment
of the physicochemical and biopharmaceutical properties of the compound, carried
out with due consideration to the patient in question, the clinical testing plan, and
the commercial landscape. This chapter describes the dynamic and integrated
nature of this assessment, along with a description of the in silico, in vitro, and
in vivo tools used, and illustrative case studies. Key areas of focus include:

(a) Solid form design and selection.

(b) Characterization of the physicochemical properties associated with the solid
form, such as solubility, stability, and dissolution properties.

(c) Absorption modeling, including the definition of clinical product performance
criteria and the need (if any) for absorption enhancement.

(d) Assessment of absorption enhancement potential using technology platforms
that lend themselves to commercial development (including in vivo evaluation
where relevant).

(e) The assembly of a comprehensive data package that includes an assessment of
potential risks to clinical and commercial development.
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7.1 Introduction

The term “developability” has been steadily gaining acceptance in the pharmaceutical
industry over the past 5-8 years [1]. It takes its roots from the older and more
well-known concept of “preformulation” but is different in that it is a far more
comprehensive assessment of the development potential of a compound into a
drug product that meets specific and well-defined criteria.

The term “preformulation” has long been used to describe activities governing
the assessment of physicochemical properties of drug substances, with a view to
inform formulation development. Formulation development for new molecular
entities (specifically small molecules) has generally been accepted to mean imme-
diate release of solid oral dosage forms. Accordingly, for a number of years, the
standard preformulation package has been a detailed assessment of measured pKa,
log P, solubility and stability in aqueous buffers, and solid form properties includ-
ing crystallinity, thermal, and vapor sorption properties [2]. Historically, in addition
to assembling the preformulation package, the role of the preformulation
(developability) scientist has been to profile the physicochemical properties of
compounds entering the discovery funnel and also to apply their knowledge to
provide as-needed advice on formulations for pharmacology and ADME studies.

Over the years, shifts in discovery paradigms have driven gradual but big
changes in the business of preformulation and the role of the development scientist
[3]. The advent of high-throughput biological screening in the late 1980s has been
widely known to bias compound selection toward more potent compounds (aka the
high-affinity trap) that have subsequently been found to pose significant
druggability and developability challenges due to molecular size, lipophilicity,
etc. [4]. In a move to address these issues and to stay abreast of discovery efforts,
computational tools and high-throughput physicochemical property screens have
been developed and used as tools, along with preset criteria, to filter out compounds
with undesirable properties from progressing through the discovery flow schemes
[5]. As a result, the gap between discovery and development has narrowed signif-
icantly. However, preformulation scientists have largely operated with a rule-based
mindset, generating valuable data to inform the downstream organization of devel-
opment risks, without directly facilitating or influencing the discovery engine.

The growing complexity of biological targets, the continued push to increase
productivity, the influence of increasing partnerships, and in-licensing and
out-licensing activities have ushered in a new development paradigm. In concept,
this new paradigm is built on the foundation of critical drug product attributes that
are derived from the patient/caregiver profile and is a comprehensive assessment
encompassing the clinical and commercial development potential of a compound in
terms of synthesis of the drug substance, physical properties as they pertain to
isolation, handling, product performance, stability, absorption, the toxicology for-
mulation, and drug product parameters. Lastly, but equally important, the assess-
ment is also designed to provide the program team and the downstream
development organization with relevant information on developability and risk
profile as it relates to impact on timelines, flexibility, and costs.
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7.2 Components of Developability Assessment

The various components of developability assessment are described in the
paragraphs below. The screens and tools used to address these components are
not new and have been previously described in the literature. However, the distinc-
tive difference between the integrated approaches described in this chapter and a
“rule-based” approach is that the integrated approach applies these components in
the holistic context of the project and not based on simple rules set for individual
parameters. This approach looks at developability as it pertains to early clinical
development, but with a longer-term line of sight to commercial development. Thus
it takes into account the required patient/product profile, knowledge of the target
(first in class/best in class), risk tolerance based on business drivers, and impact of
recommendations on downstream activities (see Sect. 7.6 for details).

It is important to note that while the integrated approach provides a fair degree of
flexibility based on scientific judgment, it operates on the premise that all assess-
ments are ultimately tied to the clinical and commercial development potential of
the compound and risks associated therein. Accordingly, the integrated approach
specifies critical attributes (Table 7.1) that must be satisfied for a compound to be
selected for clinical development.

7.2.1 Synthetic Complexity of Drug Substance

Consideration of the synthetic complexity of a molecule is an important aspect of
drug design, as this parameter can have a significant impact on the cost to produce
the drug substance as well as on development timelines. While interest in this area
has grown over the past several decades, the topic has remained somewhat contro-
versial, due at least in part to the fact that there remains a degree of uncertainty in
what the term complexity means. For example, a molecule may be inherently
complex while still being readily accessible, as is the case with corticosteroids
which are typically manufactured starting from raw materials that are derived from
natural sources. Synthetic complexity can also change over time, as a result of novel
synthetic designs as well as advances in organic synthesis. For example, when the
molecule strychnine was first synthesized by Woodward in 1954, it required a total

Table 7.1 Ceritical attributes of a developable compound

1. Has no physical or chemical stability issue that would preclude development and when
formulated using reasonable means (Sect. 7.2)

2. Has a maximum absorbable dose that will allow exploration of the full clinical dose range
(Sect. 7.2)

3. Has demonstrated technical feasibility for an enabled formulation if needed for absorption
(Sect. 7.2)

4. Absorption parameters are well characterized and understood (Sect. 7.4)
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of 30 steps [6]. Since this original publication, a number of other researchers have
published improved routes to this molecule, the most recent of which was reported
in 2012, in which the total number of synthetic steps had been reduced to six [7].

hydrocortisone strychnine

The costs associated with the production of a pharmaceutical product as referred
to as cost of products sold (COPS) or more commonly cost of goods sold (COGS).
Based on data collected between 1975 and 2007, these costs represent a significant
percentage of total sales (mean COGS/sales = 35.95%) [8]. As molecules enter
commercial development, an assessment of COPS becomes increasingly important
to ensure that these costs are appropriate for the therapeutic class. For example,
COPS for a novel oncology asset are significantly less important than for a glucose-
lowering agent, in which the cost per day of therapy that the current market will
support is much lower. Costs to produce drug substance are even more significant
during clinical development, when routes used to produce drug substance have
likely not been optimized for large-scale production. Development timelines are
arguably more important than costs during this phase of development. In many
cases, project teams find themselves working in very crowded space with compet-
itors, making it is very important to complete clinical development and reach the
market as soon as possible. As a result, it has become increasingly important to
begin to assess complexity of chemical scaffolds under investigation during the
discovery phase to ensure that molecules brought forward carry with them an
appropriate amount of complexity relative to the competitive landscape as well as
to the therapeutic area to which they are targeted.

