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Preface

The third edition of this book differs substantially from the second edition that came
more than fifteen years ago. Approximately one-third of the book is new material,
while existing parts have undergone major rewritings and extensions.

On the other hand, the spirit of the third edition as compared with the second and
first edition has remained the same: to provide a compact presentation of the basic
ideas in the theory of L2-gain and passivity of nonlinear systems, starting from a
brief summary of classical results on input–output maps, to a broad range of
analysis and control theories for nonlinear state space systems, regarded from the
unifying perspective of dissipative systems theory.

A major change with respect to the second edition is the splitting, as well as
substantial extension, of the old Chap. 3 on dissipative systems, formerly also
including passivity and L2-gain theory, into three separate chapters on dissipative
systems theory (Chap. 3), passive systems (Chap. 4), and L2-gain theory (Chap. 8).
Furthermore, the old Chapter 4 on port-Hamiltonian systems has been reworked
and extended into two chapters on port-Hamiltonian systems theory (Chap. 6) and
on control theory of port-Hamiltonian systems (Chap. 7). Also, the theory of
all-pass factorizations (new Chap. 9) has been augmented with a treatment of
nonlinear state space “spectral factorization” theory.

Apart from all the rewritings and extensions, a relative novelty from a con-
ceptual point of view is the increased attention towards network dynamics and
large-scale systems. The general concept of an interconnected system already was
at the core of the passivity and small-gain theories, and even more so of the
overarching theory of dissipative systems, having their origin in network theory and
closed-loop stability, and emphasizing the “systems point of view.” But the recent
developments in dynamics on networks, including the use of algebraic graph the-
ory, have certainly been influential in extending classical results, which is reflected
in this new edition of the book.

Acknowledgements In addition to the acknowledgements of the previous edi-
tions (see the Preface to the 2nd edition), I would like to thank everybody who has
contributed to the development of the new material in the third edition. Apart from
the continuing collaborations with Bernhard Maschke, Romeo Ortega, Jacquelien
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Scherpen, Alessandro Macchelli, Peter Breedveld, Rodolphe Sepulchre, and Stefano
Stramigioli, since 2000 the collaborations with in particular Noboru Sakamoto,
Dimitri Jeltsema, Jorge Cortes, Hans Zwart, Gjerrit Meinsma, Claudio De Persis,
Bayu Jayawardhana, Kanat Camlibel, and Shodhan Rao have been very stimulating.
Also I thank the Ph.D. students and postdocs since 2000 working on these and
related topics: Guido Blankenstein, Goran Golo, Viswanath Talasila, Agung Julius,
Ramkrishna Pasumarthy, Javier Villegas, Norbert Ligterink, Damien Eberard,
Rostyslav Polyuga, Aneesh Venkatraman, Florian Kerber, Harsh Vinjamoor, Marko
Seslija, Shaik Fiaz, Ewoud Vos, Jieqiang Wei, Geert Folkertsma, Nima
Monshizadeh, Tjerk Stegink, Filip Koerts, Pooya Monshizadeh, and Rodolfo Reyes
Baez, as well as the short-term visiting Ph.D. students and postdocs Hugo
Rodrigues, Joaquin Cervera, Luca Gentili, Fabio Gomez-Estern, Joaquin Carrasco,
Marius Zainea, Ioannis Sarras, Daniele Zonetti, and Luis Pablo Borja for numerous
discussions and feedback. Furthermore, I thank the Johann Bernoulli Institute for
Mathematics and Computer Science of the University of Groningen and my col-
leagues of the Jan C. Willems Center for Systems and Control for providing a
stimulating working environment. Finally, once more I would like to acknowledge
the influence of my former thesis advisor and inspirator Jan Willems. Especially this
book would not have been possible without his fundamental contributions to sys-
tems and control, and thus is rightfully dedicated to him.

Groningen, The Netherlands Arjan van der Schaft
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Preface to the First Edition

The first version of these lecture notes were prepared for part of a graduate course
taught for the Dutch Graduate School of Systems and Control (DISC) in the spring
trimester of 1994.

My main goal was to provide a synthesis between the classical theory of
input-output and closed-loop stability on the one hand, and recent work on non-
linear H1 control and passivity-based control on the other hand. Apart from my
own research interests in nonlinear H1 control and in passive and Hamiltonian
systems, this motivation was further triggered by some discussions with David Hill
(Sydney, Australia), Romeo Ortega, Rogelio Lozano (both Compiègne, France) and
Olav Egeland (Trondheim, Norway), at a meeting of the GR Automatique du
CNRS in Compiègne, November 1993, devoted to passivity-based and H1 control.
During these discussions also the idea came up to organize a pre-CDC tutorial
workshop on passivity-based and nonlinear H1 control, which took place at the
1994 CDC under the title “Nonlinear Controller Design using Passivity and
Small-Gain techniques”. Some improvements of the contents and presentation of
Chapter 2 of the final version of these lecture notes are directly due to the lecture
[122] presented at this workshop, and the set of handwritten lecture notes [183].

As said before, the main aim of the lecture notes is to provide a synthesis
between classical input-output and closed-loop stability theory, in particular the
small-gain and passivity theorems, and the recent developments in passivity-based
and nonlinear H1 control. From my point of view the trait d’union between these
two areas is the theory of dissipative systems, as laid down by Willems in the
fundamental paper [350], and further developed by Hill and Moylan in a series of
papers [123, 124, 125, 126]. Strangely enough, this theory has never found its place
in any textbook or research monograph; in fact I have the impression that the paper
[350] is still relatively unknown. Therefore I have devoted Chapter 3 to a detailed
treatment of the theory of dissipative systems, although primarily geared towards
L2-gain and passivity supply rates. One of the nice aspects of classical input-output
and closed-loop stability theory, as well as of dissipative systems theory, is their
firm rooting in electrical network analysis, with the physical notions of passivity,
internal energy and supplied power. Furthermore, using the scattering
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transformation a direct link is established with the finite gain property.
Passivity-based control, on the other hand, used these same physical notions but
draws its motivation primarily from the control of mechanical systems, especially
robotics. Indeed, a usual approach is via the Euler–Lagrange equations of
mechanical systems. In Chapter 4 of the lecture notes my aim is to show that the
passivity properties of electrical networks, of mechanical systems described by
Euler–Lagrange equations, and of constrained mechanical systems, all can be
unified within a (generalized) Hamiltonian framework. This leaves open, and
provokes, the question how other properties inherent in the generalized Hamiltonian
structure, may be exploited in stability analysis and design. The rest of the lecture
notes is mainly devoted to the use of L2-gain techniques in nonlinear control, with
an emphasis on nonlinear H1 control. The approach mimics to a large extent
similar developments in robust linear control theory, while the specific choice of
topics is biased by my own recent research interests and recent collaborations, in
particular with Joe Ball and Andrew Paice. The application of these L2-gain
techniques relies on solving (stationary) Hamilton–Jacobi inequalities, and some-
times on their nonlinear factorization. This constitutes a main bottleneck in the
application of the theory, which is similar to the problems classically encountered in
nonlinear optimal control theory (solving Hamilton–Jacobi–Bellman equtions), and,
more generally, in nonlinear state space stability analysis (the construction of
Lyapunov functions). On the other hand, a first-order approach (linearization) may
already yield useful information about the local solvability of Hamilton–Jacobi
inequalities.

Enschede Arjan van der Schaft
January 1996
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Preface to the Second Edition

With respect to the first edition as Volume 218 in the Lecture Notes in Control and
Information Sciences series the basic idea of the second edition has remained the
same: to provide a compact presentation of some basic ideas in the classical theory
of input-output and closed-loop stability, together with a choice of contributions to
the recent theory of nonlinear robust and H1 control and passivity-based control.
Nevertheless, some parts of the book have been thoroughly revised and/or
expanded, in order to have a more balanced presentation of the theory and to
include some of the new developments which have been taken place since the
appearance of the first edition. I soon realized, however, that it is not possible to
give a broad exposition of the existing literature in this area without affecting the
spirit of the book, which is precisely aimed at a compact presentation. So as a result
the second edition still reflects very much my personal taste and research interests.
I trust that others will write books emphasizing different aspects. Major changes
with respect to the first edition are the following: A new section has been added in
Chapter 2 relating L2-gain and passivity via scattering, emphasizing a
coordinate-free, geometric, treatment. The section on stability in Chapter 3 has been
thoroughly expanded, also incorporating some recent results presented in [312].
Chapter 4 has been largely rewritten and expanded, incorporating new develop-
ments. A new Chapter 5 has been added on the topic of feedback equivalence to a
passive system, based on the paper [56].

Acknowledgements Many people have contributed to the genesis of this book.
Chapter 3 is based on the work of my former thesis advisor Jan C. Willems, who
also otherwise has shaped my scientific attitude and taste in a deep way. Chapter 4
owes a lot to an inspiring and fruitful cooperation with Bernhard Maschke, as well
as with Romeo Ortega and Morten Dalsmo, while Chapter 6 is based on joint
research with Andrew Paice, Joe Ball and Jacquelien Scherpen. Also I acknowledge
useful and stimulating discussions with many other people, including Peter Crouch,
Bill Helton, David Hill, Alberto Isidori, Gjerrit Meinsma, Carsten Scherer, Hans
Schumacher, Rodolphe Sepulchre, Stefano Stramigioli, and my colleague Henk
Nijmeijer. I thank the graduate students of the spring trimester of 1994 for being an
attentive audience. Gjerrit Meinsma is furthermore gratefully acknowledged for his

ix



patient way of handling all sorts of LATEX problems. Finally, I thank the Faculty of
Mathematical Sciences, University of Twente, for providing me with secretarial
support for the preparation of this book; in particular I sincerely thank Marja
Langkamp, and for the first edition Marjo Mulder, for their great efforts in bringing
the manuscript to its present form.

Enschede Arjan van der Schaft
August 1999
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Introduction

L2-gain and passivity are fundamental concepts in the stability analysis and control
of dynamical systems. Their traditional scenario of application concerns the feed-
back interconnection of two systems. By computing the L2-gain of one of the two
systems closed-loop stability is guaranteed once the second system has an L2-gain
less than the reciprocal of the first one. Similarly, by verifying passivity of one
system, closed-loop stability results for any second system that is also passive. Thus
passivity or L2-gain provides a stability “certificate” for interconnection with an
unknown system. At the same time it can be regarded as a robustness guarantee. As
a result, many control problems can be cast into the L2-gain or passivity framework;
from stabilization, adaptive control, to robustness optimization and disturbance
attenuation.

Furthermore, the L2-gain and passivity theories are firmly rooted in the mathe-
matical modeling of physical systems. Passivity can be considered as an abstraction
of the common property that the time-derivative of the energy stored in a physical
system is less than or equal than the externally supplied power. Port-based network
modeling of physical systems takes the same point of view, leading to the further
structured class of port-Hamiltonian systems. At the same time, (inverse) scattering
of a system with L2-gain � 1 defines a passive system. Moreover passivity natu-
rally extends to a cyber-physical context by emphasizing Lyapunov stability theory
and physical analogies. On the other hand, the small-gain theory connects to
contraction theorems.

Not only the basic reasoning in L2-gain and passivity theory is similar, but both
theories can be regarded as parts of the overarching theory of dissipative systems, as
was formulated by Willems in the early 1970s. This theory provides a unified
framework for a compositional theory of dynamical systems, directly applicable to
large-scale network systems. Furthermore, it reveals, through the dissipation
inequality, the close connection with optimal control.

The focus of this book is on the use of passivity and L2-gain techniques for
nonlinear systems and control. In particular, no frequency domain conditions are
treated. Solutions to the dynamical analysis and control problems are expressed in
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terms of solvability of nonlinear (partial differential) equations and inequalities,
mostly in Hamilton–Jacobi form.

The contents of the third edition of the book are organized as follows:
Chapter 1 summarizes the classical notions of input–output and closed-loop

stability. The presentation is based on (and is sometimes almost literally taken
from) Vidyasagar’s excellent “Nonlinear Systems Analysis” [343].

Chapter 2 also largely follows the treatment of nonlinear small-gain and pas-
sivity theorems from Vidyasagar [343], with additions from e.g. Desoer and
Vidyasagar [83], as well as further extensions. Section 2.4 provides a geometric
treatment of scattering in this context.

Chapter 3 gives a detailed treatment of the theory of dissipative systems starting
from the fundamental paper by Willems [350], thereby laying the conceptual
foundation for much of the rest of the book. Main parts include the description
of the solution set of the dissipation inequality, and the close link with stability and
stabilization theory using Lyapunov functions, as well as with optimal control.
Furthermore, dissipative systems theory as a tool for the analysis of large-scale
interconnected systems is introduced.

Chapter 4 focusses on dissipative systems with respect to the passivity supply
rate, and the resulting analysis and control theory of nonlinear passive state space
systems. The passivity theorems of Chap. 2 are revisited from the state space point
of view, including converse passivity theorems and extensions to networks of
passive systems. Euler–Lagrange equations and second-order systems are dealt with
as a special class of passive systems, emphasizing a geometric point of view. Also
the notions of incremental and shifted passivity are introduced.

Chapter 5 deals with the problem of rendering a nonlinear system passive by the
use of state feedback. This is employed for the stabilization of cascaded systems,
and in particular the “backstepping” approach.

Chapter 6 is devoted to the theory of port-Hamiltonian systems. While in the
previous chapters passivity is employed as a tool for analysis and control, in
port-Hamiltonian systems theory (cyclo-)passivity follows from the mathematical
modeling. A broad range of examples from mechanical systems and electrome-
chanical systems is provided. Key properties of port-Hamiltonian systems are
discussed, including the availability of Casimirs and shifted passivity. Furthermore,
from a network modeling perspective physical systems are naturally described as
differential-algebraic equation (DAE) systems, leading to the introduction of the
geometric notion of Dirac structures and port-Hamiltonian DAE systems. This
Dirac structure is partly determined by the incidence structure of the underlying
graph. Finally, the notion of scattering is revisited within the port-Hamiltonian
context.

Chapter 7 considers control strategies exploiting the port-Hamiltonian structure.
The notion of control by interconnection (with a controller port-Hamiltonian sys-
tem) for stabilization is emphasized. This is extended to passivity-based control
including energy and interconnection structure shaping.
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Chapter 8 treats the notion of L2-gain within a state space context, revisiting the
small-gain theorems and extending this to a network setting. It also briefly discusses
connections with input-to-state stability theory.

Chapter 9 deals with the nonlinear analogs of the notions of left- and right
factorization of transfer matrices for linear systems, and with nonlinear all-pass
(inner–outer) factorization. These are used for constructing nonlinear uncertainty
models, for obtaining a nonlinear Youla–Kucera parametrization of stabilizing
controllers, and for deriving the minimum-phase factor of nonlinear systems.

Chapter 10 treats the theory of nonlinear state feedback H1 control, and derives
necessary conditions for the output feedback H1 problem.

Finally, Chapter 11 is devoted to checking (local) solvability of Hamilton–Jacobi
inequalities and to the structure of their solution set. Emphasis is on the relations
between nonlinear dissipation and Hamilton–Jacobi inequalities on the one hand
and linearized dissipation and Riccati inequalities on the other hand, with appli-
cations towards nonlinear optimal and H1 control.

Each chapter is ended by a section containing notes on related developments not
discussed in the book, and a few pointers to the literature. It should be emphasized
that these references are primarily based on personal, biased, interests and insights,
and are certainly not meant to be an accurate reflection of the existing literature.

The relation between the chapters can be explained by the following diagram:

Introduction xvii



Here dashed lines indicate a motivational background from nonlinear input–
output map theory. In particular, a self-contained path through the book is to start in
Chap. 3, and then to continue either to Chap. 4 and further (the passivity route), or
to continue to Chap. 8 and further (the L2-gain route). Both routes finally meet in
Chap. 11.

xviii Introduction



Chapter 1
Nonlinear Input–Output Stability

In this chapter, we briefly discuss the basic notions of input–output stability for
nonlinear systems described by input–output maps. Also the stability of input–output
systems in standard feedback closed-loop configuration is treated.

1.1 Input–Output Maps on Extended Lq-Spaces

The signal spaces under consideration are Lq , q = 1, 2, . . . ,∞, and their exten-
sions:

Definition 1.1.1 (Lq -spaces) For each positive integer q ∈ {1, 2, . . .}, the set
Lq [0,∞) = Lq consists of all functions1 f : R+ → R (R+ = [0,∞)), which are
measurable2 and satisfy ∫ ∞

0
| f (t)|qdt < ∞ (1.1)

The set L∞[0,∞) = L∞ consists of all measurable functions f : R+ → R which
are bounded, i.e.,

sup
t∈R+

| f (t)| < ∞ (1.2)

It is well known that Lq are Banach spaces (i.e., complete normed linear spaces)
with respect to the norms

1Throughout we will identify functions which are equal except for a set of Lebesgue measure zero.
Thus conditions imposed on functions are always to be understood in the sense of being valid for
all t ∈ R+ except for a set of measure zero.
2A function f : R+ → R is measurable if it is the pointwise limit (except for a set of measure
zero) of a sequence of piecewise constant functions on R+.
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2 1 Nonlinear Input–Output Stability

|| f ||q =
(∫ ∞

0
| f (t)|qdt

) 1
q

q = 1, 2, . . . (1.3)

|| f ||∞ = sup
t∈R+

| f (t)|

Definition 1.1.2 (Extended Lq -spaces) Let f : R+ → R. Then for each T ∈ R+,

the function fT : R+ → R is defined by

fT (t) =
{

f (t) , 0 ≤ t < T
0 , t ≥ T

(1.4)

and is called the truncation of f to the interval [0, T ]. For each q = 1, 2, . . . ,∞,
the set Lqe consists of all measurable functions f : R+ → R such that fT ∈ Lq for
all T with 0 ≤ T < ∞. Lqe is called the extension of Lq or the extended Lq-space.

Trivially Lq ⊂ Lqe. Note that Lqe is a linear space but not a normed space like Lq .
Note also that || fT ||q is an increasing function of T , and that

|| f ||q = lim
T →∞ || fT ||q (1.5)

whenever f ∈ Lq .
In order to deal with multi-input multi-output systems, we consider instead of

the one-dimensional space R any finite-dimensional linear space V endowed with
a norm || ||V . Then Lq(V) consists of all measurable functions f : R+ → V such
that ∫ ∞

0
|| f (t)||qVdt < ∞, q = 1, 2, . . . ,∞ (1.6)

By defining the norm

|| f ||q :=
(∫ ∞

0
|| f (t)||qVdt

) 1
q

, || f ||∞ = sup
t∈R+

|| f ||V (1.7)

Lq(V) becomes a Banach space, for any q = 1, 2, . . . ,∞.
The extended space Lqe(V) is defined similar to Definition 1.1.2, that is, for

f : R+ → V wedefine the truncation fT : R+ → V , and f ∈ Lqe(V) if fT ∈ Lq(V)

for all 0 ≤ T ≤ ∞.
The cases L2 and L2(V) are special. Indeed, in the first case the norm || f ||2 given

in (1.3) is associated with the inner product

< f, g > = ∫ ∞
0 f (t)g(t)dt, f, g ∈ L2

|| f ||2 = < f, f >
1
2 , f ∈ L2

(1.8)
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Note that by the Cauchy–Schwartz inequality < f, g >≤ || f ||2||g||2 and thus
< f, g > is well-defined. Hence L2 is a Hilbert space (complete linear space with
inner product).

Similarly, let V be a finite-dimensional linear space with an inner product<, >V .
Then L2(V) becomes a Hilbert space with respect to the inner product

< f, g > =
∫ ∞

0
< f (t), g(t) >V dt, f, g ∈ L2(V) (1.9)

|| f ||2 = < f, f >
1
2 , f ∈ L2(V)

Let now U be an m-dimensional linear space with norm || ||U , and Y be a
p-dimensional linear spacewith norm || ||Y . Consider the input signal space Lqe(U )

and the output signal space Lqe(Y ), together with an input–output mapping

G : Lqe(U ) → Lqe(Y )

u �→ y = G(u)
(1.10)

Definition 1.1.3 (Causal input–output maps) A mapping G : Lqe(U ) → Lqe(Y ) is
said to be causal (or nonanticipating) if

(G(u))T = (G(uT ))T , ∀ T ≥ 0, u ∈ Lqe(U ) (1.11)

Lemma 1.1.4 G : Lqe(U ) → Lqe(Y ) is causal if and only if

u, v ∈ Lqe(U ), uT = vT ⇒ (G(u))T = (G(v))T , ∀ T ≥ 0 (1.12)

Lemma 1.1.4 states that G is causal if, whenever two inputs u and v are equal over
any interval [0, T ], the corresponding outputs are also equal over the same interval.

Definition 1.1.5 (Time-invariant input–output maps) A mapping G : Lqe(U ) →
Lqe(Y ) is said to be time invariant if

Sτ G = GSτ , ∀ τ ≥ 0, (1.13)

where Sτ : Lqe(U ) → Lqe(U ) and Sτ : Lqe(Y ) → Lqe(Y ) is the shift operator
defined as (Sτ u)(t) = u(t + τ ), (Sτ y)(t) = y(t + τ ).

Example 1.1.6 Consider the linear operator G : Lqe → Lqe of convolution type

(G(u))(t) =
∫ ∞

0
h(t, τ )u(τ )dτ (1.14)
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for some kernel h(·, ·). Then G is causal if and only if

h(t, τ ) = 0, t < τ (1.15)

Furthermore, G is time invariant if and only if h(t, τ ) only depends on the difference
t − τ .

1.2 Lq-Stability and Lq-Gain; Closed-Loop Stability

The basic definitions of input–output stability are as follows.

Definition 1.2.1 (Lq -stability and finite Lq -gain) Consider G : Lqe(U ) → Lqe(Y ).
Then G is said to be Lq-stable if

u ∈ Lq(U ) ⇒ G(u) ∈ Lq(Y ), (1.16)

i.e., G maps the subset Lq(U ) ⊂ Lqe(U ) into the subset Lq(Y ) ⊂ Lqe(Y ).
The map G is said to have finite Lq-gain if there exist nonnegative constants γq

and bq such that

||(G(u))T ||q ≤ γq ||uT ||q + bq , ∀ T ≥ 0, u ∈ Lqe(U ) (1.17)

G is said to have finite Lq-gain with zero bias if bq in (1.17) can be taken equal to
zero.

Remark 1.2.2 Linear input–output maps G with finite Lq -gain have zero bias.
Indeed, given (1.17), then for any λ > 0

λ||(G(u))T ||q = ||(G(λu))T ||q ≤ γq ||λuT ||q + bq = λγq ||uT ||q + bq

implying bq = 0.

Note that if G has finite Lq -gain then it is automatically Lq -stable. Indeed, taking
u ∈ Lq(U ) and letting T → ∞ in (1.17) we obtain

||G(u)||q ≤ γq ||u||q + bq , ∀ u ∈ Lq(U ) (1.18)

implying that G(u) ∈ Lq(Y ) for all u ∈ Lq(U ).
Conversely, for causal maps (1.18) implies (1.17):

Proposition 1.2.3 Let G : Lqe(U ) → Lqe(Y ) be causal and satisfy (1.18). Then G
satisfies (1.17) for the same bq , and thus has finite Lq-gain.
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Proof Let u ∈ Lqe(U ), then uT ∈ Lq(U ) and by (1.18)

||G(uT )||q ≤ γq ||uT ||q + bq

Since G is causal, (G(u))T = (G(uT ))T , and thus

||(G(u))T ||q = ||(G(uT ))T ||q ≤ ||G(uT )||q ≤ γq ||uT ||q + bq

�

Definition 1.2.4 (Lq -gain) Let G : Lqe(U ) → Lqe(Y ) have finite Lq -gain. Then
the Lq -gain of G is defined as

γq(G) := inf{γq | ∃ bq such that (1.17) holds} (1.19)

Remark 1.2.5 Since all norms on a finite-dimensional linear space are equivalent
the property of finite Lq -gain is independent of the choice of the norms on U and Y .
Of course, the value of the Lq -gain does depend on these norms.

Remark 1.2.6 In the linear case the L2-gain is equal to the induced norm of the
input–output map.

A slightly different formulation of finite L2-gain, to be used later on in Chaps. 2,
3, and 9, can be given as follows. By Definition 1.2.1, an input–output map G :
L2e(U ) → L2e(Y ) has finite L2-gain if there exist constants γ and b such that

||(G(u))T ||2 ≤ γ||uT ||2 + b, ∀u ∈ L2e(U ), ∀T ≥ 0 (1.20)

Alternatively, we may consider the inequality

||(G(u))T ||22 ≤ γ̃2||uT ||22 + c, ∀u ∈ L2e(U ), ∀T ≥ 0 (1.21)

for some nonnegative constants γ̃ and c.

Proposition 1.2.7 If (1.20) holds, then for every γ̃ > γ there exists c such that (1.21)
holds, and conversely, if (1.21) holds, then for every γ > γ̃ there exists b such that
(1.20) holds. In particular, the L2-gain γ(G) defined in Definition 1.2.4, cf. (1.19),
is alternatively given as

γ(G) = inf{γ̃ | ∃c such that (1.21) holds } (1.22)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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Proof Recall that (1.20) amounts to (with y = G(u))

(∫ T

0
||y(t)||2dt

) 1
2

≤ γ

(∫ T

0
||u(t)||2dt

) 1
2

+ b,

while (1.21) amounts to

∫ T

0
||y(t)||2dt ≤ γ̃2

∫ T

0
||u(t)||2dt + c

Denote Y = ∫ T
0 ||y(t)||2dt, U = ∫ T

0 ||u(t)||2dt , and start from the inequality

Y
1
2 ≤ γU

1
2 + b

Then by quadrature Y ≤ γ2U + 2γbU
1
2 + b2. Let now γ̃ > γ, then (γ2 − γ̃2)U +

2γbU
1
2 + b2 as a function of U is bounded from above by some constant c, and thus

Y ≤ γ̃2U + c

Conversely, if Y ≤ γ̃2U + c, then Y
1
2 ≤ (γ̃2U + c)

1
2 , and for any γ > γ̃ there exists

b such that (γ̃2U + c)
1
2 ≤ γU

1
2 + b, whence Y

1
2 ≤ γU

1
2 + b. �

A special case of finite L2-gain is defined as follows.

Definition 1.2.8 (Inner map) A map G : L2e(U ) → L2e(Y ) is called inner if it has
L2-gain ≤ 1, and furthermore

||G(u)||22 = ||u||22 + c, for all u ∈ L2(U ) (1.23)

for some constant c.

Note that by Proposition 1.2.3 a causal map G : L2e(U ) → L2e(Y ) is inner if and
only if it satisfies (1.23). Also note that (1.23) implies that c = ‖G(0)‖22 with 0 the
zero input function. We obtain the following characterization of inner causal maps,
which will be used in Chaps. 8 and 9.

Proposition 1.2.9 A causal L2-stable map G : L2e(U ) → L2e(Y ) is inner if and
only if

(DG(u))∗ ◦ G(u) = u, for all u ∈ L2(U ), (1.24)

where DG(u) denotes the Fréchet derivative of G at u ∈ L2(U ), and (DG(u))∗ its
adjoint map with respect to the L2 inner product.

Proof (Only if) Differentiation of (1.23) with respect to u in the direction h ∈ L2(U )

yields
< DG(u)∗ ◦ G(u), h >=< u, h >, (1.25)

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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which by arbitrariness of h implies (1.24). (If) Note that

< u, u > − < G(u), G(u) > + < G(0), G(0) >

= ∫ 1
0

d
ds [< su, su > − < G(u), G(u) >] ds

= 2
∫ 1
0 [< su, u > − < DG(su)∗ ◦ G(su), u >] ds

(1.26)

Hence (1.23) follows from (1.24). �

It is sometimes useful to generalize input–output maps to relations. Let R be a subset
of Lqe(U ) × Lqe(Y ). Then we say that u ∈ Lqe(U ) is related to y ∈ Lqe(Y ) via the
relation R if (u, y) ∈ R ⊂ Lqe(U ) × Lqe(Y ).

Definition 1.2.10 (Lq -stable relations) The relation R ⊂ Lqe(U ) × Lqe(Y ) is said
to be Lq -stable if

(u, y) ∈ R, u ∈ Lq(U ) ⇒ y ∈ Lq(Y ), (1.27)

while R is said to have finite Lq -gain if ∃ γq , bq such that for all T ≥ 0

(u, y) ∈ R, u ∈ Lqe(U ) ⇒ ||yT ||q ≤ γq ||uT ||q + bq , (1.28)

and its Lq -gain is denoted as γq(R).

Any map G : Lqe(U ) → Lqe(Y ) defines a relation RG , namely

RG = {(u, G(u)) | u ∈ Lqe(U )} (1.29)

The converse, however, need not to be true; for a particular u ∈ Lqe(U ) there may
not exist an y ∈ Lqe(Y ) such that (u, y) ∈ R, or, alternatively, there may exist many
such y.

So far we have discussed open-loop stability. For closed-loop stability we look
at the standard negative feedback configuration of Fig. 1.1, denoted by G1‖ f G2,
where G1 : Lqe(U1) → Lqe(Y1), G2 : Lqe(U2) → Lqe(Y2) are input–output maps,

Fig. 1.1 Standard feedback
configuration G1‖ f G2

+

− G1
e1 u1 y1

G2
y2 u2 e2+

+
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andU1 = Y2 =: E1, U2 = Y1 =: E2. Furthermore, e1 ∈ Lqe(E1), e2 ∈ Lqe(E2) rep-
resent external input signals injected in the closed-loop configuration. The closed-
loop system G1‖ f G2 is thus described by the equations

u1 = e1 − y2 , u2 = e2 + y1

y1 = G1(u1) , y2 = G2(u2)
(1.30)

or, more compactly,
u = e − Fy, y = G(u), (1.31)

with

u =
[

u1

u2

]
, y =

[
y1
y2

]
, e =

[
e1
e2

]
,

F =
[

0 Im1

−Im2 0

]
, G =

[
G1 0
0 G2

] (1.32)

(dimUi = mi , dim Yi = pi , i = 1, 2, where m2 = p1, m1 = p2).
The closed-loop system G1‖ f G2 defines two relations. Indeed, eliminate y from

(1.31) to obtain
u = e − FG(u) (1.33)

leading to the relation

Reu = {(e, u) ∈ Lqe(E1 × E2) × Lqe(U1 × U2) | u + FG(u) = e} (1.34)

Alternatively, eliminate u from (1.31) to obtain

y = G(e − Fy) (1.35)

and the relation

Rey = {(e, y) ∈ Lqe(E1 × E2) × Lqe(Y1 × Y2) | y = G(e − Fy)} (1.36)

Definition 1.2.11 (Closed-loop Lq -stability) The closed-loop system G1‖ f G2 is
Lq-stable if both Reu and Rey are Lq -stable relations. G1‖ f G2 has finite Lq -gain if
both Reu and Rey have finite Lq -gain.

Actually, the situation is more simple:

Lemma 1.2.12 (a) Reu is Lq-stable ⇐⇒ Rey is Lq-stable.
(b) Reu has finite Lq-gain ⇐⇒ Rey has finite Lq-gain.
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Proof (a) Suppose Reu is Lq -stable. Let (e, y) ∈ Rey . By (1.31)

(e, e − Fy) ∈ Reu (1.37)

Let e ∈ Lq(E1 × E2). Then, since Reu is Lq -stable, e − Fy ∈ Lq(E1 × E2). Since
F is a nonsingular matrix this implies that y ∈ Lq(Y1 × Y2).

Conversely, suppose Rey is Lq -stable. Let (e, u) ∈ Reu , and take e ∈ Lq(E1 × E2).
Then (e, y = G(u)) ∈ Rey , and by Lq -stability of Rey, y = G(u) ∈ Lq(Y1 × Y2).
Since F is a constant matrix this implies that u = e − Fy ∈ Lq(U1 × U2). Part (b)
follows similarly using the triangle inequality ||a + b||q ≤ ||a||q + ||b||q for any
norm || ||q . �
Remark 1.2.13 Note that the implication (⇒) hinges upon the nonsingularity of the
interconnection matrix F . This may not be valid anymore for more general feedback
configurations. In particular, for e2 = 0 the Lq -stability or finite Lq -gain of Re1 y1 and
of Re1u1 are not equivalent; see also Remark 2.2.17.

With regard to causality we have the following simple observation.

Proposition 1.2.14 Let G1 and G2 be causal input–output mappings. Then also
G1‖ f G2 is causal in the sense that for (e, u) ∈ Reu, uT only depends on eT , and for
(e, y) ∈ Rey, yT only depends on eT ,∀T ≥ 0.

Proof By causality of G1 and G2, y1T only depends on e1T and y2T , while y2T only
depends on e2T and y1T . Thus y1T , y2T only depend on e1T , e2T . �

The relations Reu and Rey as defined above do not necessarily correspond tomappings
from e to u, respectively, from e to y. Indeed, solving (1.33) for u would correspond
to

u = (I + FG)−1e, (1.38)

but the inverse of I + FG need not exist. Thus for arbitrary external signals
e1 ∈ Lqe(E1), e2 ∈ Lqe(E2) there do not necessarily exist internal signals u1 ∈
Lqe(U1), u2 ∈ Lqe(U2), as well as y1 ∈ Lqe(Y1), y2 ∈ Lqe(Y2). This constitutes a
main bottleneck of the theory; see also the developments in the next Chap.2 around
an incremental form of the small-gain theorem.

Remark 1.2.15 If Rey defines an input–output mapping G from e = (e1, e2) to
(y1, y2), and G1 and G2 are causal, then by Proposition 1.2.14 G is a causal map.
The same holds for Reu .

1.3 Input–Output Maps from State Space Models

Let us now take a different point of view (to be continued inChap.3 and all subsequent
chapters), by starting from state space systems

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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� : ẋ = f (x, u) , u ∈ U

y = h(x, u) , y ∈ Y
(1.39)

with U, Y normed finite-dimensional linear spaces (of dimension m and p, respec-
tively), and with x = (x1, . . . , xn) local coordinates for some n-dimensional state
spacemanifoldX . Furthermore, f, h are sufficiently smoothmappings. For every ini-
tial condition x0 ∈ X this defines, in principle, an input–outputmapGx0 : Lqe(U ) →
Lqe(Y ), by substituting any input function u(·) ∈ Lqe(U ) in ẋ = f (x, u), solving
these differential equations for the initial condition x(0) = x0, and substituting u(·)
and the resulting state space trajectory x(·) in y = h(x, u) in order to obtain the out-
put function y(·). However, the differential equations may have finite escape time,
and in general additional conditions are necessary to ensure that3 y ∈ Lqe(Y ) for
every u ∈ Lqe(U ).

In the following it will be assumed that for every x0 the input–output map Gx0 :
Lqe(U ) → Lqe(Y ) is indeed well-defined. Definition 1.2.1 then extends as follows.

Definition 1.3.1 (Lq -stability of state space system) The state space system� is Lq-
stable if for all initial conditions x0 ∈ X the input–output map Gx0 maps Lq(U ) into
Lq(Y ). The system is � is said to have finite Lq -gain if there exists a finite constant
γq such that for every initial condition x0 there exists a finite constant bq(x0) with
the property that

||(Gx0(u))T ||q ≤ γq ||uT ||q + bq(x0) , ∀T ≥ 0, u ∈ Lqe(U ) (1.40)

Furthermore, let us replace in the feedback configuration G1‖ f G2 of Fig. 1.1 the
input–output maps Gi , i = 1, 2, by state space systems

�i : ẋi = fi (xi , ui ) , ui ∈ Ui

yi = hi (xi , ui ) , yi ∈ Yi

, xi ∈ Xi , i = 1, 2 (1.41)

with U1 = Y2, U2 = Y1, and consider again the feedback interconnection

u1 = −y2 + e1, u2 = y1 + e2 (1.42)

The closed-loop system with inputs e1, e2 and outputs y1, y2 will be denoted by
�1‖ f �2. For every pair of initial conditions x0i ∈ Xi , i = 1, 2, we can define the
relations Rx01,x02

eu and Rx01,x02
ey as in (1.34), respectively (1.36).

Definition 1.3.2 The closed-loop system �1‖ f �2 is Lq -stable if for every pair
(x01, x02) ∈ X1 × X2 the relations Rx01,x02

eu and Rx01,x02
ey (or equivalently, see Lemma

1.2.12, one of them) are Lq -stable.

3Note the abuse of notation, with, e.g., u ∈ U denoting the value of the input and on the other hand
u ∈ Lqe(U ) denoting a time function u : R+ → U .
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In the state space context it is relatively easy to ensure that for any pair of initial
conditions x0i ∈ Xi , i = 1, 2, the relations Rx01,x02

eu and Rx01,x02
ey correspond to map-

pings from e to u, respectively, from e to y. Indeed, the closed-loop system �1‖ f �2

is described by the equations

{
ẋ1 = f1(x1, u1)

ẋ2 = f2(x2, u2){
y1 = h1(x1, u1)

y2 = h2(x2, u2)
(1.43)

{
e1 = h2(x2, u2) + u1

e2 = −h1(x1, u1) + u2

If at least one of the two mappings hi (xi , ui ), i = 1, 2, does not depend on ui , then
we may immediately eliminate u1, u2. For instance, if h1 does not depend on u1,
then (1.43) can be rewritten as

{
ẋ1 = f1(x1, e1 − h2(x2, e2 + h1(x1)))

ẋ2 = f2(x2, e2 + h1(x1)){
y1 = h1(x1)

y2 = h2(x2, e2 + h1(x1))
(1.44)

{
u1 = e1 − h2(x2, e2 + h1(x1))

u2 = e2 + h1(x1)

and, under suitable technical conditions as alluded to above, this will define input–
output mappings from e to u, and from e to y. If both h1 and h2 depend on u1,
respectively u2, then conditions have to be imposed in order that the static map from
u to e given by the last two equations of (1.43) has (at least locally) an inverse. This
can be done by considering the Jacobian matrix of the map from u to e, given by

[
Im1

∂h2
∂u2

(x2, u2)

− ∂h1
∂u1

(x1, u1) Im2

]
(1.45)

Invertibility of this Jacobian for all x1, x2, u1, u2 ensures by the Inverse Function
theorem that locally u can be expressed as a function of e. Finally, it is easy to see
that invertibility of the Jacobian in (1.45) is equivalent to invertibility of the matrices
Im2 + ∂h1

∂u1
(x1, u1)

∂h2
∂u2

(x2, u2) or Im1 + ∂h2
∂u2

(x2, u2)
∂h1
∂u1

(x1, u1), for all x1, x2, u1, u2.
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1.4 Notes for Chapter 1

1. The exposition of the classical material in this chapter is largely based on
Vidyasagar [343].

2. Proposition 1.2.9 is stated in Ball & van der Schaft [24]. See also Scherpen &
Gray [309] and Fujimoto, Scherpen&Gray [108] for a study of the closely related
notion of the nonlinear Hilbert adjoint of an input–outputmap, and the application
toward the analysis of the nonlinear Hankel singular values. In Chap. 9 we will
approach the adjoint of the Fréchet derivative from the state space point of view,
based on the Hamiltonian extension introduced in Crouch & van der Schaft [73].

3. Various theory has been developed for shedding light on the invertibility of the
map I + FG in (1.38); see, e.g., Willems [348].

4. In Chaps. 3, 4 and 8 a synthesis will be provided between the stability of the
input–output maps Gx0 of a state space system �, and Lyapunov stability of the
state space system ẋ = f (x, u) from the vantage point of dissipative systems
theory.

5. The relation to (integral) Input-to-State Stability theory developed by Sontag and
coworkers will be addressed in Chap.8, Sect. 8.5.

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_8


Chapter 2
Small-Gain and Passivity for Input–Output
Maps

In this chapter we give the basic versions of the classical small-gain (Sect. 2.1) and
passivity theorems (Sect. 2.2) in the study of closed-loop stability. Section2.3 briefly
touches upon the “loop transformations” which can be used to expand the domain of
applicability of the small-gain and passivity theorems. Finally, Sect. 2.4 deals with
the close relation between passivity and L2-gain via the scattering representation.

