
Chapter 4
Passive State Space Systems

In this chapter we focus on passive systems as an outstanding subclass of dissipative
systems, firmly rooted in the mathematical modeling of physical systems.

4.1 Characterization of Passive State Space Systems

Recall from Chap.3 the definitions of (input and/or output strict) passivity of a state
space system, cf. Definition 3.1.4.

Definition 4.1.1 A state space system � with equal number of inputs and outputs

ẋ = f (x, u), x ∈ X , u ∈ U = Rm

y = h(x, u), y ∈ Y = Rm (4.1)

is passive if it is dissipative with respect to the supply rate s(u, y) = uT y. Further-
more, � is called cyclo-passive if the storage function is not necessarily satisfying
the nonnegativity condition. � is called lossless if it is conservative with respect to
s(u, y) = uT y. The system � is input strictly passive if there exists δ > 0 such that
� is dissipative with respect to s(u, y) = uT y − δ||u||2 (also called δ-input strictly
passive). � is output strictly passive if there exists ε > 0 such that � is dissipative
with respect to s(u, y) = uT y − ε||y||2 (ε-output strictly passive).
Also recall from Chap.3 that there is a minimal storage function Sa (the available
storage), andunder a reachability condition, a storage function Sr (the required supply
from x∗), which is maximal in the sense of (3.26); see also Corollary 3.1.21. The
storage function in the case of the passivity supply rate often has the interpretation
of a (generalized) energy function, and Sa(x) equals the maximal energy that can be
extracted from the system being in state x , while Sr (x) is the minimal energy that
is needed to bring the system toward state x , while starting from a ground state x∗.
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60 4 Passive State Space Systems

In physical examples, the true physical energy usually will be “somewhere in the
middle” between Sa and Sr .

Assuming differentiability of the storage function (as will be done throughout
this section), passivity, respectively input or output strict passivity, can be character-
ized through the differential dissipation inequalities (3.36). These take a particularly
explicit form for systems which are affine in the input u (as often encountered in
applications), and given as

� f t
a : ẋ = f (x) + g(x)u

y = h(x) + j (x)u,
(4.2)

with g(x) an n×m matrix, and j (x) anm×m matrix. In case of the passivity supply
rate s(u, y) = uT y the differential dissipation inequality then takes the form

d

dt
S = Sx (x)[ f (x) + g(x)u] ≤ uT [h(x) + j (x)u], ∀x, u, (4.3)

where, as before, the notation Sx (x) stands for the row vector of partial derivatives
of the function S : X → R. Note that

Sx (x)[ f (x) + g(x)u] − uT [h(x) + j (x)u] =
1
2

[
1 uT

]
[

2Sx (x) f (x) Sx (x)g(x) − hT (x)
gT (x)STx (x) − h(x) −( j (x) + j T (x))

] [
1
u

]
(4.4)

while similar expressions are obtained in the case of the output and input strict
passivity supply rates.

This leads to the following characterizations.

Proposition 4.1.2 Consider the system �
f t
a given by (4.2). Then:

(i) �
f t
a is passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) −( j (x) + j T (x))

]
≤ 0 (4.5)

(ii) �
f t
a is ε-output strictly passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) + 2εhT (x)h(x) Sx (x)g(x)−hT (x) +kT (x)
gT (x)STx (x) − h(x) + k(x) �(x) − ( j (x) + j T (x))

]
≤ 0, (4.6)

where k(x) := 4εhT (x) j (x), �(x) := 2ε j (x) j T (x).
(iii) �

f t
a is δ-input strictly passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) 2δ Im − ( j (x) + j T (x))

]
≤ 0 (4.7)

The proof of this proposition is based on the following basic lemma.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Lemma 4.1.3 Let R = RT be an m×m matrix, q an m-vector, and p a scalar. Then

uT Ru + 2uT q + p ≤ 0 , for all u ∈ Rm , (4.8)

if and only if [
p qT

q R

]
≤ 0 (4.9)

Proof (of Lemma 4.1.3) Obviously, the inequality (4.9) implies

uT Ru + 2uT q + p = [
1 uT

] [
p qT

q R

] [
1
u

]
≤ 0, ∀u ∈ Rm (4.10)

In order to prove1 the converse implication assume that

vT

[
p qT

q R

]
v > 0 (4.11)

for some (m + 1)-dimensional vector v. If the first component of v is different from

zero we can directly scale the vector v to a vector of the form

[
1
u

]
while still (4.11)

holds, leading to a contradiction. If the first component of v equals zero then we
can consider a small perturbation of v for which the first component of v is nonzero
while still (4.11) holds, and we use the previous argument. �

Proof (of Proposition 4.1.2) Write out the dissipation inequalities in the form
uT R(x)u + 2uT q(x) + p(x) ≤ 0, and apply Lemma 4.1.3 with R, q, p additionally
depending on x . �

Example 4.1.4 It follows from (4.7) that an input strictly passive system necessarily
has a nonzero feedthrough term j (x)u. An example is provided by a proportional–
integral (PI) controller

ẋc = uc
yc = kI xc + kPuc

(4.12)

with kP , kI ≥ 0 the proportional, respectively integral, control coefficients. This is
a kP -input strictly system with storage function is 1

2kI x
2
c , since

d

dt

1

2
kI x

2
c = uc yc − kPu

2
c (4.13)

A drastic simplification of the conditions for (output strict) passivity occurs for
systems without feedthrough term ( j (x) = 0) given as

1With thanks to Anders Rantzer for a useful conversation.
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�a : ẋ = f (x) + g(x)u
y = h(x)

(4.14)

Corollary 4.1.5 Consider the system �a given by (4.14). Then:
(i) �a is passive with C1 storage function S if and only if for all x

Sx (x) f (x) ≤ 0
Sx (x)g(x) = hT (x)

(4.15)

(ii) �a is ε-output strictly passive with C1 storage function S if and only if for all x

Sx (x) f (x) ≤ −εhT (x)h(x)
Sx (x)g(x) = hT (x)

(4.16)

(iii) �a is not δ-input strictly passive for any δ > 0.

Proof Use the well-known fact that

[
k qT

q 0m

]
≤ 0 (with 0m denoting the m × m zero

matrix) if and only if q = 0 and k ≤ 0. �

Remark 4.1.6 For a linear system

ẋ = Ax + Bu
y = Cx + Du

(4.17)

with quadratic storage function S(x) = 1
2 x

T Qx, Q = QT ≥ 0, the passivity
condition (4.5) amounts to the linear matrix inequality (LMI)

[
AT Q + QA QB − CT

BT Q − C −D − DT

]
≤ 0 (4.18)

Obvious extensions to input/output strict passivity are left to the reader. In case D = 0
(no feedthrough) the conditions (4.18) simplify to the LMI

AT Q + QA ≤ 0, BT Q = C (4.19)

The relation of these LMIs to frequency-domain conditions is known as theKalman–
Yakubovich–Popov Lemma; see the Notes at the end of this chapter for references.

The inequalities in Proposition 4.1.2 and Corollary 4.1.5, as well as the resulting
LMIs (4.18) and (4.19) in the linear system case, admit the following factoriza-
tion perspective. Given a matrix inequality P(x) ≤ 0, where P(x) is an k × k
symmetric matrix depending smoothly on x , we may always, by standard linear-
algebraic factorization for every constant x , construct an � × k matrix F(x) such
that P(x) = −FT (x)F(x), where � is equal to the maximal rank of P(x) (over x).
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Furthermore, by an application of the implicit function theorem, locally on a neigh-
borhood where the rank of P(x) is constant, this can be done in such a way that
F(x) is depending smoothly on x . Applied to (minus) the matrices appearing in
Proposition 4.1.2 and Corollary 4.1.5 this leads to the following result. For con-
creteness, focus on the inequality (4.5); similar statements hold for the other cases.
Inequality 4.5 holds if and only if

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) −( j (x) + j T (x))

]
= −FT (x)F(x) ≤ 0 (4.20)

for a certain matrix
F(x) = [

φ(x) �(x)
]

(4.21)

with φ(x) an �-dimensional column vector, and ψ(x) an � × m matrix, with � the
(local) rank of the matrix in (4.5). Writing out (4.20) yields

2Sx (x) f (x) = −φT (x)φ(x)
Sx (x)g(x) − hT (x) = −φT (x)�(x)

j (x) + j T (x) = �T (x)�(x)
(4.22)

It follows that by defining the new, artificial, output equation

ȳ = φ(x) + �(x)u (4.23)

one obtains

Sx (x)[ f (x) + g(x)u] − uT [h(x) + j (x)u] = −1

2
‖ȳ‖2, (4.24)

and therefore
d

dt
S = uT y − 1

2
‖ȳ‖2. (4.25)

Hence, by factorization we have turned the dissipativity of the system �
f t
a with

respect to the passivity supply rate s(u, y) = uT y into the fact that� f t
a is conservative

with respect to the new supply rate

snew(u, y) = uT y − 1

2
‖ȳ‖2, (4.26)

defined in terms of the inputs u, outputs y, as well as the new outputs ȳ defined by
(4.23). The same can be done for the output and input strict passivity supply rates; in
fact, for any supply rate which is quadratic in u, y. Within the context of the L2-gain
supply rate this2 will be exploited in Chap.9; see especially Sect. 9.4.

2In fact, in Sect. 9.4 we will see how this can be extended to general systems �.

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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Let us briefly focus on the linear passive system case, corresponding to the LMIs
(4.18). As was already mentioned in Remark 3.1.22 for general supply rates, the
available storage Sa of a linear passive system (4.17) with D = 0 is given as 1

2 x
T Qax

where Qa is the minimal solution to the LMI (4.18), while the required supply is
1
2 x

T Qr x where Qr is the maximal solution to this same LMI.
Although in general (4.18) has a convex set of solutions Q ≥ 0, this set may

sometimes reduce to a unique solution; even for systemswith nonzero internal energy
dissipation. This is illustrated by the following simple physical example.

Example 4.1.7 Consider the ubiquitous mass–spring–damper system

[
q̇
ṗ

]
=

[
0 1

m−k − d
m

] [
q
p

]
+

[
0
1

]
u, u = force

y = [
0 1

m

] [
q
p

]
= velocity

(4.27)

with physical energy H(q, p) = 1
2m p2 + 1

2kq
2 (q extension of the linear spring

with spring constant k, p momentum of mass m), and internal energy dissipation
corresponding to a linear damper with damping coefficient d > 0. The LMI (4.19)
takes the form

[
0 −k
1
m − d

m

] [
q11 q12
q12 q22

]
+

[
q11 q12
q12 q22

] [
0 1

m−k − d
m

]
≤ 0

[
0 1

] [
q11 q12
q12 q22

]
= [

0 1
m

] (4.28)

The last equation yields q12 = 0 as well as q22 = 1
m . Substituted in the inequality

this yields the unique solution q11 = k, corresponding to the unique quadratic stor-
age function H(q, p), which is equal to Sa = Sr . The explanation for the perhaps
surprising equality of Sa and Sr in this case is the fact that the definitions of Sa and
Sr involve sup and inf (instead of max and min).

We note for later use that passivity of a static nonlinear map y = F(u), with
F : Rm → Rm , amounts to requiring that

uT F(u) ≥ 0, for all u ∈ Rm, (4.29)

which for m = 1 reduces to the condition that the graph of the function F is in the
first and third quadrant. This definition immediately extends to relations instead of
mappings.

Furthermore, passivity of the dynamical system � implies the following static
passivity property of the steady-state values of its inputs and outputs. Let � be an
input-state-output system in the general form (4.1). For any constant input ū consider
the existence of a steady-state x̄ , and corresponding steady-state output value ȳ,
satisfying

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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0 = f (x̄, ū), ȳ = h(x̄, ū) (4.30)

This defines the following relation between ū and ȳ, called the steady-state
input–output relation �ss corresponding to �:

�ss := {(ū, ȳ) | ∃x̄ s.t. (4.30) holds } (4.31)

In case of a cyclo-passive system (4.1) with storage function S satisfying d
dt S ≤ uT y

it follows that

0 = d

dt
S(x̄) ≤ ūT ȳ, for any (ū, ȳ) ∈ �ss, (4.32)

with the obvious interpretation that at its steady states every cyclo-passive system
necessarily dissipates energy.