A number of different approaches have been used to estimate complexity. Early
in the discovery and development process, a simple “bucketing” method may be
appropriate, in which the complexity of new molecules is simply classified as high,
medium, or low. This method, while not detailed, does provide some general
guidance to project leaders and company stakeholders as to the high-level impli-
cations of the complexity of a given molecule in development. This type of
assessment is best considered in the context of other historical projects and
would, therefore, be expected to be different across different companies.

Complexity Costs Timelines

Above average Above average

Medium Average Average
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The bucketing approach relies on the knowledge of the individual(s) conducting
the assessment and, as a result, is highly subjective. However, given even a small
set of parameters (number of synthetic steps, number of chiral centers, method of
isolation, etc.), an assessment can be made that should provide a reasonable
estimate of the challenges likely to be encountered when first preparing the drug
substance during clinical development.

In an ideal setting, computational tools could be used to assess complexity,
which would remove subjectivity and bias that arises from the knowledge and
backgrounds of individual chemists. Such QSAR models of complexity have been
explored for several decades. The first significant report of the development of a
synthetic complexity index using graph theory was published in 1981 by Bertz at
Bell Laboratories [9]. Bertz’s complexity index C(n),¢) is still in use and is reported
for all chemical structures in PubChem. Work in this area has continued. Recently,
Bottcher reported [10] on the development of a new model based on an additive
approach. It utilizes the evaluation of the microenvironment of each individual
atom, ion, and molecule and summation of the properties of each atom into an
additive complexity score. Other more empirically based computational approaches
have been reported such as those by Barone and Chanon [11]. These models assess
complexity of a chemical structure by counting structural features (i.e., number of
heteroatoms, rings, chiral centers, etc.) and multiplying them by optimized
weighting factors. In another approach, Kjell et al. reported on the use of a model
of process mass intensity (PMI) as a surrogate for complexity [12]. PMI is defined
as the mass of materials consumed divided by the mass of product. A synthetic
scheme with a lower PMI would be considered a more efficient one than a
corresponding route with a higher PMI. In a somewhat hybrid version of these
approaches, authors from Merck have recently reported the results of a
crowdsourcing approach. In this study, a total of 386 chemists were asked to assess
2681 molecules taken from a combination of public and internal structure data-
bases. This manual assessment was then used to construct a QSAR model of
complexity in which additional structures could be assessed. While there was
considerable disagreement among different chemists, the authors demonstrated
that it was possible to utilize this dataset to build a self-consistent QSAR model
of complexity.

There will likely be a continued interest in the area of complexity determination.
Based on work in the current literature, a combination of different approaches may
ultimately be needed to fully assess complexity of new molecules. Due to the
increasingly complex nature of new biological targets as well as the compounds
designed to target them, this work will continue to play an important role in the
selection and development of new medicines.
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7.2.2 Physicochemical Properties

Generally, physicochemical properties include pKa, log P, solid-state properties,
solubility, and stability. As needed, additional assessments such as counterion
analysis (to confirm stoichiometry of salts) or Karl Fischer analysis (to confirm
hydration state) may be carried out to gain a deeper understanding of the solid form
of the compound. For a detailed treatment of the individual properties and structure-
property relationships, the reader is referred to sources in the literature [13]. The
importance of a deep understanding of these fundamental aspects cannot be
overestimated as it is essential for appropriate planning of studies and application
of results.

The means used to assess some of these properties may include in silico tools at
an initial stage, followed by in vitro screens of increasing depth as compounds
advance through the discovery flow scheme. The goal of these activities is to
initially triage compounds to support discovery efforts, followed by more rigorous
but phase-appropriate assessments to support clinical studies and toxicological
assessments as smaller numbers of compounds progress toward candidate selection.

In simple terms, the overarching goal of assessing physicochemical properties is
to understand (a) the dissolution and solubility of the compound under bio-relevant
conditions; (b) the solid form properties as they relate to isolation, handling, and
storage of drug substance; and (c) the impact of properties on drug product
attributes including formulation options. Ultimately, this understanding is directly
tied to the critical attributes of the compound that must be met for developability.

Table 7.2 lists the material requirements for assessing these properties, the tiered
manner in which they can be assessed, and the information that can be gleaned from
the data. Figure 7.1 describes the relationship between physicochemical properties
of drug substance, biopharmaceutical properties, and drug product performance.

For orally absorbed compounds, the primary goal is to ensure that absorption is
not a limiting factor for achieving the desired plasma exposures in clinical studies
(and beyond). This depends on the solubility (dissolved concentration in the
gastrointestinal tract) and permeability of the compound across the intestinal
membrane. Compounds that have aqueous solubility greater than 2 mg/mL across
the pH range of 2-8 and human intestinal permeability greater than 1.25 x 10~*
cm/s may be deemed highly absorbable provided the solubility is associated with a
developable solid (crystalline) form of the compound. (Developability criteria for
solid forms in this context will be described in detail later in this section.) For
compounds that do not fit this definition, a more detailed assessment of the
absorption potential has to be made, taking the projected clinical dose range into
context. These details are discussed in Sects. 7.3 and 7.4.

The secondary goals include the physical and chemical attributes of the com-
pound relevant to manufacturing of drug substance and drug product. Assessment
of physicochemical properties using a judgment-based integrated approach there-
fore is focused on achieving the primary goal while striking a reasonable risk-
benefit balance with the secondary goals. To some extent, the definition of
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Table 7.2 Developability assessment: physicochemical properties
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Minimum
material need

Property (mg) Place in flow scheme Implications and comments
pKa 1-2 mg Tier 1: in silico If compound has basic
Tier 2: measured (as needed; | pKa(s) >4 or acidic pKa
UV spectral shift [14] and (s) <7:
capillary electrophoresis Compounds with basic pKa
[15] commonly used) (s) may have large variabil-
ity in oral dose PK in dogs
depending on intrinsic solu-
bility and dosing conditions.
Gastric pH may impact oral
absorption. Extent of impact
will depend on the intrinsic
solubility and pKa(s)
Potential for salts to
improve physical properties
and/or dissolution rate
Log P and 1 mg Tier 1: in silico Log P >~3 may be accom-
Log D Tier 2: measured (as needed; | panied by solubility limita-
miniature “shake flask” [16] | tions and poor druggability
or HPLC ([17, 18]) are com- | [19]
monly used) Log P range, in combination
with solid form properties,
can have significant impact
on enablement potential of
poorly soluble compounds
[20]
Crystallinity/ | Tier 1: 1 mg Tier 1: polarized light Tier 1 (PLM)
phase purity | Tier 2: 5-10 mg | microscopy (PLM) Birefringence under PLM