2.1 The Small-Gain Theorem

A straightforward, but very important, theorem is as follows.

Theorem 2.1.1 (Small-gain theorem) Consider the closed-loop system G1‖ f G2

given in Fig.1.1, and let q ∈ {1, 2, . . . ,∞}. Suppose that G1 and G2 have
Lq-gains γq(G1), respectively γq(G2). Then the closed-loop system G1‖ f G2 has
finite Lq-gain (see Definition1.2.11) if

γq(G1) · γq(G2) < 1 (2.1)

Remark 2.1.2 Inequality (2.1) is known as the small-gain condition. Two stable sys-
tems G1 and G2 which are interconnected as in Fig. 1.1 result in a stable closed-loop
system provided the “loop gain” is “small” (i.e., less than 1). Note that the small-gain
theorem implies an inherent robustness property: the closed-loop system remains sta-
ble for all perturbed input–output maps, as long as the small-gain condition remains
satisfied.

Proof By the definition of γq(G1), γq(G2) and (2.1) there exist constants
γ1q , γ2q , b1q , b2q with γ1q · γ2q < 1, such that for all T ≥ 0

© Springer International Publishing AG 2017
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14 2 Small-Gain and Passivity for Input–Output Maps

||(G1(u1))T ||q ≤ γ1q ||u1T ||q + b1q , ∀u1 ∈ Lqe(U1)

||(G2(u2))T ||q ≤ γ2q ||u2T ||q + b2q , ∀u2 ∈ Lqe(U2)
(2.2)

For simplicity of notation we will drop the subscripts “q.” Since u1T = e1T −
(G2(u2))T

||u1T || ≤ ||e1T || + ||(G2(u2))T || ≤ ||e1T || + γ2||u2T || + b2
||u2T || ≤ ||e2T || + ||(G1(u1))T || ≤ ||e2T || + γ1||u1T || + b1.

Combining these two inequalities, using the fact that γ2 ≥ 0, yields

||u1T || ≤ γ1γ2||u1T || + (||e1T || + γ2||e2T || + b2 + γ2b1).

Since γ1γ2 < 1 this implies

||u1T || ≤ (1 − γ1γ2)
−1(||e1T || + γ2||e2T || + b2 + γ2b1). (2.3)

Similarly we derive

||u2T || ≤ (1 − γ1γ2)
−1(||e2T || + γ1||e1T || + b1 + γ1b2). (2.4)

This proves finite Lq -gain of the relation Reu , and thus by Lemma1.2.12 finite
Lq -gain of G1‖ f G2. �
Remark 2.1.3 Note that in (2.3) and (2.4) we have actually derived a bound on the
Lq -gain of the relation Reu . Substituting y1 = G1(u1), y2 = G2(u2), and combining
(2.2) with (2.3) and (2.4), we also obtain the following bound on the Lq -gain of the
relation Rey :

||y1T ||≤(1 − γ1γ2)
−1γ1(||e1T || + γ2||e2T || + b2 + γ2b1) + b1

||y2T ||≤(1 − γ1γ2)
−1γ2(||e2T || + γ1||e1T || + b1 + γ1b2) + b2.

(2.5)

Remark 2.1.4 Theorem2.1.1 remains valid for relations Ru1 y1 and Ru2 y2 , instead of
maps G1 and G2.

Note that in many situations, e1 and e2 are given and u1, u2 (as well as y1, y2)
are derived. The above formulation of the small-gain theorem (as well as the def-
inition of Lq -stability of the closed-loop system G1‖ f G2, cf. Definition1.2.11)
avoids the question of existence of solutions u1 ∈ Lqe(U1), u2 ∈ Lqe(U2) to e1 =
u1 + G2(u2), e2 = u2 − G1(u1) for given e1 ∈ Lqe(E1), e2 ∈ Lqe(E2). As we will
see, a stronger version of the small-gain theorem does also answer this question, as
well as some other issues. First, we extend the definition of Lq -gain to its incremental
version.

Definition 2.1.5 (Incremental Lq-gain) The input–output map G : Lqe(U ) →
Lqe(Y ) is said to have finite incremental Lq-gain if there exists a constant �q ≥ 0
such that

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1


2.1 The Small-Gain Theorem 15

||(G(u))T − (G(v))T ||q ≤ �q ||uT − vT ||q , ∀T ≥ 0, u, v ∈ Lqe(U ) (2.6)

Furthermore, its incremental Lq-gain �q(G) is defined as the infimum over all such
�q .

The property of finite incremental Lq -gain is seen to imply causality.

Proposition 2.1.6 LetG : Lqe(U ) → Lqe(Y )have finite incremental Lq-gain. Then
it is causal.

Proof Let u, v ∈ Lqe(U ) be such that uT = vT . Then by (2.6)

||(G(u))T − G(v))T ||q ≤ �q ||uT − vT ||q = 0,

and thus (G(u))T = (G(v))T , implying by Lemma1.1.4 causality of G. �

Remark 2.1.7 Hence, finite incremental Lq -gain for causal maps is the same as
requiring that for all T ≥ 0

||(G(uT ))T − (G(vT ))T ||q ≤ �q ||uT − vT ||q , ∀u, v ∈ Lqe(U ) (2.7)

Theorem 2.1.8 (Incremental form of small-gain theorem) Let G1 : Lqe(U1) →
Lqe(Y1), G2 : Lqe(U2) → Lqe(Y2) be input–output mapswith incremental Lq-gains
�q(G1), respectively �q(G2). Consider the closed-loop system G1‖ f G2. Then, if
�q(G1) · �q(G2) < 1,

(i) For all (e1, e2) ∈ Lqe(E1 × E2) there exists a unique solution (u1, u2, y1, y2) ∈
Lqe(U1 ×U2 × Y1 × Y2).

(ii) The map (e1, e2) 	→ (u1, u2) is uniformly continuous on the space Lqe(E1 ×
E2).

(iii) If the solution (u1, u2) to e1 = e2 = 0 is in Lq(U1 ×U2), then (e1, e2) ∈
Lq(E1 × E2) implies that (u1, u2) ∈ Lq(U1 ×U2).

Proof First we note that since �q(G1) · �q(G2) < 1, there exist constants �1q , �2q

with �1q · �2q < 1 such that for all T ≥ 0 and for all u1, v1 ∈ Lqe(U1), u2, v2 ∈
Lqe(U2)

||(G1(u1))T − (G1(v1))T ||q ≤ �1q ||u1T − v1T ||q
||(G2(u2))T − (G2(v2))T ||q ≤ �2q ||u2T − v2T ||q (2.8)

Furthermore, by Proposition2.1.6 G1,G2 are causal. The statements (i), (ii) and (iii)
are now proved as follows.
(i) Since u2 = e2 + G1(e1 − G2(u2)) it follows that

u2T = e2T + [G1(e1 − G2(u2))]T
Using causality of G1 and G2 this yields

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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u2T = e2T + {G1[e1T − (G2(u2T ))T ]}T (2.9)

For every e1, e2 this is an equation of the form u2T = C(u2T ). We claim that C is
a contraction on Lq,[0,T ](U2) (the space of Lq -functions on [0, T ]). Indeed for all
u2T , v2T ∈ Lq,[0,T ](U2)

||G1[e1T − (G2(u2T ))T ] − G1[e1T − (G2(v2T ))T ]||q,[0,T ]
≤ �1q ||(G2(v2T ))T − (G2(u2T ))T ||q ≤ �1q · �2q ||u2T − v2T ||q

by (2.8). By assumption �1q · �2q < 1, and thus C is a contraction. Therefore, for
all T ≥ 0, and all (e1, e2) ∈ Lqe(E1 × E2), there is a uniquely defined element of
u2T ∈ Lq,[0,T ](U2) solving u2T = C(u2T ). The same holds trivially for u1T since

u1T = e1T − (G2(u2T ))T

Thus for all (e1, e2) ∈ Lqe(E1 × E2) there exists a unique solution (u1, u2) ∈
Lqe(U1 ×U2) to (1.30).

(ii) Since u1T = e1T − (G2(u2T ))T , u′
1T = e′

1T − (G2(u′
2T ))T we obtain by sub-

traction and the triangle inequality

||u1T − u′
1T || ≤ ||e1T − e′

1T || + �2q ||u2T − u′
2T ||

for all (e1, e2), (e′
1, e

′
2) and corresponding solutions (u1, u2), (u′

1, u
′
2). Similarly

||u2T − u′
2T || ≤ ||e2T − e′

2T || + �1q ||u1T − u′
1T ||

and thus

||u1T − u′
1T || ≤ (1 − �1q�2q)

−1(||e1T − e′
1T || + �2q ||e2T − e′

2T ||), (2.10)

and similarly for ||u2T − u′
2T ||. This yields (ii).

(iii) Insert e′
1 = e′

2 = 0 in (2.10) and in the same inequality for the expression
||u2T − u′

2T ||. �

Remark 2.1.9 For a linear map G, property (2.6) is equivalent to

||(G(u))T ||q ≤ �q ||uT ||q
and thus to the property that G has Lq -gain ≤ �q (with zero bias). Note also that in
this case the solution to e1 = e2 = 0 is u1 = u2 = 0, and thus (iii) is always satisfied.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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2.2 Passivity and the Passivity Theorems

While the small-gain theorem is naturally concerned with normed (finite-
dimensional) linear spaces V and the corresponding Banach spaces Lq(V) for every
q = 1, 2, . . . ,∞, passivity is, at least in first instance, independent of any norm, but,
at the same time, requires a duality between the input and output space.

Indeed, let us consider any finite-dimensional linear input spaceU (of dimension
m), and let the output space Y be the dual space U ∗ (the set of linear functions
on U ). Denote the duality product between U and U ∗ = Y by < y | u > for y ∈
U ∗, u ∈ U . (That is,< y | u > is the linear function y : U → R evaluated at u ∈ U .)
Furthermore, take any linear space of functions u : R+ → U , denoted by L(U ),
and any linear space of functions y : R+ → Y = U ∗, denoted by L(U ∗). Define
the extended spaces Le(U ), respectively Le(U ∗), similar to Definition1.1.2, that is,
u ∈ Le(U ) if uT ∈ L(U ) for all T ≥ 0 and y ∈ Le(U ∗) if yT ∈ L(U ∗) for all T ≥ 0.
Define a duality pairing between Le(U ) and Le(U ∗) by defining for u ∈ Le(U ), y ∈
Le(U ∗)

< y | u >T :=
∫ T

0
< y(t) | u(t) > dt , (2.11)

assuming that integral on the right-hand side exists. In examples, the duality product
< y(t) | u(t) > usually is the (instantaneous) power (electrical power if the compo-
nents of u, y are voltages and currents, or mechanical power if the components of
u, y are forces and velocities). In these cases, < y | u >T will denote the externally
supplied energy during the time interval [0, T ].
Definition 2.2.1 (Passive input–output maps) Let G : Le(U ) → Le(U ∗). Then G
is passive if there exists some constant β such that

< G(u) | u >T ≥ −β, ∀u ∈ Le(U ), ∀T ≥ 0, (2.12)

where additionally it is assumed that the left-hand side of (2.12) is well defined.

Note that (2.12) can be rewritten as

− < G(u) | u >T ≤ β, ∀u ∈ Le(U ), ∀T ≥ 0, (2.13)

with the interpretation that the maximally extractable energy is bounded by a finite
constant β. Hence, G is passive iff only a finite amount of energy can be extracted
from the system defined by G. This interpretation, together with its ramifications,
will become more clear in Chaps. 3 and 4.

Definition2.2.1 directly extends to relations.

Definition 2.2.2 (Passive relation) A relation R ⊂ Le(U ) × Le(U ∗) is said to
be passive if < y | u >T ≥ −β, for all (u, y) ∈ R and T ≥ 0, assuming that
< y | u >T is well defined for all (u, y) ∈ R and all T ≥ 0.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_4


18 2 Small-Gain and Passivity for Input–Output Maps

Remark 2.2.3 In many applications Le(U )will be defined as L2e(U ) for some norm
|| ||U on U . Then Le(U ∗) can be taken to be L2e(U ∗), with || ||U ∗ the norm on U ∗
canonically induced by || ||U , that is,

||y||U ∗ := max
u =0

< y | u >

||u||U .

This implies | < y | u > | ≤ ||y||U ∗ · ||u||U , yielding

| < G(u) | u >T | = | ∫ T
0 < G(u)(t) | u(t) > dt | ≤(∫ T

0 ||G(u)(t)||2U ∗dt
) 1

2 ·
(∫ T

0 ||u(t)||2Udt
) 1

2
.

(2.14)

Hence, in this case the left-hand side of (2.12) is automatically well defined. The
same holds for a passive relation R ⊂ L2e(U ) × L2e(U ∗)

Remark 2.2.4 For a linear single-input single-output map the property of passivity
is equivalent to the phase shift of an input sinusoid being always less than or equal
to 90◦ (see e.g., [343]). This should be contrasted with the Lq -gain of a linear input–
output map, which deals with the amplification of the input signal.

Similarly to Proposition1.2.3 we have the following alternative formulation of pas-
sivity for causal maps G.

Proposition 2.2.5 Let G : Le(U ) → Le(U ∗) satisfy (2.12). Then also

< G(u) | u > ≥ − β , ∀ u ∈ L(U ), (2.15)

if the left-hand side of (2.15) is well defined. Conversely, if G is causal, then (2.15)
implies (2.12).

Proof Suppose (2.12) holds. By letting T → ∞ we obtain (2.15) for u ∈ L(U ).
Conversely, suppose (2.15) holds and G is causal. Then for u ∈ Le(U )

< G(u) | u >T = < (G(u))T | uT >=< (G(uT ))T | uT >

= < G(uT ) | uT > ≥ −β.

�

We are ready to state the first version of the Passivity theorem.

Theorem 2.2.6 (Passivity theorem; first version) Consider the closed-loop system
G1‖ f G2 in Fig.1.1, with G1 : Le(U1) → Le(U ∗

1 ) and G2 : Le(U2) → Le(U ∗
2 ) pas-

sive, and E1 = U ∗
2 = U1, E2 = U ∗

1 = U2.

(a) Assume that for any e1 ∈ Le(U1), e2 ∈ Le(U2) there are solutions u1 ∈ Le(U1)

and u2 ∈ Le(U2). Then G1‖ f G2 with inputs (e1, e2) and outputs (y1, y2) is
passive.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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(b) Assume that for any e1 ∈ Le(U1) and e2 = 0 there are solutions u1 ∈ Le(U1), u2
∈ Le(U2). Then G1‖ f G2 with e2 = 0 and input e1 and output y1 is passive.

Proof The definition of standard negative feedback, cf. (1.30), implies the key
property

< y1 | u1 >T + < y2 | u2 >T

=< y1 | e1 − y2 >T + < y2 | e2 + y1 >T

=< y1 | e1 >T + < y2 | e2 >T ,

(2.16)

and thus for any e1 ∈ Le(U1), e2 ∈ Le(U2) and any T ≥ 0

< y1 | u1 >T + < y2 | u2 >T

=< y1 | e1 >T + < y2 | e2 >T
(2.17)

with y1 = G1(u1), y2 = G2(u2). By passivity of G1 and G2, < y1 | u1 >T ≥ −β1,

< y2 | u2 >T ≥ −β2, and thus by (2.17)

< y1 | e1 >T + < y2 | e2 >T ≥ −β1 − β2 (2.18)

implying part (a). For part (b) take e2 = 0 in (2.17). �
Remark 2.2.7 Theorem2.2.6 expresses an inherent robustness property of passive
systems: the closed-loop system G1‖ f G2 remains passive for all perturbations
of the input–output maps G1,G2, as long as they remain passive (compare with
Remark2.1.2).

In order to state a stronger version of the Passivity theorem we need stronger notions
of passivity. First of all, we will assume that the input space U is equipped with an
inner product <,>. Using the linear bijection

u ∈ U 	−→< u, · >∈ U ∗, (2.19)

we may then identify Y = U ∗ with U . That is, Y = U ∗ = U , and
< y | u >=< y, u >. Furthermore, for any input function u ∈ L2e(U ) and corre-
sponding output function y = G(u) ∈ L2e(U ) we will have < y | u >T =∫ T
0 < y(t), u(t) > dt , which will be throughout denoted by < y, u >T .

Definition 2.2.8 (Output and input strict passivity) Let U = Y be a linear space
with inner product <,> and corresponding norm || · ||. Let G : L2e(U ) → L2e(Y )

be an input–output map. Then G is input strictly passive if there exists β and δ > 0
such that

< G(u), u >T ≥ δ||uT ||22 − β, ∀u ∈ L2e(U ), ∀T ≥ 0, (2.20)

and output strictly passive if there exists β and ε > 0 such that

< G(u), u >T ≥ ε||(G(u))T ||22 − β, ∀u ∈ L2e(U ), ∀T ≥ 0. (2.21)

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Furthermore, G : L2e(U ) → L2e(Y ) is merely passive if there exists β such that
(2.21) holds for ε = 0 (or equivalent (2.20) for δ = 0). Whenever we want to empha-
size the role of the constants δ, ε we will say that G is δ-input strictly passive or
ε-output strictly passive. In the same way we define (δ-)input and (ε-)output strict
passivity for relations R ⊂ L2e(U ) × L2e(Y ).

Remark 2.2.9 Note that by Remark2.2.3 the left-hand sides of (2.20) and (2.21) are
well defined.

Remark 2.2.10 Proposition2.2.5 immediately generalizes to input, respectively, out-
put strict passivity.

We obtain the following extension of Theorem2.2.6.

Theorem 2.2.11 (Passivity theorem; second version) Consider the closed-loop sys-
tem G1‖ f G2 in Fig.1.1, with G1 : L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2),
and E1 = U1 = U2 = E2 =: U an inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there are solutions u1, u2 ∈ L2e(U ). If
G1 and G2 are respectively ε1- and ε2-output strictly passive, then G1‖ f G2

with inputs (e1, e2) and outputs (y1, y2) is ε-output strictly passive, with ε =
min(ε1, ε2).

(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).
If G1 is passive and G2 is δ2-input strictly passive, or if G1 is ε1-output strictly
passive and G2 is passive, then G1‖ f G2 for e2 = 0, with input e1 and output y1,
is δ2-input, respectively ε1-output strictly passive.

Proof Equation (2.17) becomes

< y1, u1 >T + < y2, u2 >T = < y1, e1 >T + < y2, e2 >T (2.22)

(a) Since G1 and G2 are output strictly passive (2.22) implies

< y1, e1 >T + < y2, e2 >T = < y1, u1 >T + < y2, u2 >T

≥ ε1||y1T ||22 + ε2||y2T ||22 − β1 − β2

≥ ε(||y1T ||22 + ||y2T ||22) − β1 − β2

for ε = min(ε1, ε2) > 0.
(b) Let G1 be passive and G2 be δ2-input strictly passive. By (2.22) with e2 = 0

< y1, e1 >T=< y1, u1 >T + < y2, u2 >T

≥ −β1 + δ2||u2T ||22 − β2 = δ2||y1T ||22 − β1 − β2

If G1 is ε1-output strictly passive and G2 is passive, then the same inequality
holds with δ2 replaced by ε1. �

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Remark 2.2.12 A similar theorem can be stated for relations R1 and R2.

For statements regarding the L2-stability of the feedback interconnection of passive
systems a key observation will be the fact that output strict passivity implies finite
L2-gain.

Theorem 2.2.13 Let G : L2e(U ) → L2e(U ) be ε-output strictly passive. Then G
has L2-gain ≤ 1

ε
.

Proof Since G is ε-output strictly passive there exists β such that y = G(u) satisfies

ε||yT ||22 ≤ < y, u >T +β

≤ < y, u >T +β + 1
2 || 1√

ε
uT − √

εyT ||22

= β + 1
2ε ||uT ||22 + ε

2 ||yT ||22 ,

(2.23)

whence ε
2 ||yT ||22 ≤ 1

2ε ||uT ||22 + β, proving that γ2(G) ≤ 1
ε
. �

Remark 2.2.14 As a partial converse statement, note that if G is δ-input strictly
passive and has L2-gain ≤ γ, then

< G(u), u > ≥ δ‖u‖22 − β ≥ δ

γ
‖G(u)‖22 − β,

implying that G is δ
γ
-output strictly passive.

Combining Theorems2.2.11 and 2.2.13 one directly obtains the following.

Theorem 2.2.15 (Passivity theorem; third version) Consider the closed-loop system
G1‖ f G2 in Fig.1.1, with G1 : L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and
E1 = E2 = U1 = U2 =: U an inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there exist solutions u1, u2 ∈ L2e(U ). If
Gi is εi -output strictly passive, i = 1, 2, then G1‖ f G2 with inputs (e1, e2) and
outputs (y1, y2) has L2-gain ≤ 1

ε
with ε = min(ε1, ε2). For e1, e2 ∈ L2(U ) it

follows that u1, u2, y1, y2 ∈ L2(U ).
(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).

If G1 is passive and G2 is δ2-input strictly passive, or if G1 is ε1-output strictly
passive and G2 is passive, then G1‖ f G2 for e2 = 0 with input e1 and output
y1 has L2-gain ≤ 1

δ2
, respectively ≤ 1

ε1
. Furthermore, if e1 ∈ L2(U ) then also

y1 = u2 ∈ L2(U ).

Remark 2.2.16 SupposeG1 andG2 are causal. Then byPropositions2.2.5 and 1.2.14
we can relax the assumption in (a) to assuming that for any e1, e2 ∈ L2(U ) there
exist solutions u1, u2 ∈ L2e(U ). Similarly, we can relax the assumption in (b) to

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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assuming that for any e1 ∈ L2(U ) and e2 = 0 there exist solutions u1, u2 ∈ L2e(U ).
If G1 and/or G2 are not causal, then this relaxation of assumptions will guarantee at
least L2-stability.

Example 2.2.17 Note that in Theorem2.2.15 (b) it is not claimed that u1 and y2 =
G2(u2) are in L2(U ). In fact, a physical counterexample to such a claim can be
given as follows. Consider a mass moving in one-dimensional space. Let the mass
be subject to a friction force which is the sum of an ideal Coulomb friction and a
linear damping. Furthermore, let themass be actuated by a force u1 = e1 − y2, where
e1 is an external force and y2 is the force delivered by a linear spring. Defining y1
as the velocity of the mass, the input–output map G1 from u1 to y1 for zero initial
condition (velocity zero) is output strictly passive, as follows from the definition of
the friction force. Furthermore, let G2 be the passive input–output map defined by
the linear spring for zero initial extension, with the spring attached at one end to
a wall and with the velocity of the other end being its input u2 and with output y2
being the spring force (acting on the mass). Now let e1(·) be an external force time
function with the shape of a pulse, of magnitude h and width w. Then by taking
h large enough the force e1 will overcome the total friction force (in particular the
Coulomb friction force), resulting in a motion of the mass and thus of the free end
of the spring. On the other hand by taking the width w of the pulse small enough
the extension of the spring will be such that the spring force does not overcome the
Coulomb friction force. As a result, the velocity of the mass y1 will converge to zero,
while the spring force y2 will converge to a nonzero constant value (smaller than the
Coulomb friction constant). Hence, y2 and u1 will not be in L2(R).

A useful generalization of the Passivity Theorems2.2.11 (a) and 2.2.15 (a), where
we do not necessarily require passivity of G1 and G2 separately, can be stated as
follows.

Theorem 2.2.18 Suppose there exist constants εi , δi ,βi , i = 1, 2, satisfying

ε1 + δ2 > 0, ε2 + δ1 > 0 (2.24)

such that
< Gi (ui ), ui >T ≥ εi ||(Gi (ui ))T ||22 + δi ||uiT ||22 − βi , (2.25)

for all ui ∈ L2e(Ui ) and all T ≥ 0, i = 1, 2. Then G1‖ f G2 has finite L2-gain from
(e1, e2) to (y1, y2).

Proof Addition of (2.25) with yi = Gi (ui ) for i = 1, 2 yields

< y1, u1 >T + < y2, u2 >T

≥ ε1‖y1T ‖22 + δ1‖u1T ‖22 + ε2‖y2T ‖2 + δ2‖u2T ‖2 − β1 − β2.
(2.26)
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Substitution of the negative feedback u1 = e1 − y2, u2 = e2 + y1 results in

< y1, e1 >T + < y2, e2 >T +β1 + β2

≥ ε1‖y1T ‖22 + δ1‖e1 − y2‖22 + ε2‖y2‖22 + δ2‖e2 + y1‖22. (2.27)

Writing out and rearranging terms leads to

−δ1‖e1T ‖22 − δ2‖e2T ‖22 + β1 + β2

≥ (ε1 + δ2)‖y1T ‖22 + (ε2 + δ1)‖y2T ‖22−2δ1 < y2, e1 >T −2δ2 < y1, e2 >T − < y1, e1 >T − < y2, e2 >T .

By the positivity assumption onα2
1 := ε1 + δ2,α

2
2 := ε2 + δ1 we can perform “com-

pletion of the squares” on the right-hand side of this inequality, to obtain an expression
of the form

‖
[
α1y1T
α2y2T

]
− A

[
e1T
e2T

]
‖22 ≤ c2 ‖

[
e1T
e2T

]
‖22 + β1 + β2, (2.28)

for a certain 2 × 2matrix A and constant c. In combinationwith the triangle inequality

‖
[
α1y1T
α2y2T

]
‖2 ≤ ‖

[
α1y1T
α2y2T

]
− A

[
e1T
e2T

]
‖2 + ‖A

[
e1T
e2T

]
‖2, (2.29)

this yields finite L2-gain from (e1, e2) to (y1, y2). �
Remark 2.2.19 Clearly, Theorem2.2.18 includes Part (a) of Theorems2.2.11 and
2.2.15 by taking δ1 = δ2 = 0. Importantly, it shows that ε1, ε2, δ1, δ2 need not all be
nonnegative. Negativity of ε1 (“lack of passivity” of G1) can be “compensated” by
a sufficiently large positive δ2 (“surplus of passivity” of G2).

Notice that the last version of the Passivity Theorem2.2.15 still assumes the exis-
tence of solutions u1, u2 ∈ L2e(U ). In the small-gain case this was remedied, cf.
Theorem2.1.8, by replacing finite Lq -gain and the small-gain condition by their
incremental versions. Similarly this can be done by invoking a notion of incremental
passivity defined as follows.

Definition 2.2.20 (Incremental passivity) An input–output map G : L2e(U ) →
L2e(Y ) is E-output strictly incrementally passive for some E > 0 if there exists
β such that

E||yT − zT ‖22 ≤ < y − z, u − v >T + β (2.30)

for all u, v ∈ L2e(U ) and corresponding outputs y = G(u), z = G(v). IfE = 0 then
G is incrementally passive.

Furthermore, G is called �-input strictly incrementally passive for some � > 0 if
there exists β such that

�||uT − vT ‖22 ≤ < y − z, u − v >T + β (2.31)
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for all u, v ∈ L2e(U ) and corresponding outputs y = G(u), z = G(v).

We immediately obtain the following incremental version of Theorem2.2.15.

Proposition 2.2.21 Consider the closed-loop system G1‖ f G2 in Fig.1.1, with G1 :
L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and E1 = U1 = U2 = E2 =: U an
inner product space.

(a) Assume that for any e1, e2 ∈ L2e(U ) there are solutions u1, u2 ∈ L2e(U ). If G1

and G2 are respectively E1- and E2-output strictly incrementally passive, then
G1‖ f G2 with inputs (e1, e2) and outputs (y1, y2) is E-output strictly incremen-
tally passive, with E = min(E1,E2).

(b) Assume that for any e1 ∈ L2e(U )ande2 = 0 there are solutions u1, u2 ∈ L2e(U ).
If G1 is incrementally passive and G2 is �2-input strictly incrementally passive,
or if G1 is E1-output strictly incrementally passive and G2 is incrementally
passive, then G1‖ f G2 with e2 = 0 and input e1 and output y1 isE-output strictly
incrementally passive, with E equal to �2 respectively E1.

The following crucial step is the observation that output strict incremental passivity
implies finite incremental L2-gain in the same way as output strict passivity implies
finite L2-gain, cf. Theorem2.2.13.

Proposition 2.2.22 Let G : L2e(U ) → L2e(U ) be E-output strictly incrementally
passive. Then G has incremental L2-gain ≤ 1

E
.

Proof Repeat the same argument as in the proof of Theorem2.2.13, but now in the
incremental setting, to conclude that

E‖yT − zT ‖22 ≤ β + 1

2E
‖uT − vT ‖22 + E

2
‖yT − zT ‖22,

where y = G(u), z = G(v). This proves that the incremental L2-gain of G is
≤ 1

E
. �

By combining Propositions2.2.21 and 2.2.22 with Theorem2.1.8 we immediately
obtain the following corollary.

Corollary 2.2.23 Consider the closed-loop system G1‖ f G2 in Fig.1.1, with G1 :
L2e(U1) → L2e(U1), G2 : L2e(U2) → L2e(U2), and E1 = E2 = U1 = U2 =: U an
inner product space.

Assume that G1 and G2 are E1-, respectively E2-, output strictly incrementally
passive, and that

E1 · E2 > 1. (2.32)

Then

(i) For all (e1, e2) ∈ L2e(E1 × E2) there exists a unique solution (u1, u2, y1, y2) ∈
L2e(U1 ×U2 × Y1 × Y2).

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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(ii) The map (e1, e2) 	→ (u1, u2) is uniformly continuous on the domain L2e(E1 ×
E2).

(iii) If the solution (u1, u2) to e1 = e2 = 0 is in L2(U1 ×U2), then (e1, e2) ∈
L2(E1 × E2) implies that (u1, u2) ∈ L2(U1 ×U2).

Remark 2.2.24 (General power-conserving interconnections) All the derived pas-
sivity theorems can be generalized to interconnections which are more general than
the standard feedback interconnection of Fig. 1.1. This relies on the observation
that the essential requirement in the proof of Theorem2.2.6 is the identity (2.16),
expressing the fact that the feedback interconnection u1 = −y2 + e1, u2 = y1 + e2 is
power-conserving. Many other interconnections share this property, and as a result
the interconnected systems share the same passivity properties as the closed-loop
systems arising from standard feedback interconnection. As an example, consider
the following system (taken from [355]) given in Fig. 2.1. Here R represents a robotic
system andC is a controller, while E represents the environment interacting with the
controlled robotic mechanism. The external signal e denotes a velocity command.
We assume R and E to be passive, and C to be a output strictly passive controller.
By the interconnection constraints uC = yE + e, uR = yE and uE = −yR − yC we
obtain

< yC | uC > + < yR | uR > + < yE | uE > = < yC | e >

and hence, as in Theorem2.2.15 part (b), the interconnected system with input e and
output yC is output strictly passive, and therefore has finite L2-gain.

This idea will be further developed in the subsequent chapters, especially in
Chaps. 4, 6 and 7 in the passive and port-Hamiltonian systems context.

Fig. 2.1 An alternative
power-conserving
interconnection
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http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_7
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Fig. 2.2 Feedback system
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2.3 Loop Transformations

The range of applicability of the small-gain and passivity theorems can be consider-
ably enlarged using loop transformations. We will only indicate two basic ideas.

The first possibility is to insertmultipliers in Fig. 1.1 by pre- and post-multiplying
G1 andG2 by Lq -stable input–output mappingsM and N and their inversesM−1 and
N−1, which are also assumed to be Lq -stable input–output mappings, see Fig. 2.2.

By Lq -stability of M, M−1, N and N−1 it follows that e1 ∈ Lq(E1), e2 ∈ Lq(E2)

if and only ifM(e1) ∈ Lq(E1), M(e2) ∈ Lq(E2). Thus stability ofG1‖ f G2 is equiv-
alent to stability of G1‖ f G2, with G ′

1 = NG1M−1, G ′
2 = MG2N−1.

A second idea is to introduce an additional Lq -stable and linear operator K in the
closed-loop systemG1‖ f G2 by first subtracting and then adding toG2 (see Fig. 2.3).

Using the linearity of K , this can be redrawn as in Fig. 2.4. Clearly, by stability
of K , e1 − K (e2) and e2 are in Lq if and only if e1, e2 are in Lq . Thus stability of
G1‖ f G2 is equivalent to stability of G ′

1‖ f G ′
2.

2.4 Scattering and the Relation Between Passivity
and L2-Gain

Let us return to the basic setting of passivity, as exposed in Sect. 2.2, starting with
a finite-dimensional linear input space U (without any additional structure such as
inner product or norm) and its dual space Y := U ∗ defining the space of outputs.

http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Fig. 2.4 Redrawn transformed closed-loop configuration

On the product space U × Y of inputs and outputs there exists a canonically
defined symmetric bilinear form � , �, given as

� (u1, y1), (u2, y2) �:=< y1 | u2 > + < y2 | u1 > (2.33)

with ui ∈ U, yi ∈ Y, i = 1, 2, and< | > denoting the duality pairing between Y =
U ∗ and U . With respect to a basis e1, . . . , em of U (where m = dimU ), and the
corresponding dual basis e∗

1, . . . , e
∗
m of Y = U ∗, the bilinear form � , � has the

matrix representation [
0 Im
Im 0

]
(2.34)

It immediately follows that � , � has singular values +1 (with multiplicity m)
and−1 (also with multiplicitym), and thus defines an indefinite inner product on the
spaceU × Y of inputs and outputs. Scattering is based on decomposing the combined
vector (u, y) ∈ U × Y with respect to the positive and negative singular values of
this indefinite inner product. More precisely, we obtain the following definition.

Definition 2.4.1 Any pair (V, Z) of subspaces V, Z ⊂ U × Y is called a pair of
scattering subspaces if

(i) V ⊕ Z = U × Y
(ii) � v1, v2 �> 0, for all v1, v2 ∈ V unequal to 0,

� z1, z2 �< 0, for all z1, z2 ∈ Z unequal to 0
(iii) � v, z �= 0, for all v ∈ V, z ∈ Z .

It follows from (2.34) that any pair of scattering subspaces (V, Z) satisfies

dim V = dim Z = m
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Given a pair of scattering subspaces (V, Z) it follows that any combined vector
(u, y) ∈ U × Y also can be represented, in a uniquemanner, as a pair v ⊕ z ∈ V ⊕ Z ,
where v is the projection along Z of the combined vector (u, y) ∈ U × Y on V , and
z is the projection of (u, y) along V on Z . The representation (u, y) = v ⊕ z is
called a scattering representation of (u, y), and v, z are called the wave vectors of
the combined vector (u, y).

Using orthogonality of V with respect to Z it immediately follows that for all
(ui , yi ) = vi ⊕ zi , i = 1, 2,

� (u1, y1), (u2, y2) �=< v1, v2 >V − < z1, z2 >Z (2.35)

where <, >V denotes the inner product on V defined as the restriction of � , �
to V , and <, >Z denotes the inner product on Z defined as minus the restriction of
� , � to Z .

In particular, taking (u1, y1) = (u2, y2) = (u, y), we obtain for any (u, y) = v ⊕
z the following fundamental relation between (u, y) and its wave vectors v, z

< y | u >= 1

2
� (u, y), (u, y) �= 1

2
||v||2V − 1

2
||z||2Z , (2.36)

where || ||V , || ||Z are the norms on V, Z , defined by <, >V , respectively <, >Z .
Identifying as before < y | u > with power, the vector v thus can be regarded as

the incoming wave vector, with half times its norm being the incoming power, and
the vector z is the outgoing wave vector, with half times its norm being the outgoing
power.

Now let G : Le(U ) → Le(Y ), with Y = U ∗, be an input–output map as before.
Expressing (u, y) ∈ U × Y in a scattering representation as v ⊕ z ∈ V ⊕ Z , it fol-
lows that G transforms into the relation

Rvz = {v ⊕ z ∈ Le(V ) ⊕ Le(Z) |
v(t) ⊕ z(t) = (u(t), y(t)), t ∈ R+, y = G(u)}, (2.37)

with the function spaces Le(V ) and Le(Z) yet to be defined. As a direct consequence
of (2.36) we obtain the following relation between G and Rvz :

< G(u) | u >T = 1

2
||vT ||2V − 1

2
||zT ||2Z , T ≥ 0. (2.38)

In particular, if u and y = G(u) are such that v ∈ L2e(V ) and z ∈ L2e(Z) then, since
the right-hand side of (2.38) is well defined, also the expression < G(u) | u >T is
well defined for all T ≥ 0.

We obtain from (2.38) the following key relation between passivity of G and the
L2-gain of Rvz .
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Proposition 2.4.2 Consider the relation Rvz ⊂ L2e(V ) ⊕ L2e(Z) as defined in
(2.37), with Le replaced by L2e. Then G is passive if and only if Rvz has L2-gain
≤ 1.

Proof By (2.38), ||zT ||2Z ≤ ||vT ||2V + c if and only if < G(u) | u >T≥ − c
2 . �

If the relation Rvz can be written as the graph of an input–output map

S : L2e(V ) → L2e(Z), (2.39)

(with respect to the intrinsically defined norms || ||V and || ||Z ) then we call S the
scattering operator of the input–output mapG.We obtain the following fundamental
relation between passivity and L2-gain.

Corollary 2.4.3 The scattering operator S has L2-gain ≤ 1 if and only if G is
passive.

As noted before, the choice of scattering subspaces V, Z , and therefore of the scat-
tering representation, is not unique. Particular choices of scattering subspaces are
given as follows. Take any basis e1, . . . , em for U , with dual basis e∗

1, . . . , e
∗
m for

U ∗ = Y . Then it can be directly checked that the pair (V, Z) given as

V = span
{(

ei√
2
,

e∗
i√
2

)
, i = 1, . . . ,m

}

Z = span
{(

−ei√
2
,

e∗
i√
2

)
, i = 1, . . . ,m

} (2.40)

defines a pair of scattering subspaces. (In the above the factors 1√
2
were inserted in

order that the vectors spanning V , respectively Z , are orthonormalwith respect to the
intrinsically defined inner products <, >V and<, >Z .) In these bases forU,Y and
V, Z the relation between (u, y) and its scattering representation (v, z) is given as

v = 1√
2
(u + u∗)

z = 1√
2
(−u + u∗).

(2.41)

Hence, with y = G(u), the relation Rvz has the coordinate expression

Rvz = {(v, z) : R+ → V × Z |
v(t) = 1√

2
(G + I )(u)(t), z(t) = 1√

2
(G − I )(u)(t)}, (2.42)

where I denotes the identity operator. In particular, Rvz can be expressed as the
graph of a scattering operator S if and only if the operator G + I : L(U ) → L(V )

is invertible, in which case S takes the standard form

S = (G − I )(G + I )−1. (2.43)
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In caseU is equipped with an inner product<, >U , andU ∗ can be identified withU
(see Sect. 2.2), we obtain the following relation between passivity of G and L2-gain
of Rvz .

Proposition 2.4.4 Let U be endowed with an inner product <, >U . Consider an
input–output mapping G : L2e(U ) → L2e(U ) and the corresponding relation Rvz ⊂
L2e(V ) × L2e(Z). Then G is input and output strictly passive if and only if the
L2-gain of Rvz (or, if G + I is invertible, the L2-gain of the scattering operator S)
is strictly less than 1.

Proof Let the L2-gain of Rvz be ≤ 1 − δ, with 1 ≥ δ > 0. Then ||zT ||22 ≤ (1 −
δ)||vT ||22 + c, and thus by (2.38)

2 < G(u) | u > ≥ δ||vT ||22 − c

Since ||vT ||22 = ||uT + (G(u))T ||22 = ||uT ||22 + ||G(u)T ||22 + 2 < G(u) | u >, this
implies for some ε > 0 and β

< G(u) | u > ≥ ε||G(u)||22 + ε||u||22 − β

The converse statement follows similarly. �

Remark 2.4.5 Since “input strict passivity” plus “finite L2-gain” implies output strict
passivity, cf. Remark2.2.14, and conversely output strict passivity implies finite
L2-gain, the condition of input and output strict passivity in the above proposition
can be replaced by input strict passivity and finite L2-gain.