Note that in general �ss need not be the graph of a mapping from ū to ȳ. For
example, �ss corresponding to the (multi-dimensional) nonlinear integrator

ẋ = u, y = ∂H

∂x
(x), x, u, y ∈ Rm (4.33)

(which is a cyclo-passive system with, possibly indefinite, storage function H ), is
given as

�ss =
{
(ū = 0, ȳ) | ∃x̄ s.t. ȳ = ∂H

∂x
(x̄)

}
(4.34)

This will be further explored within the context of port-Hamiltonian systems in
Chap.6, Sect. 6.5.

4.2 Stability and Stabilization of Passive Systems

Manyof the stability results as established inChap.3 for dissipative systems involving
additional conditions on the supply rate directly apply to the passivity supply rate. In
particular Propositions 3.2.7, 3.2.9 (see Remark 3.2.10) and Proposition 3.2.12 (see
Remark 3.2.14) hold for passive systems. Moreover, Propositions 3.2.15 and 3.2.19
apply to output strictly passive systems; see Remark 3.2.20.

Loosely speaking, equilibria of passive systems are typically stable, but not neces-
sarily asymptotically stable. On the other hand, there is no obvious relation between
passivity and stability of the input–output maps. This is already illustrated by the
simplest example of a passive (in fact, lossless) system; namely the integrator

ẋ = u, y = x, x, u, y ∈ R

Obviously, 0 is a stable equilibrium with Lyapunov function 1
2 x

2, while the input–
output mappings of this systemmap L2e(R) into L2e(R), but not L2(R) into L2(R).
The same applies to a nonlinear integrator, with output equation y = x replaced by

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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y = Sx (x) for some nonnegative function S having its minimum at 0. The situation
becomes different by changing ẋ = u, y = x into ẋ = −x + u, y = x , leading to
a system with asymptotically stable equilibrium 0 and finite L2-gain input–output
map. On the other hand, the minor modification ẋ = −x3 + u displays 0 as an
asymptotically stable equilibrium, but does not define a mapping from L2(R) to
L2(R). To explain the differences, notice that of the three preceding examples only
ẋ = −x + u, y = x is output strictly passive. Indeed, output strict passivity implies
finite L2-gain, as formulated in the following state space version of Theorem 2.2.13.

Proposition 4.2.1 If � is ε-output strictly passive, then it has L2-gain ≤ 1
ε
.

Proof If � is ε-output strictly passive there exists S ≥ 0 such that for all t1 ≥ t0 and
all u

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

(uT (t)y(t) − ε||y(t)||2)dt (4.35)

Therefore

ε
∫ t1
t0

||y(t)||2)dt ≤ ∫ t1
t0
uT (t)y(t)dt − S(x(t1)) + S(x(t0)) ≤

∫ t1
t0

(uT (t)y(t) + 1
2 || 1√

ε
u(t) − √

εy(t)||2)dt − S(x(t1)) + S(x(t0)) =
∫ t1
t0

( 1
2ε ||u(t)||2 + ε

2 ||y(t)||2)dt − S(x(t1)) + S(x(t0)) ,

whence

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

(
1

2ε
||u(t ||2 − ε

2
||y(t)||2

)
dt , (4.36)

implying that � has L2-gain ≤ 1
ε
(with storage function 1

ε
S). �

Further implications of output strict passivity for the input–output stability will
be discussed in the context of L2-gain analysis of state space systems in Chap.8.

The importance of output strict passivity for asymptotic and input–output stability
directly motivates the consideration of the following simple class of feedbacks which
render a passive system output strictly passive. Indeed, consider a passive system �

as given in (4.1) with C1 storage function S, that is

d

dt
S ≤ uT y (4.37)

If the system is not output strictly passive, then an obvious way to render the system
output strictly passive is to apply a static output feedback

u = −dy + v, d > 0, (4.38)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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with v ∈ Rm the new input, and d a positive scalar.3 Then the closed-loop system
satisfies

d

dt
S ≤ vT y − d||y||2, (4.39)

and thus is d-output strictly passive, and has L2-gain ≤ 1
d (from v to y). Hence, we

obtain the following corollary of Propositions 3.2.16 and 3.2.19.

Corollary 4.2.2 Consider the passive system � with storage function S satis-
fying S(0) = 0. Assume that S is positive definite at 0 and that the system
ẋ = f (x, 0), y = h(x, 0), is zero-state detectable. Alternatively, assume 0 is an
asymptotically stable equilibrium of ẋ = f (x, 0) conditionally to {x | h(x, 0) = 0}.
In both cases the feedback u = −dy, d > 0, asymptotically stabilizes the system
around the equilibrium 0.

Finally, we remark that in certain cases the verification of the property of zero-state
detectability or asymptotic stability conditionally to y = h(x, 0) = 0 can be reduced
to the verification of the same property for a lower-dimensional system. Consider as
a typical case the feedback interconnection of �1 and �2 as in Fig. 1.1 with e2 = 0
(see Fig. 4.1 later on). Suppose that �1 satisfies the property

y1(t) = 0, t ≥ 0 ⇒ x1(t) = 0, t ≥ 0 and u1(t) = 0, t ≥ 0 (4.40)

(This is a strong zero-state observability property.) Now, let y1(t) = 0, t ≥ 0, and
e1(t) = 0, t ≥ 0. Then u2(t) = 0, t ≥ 0, and by (4.40), y2(t) = 0, t ≥ 0.
Hence, checking zero-state detectability or asymptotic stability conditionally to
y1 = h1(x1) = 0 for the closed-loop system is the same as checking the same
property for �2. Summarizing, we have obtained the following.

Proposition 4.2.3 Consider the closed-loop system �1‖ f �2 with e2 = 0, having
input e1 and output y1. Suppose that �1 satisfies property (4.40). Then the closed-
loop system is zero-state detectable, respectively asymptotically stable conditionally
to y1 = 0, if and only if �2 is zero-state detectable, respectively, asymptotically
stable conditionally to y2 = 0.

Example 4.2.4 (Euler’s equations) Euler’s equations of the dynamics of the angular
velocities of a fully actuated rigid body, spinning around its center of mass (in the
absence of gravity), are given by

I ω̇ = −S(ω)Iω + u (4.41)

Here I is the positive diagonal inertia matrix, ω = (ω1,ω2,ω3)
T is the vector of

angular velocities in body coordinates, u = (u1, u2, u3)T is the vector of inputs,
while the skew-symmetric matrix S(ω) is given as

3This can be extended to u = −Dy + v, with D a matrix satisfying D + DT > 0.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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S(ω) =
⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ (4.42)

Since d
dt

1
2ω

T Iω = uTω it follows that the system (4.41) with output y = ω is passive
(in fact, lossless). Stabilization to ω = 0 is achieved by output feedback u = −Dy
for any positive matrix D. In Sect. 7.1 we will see how this can be extended to the
underactuated case by making use of the underlying Hamiltonian structure of (4.41).

Example 4.2.5 (Rigid body kinematics) The dynamics of the orientation of a rigid
body around its center of mass is described as

Ṙ = RS(ω) (4.43)

where R ∈ SO(3) is an orthonormal rotation matrix describing the orientation of
the body with respect to an inertial frame, ω = (ω1,ω2,ω3)

T is the vector of angular
velocities as in the previous example, and S(ω) is given by (4.42). The rotationmatrix
R ∈ SO(3) can be parameterized by a rotation ϕ around a unit vector k as follows:

R = I3 + sinϕ S(k) + (1 − cosϕ)S2(k) (4.44)

The Euler parameters (ε, η) corresponding to R are now defined as

ε = sin
(ϕ

2

)
k, η = cos

(ϕ

2

)
, (4.45)

and satisfy
εT ε + η2 = 1 (4.46)

It follows that
R = (η2 − εT ε)I3 + 2εεT + 2ηS(ε), (4.47)

and thus R can be represented as an element (ε, η) of the three-dimensional unit
sphere S3 in R4. Note that (ε, η) and (−ε,−η) correspond to the same matrix R.
In particular, (0, 1) and (0,−1) both correspond to R = I3. Thus the unit sphere
S3 defines a double covering of the matrix group SO(3). In this representation the
dynamics (4.43) is given as

[
ε̇
η̇

]
= 1

2

[
η I3 + S(ε)

−εT

]
ω, (4.48)

evolving on S3 inR4. Define the function V : S3 → R as

V (ε, η) = εT ε + (1 − η)2, (4.49)

which by (4.46) is equal to V (ε, η) = 2(1−η). Differentiating V along (4.48) yields

http://dx.doi.org/10.1007/978-3-319-49992-5_7
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Fig. 4.1 Standard feedback
configuration �1‖ f �2

+

− Σ1
e1 u1 y1

Σ2
y2 u2 e2+

+

d

dt
V = ωT ε (4.50)

Hence the dynamics (4.48), with inputs ω and outputs ε, is passive (in fact, lossless)
with storage function4 V . As a consequence, the feedback control ω = −ε will
asymptotically stabilize the system (4.48) toward (0,±1), that is, R = I3. In Chap.7
we will see how Examples 4.2.4 and 4.2.5 can be combined for the control of the
total dynamics of the rigid body described by (4.43), (4.41) with inputs u.

4.3 The Passivity Theorems Revisited

The state space version of the passivity theorems as derived for passive input–output
maps in Chap.2, see in particular Theorem 2.2.11, follows the lines of the general
theory of interconnection of dissipative systems as treated in Chap.3, Sect. 3.3. Let
us consider the standard feedback closed-loop system �1‖ f �2 of Fig. 4.1, which is
the same as Fig. 1.1 with the input–output maps G1 and G2 replaced by the state
space systems

�i : ẋi = fi (xi , ui ) , xi ∈ Xi , ui ∈ Ui

yi = hi (xi , ui ) , yi ∈ Yi
i = 1, 2, (4.51)

with U1 = Y2, U2 = Y1. Suppose that both �1 and �2 in (4.51) (with U1 =
U2 = Y1 = Y2) are passive or output strictly passive, with storage functions S1(x1),
respectively S2(x2), i.e.,

S1(x1(t1))≤ S1(x1(t0)) + ∫ t1
t0

(uT
1 (t)y1(t) − ε1||y1(t)||2)dt

S2(x2(t1))≤ S2(x2(t0)) + ∫ t1
t0

(uT
2 (t)y2(t) − ε2||y2(t)||2)dt,

(4.52)

with ε1 > 0, ε2 > 0 in case of output strict passivity, and ε1 = ε2 = 0 in case
of mere passivity. Substituting the standard feedback interconnection equations (see
(1.30))

4Note that this storage function does not have an interpretation in terms of physical energy.
It is instead a function that is directly related to the geometry of the dynamics (4.48) on S3,
integrating ω.

http://dx.doi.org/10.1007/978-3-319-49992-5_7
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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u1 = e1 − y2,
u2 = e2 + y1,

(4.53)

the addition of the two inequalities (4.52) results in

S1(x1(t1)) + S2(x2(t1)) ≤ S1(x1(t0)) + S2(x2(t0))+∫ t1
t0

(eT1 (t)y1(t) + eT2 (t)y2(t) − ε1||y1(t)||2 − ε2||y2(t)||2) dt
≤ S1(x1(t0)) + S2(x2(t0))+∫ t1

t0
(eT1 (t)y1(t) + eT2 (t)y2(t) − ε[||y1(t)||2 + ||y2(t)||2]) dt

(4.54)

with ε = min(ε1, ε2). Hence the closed-loop system with inputs (e1, e2) and outputs
(y1, y2) is output strictly passive if ε > 0, respectively, passive if ε = 0, with storage
function

S(x1, x2) = S1(x1) + S2(x2) , (x1, x2) ∈ X1 × X2 (4.55)

Using Lemmas 3.2.9 and 3.2.16 we arrive at the following proposition, which can
be regarded as the state space version of Theorems 2.2.6 and 2.2.11.