(non-destructive)
Tier 3: 5 mg

(in combination with aque-
ous solubility)

Tier 2: powder X-ray dif-
fractometry (PXRD)

Tier 3: differential scanning
calorimetry and
thermogravimetric analysis
(DSC and TGA) [21]

generally characteristic of
crystalline solid. However,
additional characterization
of crystalline state will be
required as compound
advances through flow
scheme

If measured aqueous solu-
bility is associated with
non-birefringent (amor-
phous) solid, solubility
could drop ~>10x upon
crystallization of solid
Tier 2 (PXRD)
Characterizing crystallinity
and solid form of compound
Useful for assessing form
changes associated with
solubility values

When run as a variable
temperature or variable
humidity measurement, can
be used along with thermal
and/or vapor sorption data

(continued)
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Minimum
material need

Property (mg)

Place in flow scheme

Implications and comments

to understand form changes
Tier 3: DSC and TGA
When used along with
PXRD and PLM, provides
valuable information on
solid form, form transitions
upon heating and thermo-
dynamic aspects
Compounds with melting
points >200C and/or high
heats of fusion may point to
aqueous solubility limita-
tions

TGA (with MS) provides
valuable information on
residual solvents, solvates/
hydrates, and decomposi-
tion temperature

Solubility 5-50 mg

Tier 1: in silico or high-
throughput measurement
Tier 2: thermodynamic (plate
based automated or more
manual screens) [22]

A variety of screens avail-
able for Tier 1 assessment,
mostly to guide SAR and/or
to bin compounds into high/
med/low solubility bins [23]
Tier 2 should be designed to
understand bio-relevant sol-
ubility, pH-solubility rela-
tionships, solid form-
solubility relationship, and
preliminary information on
supersaturation potential
[24]

Stability 5-10 mg

Tier 1: in silico

Tier 2: solution stability
Tier 3: solid form stability,
forced degradation, degrada-
tion mechanism, and excipi-
ent compatibility

Autoxidation potential
assessment based on calcu-
lations of bond dissociations
energies [25-27]

Solution stability (chemi-
cal): generally covering
bio-relevant pH range and
oxidizing agents. Incubating
at 40C with sample time
points through 24 h useful.
May add light conditions.
Informs bio-relevant, han-
dling, and storage aspects
Solid form stability: chemi-
cal can be coupled with
physical (PXRD, SSNMR,
or other) to inform drug
product formulation and
manufacturing
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Fig. 7.1 Relationship between physicochemical properties of drug substance, biopharmaceutical
properties, and drug product performance

developability for the secondary parameters is a function of the goals for the clinical
program, the patient profile, and business considerations. These aspects will be
discussed in detail in Sect. 7.6.

7.2.3 Solid Form Criteria for Developability

The solid form parameters described here pertain to the isolation, handling, storage
and formulation aspects of the drug substance, and implications on product
manufacturing and performance. As with the rest of this chapter, the discussion is
focused on the application of these parameters to developability assessment. In
order to gain a more fundamental understanding of the basic scientific aspects that
are essential for working in this field, the reader is encouraged to refer to the
abundant literature on these topics [28—30].

7.2.3.1 Crystallinity: Polymorph Landscape and Associated
Thermodynamic Interrelationships

The basic goal of solid form screens in the lead optimization phase is to find a
stable, well-behaved form of the compound for development. Solid form screens
are generally designed to promote crystallization of compounds from slurries of
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various solvents and solvent-anti-solvent mixtures. The crystalline hits obtained
from such a screen are analyzed initially by microscopy and then powder X-ray
diffractometry (PXRD) in order to obtain preliminary information on the solid
form. The first evidence of the existence of polymorphic forms generally comes
from PXRD patterns, with thermogravimetry (TG) and TG with mass spectroscopy
(TG-MS) typically used to determine their solvation/hydration states. The thermo-
dynamic relationships between forms are generally elucidated from melting point
and heat of fusion data obtained from differential scanning calorimetry (DSC)
experiments. As a general rule, for monotropic systems, the highest melting form
is the most desirable as it is the most thermodynamically stable form. For
enantiotropic systems, it is important to determine the transition temperature and
whether this temperature is conducive to reproducibly isolating and handling the
form that would be thermodynamically stable under ambient conditions. Solid form
landscapes and the thermodynamic interrelationships between forms can be com-
plex with far-reaching implications on the regulatory submissions [31],
manufacturing process [32], and safeguarding intellectual property. However, all
activities leading up to selecting developable solid form(s) must always be done
with a clear understanding of the impact of the form properties on the absorption
parameters of the compound (see Sects. 7.3. and 7.4 for details) .

7.2.3.2 Hydrated and Solvated Forms

Solvated forms are generally not acceptable for development. The occurrence of
solvates in preliminary screens is typically a strong indication that the compound is
a prolific solvate former. Organic solvates are generally unacceptable for clinical
use and also limit the crystallization design space. In addition, solvated forms tend
to be more soluble in aqueous systems than non-solvated forms, and therefore, it is
both essential to find the means to isolate non-solvated forms and to assess
absorption parameters based on bio-relevant solubilities of these non-solvated
forms. Hydrated forms are generally less soluble than anhydrous crystalline forms
of compounds. The biggest risks with hydrated forms, however, have to do with
their physical stability under standard conditions of isolation, handling, and storage
of drug substance and drug product. Therefore, the stoichiometry of hydrates and
the potential for interconversion between the desired and undesired hydration states
must be tested with appropriate rigor for any changes in the water activity range of
0.2 to 0.8. If there is any evidence of instability, the risks and benefits of
recommending such hydrates for development must be carefully evaluated and
addressed. For example, a compound that may form a hydrate at critical water
activity levels >0.6 may be physically stable for reasonable durations of time as
drug in capsule when exposed to 40 °C/75% RH conditions but may convert
(to varying extents) to the hydrate when subjected to a fluid bed granulation process
that uses water as the granulation fluid. When using a judgment-based approach, the
risks versus benefits of recommending forms that do not meet these criteria must be
appropriately assessed and well understood.
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7.2.3.3 Isolation Mechanism

The preferred means to isolate the desired form of the drug substance is filtration.
Crystalline forms of compounds are generally amenable to isolation by filtration,
but oily liquids and amorphous materials that cannot be crystallized may be isolated
by evaporation or spray drying processes or through adsorption into inert porous
silica or other matrices [33, 34]. When non-filtration processes are necessary for
isolation, the development organization needs to be appropriately informed of
equipment needs, cost implications, and impact on scale and drug product presen-
tation. In addition, impact of the utilization of solid matrices on the physicochem-
ical and biopharmaceutical properties of the compound need to be properly
assessed and understood.