2.5 Notes for Chapter 2

1. The treatment of Sects. 2.1 and 2.2 is largely based on Vidyasagar [343], with
extensions from Desoer & Vidyasagar [83]. We have emphasized a “coordinate-
free” treatment of the theory, which in particular has some impact on the for-
mulation of passivity. See also Sastry [267] and Khalil [160] for expositions.
The developments regarding incremental passivity, in particular Corollary2.2.23,
seem to be relatively new.

2. The small-gain theorem is usually attributed to Zames [362, 363], and in its
turn is closely related to the Nyquist stability criterion. See also Willems [348].
A classical treatise on passivity and its implications for stability is Popov [255].

3. Theorem2.2.18 is treated in Sastry [267], Vidyasagar [343].

4. An interesting generalization of the small-gain theorem (Theorem2.1.1) is
obtained by considering input–output maps G1 and G2 that have a finite “nonlin-
ear gain” in the following sense. Suppose there exist functions γi : R+ → R+
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of class1 K and constants bi , i = 1, 2, such that

‖Gi (uT )‖ ≤ γi (‖uT ‖) + bi , T ≥ 0, (2.44)

for i = 1, 2, where ‖ ‖ denotes some Lq -norm. Note that by taking linear func-
tions γi (z) = γi z, with constant γi > 0, we recover the usual definition of finite
gain. Then, similar to the proof of Theorem2.1.1, we derive the following inequal-
ities for the closed-loop system G1‖ f G2:

‖u1T ‖ ≤ ‖y2T ‖ + ‖e1T ‖
‖u2T ‖ ≤ ‖y1T ‖ + ‖e2T ‖ (2.45)

and thus by (2.44)
‖y1T ‖ ≤ γ1(‖y2T ‖ + ‖e1T ‖) + b1

‖y2T ‖ ≤ γ2(‖y1T ‖ + ‖e2T ‖) + b2
(2.46)

which by cross-substitution yields

‖y1T ‖ ≤ γ1(γ2(‖y1T ‖ + ‖e2T ‖) + ‖e1T ‖ + b2) + b1

‖y2T ‖ ≤ γ2(γ1(‖y2T ‖ + ‖e1T ‖) + ‖e2T ‖ + b1) + b2.
(2.47)

Onemaywonder under what conditions on γ1 and γ2 the inequalities (2.47) imply
that

‖y1T ‖ ≤ δ1(‖e1T ‖, ‖e2T ‖) + d1

‖y2T ‖ ≤ δ2(‖e1T ‖, ‖e2T ‖) + d2
(2.48)

for certain constants d1, d2 and functions δi : R+ × R+ → R+, i = 1, 2, which
are of class K in both their arguments. Indeed, this would imply that the closed-
loop system G1‖ f G2 has finite nonlinear gain from e1, e2 to y1, y2. As shown
in Mareels & Hill [194] this is the case if there exist functions g, h ∈ K and a
constant c ≥ 0, such that

γ1 ◦ (id + g) ◦ γ2(z) ≤ z − h(z) + c, for all z, (2.49)

with id denoting the identity mapping. Condition (2.49) can be interpreted as a
direct generalization of the small-gain condition γ1 · γ2 < 1. See also [149] for
another formulation.

5. There is an extensive literature related to the theory presented in Sects. 2.1 and
2.2. Among themany contributions wemention the work of Safonov [262]&Teel
[337] on conic relations, the work on nonlinear small-gain theorems in Mareels
& Hill [194], Jiang, Teel & Praly [149], Teel [336] briefly discussed in the pre-

1A function γ : R+ → R+ is of class K (denoted γ ∈ K) if it is zero at zero, strictly increasing
and continuous.
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vious Note 4, and work on robust stability, see e.g., Georgiou [111], Georgiou &
Smith [112], as well as the important contributions on stability theory within the
“Petersburg school”, see e.g., the classical paper Yakubovich [359], and develop-
ments inspired by this, see e.g., Megretski & Rantzer [215]. The developments
stemming from dissipative systems theory will be treated in Chaps. 3, 4, and 8.

6. For further ramifications and implications of the loop transformations sketched in
Sect. 2.3 we refer to Vidyasagar [343], Scherer, Gahinet & Chilali [306], Scherer
[307], and the references quoted therein.

7. The scattering relation between L2-gain and passivity is classical, and can be
found in Desoer & Vidyasagar [83], see also Anderson [6]. The geometric,
coordinate-free, treatment given in Sect. 2.4 is developed in Maschke & van der
Schaft [208], Stramigioli, van der Schaft, Maschke & Melchiorri [190, 331],
Cervera, van der Schaft & Banos [63].

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_8


Chapter 3
Dissipative Systems Theory

In this chapter the general theory of dissipative systems is treated, laying much of the
foundation for subsequent chapters. The theorywill be shown to provide a state space
interpretation of the notions of finite L2-gain and passivity for input–output maps as
discussed in Chaps. 1 and 2, and to generalize the concept of Lyapunov functions for
autonomous dynamical systems to systems with inputs and outputs.

3.1 Dissipative Systems

Throughout we consider state space systems with inputs and outputs of the general
form

� : ẋ = f (x, u) , u ∈ U
y = h(x, u) , y ∈ Y

(3.1)

where x = (x1, . . . , xn) are local coordinates for an n-dimensional state space man-
ifold X , and U and Y are linear spaces, of dimension m, respectively p. Throughout
this chapter, as well as in the subsequent chapters, we will make the following
assumption; see also the discussion in Sect. 1.3.

Assumption 3.1.1 There exists a unique solution trajectory x(·) on the infinite time
interval [0,∞) of the differential equation ẋ = f (x, u), for all initial conditions x(0)
and all input functions u(·) ∈ L2e(U ). Furthermore it will be assumed that the thus
generated output functions y(·) = h(x(·), u(·)) are in L2e(Y ).

On the combined space U × Y of inputs and outputs consider a function

s : U × Y → R , (3.2)

called the supply rate. Denote as before R+ = [0,∞).
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34 3 Dissipative Systems Theory

Definition 3.1.2 A state space system � is said to be dissipative with respect to the
supply rate s if there exists a function S : X → R+, called the storage function, such
that for all initial conditions x(t0) = x0 ∈ X at any time t0, and for all allowed input
functions u(·) and all t1 ≥ t0 the following inequality holds1

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(u(t), y(t))dt (3.3)

If (3.3) holds with equality for all x0, t1 ≥ t0, and all u(·), then � is conservative
with respect to s. Finally,� is called cyclo-dissipative with respect to s if there exists
a function S : X → R (not necessarily nonnegative) such that (3.3) holds.

The inequality (3.3) is called the dissipation inequality. It expresses the fact that the
“stored energy” S(x(t1)) of� at any future time t1 is atmost equal to the stored energy
S(x(t0)) atpresent time t0,plus the total externally supplied energy

∫ t1
t0

s(u(t), y(t))dt
during the time interval [t0, t1]. Hence, there can be no internal “creation of energy”;
only internal dissipation of energy is possible.

Remark 3.1.3 Note that cyclo-dissipativity implies

∫ t1

t0

s(u(t), y(t))dt ≥ 0 (3.4)

for all trajectories u(·), x(·), y(·) of � on the time interval [t0, t1] which are such
that x(t1) = x(t0) (whence the terminology cyclo-dissipative).

The two most important choices of supply rates will be seen to correspond to the
notions of passivity, respectively finite L2-gain, as treated for input–output maps in
the preceding chapters.

For simplicity of exposition we will identify throughout this chapter the linear
input and output spaces U and Y with Rm , respectively Rp, equipped with the
standard Euclidean inner product and norm. Throughout the Euclidean inner product
of two vectors v, z ∈ Rm will be denoted by vT z, and the Euclidean norm of a vector
v ∈ Rm by ‖v‖.
Definition 3.1.4 A state space system � with U = Y = Rm is passive if it is dis-
sipative with respect to the supply rate s(u, y) = uT y. � is input strictly passive if
there exists δ > 0 such that � is dissipative with respect to s(u, y) = uT y − δ||u||2.
� is output strictly passive if there exists ε > 0 such that� is dissipative with respect
to s(u, y) = uT y − ε||y||2. Finally, � is lossless if it is conservative with respect to
s(u, y) = uT y.

Definition3.1.4 is directly seen to extend the definitions of (input/output) strict pas-
sivity for input–output maps G as given in the previous Chap.2. Based on Assump-
tion3.1.1 we consider for every x0 ∈ X the input–output map Gx0 : L2e(U ) →

1Here it is additionally assumed that for allowed input functions u(·) and generated output functions
y(·) the integral ∫ t1

t0
s(u(t), y(t))dt is well defined.
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L2e(Y ), given as the map from allowed input functions u(·) on [0,∞) to output
functions y(·) on [0,∞) specified as y(t) = h(x(t), u(t)), where x(t) is the state at
time t ≥ 0 resulting from initial condition x(0) = x0 and input function u(·). Note
that all these input–output maps Gx0 , x0 ∈ X , are causal (Definition1.1.3), and time
invariant (Definition1.1.5).

Proposition 3.1.5 Consider the state space system � with U = Y = Rm, and
consider for any x0 the input–output map Gx0 . If � is passive, input strictly pas-
sive, respectively output strictly passive, then so are the input–output maps Gx0 for
every x0.

Proof Suppose � is dissipative with respect to the supply rate s(u, y) = uT y. Then
for some function S ≥ 0

∫ T

0
uT (t)y(t)dt ≥ S(x(T )) − S(x(0)) ≥ − S(x(0)) (3.5)

for all x(0) = x0, and all T ≥ 0 and all input functions u(·). This means precisely
that the input–output maps Gx0 of �, for every x0 ∈ X , are passive in the sense of
Definition2.2.1 (with bias β given as S(x0)). The (input or output) strict passivity
case follows similarly.

�

A second important class of supply rates is

s(u, y) = 1

2
γ2||u||2 − 1

2
||y||2 , γ ≥ 0 , (3.6)

where ||u|| and ||y|| denote the Euclidian norms on U = Rm , respectively Y = Rp.

Definition 3.1.6 A state space system � with U = Rm, Y = Rp has L2-gain ≤ γ
if it is dissipative with respect to the supply rate s(u, y) = 1

2γ
2||u||2 − 1

2 ||y||2. The
L2-gain of � is defined as γ(�) := inf{γ | � has L2-gain ≤ γ}. � is said to have
L2-gain < γ if there exists γ̃ < γ such that � has L2-gain ≤ γ̃. Finally � is called
inner if it is conservative with respect to s(u, y) = 1

2 ||u||2 − 1
2 ||y||2.

Definition3.1.6 is immediately seen to extend the definition of finite L2-gain from
Chaps. 1 and 2.

Proposition 3.1.7 Suppose � is dissipative with respect to s(u, y) = 1
2γ

2||u||2 −
1
2 ||y||2 for some γ > 0. Then all input–output maps Gx0 : L2e(U ) → L2e(Y ) have
L2-gain ≤ γ. Furthermore, the infimum of the L2-gains of Gx0 over all x0 is equal
to the L2-gain of �.

Proof If � is dissipative with respect to s(u, y) = 1
2γ

2||u||2 − 1
2 ||y||2 then there

exists S ≥ 0 such that for all T ≥ 0, x(0), and u(·)
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1

2

∫ T

0
(γ2||u(t)||2 − ||y(t)||2)dt ≥ S(x(T )) − S(x(0))|! ≥ S(x(0)) (3.7)

and thus ∫ T

0
||y(t)||2dt ≤ γ2

∫ T

0
||u(t)||2dt + 2S(x(0)) (3.8)

This implies by Proposition1.2.7 that the input–output maps Gx0 for every initial
condition x(0) = x0 have L2-gain ≤ γ. The rest of the statements follows directly.

�
Remark 3.1.8 Note that by considering supply rates s(u, y) = γ̃||u||q − ||y||q we
may also treat Lq -gain for q �= 2; this will not be further discussed.

In the subsequent chapters we will elaborate on the special cases s(u, y) = uT y and
s(u, y) = 1

2γ
2||u||2 − 1

2 ||y||2 corresponding to, respectively, passivity (Chap.4) and
finite L2-gain (Chap.8), in much more detail. Instead, in the current chapter we will
focus on the general theory of dissipative systems.

Before doing so we mention one immediate generalization of the definition of
dissipativity. In Chaps. 1 and 2 we already noticed that the notions of finite L2-gain
and passivity can be extended from input–output maps to relations. In the same vein,
the definition of dissipativity for input–state–output systems � as in (3.1) can be
extended to state space systems described by a mixture of differential and algebraic
equations, where we do not distinguish a priori between input and output variables.
That is, we may consider systems of the general form

F(x, ẋ, w) = 0, (3.9)

where x = (x1, . . . , xn) are local coordinates for an n-dimensional state space man-
ifold X , and w ∈ W = Rs denotes the total vector of external variables. Note
that this entails two generalizations of (3.1): (i) we replace the combined vector
(u, y) ∈ Y × U by a vector w ∈ W (where we do not make an a priori splitting into
input and output variables), and (ii) we replace the explicit differential and algebraic
equations in (3.1) by a general mixture, called a set of differential–algebraic equa-
tions (DAEs). Note that systems (3.9) include implicit and constrained state space
systems. In this more general context the supply rate s is now simply defined as a
function

s : W → R,

while the DAE system (3.9) is called dissipative with respect to s if there exists a
function S : X → R+ such that

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(w(t))dt, (3.10)

for all2 solutions x(·), w(·) of (3.9).

2Here we naturally restrict to continuous solutions.
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Let us now return to the definition of dissipativity given in Definition3.1.2. First,
we notice that in general the storage function of a dissipative system is far from
unique. Nonuniqueness already arises from the fact that we may always add a non-
negative constant to a storage function, and so obtain another storage function.
Indeed, the dissipation inequality (3.3) is invariant under addition of a constant
to the storage function S. However, apart from this rather trivial nonuniqueness,
more often than not dissipative systems will admit really different storage func-
tions. Furthermore, if S1 and S2 are storage functions then any convex combina-
tion αS1 + (1 − α)S2,α ∈ [0, 1], is also a storage function, as immediately follows
from substitution into the dissipation inequality. Hence the set of storage functions
is always a convex set.

The storage function is guaranteed to be unique (up to a constant) in case the
system is conservative and a controllability condition is met, as formulated in the
following proposition.

Proposition 3.1.9 Consider a system � that is conservative with respect to some
supply rate s. Assume that the system is “connected” in the sense that for every
two states xa, xb, there exists a number of intermediate states x1, x2, . . . , xm with
x1 = xa, xm = xb, such that for every pair xi , xi+1 either xi can be steered (by the
application of a suitable input function) to xi+1, or, conversely, xi+1 can be steered
to xi , i = 1, 2 . . . , m. Then the storage function is unique up to a constant.

Proof Let S1, S2 be two storage functions. By the dissipation equality, the difference
S2 − S1 is constant along any state trajectory of the system. By the above property of
“connectedness” this constant is the same for every state trajectory. Hence S2 = S1

up to this constant. �

Remark 3.1.10 A simple physical example of a dissipative system that is not con-
servative, but still has unique (up to a constant) storage function will be provided in
Example4.1.7 in Chap.4.

A fundamental question is how we may decide if � is dissipative with respect to a
given supply rate s. The following theorem gives an intrinsic variational character-
ization of dissipativity.

Theorem 3.1.11 Consider the system � and supply rate s(u, y). Then � is dissi-
pative with respect to s if and only if

Sa(x) := sup
u(·)
T ≥0

−
∫ T

0
s(u(t), y(t))dt , x(0) = x, (3.11)

is finite (<∞) for all x ∈ X . Furthermore, if Sa is finite for all x ∈ X then Sa

is a storage function, called the available storage, and all other possible storage
functions S satisfy

Sa(x) ≤ S(x) − inf
x

S(x) , ∀ x ∈ X (3.12)

http://dx.doi.org/10.1007/978-3-319-49992-5_4


38 3 Dissipative Systems Theory

Moreover,
inf

x
Sa(x) = 0 (3.13)

Proof Suppose Sa is finite. Clearly Sa ≥ 0 (take T = 0 in (3.11)). Compare now
Sa(x(t0)) with Sa(x(t1)) − ∫ t1

t0
s(u(t), y(t))dt , for a given u : [t0, t1] → Rm and

resulting state x(t1). Since Sa is given as the supremum over all u(·) in (3.11) it
immediately follows that

Sa(x(t0)) ≥ Sa(x(t1)) −
∫ t1

t0

s(u(t), y(t))dt , (3.14)

and thus Sa is a storage function, proving that � is dissipative with respect to the
supply rate s.

Suppose conversely that � is dissipative. Then there exists S ≥ 0 such that for
all u(·)

S(x(0)) +
∫ T

0
s(u(t), y(t))dt ≥ S(x(T )) ≥ 0 , (3.15)

which shows that

S(x(0)) ≥ sup−
∫ T

0
s(u(t), y(t))dt = Sa(x(0)) , (3.16)

proving finiteness of Sa . On the other hand, S′ := S − inf x S(x) is a storage func-
tion as well (since we have just subtracted the constant inf x S(x) from S and
thus the dissipation inequality remains to hold, while clearly S′ ≥ 0). Hence also
S′(x0) ≥ Sa(x0) for all x0, proving (3.12). Moreover, since inf x S′(x) = 0, also inf x

Sa(x) = 0. �

The quantity Sa(x0) can be interpreted as the maximal “energy” which can be
extracted from the system � starting at initial condition x0. Theorem3.1.11 thus
states that � is dissipative if and only if this “extractable energy” is finite for every
initial condition.

Under additional conditions the following equivalent characterizations of the
available storage Sa can be obtained.

Proposition 3.1.12 (i) Assume the system � and supply rate s(u, y) are such that
for any x there exists u(x) such that

s(u(x), h(x, u(x))) ≤ 0, x ∈ X (3.17)

Then

Sa(x) = sup
u(·)

−
∫ ∞

0
s(u(t), y(t))dt, x(0) = x (3.18)
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(i i) Assume � and s(u, y) are such that there exists a state feedback u(x) such that
(3.17) holds, while furthermore x∗ is a globally asymptotically stable equilibrium of
the closed-loop system3 ẋ = f (x, u(x)). Then

Sa(x) = sup
u(·), x→x∗

−
∫ ∞

0
s(u(t), y(t))dt, x(0) = x (3.19)

Proof (i) By letting T → ∞ in (3.11) we have sup
u(·)

− ∫ ∞
0 s(u(t), y(t))dt≤ Sa(x).

Conversely, note that

− ∫ ∞
0 s(u(t), y(t))dt = − ∫ T

0 s(u(t), y(t))dt − ∫ ∞
T s(u(t), y(t))dt

≥ − ∫ T
0 s(u(t), y(t))dt ,

(3.20)

whenever u(·) is such that s(u(t), y(t)) ≤ 0 for all t ∈ [T,∞). Hence for any
ū : [0, T ] → U there exists u : [0,∞) → U with uT = ū such that − ∫ ∞

0 s(u(t),

y(t))dt ≥ − ∫ T
0 s(ū(t), y(t))dt . Therefore, by taking the supremum at both sides of

this inequality we obtain the inequality sup
u(·)

− ∫ ∞
0 s(u(t), y(t))dt ≥ Sa(x).

(i i) As in the proof of part (i) we have sup
u(·), x→x∗

− ∫ ∞
0 s(u(t), y(t))dt ≤ Sa(x). For

the reverse inequality we apply the same reasoning as in the proof of part (i), by
considering extensions of ū : [0, T ] → U to u : [0,∞) → U which are such that
x(t) → x∗ for t → ∞. �

Remark 3.1.13 Note that part (i) of Proposition3.1.12 applies to the (input strict
or output strict) passivity supply rate and to the L2-gain supply rate by taking
u = 0. Furthermore, part (i i) applies whenever � has a globally asymptotically
stable equilibrium x∗ for u = 0.

The next proposition shows that if the system is reachable from some state, then the
finiteness of extractable energy needs only to be checked for this initial condition.

Proposition 3.1.14 Assume that � is reachable from x∗ ∈ X . Then � is dissipative
if and only if Sa(x∗) < ∞.

Proof (Only if ) Trivial. (If) Suppose there exists x ∈ X such that Sa(x) = ∞. Since
by reachability we can steer x∗ to x in finite time, this would imply (using time
invariance) that also Sa(x∗) = ∞. �

Corollary 3.1.15 Assume that � is reachable from x∗ ∈ X . Then � is passive if
and only if the input–output map Gx∗ is passive, and � has L2-gain ≤ γ if and only
if Gx∗ has L2-gain ≤ γ, while γ(�) = γ(Gx∗). Furthermore, if Gx∗ is passive with
zero bias or has L2-gain ≤ γ with zero bias, then Sa(x∗) = 0.

3Here it is assumed that ẋ = f (x, u(x)) has unique solutions on [0,∞) for all initial conditions.
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Proof Suppose the input–output map Gx∗ is passive, then ∃ β < ∞ such that
(cf. Definition2.2.1) ∫ T

0
uT (t)y(t)dt ≥ −β (3.21)

for all u(·), T ≥ 0. Therefore

Sa(x∗) = sup
u(·), T ≥0

−
∫ T

0
uT (t)y(t)dt ≤ β < ∞ , x(0) = x∗ (3.22)

and by Proposition3.1.14 � is passive. If β = 0 then Sa(x∗) = 0.
Similarly, let Gx∗ have L2-gain ≤ γ, then (cf. Proposition1.2.7) for all γ̃ > γ

there exists a constant c such that

∫ T

0
||y(t)||2dt ≤ γ̃2

∫ T

0
||u(t)||2dt + c (3.23)

yielding (with x(0) = x∗)

Sa(x∗) = sup
u(·), T ≥0

−
∫ T

0

(
1

2
γ̃2||u(t)||2 − 1

2
||y(t)||2

)
dt ≤ c

2
, (3.24)

implying that � has L2-gain ≤ γ̃ for all γ̃ > γ. If c = 0, then clearly Sa(x∗) = 0. It
also follows that γ(�) = γ(Gx∗). �

If � is reachable from a state x∗ then, in addition to the available storage Sa , there
exists another canonically defined storage function. Contrary to the available stor-
age, which is the minimal storage function (see (3.12)), this storage function has a
maximality property, in the following sense.

Theorem 3.1.16 Assume that � is reachable from x∗ ∈ X . Define the required sup-
ply (from x∗) Sr : X → R ∪ {−∞} as

Sr (x) := inf
u(·), T ≥0

∫ 0

−T
s(u(t), y(t))dt , x(−T ) = x∗, x(0) = x (3.25)

Then Sr satisfies the dissipation inequality (3.3). Furthermore, � is dissipative if and
only if there exists K > −∞ such that Sr (x) ≥ K for all x ∈ X . Moreover, if S is a
storage function for �, then

S(x) ≤ Sr (x) + S(x∗) , ∀x ∈ X , (3.26)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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and Sr (x) + S(x∗) is itself a storage function. In particular, Sr (x) + Sa(x∗) is a
storage function.

Proof The fact that Sr satisfies the dissipation inequality (3.3) follows from the
variational definitionof Sr in (3.25). Indeed, in taking the system from x∗ at t = −T to
x(t1) at time t1 we can restrict to those input functions u(·) : [−T, t1] → U whichfirst
take x∗ to x(t0) at time t0 ≤ t1, and then are equal to a given input u(·) : [t0, t1] → U
transferring x(t0) to x(t1). This will a be suboptimal control policy, whence

Sr (x(t0)) +
∫ t1

t0

s(u(t), y(t))dt ≥ Sr (x(t1)) (3.27)

For the second claim, note that by definition of Sa and Sr

Sa(x∗) = sup
x

−Sr (x), (3.28)

from which by Proposition3.1.14 it follows that� is dissipative if and only if ∃ K >

−∞ such that Sr (x) ≥ −K for all x .
Finally, let S satisfy the dissipation inequality (3.3). Then for anyu(·) : [−T, 0] →

Rm transferring x(−T ) = x∗ to x(0) = x we have by the dissipation inequality

S(x) − S(x∗) ≤
∫ 0

−T
s(u(t), y(t))dt (3.29)

Taking the infimum on the right-hand side over all those u(·) yields (3.26). Further-
more if S ≥ 0, then by (3.26) Sr + S(x∗) ≥ 0, and by adding S(x∗) to both sides of
(3.27) it follows that also Sr + S(x∗) satisfies the dissipation inequality. �

Remark 3.1.17 Let � be reachable from x∗. Then under the additional assumption
of existence of u∗ such that f (x∗, u∗) = 0, h(x∗, u∗) = 0 it can be verified that the
required supply is equivalently given as

Sr (x) = lim
t1→−∞ inf

u(·), x(t1)=x∗, x(0)=x

∫ 0

t1

s(u(t), y(t))dt (3.30)

Furthermore, we note that in case � is dissipative with a storage function S which
attains its global minimum at some point x∗ ∈ X , then also S − S(x∗) will be a
storage function, which is zero at x∗. Hence in this case any motion starting from x∗
at time 0 satisfies by the dissipation inequality

∫ T

0
s(u(t), y(t))dt ≥ 0 , x(0) = x∗, ∀T ≥ 0 (3.31)
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Thus if we start from the state of “minimal energy” x∗ then the net supply flow is
always directed into the system.4 This leads to the following alternative definition
of dissipativity.

Definition 3.1.18 Consider a system � and supply rate s. The system is called
dissipative from x∗ if (3.31) holds.

Proposition 3.1.19 Let � be dissipative with storage function S satisfying S(x∗) =
0. Then the system is also dissipative from x∗. Conversely, if the system is dissipative
from x∗ then Sa(x∗) = 0. If additionally the system is reachable from x∗ then the
system is dissipative, while its required supply satisfies Sr (x∗) = 0.

Proof The fact that dissipativitywith storage function S satisfying S(x∗) = 0 implies
(3.31) was already observed in (3.31). Conversely, assume that the system is dissi-
pative from x∗. Then by definition of Sa in (3.11) it directly follows that Sa(x∗) = 0.
Furthermore by Proposition3.1.14 it follows that the system is dissipative, while
clearly Sr (x∗) = 0. �

Hence, if � is dissipative as well dissipative from x∗, then both Sa and Sr attain
their minimum 0 at x∗. Under an additional assumption it can be shown that all other
storage functions attain their minimum at x∗ as well, as formulated in the following
proposition.

Proposition 3.1.20 Let � be dissipative and dissipative from x∗. Suppose further-
more the supply rate s is such that there exists a feedback u(x) satisfying (3.17)
for which x∗ is a globally asymptotically equilibrium for the closed-loop system
ẋ = f (x, u(x)). Then any storage function S attains its minimum at x∗, implying
that S(x) − S(x∗) is a storage function that is zero at x∗. Furthermore

Sa(x) ≤ S(x) − S(x∗), x ∈ X (3.32)

Proof Consider the dissipation inequality for any storage function S, rewritten as

−
∫ T

0
s(u(t), y(t))dt ≤ S(x) − S(x(T )) (3.33)

with x(0) = x . Extend u(·) : [0, T ] → U to the infinite time interval [0,∞) by
considering on (T,∞) a feedback u(x) as in (3.17) such that x∗ is a globally asymp-
totically equilibrium ẋ = f (x, u(x)). It follows from (3.20) and convergence of x(t)
to x∗ for t → ∞ that

−
∫ T

0
s(u(t), y(t))dt ≤ S(x) − S(x∗) (3.34)

4Note however that there does not always exist such a state of minimal internal energy. In particular
infx Sa(x) = 0 but not necessarily the minimum is attained.
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Hence by taking the supremum at the left-hand side over all u(·) : [0, T ] → U and
T ≥ 0 we obtain (3.32), also implying that S attains its minimum at x∗. �

The above developments can be summarized as follows.

Corollary 3.1.21 Consider a system (3.1) that is dissipative from x∗, reachable
from x∗, and for which there exists a feedback u(x) satisfying (3.17) such that x∗ is a
globally asymptotically equilibrium of ẋ = f (x, u(x)). Then any storage function S
attains its minimum at x∗ and the storage function S′(x) := S(x) − S(x∗) satisfies

Sa(x) ≤ S′(x) ≤ Sr (x), for all x ∈ X , (3.35)

where Sa(x∗) = Sr (x∗) = 0.

Remark 3.1.22 For a linear system ẋ = Ax + Bu, y = Cx + Du with x∗ = 0 sat-
isfying the assumptions of Corollary3.1.21 it can be proved by standard optimal
control arguments [351] that Sa and Sr are given by quadratic functions 1

2 xT Qa x ,
respectively 1

2 xT Qr x , with Qa, Qr symmetric matrices satisfying Qa ≤ Qr .

3.2 Stability of Dissipative Systems

In this section we will elaborate on the close connection between dissipative systems
theory and the theory of Lyapunov functions for autonomous dynamical systems
ẋ = f (x).

Consider the dissipation inequality (3.3),wherewe assume throughout this section
that the storage functions S areC1 (continuously differentiable); see the discussion in
the Notes for this chapter for generalizations. By dividing the dissipation inequality
by t1 − t0, and letting t1 → t0 we see that (3.3) is equivalent to

Sx (x) f (x, u) ≤ s(u, h(x, u)) , for all x, u, (3.36)

with Sx (x) denoting the row vector of partial derivatives

Sx (x) =
(

∂S

∂x1
(x), . . . ,

∂S

∂xn
(x)

)
(3.37)

The inequality (3.36) is called the differential dissipation inequality, and is much
easier to check than (3.3) since we do not have to compute the system trajectories
(which for most nonlinear systems is even not possible).

In order to make the connection with the theory of Lyapunov functions we recall
some basic notions and results from Lyapunov stability theory. Consider the set of
differential equations

ẋ = f (x) (3.38)
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Here x are local coordinates for an n-dimensional manifold X , and thus (3.38) is the
local coordinate expression of a vector field on X . Throughout we assume that f
is locally Lipschitz continuous; implying existence and uniqueness of solutions of
(3.38), at least for small time. The solution of (3.38) for initial condition x(0) = x0
will be denoted as x(t; x0), with t ∈ [0, T (x0)) and T (x0) > 0 maximal.

Definition 3.2.1 Let x∗ be an equilibrium of (3.38), that is f (x∗) = 0, and thus
x(t; x∗) = x∗, for all t . The equilibrium x∗ is

(a) stable, if for each ε > 0 there exists δ(ε) such that

‖ x0 − x∗ ‖< δ(ε) ⇒‖ x(t; x0) − x∗ ‖< ε, ∀t ≥ 0 (3.39)

(b) asymptotically stable, if it is stable and additionally there exists δ̄ > 0 such that

‖ x0 − x∗ ‖< δ̄ ⇒ lim
t→∞ x(t, x0) = x∗ (3.40)

(c) globally asymptotically stable, if it is stable and lim
t→∞ x(t; x0) = x∗ for all x0 ∈ X .

(d) unstable, if it is not stable.

Remark 3.2.2 If x∗ is a globally asymptotically stable equilibrium then necessarily
X is diffeomorphic toRn .

An important tool in the stability analysis of equilibria are Lyapunov functions.

Definition 3.2.3 Let x∗ be an equilibrium of (3.38). A C1 function V : X → R+
satisfying

V (x∗) = 0, V (x) > 0, x �= x∗ (3.41)

(that is, V is positive definite at x∗), as well as

V̇ (x) := Vx (x) f (x) ≤ 0, x ∈ X , (3.42)

is called a Lyapunov function for the equilibrium x∗.

Theorem 3.2.4 Let x∗ be an equilibrium of (3.38). If there exists a Lyapunov function
for the equilibrium x∗, then x∗ is a stable equilibrium. If moreover

V̇ (x) < 0, ∀x ∈ X , x �= x∗, (3.43)

then x∗ is an asymptotically stable equilibrium, which is globally asymptotically
stable if V is proper (that is, the sets {x ∈ X | 0 ≤ V (x) ≤ c} are compact for every
c ∈ R+).

Remark 3.2.5 Theorem3.2.4 can be also applied to any neighborhood X̃ of x∗. In
particular, if (3.41) and (3.42), or (3.41) and (3.43) hold on a neighborhood of x∗,
then x∗ is still a stable, respectively, asymptotically stable, equilibrium.



3.2 Stability of Dissipative Systems 45

Remark 3.2.6 ForX = Rn the requirement of properness amounts to V being radi-
ally unbounded; that is, V (x) → ∞ whenever ‖x‖ → ∞.

With the aid of Theorem3.2.4 the following stability result for dissipative systems
is readily established.

Proposition 3.2.7 Let s(u, y) be a supply rate, and S : X → R+ be a C1 storage
function for �. Assume that s satisfies

s(0, y) ≤ 0 , ∀y ∈ Y (3.44)

Assume furthermore that x∗ ∈ X is a strict local minimum for S. Then x∗ is a stable
equilibrium of the unforced system ẋ = f (x, 0) with Lyapunov function V (x) :=
S(x) − S(x∗) for x around x∗, while s(0, h(x∗, 0)) = 0. If additionally, Ṡ(x) < 0,
for all x �= x∗, then x∗ is an asymptotically stable equilibrium.

Proof By (3.36) and (3.44) Sx (x) f (x, 0) ≤ s(0, h(x, 0)) ≤ 0, and thus S is nonin-
creasing along solutions of ẋ = f (x, 0). Since S has a strict minimum at x∗ this
implies f (x∗, 0) = 0, and thus s(0, h(x∗, 0)) = 0. The rest follows directly from
Theorem3.2.4. �

An important weakness in the asymptotic stability statement of Proposition3.2.7
concerns the condition Ṡ(x) < 0 for all x �= x∗. In general, this condition cannot be
inferred from the dissipation inequality (unless e.g., y = x). An important general-
ization of Theorem3.2.4 to remedy this weakness is based on LaSalle’s Invariance
principle. Recall that a set N ⊂ X is invariant for ẋ = f (x) if x(t; x0) ∈ N for all
x0 ∈ N and for all t ∈ R, and is positively invariant if this holds for all t ≥ 0, where
x(t; x0), t ≥ 0, denotes the solution of ẋ = f (x) for x(0) = x0.

Theorem 3.2.8 Let V : X → R be a C1 function for which V̇ (x) := Vx (x)

f (x) ≤ 0, for all x ∈ X . Suppose there exists a compact set C which is posi-
tively invariant for ẋ = f (x). Then for any x0 ∈ C the solution x(t; x0) converges
for t → ∞ to the largest subset of {x ∈ X | V̇ (x) = 0} ∩ C that is invariant for
ẋ = f (x).

The usual way of applying Theorem3.2.8 is as follows. Since V̇ (x) ≤ 0, the con-
nected component of {x ∈ X | V (x) ≤ V (x0)} containing x0 is positively invariant.
If additionally V is assumed to be positive definite at x∗ then the connected compo-
nent of {x ∈ X | V (x) ≤ V (x0)} containing x0 will be compact for x0 close enough
to x∗, and hence may serve as the compact set C in the above theorem.

Using this reasoning Theorem3.2.8 yields the following connection between dis-
sipativity and asymptotic stability.

Proposition 3.2.9 Let S : X → R+ be a C1 storage function for �. Assume that
the supply rate s satisfies

s(0, y) ≤ 0 , for all y (3.45)
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Assume that x∗ ∈ X is a strict local minimum for S. Furthermore, assume that no
solution of ẋ = f (x, 0) other than x(t) ≡ x∗ remains in {x ∈ X | s(0, h(x, 0)) = 0}
for all t . Then x∗ is an asymptotically stable equilibrium of ẋ = f (x, 0), which is
globally asymptotically stable if V ≥ 0 is proper.

Proof Note that Ṡ(x) = 0 implies s(0, h(x, 0)) = 0, which by assumption implies
h(x, 0) = 0. The statement now directly follows from LaSalle’s Invariance
principle. �

Remark 3.2.10 The requirement s(0, y) ≤ 0 for all y is satisfied by the (output and
input strict) passivity and L2-gain supply rates.

A main condition on the storage function S in the previous statements is the require-
ment that S has a strict (local) minimum at the equilibrium x∗. This is not part of
the standard definition of a storage function. On the other hand, in case S(x∗) = 0
(see also Proposition3.1.20), then the property of a strict (local) minimum may be
sometimes derived making use of an additional observability condition.

In the rest of this section we assume that � has no feedthrough terms, i.e., y =
h(x). Without loss of generality take x∗ = 0. Moreover, assume h(0) = 0.

Definition 3.2.11 � with y = h(x) is zero-state observable if u(t) = 0,
y(t) = 0,∀t ≥ 0, implies x(t) = 0,∀t ≥ 0.

Proposition 3.2.12 Let S ≥ 0 be a C1 storage function with S(0) = 0 for a supply
rate s satisfying s(0, y) ≤ 0 for all y, and such that s(0, y) = 0 implies y = 0.
Suppose �a is zero-state observable, then S(x) > 0 for all x �= 0.

Proof By substituting u = 0 in (3.3) we obtain

S(x(T )) − S(x(0)) ≤
∫ T

0
s(0, y(t))dt

implying, since S(x(T )) ≥ 0,

S(x(0)) ≥
∫ T

0
s(0, y(t))dt

which is > 0 for x(0) �= 0. �

Remark 3.2.13 The same result follows for any supply rate s(u, y) for which
there exists an output feedback u = α(y) such that s(α(y), y) ≤ 0 for all y, and
s(α(y), y) = 0 implies y = 0. Just consider in the above proof u = α(y) instead of
u = 0.

Remark 3.2.14 Note that the L2-gain and output strict passivity supply rate satisfy
the conditions in the above Proposition3.2.12,while the passivity supply rate satisfies
the conditions of Remark3.2.13 (take u = −y).
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A weaker property of observability, called zero-state detectability, is instrumental
for proving asymptotic stability based on LaSalle’s Invariance principle.

Definition 3.2.15 �a is zero-state detectable ifu(t) = 0, y(t) = 0, ∀t ≥ 0, implies
lim

t→∞ x(t) = 0.

Proposition 3.2.16 Let S be a C1 storage function with S(0) = 0 and S(x) > 0,
x �= 0, for a supply rate s satisfying s(0, y) ≤ 0 and such that s(0, y) = 0 implies
y = 0, where h(0) = 0. Suppose that �a is zero-state detectable. Then x = 0 is an
asymptotically stable equilibrium of ẋ = f (x, 0). If additionally S is proper then 0
is globally asymptotically stable.

Proof By Proposition3.2.9 x = 0 is a stable equilibrium of ẋ = f (x, 0). Further-
more

Ṡ(x) = Sx (x) f (x) ≤ s(0, h(x, 0)),

and asymptotic stability follows by LaSalle’s Invariance principle, since Ṡ(x) = 0
implies h(x, 0) = 0. �

Finally, let us investigate the case that the storage function S has a local minimum at
x∗, which is howevernot a strictminimum. In this case, S(x) − S(x∗) isnot a standard
Lyapunov function, and thus stability, let alone asymptotic stability, of x∗ is not
guaranteed. Nevertheless, even in this case one can still obtain (asymptotic) stability,
provided additional conditions are satisfied. The tool for doing this is formulated in
the following theorem; see the references in the Notes for this chapter.

Theorem 3.2.17 Let x∗ be an equilibrium of ẋ = f (x), and let V : X → R1 be a
C1 function which is positive semi-definite at x∗, that is,

V (x∗) = 0, V (x) ≥ 0 (3.46)

Furthermore, suppose that V̇ (x) := Vx (x) f (x) ≤ 0, for all x ∈ X .

(i) Define V0 := {x ∈ X | V (x) = 0}. If x∗ is asymptotically stable conditionally
to V0, that is (3.39) and (3.40) hold for x0 ∈ V0, then x∗ is a stable equilibrium
of ẋ = f (x).

(ii) Define V := {x ∈ X | V̇ (x) = 0}, and let V∗ be the largest positively invariant
(with respect to ẋ = f (x)) set contained inV . Then x∗ is an asymptotically stable
equilibrium of ẋ = f (x) if and only if x∗ is an asymptotically stable equilibrium
conditionally to V∗, that is, (3.39) and (3.40) hold for x0 ∈ V∗.