Proposition 4.3.1 (Passivity theorem) Assume that for every pair of allowed exter-
nal input functions e1(·), e2(·) there exist allowed input functions u1(·), u2(·) of the
closed-loop system �1‖ f �2.
(i) Suppose �1 and �2 are passive or output strictly passive. Then �1‖ f �2 with
inputs (e1, e2) and outputs (y1, y2) is passive, and output strictly passive if both �1

and �2 are output strictly passive.
(ii) Suppose �1 is passive and �2 is input strictly passive, or �1 is output strictly
passive and �2 is passive, then �1‖ f �2 with e2 = 0 and input e1 and output y1 is
output strictly passive.
(iii) Suppose that S1, S2 satisfying (4.52) are C1 and have strict local minima at x∗

1 ,
respectively x∗

2 . Then (x∗
1 , x

∗
2 ) is a stable equilibrium of �1‖ f �2 with e1 = e2 = 0.

(iv) Suppose that �1 and �2 are output strictly passive and zero-state detectable,
and that S1, S2 satisfying (4.52) are C1 and have strict local minima at x∗

1 = 0,
respectively x∗

2 = 0. Then (0, 0) is an asymptotically stable equilibrium of �
f
�1,�2

with e1 = e2 = 0. If additionally S1, S2 have global minima at x∗
1 = 0, respectively

x∗
2 = 0, and are proper, then (0, 0) is a globally asymptotically stable equilibrium.

Proof (i) has been proved above, cf. (4.54), while (ii) follows similarly. (iii) results
from application of Lemma 3.2.9 to�1‖ f �2 with inputs (e1, e2) and outputs (y1, y2).
(iv) follows from Proposition 3.2.16 applied to �1‖ f �2. �

Remark 4.3.2 The standard negative feedback interconnection u1 = −y2 + e1,
u2 = y1 for e2 = 0 has the following alternative interpretation. It can be also
regarded as the series interconnection u2 = y1 of �1 and �2, together with the addi-
tional negative unit feedback loop u1 = −y2 + e1. This interpretation will be used
in Chap.5, Theorem 5.2.1.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_5
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Remark 4.3.3 Note the inherent robustness property expressed in Proposition 4.3.1:
the statements continue to hold for perturbed systems �1 and �2, as long as they
remain (output strictly) passive and their storage functions satisfy the required prop-
erties.

Remark 4.3.4 As in Lemma 3.2.12 the strict positivity of S1 and S2 outside
x∗
1 = 0, x∗

2 = 0 can be ensured by zero-state observability of �1 and �2.
In case S1(x1) − S1(x∗

1 ) and/or S2(x2) − S2(x∗
2 ) are not positive definite but only

positive semidefinite at x∗
1 , respectively x∗

2 , then Proposition 4.3.1 can be refined as
in Theorem 3.2.19. We leave the details to the reader; see also [312].

In Theorem 2.2.18, see also Remark 2.2.19, we have seen how “lack of passivity”
of one of the output maps G1,G2 can be compensated by “surplus of passivity” of
the other. The argument generalizes to the state space setting as follows.

Corollary 4.3.5 Suppose the systems �i , i = 1, 2, are dissipative with respect to
the supply rates

si (ui , yi ) = uT
i yi − εi‖yi‖2 − δi‖ui‖2, i = 1, 2, (4.56)

where the constants εi , δi , i = 1, 2, satisfy

ε1 + δ2 > 0, ε2 + δ1 > 0 (4.57)

Then the standard feedback interconnection �1‖ f �2 has finite L2-gain from inputs
e1, e2 to outputs y1, y2.

Proof Since �i is dissipative with respect to the supply rates si we have

Ṡi ≤ uT
i yi − εi‖yi‖2 − δi‖ui‖2, i = 1, 2 (4.58)

for certain storage functions Si , i = 1, 2 (assumed to be differentiable; otherwise
use the integral version of the dissipation inequalities). Substitution of u1 = e1 − y2,
u2 = e2 + y1 into the sum of these two inequalities yields

Ṡ1 + Ṡ2 ≤ eT1 y1 + eT2 y2−ε1‖y1‖2 − δ1‖e1 − y2‖2 − ε2‖y2‖2 − δ2‖e2 + y1‖2 (4.59)

which, multiplying both sides by −1, can be rearranged as

−δ1‖e1‖2 − δ2‖e2‖2 − Ṡ1 − Ṡ2 ≥
(ε1 + δ2)‖y1‖2 + (ε2 + δ1)‖y2‖2 − 2δ1eT1 y2 − 2δ2eT2 y1 − eT1 y1 − eT2 y2

(4.60)

Then, completely similar to the proof of Theorem2.2.18, by the positivity assumption
on α2

1 := ε1 + δ2,α
2
2 := ε2 + δ1 we can perform “completion of the squares” on the

right-hand side of the inequality (4.60), to obtain an expression of the form

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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‖
[
α1y1
α2y2

]
− A

[
e1
e2

]
‖2 ≤ c2‖

[
e1
e2

]
‖2 − Ṡ1 − Ṡ2, (4.61)

for a certain 2×2matrix A and constant c. In combinationwith the triangle inequality
(2.29) this gives the desired result. �

This corollary is illustrated by the following example, which contains a further
interesting extension.

Example 4.3.6 (Lur’e functions) Consider an input-state-output system

�1 : ẋ1 = f (x1, u1)
y1 = h(x1)

u1, y1 ∈ R, (4.62)

and a system �2 given by a static nonlinearity

�2 : y2 = F(u2), u2, y2 ∈ R, (4.63)

interconnected by negative feedback u1 = −y2, u2 = y1.
Suppose the static nonlinearity F is passive in the sense of (4.29), that is,

uF(u) ≥ 0 for all u ∈ R (its graph is in the first and third quadrant). Obviously,
if �1 is passive with C1 storage function S1(x1), then by a direct application of the
passivity theorem (Proposition 4.3.1) the closed-loop system satisfies Ṡ1 ≤ 0.

Now suppose that�1 is not passive, but only dissipative with respect to the supply
rate

s1(u1, y1) = u1y1 + u21
k

, (4.64)

for some k > 0, having C1 storage function S1. On the other hand, suppose that F
is 1

k -output strictly passive; that is, dissipative with respect to the supply rate

s2(u2, y2) = u2y2 − y22
k

(4.65)

for the same k as above. Then by application ofCorollary 4.3.5 the closed-loop system
satisfies Ṡ1 ≤ 0. Note that dissipativity of F with respect to s2 can be equivalently
expressed by the sector condition

0 ≤ F(u2)

u2
≤ k (4.66)

The story can be continued as follows. Suppose that�1 is not dissipative with respect
to s1, but that instead �1α, defined as

�1α : ẋ1 = f (x1, u1)
ŷ1 := y1 + α ẏ1 = h(x1) + α dh

dx1
(x1) f1(x1, u1)

(4.67)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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is dissipative with respect to s1 for some α > 0. Suppose as above that the static
nonlinearity F satisfies (4.66) (and thus is output strictly passive). Then consider
instead of the static nonlinearity �2 defined by F the dynamical system

�2α : αẋ2 = −x2 + u2, x2 ∈ R
y2 = F(x2)

(4.68)

It readily follows that �2α is dissipative with respect to s2, with storage function

S2(x2) := α

∫ x2

0
F(σ)dσ ≥ 0 (4.69)

Indeed, by (4.66)

Ṡ2 = αF(x2)ẋ2 = F(x2)(−x2 + u2) ≤ u2F(x2) − F2(x2)

k

Hence, (again by Corollary 4.3.5) the closed-loop system of �1α and �2α satisfies
Ṡ1 + Ṡ2 ≤ 0. Finally note that

αẋ2 + x2 = u2 = y1 + α ẏ1,

and thus α(ẋ2 − ẏ1) = −(x2 − y1), implying that the level set x2 = h(x1) is an
(attractive) invariant set. Hence, we can restrict the closed-loop system to the level
set x2 = h(x1), where the system has total storage function

S(x1) := S1(x1) + α

∫ h1(x1)

0
F(σ)dσ

satisfying Ṡ ≤ 0. In case of a linear system �1 with quadratic storage function S1
the obtained function S is called a Lur’e function. Depending on the properties of
S, we may derive stability, and under strengthened conditions, (global) asymptotic
stability, for �1 with the static nonlinearity F in the negative feedback loop. This
yields the Popov criterion; see the references in the Notes at the end of Chap. 2.

Example 4.3.7 Consider the system

ẋ = f (x) + g1(x)u1 + g2(x)u2, u1 ∈ Rm1 , u2 ∈ Rm2

y1 = h1(x), y1 ∈ Rm1

y2 = h2(x), y2 ∈ Rm2

(4.70)

which is passive with respect to the inputs u1, u2 and outputs y1, y2, with storage
function S(x). Consider the static nonlinearity

⊥ := {(v, z) ∈ Rm2 × Rm2 | v ≥ 0, z ≥ 0, vT z = 0}, (4.71)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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where v ≥ 0, z ≥ 0 means that all elements of v, z are nonnegative. Clearly this is a
passive static system. Interconnect ⊥ to the system by setting u2 = −z, y2 = v. The
resulting system satisfies

d

dt
S ≤ uT

1 y1, (4.72)

and thus defines a passive system (although not of a standard input-state-output type).
This type of systems occurs, e.g., in electrical circuits with ideal diodes; see theNotes
at the end of this chapter.

The passivity theorems given so far are one-way: the feedback interconnection of two
passive systems is again passive. As we will now see, the converse also holds: if the
feedback interconnection of two systems is passive then necessarily these systems
are passive. This will be shown to have immediate consequences for the set of storage
functions of the interconnected system, which always contains an additive one.

Proposition 4.3.8 (Converse passivity theorem) Consider �i with state spaces
X1, i = 1, 2, and with allowed input functions u1(·), u2(·), in standard feedback
configuration u1 = e1 − y2, u2 = e2 + y2. Assume that for every pair of allowed
external input functions e1(·), e2(·) there exist allowed input functions u1(·), u2(·) of
the closed-loop system �1‖ f �2. Conversely, assume that for all allowed input func-
tions u1(·), u2(·) there exist allowed external input functions e1(·), e2(·) satisfying at
any time-instant u1 = e1 − y2, u2 = e2 + y2. Then �1‖ f �2 with inputs e1, e2 and
outputs y1, y2 is passive if and only if both �1 and �2 are passive. Furthermore, the
available storage Sa and required supply Sr of �1‖ f �2 (assuming �i is reachable
from some x∗

i , i = 1, 2) are additive, that is

Sa(x1, x2) = Sa1(x1) + Sa2(x2)
Sr (x1, x2) = Sr1(x1) + Sr2(x2)

(4.73)

with Sai , Sri denoting the available storage, respectively required supply, of �i ,

i = 1, 2.

Proof The “if” part is Proposition 4.3.1. For the converse statement we note that
�1‖ f �2 is passive if and only

Sa(x1, x2) :=
sup

e1(·), e2(·), T≥0
− ∫ T

0

(
eT1 (t)y1(t) + eT2 (t)y2(t)

)
dt < ∞ (4.74)

for all (x1, x2) ∈ X . Substituting the “inverse” interconnection equations e1 = u1+y2
and e2 = u2 − y1 this is equivalent to

sup
e1(·), e2(·), T≥0

−
∫ T

0

(
uT
1 (t)y1(t) + uT

2 (t)y2(t)
)
dt < ∞ (4.75)
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for all (x1, x2). Using the assumption that for all allowed u1(·), u2(·) there exist
allowed external input functions e1(·), e2(·) this is equal to

sup
u1(·), u2(·), T≥0

− ∫ T
0

(
uT
1 (t)y1(t) + uT

2 (t)y2(t)
) =

sup
u1(·), T≥0

− ∫ T
0 uT

1 (t)y1(t)dt + sup
u2(·), T≥0

− ∫ T
0 uT

2 (t)y2(t)dt < ∞

for all (x1, x2). Hence �1‖ f �2 is passive iff �1 and �2 are passive, in which case
Sa(x1, x2) = Sa1(x1) + Sa2(x2). The same reasoning leads to the second equality of
(4.73). �

A similar statement, for any storage function of �1‖ f �2, can be obtained from
the differential dissipation inequality as follows.