7.2.3.4 Chemical Stability

For the purpose of developability assessment, the potential for a compound to
undergo photodegradation, autoxidation, or degradation in aqueous or organic
systems must be well understood. For compounds that are unstable, the mechanism
of degradation, known genetic toxicity of degradants, implications on isolation,
handling and storage, and impact on packaging configurations (including in-use and
shelf-life stability) must be thoroughly assessed. If it is established that the risk of
degradation is significant, the regulatory implications on the impurity profile of the
drug substance and risk of degradation on practical time scales despite special
protection (light, oxygen, and humidity control) must be thoroughly evaluated. Any
special needs and restrictions must be fully communicated with the development
organization, in order to facilitate appropriate considerations for development
decisions based on business priorities for the compound/product.

7.2.3.5 Particle Morphology

While particle morphology is not a primary criterion in the solid form selection
process, particles with large aspect ratios can pose significant challenges with
isolation of drug substance by filtration and also in solid dosage form development
due to poor flow properties.

7.2.3.6 Particle Size Specifications

For orally administered solids that have an aqueous solubility <1 mg/mL, particle
size has a direct impact on dissolution and therefore the rate and extent of absorp-
tion [35]. Details of dissolution rate on absorption are discussed in Sect. 7.3.2, but
basically, particle size specifications must be set with due consideration given to the
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desired absorption profile and the resulting pharmacokinetic profiles in the clinic.
When particle size specifications are narrow and restrictive, impact on manufactur-
ing operations such as crystallization and milling processes, special facilities that
may be needed, limitations on scale, material specifications, robust processes to
meet the material specifications, etc. must be appropriately assessed and its impli-
cations communicated to the development organization.

7.2.4 Solid Form Selection for Absorption Enhancement
7.2.4.1 Salts and Co-crystals

Crystalline solids of neutral forms of compounds are generally the simplest and
therefore the most preferred forms when viewed in the context of drug substance
isolation and handling and drug product formulation processes. In some instances,
salt or co-crystal forms may be selected over neutral forms due to favorable solid-
state properties. However, as is often the case, a more important goal with solid
form selection is to find a crystalline salt or co-crystal form with improved
absorption parameters of the compound for clinical development, relative to the
neutral form of the compound. Whenever possible therefore, the risks versus
benefits of a developable crystalline salt or co-crystal form should be assessed
[29] relative to more expensive and complex systems for absorption enablement.
For compounds that have ionizable functional groups such that they have at least
one basic pKa > 4 or an acidic pKa < 7, salt formation is an attractive means to
enhance the rate and extent of absorption and to minimize gastric pH effects on the
rate and extent of absorption. These beneficial effects of salts are often the result of
reduced energy barriers to dissolution relative to the neutral forms of the compound
[36, 37]. In addition, the fact that dissolution of salts is often driven by their
microenvironment pH, the dissolution process is less sensitive to bulk fluid pH
conditions [38]. The importance of this latter attribute of salts is further explained in
Sect. 7.3.2. Salt formation can also be an effective method to counter solid-state
stability observed for the neutral compound.

The solubility and dissolution behavior of salts are more complex than those of
neutral forms of the compound as will be described in Sect. 7.3.2. In addition to the
physical properties that apply to neutral forms of compounds (as described in the
paragraphs that follow), salts are also susceptible to disproportionation within solid
dosage forms. The propensity to disproportionate when combined with standard
formulation excipients and implications thereof must be carefully studied and
addressed [39-41] before selecting salt forms to go into development. This
becomes even more important if the salt form is critical for the dissolution proper-
ties necessary for absorption [42] where a drug product with disproportionated salt
can lead to a subtherapeutic absorption. In assessing salts therefore, sufficient time
and material must be allocated in order to gain a thorough understanding of their
physicochemical and biopharmaceutical properties.
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Lastly, in selecting counterions for salt formation, due consideration must be
given to the safety of the counterions, impact of its molecular mass on the dose, and
dosage form of the drug product. For example, 1-hydroxy-2-naphthoic acid is
acceptable as a counterion for the long-acting inhaled drug salmeterol due to the
low, twice daily dose of 50 pg of this drug in the inhaled product. However, the
toxicology of this acid at higher doses may preclude its use in drug products that
may have to be dosed in milligram quantities (Lilly internal data). Similarly, maleic
acid is acceptable in low-dose products such as enalapril maleate, chlorpheniramine
maleate, and prochlorperazine maleate but carries renal safety issues [43] that may
make it unsuited for drugs that require doses greater than ~100 mg. Therefore, in
general, while the absorption profile and solid form properties of the selected salt
form are always the main focus, a toxicology opinion of the selected counterion
must always be obtained as safety overrides all other aspects of salt form selection.

For compounds that do not have ionizable functional groups, co-crystal forma-
tion is an option for improving solid-state, stability, and/or dissolution properties of
compounds [44, 45]. For a comprehensive description of standard co-formers used
to make co-crystals, screening and characterization techniques, phase diagrams,
merits, limitations, and recent examples, the reader is referred to reviews by Brittain
and Williams et al. [46, 47]. In addition, the reader is also referred to the recent
regulatory guidance on this topic [48].

In some instances, the dissolved concentrations of salt or co-crystal forms may
result in very high degrees of supersaturation relative to their solubility in the
intestinal luminal milieu. In order to stabilize the supersaturation that is thus
achieved, and facilitate the absorption enhancement that these forms were designed
to produce, these high energy solid forms of compounds are formulated as blends
with functional excipients [49, 50]. Generally, these functional excipients serve to
inhibit precipitation of the supersaturated solution and/or increase the microenvi-
ronment solubility and include polymers, complexing agents, or pH-modulating
agents [51]. For compounds that lend themselves to this approach, this form of
absorption enablement is a cheaper and simpler alternative to amorphous solid
dispersions. However, as part of the developability assessment, it is very important
to make sure that these solid forms and functional excipients that may be essential
for dissolution enhancement (and absorption) have acceptable physical and chem-
ical compatibility with the compound in question.