Remark 3.2.18 By replacing the condition V̇ (x) = Vx (x) f (x) ≤ 0 by the condition
that the function V is nonincreasing along solution trajectories, the above theorem
also holds for functions V which are not C1.

With the aid of Theorem3.2.17 we obtain the following stability result extending
Proposition3.2.9.
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Proposition 3.2.19 Let S ≥ 0 with S(x∗) = 0 be a solution to the dissipation
inequality, where the supply rate s(u, y) is such that

s(0, y) ≤ 0 for all y, s(0, y) = 0 if and only if y = 0

LetH∗ be the largest positively invariant set contained in the setH:={x | h(x, 0)=0}.
If x∗ is asymptotically stable conditionally to H∗, then x∗ is an asymptotically stable
equilibrium.

Proof In view of the dissipation inequality Ṡ(x) ≤ s(0, h(x, 0)) ≤ 0. Since
s(0, y) = 0 if and only if y = 0, it follows that the largest positively invariant
set where Ṡ(x) = 0 is contained in H∗. Application of Theorem3.2.17 yields the
claim. �

Remark 3.2.20 Note that the L2-gain and output strict passivity supply rates satisfy
the conditions of Proposition3.2.19.

Remark 3.2.21 The property of x∗ = 0 being asymptotically stable conditionally
to the largest positively invariant set contained in the set {x | h(x, 0) = 0} is very
close to zero-state detectability. In fact, this latter property implies that lim

t→∞ x(t) = 0

whenever y(t) = 0, t ≥ 0, for all initial conditions x0 close to 0.

For later use we state the following closely related result.

Proposition 3.2.22 Consider the C1 system

ẋ = f (x) + g(x)k(x), f (x∗) = 0, k(x∗) = 0, (3.47)

and assume that x∗ is an asymptotically stable equilibrium of ẋ = f (x), and that
there exists a C1 function S ≥ 0 which is positive semi-definite at x∗ and satisfies

Sx (x) [ f (x) + g(x)k(x)] ≤ −ε||k(x)||2 , (3.48)

for some ε > 0. Then x∗ is an asymptotically stable equilibrium of (3.47).

Proof Similarly to the proof of Proposition3.2.19, let K∗ be the largest positively
invariant set contained in K := {x | k(x) = 0}. Since x∗ is an asymptotically stable
equilibrium of ẋ = f (x) it follows that x∗ is asymptotically stable conditionally to
K∗. Since Sx (x)[ f (x) + g(x)k(x)] = 0 implies k(x) = 0, the rest of the proof is the
same as that of Proposition3.2.19. �

Remark 3.2.23 Note that the condition of x∗ being an asymptotically stable equi-
librium of ẋ = f (x) can be regarded as a zero detectability assumption on ẋ =
f (x) + g(x)k(x), y = k(x).
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3.3 Interconnections of Dissipative Systems

Dissipative systems theory can be viewed as an extension of Lyapunov function the-
ory to systems with external variables (inputs and outputs). Furthermore, it provides
a systematic way to construct Lyapunov functions for large-scale interconnected sys-
tems by starting from the storage functions of the component systems, and requiring
a compatibility between the interconnection equations and the supply rates of the
component systems. In fact, this will be a leading theme in the state space versions of
the passivity theorems in Chap.4 and the small-gain theorems in Chap.8. Also this
is a continuing thread in the theory of port-Hamiltonian systems in Chap.6. While
in these subsequent chapters the attention will be confined to the passivity supply
rate (in the case of passive and port-Hamiltonian systems) and the L2-gain supply
rate (in the case of the small-gain theorems) the current section will be devoted to a
general theory of interconnections of dissipative systems.

Consider k systems �i of the form (3.1) with input, state, and output spaces
Ui ,Xi , Yi , i = 1, . . . , k. Suppose �i are dissipative with respect to the supply rates

si (ui , yi ), ui ∈ Ui , yi ∈ Yi , i = 1, . . . , k, (3.49)

and storage functions Si (xi ), i = 1, . . . , k.
Now consider an interconnection of �i , i = 1, . . . , k, defined through an inter-

connection subset

I ⊂ U1 × Y1 × · · · × Uk × Yk × U e × Y e (3.50)

where U e, Y e are spaces of external input and output variables ue, ye. This defines
an interconnected system �I with state space X1 × · · · × Xk and inputs and outputs
ue, ye, by imposing the interconnection equations

(
(u1, y1), . . . , (uk, yk), (u

e, ye)
) ∈ I (3.51)

Note that in general the interconnected system �I is of the DAE form (3.9). The
following result is immediate.

Proposition 3.3.1 Suppose the supply rates s1, . . . , sk and the interconnection sub-
set I are such that there exists a supply rate se : U e × Y e → R for which

s1(u1, y1) + · · · + sk(uk, yk) ≤ se(ue, ye),

for all ((u1, y1), . . . , (uk, yk), (ue, ye)) ∈ I
(3.52)

Then the interconnected system �I is dissipative with respect to the supply rate se,
with storage function

S(x1, . . . , xk) := S1(x1) + · · · + Sk(xk) (3.53)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_6


50 3 Dissipative Systems Theory

Proof Just add the k dissipation inequalities

Si (xi (t1)) ≤ Si (xi (t0)) +
∫ t1

t0

si (ui (t), yi (t))dt, i = 1, . . . , k

and invoke the inequality (3.52). �

Note that for the purpose of stability analysis of the interconnected system �I the
external inputs and outputs ue, ye and the supply rate se can be left out, in which
case (3.52) reduces to

s1(u1, y1) + · · · + sk(uk, yk) ≤ 0 ,

for all ((u1, y1), . . . , (uk, yk)) ∈ I
(3.54)

Example 3.3.2 Consider a system having inputs and outputs (uc, yc) accessible to
control interaction, and another set of inputs and outputs (ue, ye) via which the
system interacts with its environment. Suppose the system is passive, with respect
to the combined set of variables (uc, yc) and (ue, ye); that is, there exists a storage
function S such that

d S

dt
≤ uT

c yc + (ue)T ye

An example is a robotic mechanism interacting with its environment via generalized
forces ue and generalized velocities ye, and controlled by collocated sensors (gen-
eralized velocities yc) and actuators (generalized forces uc). Closing the loop with a
passive controller with storage function Sc, that is,

d Sc

dt
≤ −yT

c uc,

results in a system which is passive with respect to (ue, ye), since

d

dt
(S + Sc) ≤ (ue)T ye

Note that the storage function of the interconnected system �I in Proposition3.3.1
is simply the sum of the storage functions of the component systems �i . A useful
extension of Proposition3.3.1 is obtained by allowing instead for weighted combi-
nations of the storage functions of the component systems. For simplicity we will
only consider the case without external inputs and outputs ue, ye.

Proposition 3.3.3 Suppose the supply rates s1, . . . , sk and the interconnection sub-
set I are such that there exist positive constants α1, . . . ,αk for which

α1s1(u1, y1) + · · · + αksk(uk, yk) ≤ 0,

for all ((u1, y1), . . . , (uk, yk)) ∈ I
(3.55)
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Then the nonnegative function

Sα(x1, . . . , xk) := α1S1(x1) + · · · + αk Sk(xk) (3.56)

satisfies d
dt Sα ≤ 0 along all solutions of the interconnected system �I .

Proof Multiply each i-th dissipation inequality

Si (xi (t1)) ≤ Si (xi (t0)) +
∫ t1

t0

si (ui (t), yi (t))dt

by αi , i = 1, . . . , k, add them, and use the inequality (3.55). �

In Sect. 8.2 we will see how this proposition underlies the small-gain theorem and
extensions of it. Furthermore, it will appear naturally in the network interconnection
of passive systems in Sect. 4.4.

3.4 Scattering of State Space Systems

The generalization (3.10) of the definition of dissipativity to DAE systems without a
priori splitting of the external variables into inputs u and y is also useful in discussing
the extension of the notion of scattering, as treated in Sect. 2.4 for input–output maps,
to the state space system context.

Consider a state space system � given in standard input–state-output form (3.1),
which is assumed to be passive, i.e.,

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

uT (t)y(t)dt (3.57)

for some storage function S ≥ 0. Consider the scattering representation (v, z) of
(u, y) defined as, see (2.41),

v = 1√
2
(u + y) , z = 1√

2
(−u + y) (3.58)

The inverse transformation of (3.58) is u = 1√
2
(v − z), y = 1√

2
(v + z), and substi-

tution of these expressions in (3.57) yields

S(x(t1)) − S(x(t0)) ≤ 1

2

∫ t1

t0

(||v(t)||2 − ||z(t)||2)dt (3.59)

This shows that� is passive with respect to u and y if and only if� with transformed
external variables v and z has L2-gain ≤ 1 from v to z, while the storage function

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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remains the same. Similarly, it follows that � is lossless with respect to u and y if
and only if it is inner with respect to v and z.

Note that in general the transformed system � with external variables w = (v, z)
is in the format (3.9). In case the original � is an affine system without feedthrough
term, i.e., of the form

�a : ẋ = f (x) + g(x)u

y = h(x)
(3.60)

the substitution u = 1√
2
(v − z), y = 1√

2
(v + z), leads to an input–state–output rep-

resentation in the wave vectors v, z, namely

�s : ẋ = f (x) − g(x)h(x) + √
2g(x)v

z = √
2h(x) − v

(3.61)

Summarizing

Proposition 3.4.1 �a is passive (lossless) with storage function S if and only if �s

has L2-gain ≤ 1 (is inner) with storage function S.

3.5 Dissipativity and the Return Difference Inequality

Dissipative systems theory turns out to provide an insightful framework for the study
of the Inverse problem of optimal control, as originally introduced in [155] for the
linear quadratic optimal control problem.

Consider the nonlinear optimal control problem (see Sects. 9.4 and 11.2 for further
information)

min
u

∫ ∞

0
(||u(t)||2 + �(x(t)))dt , (3.62)

for the system
ẋ = f (x) + g(x)u, f (0) = 0, (3.63)

where � ≥ 0 is a cost function with �(0) = 0.
Denote the minimal cost (value) defined by (3.62) for initial condition x(0) = x0

by V (x0). The function V : X → R+ is called the value function. Suppose that the
value function V is well defined for all initial conditions and is C1. Then it is known
from optimal control theory that V is a nonnegative solution to the Hamilton–Jacobi–
Bellman equation

Vx (x) f (x) − 1

2
Vx (x)g(x)gT (x)V T

x (x) + 1

2
�(x) = 0, V (0) = 0 (3.64)

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Fig. 3.1 Feedback system
ẋ = f(x) + g(x)u

α(x)

v +

−
u x

û

Furthermore the optimal control is given in feedback form as

u = −α(x) := −gT (x)V T
x (x) (3.65)

If additionally V (x) > 0 for x �= 0 and the system ẋ = f (x), y = �(x) is zero-state
detectable (cf. Definition3.2.15), it follows from LaSalle’s Invariance principle that
this optimal feedback is actually stabilizing, since (3.64) can be rewritten as

Vx (x)[ f (x) − g(x)α(x)] = −1

2
αT (x)α(x) − �(x) , (3.66)

and thus asymptotic stability of x = 0 follows as in Proposition3.2.16.
Aswewill now show, the optimal control feedback u = −α(x) := −gT (x)V T

x (x)

has a direct dissipativity interpretation. Indeed, (3.64) and (3.65) can be rewritten as

Vx (x) f (x) − 1
2α

T (x)α(x) = −�(x) ≤ 0 V (0) = 0

Vx (x)g(x) = αT (x)
(3.67)

implying that the following system (the “loop transfer” from u to minus the optimal
feedback −α(x))

ẋ = f (x) + g(x)u

û = α(x)
(3.68)

is dissipative with respect to the supply rate

s(u, û) := 1

2
||û||2 + ûT u (3.69)

This leads to the following interesting consequence. By further rewriting the supply
rate s(u, û) = 1

2 ||û||2 + ûT u as

1

2
||û||2 + ûT u = 1

2
||u + û||2 − 1

2
||u||2 = 1

2
||v||2 − 1

2
||u||2 , (3.70)

it means that the feedback system in Fig. 3.1 with external inputs v satisfies the
property
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1

2

∫ T

0
||u(t)||2dt ≤ 1

2

∫ T

0
||v(t)||2dt + V (x(0)) − V (x(T ))

≤ 1

2

∫ T

0
||v(t)||2dt + V (x(0)) , (3.71)

for all initial conditions x(0), and for all external input signals v. Thus the L2-gain
from the external inputs v to the internal inputs u is less than or equal to one.

In the linear case the frequency domain version of the inequality (3.71) is called
the return difference inequality. The inequality expresses the favorable property that
in the closed-loop systemof Fig. 3.1 the L2-normof the optimal feedback u = −α(x)

is attenuated with regard to the L2-norm of any external control signal v(·).
Conversely, it can be shown that any stabilizing feedback u = −α(x) for which

(3.71) holds is actually optimal with respect to some cost function � ≥ 0 with
�(0) = 0. Indeed, consider u = −α(x) such that (3.71) is satisfied for some function
V ≥ 0, with V (0) = 0. Equivalently, the system (3.68) is dissipative with respect
to the supply rate s(u, û) = 1

2 ||û||2 + ûT u, with storage function V ≥ 0, V (0) = 0.
Then it follows that (assuming V is C1)

Vx (x) f (x) − 1
2α

T (x)α(x) ≤ 0

Vx (x)g(x) = αT (x)
(3.72)

Hence we may define the cost function � ≥ 0 as

�(x) := −Vx (x) f (x) + 1

2
αT (x)α(x), (3.73)

satisfying �(0) = 0. It follows that V is actually a nonnegative solution of the
Hamilton–Jacobi–Bellman equation (3.64) of the optimal control problem (3.62)
for this cost function �. As will be shown in Sect. 11.2, it follows that V is the value
function of this optimal control problem and that u = −α(x) is the optimal feedback
control.

Summarizing, we have obtained the following theorem.

Theorem 3.5.1 Consider the system (3.63). Let � ≥ 0 be a cost function with
�(0) = 0 such that ẋ = f (x), y = �(x), is zero-state detectable, and that the value
function V of the optimal control problem is well defined, C1, and satisfies V (x) >

0, x �= 0. Then the feedback u = −α(x) := −gT (x)V T
x (x) is stabilizing, and the

resulting feedback system in Fig.3.1 satisfies property (3.71).
Conversely, u = −α(x) is a stabilizing feedback such that the feedback system in

Fig.3.1 satisfies property (3.71) for a C1 function V ≥ 0 with V (0) = 0, then u =
−α(x) is the optimal control for (3.62) with the cost function �(x) := −Vx (x) f (x) +
1
2α

T (x)α(x).

Thus, loosely speaking, a feedbacku = −α(x) is optimalwith regard to someoptimal
control problem of the form (3.62) if and only if the return difference inequality (3.71)
holds.

http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Remark 3.5.2 In view of Proposition3.1.14, we additionally note that if the system
ẋ = f (x) + g(x)u is reachable from x = 0, then property (3.74) holds for a feedback
u = −α(x) and a V ≥ 0 with V (0) = 0, if and only if

∫ T

0
||u(t)||2dt ≤

∫ T

0
||v(t)||2dt , x(0) = 0, (3.74)

for all external inputs v, and all T ≥ 0.

Remark 3.5.3 Notice that the optimal regulator in Fig. 3.1, that is the system

ẋ = [ f (x) − g(x)α(x)] + g(x)v

û = α(x) = gT (x)V T
x (x)

(3.75)

is output strictly passive, as follows directly from (3.66).

3.6 Notes for Chapter3

1. The main part of the theory exposed in Sect. 3.1 is based on Willems’ seminal
and groundbreaking paper [350]. The developments around Propositions3.1.19,
3.1.20 and Corollary3.1.21 are relatively new, although inspired by similar argu-
ments in Willems [349, 351].

2. Other expositions of (parts of) the theory of dissipative systems can be found
in Hill & Moylan [126], Moylan [225], Brogliato, Lozano, Maschke & Egeland
[52], as well as Isidori [139], Arcak, Meissen & Packard [11].

3. We refer to e.g., Weiland & Willems [346], and Trentelman & Willems [338,
339], Willems & Trentelman [353] for developments on dissipative systems
theory within a (linear) behavioral systems theory framework; generalizing the
concept of quadratic supply rates to quadratic differential forms that may also
involve derivatives of the inputs and outputs. Note that in these papers “dissipa-
tivity” is often used in the meaning of “cyclo-dissipativity”.

4. The first part of Sect. 3.2 is also mainly based on Willems’ paper [350], together
with important contributions due to Hill & Moylan [123–126]. The exposition
on stability in Sect. 3.2 was influenced by Sepulchre, Jankovich & Kokotovic
[312].

5. The theory of dissipative systems is closely related to the theory of Integral
Quadratic Constraints (IQCs); see e.g., Megretski & Rantzer [215], Jönsson
[152] and the references quoted therein.
Basically, in the theory of Integral Quadratic Constraints (IQCs) the system �1

denotes the given linear “nominal” part of the system to be studied, specified
by a transfer matrix G, while � := �2 denotes the “troublemaking” (nonlinear,
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time-delay, time-varying, uncertain) components. In order to assess stability of
the overall system one searches for IQCs for �. These are given by a Hermitian
matrix valued function �( jω),ω ∈ R, such that

∫ ∞

−∞

[
û2( jω)

ŷ2( jω)

]∗
�( jω)

[
û2( jω)

ŷ2( jω)

]
dω ≥ 0

for all L2 signals u2, y2 compatible with �. Here ̂ denotes Fourier transform,
and ∗ is complex conjugate and transpose. For rational � that are bounded on
the imaginary axis, the time domain version of the IQC is

∫ ∞

0
σ(xπ(t), y2(t), u2(t))dt ≥ 0

for a certain quadratic form σ, where xπ is solution of an auxiliary system

ẋπ = Aπxπ + By2 y2 + Bu2u2, xπ(0) = 0.

The main theorem (Theorem1 in Megretski & Rantzer [215]) states that if we
can find a � such that for every τ ∈ [0, 1] the interconnection of G and τ� is
well posed and � is an IQC for τ�, while there exists a ε > 0 such that

[
G( jω)

I

]∗
�( jω)

[
G( jω)

I

]
≤ −εI, ∀ω ∈ R

then the closed-loop system is stable. Compared with the setup of dissipative
systems theory there are twomajor differences. One is that� is not necessarily a
constantmatrix, and that therefore in the time domain formulation the functionσ,
which replaces the supply rate s of dissipative systems theory, also depends on an
auxiliary dynamical system (acting as an additional filter for the signals u2, y2).
Secondly, the IQC should only hold for all L2 signals u2, y2, and therefore in the
time domain version the integral is from 0 to ∞, instead of from 0 to any T ≥ 0,
as in dissipative systems theory formulation. The first aspect constitutes a major
extension with respect to dissipative systems theory. The second difference is
more of a technical nature, closely related to an extension of dissipativity to
cyclo-dissipativity. The L2-stability problems caused by the second difference
are taken care of by an ingenious homotopy argument based on the variation of τ
from 0 to 1 (nominal value). In Veenman & Scherer [341] it has been shown how
in most situations IOC stability analysis can be proved by dissipative systems
theory.
On a methodological level, the philosophy of the theory of IQCs is somewhat
different from dissipative systems theory in the sense that in IQC theory the
emphasis is on stability analysis by splitting between nominal linear dynamics
and “troublemaking” nonlinearities or time delays, whose disturbing properties
are sought to be bounded by a suitable IQC. Dissipative systems theory, on the
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other hand, is primarily a compositional theory of complex systems (rooted in
network dynamics), where nonlinear dynamical components are not necessarily
considered to be detrimental. The theory of IQCs is especially useful for stability
analysis of systems with “small-scale” nonlinearities or time delays. It yields
sharp results on the classical cases of “noncausal multipliers” and the Popov
criterion.

6. In Sect. 3.2 we have assumed throughout that there exist storage functions which
are continuously differentiable (C1), in order to make the link with Lyapunov
stability theory, and, very importantly, in order to be able to rewrite the dissi-
pation inequality (3.3) as the differential dissipation inequality (3.36). Now, for
Lyapunov stability theory the Lyapunov functions do not necessarily have to
be C1, see e.g., Sontag [317]. Moreover, often storage functions for nonlinear
systems are not everywhere differentiable (in particular this may happen for the
available storage Sa and the required supply Sr , being solutions to an optimal
control problem). Since it is much easier to work with differential dissipation
inequalities than with dissipation inequalities in integral form, it would thus
be desirable to have a generalized solution concept for differential dissipation
inequalities (3.36), admitting solutions S that are not everywhere differentiable.
In fact, this is possible using the concept of a viscosity solution (see e.g., Fleming
& Soner [99], for a clear exposé), as shown in James [144] (see also James &
Baras [145], Ball & Helton [22]). We also like to refer to Clarke, Ledyaev, Stern
& Wolenski [67, 68] for a broader discussion of generalized solution concepts
for Hamilton–Jacobi inequalities or equalities, showing equivalence between
apparently different solution concepts.

7. See e.g., Khalil [159] for a coverage of Lyapunov stability theory and LaSalle’s
Invariance principle.

8. Theorem3.2.17 is due to Iggidr, Kalitine & Outbib [134]. I thank Laurent Praly
for pointing out an error in the presentation of the consequences of this theorem
in the second edition of this book.

9. Proposition3.2.22 is due to Imura, Sugie & Yoshikawa [132], Imura, Maeda,
Sugie & Yoshikawa [131], where an alternative proof is given.

10. Section3.3 is largely based on Willems [350], Moylan & Hill [227], see also
Moylan [225].

11. The stability analysis of an interconnected system the approach taken in Sect. 3.3
can be turned around as well. Given the component systems �1, . . . , �k and the
interconnection subset I , one may search for (suitably defined) supply rates
s1, . . . , sk, for which the systems are dissipative and (3.54) holds. This point
of view is already (implicitly) present in classical papers on dissipative systems
such as Moylan & Hill [227], see also Moylan [225], and was recently empha-
sized and explored inMeissen, Lessard, Arcak&Packard [217], Arcak,Meissen,
Packard [11].



58 3 Dissipative Systems Theory

Furthermore, in Jokic&Nakic [151] the converse result is obtained stating that if
an interconnected linear system has an additive quadratic Lyapunov function (a
sum of terms only depending on the state variables of the subsystems) then there
exist interconnection neutral supply rates with respect to which the subsystems
are dissipative.

12. Section3.5 is an extended and simplified exposition of basic ideas developed
in Moylan & Anderson [226]. For related work on the inverse optimal control
problem and its applications to robust control design we refer to Sepulchre,
Jankovic & Kokotovic [312], and Freeman & Kokotovic [106].

13. The differential dissipation inequality (3.36) admits the following factorization
perspective. For concreteness, assume that f (0, 0) = 0, h(0, 0) = 0 as well as
s(0, 0) = 0. Then, under technical assumptions (see Chap.9), satisfaction of
(3.36) will imply that there exists a map h̄ : X × Rm → R p̄ such that

Sx (x) f (x, u) − s(u, h(x, u)) = −‖h̄(x, u)‖2 (3.76)

Equivalently, the system is conservative with respect to the new supply rate

s̄(u, y, ȳ) := s(u, y) − ‖ȳ‖2, (3.77)

involving, next to y, the new output ȳ = h̄(x, u). This factorization perspective
will be further discussed in the context of the passivity supply rate in Sect. 4.1,
and will be key in the developments on the L2-gain supply rate in Sect. 9.4.

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_9


Chapter 4
Passive State Space Systems

In this chapter we focus on passive systems as an outstanding subclass of dissipative
systems, firmly rooted in the mathematical modeling of physical systems.

4.1 Characterization of Passive State Space Systems

Recall from Chap.3 the definitions of (input and/or output strict) passivity of a state
space system, cf. Definition 3.1.4.

Definition 4.1.1 A state space system � with equal number of inputs and outputs

ẋ = f (x, u), x ∈ X , u ∈ U = Rm

y = h(x, u), y ∈ Y = Rm (4.1)

is passive if it is dissipative with respect to the supply rate s(u, y) = uT y. Further-
more, � is called cyclo-passive if the storage function is not necessarily satisfying
the nonnegativity condition. � is called lossless if it is conservative with respect to
s(u, y) = uT y. The system � is input strictly passive if there exists δ > 0 such that
� is dissipative with respect to s(u, y) = uT y − δ||u||2 (also called δ-input strictly
passive). � is output strictly passive if there exists ε > 0 such that � is dissipative
with respect to s(u, y) = uT y − ε||y||2 (ε-output strictly passive).
Also recall from Chap.3 that there is a minimal storage function Sa (the available
storage), andunder a reachability condition, a storage function Sr (the required supply
from x∗), which is maximal in the sense of (3.26); see also Corollary 3.1.21. The
storage function in the case of the passivity supply rate often has the interpretation
of a (generalized) energy function, and Sa(x) equals the maximal energy that can be
extracted from the system being in state x , while Sr (x) is the minimal energy that
is needed to bring the system toward state x , while starting from a ground state x∗.
© Springer International Publishing AG 2017
A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-49992-5_4
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In physical examples, the true physical energy usually will be “somewhere in the
middle” between Sa and Sr .

Assuming differentiability of the storage function (as will be done throughout
this section), passivity, respectively input or output strict passivity, can be character-
ized through the differential dissipation inequalities (3.36). These take a particularly
explicit form for systems which are affine in the input u (as often encountered in
applications), and given as

� f t
a : ẋ = f (x) + g(x)u

y = h(x) + j (x)u,
(4.2)

with g(x) an n×m matrix, and j (x) anm×m matrix. In case of the passivity supply
rate s(u, y) = uT y the differential dissipation inequality then takes the form

d

dt
S = Sx (x)[ f (x) + g(x)u] ≤ uT [h(x) + j (x)u], ∀x, u, (4.3)

where, as before, the notation Sx (x) stands for the row vector of partial derivatives
of the function S : X → R. Note that

Sx (x)[ f (x) + g(x)u] − uT [h(x) + j (x)u] =
1
2

[
1 uT

] [
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) −( j (x) + j T (x))

] [
1
u

]
(4.4)

while similar expressions are obtained in the case of the output and input strict
passivity supply rates.

This leads to the following characterizations.

Proposition 4.1.2 Consider the system �
f t
a given by (4.2). Then:

(i) �
f t
a is passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) −( j (x) + j T (x))

]
≤ 0 (4.5)

(ii) �
f t
a is ε-output strictly passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) + 2εhT (x)h(x) Sx (x)g(x)−hT (x) +kT (x)
gT (x)STx (x) − h(x) + k(x) �(x) − ( j (x) + j T (x))

]
≤ 0, (4.6)

where k(x) := 4εhT (x) j (x), �(x) := 2ε j (x) j T (x).
(iii) �

f t
a is δ-input strictly passive with C1 storage function S if and only if for all x

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) 2δ Im − ( j (x) + j T (x))

]
≤ 0 (4.7)

The proof of this proposition is based on the following basic lemma.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Lemma 4.1.3 Let R = RT be an m×m matrix, q an m-vector, and p a scalar. Then

uT Ru + 2uT q + p ≤ 0 , for all u ∈ Rm , (4.8)

if and only if [
p qT

q R

]
≤ 0 (4.9)

Proof (of Lemma 4.1.3) Obviously, the inequality (4.9) implies

uT Ru + 2uT q + p = [
1 uT

] [
p qT

q R

] [
1
u

]
≤ 0, ∀u ∈ Rm (4.10)

In order to prove1 the converse implication assume that

vT

[
p qT

q R

]
v > 0 (4.11)

for some (m + 1)-dimensional vector v. If the first component of v is different from

zero we can directly scale the vector v to a vector of the form

[
1
u

]
while still (4.11)

holds, leading to a contradiction. If the first component of v equals zero then we
can consider a small perturbation of v for which the first component of v is nonzero
while still (4.11) holds, and we use the previous argument. �

Proof (of Proposition 4.1.2) Write out the dissipation inequalities in the form
uT R(x)u + 2uT q(x) + p(x) ≤ 0, and apply Lemma 4.1.3 with R, q, p additionally
depending on x . �

Example 4.1.4 It follows from (4.7) that an input strictly passive system necessarily
has a nonzero feedthrough term j (x)u. An example is provided by a proportional–
integral (PI) controller

ẋc = uc
yc = kI xc + kPuc

(4.12)

with kP , kI ≥ 0 the proportional, respectively integral, control coefficients. This is
a kP -input strictly system with storage function is 1

2kI x
2
c , since

d

dt

1

2
kI x

2
c = uc yc − kPu

2
c (4.13)

A drastic simplification of the conditions for (output strict) passivity occurs for
systems without feedthrough term ( j (x) = 0) given as

1With thanks to Anders Rantzer for a useful conversation.
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�a : ẋ = f (x) + g(x)u
y = h(x)

(4.14)

Corollary 4.1.5 Consider the system �a given by (4.14). Then:
(i) �a is passive with C1 storage function S if and only if for all x

Sx (x) f (x) ≤ 0
Sx (x)g(x) = hT (x)

(4.15)

(ii) �a is ε-output strictly passive with C1 storage function S if and only if for all x

Sx (x) f (x) ≤ −εhT (x)h(x)
Sx (x)g(x) = hT (x)

(4.16)

(iii) �a is not δ-input strictly passive for any δ > 0.

Proof Use the well-known fact that

[
k qT

q 0m

]
≤ 0 (with 0m denoting the m × m zero

matrix) if and only if q = 0 and k ≤ 0. �

Remark 4.1.6 For a linear system

ẋ = Ax + Bu
y = Cx + Du

(4.17)

with quadratic storage function S(x) = 1
2 x

T Qx, Q = QT ≥ 0, the passivity
condition (4.5) amounts to the linear matrix inequality (LMI)

[
AT Q + QA QB − CT

BT Q − C −D − DT

]
≤ 0 (4.18)

Obvious extensions to input/output strict passivity are left to the reader. In case D = 0
(no feedthrough) the conditions (4.18) simplify to the LMI

AT Q + QA ≤ 0, BT Q = C (4.19)

The relation of these LMIs to frequency-domain conditions is known as theKalman–
Yakubovich–Popov Lemma; see the Notes at the end of this chapter for references.

The inequalities in Proposition 4.1.2 and Corollary 4.1.5, as well as the resulting
LMIs (4.18) and (4.19) in the linear system case, admit the following factoriza-
tion perspective. Given a matrix inequality P(x) ≤ 0, where P(x) is an k × k
symmetric matrix depending smoothly on x , we may always, by standard linear-
algebraic factorization for every constant x , construct an � × k matrix F(x) such
that P(x) = −FT (x)F(x), where � is equal to the maximal rank of P(x) (over x).
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Furthermore, by an application of the implicit function theorem, locally on a neigh-
borhood where the rank of P(x) is constant, this can be done in such a way that
F(x) is depending smoothly on x . Applied to (minus) the matrices appearing in
Proposition 4.1.2 and Corollary 4.1.5 this leads to the following result. For con-
creteness, focus on the inequality (4.5); similar statements hold for the other cases.
Inequality 4.5 holds if and only if

[
2Sx (x) f (x) Sx (x)g(x) − hT (x)

gT (x)STx (x) − h(x) −( j (x) + j T (x))

]
= −FT (x)F(x) ≤ 0 (4.20)

for a certain matrix
F(x) = [

φ(x) �(x)
]

(4.21)

with φ(x) an �-dimensional column vector, and ψ(x) an � × m matrix, with � the
(local) rank of the matrix in (4.5). Writing out (4.20) yields

2Sx (x) f (x) = −φT (x)φ(x)
Sx (x)g(x) − hT (x) = −φT (x)�(x)

j (x) + j T (x) = �T (x)�(x)
(4.22)

It follows that by defining the new, artificial, output equation

ȳ = φ(x) + �(x)u (4.23)

one obtains

Sx (x)[ f (x) + g(x)u] − uT [h(x) + j (x)u] = −1

2
‖ȳ‖2, (4.24)

and therefore
d

dt
S = uT y − 1

2
‖ȳ‖2. (4.25)

Hence, by factorization we have turned the dissipativity of the system �
f t
a with

respect to the passivity supply rate s(u, y) = uT y into the fact that� f t
a is conservative

with respect to the new supply rate

snew(u, y) = uT y − 1

2
‖ȳ‖2, (4.26)

defined in terms of the inputs u, outputs y, as well as the new outputs ȳ defined by
(4.23). The same can be done for the output and input strict passivity supply rates; in
fact, for any supply rate which is quadratic in u, y. Within the context of the L2-gain
supply rate this2 will be exploited in Chap.9; see especially Sect. 9.4.

2In fact, in Sect. 9.4 we will see how this can be extended to general systems �.

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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Let us briefly focus on the linear passive system case, corresponding to the LMIs
(4.18). As was already mentioned in Remark 3.1.22 for general supply rates, the
available storage Sa of a linear passive system (4.17) with D = 0 is given as 1

2 x
T Qax

where Qa is the minimal solution to the LMI (4.18), while the required supply is
1
2 x

T Qr x where Qr is the maximal solution to this same LMI.
Although in general (4.18) has a convex set of solutions Q ≥ 0, this set may

sometimes reduce to a unique solution; even for systemswith nonzero internal energy
dissipation. This is illustrated by the following simple physical example.

Example 4.1.7 Consider the ubiquitous mass–spring–damper system

[
q̇
ṗ

]
=

[
0 1

m−k − d
m

] [
q
p

]
+

[
0
1

]
u, u = force

y = [
0 1

m

] [
q
p

]
= velocity

(4.27)

with physical energy H(q, p) = 1
2m p2 + 1

2kq
2 (q extension of the linear spring

with spring constant k, p momentum of mass m), and internal energy dissipation
corresponding to a linear damper with damping coefficient d > 0. The LMI (4.19)
takes the form

[
0 −k
1
m − d

m

] [
q11 q12
q12 q22

]
+

[
q11 q12
q12 q22

] [
0 1

m−k − d
m

]
≤ 0

[
0 1

] [
q11 q12
q12 q22

]
= [

0 1
m

] (4.28)

The last equation yields q12 = 0 as well as q22 = 1
m . Substituted in the inequality

this yields the unique solution q11 = k, corresponding to the unique quadratic stor-
age function H(q, p), which is equal to Sa = Sr . The explanation for the perhaps
surprising equality of Sa and Sr in this case is the fact that the definitions of Sa and
Sr involve sup and inf (instead of max and min).

We note for later use that passivity of a static nonlinear map y = F(u), with
F : Rm → Rm , amounts to requiring that

uT F(u) ≥ 0, for all u ∈ Rm, (4.29)

which for m = 1 reduces to the condition that the graph of the function F is in the
first and third quadrant. This definition immediately extends to relations instead of
mappings.

Furthermore, passivity of the dynamical system � implies the following static
passivity property of the steady-state values of its inputs and outputs. Let � be an
input-state-output system in the general form (4.1). For any constant input ū consider
the existence of a steady-state x̄ , and corresponding steady-state output value ȳ,
satisfying

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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0 = f (x̄, ū), ȳ = h(x̄, ū) (4.30)

This defines the following relation between ū and ȳ, called the steady-state
input–output relation �ss corresponding to �:

�ss := {(ū, ȳ) | ∃x̄ s.t. (4.30) holds } (4.31)

In case of a cyclo-passive system (4.1) with storage function S satisfying d
dt S ≤ uT y

it follows that

0 = d

dt
S(x̄) ≤ ūT ȳ, for any (ū, ȳ) ∈ �ss, (4.32)

with the obvious interpretation that at its steady states every cyclo-passive system
necessarily dissipates energy.

Note that in general �ss need not be the graph of a mapping from ū to ȳ. For
example, �ss corresponding to the (multi-dimensional) nonlinear integrator

ẋ = u, y = ∂H

∂x
(x), x, u, y ∈ Rm (4.33)

(which is a cyclo-passive system with, possibly indefinite, storage function H ), is
given as

�ss =
{
(ū = 0, ȳ) | ∃x̄ s.t. ȳ = ∂H

∂x
(x̄)

}
(4.34)

This will be further explored within the context of port-Hamiltonian systems in
Chap.6, Sect. 6.5.

4.2 Stability and Stabilization of Passive Systems

Manyof the stability results as established inChap.3 for dissipative systems involving
additional conditions on the supply rate directly apply to the passivity supply rate. In
particular Propositions 3.2.7, 3.2.9 (see Remark 3.2.10) and Proposition 3.2.12 (see
Remark 3.2.14) hold for passive systems. Moreover, Propositions 3.2.15 and 3.2.19
apply to output strictly passive systems; see Remark 3.2.20.

Loosely speaking, equilibria of passive systems are typically stable, but not neces-
sarily asymptotically stable. On the other hand, there is no obvious relation between
passivity and stability of the input–output maps. This is already illustrated by the
simplest example of a passive (in fact, lossless) system; namely the integrator

ẋ = u, y = x, x, u, y ∈ R

Obviously, 0 is a stable equilibrium with Lyapunov function 1
2 x

2, while the input–
output mappings of this systemmap L2e(R) into L2e(R), but not L2(R) into L2(R).
The same applies to a nonlinear integrator, with output equation y = x replaced by

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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http://dx.doi.org/10.1007/978-3-319-49992-5_3
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y = Sx (x) for some nonnegative function S having its minimum at 0. The situation
becomes different by changing ẋ = u, y = x into ẋ = −x + u, y = x , leading to
a system with asymptotically stable equilibrium 0 and finite L2-gain input–output
map. On the other hand, the minor modification ẋ = −x3 + u displays 0 as an
asymptotically stable equilibrium, but does not define a mapping from L2(R) to
L2(R). To explain the differences, notice that of the three preceding examples only
ẋ = −x + u, y = x is output strictly passive. Indeed, output strict passivity implies
finite L2-gain, as formulated in the following state space version of Theorem 2.2.13.

Proposition 4.2.1 If � is ε-output strictly passive, then it has L2-gain ≤ 1
ε
.

Proof If � is ε-output strictly passive there exists S ≥ 0 such that for all t1 ≥ t0 and
all u

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

(uT (t)y(t) − ε||y(t)||2)dt (4.35)

Therefore

ε
∫ t1
t0

||y(t)||2)dt ≤ ∫ t1
t0
uT (t)y(t)dt − S(x(t1)) + S(x(t0)) ≤

∫ t1
t0

(uT (t)y(t) + 1
2 || 1√

ε
u(t) − √

εy(t)||2)dt − S(x(t1)) + S(x(t0)) =
∫ t1
t0

( 1
2ε ||u(t)||2 + ε

2 ||y(t)||2)dt − S(x(t1)) + S(x(t0)) ,

whence

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

(
1

2ε
||u(t ||2 − ε

2
||y(t)||2

)
dt , (4.36)

implying that � has L2-gain ≤ 1
ε
(with storage function 1

ε
S). �

Further implications of output strict passivity for the input–output stability will
be discussed in the context of L2-gain analysis of state space systems in Chap.8.

The importance of output strict passivity for asymptotic and input–output stability
directly motivates the consideration of the following simple class of feedbacks which
render a passive system output strictly passive. Indeed, consider a passive system �

as given in (4.1) with C1 storage function S, that is

d

dt
S ≤ uT y (4.37)

If the system is not output strictly passive, then an obvious way to render the system
output strictly passive is to apply a static output feedback

u = −dy + v, d > 0, (4.38)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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with v ∈ Rm the new input, and d a positive scalar.3 Then the closed-loop system
satisfies

d

dt
S ≤ vT y − d||y||2, (4.39)

and thus is d-output strictly passive, and has L2-gain ≤ 1
d (from v to y). Hence, we

obtain the following corollary of Propositions 3.2.16 and 3.2.19.

Corollary 4.2.2 Consider the passive system � with storage function S satis-
fying S(0) = 0. Assume that S is positive definite at 0 and that the system
ẋ = f (x, 0), y = h(x, 0), is zero-state detectable. Alternatively, assume 0 is an
asymptotically stable equilibrium of ẋ = f (x, 0) conditionally to {x | h(x, 0) = 0}.
In both cases the feedback u = −dy, d > 0, asymptotically stabilizes the system
around the equilibrium 0.