Proposition 4.3.9 Consider�i , i = 1, 2, of the form (4.14) with equilibria x∗
i ∈ Xi

satisfying fi (x∗
i ) = 0, i = 1, 2. Assume that �1‖ f �2 is passive (lossless) with C1

storage function S(x1, x2). Then also�i , i = 1, 2, are passive (lossless) with storage
functions S1(x1) := S(x1, x∗

2 ), S2(x2) := S(x∗
1 , x2).

Proof We will only prove the passive case; the same arguments apply to the lossless
case. �1‖ f �2 being passive is equivalent to the existence of S : X1 × X2 → R

+
satisfying

Sx1(x1, x2) [ f1(x1) − g1(x1)h2(x2)]
+Sx2(x1, x2) [ f2(x2) + g2(x2)h1(x1)] ≤ 0
Sx1(x1, x2)g1(x1) = hT

1 (x1)
Sx2(x1, x2)g2(x2) = hT

2 (x2)

(4.76)

This results in

Sx1(x1, x2) f1(x1) − Sx1(x1, x2)g1(x1)︸ ︷︷ ︸
=hT1 (x1)

h2(x2)

+ Sx2(x1, x2) f2(x2) + Sx2(x1, x2)g2(x2)︸ ︷︷ ︸
=hT2 (x2)

h1(x1)

= Sx1(x1, x2) f1(x1) + Sx2(x1, x2) f2(x2) ≤ 0

(4.77)

For x2 = x∗
2 , (4.77) amounts to

Sx1(x1, x
∗
2 ) f1(x1) + Sx2(x1, x

∗
2 ) f2(x

∗
2 )= Sx1(x1, x

∗
2 ) f1(x1) = S1x1(x1) f1(x1) ≤ 0

(4.78)

since f2(x∗
2 ) = 0. Furthermore, the second line of (4.76) becomes

S1x1(x1)g1(x1) = Sx1(x1, x
∗
2 )g1(x1) = hT

1 (x1) (4.79)

Hence, S1(x1) is a storage function for �1. In the same way S2(x2) is a storage
function for �2. �
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An important consequence of Propositions 4.3.8 and 4.3.9 is the fact that among the
storage functions of the passive system �1‖ f �2 there always exist additive storage
functions S(x1, x2) = S1(x1) + S2(x2). In fact, the available storage and required
supply functions are additive by Proposition 4.3.8, while by Proposition 4.3.9 an
arbitrary storage function S(x1, x2) for �1‖ f �2 can be replaced by the additive
storage function S(x1, x∗

2 ) + S(x∗
1 , x2).

4.4 Network Interconnection of Passive Systems

In many complex network systems—from mass–spring–damper systems, electrical
circuits, communication networks, chemical reaction networks, and transportation
networks to power networks—the passivity of the overall network system naturally
arises from the properties of the network interconnection structure and the passivity
of the subsystems. In this section this will be illustrated by three different scenarios
of network interconnection of passive systems.

The interconnection structure of a network system can be advantageously encoded
by a directed graph. Recall the following standard notions and facts from (algebraic)
graph theory; see [48, 114] and the Notes at the end of the chapter for further
information. A graph G, is defined by a set V of N vertices (nodes) and a set E of
M edges (links, branches), where E is identified with a set of unordered pairs {i, j}
of vertices i, j ∈ V . We allow for multiple edges between vertices, but not for self-
loops {i, i}. By endowing the edges with an orientation, turning the unordered pairs
{i, j} into ordered pairs (i, j), we obtain a directed graph. In the following “graph”
will throughout mean “directed graph.” A directed graph with N vertices and M
edges is specified by its N × M incidence matrix, denoted by D. Every column of D
corresponds to an edge of the graph, and contains one −1 at the row corresponding
to its tail vertex and one +1 at the row corresponding to its head vertex, while all
other elements are 0. In particular, 1T D = 0 where 1 is the vector of all ones.
Furthermore, ker DT = span 1 if and only if the graph is connected (any vertex can
be reached from any other vertex by a sequence of—undirected—edges). In general,
the dimension of ker DT is equal to the number of connected components of the
graph. A directed graph is strongly connected if any vertex can be reached from any
other vertex by a sequence of directed edges.

The first case of network interconnection of passive systems concerns the inter-
connection of passive systems which are partly associated to the vertices, and partly
to the edges of an underlying graph. As illustrated later on, this is a common case in
many physical networks. Thus to each i-th vertex there corresponds a passive system
with scalar inputs and outputs (see Remark 4.4.2 for generalizations)

ẋv
i = f v

i (xv
i , u

v
i ), xv

i ∈ X v
i , uv

i ∈ R
yv
i = hv

i (x
v
i , u

v
i ), yv

i ∈ R
(4.80)
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with storage function Sv
i , i = 1, . . . , N , and to each j-th edge (branch) there corre-

sponds a passive single-input single-output system

ẋ bi = f bi (xbi , u
b
i ), xbi ∈ X b

i , ubi ∈ R

ybi = hbi (x
b
i , u

b
i ), ybi ∈ R

(4.81)

with storage function Sbi , i = 1, . . . , M . Collecting the scalar inputs and outputs into
vectors

uv = [
uv
1, . . . , u

v
N

]T
, yv = [

yv
1 , . . . , y

v
N

]T

ub = [
ub1, . . . , u

b
M

]T
, yb = [

yb1 , . . . , y
b
M

]T (4.82)

these passive systems are interconnected to each other by the interconnection equa-
tions

uv = −Dyb + ev

ub = DT yv + eb
(4.83)

where ev ∈ RN and eb ∈ RM are external inputs. Since the interconnection (4.83)
satisfies

(uv)T yv + (ub)T yb = (ev)T yv + (eb)T yb

the following result directly follows.

Proposition 4.4.1 Consider a graph with incidence matrix D, with passive systems
(4.80) with storage functions Sv

i associated to the vertices and passive systems (4.81)
with storage functions Sbi associated to the edges, interconnected by (4.83). Then the
interconnected system is again passive with inputs ev, eb and outputs yv, yb, with
total storage function

Sv
1 (x

v
1 ) + · · · + Sv

N (xv
N ) + Sb1 (x

b
1 ) + · · · + Sb1 (x

b
M) (4.84)

Remark 4.4.2 The setup can be generalized to multi-input multi-output systems
with uv

i , y
v
i , u

b
j , y

b
j all in Rm by replacing the incidence matrix D in the above by

the Kronecker product D ⊗ Im and DT by DT ⊗ Im , with Im denoting the m × m
identity matrix.

Remark 4.4.3 Proposition 4.4.1 continues to hold in cases where some of the edges
or vertices correspond to static passive systems. Simply define the total storage
function as the sum of the storage functions of the dynamic passive systems.

Example 4.4.4 (Power networks) Consider a power system of synchronous
machines, interconnected by a network of purely inductive transmission lines. Mod-
eling the synchronous machines by swing equations, and assuming that all voltage
and current signals are sinusoidal of the same frequency and all voltages have con-
stant amplitude one arrives at the following model. Associated to the N vertices each
i-th synchronous machine is described by the passive system
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ṗi = −Aiωi + uv
i

yv
i = ωi

(4.85)

where ωi is the frequency deviation from nominal frequency (e.g., 50 Hz), pi = Jiωi

is themomentumdeviation (with Ji related to the inertia of the synchronousmachine),
Ai the damping constant, and uv

i is the incoming power, i = 1, . . . , N . Furthermore,
denoting the phase differences across the j-th line by q j , the dynamics of the j-th
line (associated to the j-th edge of the graph) is given by the passive system

q̇ j = ubj
ybj = γ j sin q j

(4.86)

with the constant γ j determined by the susceptance of the line and the voltage ampli-
tude at the adjacent vertices, j = 1, . . . , M . Here ybj equals the (average or active)
power through the line. Denoting p = (p1, . . . , pN )T , ω = (ω1, . . . ,ωN )T , and
q = (q1, . . . , qM)T , the final system resulting from the interconnection (4.83) is
given as [

q̇
ṗ

]
=

[
0 DT

−D −A

] [
�Sin q

ω

]
+

[
0
u

]
, p = Jω

y = ω,

(4.87)

with A and J denoting diagonal matrices with elements Ai , Ji , i = 1, . . . , N , and �

the diagonalmatrixwith elements γ j , j = 1, . . . , M . Furthermore Sin : RM → RM

denotes the element-wise sinus function, i.e., Sin q = (sin q1, . . . , sin qM). Finally,
the input u denotes the vector of generated/consumed power and the output y the
vector of frequency deviations, both associated to the vertices. The final system (4.87)
is a passive system with additive storage function

H(q, p) := 1

2
pT J−1 p −

M∑

j=1

γ j cos q j (4.88)

Example 4.4.5 (Mass-spring systems) Consider N masses moving in one-
dimensional space interconnected by M springs. Associate the masses to the ver-
tices of a graph with incidence matrix D, and the springs to the edges. Furthermore,
let p1, . . . , pN be the momenta of the masses, and q1, . . . , qM the extensions of the
springs. Then the equations of motion of the total system are given as

[
ṗ
q̇

]
=

[
0 −D
DT 0

] [
∂K
∂ p (p)
∂P
∂q (q)

]

+
[
ev

eb

]
, (4.89)

where p = (p1, . . . , pN )T and q = (q1, . . . , qM)T , and where K (p) = ∑ 1
2mi

p2i
is the total kinetic energy of the masses, and P(q) the total potential energy of the
springs. This defines a passive systemwith inputs ev, eb (external forces, respectively,
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external velocity flows) and outputs ∂K
∂ p (p), ∂P

∂q (q) (velocities, respectively, spring
forces), and additive storage function K (p) + P(q).

Similar to Remark 4.4.2 this can be generalized to a mass-spring system in R3,
by considering pi , q j ∈ R3, and replacing the incidence matrix D by the Kronecker
product D ⊗ I3 and DT by DT ⊗ I3. Furthermore, by Remark 4.4.3 the setup can be
extended tomass–spring–damper systems, inwhich case part of the edges correspond
to dampers.

In Chap.6 we will see how Examples 4.4.4 and 4.4.5 actually define passive
port-Hamiltonian systems.

A second case of network interconnection of passive systems is that of a multi-
agent system, where the input of each passive agent system depends on the outputs
of the other systems and of itself. Thus consider N passive systems �i associated to
the vertices of a graph, given by

ẋi = fi (xi , ui ), xi ∈ Xi , ui ∈ R
yi = hi (xi , ui ), yi ∈ R

(4.90)

with storage functions Si , i = 1, . . . , N . Collecting the inputs into the vector u =
(u1, . . . , uN )T and the outputs into y = (y1, . . . , yN )T we consider interconnection
equations

u = −Ly + e (4.91)

where e is a vector of external inputs, and L is a Laplacian matrix, defined as follows.

Definition 4.4.6 A Laplacian matrix of a graph with N vertices is defined as an
N × N matrix L with positive diagonal elements, and non-positive off-diagonal
elements, with either the row sums of L equal to zero (a communication Laplacian
matrix) or the column sums equal to zero (flow Laplacian matrix). If both the row
and sums are zero then L is called a balanced Laplacian matrix.