7.2.4.2 Amorphous Solid Dispersions

Over the past decade, amorphous solid dispersions have been extensively discussed
as a means to enhance the apparent solubility (and thus absorption) of compounds
formulated as solid oral dosage forms [52—54]. They are generally produced by spray
drying a solution of the active drug and polymer, such that the resulting powder is a
solid solution of amorphous drug homogeneously dispersed in the polymer matrix. In
some instances, a surfactant or other agent is also included in the mix in order to
further enhance the solubilization of the compound and/or stabilization of the
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Fig. 7.2 Tllustration of solid form and absorption potential screening in lead optimization

system. The polymer(s) in these systems serve to stabilize the drug substance in an
amorphous state for a reasonable duration of time to support manufacturing and
product shelf life when stored under appropriate conditions of temperature and
humidity. They can also function to varying degrees as solubilizing agents and/or
as precipitation inhibitors that sustain supersaturation of the dissolved compound in
the aqueous environment of the gut, thus maximizing the potential for absorption.

While spray drying is still the mainstream technology for producing solid
dispersions at this time, hot-melt extrusion technologies are developing as a viable
alternative when compound and polymer properties are amenable to the
process [55].

If it has been determined that enablement through amorphous solid dispersions is
essential to achieve the target absorption profile required for the clinical develop-
ment of a given compound (Fig. 7.2), then the feasibility of developing a viable
amorphous solid dispersion system that would be suited for the intended drug
product must be fully investigated through appropriate screens. This includes
screening for polymers and other excipients used in the system to ensure an optimal
degree of interaction (and compatibility) with the drug substance, such that there is
no crystallization and/or phase separation during handling and storage. It must also
be confirmed that the glass transition temperature of the resulting system is suffi-
ciently high to ensure that there is no risk of crystallization during the product’s
shelf life [56, 57]. In addition, the mechanism through which the polymer (and any
additional excipients) impacts dissolution and supersaturation in vivo must also be
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well characterized and understood [58]. Finally, these systems must be optimized
for the largest possible drug loads so as to strike a suitable balance with product
stability and dissolution performance [46]. Typical drug loads in these systems
range from 20-30%, while 2 and 50% would be considered to be the lower and
upper limits based on stability and dose size.

7.2.5 Integrated Developability Risk Assessment
and Feedback to Discovery Teams

The solid form and formulation platform selection activities to support clinical (and
commercial) development must progress hand in hand with other activities in the
lead optimization phase. As the pharmacology, ADME properties, and toxicology
of a given compound become better understood and the discovery team increases its
level of investment in the compound, the critical developability attributes of the
compound must be assessed in a commensurate manner. Figure 7.2 illustrates the
interrelationship between solid form development activities and absorption poten-
tial assessment screens. Absorption potential assessment is discussed in detail in
Sect. 7.4. As data on the solid form properties and absorption potential is gathered,
challenges for development must be communicated with discovery teams and the
downstream development organization, such that risks and benefits can be weighed
appropriately against the competitive landscape and any unmet medical needs. If
the challenges are such that the compound is deemed to be not developable by
reasonable means (Table 7.1), it is important to inform the discovery team in order
to either impact the SAR activities or to aid with the selection of appropriate
compounds for development.

Thus the screens used in developability assessment should be designed such that
they answer critical questions using the minimum amount of material and time and
are performed in a staged and phase-appropriate manner, so as to maintain an active
feedback loop to discovery. If compound properties point in the direction of
enablement screens, an increased compound requirement must be anticipated and
the discovery teams informed so appropriate funds and chemistry resources can be
planned. Data generated from these screens should be interpreted in the context of
the larger goals of the project and clinical development plans and proper judgment
applied in decision-making.

7.2.6 Clinical and Commercial Formulations

Clinical and commercial formulations are described in detail in Chap. 10. This
section carries a very brief overview of developability risk assessment of com-
pounds in the context of clinical and commercial formulations.
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Every organization has its own strategy for clinical and commercial formulation
design and development. But in general, clinical formulations are simple in
composition and in the process of “manufacture.” In view of the fact that attrition
in Phase 1 (and in Phase 2) is relatively high, the goal of these studies is to quickly test
the clinical hypothesis, ADME parameters, and safety margins to the desired clinical
exposures. As these initial studies are small and of short duration, the demand for
drug product is generally small enough such that it can be met using simple
formulations that can be produced through manual compounding operations in the
clinical pharmacy or manufactured using simple processes in a GMP manufacturing
facility. Key considerations influencing the drug product presentation and the means
to produce the supplies for these studies include geographical location(s) of clinical
testing site(s), healthy volunteers versus patients, and clinical study design aspects
such as duration of studies and any seamless transitions to the next phase.

In instances where special formulation, handling, and packaging (e.g., humidity
and/or light conditions) are necessary to accommodate stability issues, the risk of
degradation of the drug substance and drug product and the implications thereof
need to be evaluated and fully understood. When milling or other means of particle
size control are essential for product performance, the implications on the
manufacturing process and the handling properties of the milled material (in terms
of stickiness, tendency to agglomerate, flow properties, etc.) need to be evaluated
and appropriately addressed. If the compound belongs to a special containment class
due to occupational exposure hazards, the choice of manufacturing sites that are
equipped to handle the material might be limited and therefore factored into devel-
opment plans. In addition, the development organization needs to be informed if any
of these properties pose potential risks to commercial development.

For orally administered drugs, clinical formulations include simple drug in bottle,
drug in suspension or solution, neat powder in capsule, dry blend powder in capsule,
and, less commonly, tablets and powder or granules in a sachet. Transdermal
formulations are typically simple gels or solutions with or without occlusion by a
patch. Formulations such as orally disintegrating tablets, modified release tablets,
and buccal and sublingual tablets may be used in small clinical studies to answer
specific questions pertaining to drug product design, absorption parameters, and the
resulting pharmacokinetic profiles essential for the desired clinical outcome. Details
on developing these and other formulations are discussed in chapter 14.

7.3 Drug Product Performance

7.3.1 Product Performance Criteria in the Context of PK-PD

The PK-PD relationship of the compound is the projected relationship between
plasma (or other target tissue) drug exposure and the pharmacodynamic response.
These projected relationships are generally based on clearance and volume of
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distribution estimated from preclinical data and come with a certain level of
uncertainty. As a result, the dose that is projected to result in efficacious plasma
exposure is typically not a well-defined value, but a range defined by the assump-
tions of the underlying models. In addition, in Phase 1 studies, it is standard practice
to explore doses beyond the projected efficacious dose range to assess safety and
tolerability (while staying within the limits enforced by regulatory agencies).
Typically, this amounts to a minimum of three- to fivefold over the upper end of
this dose range. It is the responsibility of the development scientist to have some
understanding of how these estimated ranges are arrived and, more importantly, to
make sure that the drug product will have an acceptable absorption profile (i.e., rate
and extent of absorption) that will cover this dose range with adequate separation of
exposures across the doses. This concept is illustrated in Fig. 7.3.