Finally, we remark that in certain cases the verification of the property of zero-state
detectability or asymptotic stability conditionally to y = h(x, 0) = 0 can be reduced
to the verification of the same property for a lower-dimensional system. Consider as
a typical case the feedback interconnection of �1 and �2 as in Fig. 1.1 with e2 = 0
(see Fig. 4.1 later on). Suppose that �1 satisfies the property

y1(t) = 0, t ≥ 0 ⇒ x1(t) = 0, t ≥ 0 and u1(t) = 0, t ≥ 0 (4.40)

(This is a strong zero-state observability property.) Now, let y1(t) = 0, t ≥ 0, and
e1(t) = 0, t ≥ 0. Then u2(t) = 0, t ≥ 0, and by (4.40), y2(t) = 0, t ≥ 0.
Hence, checking zero-state detectability or asymptotic stability conditionally to
y1 = h1(x1) = 0 for the closed-loop system is the same as checking the same
property for �2. Summarizing, we have obtained the following.

Proposition 4.2.3 Consider the closed-loop system �1‖ f �2 with e2 = 0, having
input e1 and output y1. Suppose that �1 satisfies property (4.40). Then the closed-
loop system is zero-state detectable, respectively asymptotically stable conditionally
to y1 = 0, if and only if �2 is zero-state detectable, respectively, asymptotically
stable conditionally to y2 = 0.

Example 4.2.4 (Euler’s equations) Euler’s equations of the dynamics of the angular
velocities of a fully actuated rigid body, spinning around its center of mass (in the
absence of gravity), are given by

I ω̇ = −S(ω)Iω + u (4.41)

Here I is the positive diagonal inertia matrix, ω = (ω1,ω2,ω3)
T is the vector of

angular velocities in body coordinates, u = (u1, u2, u3)T is the vector of inputs,
while the skew-symmetric matrix S(ω) is given as

3This can be extended to u = −Dy + v, with D a matrix satisfying D + DT > 0.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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S(ω) =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ (4.42)

Since d
dt

1
2ω

T Iω = uTω it follows that the system (4.41) with output y = ω is passive
(in fact, lossless). Stabilization to ω = 0 is achieved by output feedback u = −Dy
for any positive matrix D. In Sect. 7.1 we will see how this can be extended to the
underactuated case by making use of the underlying Hamiltonian structure of (4.41).

Example 4.2.5 (Rigid body kinematics) The dynamics of the orientation of a rigid
body around its center of mass is described as

Ṙ = RS(ω) (4.43)

where R ∈ SO(3) is an orthonormal rotation matrix describing the orientation of
the body with respect to an inertial frame, ω = (ω1,ω2,ω3)

T is the vector of angular
velocities as in the previous example, and S(ω) is given by (4.42). The rotationmatrix
R ∈ SO(3) can be parameterized by a rotation ϕ around a unit vector k as follows:

R = I3 + sinϕ S(k) + (1 − cosϕ)S2(k) (4.44)

The Euler parameters (ε, η) corresponding to R are now defined as

ε = sin
(ϕ

2

)
k, η = cos

(ϕ

2

)
, (4.45)

and satisfy
εT ε + η2 = 1 (4.46)

It follows that
R = (η2 − εT ε)I3 + 2εεT + 2ηS(ε), (4.47)

and thus R can be represented as an element (ε, η) of the three-dimensional unit
sphere S3 in R4. Note that (ε, η) and (−ε,−η) correspond to the same matrix R.
In particular, (0, 1) and (0,−1) both correspond to R = I3. Thus the unit sphere
S3 defines a double covering of the matrix group SO(3). In this representation the
dynamics (4.43) is given as

[
ε̇
η̇

]
= 1

2

[
η I3 + S(ε)

−εT

]
ω, (4.48)

evolving on S3 inR4. Define the function V : S3 → R as

V (ε, η) = εT ε + (1 − η)2, (4.49)

which by (4.46) is equal to V (ε, η) = 2(1−η). Differentiating V along (4.48) yields

http://dx.doi.org/10.1007/978-3-319-49992-5_7
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Fig. 4.1 Standard feedback
configuration �1‖ f �2

+

− Σ1
e1 u1 y1

Σ2
y2 u2 e2+

+

d

dt
V = ωT ε (4.50)

Hence the dynamics (4.48), with inputs ω and outputs ε, is passive (in fact, lossless)
with storage function4 V . As a consequence, the feedback control ω = −ε will
asymptotically stabilize the system (4.48) toward (0,±1), that is, R = I3. In Chap.7
we will see how Examples 4.2.4 and 4.2.5 can be combined for the control of the
total dynamics of the rigid body described by (4.43), (4.41) with inputs u.

4.3 The Passivity Theorems Revisited

The state space version of the passivity theorems as derived for passive input–output
maps in Chap.2, see in particular Theorem 2.2.11, follows the lines of the general
theory of interconnection of dissipative systems as treated in Chap.3, Sect. 3.3. Let
us consider the standard feedback closed-loop system �1‖ f �2 of Fig. 4.1, which is
the same as Fig. 1.1 with the input–output maps G1 and G2 replaced by the state
space systems

�i : ẋi = fi (xi , ui ) , xi ∈ Xi , ui ∈ Ui

yi = hi (xi , ui ) , yi ∈ Yi
i = 1, 2, (4.51)

with U1 = Y2, U2 = Y1. Suppose that both �1 and �2 in (4.51) (with U1 =
U2 = Y1 = Y2) are passive or output strictly passive, with storage functions S1(x1),
respectively S2(x2), i.e.,

S1(x1(t1))≤ S1(x1(t0)) + ∫ t1
t0

(uT
1 (t)y1(t) − ε1||y1(t)||2)dt

S2(x2(t1))≤ S2(x2(t0)) + ∫ t1
t0

(uT
2 (t)y2(t) − ε2||y2(t)||2)dt,

(4.52)

with ε1 > 0, ε2 > 0 in case of output strict passivity, and ε1 = ε2 = 0 in case
of mere passivity. Substituting the standard feedback interconnection equations (see
(1.30))

4Note that this storage function does not have an interpretation in terms of physical energy.
It is instead a function that is directly related to the geometry of the dynamics (4.48) on S3,
integrating ω.
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u1 = e1 − y2,
u2 = e2 + y1,

(4.53)

the addition of the two inequalities (4.52) results in

S1(x1(t1)) + S2(x2(t1)) ≤ S1(x1(t0)) + S2(x2(t0))+∫ t1
t0

(eT1 (t)y1(t) + eT2 (t)y2(t) − ε1||y1(t)||2 − ε2||y2(t)||2) dt
≤ S1(x1(t0)) + S2(x2(t0))+∫ t1

t0
(eT1 (t)y1(t) + eT2 (t)y2(t) − ε[||y1(t)||2 + ||y2(t)||2]) dt

(4.54)

with ε = min(ε1, ε2). Hence the closed-loop system with inputs (e1, e2) and outputs
(y1, y2) is output strictly passive if ε > 0, respectively, passive if ε = 0, with storage
function

S(x1, x2) = S1(x1) + S2(x2) , (x1, x2) ∈ X1 × X2 (4.55)

Using Lemmas 3.2.9 and 3.2.16 we arrive at the following proposition, which can
be regarded as the state space version of Theorems 2.2.6 and 2.2.11.

Proposition 4.3.1 (Passivity theorem) Assume that for every pair of allowed exter-
nal input functions e1(·), e2(·) there exist allowed input functions u1(·), u2(·) of the
closed-loop system �1‖ f �2.
(i) Suppose �1 and �2 are passive or output strictly passive. Then �1‖ f �2 with
inputs (e1, e2) and outputs (y1, y2) is passive, and output strictly passive if both �1

and �2 are output strictly passive.
(ii) Suppose �1 is passive and �2 is input strictly passive, or �1 is output strictly
passive and �2 is passive, then �1‖ f �2 with e2 = 0 and input e1 and output y1 is
output strictly passive.
(iii) Suppose that S1, S2 satisfying (4.52) are C1 and have strict local minima at x∗

1 ,
respectively x∗

2 . Then (x∗
1 , x

∗
2 ) is a stable equilibrium of �1‖ f �2 with e1 = e2 = 0.

(iv) Suppose that �1 and �2 are output strictly passive and zero-state detectable,
and that S1, S2 satisfying (4.52) are C1 and have strict local minima at x∗

1 = 0,
respectively x∗

2 = 0. Then (0, 0) is an asymptotically stable equilibrium of �
f
�1,�2

with e1 = e2 = 0. If additionally S1, S2 have global minima at x∗
1 = 0, respectively

x∗
2 = 0, and are proper, then (0, 0) is a globally asymptotically stable equilibrium.

Proof (i) has been proved above, cf. (4.54), while (ii) follows similarly. (iii) results
from application of Lemma 3.2.9 to�1‖ f �2 with inputs (e1, e2) and outputs (y1, y2).
(iv) follows from Proposition 3.2.16 applied to �1‖ f �2. �

Remark 4.3.2 The standard negative feedback interconnection u1 = −y2 + e1,
u2 = y1 for e2 = 0 has the following alternative interpretation. It can be also
regarded as the series interconnection u2 = y1 of �1 and �2, together with the addi-
tional negative unit feedback loop u1 = −y2 + e1. This interpretation will be used
in Chap.5, Theorem 5.2.1.
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Remark 4.3.3 Note the inherent robustness property expressed in Proposition 4.3.1:
the statements continue to hold for perturbed systems �1 and �2, as long as they
remain (output strictly) passive and their storage functions satisfy the required prop-
erties.

Remark 4.3.4 As in Lemma 3.2.12 the strict positivity of S1 and S2 outside
x∗
1 = 0, x∗

2 = 0 can be ensured by zero-state observability of �1 and �2.
In case S1(x1) − S1(x∗

1 ) and/or S2(x2) − S2(x∗
2 ) are not positive definite but only

positive semidefinite at x∗
1 , respectively x∗

2 , then Proposition 4.3.1 can be refined as
in Theorem 3.2.19. We leave the details to the reader; see also [312].

In Theorem 2.2.18, see also Remark 2.2.19, we have seen how “lack of passivity”
of one of the output maps G1,G2 can be compensated by “surplus of passivity” of
the other. The argument generalizes to the state space setting as follows.

Corollary 4.3.5 Suppose the systems �i , i = 1, 2, are dissipative with respect to
the supply rates

si (ui , yi ) = uT
i yi − εi‖yi‖2 − δi‖ui‖2, i = 1, 2, (4.56)

where the constants εi , δi , i = 1, 2, satisfy

ε1 + δ2 > 0, ε2 + δ1 > 0 (4.57)

Then the standard feedback interconnection �1‖ f �2 has finite L2-gain from inputs
e1, e2 to outputs y1, y2.

Proof Since �i is dissipative with respect to the supply rates si we have

Ṡi ≤ uT
i yi − εi‖yi‖2 − δi‖ui‖2, i = 1, 2 (4.58)

for certain storage functions Si , i = 1, 2 (assumed to be differentiable; otherwise
use the integral version of the dissipation inequalities). Substitution of u1 = e1 − y2,
u2 = e2 + y1 into the sum of these two inequalities yields

Ṡ1 + Ṡ2 ≤ eT1 y1 + eT2 y2−ε1‖y1‖2 − δ1‖e1 − y2‖2 − ε2‖y2‖2 − δ2‖e2 + y1‖2 (4.59)

which, multiplying both sides by −1, can be rearranged as

−δ1‖e1‖2 − δ2‖e2‖2 − Ṡ1 − Ṡ2 ≥
(ε1 + δ2)‖y1‖2 + (ε2 + δ1)‖y2‖2 − 2δ1eT1 y2 − 2δ2eT2 y1 − eT1 y1 − eT2 y2

(4.60)

Then, completely similar to the proof of Theorem2.2.18, by the positivity assumption
on α2

1 := ε1 + δ2,α
2
2 := ε2 + δ1 we can perform “completion of the squares” on the

right-hand side of the inequality (4.60), to obtain an expression of the form

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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‖
[
α1y1
α2y2

]
− A

[
e1
e2

]
‖2 ≤ c2‖

[
e1
e2

]
‖2 − Ṡ1 − Ṡ2, (4.61)

for a certain 2×2matrix A and constant c. In combinationwith the triangle inequality
(2.29) this gives the desired result. �

This corollary is illustrated by the following example, which contains a further
interesting extension.

Example 4.3.6 (Lur’e functions) Consider an input-state-output system

�1 : ẋ1 = f (x1, u1)
y1 = h(x1)

u1, y1 ∈ R, (4.62)

and a system �2 given by a static nonlinearity

�2 : y2 = F(u2), u2, y2 ∈ R, (4.63)

interconnected by negative feedback u1 = −y2, u2 = y1.
Suppose the static nonlinearity F is passive in the sense of (4.29), that is,

uF(u) ≥ 0 for all u ∈ R (its graph is in the first and third quadrant). Obviously,
if �1 is passive with C1 storage function S1(x1), then by a direct application of the
passivity theorem (Proposition 4.3.1) the closed-loop system satisfies Ṡ1 ≤ 0.

Now suppose that�1 is not passive, but only dissipative with respect to the supply
rate

s1(u1, y1) = u1y1 + u21
k

, (4.64)

for some k > 0, having C1 storage function S1. On the other hand, suppose that F
is 1

k -output strictly passive; that is, dissipative with respect to the supply rate

s2(u2, y2) = u2y2 − y22
k

(4.65)

for the same k as above. Then by application ofCorollary 4.3.5 the closed-loop system
satisfies Ṡ1 ≤ 0. Note that dissipativity of F with respect to s2 can be equivalently
expressed by the sector condition

0 ≤ F(u2)

u2
≤ k (4.66)

The story can be continued as follows. Suppose that�1 is not dissipative with respect
to s1, but that instead �1α, defined as

�1α : ẋ1 = f (x1, u1)
ŷ1 := y1 + α ẏ1 = h(x1) + α dh

dx1
(x1) f1(x1, u1)

(4.67)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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is dissipative with respect to s1 for some α > 0. Suppose as above that the static
nonlinearity F satisfies (4.66) (and thus is output strictly passive). Then consider
instead of the static nonlinearity �2 defined by F the dynamical system

�2α : αẋ2 = −x2 + u2, x2 ∈ R
y2 = F(x2)

(4.68)

It readily follows that �2α is dissipative with respect to s2, with storage function

S2(x2) := α

∫ x2

0
F(σ)dσ ≥ 0 (4.69)

Indeed, by (4.66)

Ṡ2 = αF(x2)ẋ2 = F(x2)(−x2 + u2) ≤ u2F(x2) − F2(x2)

k

Hence, (again by Corollary 4.3.5) the closed-loop system of �1α and �2α satisfies
Ṡ1 + Ṡ2 ≤ 0. Finally note that

αẋ2 + x2 = u2 = y1 + α ẏ1,

and thus α(ẋ2 − ẏ1) = −(x2 − y1), implying that the level set x2 = h(x1) is an
(attractive) invariant set. Hence, we can restrict the closed-loop system to the level
set x2 = h(x1), where the system has total storage function

S(x1) := S1(x1) + α

∫ h1(x1)

0
F(σ)dσ

satisfying Ṡ ≤ 0. In case of a linear system �1 with quadratic storage function S1
the obtained function S is called a Lur’e function. Depending on the properties of
S, we may derive stability, and under strengthened conditions, (global) asymptotic
stability, for �1 with the static nonlinearity F in the negative feedback loop. This
yields the Popov criterion; see the references in the Notes at the end of Chap. 2.

Example 4.3.7 Consider the system

ẋ = f (x) + g1(x)u1 + g2(x)u2, u1 ∈ Rm1 , u2 ∈ Rm2

y1 = h1(x), y1 ∈ Rm1

y2 = h2(x), y2 ∈ Rm2

(4.70)

which is passive with respect to the inputs u1, u2 and outputs y1, y2, with storage
function S(x). Consider the static nonlinearity

⊥ := {(v, z) ∈ Rm2 × Rm2 | v ≥ 0, z ≥ 0, vT z = 0}, (4.71)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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where v ≥ 0, z ≥ 0 means that all elements of v, z are nonnegative. Clearly this is a
passive static system. Interconnect ⊥ to the system by setting u2 = −z, y2 = v. The
resulting system satisfies

d

dt
S ≤ uT

1 y1, (4.72)

and thus defines a passive system (although not of a standard input-state-output type).
This type of systems occurs, e.g., in electrical circuits with ideal diodes; see theNotes
at the end of this chapter.

The passivity theorems given so far are one-way: the feedback interconnection of two
passive systems is again passive. As we will now see, the converse also holds: if the
feedback interconnection of two systems is passive then necessarily these systems
are passive. This will be shown to have immediate consequences for the set of storage
functions of the interconnected system, which always contains an additive one.

Proposition 4.3.8 (Converse passivity theorem) Consider �i with state spaces
X1, i = 1, 2, and with allowed input functions u1(·), u2(·), in standard feedback
configuration u1 = e1 − y2, u2 = e2 + y2. Assume that for every pair of allowed
external input functions e1(·), e2(·) there exist allowed input functions u1(·), u2(·) of
the closed-loop system �1‖ f �2. Conversely, assume that for all allowed input func-
tions u1(·), u2(·) there exist allowed external input functions e1(·), e2(·) satisfying at
any time-instant u1 = e1 − y2, u2 = e2 + y2. Then �1‖ f �2 with inputs e1, e2 and
outputs y1, y2 is passive if and only if both �1 and �2 are passive. Furthermore, the
available storage Sa and required supply Sr of �1‖ f �2 (assuming �i is reachable
from some x∗

i , i = 1, 2) are additive, that is

Sa(x1, x2) = Sa1(x1) + Sa2(x2)
Sr (x1, x2) = Sr1(x1) + Sr2(x2)

(4.73)

with Sai , Sri denoting the available storage, respectively required supply, of �i ,

i = 1, 2.

Proof The “if” part is Proposition 4.3.1. For the converse statement we note that
�1‖ f �2 is passive if and only

Sa(x1, x2) :=
sup

e1(·), e2(·), T≥0
− ∫ T

0

(
eT1 (t)y1(t) + eT2 (t)y2(t)

)
dt < ∞ (4.74)

for all (x1, x2) ∈ X . Substituting the “inverse” interconnection equations e1 = u1+y2
and e2 = u2 − y1 this is equivalent to

sup
e1(·), e2(·), T≥0

−
∫ T

0

(
uT
1 (t)y1(t) + uT

2 (t)y2(t)
)
dt < ∞ (4.75)
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for all (x1, x2). Using the assumption that for all allowed u1(·), u2(·) there exist
allowed external input functions e1(·), e2(·) this is equal to

sup
u1(·), u2(·), T≥0

− ∫ T
0

(
uT
1 (t)y1(t) + uT

2 (t)y2(t)
) =

sup
u1(·), T≥0

− ∫ T
0 uT

1 (t)y1(t)dt + sup
u2(·), T≥0

− ∫ T
0 uT

2 (t)y2(t)dt < ∞

for all (x1, x2). Hence �1‖ f �2 is passive iff �1 and �2 are passive, in which case
Sa(x1, x2) = Sa1(x1) + Sa2(x2). The same reasoning leads to the second equality of
(4.73). �

A similar statement, for any storage function of �1‖ f �2, can be obtained from
the differential dissipation inequality as follows.

Proposition 4.3.9 Consider�i , i = 1, 2, of the form (4.14) with equilibria x∗
i ∈ Xi

satisfying fi (x∗
i ) = 0, i = 1, 2. Assume that �1‖ f �2 is passive (lossless) with C1

storage function S(x1, x2). Then also�i , i = 1, 2, are passive (lossless) with storage
functions S1(x1) := S(x1, x∗

2 ), S2(x2) := S(x∗
1 , x2).

Proof We will only prove the passive case; the same arguments apply to the lossless
case. �1‖ f �2 being passive is equivalent to the existence of S : X1 × X2 → R

+
satisfying

Sx1(x1, x2) [ f1(x1) − g1(x1)h2(x2)]
+Sx2(x1, x2) [ f2(x2) + g2(x2)h1(x1)] ≤ 0
Sx1(x1, x2)g1(x1) = hT

1 (x1)
Sx2(x1, x2)g2(x2) = hT

2 (x2)

(4.76)

This results in

Sx1(x1, x2) f1(x1) − Sx1(x1, x2)g1(x1)︸ ︷︷ ︸
=hT1 (x1)

h2(x2)

+ Sx2(x1, x2) f2(x2) + Sx2(x1, x2)g2(x2)︸ ︷︷ ︸
=hT2 (x2)

h1(x1)

= Sx1(x1, x2) f1(x1) + Sx2(x1, x2) f2(x2) ≤ 0

(4.77)

For x2 = x∗
2 , (4.77) amounts to

Sx1(x1, x
∗
2 ) f1(x1) + Sx2(x1, x

∗
2 ) f2(x

∗
2 )= Sx1(x1, x

∗
2 ) f1(x1) = S1x1(x1) f1(x1) ≤ 0

(4.78)

since f2(x∗
2 ) = 0. Furthermore, the second line of (4.76) becomes

S1x1(x1)g1(x1) = Sx1(x1, x
∗
2 )g1(x1) = hT

1 (x1) (4.79)

Hence, S1(x1) is a storage function for �1. In the same way S2(x2) is a storage
function for �2. �
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An important consequence of Propositions 4.3.8 and 4.3.9 is the fact that among the
storage functions of the passive system �1‖ f �2 there always exist additive storage
functions S(x1, x2) = S1(x1) + S2(x2). In fact, the available storage and required
supply functions are additive by Proposition 4.3.8, while by Proposition 4.3.9 an
arbitrary storage function S(x1, x2) for �1‖ f �2 can be replaced by the additive
storage function S(x1, x∗

2 ) + S(x∗
1 , x2).

4.4 Network Interconnection of Passive Systems

In many complex network systems—from mass–spring–damper systems, electrical
circuits, communication networks, chemical reaction networks, and transportation
networks to power networks—the passivity of the overall network system naturally
arises from the properties of the network interconnection structure and the passivity
of the subsystems. In this section this will be illustrated by three different scenarios
of network interconnection of passive systems.

The interconnection structure of a network system can be advantageously encoded
by a directed graph. Recall the following standard notions and facts from (algebraic)
graph theory; see [48, 114] and the Notes at the end of the chapter for further
information. A graph G, is defined by a set V of N vertices (nodes) and a set E of
M edges (links, branches), where E is identified with a set of unordered pairs {i, j}
of vertices i, j ∈ V . We allow for multiple edges between vertices, but not for self-
loops {i, i}. By endowing the edges with an orientation, turning the unordered pairs
{i, j} into ordered pairs (i, j), we obtain a directed graph. In the following “graph”
will throughout mean “directed graph.” A directed graph with N vertices and M
edges is specified by its N × M incidence matrix, denoted by D. Every column of D
corresponds to an edge of the graph, and contains one −1 at the row corresponding
to its tail vertex and one +1 at the row corresponding to its head vertex, while all
other elements are 0. In particular, 1T D = 0 where 1 is the vector of all ones.
Furthermore, ker DT = span 1 if and only if the graph is connected (any vertex can
be reached from any other vertex by a sequence of—undirected—edges). In general,
the dimension of ker DT is equal to the number of connected components of the
graph. A directed graph is strongly connected if any vertex can be reached from any
other vertex by a sequence of directed edges.

The first case of network interconnection of passive systems concerns the inter-
connection of passive systems which are partly associated to the vertices, and partly
to the edges of an underlying graph. As illustrated later on, this is a common case in
many physical networks. Thus to each i-th vertex there corresponds a passive system
with scalar inputs and outputs (see Remark 4.4.2 for generalizations)

ẋv
i = f v

i (xv
i , u

v
i ), xv

i ∈ X v
i , uv

i ∈ R
yv
i = hv

i (x
v
i , u

v
i ), yv

i ∈ R
(4.80)
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with storage function Sv
i , i = 1, . . . , N , and to each j-th edge (branch) there corre-

sponds a passive single-input single-output system

ẋ bi = f bi (xbi , u
b
i ), xbi ∈ X b

i , ubi ∈ R

ybi = hbi (x
b
i , u

b
i ), ybi ∈ R

(4.81)

with storage function Sbi , i = 1, . . . , M . Collecting the scalar inputs and outputs into
vectors

uv = [
uv
1, . . . , u

v
N

]T
, yv = [

yv
1 , . . . , y

v
N

]T
ub = [

ub1, . . . , u
b
M

]T
, yb = [

yb1 , . . . , y
b
M

]T (4.82)

these passive systems are interconnected to each other by the interconnection equa-
tions

uv = −Dyb + ev

ub = DT yv + eb
(4.83)

where ev ∈ RN and eb ∈ RM are external inputs. Since the interconnection (4.83)
satisfies

(uv)T yv + (ub)T yb = (ev)T yv + (eb)T yb

the following result directly follows.

Proposition 4.4.1 Consider a graph with incidence matrix D, with passive systems
(4.80) with storage functions Sv

i associated to the vertices and passive systems (4.81)
with storage functions Sbi associated to the edges, interconnected by (4.83). Then the
interconnected system is again passive with inputs ev, eb and outputs yv, yb, with
total storage function

Sv
1 (x

v
1 ) + · · · + Sv

N (xv
N ) + Sb1 (x

b
1 ) + · · · + Sb1 (x

b
M) (4.84)

Remark 4.4.2 The setup can be generalized to multi-input multi-output systems
with uv

i , y
v
i , u

b
j , y

b
j all in Rm by replacing the incidence matrix D in the above by

the Kronecker product D ⊗ Im and DT by DT ⊗ Im , with Im denoting the m × m
identity matrix.

Remark 4.4.3 Proposition 4.4.1 continues to hold in cases where some of the edges
or vertices correspond to static passive systems. Simply define the total storage
function as the sum of the storage functions of the dynamic passive systems.

Example 4.4.4 (Power networks) Consider a power system of synchronous
machines, interconnected by a network of purely inductive transmission lines. Mod-
eling the synchronous machines by swing equations, and assuming that all voltage
and current signals are sinusoidal of the same frequency and all voltages have con-
stant amplitude one arrives at the following model. Associated to the N vertices each
i-th synchronous machine is described by the passive system
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ṗi = −Aiωi + uv
i

yv
i = ωi

(4.85)

where ωi is the frequency deviation from nominal frequency (e.g., 50 Hz), pi = Jiωi

is themomentumdeviation (with Ji related to the inertia of the synchronousmachine),
Ai the damping constant, and uv

i is the incoming power, i = 1, . . . , N . Furthermore,
denoting the phase differences across the j-th line by q j , the dynamics of the j-th
line (associated to the j-th edge of the graph) is given by the passive system

q̇ j = ubj
ybj = γ j sin q j

(4.86)

with the constant γ j determined by the susceptance of the line and the voltage ampli-
tude at the adjacent vertices, j = 1, . . . , M . Here ybj equals the (average or active)
power through the line. Denoting p = (p1, . . . , pN )T , ω = (ω1, . . . ,ωN )T , and
q = (q1, . . . , qM)T , the final system resulting from the interconnection (4.83) is
given as [

q̇
ṗ

]
=

[
0 DT

−D −A

] [
�Sin q

ω

]
+

[
0
u

]
, p = Jω

y = ω,

(4.87)

with A and J denoting diagonal matrices with elements Ai , Ji , i = 1, . . . , N , and �

the diagonalmatrixwith elements γ j , j = 1, . . . , M . Furthermore Sin : RM → RM

denotes the element-wise sinus function, i.e., Sin q = (sin q1, . . . , sin qM). Finally,
the input u denotes the vector of generated/consumed power and the output y the
vector of frequency deviations, both associated to the vertices. The final system (4.87)
is a passive system with additive storage function

H(q, p) := 1

2
pT J−1 p −

M∑
j=1

γ j cos q j (4.88)

Example 4.4.5 (Mass-spring systems) Consider N masses moving in one-
dimensional space interconnected by M springs. Associate the masses to the ver-
tices of a graph with incidence matrix D, and the springs to the edges. Furthermore,
let p1, . . . , pN be the momenta of the masses, and q1, . . . , qM the extensions of the
springs. Then the equations of motion of the total system are given as

[
ṗ
q̇

]
=

[
0 −D
DT 0

] [
∂K
∂ p (p)
∂P
∂q (q)

]
+

[
ev

eb

]
, (4.89)

where p = (p1, . . . , pN )T and q = (q1, . . . , qM)T , and where K (p) = ∑ 1
2mi

p2i
is the total kinetic energy of the masses, and P(q) the total potential energy of the
springs. This defines a passive systemwith inputs ev, eb (external forces, respectively,
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external velocity flows) and outputs ∂K
∂ p (p), ∂P

∂q (q) (velocities, respectively, spring
forces), and additive storage function K (p) + P(q).

Similar to Remark 4.4.2 this can be generalized to a mass-spring system in R3,
by considering pi , q j ∈ R3, and replacing the incidence matrix D by the Kronecker
product D ⊗ I3 and DT by DT ⊗ I3. Furthermore, by Remark 4.4.3 the setup can be
extended tomass–spring–damper systems, inwhich case part of the edges correspond
to dampers.

In Chap.6 we will see how Examples 4.4.4 and 4.4.5 actually define passive
port-Hamiltonian systems.

A second case of network interconnection of passive systems is that of a multi-
agent system, where the input of each passive agent system depends on the outputs
of the other systems and of itself. Thus consider N passive systems �i associated to
the vertices of a graph, given by

ẋi = fi (xi , ui ), xi ∈ Xi , ui ∈ R
yi = hi (xi , ui ), yi ∈ R

(4.90)

with storage functions Si , i = 1, . . . , N . Collecting the inputs into the vector u =
(u1, . . . , uN )T and the outputs into y = (y1, . . . , yN )T we consider interconnection
equations

u = −Ly + e (4.91)

where e is a vector of external inputs, and L is a Laplacian matrix, defined as follows.

Definition 4.4.6 A Laplacian matrix of a graph with N vertices is defined as an
N × N matrix L with positive diagonal elements, and non-positive off-diagonal
elements, with either the row sums of L equal to zero (a communication Laplacian
matrix) or the column sums equal to zero (flow Laplacian matrix). If both the row
and sums are zero then L is called a balanced Laplacian matrix.

This means that any communication Laplacian Lc satisfies Lc1 = 0, and can be
written as Lc = −KcDT for an incidence matrix D of the communication graph,
and amatrix Kc of nonnegative elements. In fact, the nonzero elements of the i-th row
of Kc are the weights of the edges incoming to vertex i . Dually, any flow Laplacian
L f satisfies 1T L f = 0, and can be written as L f = −DK f for a certain incidence
matrix, and a matrix K f of nonnegative elements. The nonzero elements of the i-th
column of K f are the weights of the edges originating from vertex i .

A communication Laplacian matrix Lc, respectively flow Laplacian matrix L f is
balanced if and only [70]

Lc + LT
c ≥ 0, respectively, L f + LT

f ≥ 0 (4.92)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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Remark 4.4.7 A special case of a balanced Laplacianmatrix is a symmetric balanced
Laplacian matrix L , which can be written as L = DK DT , where D is the incidence
matrix and K is an M × M diagonal matrix of positive weights corresponding to the
M edges of the graph.

Remark 4.4.8 The interconnection (4.91) with L a communication Laplacianmatrix
corresponds to feeding back the differences of the output values

ui = −
∑
k

aik(yi − yk), i = 1, . . . , N , (4.93)

where the summation index k is running over all vertices that are connected to the i-th
vertex by an edge directed toward i , and aik is the positive weight of this edge. On the
other hand, the interconnection (4.91) with L a flow Laplacian matrix corresponds
to an output feedback satisfying 1T u = 0, corresponding to a distribution of the
material flow through the network. This occurs for transportation and distribution
networks, including chemical reaction networks.

Proposition 4.4.9 Consider the passive systems (4.90) interconnected by (4.91),
where L is a balanced Laplacian matrix. Then the interconnected system is passive
with additive storage function S1(x1) + · · · + SN (xN ).

Proof Follows from the fact that by (4.92)

uT y = −(Ly + e)T y = −1

2
yT (L + LT )y + eT y ≤ eT y �

Proposition 4.4.9 can be generalized to flow and communication Laplacian matrices
that are not balanced by additionally assuming that the connected components of
the underlying graph are strongly connected5 In fact, under this assumption, any
flow or communication Laplacian matrix can be transformed into a balanced one.
Furthermore, this can be done in a constructive way by employing a general form of
Kirchhoff’s Matrix Tree theorem, which for our purposes can be described as follows
(see the Notes at the end of this chapter).

Let L be a flow Laplacian matrix, and assume for simplicity that the graph is
connected, implying that dim ker L = 1. Denote the (i, j)-th cofactor of L by
Ci j = (−1)i+ j Mi, j , where Mi, j is the determinant of the (i, j)-th minor of L , which
is the matrix obtained from L by deleting its i-th row and j-th column. Define the
adjoint matrix adj(L) as the matrix with (i, j)-th element given by C ji . It is well
known that

L · adj(L) = (det L)IN = 0 (4.94)

5In fact, balancedness of a communication or flow Laplacian matrix implies that all connected
components are strongly connected; cf. [70].
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Furthermore, since 1T L = 0 the sum of the rows of L is zero, and hence by the
properties of the determinant function the quantitiesCi j do not depend on i , implying
thatCi j = γ j , i = 1, . . . , N . Hence, by definingγ := (γ1, . . . , γN )T , it follows from
(4.94) that Lγ = 0. Moreover, γi is equal to the sum of the products of weights of
all the spanning trees of G directed toward vertex i . In particular, it follows that
γ j ≥ 0, j = 1, . . . , N . In fact, γ �= 0 if and only if G has a spanning tree. Since for
every vertex i there exists at least one spanning tree directed toward i if and only if
the graph is strongly connected, we conclude that γ ∈ R

N+ if and only if the graph is
strongly connected.

In case the graph G is not connected the same analysis can be performed on each
of its connected components. Hence, if all connected components of G are strongly
connected, Kirchhoff’s matrix tree theorem provides us with a vector γ ∈ R

N+ such
that Lγ = 0. It immediately follows that the transformed matrix L�, where � is the
positive N × N -dimensional diagonal matrix with diagonal elements γ1, . . . , γN , is
a balanced Laplacian matrix.

Dually, if L is a communication Laplacian matrix and the connected components
of the graph are strongly connected, then there exist a positive N×N diagonal matrix
� such that �L is balanced. Summarizing, we obtain the following.

Proposition 4.4.10 Consider a flow Laplacian matrix L f (communication Lapla-
cian matrix Lc). Then there exists a positive diagonal matrix � f (�c) such that
L f � f (�cLc) is balanced if and only if the connected components of the graph are
all strongly connected.

This has the following consequence for the passivity of the interconnection of passive
systems �i , i = 1, . . . , N , under the interconnection (4.91).

Proposition 4.4.11 Consider passive systems �1, . . . , �N with storage functions
S1, . . . , SN , interconnected by u = −Ly + e, where L is either a flow Laplacian L f

or a communication Laplacian Lc, and assume that the connected components of the
interconnection graph are strongly connected. Let L f be a flow Laplacian, and con-
sider a positive diagonalmatrix� f = diag(γ f

1 , . . . , γ
f
N ) such that L f � f is balanced.

Then the interconnected system with inputs e and scaled outputs 1
γ

f
1

y1, . . . ,
1

γ
f
N

yN is

passive with storage function

S f (x1, . . . , xN ) := 1

γ
f
1

S1(x1) + · · · + 1

γ
f
N

SN (xN ) (4.95)

Alternatively, let Lc be a communication Laplacian, and consider a positive diagonal
matrix �c = diag(γc

1, . . . , γ
c
N ) such that �cLc is balanced. Then the interconnected

system with inputs e and scaled outputs γc
1 y1, . . . , γ

c
N yN , is passive with storage

function
Sc(x1, . . . , xN ) := γc

1S1(x1) + · · · + γc
N SN (xN ) (4.96)

Proof The first statement follows by passivity from
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d
dt S

f ≤ yT�−1
f u = −yT�−1

f L f y + yT�−1
f e

= −(�−1
f y)T L f � f (�

−1
f y) + (�−1

f y)T e
(4.97)

and balancedness of L f � f . Similarly, the second statement follows from

d

dt
Sc ≤ yT�cu = −yT�cLc y + yT�ce (4.98)

and balancedness of �cLc. �
Remark 4.4.12 The result continues to hold in case some of the systems �i are
static passive nonlinearities. Indeed, since for each j-th static passive nonlinearity
u j y j ≥ 0, the same inequalities continue to hold, with the storage functions S f or
Sc now being the weighted sum of the storage functions of the dynamical passive
systems �i .

Remark 4.4.13 The notion of a balanced Laplacian matrix is also instrumental in
defining the effective resistance from one vertex of the connected network to another.
In fact, let L be a balanced Laplacian matrix. For any vertex i and j note that
ei − e j ∈ im L , where ei and e j are the standard basis vectors with 1 at the i-th or
j-th element, and 0 everywhere else. Thus there exists a vector v satisfying

Lv = ei − e j , (4.99)

which is moreover unique up to addition of a multiple of the vector 1 of all ones.
This means that the quantity

R ji := vi − v j , (4.100)

is independent of the choice of v satisfying (4.99). It is called the effective resistance
of the network from vertex j to vertex i .

The same idea of taking weighted combinations of storage functions is used in
the following third case of interconnection of passive systems. Consider again a
multi-agent system, composed of N passive agent systems �i with scalar inputs and
outputs ui , yi , and storage functions Si (xi ), i = 1, . . . , N . These are interconnected
by

u = Ky + e (4.101)

where u = (u1, . . . , uN )T , y = (y1, . . . , yN )T , and the N × N matrix K has the
following special structure:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α1 0 · · 0 −βN

β1 −α2 · · 0 0
0 β2 −α3 · 0 0
· · · · · ·
0 0 · βN−2 −αN−1 0
0 0 · 0 βN−1 −αN

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.102)
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for positive constants αi ,βi , i = 1, . . . , N . This represents a circular graph, where
the first N −1 gains β1, . . . ,βN−1 are positive, but the last interconnection gain−βN

(from vertex N to vertex 1) is negative.
The main differences with the case u = −Ly + e considered before, where L

is either a flow or communication Laplacian matrix, are the special structure of the
graph (a circular graph instead of a general graph), the fact that the right-upper
element of K , given by −βN , is negative, and the fact neither the row or column
sums of K are zero. Nevertheless, also thematrix K can be transformed by a diagonal
matrix into a matrix satisfying a property similar to (4.92), provided the constants
αi ,βi , i = 1, . . . , N , satisfy the following condition.

Theorem 4.4.14 ([12]) Consider the N ×N matrix K given in (4.102). There exists
a positive N × N diagonal matrix � such that �K + KT� < 0 if and only the
positive constants αi ,βi , i = 1, . . . , N , satisfy6

β1 · · · βN

α1 · · · αN
< sec

( π

N

)N
(4.103)

The condition (4.103) is referred to as the secant condition. Proceeding in the same
way as for the Laplacian matrix interconnection case we obtain the following inter-
connection result.

Proposition 4.4.15 Consider passive systems �1, . . . , �N with storage functions
S1, . . . , SN , interconnected by u = −Ky + e, where K is given by (4.102)
with αi ,βi , i = 1, . . . , N , satisfying (4.103). Take any positive diagonal matrix
� = diag(γ1, . . . , γN ) such that �K + KT� < 0. Then the interconnected sys-
tem with inputs e and scaled outputs γ1y1, . . . , γN yN is output strictly passive with
storage function

SK (x1, . . . , xN ) := γ1S1(x1) + · · · + γN SN (xN ) (4.104)

Proof This follows from

d

dt
SK ≤ yT�u = yT�Ky + yT�e = yT�Ky + yT�e (4.105)

and �K + KT� < 0. �

Remark 4.4.16 The stability of the interconnected system can be alternatively con-
sidered from the small-gain point of view; cf. Chaps. 2 and 8. Indeed, the intercon-
nected system can be also formulated as the circular interconnection, with gains +1
for the first N − 1 interconnections and gain −1 for the interconnection from vertex
N to vertex 1, of themodified systems �̂i with inputs vi and outputs ŷi obtained from
�i by substituting ui = −αi yi + vi , ŷi = βi yi , i = 1, . . . , N . Then by output strict

6Note that the secant function is given as sec φ = 1
cos φ .