This means that any communication Laplacian Lc satisfies Lc1 = 0, and can be
written as Lc = −KcDT for an incidence matrix D of the communication graph,
and amatrix Kc of nonnegative elements. In fact, the nonzero elements of the i-th row
of Kc are the weights of the edges incoming to vertex i . Dually, any flow Laplacian
L f satisfies 1T L f = 0, and can be written as L f = −DK f for a certain incidence
matrix, and a matrix K f of nonnegative elements. The nonzero elements of the i-th
column of K f are the weights of the edges originating from vertex i .

A communication Laplacian matrix Lc, respectively flow Laplacian matrix L f is
balanced if and only [70]

Lc + LT
c ≥ 0, respectively, L f + LT

f ≥ 0 (4.92)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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Remark 4.4.7 A special case of a balanced Laplacianmatrix is a symmetric balanced
Laplacian matrix L , which can be written as L = DK DT , where D is the incidence
matrix and K is an M × M diagonal matrix of positive weights corresponding to the
M edges of the graph.

Remark 4.4.8 The interconnection (4.91) with L a communication Laplacianmatrix
corresponds to feeding back the differences of the output values

ui = −
∑

k

aik(yi − yk), i = 1, . . . , N , (4.93)

where the summation index k is running over all vertices that are connected to the i-th
vertex by an edge directed toward i , and aik is the positive weight of this edge. On the
other hand, the interconnection (4.91) with L a flow Laplacian matrix corresponds
to an output feedback satisfying 1T u = 0, corresponding to a distribution of the
material flow through the network. This occurs for transportation and distribution
networks, including chemical reaction networks.

Proposition 4.4.9 Consider the passive systems (4.90) interconnected by (4.91),
where L is a balanced Laplacian matrix. Then the interconnected system is passive
with additive storage function S1(x1) + · · · + SN (xN ).

Proof Follows from the fact that by (4.92)

uT y = −(Ly + e)T y = −1

2
yT (L + LT )y + eT y ≤ eT y �

Proposition 4.4.9 can be generalized to flow and communication Laplacian matrices
that are not balanced by additionally assuming that the connected components of
the underlying graph are strongly connected5 In fact, under this assumption, any
flow or communication Laplacian matrix can be transformed into a balanced one.
Furthermore, this can be done in a constructive way by employing a general form of
Kirchhoff’s Matrix Tree theorem, which for our purposes can be described as follows
(see the Notes at the end of this chapter).

Let L be a flow Laplacian matrix, and assume for simplicity that the graph is
connected, implying that dim ker L = 1. Denote the (i, j)-th cofactor of L by
Ci j = (−1)i+ j Mi, j , where Mi, j is the determinant of the (i, j)-th minor of L , which
is the matrix obtained from L by deleting its i-th row and j-th column. Define the
adjoint matrix adj(L) as the matrix with (i, j)-th element given by C ji . It is well
known that

L · adj(L) = (det L)IN = 0 (4.94)

5In fact, balancedness of a communication or flow Laplacian matrix implies that all connected
components are strongly connected; cf. [70].
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Furthermore, since 1T L = 0 the sum of the rows of L is zero, and hence by the
properties of the determinant function the quantitiesCi j do not depend on i , implying
thatCi j = γ j , i = 1, . . . , N . Hence, by definingγ := (γ1, . . . , γN )T , it follows from
(4.94) that Lγ = 0. Moreover, γi is equal to the sum of the products of weights of
all the spanning trees of G directed toward vertex i . In particular, it follows that
γ j ≥ 0, j = 1, . . . , N . In fact, γ �= 0 if and only if G has a spanning tree. Since for
every vertex i there exists at least one spanning tree directed toward i if and only if
the graph is strongly connected, we conclude that γ ∈ R

N+ if and only if the graph is
strongly connected.

In case the graph G is not connected the same analysis can be performed on each
of its connected components. Hence, if all connected components of G are strongly
connected, Kirchhoff’s matrix tree theorem provides us with a vector γ ∈ R

N+ such
that Lγ = 0. It immediately follows that the transformed matrix L�, where � is the
positive N × N -dimensional diagonal matrix with diagonal elements γ1, . . . , γN , is
a balanced Laplacian matrix.

Dually, if L is a communication Laplacian matrix and the connected components
of the graph are strongly connected, then there exist a positive N×N diagonal matrix
� such that �L is balanced. Summarizing, we obtain the following.

Proposition 4.4.10 Consider a flow Laplacian matrix L f (communication Lapla-
cian matrix Lc). Then there exists a positive diagonal matrix � f (�c) such that
L f � f (�cLc) is balanced if and only if the connected components of the graph are
all strongly connected.

This has the following consequence for the passivity of the interconnection of passive
systems �i , i = 1, . . . , N , under the interconnection (4.91).

Proposition 4.4.11 Consider passive systems �1, . . . , �N with storage functions
S1, . . . , SN , interconnected by u = −Ly + e, where L is either a flow Laplacian L f

or a communication Laplacian Lc, and assume that the connected components of the
interconnection graph are strongly connected. Let L f be a flow Laplacian, and con-
sider a positive diagonalmatrix� f = diag(γ f

1 , . . . , γ
f
N ) such that L f � f is balanced.

Then the interconnected system with inputs e and scaled outputs 1
γ

f
1

y1, . . . ,
1

γ
f
N

yN is

passive with storage function

S f (x1, . . . , xN ) := 1

γ
f
1

S1(x1) + · · · + 1

γ
f
N

SN (xN ) (4.95)

Alternatively, let Lc be a communication Laplacian, and consider a positive diagonal
matrix �c = diag(γc

1, . . . , γ
c
N ) such that �cLc is balanced. Then the interconnected

system with inputs e and scaled outputs γc
1 y1, . . . , γ

c
N yN , is passive with storage

function
Sc(x1, . . . , xN ) := γc

1S1(x1) + · · · + γc
N SN (xN ) (4.96)

Proof The first statement follows by passivity from
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d
dt S

f ≤ yT�−1
f u = −yT�−1

f L f y + yT�−1
f e

= −(�−1
f y)T L f � f (�

−1
f y) + (�−1

f y)T e
(4.97)

and balancedness of L f � f . Similarly, the second statement follows from

d

dt
Sc ≤ yT�cu = −yT�cLc y + yT�ce (4.98)

and balancedness of �cLc. �
Remark 4.4.12 The result continues to hold in case some of the systems �i are
static passive nonlinearities. Indeed, since for each j-th static passive nonlinearity
u j y j ≥ 0, the same inequalities continue to hold, with the storage functions S f or
Sc now being the weighted sum of the storage functions of the dynamical passive
systems �i .

Remark 4.4.13 The notion of a balanced Laplacian matrix is also instrumental in
defining the effective resistance from one vertex of the connected network to another.
In fact, let L be a balanced Laplacian matrix. For any vertex i and j note that
ei − e j ∈ im L , where ei and e j are the standard basis vectors with 1 at the i-th or
j-th element, and 0 everywhere else. Thus there exists a vector v satisfying

Lv = ei − e j , (4.99)

which is moreover unique up to addition of a multiple of the vector 1 of all ones.
This means that the quantity

R ji := vi − v j , (4.100)

is independent of the choice of v satisfying (4.99). It is called the effective resistance
of the network from vertex j to vertex i .

The same idea of taking weighted combinations of storage functions is used in
the following third case of interconnection of passive systems. Consider again a
multi-agent system, composed of N passive agent systems �i with scalar inputs and
outputs ui , yi , and storage functions Si (xi ), i = 1, . . . , N . These are interconnected
by

u = Ky + e (4.101)

where u = (u1, . . . , uN )T , y = (y1, . . . , yN )T , and the N × N matrix K has the
following special structure:

K =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−α1 0 · · 0 −βN

β1 −α2 · · 0 0
0 β2 −α3 · 0 0
· · · · · ·
0 0 · βN−2 −αN−1 0
0 0 · 0 βN−1 −αN

⎤

⎥⎥⎥⎥⎥⎥
⎦

(4.102)
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for positive constants αi ,βi , i = 1, . . . , N . This represents a circular graph, where
the first N −1 gains β1, . . . ,βN−1 are positive, but the last interconnection gain−βN

(from vertex N to vertex 1) is negative.
The main differences with the case u = −Ly + e considered before, where L

is either a flow or communication Laplacian matrix, are the special structure of the
graph (a circular graph instead of a general graph), the fact that the right-upper
element of K , given by −βN , is negative, and the fact neither the row or column
sums of K are zero. Nevertheless, also thematrix K can be transformed by a diagonal
matrix into a matrix satisfying a property similar to (4.92), provided the constants
αi ,βi , i = 1, . . . , N , satisfy the following condition.

Theorem 4.4.14 ([12]) Consider the N ×N matrix K given in (4.102). There exists
a positive N × N diagonal matrix � such that �K + KT� < 0 if and only the
positive constants αi ,βi , i = 1, . . . , N , satisfy6

β1 · · · βN

α1 · · · αN
< sec

( π

N

)N
(4.103)

The condition (4.103) is referred to as the secant condition. Proceeding in the same
way as for the Laplacian matrix interconnection case we obtain the following inter-
connection result.

Proposition 4.4.15 Consider passive systems �1, . . . , �N with storage functions
S1, . . . , SN , interconnected by u = −Ky + e, where K is given by (4.102)
with αi ,βi , i = 1, . . . , N , satisfying (4.103). Take any positive diagonal matrix
� = diag(γ1, . . . , γN ) such that �K + KT� < 0. Then the interconnected sys-
tem with inputs e and scaled outputs γ1y1, . . . , γN yN is output strictly passive with
storage function

SK (x1, . . . , xN ) := γ1S1(x1) + · · · + γN SN (xN ) (4.104)

Proof This follows from

d

dt
SK ≤ yT�u = yT�Ky + yT�e = yT�Ky + yT�e (4.105)

and �K + KT� < 0. �

Remark 4.4.16 The stability of the interconnected system can be alternatively con-
sidered from the small-gain point of view; cf. Chaps. 2 and 8. Indeed, the intercon-
nected system can be also formulated as the circular interconnection, with gains +1
for the first N − 1 interconnections and gain −1 for the interconnection from vertex
N to vertex 1, of themodified systems �̂i with inputs vi and outputs ŷi obtained from
�i by substituting ui = −αi yi + vi , ŷi = βi yi , i = 1, . . . , N . Then by output strict

6Note that the secant function is given as sec φ = 1
cos φ .

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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passivity of �̂i the L2-gain of �̂i is ≤ αi
βi
. Application of the small-gain condition,

cf. Chap. 8, then yields stability for all αi ,βi , i = 1, . . . , N , satisfying (4.103) with
the right-hand side replaced by 1. This latter condition is however (much) stronger
than (4.103). For instance, sec ( π

N )N = 8 for N = 3.

4.5 Passivity of Euler–Lagrange Equations

A standard method for deriving the equations of motion for physical systems is via
the Euler–Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ , (4.106)

where q = (q1, . . . , qn)T are generalized configuration coordinates for the system
with n degrees of freedom, L is the Lagrangian function,7 and τ = (τ1 . . . , τn)

T is
the vector of generalized forces acting on the system. Furthermore, ∂L

∂q̇ (q, q̇) denotes
the column vector of partial derivatives of L(q, q̇) with respect to the generalized
velocities q̇1, . . . , q̇n , and similarly for ∂L

∂q (q, q̇).