7.3.2  Solubility and In Vitro Dissolution

Solubility is an extremely important physicochemical property as it has a direct
bearing on the absorption potential of compounds. It is a very simple concept on the
surface but prone to lead the investigator to wrong conclusions unless proper
techniques are used for measurements and proper principles applied for interpreta-
tion of results. For details on solubility and solubility measurement as they pertain
to pharmaceuticals, the reader is referred to reviews on the topic [59].

In actual practice, the challenge that the developability scientist faces is that
due to the nature of the discovery workflow, solubility measurements and the



248 S.N. Bhattachar et al.

judgment-based decisions made from the results take on a tiered approach that
spans the entire lead optimization phase. The earliest assessment of solubility
generally comes from computational predictions. In our experience, these predic-
tions are best suited for flagging compounds with low solubility in aqueous buffers.
Once material actually becomes available, measured solubility data is usually
collected using high-throughput assays. Results from the high-throughput assays
generally do not come with adequate (or any) information on the associated solid
form and impurities of the compound, and so, they should be used with an
appropriate level of caution. This is especially true when the initial measured
solubility value is in the 0.01 to ~0.1 mg/mL range because it can sometimes fuel
false hopes among chemists who are striving hard to improve the solubility of their
compounds. Material made in discovery is often amorphous, partially crystalline,
and metastable crystalline form or an organic solvate. Until the compounds pro-
gress through the flow scheme and are made in gram quantities for additional
testing to become a potential clinical candidate, they do not warrant extensive
solid form characterization. However, consistent with the Tier 1 approach outlined
in Table 7.2, simple assessments such as PLM might still be beneficial. When
solubility is measured using more refined techniques and with developable crystal-
line solids, there is a high propensity for the values to be far lower relative to initial
results. Thus as a rough rule of thumb, judgment on solubility results from initial
measurements should be based on tolerance for a tenfold drop in the value [60].
There is abundant discussion in the literature on the use of bio-relevant media for
solubility measurements [61]. While there is general acceptance that Dressman’s
recipes [62] are well researched and most relevant, there are also numerous
examples of the use of alternate recipes with isolated examples of success in
understanding in vivo solubility [63]. In reality, simulated fluids are valuable but
do not always mimic the mechanism of solubilization and/or supersaturation that
occurs in vivo [64]. In addition, there is large interindividual variability in the actual
composition of gastric and intestinal fluids [65], pH, fluid volumes, transit times,
etc. Therefore, when the solubility of a compound is highly sensitive to bile-salt
concentration in simulated fluids, it is extremely risky to rely heavily on a single
value such as fasted- or fed-state simulated intestinal fluid (FaSSIF or FeSSIF)
solubility unless it is supported by robust in vivo data (described in Sect. 7.4).

7.3.2.1 In Vitro Dissolution

While solubility is a fundamental parameter for absorption and is used as a key
input in the most basic estimations of maximum absorbable dose [66], actual
dissolved drug concentration at the absorption site that is achieved in a
bio-relevant time frame is often different from equilibrium concentrations (i.e.,
solubility). More generally, dissolution, supersaturation, and precipitation (for
basic compounds, solution formulations, etc.) will impact actual dissolved drug
concentrations at the absorption site. For compounds that have the potential to
become clinical candidates, therefore, in vitro measurement of dissolved drug
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concentrations in a simulated bio-relevant setting (under dynamic or non-sink
conditions) provides essential information for absorption modeling [67].

In vitro dissolution testing in developability assessment is centered on
understanding the biopharmaceutical properties of the drug substance and/or drug
product. Accordingly, these tests are generally conducted under non-sink condi-
tions that simulate stomach and intestinal fluid composition, pH, volume, mixing,
etc. The compound being tested in these systems has the “opportunity” to dissolve
in the simulated gastric environment before it enters the absorption environment. At
a basic level, standard fasted conditions of pH, compositions, etc. are simulated.
Thereafter, physiologically relevant changes to these parameters are made, and
dissolution performance under these conditions is further evaluated.

There is no standard guidance on conducting these dissolution studies. The
ORBITO project conducted an extensive study of the literature on this topic and
published a comprehensive review that describes the pros and cons of the existing
tools and practices [68]. It is a generally accepted fact that regardless of how the
experiments are conducted, the aim is to understand the mechanism of dissolution
and the impact of bio-relevant boundary conditions on the system. This information
ultimately feeds into drug product design, where the goal is to ensure that the rate
and extent of absorption of the compound under testing conditions described in the
protocols will meet the needs of the clinical program.

In our experience, the “two-step” dissolution system [69] and the artificial
stomach and duodenum (ASD) [70] are well suited for biopharmaceutical assess-
ment in the lead optimization phase. Variations of these models include the pH
dilution model [71] and the gastrointestinal simulator (GIS) [72]. The two-step
dissolution system has a greater throughput and provides an initial read on the
potential for supersaturation of compounds. The ASD has a lower throughput but
serves as a tool for a better understanding of dissolution/supersaturation/precipita-
tion phenomena as a function of various physiological conditions. One limitation of
both systems, however, is that for highly permeable compounds, they might be
more biased toward precipitation relative to in vivo conditions.

Despite the advances in bio-relevant dissolution testing and in silico absorption
modeling technologies, predicting absorption in humans might sometimes require
some form of in vivo confirmation to assist with clinical formulation platform
selection [73].

7.4 Absorption Modeling

7.4.1 Basic Principles and Commonly Used Tools

Absorption modeling is an important tool for the developability scientist as it allows
for the translation of physicochemical properties such as solubility and permeability
to in vivo performance measures such as the amount or fraction of drug absorbed
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and the instantaneous systemic drug concentration. The level of detail of the model
output dictates the complexity of the model. Absorption models consist of simple
mathematical expressions such as the maximum absorbable dose (MAD) equation
[66] to sophisticated compartmental models [74] such as that utilized in the
GastroPlus™ commercial software package (Simulations Plus Inc., Lancaster,
CA). Both provide an estimate of a molecule’s absorption potential but differ in
the level of detail used in describing the mechanisms involved in the absorption
process and as a result what one can learn from applying the model. According to
the MAD equation, the maximum absorbable dose is defined as

MAD =S x K, x SIWV x SITT

where S is the intestinal solubility, K, the permeability, SIWV the small intestinal
water volume, and SITT the small intestinal transit time. While simplistic, the
MAD equation takes into account some of the key components contributing to
absorption albeit with gross approximations. When interpreted in conjunction with
estimates of clinically efficacious dose and the intended clinical testing dose range,
it can provide a preliminary assessment of the absorption potential of a molecule.
Furthermore the simplicity of the model allows for a high-throughput assessment of
absorption alongside the optimization of druggable properties in the discovery
engine. If sufficiently reliable in silico global or preferably SAR specific models
are available for S and K,, it is also possible to consider including absorption
potential as a parameter in de novo design. The limitations of solubility measure-
ments during early discovery as described elsewhere in this chapter as well as the
uncertainty in accuracy of in silico models utilized should be fully integrated into
the interpretation of data from such a high-throughput absorption assessment
system.