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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passivity of �̂i the L2-gain of �̂i is ≤ αi
βi
. Application of the small-gain condition,

cf. Chap. 8, then yields stability for all αi ,βi , i = 1, . . . , N , satisfying (4.103) with
the right-hand side replaced by 1. This latter condition is however (much) stronger
than (4.103). For instance, sec ( π

N )N = 8 for N = 3.

4.5 Passivity of Euler–Lagrange Equations

A standard method for deriving the equations of motion for physical systems is via
the Euler–Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = τ , (4.106)

where q = (q1, . . . , qn)T are generalized configuration coordinates for the system
with n degrees of freedom, L is the Lagrangian function,7 and τ = (τ1 . . . , τn)

T is
the vector of generalized forces acting on the system. Furthermore, ∂L

∂q̇ (q, q̇) denotes
the column vector of partial derivatives of L(q, q̇) with respect to the generalized
velocities q̇1, . . . , q̇n , and similarly for ∂L

∂q (q, q̇).

By defining the vector of generalized momenta p = (p1, . . . , pn)T as

p := ∂L

∂q̇
(q, q̇), (4.107)

and assuming that the map q̇ �→ p is invertible for every q, this defines the 2n-
dimensional state vector (q1, . . . , qn, p1, . . . , pn)T , inwhich case the n second-order
equations (4.106) transform into 2n first-order equations

q̇ = ∂H
∂ p (q, p)

ṗ = − ∂H
∂q (q, p) + τ ,

(4.108)

where theHamiltonian function H is the Legendre transform of L , defined implicitly
as

H(q, p) = pT q̇ − L(q, q̇), p = ∂L

∂q̇
(q, q̇) (4.109)

Equation (4.108) are called theHamiltonian equations ofmotion. In physical systems
the Hamiltonian H usually can be identified with the total energy of the system. It
immediately follows from (4.108) that

7Not to be confused with the Laplacian matrix of the previous section; too many mathematicians
with a name starting with “L.”

http://dx.doi.org/10.1007/978-3-319-49992-5_8
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d

dt
H = ∂T H

∂q
(q, p)q̇ + ∂T H

∂ p
(q, p) ṗ

= ∂T H

∂ p
(q, p)τ = q̇T τ , (4.110)

expressing that the increase in energy of the system is equal to the suppliedwork (con-
servation of energy). This directly translates into the following statement regarding
passivity (in fact, losslessness) of the Hamiltonian and Euler–Lagrange equations.

Proposition 4.5.1 Assume the Hamiltonian H is bounded from below, i.e., ∃ C >

−∞ such that H(q, p) ≥ C. Then (4.106) with state vector (q, q̇), and (4.108) with
state vector (q, p), are lossless systems with respect to the supply rate yT τ , with
output y = q̇ and storage function E(q, q̇) := H(q, ∂L

∂q̇ (q, q̇)) − C, respectively
H(q, p) − C.

Proof Clearly H(q, p) − C ≥ 0. The property of being lossless directly follows
from (4.110). �

Remark 4.5.2 If the map from q̇ to p is not invertible this means that there are alge-
braic constraints φi (q, p) = 0, i = 1, . . . , k, relating the momenta p, and that the
Hamiltonian H(q, p) is only defined up to addition with an arbitrary combination of
the constraint functions φi (q, p), i = 1, . . . , k. This leads to a constrained Hamil-
tonian representation; see the Notes at the end of this chapter for further information.

The Euler–Lagrange equations (4.106) describe dynamics without internal energy
dissipation, resulting in losslessness. The equations can be extended to

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) + ∂R

∂q̇
(q̇) = τ , (4.111)

where R(q̇) is a Rayleigh dissipation function, satisfying

q̇T ∂R

∂q̇
(q̇) ≥ 0, for all q̇ (4.112)

Then the time evolution of H(q, ∂L
∂q̇ (q, q̇)) satisfies

d

dt
H = −q̇T ∂R

∂q̇
(q̇) + q̇T τ (4.113)

Hence if H is bounded from below, then, similar to Proposition 4.5.1, the systems
(4.111) and (4.112) with inputs τ and outputs q̇ are passive.

We may interpret (4.111) as the closed-loop system depicted in Fig. 4.2. Equa-
tion (4.111) thus can be seen as the feedback interconnection of the lossless system
�1 given by theEuler–Lagrange equations (4.106)with input τ ′, and the static passive
system �2 given by the map q̇ �→ ∂R

∂q̇ (q̇). If (4.112) is strengthened to
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Fig. 4.2 Feedback
representation of (4.111) Σ1 : d

dt
∂L
∂q̇ − ∂L

∂q = τ

Σ2 : ∂R
∂q̇ (q̇)

τ +

−
τ q̇

q̇∂R
∂q̇ (q̇)

q̇T ∂R

∂q̇
(q̇) ≥ δ||q̇||2 (4.114)

(assuming an inner product structure on the output space of generalized velocities)
for some δ > 0, then the nonlinearity (4.114) defines an δ-input strictly passive map
from q̇ to ∂R

∂q̇ (q̇), and (4.111) with output q̇ becomes output strictly passive; as also
follows from Proposition 4.3.1(ii).

Furthermore, we can apply Theorem 2.2.15 as follows. Consider any initial condi-
tion (q(0), q̇(0)), and the corresponding input–output map of the system�1. Assume
that for any τ ∈ L2e(R

n) there are solutions τ ′ = ∂R
∂q̇ (q̇), q̇ ∈ L2e(R

n). Then the

map τ �→ q̇ has L2-gain ≤ 1
δ
. In particular, if τ ∈ L2(R

n) then q̇ ∈ L2(R
n). Note

that not necessarily the signal ∂R
∂q̇ (q̇) will be in L2(R

n); in fact this will depend on
the properties of the Rayleigh function R.

Finally, (4.113) for τ = 0 yields

d

dt
H = −q̇T ∂R

∂q̇
(q̇) (4.115)

Hence, if we assume that H has a strict minimum at some some point (q0, 0), and by
(4.114) and La Salle’s invariance principle, (q0, 0) will be an asymptotically stable
equilibrium of the system whenever R is such that q̇T ∂R

∂q̇ (q̇) = if and only if q̇ = 0
(in particular, if (4.114) holds).

4.6 Passivity of Second-Order Systems
and Riemannian Geometry

In standard mechanical systems the Lagrangian function L(q, q̇) is given by the
difference

L(q, q̇) = 1

2
q̇T M(q)q̇ − P(q) (4.116)

of the kinetic energy 1
2 q̇

T M(q)q̇ and the potential energy P(q). Here M(q) is an
n × n inertia (generalized mass) matrix, which is symmetric and positive definite
for all q. It follows that the vector of generalized momenta is given as p = M(q)q̇ ,
and thus that the map from q̇ to p = M(q)q̇ is invertible. Furthermore, the resulting

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Hamiltonian H is given as

H(q, p) = 1

2
pT M−1(q)p + P(q), (4.117)

which equals the total energy (kinetic energy plus potential energy).
It turns out to be of interest to work out the Euler–Lagrange equations (4.106)

and the property of conservation of total energy in more detail for this important
case. This will lead to a direct connection to the passivity of a “virtual system” that
can be associated to the Euler–Lagrange equations, and which has a clear geometric
interpretation.

Let mi j (q) be the (i, j)-th element of M(q). Writing out

∂L

∂q̇k
(q, q̇) =

∑
j

mk j (q)q̇ j

and

d

dt

(
∂L

∂q̇k
(q, q̇)

)
=

∑
j

mk j (q)q̈ j +
∑
j

d

dt
mkj (q)q̇ j

=
∑
j

mk j (q)q̈ j +
∑
i, j

∂mkj

∂qi
q̇i q̇ j ,

as well as
∂L

∂qk
(q, q̇) = 1

2

∑
i, j

∂mi j

∂qk
(q)q̇i q̇ j − ∂P

∂qk
(q),

the Euler–Lagrange equations (4.106) for L(q, q̇) = 1
2 q̇

T M(q)q̇ − P(q) take the
form

∑
j

mk j (q)q̈ j +
∑
i, j

{
∂mkj

∂qi
(q) − 1

2

∂mi j

∂qk

}
(q)q̇i q̇ j − ∂P

∂qk
(q) = τk,

for k = 1, . . . , n. Furthermore, since

∑
i, j

∂mkj

∂qi
(q)q̇i q̇ j =

∑
i, j

1

2

{
∂mkj

∂qi
(q) + ∂mki

∂q j

}
(q)q̇i q̇ j ,

by defining the Christoffel symbols of the first kind

ci jk(q) := 1

2

{
∂mkj

∂qi
+ ∂mki

∂q j
− ∂mi j

∂qk

}
(q) , (4.118)
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we can further rewrite the Euler–Lagrange equations as

∑
j

mk j (q)q̈ j +
∑
i, j

ci jk(q)q̇i q̇ j + ∂P

∂qk
(q) = τk , k = 1, . . . , n,

or, more compactly,

M(q)q̈ + C(q, q̇)q̇ + ∂P

∂q
(q) = τ , (4.119)

where the (k, j)-th element of the matrix C(q, q̇) is defined as

ck j (q) =
n∑

i=1

ci jk(q)q̇i . (4.120)

In a mechanical system context the forces C(q, q̇)q̇ in (4.119) correspond to the
centrifugal and Coriolis forces.

The definition of the Christoffel symbols leads to the following important obser-
vation. Adopt the notation Ṁ(q) for the n × n matrix with (i, j)-th element given
by ṁi j (q) = d

dt mi j (q) = ∑
k

∂mi j

∂qk
(q)q̇k .

Lemma 4.6.1 The matrix
Ṁ(q) − 2C(q, q̇) (4.121)

is skew-symmetric for every q, q̇ .

Proof Leaving out the argument q, the (k, j)-th element of (4.121) is given as

ṁk j − 2ck j =
n∑

i=1

[
∂mkj

∂qi
−

{
∂mkj

∂qi
+ ∂mki

∂q j
− ∂mi j

∂qk

}]
q̇i

=
n∑

i=1

[
∂mi j

∂qk
− ∂mki

∂q j

]
q̇i

which changes sign if we interchange k and j . �

The skew-symmetry of Ṁ(q) − 2C(q, q̇) is another manifestation of the fact that
the forces C(q, q̇)q̇ in (4.119) are workless. Indeed by direct differentiation of the
total energy E(q, q̇) := 1

2 q̇
T M(q)q̇ + P(q) along (4.119) one obtains

d
dt H = q̇T M(q)q̈ + 1

2 q̇
T Ṁ(q)q̇ + q̇T ∂P

∂q (q)

= q̇T τ + 1
2 q̇

T
(
Ṁ(q) − 2C(q, q̇)

)
q̇ = q̇T τ ,

(4.122)

in accordance with (4.110).
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However, skew-symmetry of Ṁ(q) − 2C(q, q̇) is actually a stronger property
than energy conservation. In fact, if we choose the matrix C(q, q̇) different from the
matrix of Christoffel symbols (4.116), i.e., as some other matrix C̃(q, q̇) such that

C̃(q, q̇)q̇ = C(q, q̇)q̇ , for all q, q̇ , (4.123)

then still q̇T (Ṁ(q) − 2C̃(q, q̇))q̇ = 0 (conservation of energy), but in general
Ṁ(q) − 2C̃(q, q̇) will not be skew-symmetric anymore.

This observation is underlying the following developments. Start out from
Eq. (4.119) for zero potential energy P and the vector of external forces τ denoted
by u, that is

M(q)q̈ + C(q, q̇)q̇ = u (4.124)

Definition 4.6.2 The virtual system associated to (4.124) is defined as the first-order
system in the state vector s ∈ Rn

M(q)ṡ + C(q, q̇)s = u
y = s

(4.125)

with inputs u ∈ Rn and outputs y ∈ Rn , parametrized by the vector q ∈ Rn and its
time-derivative q̇ ∈ Rn .

Thus for any curve q(·) and corresponding values q(t), q̇(t) for all t , wemay consider
the time-varying system (4.125) with state vector s. Clearly, any solution q(·) of the
Euler–Lagrange equations (4.124) for a certain input function τ (·) generates the
solution s(t) := q̇(t) to the virtual system (4.125) for u = τ , but on the other
hand not every pair q(t), s(t), with s(t) a solution of (4.125) parametrized by q(t),
corresponds to a solution of (4.124). In fact, this is only the case if additionally
s(t) = q̇(t). This explains the name virtual system.

Remarkably, not only the Euler–Lagrange equations (4.124) are lossless with
respect to the output y = q̇ , but also the virtual system (4.125) turns out to be lossless
with respect to the output y = s, for every time-function q(·). This follows from the
following computation, crucially relying on the skew-symmetry of Ṁ(q)−2C(q, q̇).
Define the storage function of the virtual system (4.125) as the following function
of s, parametrized by q

S(s, q) := 1

2
sT M(q)s (4.126)

Then, by skew-symmetry of Ṁ − 2C , along (4.125)

d
dt S(s, q) = sT M(q)ṡ + 1

2 s
T Ṁ(q)s

= −sTC(q, q̇)s + 1
2 s

T Ṁ(q)s + sT u = sT u
(4.127)

This is summarized in the following proposition.
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Proposition 4.6.3 For any curve q(·) the virtual system (4.125) with input u and
output y is lossless, with parametrized storage function S(s, q) = 1

2 s
T M(q)s.

This can be directly extended to

M(q)q̈ + C(q, q̇)q̇ + ∂R

∂q̇
(q̇) = τ , (4.128)

with Rayleigh dissipation function R(q̇) satisfying q̇T ∂R
∂q̇ (q̇) ≥ 0, leading to the

associated virtual system

ṡ = −M−1(q)C(q, q̇)s − M−1(q) ∂R
∂s (s) + M−1(q)u

y = s.
(4.129)

Corollary 4.6.4 For any curve q(·) the virtual system (4.129) is passive with para-
metrized storage function S(s, q) := 1

2 s
T M(q)s, satisfying d

dt S(s, q) = −sT ∂R
∂s (s)+

sT u ≤ sT u.

Example 4.6.5 As an application of Proposition 4.6.3 suppose one wants to asymp-
totically track a given reference trajectory qd(·) for a mechanical system (e.g., robot
manipulator) with dynamics (4.119). Consider first the preliminary feedback

τ = M(q)ξ̇ + C(q, q̇)ξ + ∂P

∂q
(q) + ν (4.130)

where
ξ := q̇d − �(q − qd) (4.131)

for some matrix � = �T > 0. Substitution of (4.130) into (4.119) yields the virtual
dynamics

M(q)ṡ + C(q, q̇)s = ν (4.132)

with s := q̇ − ξ. Define the additional feedback

ν = −ν̂ + τe := −Ks + τe, K = KT > 0 , (4.133)

corresponding to an input strictly passive map s �→ ν̂.
Then by Theorem 2.2.15, part (b), for every τe ∈ L2(R

n) such that s (and thus ν)
are in Ln

2e (see Fig. 4.3), actually the signal s will be in L2(R
n). This fact has an

important consequence, since by (4.131) and s = q̇−ξ the error e = q−qd satisfies

ė = −�e + s. (4.134)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Fig. 4.3 Feedback
configuration for tracking M(q)ṡ + C(q, q̇)s=ν

ν̂ = Ks

τe
+

−
ν s

sν̂

Because we took � = �T > 0 it follows from linear systems theory that also
e ∈ L2(R

n), and therefore by (4.134) that ė ∈ L2(R
n). It is well known (see e.g.,

[83], pp. 186, 237) that this implies8 e(t) → 0 for t → ∞.

An intrinsic geometric interpretation of the skew-symmetry of Ṁ − 2C and the
virtual system (4.125) can be given as follows, within the framework of Riemannian
geometry. The configuration space Q of the mechanical system is assumed to be
a manifold with local coordinates (q1, . . . , qn). Then the generalized mass matrix
M(q) > 0 defines a Riemannian metric <, > on Q by setting

< v,w > := vT M(q)w (4.135)

for v,w tangent vectors to Q at the point q. The manifold Q endowed with the
Riemannian metric is called a Riemannian manifold.

Furthermore, an affine connection ∇ on an arbitrary manifold Q is a map that
assigns to each pair of vector fields X and Y on Q another vector field ∇XY on Q
such that

(a) ∇XY is bilinear in X and Y
(b) ∇ f XY = f ∇XY
(c) ∇X f Y = f ∇XY + (LX f )Y

for every smooth function f , where LX f denotes the directional derivative of f
along q̇ = X (q), that is, in local coordinates q = (q1, . . . , qn) for Q, LX f (q) =∑

k
∂ f
∂qk

(q)Xk(q), where Xk is the k-th component of the vector field X . In particular,
as will turn out to be important later on, Property (b) implies that ∇XY at q ∈ Q
depends on the vector field X only through its value X (q) at q.

In local coordinates q for Q an affine connection on Q is determined by n3 smooth
functions

��
i j (q), i, j, � = 1, . . . , n, (4.136)

such that the �-th component of ∇XY, � = 1, . . . , n, is given as

8A simple proof runs as follows (with thanks to J.W. Polderman and I.M.Y. Mareels). Take for sim-
plicity n = 1. Then, since d

dt e
2(t) = 2e(t)ė(t), e2(t2) − e2(t1) = 2

∫ t2
t1
e(t)ė(t)dt ≤ ∫ t2

t1
[e2(t) +

ė2(t)]dt → 0 for t1, t2 → ∞. Thus for any sequence of time instants t1, t2, . . . , tk , . . .with tk → ∞
for k → ∞ the sequence e2(ti ) is a Cauchy sequence, implying that e2(ti ) and thus e2(t) converges
to some finite value for ti , t → ∞, which has to be zero since e ∈ L2(R).
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(∇XY )� =
∑
j

∂Y�

∂q j
X j +

∑
i, j

��
i j XiY j , (4.137)

with subscripts denoting the components of the vector fields involved.
The Riemannian metric <, > on Q obtained from M(q) defines a unique affine

connection ∇M onQ (called the Levi-Civita connection), which in local coordinates
is determined by the n3 Christoffel symbols (of the second kind)

��
i j (q) :=

n∑
k=1

m�k(q)ci jk(q), (4.138)

with m�k(q) the (�, k)-th element of the inverse matrix M−1(q), and ci jk(q) the
Christoffel symbols of the first kind as defined in (4.118). Thus in vector notation
the affine connection ∇M is given as

∇M
X Y (q) = DY (q)(q)X (q) + M−1(q)C(q, X)Y (q) (4.139)

with DY (q) the n × n Jacobian matrix of Y .
Identifying s ∈ Rn with a tangent vector at q ∈ Q, we conclude that the

coordinate-free description of the virtual system (4.125) is given by

∇M
q̇(t)s(t) = M−1(q(t))u(t)

y(t) = s(t)
(4.140)

Thus the state s of the virtual system at any moment t is an element of Tq(t)Q. (Recall
that ∇M

X s(q) depends on the vector field X only through its value X (q). Hence at
every time t the expression in the left-hand side of (4.140) depends on the curve q(·)
only through the value q̇(t) ∈ Tq(t)Q.)

With regard to the last term M−1(q)u we note that from a geometric point of view,
the force u is an element of the cotangent space of Q at q. Since M−1(q) defines a
map from the cotangent space to the tangent space, this yields M−1(q)u ∈ TqQ. In
terms of the Riemannian metric <, > the tangent vector Z = M−1(q)u ∈ TqQ is
determined by the requirement that the cotangent vector < Z , · > equals u. This is
summarized in the following.

Proposition 4.6.6 Consider a configuration manifold Q with Riemannian metric
determined by the generalized mass matrix M(q). Let ∇M be the Levi-Civita con-
nection on Q. Then the virtual system is given by (4.140), where q(·) is any curve
on Q and s(t) ∈ Tq(t)Q for all t . The virtual system is lossless with parametrized
storage function S(s, q) = 1

2 < s, s > (q).

Remark 4.6.7 The expression∇M
q̇(t)s(t) on the left-hand side of (4.140) is also called

the covariant derivative of s(t) (with respect to the affine connection∇M ); sometimes
denoted as Ds

dt (t).
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We emphasize that one can take any curve q(t) inQ with corresponding velocity
vector field q̇(t) = X (q(t)), and consider the dynamics (4.140) of any vector field s
along this curve q(t) (that is, s(t) being a tangent vector to Q at q(t)). If we take s
to be equal to q̇ , then (4.140) reduces to

∇M
q̇ q̇ = M−1(q)ν (4.141)

which is nothing else than the second-order equations (4.124).
Finally, let us come back to the crucial property of skew-symmetry of Ṁ − 2C .

This property has the following geometric interpretation. First we note the following
obvious lemma.

Lemma 4.6.8 Ṁ − 2C is skew-symmetric if and only if Ṁ = C + CT

Proof (Ṁ − 2C) = −(Ṁ − 2C)T iff 2Ṁ = 2C + 2CT . �

Given an arbitrary Riemannian metric <,> on Q, an affine connection ∇ on Q is
said to be compatible with <,> if the following property holds:

LX < Y, Z >=< ∇XY, Z > + < Y,∇X Z > (4.142)

for all vector fields X,Y, Z on Q.
Consider now the Riemannian metric <,> determined by the mass matrix M as

in (4.135). Furthermore, consider local coordinates q = (q1, . . . , qn) for Q, and let
Y = ∂

∂qi
, Z = ∂

∂q j
. Then (4.142) reduces to (see (4.137))

LXmi j =< ∇X
∂

∂qi
,

∂

∂q j
> + <

∂

∂qi
,∇X

∂

∂q j
> (4.143)

with mi j the (i, j)-th element of the mass matrix M . Furthermore, by (4.139) we
have

∇X
∂

∂qi
= M−1(q)C(q, X)ei

∇X
∂

∂q j
= M−1(q)C(q, X)e j

(4.144)

with ei , e j denoting the i-th, respectively j-th, basis vector. Therefore, taking into
account the definition of <,> in (4.135), we obtain from (4.143)

LXmi j = (CT (q, X))i j + (C(q, X))i j , (4.145)

which we write (replacing LX by the˙operator) as

Ṁ(q) = CT (q, q̇) + C(q, q̇). (4.146)
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Thus, in view of Lemma 4.6.8, the property of skew-symmetry of the matrix Ṁ−2C
is nothing else than the compatibility of the Levi-Civita connection ∇M defined by
the Christoffel symbols (4.138) with the Riemannian metric <,> defined by M(q).

This observation also implies that one may take any other affine connection ∇
(different from the Levi-Civita connection ∇M ), which is compatible with <,>

defined by M in order to obtain a lossless virtual system (4.140) (with ∇M replaced
by ∇).

Finally, we note that the Levi-Civita connection ∇M defined by the Christoffel
symbols (4.138) is the unique affine connection that is compatiblewith<,> defined
by M , as well as is torsion-free in the sense that

∇XY − ∇XY = [X,Y ] (4.147)

for any two vector fields X,Y onQ, where [X,Y ] denotes the Lie bracket of X and Y .
In terms of the Christoffel symbols (4.138) the condition (4.147) amounts to the
symmetry condition ��

i j = ��
j i for all i, j, �, or equivalently, with Ckj related to ��

i j
by (4.138) and (4.120), that

C(q, X)Y = C(q,Y )X (4.148)

for every pair of tangent vectors X,Y .

4.7 Incremental and Shifted Passivity

Recall the definition of incremental passivity as given in Definition 2.2.20. A state
space version can be given as follows.

Definition 4.7.1 Consider a system as given in (4.1), with input and output spaces
U = Y = Rm and state space X . The system � is called incrementally passive if
there exists a function, called the incremental storage function,

S : X × X → R+ (4.149)

such that
S(x1(T ), x2(T )) ≤ S(x1(0), x2(0))

+ ∫ T
0 (u1(t) − u2(t))T (y1(t) − y2(t))dt

(4.150)

for all T ≥ 0, and for all pairs of input functions u1, u2 : [0, T ] → Rm and all pairs
of initial conditions x1(0), x2(0), with resulting pairs of state and output trajectories
x1, x2 : [0, T ] → X , y1, y2 : [0, T ] → Rm .

Remark 4.7.2 Note that if S(x1, x2) satisfies (4.150) then so does the function
1
2 (S(x1, x2) + S(x2, x1)). Hence, without loss of generality, we may assume that

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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the storage function S(x1, x2) satisfies S(x1, x2) = S(x2, x1). Extensions of Defini-
tion4.7.1 to incremental output strict or incremental input strict passivity are imme-
diate.

Definition 4.7.1 directly implies incremental passivity of the input–output map Gx̄

defined by �, for every initial state x̄ ∈ X . This follows from (4.150) by taking
identical initial conditions x1(0) = x2(0) = x̄ . Hence, the property of incremental
passivity defined in Definition 4.7.1 for state space systems is in principle stronger
than the property defined in Definition 2.2.20 for input–output maps.

As a direct corollary of Theorem 3.1.11 we obtain the following.

Corollary 4.7.3 The system (4.1) is incrementally passive if and only if

sup
u1(·),u2(·),T≥0

−
∫ T

0
(u1(t) − u2(t))

T (y1(t) − y2(t))dt < ∞ (4.151)

for all initial conditions (x1(0), x2(0)) ∈ X × X .

The differential version of the incremental dissipation inequality (4.149) takes the
form

Sx1(x1, x2) f (x1, u1) + Sx2(x1, x2) f (x2, u2)≤(u1 − u2)
T (y1 − y2) (4.152)

for all x1, x2, u1, u2, y1 = h(x1, u1), y2 = h(x2, u2), where Sx1(x1, x2) and Sx2
(x1, x2) denote row vectors of partial derivatives with respect to x1, respectively x2.

An obvious example of an incrementally passive system is a linear passive sys-
tem with quadratic storage function 1

2 x
T Qx . In this case, S(x1, x2) := 1

2 (x1 −
x2)T Q(x1 − x2) define an incremental storage function, satisfying (4.149). Another
example of an incrementally passive system is the virtual system defined in (4.125),
with incremental storage function given by the parametrized expression (compare
with (4.126)) S(s1, s2, q) = 1

2 (s1 − s2)T M(q)(s1 − s2). Furthermore, in both cases
the system remains incrementally passive in the presence of an extra external (distur-
bance) input. For example, passivity of ẋ = Ax + Bu, y = Cx implies incremental
passivity of the disturbed system

ẋ = Ax + Bu + Gd, ḋ = Fd, y = Cx (4.153)

for any F,G.
A different type of example of incremental passivity, relying on convexity, is given

next.

Example 4.7.4 (Primal–dual gradient algorithm) Consider the constrained opti-
mization problem

min
q; Aq=b

C(q), (4.154)

where C : Rn → R is a convex function, and Aq = b are affine constraints, for
some k × n matrix A and vector b ∈ Rk . The corresponding Lagrangian function is

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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defined as
L(q,λ) := C(q) + λT (Aq − b), λ ∈ Rk, (4.155)

which is convex in q and concave in λ. The primal–dual gradient algorithm for
solving the optimization problem in continuous time is given as

τq q̇ = − ∂L
∂q (q,λ) = − ∂C

∂q (q) − ATλ + u

τλλ̇ = ∂L
∂λ

(q,λ) = Aq − b
y = q ,

(4.156)

where τq , τλ are diagonal positive matrices (determining the time-scales of the algo-
rithm). Furthermore, we have added an input vector u ∈ Rn representing possi-
ble interaction with other algorithms or dynamics (e.g., if the primal–dual gradient
algorithm is carried out in a distributed fashion). The output vector is defined as
y = q ∈ Rn . This defines an incrementally passive system with incremental storage
function

S(q1,λ1, q2,λ2) := 1

2
(q1 − q2)

T τq(q1 − q2) + 1

2
(λ1 − λ2)

T τλ(λ1 − λ2) (4.157)

Indeed

d

dt
S = (q1 − q2)

T τq(q̇1 − q̇2) + (λ1 − λ2)
T τλ(λ̇1 − λ̇2)

= −(q1 − q2)
T

(
∂C

∂q
(q1) − ∂C

∂q
(q2)

)
+ (u1 − u2)

T (y1 − y2)

≤ (u1 − u2)
T (y1 − y2) (4.158)

since (q1 − q2)T
(

∂C
∂q (q1) − ∂C

∂q (q2)
)

≥ 0 for all q1, q2, by convexity of C .

Finally, a special case of incremental passivity is obtained by letting u2 to be
a constant input ū, and x2 a corresponding steady-state x̄ satisfying f (x̄, ū) = 0.
Defining the corresponding constant output ȳ = h(x̄, ū) and denoting u1, x1, y1
simply by u, x, y, this leads to requiring the existence of a storage function Sx̄ (x)
(parametrized9 by x̄) satisfying

Sx̄ (x(T )) ≤ Sx̄ (x(0)) +
∫ T

0
(u(t) − ū)T (y(t) − ȳ)dt (4.159)

This existence of a function Sx̄ (x) ≥ 0 satisfying (4.159) is called shifted passivity
(with respect to the steady-state values ū, x̄, ȳ).We shall return to the notion of shifted
passivity more closely in the treatment of port-Hamiltonian systems in Chap.6, see
especially Sect. 6.5.

9Note that in this case the subscript x̄ does not refer to differentiation.

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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4.8 Notes for Chapter 4

1. The Kalman–Yakubovich–Popov Lemma is concerned with the equivalence
between the frequency-domain condition of positive realness of the transfer
matrix of a linear system and the existence of a solution to the LMI (4.18) or
(4.19), and thus to the passivity of a (minimal) input-state-output realization. It
was derived by Kalman [154], also bringing together results of Yakubovich and
Popov. See Willems [351], Rantzer [257], Brogliato, Lozano, Maschke & Ege-
land [52]. For the uncontrollable case, see especially Rantzer [257], Camlibel,
Belur & Willems [58].

2. Example 4.1.7 is taken from van der Schaft [283].

3. The factorization approach mentioned in Sect. 4.1 is due to Hill &Moylan [123,
126, 225]; see these papers for further developments along these lines.

4. Example 4.2.5 is taken from Dalsmo & Egeland [75, 76].

5. Corollary 4.3.5 is based on Vidyasagar [343], Sastry [267] (in the input–output
map setting; see Chap.2). See also Hill & Moylan [124, 125], Moylan [225] for
further developments and generalizations.

6. The treatment of Example 4.3.6 is from Willems [352].

7. Example 4.3.7 is based on van der Schaft & Schumacher [302], where also
applications are discussed. For further developments on passive complementarity
systems see Camlibel, Iannelli & Vasca [59] and the references quoted therein.

8. Proposition 4.3.9 is taken from Kerber & van der Schaft [158].

9. Another interesting extension to the converse passivity theorems discussed in
Sect. 4.3 concerns the following scenario. Suppose �1 is such that �1‖ f �2 is
stable (in some sense) for every passive system �2. Then under appropriate
conditions this implies that also �1 is necessarily passive. This is proved, using
the Nyquist criterion, for single-input single-output linear systems in Colgate &
Hogan [69], and for general nonlinear input–output maps, using the S-procedure
lossless theorem, in Khong & van der Schaft [163]. Within a general state space
setting the result is formulated and derived in Stramigioli [329], where also
other important extensions are discussed. The result is of particular interest for
robotic applications, where the “environment” �2 of a controlled robot �1 is
usually unknown, but can be assumed to be passive. Hence, overall stability is
only guaranteed if �1 is passive; see e.g., Colgate & Hogan [69], Stramigioli
[328, 329].

10. The first scenario of network interconnection of passive systems discussed in
Sect. 4.4 is emphasized and discussed much more extensively in the textbook
Bai, Arcak & Wen [18]. Here also a broad range of applications can be found,
continuing on the seminal paper Arcak [10]. See also Arcak, Meissen & Packard

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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[11] for further developments, as well as Bürger, Zelazo & Allgöwer [55] for a
network flow optimization perspective.

11. Example 4.4.4 can be found in Arcak [10]. See also van der Schaft & Stegink
[303] for a generalization to “structure-preserving” networks of generators and
loads.

12. Kirchhoff’s matrix tree theorem goes back to the classical work of Kirchhoff on
resistive electrical circuits [164]; see Bollobas [48] for a succinct treatment (see
especially Theorem 14 on p. 58), and Mirzaev & Gunawardena [220] and van
der Schaft, Rao & Jayawardhana [301] for an account in the context of chemical
reaction networks.
The existence (not the explicit construction) of γ ∈ R

N+ satisfying Lγ = 0
already follows from the Perron–Frobenius theorem, exploiting the fact that the
off-diagonal elements of −L := DK are all nonnegative; see Sontag [320]
(Lemma V.2).

13. The idea to assemble Lyapunov functions from a weighted sum of Lyapunov
functions of component systems is well known in the literature on large-scale
systems, see e.g., Michel &Miller [219], Siljak [315], and is sometimes referred
to as the use of vector Lyapunov functions. Closely related developments to
the second scenario discussed in Sect. 4.4 can be found in Zhang, Lewis &
Qu [364]. The exposition here, distinguishing between flow and communication
Laplacianmatrices, is largely based on van der Schaft [287]. The interconnection
of passive systems through a symmetric Laplacianmatrix can be already found in
Chopra & Spong [66].

14. Remark 4.4.13 generalizes the definition of effective resistance for symmetric
Laplacians, which is well known; see e.g., Bollobas [48]. Note that in case of a
symmetric Laplacian Ri j = R ji .

15. The third scenario of network interconnection of passive systems as discussed
in Sect. 4.4 is based on Arcak & Sontag [12], to which we refer for additional
references and developments on the secant condition.

16. Section4.5, as well as the first part of Sect. 4.5 is mainly based on the survey
paperOrtega&Spong [243], forwhichwe refer to additional references. See also
the book Ortega, Loria, Nicklasson & Sira-Ramirez [239], as well as Arimoto
[13]. Example 4.6.5 is due to Slotine & Li [316].

17. (Cf. Remark 4.5.2). If the map from q̇ to p is not invertible one is led to con-
strainedHamiltonian dynamics as considered byDirac [81, 82]. Under regularity
conditions the constrained Hamiltonian dynamics is Hamiltonian with respect
to the Poisson structure defined as the Dirac bracket. See van der Schaft [271]
for an input–output decoupling perspective.

18. Background on the Riemannian geometry in Sect. 4.6 can be found, e.g., in
Boothby [49], Abraham & Marsden [1]. For related work, see Li & Horowitz
[180].
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19. The concept of the virtual system defined in Definition 4.6.2 and the proof of
its passivity (in fact, losslessness) is due to Slotine and coworkers, see e.g.,
Wang & Slotine [344], Jouffroy & Slotine [153], Manchester & Slotine [193].

20. Incremental passivity is also closely related to differential passivity, as explored
in Forni & Sepulchre [100], Forni, Sepulchre & van der Schaft [101], van
der Schaft [285]. Following the last reference, the notion of differential pas-
sivity involves the notion of the variational systems of �, defined as follows
(cf. Crouch & van der Schaft [73]). Consider a one-parameter family of input-
state-output trajectories (x(t, ε), u(t, ε), y(t, ε)), t ∈ [0, T ], of � parametrized
by ε ∈ (−c, c), for some constant c > 0. Denote the nominal trajectory by
x(t, 0) = x(t), u(t, 0) = u(t) and y(t, 0) = y(t), t ∈ [0, T ]. Then the infinites-
imal variations

δx(t) = ∂x

∂ε
(t, 0) , δu(t) = ∂u

∂ε
(t, 0) , δy(t) = ∂y

∂ε
(t, 0)

satisfy

δ̇x(t) = ∂ f
∂x (x(t), u(t))δx(t) + ∂ f

∂x (x(t), u(t))δu(t)
δy(t) = ∂h

∂x (x(t), u(t))δx(t) + ∂ f
∂x (x(t), u(t))δu(t)

(4.160)

The system (4.160) (parametrized by u(·), x(·), y(·)) is called the variational
system, with variational state δx(t) ∈ Tx(t)X , variational inputs δu ∈ Rm , and
variational outputs δy ∈ Rm .
Suppose now that the original system � is incrementally passive. Identify
u(·), x(·), y(·)with u2(·), x2(·), y2(·) in (4.150), and (x(t, ε), u(t, ε), y(t, ε)) for
ε �= 0 with u1(·), x1(·), y1(·). Dividing both sides of (4.150) by ε2, and taking
the limit for ε → 0, yields under appropriate assumptions

S̄(x(T ), δx(T )) ≤ S̄(x(0), δx(0)) +
∫ T

0
(δu(t))T δy(t)dt (4.161)

where

S̄(x(t), δx(t)) := lim
ε→0

S(x(t, ε), x(t))

ε2
(4.162)

The thus obtained Eq. (4.161) amounts to the definition of differential passivity
adopted in Forni & Sepulchre [100], van der Schaft [285].

21. For the numerous applications of the theory of passive systems to adaptive
controlwe refer, e.g., toBrogliato, Lozano,Maschke&Egeland [52], andAstolfi,
Karagiannis & Ortega [16], and the references quoted therein.



Chapter 5
Passivity by Feedback

In the previous Chaps. 2 and 4, we have seen the importance of the notion of pas-
sivity, both for analysis and for control. This motivates to consider the problem of
transforming a non-passive system into a passive system by the application of state
feedback.

We will give necessary as well as sufficient conditions for the solvability of this
problem. The main idea in the proof of the sufficiency part is to transform the system
into the feedback interconnectionof twopassive systems.This idea is further explored
in Sect. 5.2 for the stabilization of cascaded systems, and leading in Sect. 5.3 to the
technique of stabilization of systemswith triangular structure knownas backstepping.

5.1 Feedback Equivalence to a Passive System

Consider throughout this chapter affine input-state-output systems without
feedthrough terms, denoted as

� : ẋ = f (x) + g(x)u, x ∈ X , u ∈ Rm

y = h(x), y ∈ Rm
(5.1)

with an equal number of inputs and outputs. Furthermore, let us consider the set of
regular state feedback laws

(α,β) : u = α(x) + β(x)v,

α(x) ∈ Rm, β(x) ∈ Rm×m, det β(x) �= 0,
(5.2)

leading to the closed-loop systems
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�α,β : ẋ = [
f (x) + g(x)α(x)

] + g(x)β(x)v

y = h(x)
(5.3)

with new inputs v ∈ Rm. The system � is said to be feedback equivalent to �α,β .
The problem we want to address is the following:

Problem

Under what conditions on � is it possible to find a feedback law (α,β) as in (5.2)
such that �α,β is a passive system, i.e., when is � feedback equivalent to a passive
system?

We will first derive, modulo some technicalities, two necessary conditions for
feedback equivalence to a passive system. Subsequently, we will show that these
two conditions are sufficient as well; at least for a locally defined feedback
transformation.

Suppose � is feedback equivalent to a passive system, i.e., there exists a regular
feedback (α,β) such that�α,β defined in (5.3) is passivewith storage function S ≥ 0.
Then by definition

S(x(t1)) − S(x(t0)) ≤
∫ t1

t0

vT (t)y(t)dt (5.4)

along all solutions (x(t), v(t), y(t)), t ∈ [t0, t1], of (5.3), and all t1 ≥ t0. Therefore,
if we consider the constrained system, defined by setting y = h(x) to zero, that is,

�c
α,β : ẋ = [

f (x) + g(x)α(x)
] + g(x)β(x)v

0 = h(x),
(5.5)

then S(x(t1)) − S(x(t0)) ≤ 0, for all solutions (x(t), v(t)), t ∈ [t0, t1], of this con-
strained system. On the other hand, as follows from the definition of regular
state feedback in (5.2), in particular the requirement det β(x) �= 0, the state space
part of the solutions (x(t), v(t)) of �α,β equals the state space part of solutions
(x(t), u(t)) of the original system �. Indeed, if (x(t), u(t)) is solution of �, then
(x(t), v(t)) = β−1(x(t))[u(t) − α(x(t))]) is a solution of �c

α,β , and conversely if
(x(t), v(t) is a solution of �α,β then (x(t), u(t) = α(x(t)) + β(x(t))v(t)) is a solu-
tion of �. Hence, also for the original system � with constraints y = 0

�c : ẋ = f (x) + g(x)u

0 = h(x)
(5.6)

it follows that necessarily
S(x(t1)) − S(x(t0)) ≤ 0 (5.7)

along all solutions (x(t), u(t)) of �c. The constrained system �c in (5.6) is called
the zero-output constrained dynamics of �.