By defining the vector of generalized momenta p = (p1, . . . , pn)T as

p := ∂L

∂q̇
(q, q̇), (4.107)

and assuming that the map q̇ �→ p is invertible for every q, this defines the 2n-
dimensional state vector (q1, . . . , qn, p1, . . . , pn)T , inwhich case the n second-order
equations (4.106) transform into 2n first-order equations

q̇ = ∂H
∂ p (q, p)

ṗ = − ∂H
∂q (q, p) + τ ,

(4.108)

where theHamiltonian function H is the Legendre transform of L , defined implicitly
as

H(q, p) = pT q̇ − L(q, q̇), p = ∂L

∂q̇
(q, q̇) (4.109)

Equation (4.108) are called theHamiltonian equations ofmotion. In physical systems
the Hamiltonian H usually can be identified with the total energy of the system. It
immediately follows from (4.108) that

7Not to be confused with the Laplacian matrix of the previous section; too many mathematicians
with a name starting with “L.”

http://dx.doi.org/10.1007/978-3-319-49992-5_8
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d

dt
H = ∂T H

∂q
(q, p)q̇ + ∂T H

∂ p
(q, p) ṗ

= ∂T H

∂ p
(q, p)τ = q̇T τ , (4.110)

expressing that the increase in energy of the system is equal to the suppliedwork (con-
servation of energy). This directly translates into the following statement regarding
passivity (in fact, losslessness) of the Hamiltonian and Euler–Lagrange equations.

Proposition 4.5.1 Assume the Hamiltonian H is bounded from below, i.e., ∃ C >

−∞ such that H(q, p) ≥ C. Then (4.106) with state vector (q, q̇), and (4.108) with
state vector (q, p), are lossless systems with respect to the supply rate yT τ , with
output y = q̇ and storage function E(q, q̇) := H(q, ∂L

∂q̇ (q, q̇)) − C, respectively
H(q, p) − C.

Proof Clearly H(q, p) − C ≥ 0. The property of being lossless directly follows
from (4.110). �

Remark 4.5.2 If the map from q̇ to p is not invertible this means that there are alge-
braic constraints φi (q, p) = 0, i = 1, . . . , k, relating the momenta p, and that the
Hamiltonian H(q, p) is only defined up to addition with an arbitrary combination of
the constraint functions φi (q, p), i = 1, . . . , k. This leads to a constrained Hamil-
tonian representation; see the Notes at the end of this chapter for further information.

The Euler–Lagrange equations (4.106) describe dynamics without internal energy
dissipation, resulting in losslessness. The equations can be extended to

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) + ∂R

∂q̇
(q̇) = τ , (4.111)

where R(q̇) is a Rayleigh dissipation function, satisfying

q̇T ∂R

∂q̇
(q̇) ≥ 0, for all q̇ (4.112)

Then the time evolution of H(q, ∂L
∂q̇ (q, q̇)) satisfies

d

dt
H = −q̇T ∂R

∂q̇
(q̇) + q̇T τ (4.113)

Hence if H is bounded from below, then, similar to Proposition 4.5.1, the systems
(4.111) and (4.112) with inputs τ and outputs q̇ are passive.

We may interpret (4.111) as the closed-loop system depicted in Fig. 4.2. Equa-
tion (4.111) thus can be seen as the feedback interconnection of the lossless system
�1 given by theEuler–Lagrange equations (4.106)with input τ ′, and the static passive
system �2 given by the map q̇ �→ ∂R

∂q̇ (q̇). If (4.112) is strengthened to
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Fig. 4.2 Feedback
representation of (4.111) Σ1 : d

dt
∂L
∂q̇ − ∂L

∂q = τ

Σ2 : ∂R
∂q̇ (q̇)

τ +

−
τ q̇

q̇∂R
∂q̇ (q̇)

q̇T ∂R

∂q̇
(q̇) ≥ δ||q̇||2 (4.114)

(assuming an inner product structure on the output space of generalized velocities)
for some δ > 0, then the nonlinearity (4.114) defines an δ-input strictly passive map
from q̇ to ∂R

∂q̇ (q̇), and (4.111) with output q̇ becomes output strictly passive; as also
follows from Proposition 4.3.1(ii).

Furthermore, we can apply Theorem 2.2.15 as follows. Consider any initial condi-
tion (q(0), q̇(0)), and the corresponding input–output map of the system�1. Assume
that for any τ ∈ L2e(R

n) there are solutions τ ′ = ∂R
∂q̇ (q̇), q̇ ∈ L2e(R

n). Then the

map τ �→ q̇ has L2-gain ≤ 1
δ
. In particular, if τ ∈ L2(R

n) then q̇ ∈ L2(R
n). Note

that not necessarily the signal ∂R
∂q̇ (q̇) will be in L2(R

n); in fact this will depend on
the properties of the Rayleigh function R.

Finally, (4.113) for τ = 0 yields

d

dt
H = −q̇T ∂R

∂q̇
(q̇) (4.115)

Hence, if we assume that H has a strict minimum at some some point (q0, 0), and by
(4.114) and La Salle’s invariance principle, (q0, 0) will be an asymptotically stable
equilibrium of the system whenever R is such that q̇T ∂R

∂q̇ (q̇) = if and only if q̇ = 0
(in particular, if (4.114) holds).

4.6 Passivity of Second-Order Systems
and Riemannian Geometry

In standard mechanical systems the Lagrangian function L(q, q̇) is given by the
difference

L(q, q̇) = 1

2
q̇T M(q)q̇ − P(q) (4.116)

of the kinetic energy 1
2 q̇

T M(q)q̇ and the potential energy P(q). Here M(q) is an
n × n inertia (generalized mass) matrix, which is symmetric and positive definite
for all q. It follows that the vector of generalized momenta is given as p = M(q)q̇ ,
and thus that the map from q̇ to p = M(q)q̇ is invertible. Furthermore, the resulting

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Hamiltonian H is given as

H(q, p) = 1

2
pT M−1(q)p + P(q), (4.117)

which equals the total energy (kinetic energy plus potential energy).
It turns out to be of interest to work out the Euler–Lagrange equations (4.106)

and the property of conservation of total energy in more detail for this important
case. This will lead to a direct connection to the passivity of a “virtual system” that
can be associated to the Euler–Lagrange equations, and which has a clear geometric
interpretation.

Let mi j (q) be the (i, j)-th element of M(q). Writing out

∂L

∂q̇k
(q, q̇) =

∑

j

mk j (q)q̇ j

and

d

dt

(
∂L

∂q̇k
(q, q̇)

)
=

∑

j

mk j (q)q̈ j +
∑

j

d

dt
mkj (q)q̇ j

=
∑

j

mk j (q)q̈ j +
∑

i, j

∂mkj

∂qi
q̇i q̇ j ,

as well as
∂L

∂qk
(q, q̇) = 1

2

∑

i, j

∂mi j

∂qk
(q)q̇i q̇ j − ∂P

∂qk
(q),

the Euler–Lagrange equations (4.106) for L(q, q̇) = 1
2 q̇

T M(q)q̇ − P(q) take the
form

∑

j

mk j (q)q̈ j +
∑

i, j

{
∂mkj

∂qi
(q) − 1

2

∂mi j

∂qk

}
(q)q̇i q̇ j − ∂P

∂qk
(q) = τk,

for k = 1, . . . , n. Furthermore, since

∑

i, j

∂mkj

∂qi
(q)q̇i q̇ j =

∑

i, j

1

2

{
∂mkj

∂qi
(q) + ∂mki

∂q j

}
(q)q̇i q̇ j ,

by defining the Christoffel symbols of the first kind

ci jk(q) := 1

2

{
∂mkj

∂qi
+ ∂mki

∂q j
− ∂mi j

∂qk

}
(q) , (4.118)
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we can further rewrite the Euler–Lagrange equations as

∑

j

mk j (q)q̈ j +
∑

i, j

ci jk(q)q̇i q̇ j + ∂P

∂qk
(q) = τk , k = 1, . . . , n,

or, more compactly,

M(q)q̈ + C(q, q̇)q̇ + ∂P

∂q
(q) = τ , (4.119)

where the (k, j)-th element of the matrix C(q, q̇) is defined as

ck j (q) =
n∑

i=1

ci jk(q)q̇i . (4.120)

In a mechanical system context the forces C(q, q̇)q̇ in (4.119) correspond to the
centrifugal and Coriolis forces.

The definition of the Christoffel symbols leads to the following important obser-
vation. Adopt the notation Ṁ(q) for the n × n matrix with (i, j)-th element given
by ṁi j (q) = d

dt mi j (q) = ∑
k

∂mi j

∂qk
(q)q̇k .

Lemma 4.6.1 The matrix
Ṁ(q) − 2C(q, q̇) (4.121)

is skew-symmetric for every q, q̇ .

Proof Leaving out the argument q, the (k, j)-th element of (4.121) is given as

ṁk j − 2ck j =
n∑

i=1

[
∂mkj

∂qi
−

{
∂mkj

∂qi
+ ∂mki

∂q j
− ∂mi j

∂qk

}]
q̇i

=
n∑

i=1

[
∂mi j

∂qk
− ∂mki

∂q j

]
q̇i

which changes sign if we interchange k and j . �

The skew-symmetry of Ṁ(q) − 2C(q, q̇) is another manifestation of the fact that
the forces C(q, q̇)q̇ in (4.119) are workless. Indeed by direct differentiation of the
total energy E(q, q̇) := 1

2 q̇
T M(q)q̇ + P(q) along (4.119) one obtains

d
dt H = q̇T M(q)q̈ + 1

2 q̇
T Ṁ(q)q̇ + q̇T ∂P

∂q (q)

= q̇T τ + 1
2 q̇

T
(
Ṁ(q) − 2C(q, q̇)

)
q̇ = q̇T τ ,

(4.122)

in accordance with (4.110).
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However, skew-symmetry of Ṁ(q) − 2C(q, q̇) is actually a stronger property
than energy conservation. In fact, if we choose the matrix C(q, q̇) different from the
matrix of Christoffel symbols (4.116), i.e., as some other matrix C̃(q, q̇) such that

C̃(q, q̇)q̇ = C(q, q̇)q̇ , for all q, q̇ , (4.123)

then still q̇T (Ṁ(q) − 2C̃(q, q̇))q̇ = 0 (conservation of energy), but in general
Ṁ(q) − 2C̃(q, q̇) will not be skew-symmetric anymore.

This observation is underlying the following developments. Start out from
Eq. (4.119) for zero potential energy P and the vector of external forces τ denoted
by u, that is

M(q)q̈ + C(q, q̇)q̇ = u (4.124)

Definition 4.6.2 The virtual system associated to (4.124) is defined as the first-order
system in the state vector s ∈ Rn

M(q)ṡ + C(q, q̇)s = u
y = s

(4.125)

with inputs u ∈ Rn and outputs y ∈ Rn , parametrized by the vector q ∈ Rn and its
time-derivative q̇ ∈ Rn .

Thus for any curve q(·) and corresponding values q(t), q̇(t) for all t , wemay consider
the time-varying system (4.125) with state vector s. Clearly, any solution q(·) of the
Euler–Lagrange equations (4.124) for a certain input function τ (·) generates the
solution s(t) := q̇(t) to the virtual system (4.125) for u = τ , but on the other
hand not every pair q(t), s(t), with s(t) a solution of (4.125) parametrized by q(t),
corresponds to a solution of (4.124). In fact, this is only the case if additionally
s(t) = q̇(t). This explains the name virtual system.

Remarkably, not only the Euler–Lagrange equations (4.124) are lossless with
respect to the output y = q̇ , but also the virtual system (4.125) turns out to be lossless
with respect to the output y = s, for every time-function q(·). This follows from the
following computation, crucially relying on the skew-symmetry of Ṁ(q)−2C(q, q̇).
Define the storage function of the virtual system (4.125) as the following function
of s, parametrized by q

S(s, q) := 1

2
sT M(q)s (4.126)

Then, by skew-symmetry of Ṁ − 2C , along (4.125)

d
dt S(s, q) = sT M(q)ṡ + 1

2 s
T Ṁ(q)s

= −sTC(q, q̇)s + 1
2 s

T Ṁ(q)s + sT u = sT u
(4.127)

This is summarized in the following proposition.
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Proposition 4.6.3 For any curve q(·) the virtual system (4.125) with input u and
output y is lossless, with parametrized storage function S(s, q) = 1

2 s
T M(q)s.