While the MAD equation can be a powerful screening tool to assess absorption
early in discovery, its utility becomes limiting in activities related to the design and
development of a drug product for optimal clinical performance, manufacturability,
and commercialization. The limitations of the MAD equation can be effectively
summarized as limited mechanistic details in its integration of physicochemical and
physiological properties. These shortcomings have been addressed by various
improvements such as compartmental absorption transit models, microscopic
mass-balanced absorption models [75], bile-salt solubilization models [76], and
ultimately the implementation of the GastroPlus ACAT model which integrates
many of these advances into an easy-to-use commercial software package. The
reader is referred to numerous in-depth reviews for details of the various mecha-
nisms that are currently represented in absorption models, their strengths and
shortcomings, and their complex interdependence on one another [77]. At a high
level, the GastroPlus ACAT model can be summarized in Fig. 7.4.

In addition to being highly mechanistic, the true utility of such models comes
from their integration with pharmacokinetic models (non-compartmental, multi-
compartmental, and physiologically based), metabolism models, and multispecies
physiological models, thus providing the developability scientist the ability to test
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Fig. 7.4 GastroPlus advanced compartmental absorption and transit (ACAT) model

hypotheses related to drug product performance against in vivo preclinical and
clinical data.

A key area of absorption modeling for the developability scientist is in evaluat-
ing the effects of defining the solid-state and its associating properties such as
particle size which affects the solid’s surface area and the kinetics of dissolution.
While the MAD equation assumes the equilibrium solubility is realized instanta-
neously, in the in vivo setting, the intestinal concentrations achieved from an oral
dosage form are initially limited by the dissolution of solid as described by the
Nernst-Brunner equation:

dC DS
dt  Vh (€ =©)

where D is the diffusion coefficient (diffusivity), S is the surface area of solids, V is
the volume of the dissolution media, 4 is the diffusion layer thickness, C; is the
solubility, and C is the concentration at time f. Absorption modeling allows for
sensitivity analysis of in vivo exposure changes to drug product particle size
changes. This is an important assessment as a small particle size requirement
optimal for absorption and product performance may be suboptimal in flow prop-
erties critical for manufacturability. Similarly one can remove a development
constraint by realizing a drug product’s absorption has little or no particle size
sensitivity in which case the particle size specification is driven solely by manu-
facturability. Absorption modeling can also provide an assessment of relative
bioavailability changes from modifications to the drug product unit formula through
the development of mechanism-based IVIVx models [78, 79].
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7.4.2 Absorption Parameters from Modeling

While in vitro solubility and permeability measurements can provide an early
assessment of absorption and performance of a drug or drug product, it is never-
theless an important exercise to confirm that these absorption parameters are in vivo
relevant and that clinical performance can be predicted with high confidence. In the
case of solubility, it has been observed that solubility measured in bio-relevant
simulated fluids generally is representative, but there are instances where there are
significant differences in comparison to measurements made in extracted bio-fluids
[80]. As such, it is important to confirm absorption parameters using in silico tools
such as GastroPlus models. This can be achieved by building an absorption model
with in vitro parameters and comparing the predicted results with preclinical in vivo
data. For cases where predictions from an absorption model using in vitro absorp-
tion parameters agree well with preclinical in vivo data, it can be concluded that the
in vitro data are representative and can be used to predict clinical performance with
confidence. If on the other hand there is poor agreement, the initial in vitro
absorption parameters can be optimized to obtain maximum agreement between
predicted and preclinical in vivo data. This set of optimized in vivo parameters can
now be used to predict clinical performance. This general scheme is summarized in
Fig. 7.5. Two case studies are included for illustration.

In vitro solubility, g R In 5“"‘:_0
Permeability, —_—> £ Absorption
dissolution i Model

3 .

2 In vivo

é Absorption
-3 Parameters
8

Dose Administered

[ Absorption in Humans (dashed box — planned clinical dose range) ]

Fig. 7.5 In silico absorption modeling and in vivo absorption parameters
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Fig. 7.6 Case Study 1: In silico predicted and actual in vivo PK profiles of molecule A in rat

7.4.2.1 Case Study 1

Molecule A is a weak acid with measured pKa of 4.74. Solubility in bio-relevant
media was measured to be high (0.1 mg/mL in SGF and 0.393 mg/mL in FaSSIF).
Passive permeability was predicted to be high (2.99 x 10~* cm/s).

Figure 7.6 compares predicted concentration-time (Cp-time) profile from
models using in vitro solubility measurements (‘“‘un-optimized absorption model”)
and optimized solubility values (“optimized absorption model”) with measured
in vivo Cp-time profiles in rats. It was observed that measured stomach and
intestinal solubilities of 0.1 mg/mL and 0.393 mg/mL, respectively, overpredict
observed measured in vivo concentrations (R* = 0.523). An optimized absorption
model was built using stomach and intestinal solubility of 0.001 mg/mL and
0.025 mg/mL, respectively. Passive permeability remains unchanged. This model
provided good agreement with measured in vivo data (R* = 0.935).

Given an absorption model for rat, one can readily utilize the model to predict
performance in human by applying human physiological parameters. Such a model
can be utilized to answer a range of clinical performance questions. In this case an
early assessment of Fa vs dose was conducted to evaluate absorption potential.
Figure 7.7 shows relative absorption as measured by the ratio of amounts absorbed
from both optimized and un-optimized absorption models. Relative clinical absorp-
tion is defined as

AUCEF’ Fiaix(l}i)XDom Fa; x Dose;
AUCgiI = FaUx(l—C:e])xDaseU = Fay x Doseg
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Fig. 7.7 Case Study 1: Predicted and actual relative absorption of compound A in humans based
on optimized and un-optimized models

Also shown is the relative absorption as measured by the ratio of AUC® ~’ from
clinical data. As can be seen, the optimized solubility model agrees best with the
clinical data. The optimized absorption model predicted an exposure plateau to
occur between 100 and 150 mg doses due to solubility-limited absorption. This is
reflected by the clinical data at the 150 mg dose. Conversely the un-optimized
model predicts dose-linear exposure up to and beyond 450 mg.