5.1 Feedback Equivalence to a Passive System 103

Summarizing, we have obtained the following necessary condition for feedback
equivalence to a passive system.

Proposition 5.1.1 Suppose� is feedback equivalent to a passive system�(α,β) with
storage function S. Then (5.7) holds for all solutions (x(t), u(t)), t ∈ [t0, t1], of the
zero-output constrained dynamics �c.

A second necessary condition can be derived, under some extra technical condi-
tions, as follows.We give two versions, requiring slightly different technical assump-
tions.

Denote by hx(x) the m × n-Jacobian matrix of h, that is, the i-th row of hx(x) is
the gradient vector hix(x) of the i-th component function hi.

Lemma 5.1.2 Suppose� is passive with a C2 storage function S that is positive def-
inite at x∗ and has nondegenerate Hessian matrix Sxx(x∗) := ∂2S

∂x2 (x
∗). Furthermore,

assume that rank g(x∗) = m. Then hx(x)g(x) has rank m in a neighborhood of x∗.

Proof By positive-definiteness of S at x∗ it follows that ∂S
∂x (x

∗) = 0. Hence, since
h(x) = gT (x) ∂S

∂x (x),
hx(x

∗) = gT (x∗)Sxx(x∗)

and thus
hx(x

∗)g(x∗) = gT (x∗)Sxx(x∗)g(x∗) (5.8)

By positive-definiteness of S the non-degenerate Hessian matrix Sxx(x∗) is posi-
tive definite, and thus, since rank g(x∗) = m, also hx(x∗)g(x∗) has maximal rank m,
implying that it has rank m in a neighborhood of x∗. �
Lemma 5.1.3 Suppose � is passive with a C1 storage function S which is positive
definite at x∗. Assume the m × m-matrix hx(x)g(x) has constant rank in a neighbor-
hood of x∗. Then hx(x)g(x) has rank m in a neighborhood of x∗.

Proof Suppose rank hx(x)g(x) < m in a neighborhood of x∗. Then there exists a
smooth function u(x) ∈ Rm, defined on a neighborhood of x∗, such that

hx(x)g(x)u(x) = 0 (5.9)

while γ(x) := g(x)u(x) �= 0. As before, positive-definiteness of S at x∗ implies
∂S
∂x (x

∗) = 0. Hence, hT (x) = Sx(x)g(x) satisfies h(x∗) = 0. Denote the solutions of
ẋ = γ(x), x(0) = x0, by xtγ(x0), and consider the function f (t) = S(xtγ(x

∗)). By the
Mean Value Theorem there exists for any t > 0 some s with 0 ≤ s ≤ t such that

S(xtγ(x
∗)) = S(x∗) + uT (xsγ(x

∗))h(xsγ(x
∗))t (5.10)

since f ′(t) = Sx(xtγ(x
∗))γ(xtγ(x

∗)) = hT (xtγ(x
∗))u(xtγ(x∗)). From (5.9) it follows that

h(xsγ(x
∗)) = h(x∗) = 0, and thus by (5.10) S(xtγ(x

∗)) = 0. However, by positive-
definiteness of S this implies xtγ(x

∗) = 0, which is in contradiction with
γ(x∗) �= 0. �
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Finally, we note that the full-rank property of hx(x)g(x) is invariant under feedback
(α,β), since by such a feedback hx(x)g(x) is transformed into hx(x)g(x)β(x) with
det β(x) �= 0. Hence, modulo technical conditions spelled out in the previous two
Lemma’s, we conclude that a second necessary condition for feedback equivalence
to a passive system is that rank hx(x)g(x) = m.

The property of hx(x)g(x) being full rank in a neighborhood of x∗ has several
consequences. First, it implies that rank hx(x) = m around x∗, implying that the
constrained set

Xc := {x ∈ X | h(x) = 0} (5.11)

is actually a submanifold ofX (of co-dimensionm) in a neighborhood of x∗. Further-
more, it implies that the zero-output constrained dynamics �c has a unique solution
(x(t), u(t)), t ≥ 0, for every initial condition x(0) = xc ∈ Xc. Indeed, computing the
time-derivative ẏ of y(t) = h(x(t)) for � yields

ẏ = hx(x)f (x) + hx(x)g(x)u. (5.12)

Hence, by defining
uc(x) := − [hx(x)g(x)]−1 hx(x)f (x) (5.13)

the closed-loop dynamics ẋ = f (x) + g(x)u∗(x) satisfies ẏ = 0, while conversely
ẏ = 0 implies (5.13). Thus every solution x(t) of the closed-loop dynamics starting
inXc (h(x(0)) = 0) satisfies h(x(t)) = 0, t ≥ 0, and thus remains inXc. HenceXc is
an invariant submanifold for the closed-loopdynamics, and the closed-loopdynamics
can be restricted to Xc. Thus, under the assumption that hx(x)g(x) has rank m, the
zero-output constrained dynamics �c is equivalently given by the explicit system on
Xc

ẋ = f (x) + g(x)uc(x), x ∈ Xc (5.14)

Summarizing, we have arrived at the following necessary conditions for local feed-
back equivalence to a passive system.

Proposition 5.1.4 Suppose � is locally about x∗ feedback equivalent to a passive
system with C2 storage function S, which is positive definite at x∗. Assume that either
hx(x)g(x) has constant rank on a neighborhood of x∗, or that Sxx(x∗) is positive
definite and rank g(x∗) = m. Then rank hx(x)g(x) = m in a neighborhood of x∗, and

Sx(x)
[
f (x) + g(x)u∗(x)

] ≤ 0, x ∈ Xc, (5.15)

with uc defined by (5.13).

Proof Suppose there exists, locally about x∗, a feedback (α,β) such that �α,β is
passive. Since rank g(x∗) = rank hx(x)g(x)β(x) it follows from Lemma’s 5.1.3,
respectively, Lemma 5.1.2, that hx(x)g(x) has rank m on a neighborhood of x∗.
Since y = 0 on Xc, the inequality (5.15) directly follows from the dissipation
inequality (5.4). �
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Loosely speaking (disregarding technical assumptions), Proposition 5.1.4
expresses that necessary conditions for (local) feedback equivalence of � to a pas-
sive system are that (locally) hx(x)g(x) has rank m, and that the resulting zero-output
constrained dynamics �c of � on Xc given by (5.14), with uc(x) defined by (5.13),
satisfies (5.15) for a certain function Sc : Xc → R+.

Next step is to show that these conditions are actually sufficient as well.

Theorem 5.1.5 Consider the system�. Suppose rank hx(x∗)g(x∗) = m at a certain
point x∗ with h(x∗) = 0, and let Sc : Xc → R+ satisfy (5.15) locally around x∗, where
Xc and uc are defined as in (5.11), respectively (5.13). Then � is locally around x∗
feedback equivalent to a passive system with storage function S : X → R+ (locally
defined around x∗). Furthermore, if Sc is positive definite at x∗, then so is S.

Proof We will give the proof under the additional assumption that the Lie brack-
ets1 [gi, gj] of the vector fields defined by the columns g1, . . . , gm of g(x) are
contained in span {g1(x), . . . , gm(x)}; see [56] for the general case. Since rank
hx(x) = m for all x in a neighborhood of x∗ the functions y1 = h1(x), . . . , ym =
hm(x), can be taken as partial local coordinate functions for X around x∗. Further-
more, since rank hx(x)g(x) = m and by the additional assumption Lie bracket condi-
tion, we can find n − m complementary local coordinates z around x∗ such that in the
new coordinates (z, y) for X the first n − m rows of the matrix g are zero.2 Hence,
after suitable feedback the dynamics of (5.7) takes, locally around x∗, the following
form

ż = f1(z, y)
ẏ = v

(5.16)

Furthermore, z define local coordinates forXc, and the dynamics ż = f1(z, 0) =: fc(z)
is a coordinate expression of (5.14). Expressing Sc in these coordinates we have by
(5.15)

Scz(z)fc(z) ≤ 0 (5.17)

Since f1(z, y) − fc(z) is zero for y = 0 we can write (see e.g., the Notes at the end of
this chapter)

f1(z, y) = fc(z) + p(z, y)y (5.18)

for some smooth matrix p(z, y). Then the following system, defined locally around
x∗ on Xc,

�z :
ż = fc(z) + p(z, y)y

w = pT (z, y) ∂Sc
∂z (z)

(5.19)

1In local coordinates x the Lie bracket vector field [gi, gj] is given by the expression [gi, gj](x) =
∂gj
∂x (x)gi(x) − ∂gi

∂x (x)gi(x).
2Since dim span {g1(x), . . . , gm(x)} = m near x∗ and [gi, gi](x) ∈ span {g1(x), . . . , gm(x)} it follows
from Frobenius’ theorem that there exist n − m partial local coordinates z = (z1, . . . , zn−m) such
that ∂zi

∂x gj = 0 [135, 233].
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is a passive system with storage function Sc, with respect to the inputs y and outputs
w, since by (5.17) dSc

dt ≤ wTy. Furthermore, the integrator system ẏ = v is trivially a
passive system with respect to the inputs v and outputs y, and with storage function
1
2‖y‖2. Hence the standard feedback interconnection

v = −w + e = −pT (z, y)
∂Sc
∂z

(z) + e, e ∈ Rm (5.20)

will result by Proposition 4.3.1 into a passive system, with respect to the inputs e and
outputs y, and with storage function

S(z, y) := Sc(z) + 1

2
‖y‖2 (5.21)

on X . If additionally Sc is assumed to be positive definite at x∗, then also S(z, y) is
positive definite at x∗. �

5.2 Stabilization of Cascaded Systems

Themain idea in proving Theorem 5.1.5 was to transform� into a standard feedback
interconnection of two passive systems, one being the system (5.19), and the other
being the integrator system ẏ = v. This idea can be generalized in a number of
directions. Consider the system

ż = f (z, ξ) , f (0, 0) = 0

ξ̇ = �(z, ξ, u), u ∈ Rm , �(0, 0, 0) = 0
(5.22)

The feedback stabilizationproblem is tofind a feedbacku = α(z, ξ) such that (z, ξ) =
(0, 0) is an (asymptotically) stable equilibrium of the closed-loop system.

Theorem 5.2.1 Consider the system (5.22). Suppose there exists an output map
y = h(z, ξ) ∈ Rm such that

(i) the system (5.22) is passive with respect to this output map, with storage
function S(ξ),

(ii)

f (z, ξ) = f0(z, ξ) +
m∑
j=1

yifj(z, ξ) (5.23)

for some functions f0(z, ξ) and fj(z, ξ), j = 1, . . . ,m, with f0(z, ξ) satisfying

Vz(z)f0(z, ξ) ≤ 0, for all z, ξ, (5.24)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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for some function V (z) ≥ 0.

Then the feedback

uj = −Vz(z)fj(z, ξ) + vj, j = 1, . . . ,m, (5.25)

transforms (5.22) into a passive systemwith respect to the inputs v ∈ Rm and outputs
y = h(z, ξ), having storage function V (z) + S(ξ). Furthermore, the feedback

uj = −Vz(z)fj(z, ξ) − yj + vj, j = 1, . . . ,m, (5.26)

renders the system (5.22) output strictly passive.

Proof Define the system

�z : ż = f0(z, ξ) +
m∑
j=1

pjfj(z, ξ)

wj = Vz(z)fj(z, ξ) j = 1, . . . ,m
(5.27)

This system, with inputs pj and outputs wj, j = 1, . . . ,m, and modulated by ξ, is
passive with storage function V , since by (5.24)

dV

dt
≤

m∑
j=1

pjwj (5.28)

Hence, the standard feedback interconnection of �z with �ξ defined by u = −w +
v, p = y results in a passive system with storage function V (z) + S(ξ), while u =
−w − y + v, p = y results in output strict passivity. �

Corollary 5.2.2 If V (z) + S(ξ) is positive definite at (z, ξ) = (0, 0), then the feed-
back (5.25) renders the equilibrium (0, 0) stable, while the feedback (5.26) renders
the equilibrium asymptotically stable assuming a zero-state detectability property.
See Chap.3 for further generalizations.

Remark 5.2.3 Let the output functions y = h(z, ξ) be chosen, as well as the drift
vector field f0(z, ξ). Then there exist functions fj(z, ξ), j = 1, . . . ,m, satisfying (5.23)
if and only if the function f (z, ξ) − f0(z, ξ) is zero whenever h(z, ξ) is zero; see the
Notes at the end of this chapter.

The range of applicability of Theorem 5.2.1 is substantially enlarged by relaxing
the condition (i) to the condition that the system (5.22) can be rendered passive by
a preliminary feedback u = �(z, ξ), as formulated in the following corollary.

Corollary 5.2.4 Replace condition (i) in Theorem 5.2.1 by

(i) ′ There exists a preliminary feedback u = �(z, ξ) + u′ such that the system (5.22)
is passive with respect to the output map y = h(z, ξ) and storage function S(ξ).

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Then after this preliminary feedback the results of Theorem 5.2.1 continue to hold
with u replaced by u′.

Example 5.2.5 (Examples4.2.4and 4.2.5 continued)Consider the combineddynam-
ics of the orientation and the angular velocities of a rigid body spinning around its
center of mass as discussed before, cf. (4.43), (4.41),

Ṙ = RS(ω) (5.29)

Iω̇ = −S(ω)Iω + u (5.30)

with I the diagonal matrix containing themoments of inertia along the principal axes.
Recall from Example 4.2.5 that by representing the rotation matrix R ∈ SO(3) in its
Euler parameters (ε, η), the dynamics (5.29) takes the form, cf. (4.48),

[
ε̇
η̇

]
= 1

2

[
ηI3 + S(ε)

−εT

]
ω, (5.31)

evolving on the three-dimensional unit sphere S3 inR4. In Example 4.2.5 it was noted
that the dynamics (5.31), with inputs ω and outputs ε, is lossless with respect to the
storage function V (ε, η) = εTε + (1 − η)2 = 2(1 − η). Moreover, in Example 4.2.4
it was observed that the dynamics (5.30) with inputs u and outputs ω is lossless with
respect to the storage function T(ω) = 1

2ω
TMω (kinetic energy). Hence, the total set

of Eqs. (5.29), (5.30) can be regarded as the cascade (series) interconnection of two
lossless systems. Therefore, closing the loop by setting

u = −ε + e (5.32)

(with e an external input), one obtains a lossless system with inputs e and outputs ω,
with total storage function S(η,ω) := T(ω) + V (η).

5.3 Stabilization by Backstepping

An important case where condition (i)′ of Corollary 5.2.4 is always satisfied occurs
if the ξ-dynamics in (5.22) is of the form

ξ̇ = a(z, ξ) + b(z, ξ)u

with rank b(z, ξ) = m everywhere. In fact, if rank b(z, ξ) = m then the ξ-dynamics
can be feedback transformed into any dynamics.

This motivates the consideration of systems with the following triangular struc-
ture

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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ż = f (z, ξ1)

ξ̇1 = a1(z, ξ1) + b1(z, ξ1)ξ2

ξ̇2 = a2(z, ξ1, ξ2) + b2(z, ξ1, ξ2)ξ3

...

ξ̇k = ak(z, ξ1, . . . , ξk) + bk(z, ξ1, . . . , ξk)u

(5.33)

with ξi ∈ Rm, where it is assumed that rank bi = m, i = 1, . . . , k, everywhere.

Let z = 0, ξ1 = · · · = ξk = 0 be an equilibrium of (5.33), that is, f (0, 0) = 0,
a1(0, 0) = · · · = ak(0, 0) = 0. In order to asymptotically stabilize this equilibrium,
we start by assuming that there exists a virtual feedback

ξ1 = α0(z) (5.34)

such that z = 0 is an asymptotically stable equilibrium of

ż = f (z,α0(z)), (5.35)

having a Lyapunov function V that is positive definite at z = 0. Defining the corre-
sponding virtual output

y1 := ξ1 − α0(z) (5.36)

consideration of Theorem 5.1.5 then leads to rewriting the z-dynamics as

ż = f (z,α0(z) + y1) = f (z,α0(z)) + g(z, y1)y1 (5.37)

Furthermore, the ξ1-dynamics can be replaced by the dynamics for y1 = ξ − α0(z),
given as

ẏ1 = α̇0(z) + a1(z, ξ1) + b1(z, ξ1)ξ2 , (5.38)

which is regarded as a system with virtual input ξ2. This last system can be rendered
output strictly passive with respect to the virtual output y1 and the storage function
1
2‖y1‖2 by setting

ξ2 = b−1
1 (z, ξ1)[α̇0(z) − a1(z, ξ1) − y1 + u], (5.39)

with u a new input. Define

α1(z, ξ1) := b−1
1 (z, ξ1)[α̇0(z) − a1(z, ξ1) − y1 − (Vz(z)g(z, y))T ] (5.40)

Hence by application of Theorem 5.1.5, the virtual feedback

ξ2 = α1(z, ξ1) + b−1
1 (z, ξ1)v, (5.41)
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with v another new input, will result in the system

ż = f (z,α0(z)) + g(z, y1)y1

ẏ1 = −y1 − (Vz(z)g(z, y1))T + v,
(5.42)

which is output strictly passive with storage function

S1(z, ξ) := V (z) + 1

2
‖y1‖2 (5.43)

Alternatively, returning to the original form

�2 :
{

ż = f (z, ξ1)

ξ̇1 = a1(z, ξ1) + b1(z, ξ1)ξ2
(5.44)

we conclude that by defining
y2 := ξ2 − α1(z), (5.45)

and substituting ξ2 = α1(z, ξ1) + y2 in (5.47) we obtain a system

ż = f (z, ξ1)

ξ̇1 = a1(z, ξ1) + b1(z, ξ1)α1(z, ξ1) + b1(z, ξ1)y2
(5.46)

where z = 0, ξ1 = 0 is an asymptotically stable equilibrium for y2 = 0, with
Lyapunov function S1(z, ξ1). This means that once more we can apply Theorem
5.1.5 to the extended dynamics

�2 :

⎧⎪⎪⎨
⎪⎪⎩

ż = f (z, ξ1)

ξ̇1 = a1(z, ξ1) + b1(z, ξ1)ξ2

ξ̇2 = a2(z, ξ1, ξ2) + b2(z, ξ1, ξ2)ξ3

(5.47)

with virtual input ξ3 and virtual output y2 = ξ2 − α1(z, ξ1). Since its zero-output
constrained dynamics is by construction asymptotically stable with Lyapunov func-
tion S1, it again follows that (5.47) can be transformed into a passive system by the
virtual feedback

ξ3 = α2(z, ξ1, ξ2) + b−1
2 (z, ξ1, ξ2)e3

α2(z, ξ1, ξ2) = b−1
2 (z, ξ1, ξ2)[−a2(z, ξ1, ξ2) + α̇1(z, ξ1) − y2 − b1(z, ξ1)y1]

(5.48)
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This leads to the recursion

yi = ξi − αi−1(z, ξ1, . . . , ξi−1)

αi(z, ξ1, . . . , ξi) =
b−1
i (−ai + α̇i−1 − yi − bi−1(z, ξ1, . . . , ξi−1)yi−1)

i = 1, 2, . . . , k (5.49)

resulting in a feedback transformed system with Lyapunov function

S := Sk = V (z) + 1

2
‖y1‖2 + · · · + 1

2
‖yk‖2 (5.50)

satisfying
dS

dt
≤ −‖y1‖2 − ‖y2‖2 − · · · − ‖yk‖2 (5.51)

This procedure is commonly called (exact) backstepping.

The class of system (5.33) to which the backstepping procedure applies can be
described as follows. The ξ-dynamics of (5.33) (with ξ = (ξ1, . . . , ξk)) is a feedback
linearizable, that is, there exists a feedback u = α(ξ) + β(ξ)v, det β(ξ) �= 0, such
that in suitable new coordinates ξ̃ the system is a linear system (with input v). Hence,
the backstepping procedure applies to the cascade of a system (5.33) which is asymp-
totically stabilizable (by virtual feedback ξ1 = α0(x)), and a feedback linearizable
system.

Necessary and sufficient geometric conditions for feedback linearizability have
been obtained in geometric control theory, see e.g., the textbooks [135, 233] for a
coverage. These conditions imply that the class of feedback linearizable systems is
an important but, mathematically speaking, a thin subset of the set of all systems
(see [335]).

In practice, the recursively defined feedbacks αi, i = 0, 1, . . . , k, in (5.49) tend
to become rather complex, primarily due to the appearance of α̇i in the definition of
αi+1. On the other hand, the procedure can be made more flexible by not insisting
on Lyapunov functions of the precise form Si = V + 1

2‖y1‖2 + · · · + 1
2‖yi‖2, and

by generalizing (5.51). This flexibility can be also exploited for avoiding exact can-
celation of terms involving unknown parameters and, in general, for improving the
characteristics of the resulting feedback αk(z1, . . . , zk). We refer again to [312] and
the references quoted in there.

5.4 Notes for Chapter5

1. Sect. 5.1 is based on Byrnes, Isidori & Willems [56].

2. The factorizations in (5.18) and in Remark 5.2.3 are based on the following
fact (see, e.g., Nijmeijer & van der Schaft [233], Lemma 2.23, for a proof): Let
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f : Rn → R be a C∞ function with f (0) = 0. Then f (x1, . . . , xn) =
n∑

i=1
xigi(x),

for certain C∞ functions gi satisfying gi(0) = ∂f
∂xi

(0).

3. The first part of Sect. 5.2 is largely based on Ortega [237], as well as on Sussmann
&Kokotovic [332]. Thebacksteppingprocedure is detailed inSepulchre, Jankovic
and Kokotović [312], and Krstić, Kanellakopoulos and Kokotović [173]; where
many extensions and refinements can be found. Related work is presented in
Marino and Tomei [195].

4. The example in Sect. 5.2 is taken from Dalsmo and Egeland [75], Dalsmo [74].



Chapter 6
Port-Hamiltonian Systems

As described in the previous Chaps. 3 and 4, (cyclo-)passive systems are defined
by the existence of a storage function (nonnegative in case of passivity) satisfying
the dissipation inequality with respect to the supply rate s(u, y) = uTy. In contrast,
port-Hamiltonian systems, the topic of the current chapter, are endowed with the
property of (cyclo-)passivity as a consequence of their system formulation. In fact,
port-Hamiltonian systems arise from first principles physical modeling. They are
defined in terms of a Hamiltonian function together with two geometric structures
(corresponding, respectively, to power-conserving interconnection and energy dis-
sipation), which are such that the Hamiltonian function automatically satisfies the
dissipation inequality.

6.1 Input-State-Output Port-Hamiltonian Systems

An important subclass of port-Hamiltonian systems, especially for control purposes,
is defined as follows.

Definition 6.1.1 An input-state-output port-Hamiltonian systemwithn-dimensional
state space manifold X , input and output spaces U = Y = Rm, and Hamiltonian
H : X → R, is given as1

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.1)

where the n × n matrices J(x),R(x) satisfy J(x) = −JT (x) and R(x) = RT (x) ≥ 0.

By the properties of J(x),R(x), it immediately follows that

1As before, ∂H
∂x (x) denotes the column vector of partial derivatives of H .

© Springer International Publishing AG 2017
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dH
dt (x(t)) = ∂TH

∂x (x(t))ẋ(t) =
− ∂TH

∂x (x(t))R(x(t)) ∂H
∂x (x(t)) + yT (t)u(t) ≤ uT (t)y(t),

(6.2)

implying, cf. Definition 4.1.1, cyclo-passivity and passivity if H ≥ 0.
The Hamiltonian H is is equal to the total stored energy of the system, while

uTy is the externally supplied power. In the definition of a port-Hamiltonian sys-
tem, two geometric structures on the state space X play a role: the internal inter-
connection structure given by J(x), which by skew-symmetry is power-conserving,
and a resistive structure given by R(x), which by nonnegativity is responsible for
internal dissipation of energy. For a further discussion on the mathematical theory
underlying these geometric structures, as well as the port-based modeling origins of
port-Hamiltonian systems, we refer to the Notes at the end of this chapter.

A useful extension of Definition 6.1.1 to systems with feedthrough terms is given
as follows.

Definition 6.1.2 An input-state-output port-Hamiltonian system with feedthrough
terms is specified by an n-dimensional state space manifold X , input and output
spaces U = Y = Rm, Hamiltonian H : X → R, and dynamics

ẋ = [J(x) − R(x)] ∂H
∂x (x) + [G(x) − P(x)] u

y = [G(x) + P(x)]T ∂H
∂x (x) + [M(x) + S(x)] u,

(6.3)

where the matrices J(x),M(x),R(x),P(x), S(x) satisfy the skew-symmetry condi-
tions J(x) = −JT (x),M(x) = −MT (x), and the nonnegativity condition

[
R(x) P(x)
PT (x) S(x)

]
≥ 0, x ∈ X (6.4)

In this case, the power balance (6.2) takes the following form (using skew-symmetry
of J(x),M(x), and exploiting the nonnegativity condition (6.4))

d
dt H(x) = ∂TH

∂x (x)
(
[J(x) − R(x)] ∂H

∂x (x) + [G(x) − P(x)] u
) =

−
[

∂TH
∂x (x) uT

] [ R(x) P(x)
PT (x) S(x)

] [
∂H
∂x (x)
u

]
+ yTu ≤ uTy

(6.5)

leading to the same conclusion regarding (cyclo-)passivity as above.

Remark 6.1.3 Note that by (6.4) P = 0 whenever S = 0 (no feedthrough).

Both (6.3) and (6.5) correspond to a linear resistive structure. The extension to
nonlinear energy dissipation is given next.

Definition 6.1.4 An input-state-output port-Hamiltonian system with nonlinear
resistive structure is given as

ẋ = J(x)z − R(x, z) + g(x)u, z = ∂H
∂x (x)

y = gT (x)z
(6.6)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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where J(x) = −JT (x), and the resistive mapping R(x, ·) : Rn → Rn satisfies

zTR(x, z) ≥ 0, for all z ∈ Rn, x ∈ X (6.7)

Remark 6.1.5 Geometrically z = ∂H
∂x (x) ∈ T∗

xX , with T∗
xX , the co-tangent space of

X at x ∈ X , while ẋ ∈ TxX , the tangent space at x ∈ X . Hence, the resistivemapping
R is defined geometrically as a vector bundle map R : T∗X → TX .

Similarly to (6.2) we obtain

d

dt
H = ∂TH

∂x
(x)ẋ = −∂TH

∂x
(x)R

(
x,

∂H

∂x
(x)

)
+ yTu ≤ uTy, (6.8)

showing again (cyclo-)passivity. We leave the extension to systems with feedthrough
terms to the reader.

Example 6.1.6 Consider a mass–spring–damper system (massm, spring constant k,
momentum p, spring extension q, external force F) subject to ideal Coulomb friction

[
q̇
ṗ

]
=
[
0 1

−1 0

] [
kq
p
m

]
−
[

0
c sign p

m

]
+
[
0
F

]
, (6.9)

where sign is the multivalued function defined by

sign v =
⎧⎨
⎩

1 , v > 0
[−1, 1] , v = 0

−1 , v < 0
(6.10)

and c > 0 is a constant. This defines an input-state-output port-Hamiltonian system
with nonlinear resistive structure defined by the multivalued function c sign . Note
that strictly speaking, this entails a further generalization of Definition 6.1.4 since
the Coulomb friction mapping (6.10) is multivalued. The Hamiltonian H(q, p) =
1
2mp

2 + 1
2kq

2 satisfies

d

dt
H = − p

m
sign

p

m
+ F

p

m
≤ F

p

m
(6.11)

Example 6.1.7 The dynamics of a detailed-balanced mass action kinetics chemical
reaction network can be written as, see the Notes at the end of this chapter for further
information,

ẋ = −ZLExp
(
ZTLn x

x∗
)+ Sbu

y = STb Ln
x
x∗

(6.12)

where x ∈ Rn is the vector of chemical species concentrations, u is the vector of
boundary fluxes, and y is the vector of boundary chemical potentials. Furthermore,
x∗ is a thermodynamic equilibrium, Z is the complex composition matrix, Sb speci-
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fies which are the boundary chemical species, andL is a symmetric Laplacian matrix
(see Definition 4.4.6) on the graph of chemical complexes, with weights determined
by the kinetic reaction constants. Exp and Ln denote the component-wise exponen-
tial and logarithmmappings, i.e., (Exp (x))i = exp xi, (Ln (x))i = ln xi, i = 1, . . . , n.
Similarly, x

x∗ denotes component-wise division of the vector x by the vector x∗. The
Hamiltonian is given by the Gibbs’ free energy, which (up to constants) is equal to

H(x) =
n∑

i=1

xi ln
xi
x∗
i

+
n∑

i=1

(x∗
i − xi), (6.13)

corresponding to the chemical potentials zi = ∂H
∂xi

(x) = ln xi
x∗
i
. Since [299]

γTLExp γ ≥ 0 (6.14)

for all vectors γ, this defines an input-state-output port-Hamiltonian system, with
J = 0 and nonlinear resistive structure given by the mapping z �→ ZTLExp ZTz.

Finally, a linear input-state-output port-Hamiltonian system with feedthrough
terms is given by the following specialization of Definition 6.1.2

ẋ = [J − R]Qx + [G − P] u
y = [G + P]T Qx + [M + S] u

(6.15)

with quadratic Hamiltonian H(x) = 1
2x

TQx, Q = QT , and constant matrices
J,M,R,P, S satisfying J = −JT ,M = −MT and

[
R P
PT S

]
≥ 0 (6.16)

Since subtracting a constant from the Hamiltonian function H does not change the
system, the condition H ≥ 0 can be replaced by H being bounded from below.
Hence based on (6.2), (6.5), (6.8), we can summarize the characterization of
(cyclo-)passivity of input-state-output port-Hamiltonian systems as follows.

Proposition 6.1.8 Any input-state-output port-Hamiltonian system given by one of
the expressions (6.1), (6.3), (6.6), (6.15) is cyclo-passive, and passive if H is bounded
from below, respectively, Q ≥ 0. Furthermore, if the (nonlinear) resistive structure
is absent, then the system is lossless in case H is bounded from below.

In the modeling of physical systems, the port-Hamiltonian formulation directly fol-
lows from the physical structure of the system; see Sects. 6.2 and 6.3 and the Notes
at the end of this chapter for further information. On the other hand, one may still
wonder when the converse of Proposition 6.1.8 holds, i.e., when and how a passive
system can be written as a port-Hamiltonian system. In the linear case, this ques-
tion can be answered as follows. Consider the passive linear system (for simplicity
without feedthrough terms)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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ẋ = Ax + Bu
y = Cx

(6.17)

with positive-definite storage function 1
2x

TQx, i.e.,

ATQ + QA ≤ 0, BTQ = C, Q > 0 (6.18)

Now decompose AQ−1 into its skew-symmetric and symmetric part as

AQ−1 = J − R, J = −JT ,R = RT (6.19)

Then ATQ + QA ≤ 0 implies R ≥ 0, and ẋ = Ax + Bu, y = Cx, can be rewritten
into port-Hamiltonian form ẋ = (J − R)Qx + Bu, y = BTQx. The same result can be
shown to hold for linear passive systems withQ ≥ 0 under the additional assumption
kerQ ⊂ ker A. In this case, one defines F such that A = FQ, and factorizes F into
its skew-symmetric and symmetric part.

On the other hand, since in general the storage matrixQ of a passive system is not
unique, also the interconnection and resistive structure matrices J and R as obtained
in the above port-Hamiltonian formulation are not unique. Hence, if Q is not unique
then there exist essentially different port-Hamiltonian formulations of the same linear
passive system ẋ = Ax + Bu, y = Cx.

For nonlinear systems, the conversion from passive to port-Hamiltonian systems
is more subtle. For example,

ẋ = f (x) + g(x)u
y = h(x)

(6.20)

is lossless with storage function H ≥ 0 iff

∂TH
∂x (x)f (x) = 0

gT (x) ∂H
∂x (x) = h(x)

(6.21)

Nevertheless, the first equality in (6.21) does not imply that there exists a skew-
symmetric matrix J(x) such that f (x) = J(x) ∂H

∂x (x), as illustrated by the next
example.

Example 6.1.9 Consider the system

[
ẋ1
ẋ2

]
=
[

x1
−x2

]
+
[
0
1

]
u

y = x21x2

(6.22)

which is lossless with respect to the storage function H(x1, x2) = 1
2x

2
1x

2
2.

However, it is easy to see that there does not exist a 2 × 2 matrix J(x) = −JT (x),
depending smoothly on x = (x1, x2), such that
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[
x1

−x2

]
= J(x)

[
x1x22
x21x2

]

Hence, the system is not a port-Hamiltonian system with respect to H(x1, x2).

6.2 Mechanical Systems

The port-Hamiltonian formulation of standard mechanical systems directly follows
from classical mechanics. Consider as in Proposition 4.5.1, the Hamiltonian repre-
sentation of fully actuated Euler–Lagrange equations in n configuration coordinates
q = (q1, . . . , qn) given by the 2n-dimensional system

q̇ = ∂H
∂p (q, p), p = (p1, . . . , pn)

ṗ = − ∂H
∂q (q, p) + u, u = (u1, . . . , un)

y = ∂H
∂p (q, p) (= q̇), y = (y1, . . . , yn)

(6.23)

with u the vector of (generalized) external forces and y the vector of (generalized)
velocities. The state space of (6.23) with local coordinates (q, p) is called the phase
space. In most mechanical systems, the HamiltonianH(q, p) is the sum of a positive
kinetic energy and a potential energy

H(q, p) = 1

2
pTM−1(q)p + P(q) (6.24)

It was shown in Proposition 4.5.1 that along every trajectory of (6.23)

H(q(t1), p(t1)) = H(q(t0), p(t0)) +
∫ t1

t0

uT (t)y(t)dt, (6.25)

expressing that the increase in internal energy H equals the work supplied to the
system (uTy is generalized force times generalized velocity, i.e., power). Hence, the
system (6.23) is an input-state-output port-Hamiltonian system, which is lossless if
H is bounded from below. The system description (6.23) can be further generalized to

q̇ = ∂H
∂p (q, p), (q, p) = (q1, . . . , qn, p1, . . . , pn)

ṗ = − ∂H
∂q (q, p) + B(q)u, u ∈ Rm

y = BT (q) ∂H
∂p (q, p) (= BT (q)q̇), y ∈ Rm,

(6.26)
where B(q) is an input force matrix, with B(q)u denoting the generalized forces
resulting from the control inputs u ∈ Rm. If m < n, we speak of an underactuated
mechanical system. Also for (6.26) we obtain the power balance

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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dH

dt
(q(t), p(t)) = uT (t)y(t) (6.27)

A further generalization is obtained by extending (6.26) to input-state-output port-
Hamiltonian systems

ẋ = J(x) ∂H
∂x (x) + g(x)u, J(x) = −JT (x), x ∈ X

y = gT (x) ∂H
∂x (x),

(6.28)

whereX is an n̄-dimensional state space manifold, and J(x) is state-dependent skew-
symmetricmatrix. Note that (6.23) and (6.26) correspond to the full rank and constant
skew-symmetric matrix J given by

J =
[

0 In
−In 0

]
(6.29)

Models (6.28) arise, for example, by symmetry reduction of (6.23) or (6.26). A
classical example is Euler’s equations for the dynamics of the angular velocities of
a rigid body.

Example 6.2.1 (Euler’s equations; Example 4.2.4 continued) Consider a rigid body
spinning around its center of mass in the absence of gravity. In Example 4.2.4, we
already encountered Euler’s equations for the dynamics of the angular velocities.
The Hamiltonian formulation is obtained by considering the body angular momenta
p = (px, py, pz) along the three principal axes, and the Hamiltonian given by the
kinetic energy

H(p) = 1

2

(
p2x
Ix

+ p2y
Iy

+ p2z
Iz

)
, (6.30)

where Ix, Iy, Iz are the principal moments of inertia. The vector p of angular momenta
is related to the vector ω of angular velocities as p = Iω, where I is the diagonal
matrix with positive diagonal elements Ix, Iy, Iz. Euler’s equations are now given as

⎡
⎣ṗxṗy
ṗz

⎤
⎦ =

⎡
⎣ 0 −pz py

pz 0 −px
−py px 0

⎤
⎦

︸ ︷︷ ︸
J(p)

⎡
⎢⎢⎣

∂H
∂px
∂H
∂py
∂H
∂pz

⎤
⎥⎥⎦+

⎡
⎣bxby
bz

⎤
⎦ u (6.31)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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In the scalar input case, the last term bu denotes the torque around an axis with
coordinates b = (bx by bz)T , with corresponding collocated output given as

y = bx
px
Ix

+ by
py
Iy

+ bz
pz
Iz

, (6.32)

which is the velocity around the same axis (bx by bz)T .

Inmany cases (including the one obtained by symmetry reduction from the canon-
ical J given in (6.29)), the dependence of the matrix J on the state x will satisfy the
integrability conditions

n∑
l=1

[
Jlj(x)

∂Jik
∂xl

(x) + Jli(x)
∂Jkj
∂xl

(x) + Jlk(x)
∂Jji
∂xl

(x)

]
= 0, (6.33)

for i, j, k = 1, . . . , n.These integrability conditions are also referred to as the Jacobi-
identity. If these integrability conditions are met, we can construct by Darboux’s
theorem (see e.g., [347]), around any point x0 where the rank of the matrix J(x) is
constant, local coordinates

x̃ = (q, p, s) = (q1, . . . , ql, p1, . . . , pk, s1, . . . sl), (6.34)

with 2k the rank of J and n = 2k + l, such that J in these coordinates takes the form

J =
⎡
⎣ 0 Ik 0

−Ik 0 0
0 0 0

⎤
⎦ (6.35)

The coordinates (q, p, s) are also called canonical coordinates, and J satisfying
(6.33) is called a Poisson structure matrix. Otherwise, it is called an almost-Poisson
structure.

Example 6.2.2 (Example 6.2.1 continued) It can be directly checked that the skew-
symmetric matrix J(p) defined in (6.31) satisfies the Jacobi-identity (6.33). This also
follows from the fact that J(p) is the canonical Lie–Poisson structure matrix on the
dual of the Lie algebra so(3) corresponding to the configuration space SO(3) of the
rigid body; see the Notes at the end of this chapter for further information.

The rest of this section will be devoted to mechanical systems with kinematic con-
straints, which is an important class of systems in applications (for example in robot-
ics). Consider a mechanical system with n degrees of freedom, locally described by
n configuration variables

q = (q1, . . . , qn) (6.36)

Expressing the kinetic energy as 1
2 q̇

TM(q)q̇, with M(q) > 0 being the
generalized mass matrix, we define in the usual way the Lagrangian function
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L(q, q̇) = 1
2 q̇

TM(q)q̇ − P(q), where P is the potential energy. Suppose now that
there are constraints on the generalized velocities q̇, described as

AT (q)q̇ = 0, (6.37)

with A(q) an n × k matrix of rank k everywhere. This means that there are k indepen-
dent kinematic constraints. Classically, the constraints (6.37) are called holonomic
if it is possible to find new configuration coordinates q = (q1, . . . , qn) such that the
constraints are equivalently expressed as

q̇n−k+1 = q̇n−k+2 = · · · = q̇n = 0 , (6.38)

in which case it is possible to eliminate the configuration variables qn−k+1,

. . . , qn, since the kinematic constraints (6.38) are equivalent to the geometric con-
straints constraints

qn−k+1 = cn−k+1, . . . , qn = cn , (6.39)

for constants cn−k+1, . . . , cn determined by the initial conditions. Then the sys-
tem reduces to an unconstrained system in the remaining configuration coordinates
(q1, . . . , qn−k). If it is not possible to find coordinates q such that (6.38) holds (that is,
if we are not able to integrate the kinematic constraints as above), then the kinematic
constraints are called nonholonomic.