This can be directly extended to

M(q)q̈ + C(q, q̇)q̇ + ∂R

∂q̇
(q̇) = τ , (4.128)

with Rayleigh dissipation function R(q̇) satisfying q̇T ∂R
∂q̇ (q̇) ≥ 0, leading to the

associated virtual system

ṡ = −M−1(q)C(q, q̇)s − M−1(q) ∂R
∂s (s) + M−1(q)u

y = s.
(4.129)

Corollary 4.6.4 For any curve q(·) the virtual system (4.129) is passive with para-
metrized storage function S(s, q) := 1

2 s
T M(q)s, satisfying d

dt S(s, q) = −sT ∂R
∂s (s)+

sT u ≤ sT u.

Example 4.6.5 As an application of Proposition 4.6.3 suppose one wants to asymp-
totically track a given reference trajectory qd(·) for a mechanical system (e.g., robot
manipulator) with dynamics (4.119). Consider first the preliminary feedback

τ = M(q)ξ̇ + C(q, q̇)ξ + ∂P

∂q
(q) + ν (4.130)

where
ξ := q̇d − �(q − qd) (4.131)

for some matrix � = �T > 0. Substitution of (4.130) into (4.119) yields the virtual
dynamics

M(q)ṡ + C(q, q̇)s = ν (4.132)

with s := q̇ − ξ. Define the additional feedback

ν = −ν̂ + τe := −Ks + τe, K = KT > 0 , (4.133)

corresponding to an input strictly passive map s �→ ν̂.
Then by Theorem 2.2.15, part (b), for every τe ∈ L2(R

n) such that s (and thus ν)
are in Ln

2e (see Fig. 4.3), actually the signal s will be in L2(R
n). This fact has an

important consequence, since by (4.131) and s = q̇−ξ the error e = q−qd satisfies

ė = −�e + s. (4.134)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Fig. 4.3 Feedback
configuration for tracking M(q)ṡ + C(q, q̇)s=ν

ν̂ = Ks

τe
+

−
ν s

sν̂

Because we took � = �T > 0 it follows from linear systems theory that also
e ∈ L2(R

n), and therefore by (4.134) that ė ∈ L2(R
n). It is well known (see e.g.,

[83], pp. 186, 237) that this implies8 e(t) → 0 for t → ∞.

An intrinsic geometric interpretation of the skew-symmetry of Ṁ − 2C and the
virtual system (4.125) can be given as follows, within the framework of Riemannian
geometry. The configuration space Q of the mechanical system is assumed to be
a manifold with local coordinates (q1, . . . , qn). Then the generalized mass matrix
M(q) > 0 defines a Riemannian metric <, > on Q by setting

< v,w > := vT M(q)w (4.135)

for v,w tangent vectors to Q at the point q. The manifold Q endowed with the
Riemannian metric is called a Riemannian manifold.

Furthermore, an affine connection ∇ on an arbitrary manifold Q is a map that
assigns to each pair of vector fields X and Y on Q another vector field ∇XY on Q
such that

(a) ∇XY is bilinear in X and Y
(b) ∇ f XY = f ∇XY
(c) ∇X f Y = f ∇XY + (LX f )Y

for every smooth function f , where LX f denotes the directional derivative of f
along q̇ = X (q), that is, in local coordinates q = (q1, . . . , qn) for Q, LX f (q) =∑

k
∂ f
∂qk

(q)Xk(q), where Xk is the k-th component of the vector field X . In particular,
as will turn out to be important later on, Property (b) implies that ∇XY at q ∈ Q
depends on the vector field X only through its value X (q) at q.

In local coordinates q for Q an affine connection on Q is determined by n3 smooth
functions

��
i j (q), i, j, � = 1, . . . , n, (4.136)

such that the �-th component of ∇XY, � = 1, . . . , n, is given as

8A simple proof runs as follows (with thanks to J.W. Polderman and I.M.Y. Mareels). Take for sim-
plicity n = 1. Then, since d

dt e
2(t) = 2e(t)ė(t), e2(t2) − e2(t1) = 2

∫ t2
t1
e(t)ė(t)dt ≤ ∫ t2

t1
[e2(t) +

ė2(t)]dt → 0 for t1, t2 → ∞. Thus for any sequence of time instants t1, t2, . . . , tk , . . .with tk → ∞
for k → ∞ the sequence e2(ti ) is a Cauchy sequence, implying that e2(ti ) and thus e2(t) converges
to some finite value for ti , t → ∞, which has to be zero since e ∈ L2(R).
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(∇XY )� =
∑

j

∂Y�

∂q j
X j +

∑

i, j

��
i j XiY j , (4.137)

with subscripts denoting the components of the vector fields involved.
The Riemannian metric <, > on Q obtained from M(q) defines a unique affine

connection ∇M onQ (called the Levi-Civita connection), which in local coordinates
is determined by the n3 Christoffel symbols (of the second kind)

��
i j (q) :=

n∑

k=1

m�k(q)ci jk(q), (4.138)

with m�k(q) the (�, k)-th element of the inverse matrix M−1(q), and ci jk(q) the
Christoffel symbols of the first kind as defined in (4.118). Thus in vector notation
the affine connection ∇M is given as

∇M
X Y (q) = DY (q)(q)X (q) + M−1(q)C(q, X)Y (q) (4.139)

with DY (q) the n × n Jacobian matrix of Y .
Identifying s ∈ Rn with a tangent vector at q ∈ Q, we conclude that the

coordinate-free description of the virtual system (4.125) is given by

∇M
q̇(t)s(t) = M−1(q(t))u(t)

y(t) = s(t)
(4.140)

Thus the state s of the virtual system at any moment t is an element of Tq(t)Q. (Recall
that ∇M

X s(q) depends on the vector field X only through its value X (q). Hence at
every time t the expression in the left-hand side of (4.140) depends on the curve q(·)
only through the value q̇(t) ∈ Tq(t)Q.)

With regard to the last term M−1(q)u we note that from a geometric point of view,
the force u is an element of the cotangent space of Q at q. Since M−1(q) defines a
map from the cotangent space to the tangent space, this yields M−1(q)u ∈ TqQ. In
terms of the Riemannian metric <, > the tangent vector Z = M−1(q)u ∈ TqQ is
determined by the requirement that the cotangent vector < Z , · > equals u. This is
summarized in the following.

Proposition 4.6.6 Consider a configuration manifold Q with Riemannian metric
determined by the generalized mass matrix M(q). Let ∇M be the Levi-Civita con-
nection on Q. Then the virtual system is given by (4.140), where q(·) is any curve
on Q and s(t) ∈ Tq(t)Q for all t . The virtual system is lossless with parametrized
storage function S(s, q) = 1

2 < s, s > (q).

Remark 4.6.7 The expression∇M
q̇(t)s(t) on the left-hand side of (4.140) is also called

the covariant derivative of s(t) (with respect to the affine connection∇M ); sometimes
denoted as Ds

dt (t).
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We emphasize that one can take any curve q(t) inQ with corresponding velocity
vector field q̇(t) = X (q(t)), and consider the dynamics (4.140) of any vector field s
along this curve q(t) (that is, s(t) being a tangent vector to Q at q(t)). If we take s
to be equal to q̇ , then (4.140) reduces to

∇M
q̇ q̇ = M−1(q)ν (4.141)

which is nothing else than the second-order equations (4.124).
Finally, let us come back to the crucial property of skew-symmetry of Ṁ − 2C .

This property has the following geometric interpretation. First we note the following
obvious lemma.

Lemma 4.6.8 Ṁ − 2C is skew-symmetric if and only if Ṁ = C + CT

Proof (Ṁ − 2C) = −(Ṁ − 2C)T iff 2Ṁ = 2C + 2CT . �

Given an arbitrary Riemannian metric <,> on Q, an affine connection ∇ on Q is
said to be compatible with <,> if the following property holds:

LX < Y, Z >=< ∇XY, Z > + < Y,∇X Z > (4.142)

for all vector fields X,Y, Z on Q.
Consider now the Riemannian metric <,> determined by the mass matrix M as

in (4.135). Furthermore, consider local coordinates q = (q1, . . . , qn) for Q, and let
Y = ∂

∂qi
, Z = ∂

∂q j
. Then (4.142) reduces to (see (4.137))

LXmi j =< ∇X
∂

∂qi
,

∂

∂q j
> + <

∂

∂qi
,∇X

∂

∂q j
> (4.143)

with mi j the (i, j)-th element of the mass matrix M . Furthermore, by (4.139) we
have

∇X
∂

∂qi
= M−1(q)C(q, X)ei

∇X
∂

∂q j
= M−1(q)C(q, X)e j

(4.144)

with ei , e j denoting the i-th, respectively j-th, basis vector. Therefore, taking into
account the definition of <,> in (4.135), we obtain from (4.143)

LXmi j = (CT (q, X))i j + (C(q, X))i j , (4.145)

which we write (replacing LX by the˙operator) as

Ṁ(q) = CT (q, q̇) + C(q, q̇). (4.146)
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Thus, in view of Lemma 4.6.8, the property of skew-symmetry of the matrix Ṁ−2C
is nothing else than the compatibility of the Levi-Civita connection ∇M defined by
the Christoffel symbols (4.138) with the Riemannian metric <,> defined by M(q).

This observation also implies that one may take any other affine connection ∇
(different from the Levi-Civita connection ∇M ), which is compatible with <,>

defined by M in order to obtain a lossless virtual system (4.140) (with ∇M replaced
by ∇).

Finally, we note that the Levi-Civita connection ∇M defined by the Christoffel
symbols (4.138) is the unique affine connection that is compatiblewith<,> defined
by M , as well as is torsion-free in the sense that

∇XY − ∇XY = [X,Y ] (4.147)

for any two vector fields X,Y onQ, where [X,Y ] denotes the Lie bracket of X and Y .
In terms of the Christoffel symbols (4.138) the condition (4.147) amounts to the
symmetry condition ��

i j = ��
j i for all i, j, �, or equivalently, with Ckj related to ��

i j
by (4.138) and (4.120), that

C(q, X)Y = C(q,Y )X (4.148)

for every pair of tangent vectors X,Y .

4.7 Incremental and Shifted Passivity

Recall the definition of incremental passivity as given in Definition 2.2.20. A state
space version can be given as follows.

Definition 4.7.1 Consider a system as given in (4.1), with input and output spaces
U = Y = Rm and state space X . The system � is called incrementally passive if
there exists a function, called the incremental storage function,

S : X × X → R+ (4.149)

such that
S(x1(T ), x2(T )) ≤ S(x1(0), x2(0))

+ ∫ T
0 (u1(t) − u2(t))T (y1(t) − y2(t))dt

(4.150)

for all T ≥ 0, and for all pairs of input functions u1, u2 : [0, T ] → Rm and all pairs
of initial conditions x1(0), x2(0), with resulting pairs of state and output trajectories
x1, x2 : [0, T ] → X , y1, y2 : [0, T ] → Rm .

Remark 4.7.2 Note that if S(x1, x2) satisfies (4.150) then so does the function
1
2 (S(x1, x2) + S(x2, x1)). Hence, without loss of generality, we may assume that

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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the storage function S(x1, x2) satisfies S(x1, x2) = S(x2, x1). Extensions of Defini-
tion4.7.1 to incremental output strict or incremental input strict passivity are imme-
diate.

Definition 4.7.1 directly implies incremental passivity of the input–output map Gx̄

defined by �, for every initial state x̄ ∈ X . This follows from (4.150) by taking
identical initial conditions x1(0) = x2(0) = x̄ . Hence, the property of incremental
passivity defined in Definition 4.7.1 for state space systems is in principle stronger
than the property defined in Definition 2.2.20 for input–output maps.

As a direct corollary of Theorem 3.1.11 we obtain the following.

Corollary 4.7.3 The system (4.1) is incrementally passive if and only if

sup
u1(·),u2(·),T≥0

−
∫ T

0
(u1(t) − u2(t))

T (y1(t) − y2(t))dt < ∞ (4.151)

for all initial conditions (x1(0), x2(0)) ∈ X × X .