7.4.2.2 Case Study 2

Molecule B is a weak base with low solubility in bio-relevant media (2 mg/mL in
0.01 N HCI and 0.018 mg/mL in FaSSIF). The passive permeability of this
compound is predicted to be moderate-high (1.15 x 10~* cm/s). The oral bioavail-
ability of molecule B in rats and dogs as estimated from this study was 64% and
60%, respectively. An absorption model built using the in vitro solubility and
permeability values did not provide a good fit to the in vivo Cp-time data. There-
fore, the smallest possible optimization of both parameters was performed.

Figure 7.8 shows an overlay of the experimental Cp-time profile with the
simulations obtained from the initial (“un-optimized”) and optimized permeability
and solubility (“optimized”) from rats and dogs. The optimal absorption parameters
are 2 mg/mL and 0.031 mg/mL for the gastric and intestinal solubility, respectively,
and 3.8 x 10~* cm/s for the permeability.
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As was conducted previously, the optimal preclinical absorption model was
utilized to predict absorption in humans for a given dose range.

Figure 7.9 shows the predicted relative absorption of molecule B in humans as a
function of dose using both the optimized and un-optimized absorption models.
Also shown in the plot is the relative clinical AUC" of the compound as a function
of dose. As can be seen, the optimized absorption model is the best predictor of the
dose-exposure relationship observed in clinical data.

7.5 Toxicology Formulation

The topic of toxicology formulations has been covered in detail in the literature
[81]. In the context of developability assessment, toxicology formulations are
assessed in terms of their acceptability for long-term toxicology studies and the
level of complexity associated with the formulation. For example, formulations that
use solid dispersions of the drug substance would be considered more complex and
expensive, requiring longer lead times and additional material (to compensate for
manufacturing losses) relative to crystalline material that can be dosed as aqueous
suspensions.
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Fig. 7.9 Case Study 2: Predicted and actual relative absorption of compound B in humans based
on optimized and un-optimized models

7.6 Developability Summary

Most companies require a comprehensive summary of the developability assess-
ment of new molecular entities when they are nominated as candidates for the
clinical development. Integrated developability assessment, the subject of this
chapter, includes the following major components and their interrelationships:
(a) drug substance and drug product parameters, (b) patient-centered design param-
eters, and (c) business parameters.

7.6.1 Drug Substance and Drug Product Parameters

These have been described in sufficient detail in Sects. 7.2 and 7.3. In the overall
developability summary, these assessments must be organized in a manner that
captures all the information in a manner that is meaningful to both the discovery
and development organizations. Table 7.3 shows one such format. Each
subcomponent of this assessment may further be scored depending on how they
compare with what might be considered “standard” and/or the potential impact of
the parameters on cost, timelines, and flexibility of clinical and commercial devel-
opment activities.



7 Developability Assessment of Clinical Candidates 257

Table 7.3 Drug substance and drug product developability summary

Parameter Assessed in terms of

Drug substance Synthetic complexity, cost, demand, and containment class

Physical properties Solid form properties as they pertain to isolation, handling, and
storage

Drug product design Efficacious dose, Phase 1 dose range and biopharmaceutical
properties

Drug product Product platform, manufacturing and packaging, any special

manufacturing facilities

Toxicology formulation “Standard” versus “nonstandard” formulations

7.6.2 Patient-Centered Design Parameters

This parameter refers to the design parameters of the drug product as they relate to
the disease state, patient, and caregiver profiles. For example, if a given drug
product is intended for use in mild cognitive impairment, the patient population
might generally be expected to be able to self-administer the drug as a conventional
orally dosed tablet of reasonable dose. Twice daily dosing, while not preferred,
might still be acceptable. However, if the compound is intended for use in severe
dementia associated with Alzheimer’s disease, the patient might have swallowing
difficulties and also be dependent on a caregiver in a nursing home to administer the
drug. Thus once daily dosing of a very small swallowable tablet, an orally
disintegrating tablet, or a transdermal patch might be a requirement for the product
to be commercially viable. Generally speaking, patient-centered design parameters
must be taken into account in building lead optimization flow schemes and setting
the critical attributes for a clinical candidate.

7.6.3 Business Parameters

These include a complex matrix of parameters such as the extent of understanding
of the biological target (i.e., novel versus validated), the competitive landscape,
priority in the company’s pipeline, potential development costs, etc. Generally,
novel targets that are of high priority to the company are geared toward meeting the
near-term goals of clinical target validation through target engagement and dem-
onstration of a pharmacodynamic response. Such “first-in-class” assets often enter
development as long as the clinical development criteria are met, even though
commercial viability may be uncertain.

When viewed in the context of all three parameters described above, the
compounds nominated as clinical candidates fall into four major categories as
shown in Fig. 7.10.
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Fig. 7.10 Schematic depiction of clinical candidates based on drug substance and drug product
(DS and DP) attributes, patient centricity, and business factors

7.7 Case Studies/Illustrative Hypothetical Scenarios

The concepts presented in this chapter are best exemplified by examining the
development histories of molecules that have progressed through -clinical
development.

7.7.1 mTOR Inhibitors Rapamune®™ (Sirolimus) and Afinitor®
(Everolimus)

The introduction of inhibitors of the mammalian target of rapamycin (mTOR) over
the last several decades highlights the role of developability concepts in the
development of novel medicines. In 1999, the first commercial formulation of
sirolimus (Rapamune) became available. The compound was formulated as an
oral solution of 1 mg/mL in Phosal 50 PG and polysorbate 80. This formulation
was required to overcome the very poor physical properties of the compound (logP
4.3, aqueous solubility 2.6 pg/mL), which limited oral absorption. Despite the use
of this solubilizing formulation, the compound still showed high variability in
patients, with some subjects having ~8x higher exposure than others. Oral bio-
availability of the solution formulation was estimated to be ~14% [82]. From a
patient standpoint, this formulation also suffered from having an unpleasant taste
and required refrigerated storage and protection from light. In addition to the
inconvenience these requirements impart to the patient, it is arguably more
concerning that any noncompliance with the recommended storage conditions
could lead to degradation of the compound. Failure to follow the prescribed dosing
regimen could also negatively impact the compound’s efficacy. With reference to
Fig. 7.10, this drug product presentation would put Rapamune in the D category.
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To provide an alternate dosage form, an oral tablet formulation of sirolimus was
later developed utilizing NanoCrystal® technology from Elan Corporation, which
greatly improved patient convenience in terms of taste and ease of administration
and storage.
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Given these clear hurdles to development, at first glance it may be surprising that
this compound advanced into clinical development at all. The fact that a molecule
such as sirolimus was taken to market, despite having significant development
challenges, highlights the influence of important business drivers and a recognition
that the compound filled an unmet medical need. The compound was able to
advance, despite the added cost and complexity required for its development.

Research has continued in the development of additional inhibitors of t