The differential version of the incremental dissipation inequality (4.149) takes the
form

Sx1(x1, x2) f (x1, u1) + Sx2(x1, x2) f (x2, u2)≤(u1 − u2)
T (y1 − y2) (4.152)

for all x1, x2, u1, u2, y1 = h(x1, u1), y2 = h(x2, u2), where Sx1(x1, x2) and Sx2
(x1, x2) denote row vectors of partial derivatives with respect to x1, respectively x2.

An obvious example of an incrementally passive system is a linear passive sys-
tem with quadratic storage function 1

2 x
T Qx . In this case, S(x1, x2) := 1

2 (x1 −
x2)T Q(x1 − x2) define an incremental storage function, satisfying (4.149). Another
example of an incrementally passive system is the virtual system defined in (4.125),
with incremental storage function given by the parametrized expression (compare
with (4.126)) S(s1, s2, q) = 1

2 (s1 − s2)T M(q)(s1 − s2). Furthermore, in both cases
the system remains incrementally passive in the presence of an extra external (distur-
bance) input. For example, passivity of ẋ = Ax + Bu, y = Cx implies incremental
passivity of the disturbed system

ẋ = Ax + Bu + Gd, ḋ = Fd, y = Cx (4.153)

for any F,G.
A different type of example of incremental passivity, relying on convexity, is given

next.

Example 4.7.4 (Primal–dual gradient algorithm) Consider the constrained opti-
mization problem

min
q; Aq=b

C(q), (4.154)

where C : Rn → R is a convex function, and Aq = b are affine constraints, for
some k × n matrix A and vector b ∈ Rk . The corresponding Lagrangian function is

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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defined as
L(q,λ) := C(q) + λT (Aq − b), λ ∈ Rk, (4.155)

which is convex in q and concave in λ. The primal–dual gradient algorithm for
solving the optimization problem in continuous time is given as

τq q̇ = − ∂L
∂q (q,λ) = − ∂C

∂q (q) − ATλ + u

τλλ̇ = ∂L
∂λ

(q,λ) = Aq − b
y = q ,

(4.156)

where τq , τλ are diagonal positive matrices (determining the time-scales of the algo-
rithm). Furthermore, we have added an input vector u ∈ Rn representing possi-
ble interaction with other algorithms or dynamics (e.g., if the primal–dual gradient
algorithm is carried out in a distributed fashion). The output vector is defined as
y = q ∈ Rn . This defines an incrementally passive system with incremental storage
function

S(q1,λ1, q2,λ2) := 1

2
(q1 − q2)

T τq(q1 − q2) + 1

2
(λ1 − λ2)

T τλ(λ1 − λ2) (4.157)

Indeed

d

dt
S = (q1 − q2)

T τq(q̇1 − q̇2) + (λ1 − λ2)
T τλ(λ̇1 − λ̇2)

= −(q1 − q2)
T

(
∂C

∂q
(q1) − ∂C

∂q
(q2)

)
+ (u1 − u2)

T (y1 − y2)

≤ (u1 − u2)
T (y1 − y2) (4.158)

since (q1 − q2)T
(

∂C
∂q (q1) − ∂C

∂q (q2)
)

≥ 0 for all q1, q2, by convexity of C .

Finally, a special case of incremental passivity is obtained by letting u2 to be
a constant input ū, and x2 a corresponding steady-state x̄ satisfying f (x̄, ū) = 0.
Defining the corresponding constant output ȳ = h(x̄, ū) and denoting u1, x1, y1
simply by u, x, y, this leads to requiring the existence of a storage function Sx̄ (x)
(parametrized9 by x̄) satisfying

Sx̄ (x(T )) ≤ Sx̄ (x(0)) +
∫ T

0
(u(t) − ū)T (y(t) − ȳ)dt (4.159)

This existence of a function Sx̄ (x) ≥ 0 satisfying (4.159) is called shifted passivity
(with respect to the steady-state values ū, x̄, ȳ).We shall return to the notion of shifted
passivity more closely in the treatment of port-Hamiltonian systems in Chap.6, see
especially Sect. 6.5.

9Note that in this case the subscript x̄ does not refer to differentiation.

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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4.8 Notes for Chapter 4

1. The Kalman–Yakubovich–Popov Lemma is concerned with the equivalence
between the frequency-domain condition of positive realness of the transfer
matrix of a linear system and the existence of a solution to the LMI (4.18) or
(4.19), and thus to the passivity of a (minimal) input-state-output realization. It
was derived by Kalman [154], also bringing together results of Yakubovich and
Popov. See Willems [351], Rantzer [257], Brogliato, Lozano, Maschke & Ege-
land [52]. For the uncontrollable case, see especially Rantzer [257], Camlibel,
Belur & Willems [58].

2. Example 4.1.7 is taken from van der Schaft [283].

3. The factorization approach mentioned in Sect. 4.1 is due to Hill &Moylan [123,
126, 225]; see these papers for further developments along these lines.

4. Example 4.2.5 is taken from Dalsmo & Egeland [75, 76].

5. Corollary 4.3.5 is based on Vidyasagar [343], Sastry [267] (in the input–output
map setting; see Chap.2). See also Hill & Moylan [124, 125], Moylan [225] for
further developments and generalizations.

6. The treatment of Example 4.3.6 is from Willems [352].

7. Example 4.3.7 is based on van der Schaft & Schumacher [302], where also
applications are discussed. For further developments on passive complementarity
systems see Camlibel, Iannelli & Vasca [59] and the references quoted therein.

8. Proposition 4.3.9 is taken from Kerber & van der Schaft [158].

9. Another interesting extension to the converse passivity theorems discussed in
Sect. 4.3 concerns the following scenario. Suppose �1 is such that �1‖ f �2 is
stable (in some sense) for every passive system �2. Then under appropriate
conditions this implies that also �1 is necessarily passive. This is proved, using
the Nyquist criterion, for single-input single-output linear systems in Colgate &
Hogan [69], and for general nonlinear input–output maps, using the S-procedure
lossless theorem, in Khong & van der Schaft [163]. Within a general state space
setting the result is formulated and derived in Stramigioli [329], where also
other important extensions are discussed. The result is of particular interest for
robotic applications, where the “environment” �2 of a controlled robot �1 is
usually unknown, but can be assumed to be passive. Hence, overall stability is
only guaranteed if �1 is passive; see e.g., Colgate & Hogan [69], Stramigioli
[328, 329].

10. The first scenario of network interconnection of passive systems discussed in
Sect. 4.4 is emphasized and discussed much more extensively in the textbook
Bai, Arcak & Wen [18]. Here also a broad range of applications can be found,
continuing on the seminal paper Arcak [10]. See also Arcak, Meissen & Packard

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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[11] for further developments, as well as Bürger, Zelazo & Allgöwer [55] for a
network flow optimization perspective.

11. Example 4.4.4 can be found in Arcak [10]. See also van der Schaft & Stegink
[303] for a generalization to “structure-preserving” networks of generators and
loads.

12. Kirchhoff’s matrix tree theorem goes back to the classical work of Kirchhoff on
resistive electrical circuits [164]; see Bollobas [48] for a succinct treatment (see
especially Theorem 14 on p. 58), and Mirzaev & Gunawardena [220] and van
der Schaft, Rao & Jayawardhana [301] for an account in the context of chemical
reaction networks.
The existence (not the explicit construction) of γ ∈ R

N+ satisfying Lγ = 0
already follows from the Perron–Frobenius theorem, exploiting the fact that the
off-diagonal elements of −L := DK are all nonnegative; see Sontag [320]
(Lemma V.2).

13. The idea to assemble Lyapunov functions from a weighted sum of Lyapunov
functions of component systems is well known in the literature on large-scale
systems, see e.g., Michel &Miller [219], Siljak [315], and is sometimes referred
to as the use of vector Lyapunov functions. Closely related developments to
the second scenario discussed in Sect. 4.4 can be found in Zhang, Lewis &
Qu [364]. The exposition here, distinguishing between flow and communication
Laplacianmatrices, is largely based on van der Schaft [287]. The interconnection
of passive systems through a symmetric Laplacianmatrix can be already found in
Chopra & Spong [66].

14. Remark 4.4.13 generalizes the definition of effective resistance for symmetric
Laplacians, which is well known; see e.g., Bollobas [48]. Note that in case of a
symmetric Laplacian Ri j = R ji .

15. The third scenario of network interconnection of passive systems as discussed
in Sect. 4.4 is based on Arcak & Sontag [12], to which we refer for additional
references and developments on the secant condition.

16. Section4.5, as well as the first part of Sect. 4.5 is mainly based on the survey
paperOrtega&Spong [243], forwhichwe refer to additional references. See also
the book Ortega, Loria, Nicklasson & Sira-Ramirez [239], as well as Arimoto
[13]. Example 4.6.5 is due to Slotine & Li [316].

17. (Cf. Remark 4.5.2). If the map from q̇ to p is not invertible one is led to con-
strainedHamiltonian dynamics as considered byDirac [81, 82]. Under regularity
conditions the constrained Hamiltonian dynamics is Hamiltonian with respect
to the Poisson structure defined as the Dirac bracket. See van der Schaft [271]
for an input–output decoupling perspective.

18. Background on the Riemannian geometry in Sect. 4.6 can be found, e.g., in
Boothby [49], Abraham & Marsden [1]. For related work, see Li & Horowitz
[180].
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19. The concept of the virtual system defined in Definition 4.6.2 and the proof of
its passivity (in fact, losslessness) is due to Slotine and coworkers, see e.g.,
Wang & Slotine [344], Jouffroy & Slotine [153], Manchester & Slotine [193].

20. Incremental passivity is also closely related to differential passivity, as explored
in Forni & Sepulchre [100], Forni, Sepulchre & van der Schaft [101], van
der Schaft [285]. Following the last reference, the notion of differential pas-
sivity involves the notion of the variational systems of �, defined as follows
(cf. Crouch & van der Schaft [73]). Consider a one-parameter family of input-
state-output trajectories (x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ], of � parametrized
by ε ∈ (−c, c), for some constant c > 0. Denote the nominal trajectory by
x(t, 0) = x(t), u(t, 0) = u(t) and y(t, 0) = y(t), t ∈ [0, T ]. Then the infinites-
imal variations

δx(t) = ∂x

∂ε
(t, 0) , δu(t) = ∂u

∂ε
(t, 0) , δy(t) = ∂y

∂ε
(t, 0)

satisfy

δ̇x(t) = ∂ f
∂x (x(t), u(t))δx(t) + ∂ f

∂x (x(t), u(t))δu(t)
δy(t) = ∂h

∂x (x(t), u(t))δx(t) + ∂ f
∂x (x(t), u(t))δu(t)

(4.160)

The system (4.160) (parametrized by u(·), x(·), y(·)) is called the variational
system, with variational state δx(t) ∈ Tx(t)X , variational inputs δu ∈ Rm , and
variational outputs δy ∈ Rm .
Suppose now that the original system � is incrementally passive. Identify
u(·), x(·), y(·)with u2(·), x2(·), y2(·) in (4.150), and (x(t, ε), u(t, ε), y(t, ε)) for
ε �= 0 with u1(·), x1(·), y1(·). Dividing both sides of (4.150) by ε2, and taking
the limit for ε → 0, yields under appropriate assumptions

S̄(x(T ), δx(T )) ≤ S̄(x(0), δx(0)) +
∫ T

0
(δu(t))T δy(t)dt (4.161)

where

S̄(x(t), δx(t)) := lim
ε→0

S(x(t, ε), x(t))

ε2
(4.162)

The thus obtained Eq. (4.161) amounts to the definition of differential passivity
adopted in Forni & Sepulchre [100], van der Schaft [285].

21. For the numerous applications of the theory of passive systems to adaptive
controlwe refer, e.g., toBrogliato, Lozano,Maschke&Egeland [52], andAstolfi,
Karagiannis & Ortega [16], and the references quoted therein.
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