The equations of motion for the mechanical system with Lagrangian L(q, q̇) and
kinematic constraints (6.37) are given by the constrained Euler–Lagrange equations

d

dt

(
∂L

∂q̇
(q, q̇)

)
− ∂L

∂q
(q, q̇) = A(q)λ + B(q)u, λ ∈ Rk, u ∈ Rm

AT (q)q̇ = 0, (6.40)

where B(q)u are the external forces applied to the system, for some n × m matrix
B(q), while A(q)λ are the constraint forces. The Lagrange multipliers λ(t) are
uniquely determined by the requirement that the constraints AT (q(t))q̇(t) = 0 are
satisfied for all t.

Defining as before (cf. (4.107)) the generalized momenta

p = ∂L

∂q̇
(q, q̇) = M(q)q̇, (6.41)

the constrained Euler–Lagrange equations (6.40) transform into constrained Hamil-
tonian equations

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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q̇ = ∂H

∂p
(q, p)

ṗ = −∂H

∂q
(q, p) + A(q)λ + B(q)u

y = BT (q)
∂H

∂p
(q, p) (6.42)

0 = AT (q)
∂H

∂p
(q, p)

withH(q, p) = 1
2p

TM−1(q)p + P(q) the total energy.Thus, the kinematic constraints
appear as algebraic constraints on the phase space, and the constrained state space
is given as the following subset of the phase space

Xc =
{
(q, p) | AT (q)

∂H

∂p
(q, p) = 0

}
(6.43)

The algebraic constraints AT (q) ∂H
∂p (q, p) = 0 and constraint forces A(q)λ can be

eliminated in the following way. Since rank A(q) = k, there exists locally an n ×
(n − k) matrix S(q) of rank n − k such that

AT (q)S(q) = 0 (6.44)

Now define p̃ = (p̃1, p̃2) = (p̃1, . . . , p̃n−k, p̃n−k+1, . . . , p̃n) as

p̃1 := ST (q)p, p̃1 ∈ Rn−k

p̃2 := AT (q)p, p̃2 ∈ Rk (6.45)

It is readily checked that (q, p) �→ (q, p̃1, p̃2) is a coordinate transformation. Indeed,
by (6.44) the rowsofST (q) are orthogonal to the rowsofAT (q). In the newcoordinates
the constrained system (6.42) takes the form [293], ∗ denoting unspecified elements,

⎡
⎣ q̇

˙̃p1
˙̃p2

⎤
⎦ =

⎡
⎣ 0n S(q) ∗

−ST (q)
(−pT [Si, Sj](q)

)
i,j

∗
∗ ∗ ∗

⎤
⎦
⎡
⎢⎢⎣

∂H̃
∂q

∂H̃
∂p̃1

∂H̃
∂p̃2

⎤
⎥⎥⎦+

⎡
⎣ 0

0
AT (q)A(q)

⎤
⎦λ +

⎡
⎣ 0
Bc(q)
B(q)

⎤
⎦ u (6.46)

AT (q)
∂H

∂p
= AT (q)A(q)

∂H̃

∂p̃2
= 0

with H̃(q, p̃) the Hamiltonian H expressed in the new coordinates q, p̃. Here Si
denotes the i-th column of S(q), i = 1, . . . , n − k, and [Si, Sj] is the Lie bracket of
Si and Sj, in local coordinates q given as (see e.g., [1, 233])
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[Si, Sj](q) = ∂Sj
∂q

(q)Si(q) − ∂Si
∂q

Sj(q) (6.47)

with ∂Sj
∂q , ∂Si

∂q denoting the n × n Jacobian matrices.

The constraints AT (q) ∂H
∂p (q, p) = 0 are equivalently given as ∂H̃

∂p̃2 (q, p̃) = 0, and

by non-degeneracy of the kinetic energy 1
2p

TM−1(q)p these equations can be solved
for p̃2. Since λ only influences the p̃2-dynamics, the constrained dynamics is thus
determined by the dynamics of q and p̃1 alone (which together serve as coordinates
for the constrained state space Xc), given as

[
q̇
˙̃p1
]

= Jc(q, p̃
1)

[
∂Hc
∂q (q, p̃1)
∂Hc
∂p̃1 (q, p̃1)

]
+
[

0
Bc(q)

]
u (6.48)

Here Hc(q, p̃1) equals H̃(q, p̃) with p̃2 satisfying ∂H̃
∂p̃2 (q, p̃

1, p̃2) = 0, and where the

skew-symmetricmatrix Jc(q, p̃1) is given as the left-upper part of the structurematrix
in (6.46), that is

Jc(q, p̃
1) =

[
On S(q)

−ST (q)
(−pT [Si, Sj](q)

)
i,j

]
, (6.49)

where p is expressed as function of q, p̃, with p̃2 eliminated from ∂H̃
∂p̃2 = 0. Finally,

in the coordinates q, p̃, the output map is given as

y =
[
BT
c (q) B

T
(q)
]⎡⎣ ∂H̃

∂p̃1 (q, p̃
1)

∂H̃
∂p̃2 (q, p̃

1)

⎤
⎦ (6.50)

which reduces on the constrained state space Xc to

y = BT
c (q)

∂H̃

∂p̃1
(q, p̃1) (6.51)

Summarizing, (6.48) and (6.51) define an input-state-output port-Hamiltonian sys-
tem on Xc, with Hamiltonian Hc given by the constrained total energy, and with
structure matrix Jc given by (6.49).

The skew-symmetric matrix Jc defined onXc is an almost-Poisson structure since
it does not necessarily the integrability conditions (6.33). In fact, Jc satisfies the
integrability conditions (6.33), and thus defines a Poisson structure on Xc, if and
only if the kinematic constraints (6.37) are holonomic. In fact, if the constraints are
holonomic then the coordinates s as in (6.34) can be taken equal to the “integrated
constraint functions” qn−k+1, . . . , qn of (6.39).

Example 6.2.3 (Rolling coin) Let x, y be the Cartesian coordinates of the point of
contact of a vertical coin with the plane. Furthermore, ϕ denotes the heading angle
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θ

x

y

(x, y)
ϕϕ

Fig. 6.1 The geometry of the rolling coin

of the coin on the plane, and θ the angle of Willem Alexander’s head; cf. Fig. 6.1.
With all constants set to unity, the constrained Lagrangian equations of motion are

ẍ = λ1

ÿ = λ2

θ̈ = −λ1 cosϕ − λ2 sinϕ + u1 (6.52)

ϕ̈ = u2

where u1 is the control torque about the rolling axis, and u2 the control torque about
the vertical axis. The rolling constraints are

ẋ = θ̇ cosϕ, ẏ = θ̇ sinϕ (6.53)

(rolling without slipping). The energy is H = 1
2p

2
x + 1

2p
2
y + 1

2p
2
θ + 1

2p
2
ϕ, and

the kinematic constraints can be rewritten as px = pθ cosϕ, py = pθ sinϕ. Define
according to (6.45) new p-coordinates

p1 = pϕ

p2 = pθ + px cosϕ + py sinϕ

p3 = px − pθ cosϕ (6.54)

p4 = py − pθ sinϕ

The constrained state space Xc is given by p3 = p4 = 0, and the dynamics on Xc is
computed as
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⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
ϕ̇
ṗ1
ṗ2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 cosϕ
0 sinϕ

O4 0 1
1 0

0 0 0 −1 0 0
− cosϕ − sinϕ −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hc
∂x
∂Hc
∂y
∂Hc
∂θ
∂Hc
∂ϕ

∂Hc
∂p1
∂Hc
∂p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.55)

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
u1
u2

]

[
y1
y2

]
=
[
0 1
1 0

][ ∂Hc
∂p1
∂Hc
∂p2

]
=
[
1
2p2
p1

]

whereHc(x, y, θ,ϕ, p1, p2) = 1
2p

2
1 + 1

4p
2
2. (Note that

∂Hc
∂p2

= 1
2p2 = pθ.) It can be ver-

ified that the structure matrix Jc in (6.55) does not satisfy the integrability conditions,
in accordance with the fact that the rolling constraints (rolling without slipping) are
nonholonomic.

6.3 Port-Hamiltonian Models of Electromechanical
Systems

This section will contain a collection of characteristic examples of port-Hamiltonian
systems arising in electromechanical systems, illustrating theuse of port-Hamiltonian
models for multi-physics systems. In most of the examples the interaction between
the mechanical and the electrical part of the system will take place through the
Hamiltonian function, which will depend in a non-separable way on state variables
belonging to the mechanical and variables belonging to the electrical domain.

Example 6.3.1 (Capacitor microphone [230]) Consider the capacitor microphone
depicted in Fig. 6.2.

The capacitanceC(q) of the capacitor is varying as a function of the displacement
q of the right plate (with massm), which is attached to a spring (with spring constant
k > 0) and a damper (with constant d > 0), and affected by a mechanical force F
(air pressure arising from sound). Furthermore, E is a voltage source. The equations
of motion can be written as the port-Hamiltonian system
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Fig. 6.2 Capacitor
microphone

E

F

C

R

⎡
⎣ q̇

ṗ
Q̇

⎤
⎦ =

⎛
⎝
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦−

⎡
⎣0 0 0
0 d 0
0 0 1/R

⎤
⎦
⎞
⎠
⎡
⎢⎢⎣

∂H
∂q
∂H
∂p
∂H
∂Q

⎤
⎥⎥⎦

+
⎡
⎣ 0
1
0

⎤
⎦F +

⎡
⎣ 0

0
1/R

⎤
⎦E

y1 = ∂H
∂p = q̇

y2 = 1
R

∂H
∂Q = I

(6.56)

where p is the momentum, R the resistance of the resistor, I the current through the
voltage source, and the Hamiltonian H is the total energy

H(q, p,Q) = 1

2m
p2 + 1

2
k(q − q̄)2 + 1

2C(q)
Q2, (6.57)

with q̄ denoting the rest length of the spring. Note that the electric energy 1
2C(q)Q

2

not only depends on the electric charge Q, but also on the q-variable belonging to
the mechanical part of the system. Furthermore

d

dt
H = −cq̇2 − RI2 + Fq̇ + EI ≤ Fq̇ + EI, (6.58)

with Fq̇ the mechanical power and EI the electrical power supplied to the system.
In the application as a microphone the voltage over the resistor will be used (after
amplification) as a measure for the mechanical force F. Finally, we note that the
same model can be used for an electrical micro-actuator. In this case, the system
is controlled at its electrical side in order to produce a certain desired force at its
mechanical side. This physical phenomenon of bilateral operation will be also evi-
dent in the following examples.
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Fig. 6.3 Magnetically
levitated ball

ϕ

m

Example 6.3.2 (Magnetically levitated ball) Consider the dynamics of an iron ball
that is levitated by the magnetic field of a controlled inductor as schematically
depicted in Fig. 6.3. The port-Hamiltonian description of this system (with q the
height of the ball, p the vertical momentum, and ϕ the magnetic flux linkage of the
inductor) is given as

⎡
⎣q̇ṗ

ϕ̇

⎤
⎦ =

⎡
⎣ 0 1 0

−1 0 0
0 0 −R

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∂H

∂q
∂H

∂p
∂H

∂ϕ

⎤
⎥⎥⎥⎥⎥⎥⎦

+
⎡
⎣00
1

⎤
⎦ V

I = ∂H

∂ϕ

(6.59)

Although at first instance the mechanical and the magnetic part of the system look
decoupled, they are actually coupled via the Hamiltonian

H(q, p,ϕ) = mgq + p2

2m
+ ϕ2

2L(q)
, (6.60)

where the inductance L(q) depends on the height q. In fact, the magnetic energy ϕ2

2L(q)
depends both on the flux ϕ and the mechanical variable q. As a result, the right-hand
side of the second equation (describing the evolution of the mechanical momentum
variable p) depends on the magnetic variable ϕ, and conversely the right-hand side
of the third equation (describing the evolution of the magnetic variable ϕ) depends
on the mechanical variable q.
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Example 6.3.3 (Permanent magnet synchronous motor [242]) A state vector for a
permanent magnet synchronous motor (in rotating reference (dq) frame) is defined
as

x = M

⎡
⎣ id
iq
ω

⎤
⎦ , M =

⎡
⎣
Ld 0 0
0 Lq 0
0 0 j

np

⎤
⎦ (6.61)

composed of themagnetic flux linkages andmechanical momentum (with id, iq being
the currents, and ω the angular velocity), Ld,Lq stator inductances, j the moment of
inertia, and np the number of pole pairs. The Hamiltonian H(x) is given as H(x) =
1

2
xTM−1x. This leads to a port-Hamiltonian formulation with J(x),R(x) and g(x)

determined as

J(x) =
⎡
⎣ 0 L0x3 0

−L0x3 0 −�q0

0 �q0 0

⎤
⎦ ,

R(x) =
⎡
⎣RS 0 0

0 RS 0
0 0 0

⎤
⎦ , g(x) =

⎡
⎣
1 0 0
0 1 0
0 0 − 1

np

⎤
⎦ ,

(6.62)

with RS the stator winding resistance, �q0 a constant term due to interaction of the
permanent magnet and the magnetic material in the stator, and L0 := Ldnp/j. The

three inputs are the stator voltages
(
vd, vq

)T
and the (constant) load torque. Outputs

are id, iq, and ω. The system can also operate as a dynamo, converting mechanical
power into electrical power.

Example 6.3.4 (Synchronous machine) The standard eight-dimensional model for
the synchronous machine, as described, e.g., in [177], can be written in port-
Hamiltonian form as (see [98] for details)

⎡
⎢⎢⎣

ψ̇s

ψ̇r

ṗ
θ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−Rs 033 031 031
033 −Rr 031 031
013 013 −d −1
013 013 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂H
∂ψs

∂H
∂ψr

∂H
∂p
∂H
∂θ

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣
I3 031 031
033 e1 031
013 0 1
013 0 0

⎤
⎥⎥⎦
⎡
⎣Vs

Vf

τ

⎤
⎦

⎡
⎣IsIf

ω

⎤
⎦ =

⎡
⎣ I3 033 031 031
013 eT1 0 0
013 013 1 0

⎤
⎦

⎡
⎢⎢⎢⎢⎣

∂H
∂ψs

∂H
∂ψr

∂H
∂p
∂H
∂θ

⎤
⎥⎥⎥⎥⎦ ,

(6.63)



6.3 Port-Hamiltonian Models of Electromechanical Systems 129

where 0lk denotes the l × k zero matrix, I3 denotes the 3 × 3 identity matrix, and
e1 is the first basis vector of R3. This defines a port-Hamiltonian input-state-output
system with Poisson structure matrix J(x) given by the constant matrix

J =
⎡
⎣066 062

026
0 −1
1 0

⎤
⎦ , (6.64)

and resistive structure matrix R(x), which is also constant, having diagonal blocks

Rs =
⎡
⎣rs 0 0
0 rs 0
0 0 rs

⎤
⎦ , Rr =

⎡
⎣rf 0 0
0 rkd 0
0 0 rkq

⎤
⎦ , d, 0, (6.65)

denoting, respectively, the stator resistances, rotor resistances, andmechanical fric-
tion. The state variables x of the synchronous machine comprise of

• ψs ∈ R
3, the stator fluxes,

• ψr ∈ R
3, the rotor fluxes: the first one corresponding to the field winding and the

remaining two to the damper windings,
• p, the angular momentum of the rotor,
• θ, the angle of the rotor.

Moreover,Vs ∈ R
3, Is ∈ R

3 are the three-phase stator terminal voltages and currents,
Vf , If are the rotor field winding voltage and current, and τ ,ω are the mechanical
torque and angular velocity.

The synchronous machine is designed depending on two possible modes of oper-
ation: synchronous generator or synchronous motor. In the first case, mechanical
power is converted to electrical power (supplied to an electrical transmission net-
work); see Fig. 6.4 for a schematic view. Conversely, in the synchronous motor case
electrical power is drawn from the power grid in order to deliver mechanical power.

The Hamiltonian H (total stored energy of the synchronous machine) is the sum
of the magnetic energy of the machine and the kinetic energy of the rotating rotor,
given as the sum of the two nonnegative terms

Fig. 6.4 The state and port
variables of the synchronous
generator

Synchronous Generator

θ ψs

p ψr

excitation
system

ω

τ

Vs

Is

Vf If

mechanical
power

electrical
power
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H(ψs,ψr, p, θ) = 1
2

[
ψT
s ψT

r

]
L−1(θ)

[
ψs

ψr

]
+ 1

2Jr
p2

= magnetic energy Hm + kinetic energy Hk,

(6.66)

where Jr is the rotational inertia of the rotor, and L(θ) is an 6 × 6 inductancematrix.
In the round rotor case (no saliency; cf. [177, 192])

L(θ) =
[

Lss Lsr(θ)
LT
sr(θ) Lrr

]
(6.67)

where

Lss=
⎡
⎣ Laa −Lab −Lab

−Lab Laa −Lab
−Lab −Lab Laa

⎤
⎦ , Lrr =

⎡
⎣Lffd Lakd 0
Lakd Lkkd 0
0 0 Lkkq

⎤
⎦ (6.68)

while

Lsr(θ) =
⎡
⎣ cos θ cos θ − sin θ
cos(θ − 2π

3 ) cos(θ − 2π
3 ) − sin(θ − 2π

3 )

cos(θ + 2π
3 ) cos(θ + 2π

3 ) − sin(θ + 2π
3 )

⎤
⎦×

⎡
⎣Lafd 0 0

0 Lakd 0
0 0 Lakq

⎤
⎦

(6.69)

A crucial feature of the magnetic energy term Hm in the Hamiltonian H is its depen-
dency on the mechanical rotor angle θ; see the formula (6.69) for Lsr(θ). This depen-
dence is responsible for the interaction between the mechanical domain of the gen-
erator (the mechanical motion of the rotor) and the electromagnetic domain (the
dynamics of the magnetic fields in the rotor and stator), and thus for the functioning
of the synchronous machine as an energy-conversion device, transforming mechan-
ical power into electrical power, or conversely (Fig. 6.4).

The synchronous machine is connected to its environment by three types of ports;
see Fig. 6.4. In the case of operation as a synchronous generator, the scalarmechani-
cal portwith power variables τ ,ω is to be interconnected to a prime mover, such as a

Fig. 6.5 DC motor
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ω
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turbine. This port is also used for control purposes, e.g., via so-called droop control.
Second, there are three stator terminal ports, with vectors of power variables Vs, Is.
Third, there is the port with scalar power variables Vf , If , which is responsible for
the magnetization of the rotor, and which is controlled by an excitation system.

Example 6.3.5 (DC motor) The system depicted in Fig. 6.5 consists of five ideal
modeling subsystems: an inductorLwith stateϕ (flux), a rotational inertia J with state
p (angular momentum), a resistor R and friction b, and a gyrator K . The Hamiltonian
(corresponding to the linear inductor and inertia) reads as H(p,ϕ) = 1

2Lϕ2 + 1
2J p

2.
The linear resistive relations are VR = −RI, τd = −bω, withR, b > 0 and τd a damp-
ing torque. The equations of the gyrator (convertingmagnetic power intomechanical,
and conversely) are

VK = −Kω, τ = KI (6.70)

withK the gyrator constant. The subsystems are interconnectedby the equationsVL +
VR + VK + V = 0 (and equal currents), as well as τJ + τd + τ = 0 (with common
angular velocity), leading to the port-Hamiltonian input-state-output system

[
ϕ̇
ṗ

]
=
[−R −K
K −b

]⎡⎢⎣
ϕ

L
p

J

⎤
⎥⎦+

[
1
0

]
V

I = [1 0
]
⎡
⎢⎣

ϕ

L
p

J

⎤
⎥⎦ .

(6.71)

Note that, as in the case of the synchronous machine, the system can operate in two
modes: either as a motor (converting electrical power into mechanical power) or as a
dynamo (converting rotational motion and mechanical power into electrical current
and power).

6.4 Properties of Port-Hamiltonian Systems

A crucial property of a port-Hamiltonian system is cyclo-passivity, and passivity if
the Hamiltonian satisfies H ≥ 0. Apart from this, the port-Hamiltonian formulation
also reveals other structural properties. The first one is the existence of conserved
quantities, which are determined by the structure matrices J(x),R(x).

Definition 6.4.1 ACasimir function for an input-state-output port-Hamiltonian sys-
tem (6.1) or (6.3) is any function C : X → R satisfying

∂TC

∂x
(x) [J(x) − R(x)] = 0, x ∈ X (6.72)
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It follows that for u = 0

d

dt
C = ∂TC

∂x
(x) [J(x) − R(x)]

∂H

∂x
(x) = 0, (6.73)

and thus a Casimir function is a conserved quantity of the system for u = 0, inde-
pendently of the Hamiltonian H. Note furthermore that if C1, . . . ,Cr are Casimirs,
then also the composed function �(C1, . . . ,Cr) is a Casimir for any � : Rr → R.
Finally, the existence of Casimirs C1, . . . ,Cr entails the following invariance prop-
erty of the dynamics: any subset

{x | C1(x) = c1, . . . ,Cr(x) = cr} (6.74)

for arbitrary constants c1, . . . , cr is an invariant subset of the dynamics.

Proposition 6.4.2 C : X → R is a Casimir function for (6.1) or (6.3) if and only if

∂TC

∂x
(x)J(x) = 0 and

∂TC

∂x
(x)R(x) = 0, x ∈ X (6.75)

Proof The “if” implication is obvious. For the converse we note that (6.72) implies
by skew-symmetry of J(x)

0 = ∂TC

∂x
(x) [J(x) − R(x)]

∂C

∂x
(x) = −∂TC

∂x
(x)R(x)

∂C

∂x
(x), (6.76)

and therefore, in view of R(x) ≥ 0, ∂TC
∂x (x)R(x) = 0, and thus also ∂TC

∂x (x)
J(x) = 0. �

Hence, the vectors ∂C
∂x (x) of partial derivatives of the Casimirs C are contained in the

intersection of the kernels of the matrices J(x) and R(x) for any x ∈ X , implying that
the maximal number of independent number of Casimirs is always bounded from
above by dim (ker J(x) ∩ ker R(x)). Equality, however, need not be true because of
lack of integrability of J(x) and/or R(x); see Example 6.4.4 below and the Notes at
the end of this chapter.

Example 6.4.3 (Example 6.2.1 continued) Consider Euler’s equations for the angu-
lar momenta of a rigid body, with J being given by (6.31) and R = 0. It follows that
C(p1, p2, p3) = p2x + p2y + p2z (the squared total angular momentum) is a Casimir
function.

Example 6.4.4 (Example 6.2.3 continued) The pde’s (6.72) for the existence of a
Casimir function take the form

∂C
∂p1

= ∂C
∂p2

= ∂C
∂φ

= 0

∂C
∂x cosφ + ∂C

∂y sin φ + ∂C
∂θ

= 0
(6.77)
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This can be seen not to possess a non-trivial solution C, due to the non-holonomicity
of the kinematic constraints.

The definition of Casimir C for (6.1) can be further strengthened by requiring that
d
dt C = 0 for all input values u. This leads to the stronger condition

∂TC

∂x
(x)J(x) = 0,

∂TC

∂x
(x)R(x) = 0,

∂TC

∂x
(x)g(x) = 0, x ∈ X (6.78)

A second property of the dynamics of port-Hamiltonian systems, which is closely
connected to the structure matrix J(x) and its integrability conditions (6.33) is
volume-preservation. Indeed, consider the case R(x) = 0, and let us assume that
(6.33) is satisfied with rank J(x) = dimX = n, implying the existence of local coor-
dinates (q, p) such that (see (6.35))

J =
[

0 Ik
−Ik 0

]
(6.79)

with n = 2k. Define the divergence of any set of differential equations

ẋi = Xi(x1, . . . , xn), i = 1, . . . , n, (6.80)

in a set of local coordinates x1, . . . , xn as

div(X)(x) =
n∑

i=1

∂Xi

∂xi
(x) (6.81)

Denote the solution trajectories of (6.80) from x(0) = x0 by x(t; x0) = Xt(x0), t ≥ 0.
Then it is a standard fact that the maps Xt : Rn → Rn are volume-preserving, that
is,

det

[
∂Xt

∂x
(x)

]
= 1, for all x, t ≥ 0, (6.82)

if and only if div(X)(x) = 0 for all x. Returning to the Hamiltonian dynamics

ẋ = J(x)
∂H

∂x
(x), (6.83)

with J given by (6.79) it is easily verified that the divergence in the (q, p)-coordinates
is everywhere zero, and hence the solutions of (6.83) preserve the standard volume
in (q, p)-space. In case rank J(x) < dimX and there exist local coordinates (q, p, s)
as in (6.35), then the divergence is still zero, and it follows that the Hamiltonian
dynamics (6.83) preserves the standard volume in (q, p, s)-space, with the additional
property that on any (invariant) level set
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Fig. 6.6 LC-circuit

Q

C

ϕ1 ϕ2

V

L1 L2

s1 = c1, . . . , s� = cl (6.84)

the volume in (q, p)-coordinates is preserved.

Example 6.4.5 (LC-circuit) Consider the LC-circuit (see Fig. 6.6) consisting of two
inductors with magnetic energies H1(ϕ1),H2(ϕ2) (ϕ1 and ϕ2 being the magnetic
flux linkages), and a capacitor with electric energy H3(Q) (Q being the charge). If
the elements are linear then H1(ϕ1) = 1

2L1
ϕ2
1, H2(ϕ2) = 1

2L2
ϕ2
2 and H3(Q) = 1

2CQ
2.

Furthermore, V = u denotes a voltage source. Using Kirchhoff’s current and voltage
laws one immediately arrives at the port-Hamiltonian system formulation

⎡
⎣ Q̇

ϕ̇1

ϕ̇2

⎤
⎦ =

⎡
⎣ 0 1 −1

−1 0 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣

∂H
∂Q
∂H
∂ϕ1

∂H
∂ϕ2

⎤
⎥⎥⎦+

⎡
⎣0
1
0

⎤
⎦ u (6.85)

y = ∂H

∂ϕ1
(= current through first inductor)

with H(Q,ϕ1,ϕ2) := H1(ϕ1) + H2(ϕ2) + H3(Q) the total energy. Clearly, the
matrix J is skew-symmetric, and since J is constant it trivially satisfies (6.33). The
quantityϕ1 + ϕ2 (total flux linkage) can be seen to be aCasimir function. The volume
in (Q,ϕ1,ϕ2)-space is preserved.

Finally, let us comment on the implications of the port-Hamiltonian structure
for the use of Brockett’s necessary condition for asymptotic stabilizability. Loosely
speaking, Brockett’s necessary condition [51] tells us that a necessary condition
for asymptotic stabilizability of a nonlinear system ẋ = f (x, u), f (0, 0) = 0, using
continuous state feedback is that the image of the map (x, u) �→ f (x, u), for x and
u arbitrarily close to zero, should contain a neighborhood of the origin. Applica-
tion to input-state-output port-Hamiltonian systems leads to the following necessary
condition for asymptotic stabilizability.

Proposition 6.4.6 Consider the input-state-output port-Hamiltonian system (6.3)
with equilibrium x0. A necessary condition for asymptotic stabilizability around x0
is that for every ε > 0
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∪{x;||x−x0||<ε} (im [J(x) − R(x)] + im [G(x) − P(x)]) = Rn (6.86)

As an application of this result, we note that the port-Hamiltonian system (6.48)
arising from a mechanical system with kinematic constraints does never satisfy the
necessary condition (6.86). Indeed, by the specific forms of J , R = 0, and g, see
(6.48) and (6.49),

im [J(x) − R(x)] + im [G(x) − P(x)] ⊂ im

[
S(q)
0

]
+ im

[
0

In−k

]
(6.87)

where rank S(q) = n − k, q ∈ Q. After possibly reordering the rows of S(q)wemay
without loss of generality assume that

S(q) =
[
S1(q)
S2(q)

]
(6.88)

with the (n − k) × (n − k) matrix S2(q) of full rank n − k in a neighborhood of the
equilibrium position vector of interest, and therefore the rows of S1 depending on the

rows of S2. It follows that vectors of the form

[∗
0

]
, with 0 the (n − k)-dimensional

zero-vector, can not be in the image of S(q), and hence not in im [J(x) − R(x)] +
im [G(x) − P(x)]. Hence,
Corollary 6.4.7 Mechanical systems with kinematic constraints (6.48) are not
asymptotically stabilizable using continuous feedback.

Forholonomic kinematic constraints this is not surprising, since in this casewe should
first eliminate the conserved quantities q̄n−k+1. . . . , q̄n as in (6.39) from the system
(6.48). However, since for nonholonomic kinematic constraints such an elimination
is not possible, the above observation indeed entails an important obstruction for
asymptotic stabilization2 of mechanical systems with nonholonomic constraints.

For a further discussion of the dynamical properties of port-Hamiltonian systems,
we refer to the extensive literature on this topic; see the references quoted in the
Notes at the end of this chapter. Still another use of the port-Hamiltonian structure
will be provided separately in the next section.

6.5 Shifted Passivity of Port-Hamiltonian Systems

In many cases of interest, the desired set-point of a port-Hamiltonian system is not
equal to the minimum of the Hamiltonian function H (an equilibrium of the system
for zero-input), but instead is a steady-state value corresponding to a nonzero constant

2However, asymptotic feedback stabilization using discontinuous or time-varying feedback may
still be possible.
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input. (We already encountered the same scenario in Chap.4 in the context of passive
systems.) This motivates the following developments.

Proposition 6.5.1 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3), together with a constant input ū with corresponding steady-
state x̄ determined by

0 = [J(x̄) − R(x̄)]
∂H

∂x
(x̄) + [G(x̄) − P(x̄)] ū (6.89)

Denote

ȳ = [G(x̄) + P(x̄)]T
∂H

∂x
(x̄) + [M(x̄) + S(x̄)] ū (6.90)

Suppose we can find coordinates x in which the system matrices J(x),M(x),
R(x),P(x), S(x),G(x) are all constant. Then the system can be rewritten as

ẋ = [J − R] ∂Ĥx̄
∂x (x) + [G − P] (u − ū)

y − ȳ = [G + P]T ∂Ĥx̄
∂x (x) + [M + S] (u − ū)

(6.91)

with respect to the shifted Hamiltonian3 defined as

Ĥx̄(x) := H(x) − ∂TH

∂x
(x̄)(x − x̄) − H(x̄) (6.92)

If H is convex in the coordinates x, then Ĥx̄ has a minimum at x = x̄ (with value 0),
and the port-Hamiltonian system is passive with respect to the shifted supply rate
s(u, y) = (u − ū)T (y − ȳ), with storage function Ĥx̄.

Proof Observe that
∂Ĥx̄

∂x
(x) = ∂H

∂x
(x) − ∂H

∂x
(x̄) (6.93)

Adopting the shorthand notation z = ∂H
∂x (x) and z̄ = ∂H

∂x (x̄), we obtain

d
dt Ĥx̄ = (z − z̄)T [(J − R)z + (G − P)u]
= (z − z̄)T [(J − R)(z − z̄) + (G − P)(u − ū)]

= − [(z − z̄)T (u − ū)T
] [ R P

PT S

] [
(z − z̄)
(u − ū)

]
+ (u − ū)T (y − ȳ)

≤ (u − ū)T (y − ȳ),

(6.94)

showing passivity with respect to the shifted supply rate (u − ū)T (y − ȳ). Finally,
Ĥx̄(x̄) = 0 and convexity of H is equivalent to

3Note that the function Ĥx̄ admits the following geometric interpretation. Consider the surface in
Rn+1 defined by H , and the tangent plane at the point (x̄,H(x̄) ∈ Rn to this surface. Then Ĥx̄(x) is
the vertical distance above the point x ∈ Rn from this tangent plane to the surface.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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H(x) ≥ ∂TH

∂x
(x̄)(x − x̄) + H(x̄), for all x, x̄, (6.95)

implying that Ĥx̄(x) ≥ 0, x ∈ X . �
Recall from Chap.4, cf. (4.159), that the property of being passive with respect to the
shifted supply rate (u − ū)T (y − ȳ) is referred to as shifted passivity. It follows from
Proposition 6.5.1 that with constant system matrices J,M,R,P, S,G and a convex
Hamiltonian H the input-state-output port-Hamiltonian system with feedthrough
term is shifted passive with respect to any constant ū for which there exists a steady-
state x̄ (and corresponding ȳ).

Remark 6.5.2 The function Ĥx̄(x), regarded as a function of x and x̄, is known in
convex analysis as the Bregman divergence or Bregman distance. It also appears
as the availability function in thermodynamics (dating back to the classical work
of Gibbs [113]), and was introduced in the present context in [146]. Note that the
definition of Ĥx̄ (as well as the notion of a convex function) depends on the choice
of coordinates x for the state space X .

Example 6.5.3 Consider themodel of a power network formulated in Example 4.4.4;
see (4.87). Identifying the Hamiltonian with the storage function already defined4 in
(4.88)

H(q, p) = 1

2
pTJ−1p −

M∑
j=1

γj cos qj, (6.96)

the system takes the port-Hamiltonian form

[
q̇
ṗ

]
=
[

0 DT

−D −A

][ ∂H
∂q (q, p)
∂H
∂p (q, p)

]
+
[
0
u

]

y = ∂H
∂p (q, p)

(6.97)

The steady-state (q̄, p̄) corresponding to constant input ū is determined by

0 = DT ∂H
∂p (q̄, p̄)

0 = D ∂H
∂q (q̄, p̄) + A ∂H

∂p (q̄, p̄) + ū
(6.98)

Assuming the graph to be connected the first equation leads to ∂H
∂p (q̄, p̄) = 1ω∗, with

ω∗ ∈ R a common frequency deviation. Furthermore, by premultiplying the second
equation by the row-vector 1T of all ones,

0 = ω∗
N∑
i=1

Ai +
N∑
i=1

ūi, p̄ = J1ω∗, (6.99)

4The matrix J in the Hamiltonian refers to the inertia of the generators; not to be confused with the
Poisson structure.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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determining ω∗, and thus p̄, as a function of the total generated and consumed power∑
ūi. Finally, the steady-state vector q̄ of phase angle differences is determined by

0 = D�Sin q̄ − A1

∑N
i=1 ūi∑N
i=1 Ai

+ ū (6.100)

(Note that by boundedness of the mapping Sin this does not have a solution for large
ū.) Defining the shifted Hamiltonian as in (6.92) yields

Ĥ(q̄,p̄)(q, p) = 1
2 (p − p̄)TJ−1(p − p̄) −∑M

j=1γj cos qj
−∑M

j=1γj sin q̄j(qj − q̄j) +∑M
j=1γj cos q̄j

(6.101)

It follows that the system is shifted passive with respect to the shifted supply rate
(u − ū)T (y − ȳ) and storage function Ĥ(q̄,p̄), with ȳ = ∂H

∂p (q̄, p̄) = J−1p̄ = 1ω∗.

If no coordinates exist in which the matrices J(x),M(x),R(x),P(x), S(x),G(x) are
all constant, the analysis for nonzero ū becomes much harder. Define the combined
interconnection and resistive structure matrix

K(x) :=
[ −J(x) + R(x) −G(x) + P(x)
GT (x) + PT (x) M(x) + S(x)

]
(6.102)

Proposition 6.5.4 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3), and a steady-state triple ū, x̄, ȳ. Then the system is shifted
passive with storage function Ĥx̄ if5

[
∂TH
∂x (x) − ∂TH

∂x (x̄) uT − ūT
](

K(x)

[
∂H
∂x (x)
u

]
− K(x̄)

[
∂H
∂x (x̄)
ū

])
≥ 0 (6.103)

for all x, u.

Proof By direct computation of d
dt Ĥx̄; see [97]. �

Furthermore, shifting with respect to constant inputs ū can still be done if the input
matrix g(x) of the port-Hamiltonian system (6.1) satisfies the following integrability
conditionwith respect to the combined geometric structure J(x) − R(x). Assume that
for each j-th column gj(x) of the inputmatrix g(x) there exists a functionCj : X → R
such that

gj(x) = − [J(x) − R(x)]
∂Fj

∂x
(x), j = 1, . . . ,m (6.104)

Then for any constant ū, the dynamics of the port-Hamiltonian system (6.1) can be
rewritten as

5SinceK(x) + KT (x) ≥ 0 the condition (6.103) is automatically satisfied in caseK does not depend
on x.
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ẋ = [J(x) − R(x)]
∂H̃

∂x
(x) + g(x)(u − ū), (6.105)

with

H̃(x) := H(x) −
m∑
j=1

Fj(x)ūj (6.106)

(In case of constant matrices J,R, g one verifies that H̃(x) = Ĥx̄, where x̄ is the
steady-state corresponding to ū.) However, in general this does not imply passivity
with respect to the shifted supply rate (u − ū)T (y − ȳ), with ȳ the steady-state output
value. Nevertheless, the condition is useful especially in case part of the inputs can be
considered as constant “disturbances” ū, with remaining other inputs v corresponding
to the dynamics

ẋ = [J(x) − R(x)]
∂H

∂x
(x) + b(x)v + g(x)ū (6.107)

for some input matrix b(x). In this case, satisfaction of (6.104) allows one to rewrite
the system as

ẋ = [J(x) − R(x)]
∂H̃

∂x
(x) + b(x)v (6.108)

which is port-Hamiltonian with respect to the inputs v and corresponding outputs
z = bT (x) ∂H̃

∂x (x).
Finally, let us come back to the notion of the steady-state input–output relation as

defined in Chap.4, cf. (4.31). In the port-Hamiltonian case, one obtains the following
result

Proposition 6.5.5 Consider an input-state-output port-Hamiltonian system with
feedthrough terms (6.3). Its steady-state input–output relation is given as

{(ū, ȳ) | ∃x̄ s.t. 0 = [J(x̄) − R(x̄)] ∂H
∂x (x̄) + [G(x̄) − P(x̄)]ū,

ȳ = [G(x̄) + P(x̄)]T ∂H
∂x (x̄) + [M(x̄) + S(x̄)]ū } (6.109)

In particular, if [J(x̄) − R(x̄)] is invertible, the steady-state input–output relation is
given as the graph of the mapping (from ū to ȳ)

ȳ = −[G(x̄) + P(x̄)]T (J(x̄) − R(x̄))−1 [G(x̄) − P(x̄)]ū + [M(x̄) + S(x̄)]ū
(6.110)

which is linear in case the matrices J,R,G,P,M, S are all constant.

Note that the matrix in (6.110) is equal to the Schur complement of the matrix K(x̄)
defined in (6.102) with respect to its left-upper block. Since the symmetric part of
K(x̄) is ≥ 0, this Schur complement inherits the same positivity property.

Proposition 6.5.5 can be extended to input-state-output port-Hamiltonian systems
with nonlinear resistive structure as in Definition 6.1.4. For example, the steady-state
input–output relation corresponding to the port-Hamiltonian system

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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ẋ = −R(z) + u, y = z, z = ∂H

∂x
(x) (6.111)

with the nonlinear resistive mapping R satisfying (6.7), is given by

{(ū, ȳ) | ū = R(ȳ)} (6.112)

provided for each ū there exists a steady-state x̄ such that ū = R( ∂H
∂x (x̄)).

6.6 Dirac Structures

In Chap.3, the definition of dissipativitywas extended to differential-algebraic equa-
tion (DAE) systems F(ẋ, x, w) = 0, withw denoting the vector of external variables
(inputs and outputs).

Similarly, in this and the next section we show how the definition of input-state-
output port-Hamiltonian systems can be extended to the DAE case. This extension
is crucial from a modeling point of view, since first principles modeling of physical
systems often leads to DAE systems. This stems from the fact that in many modeling
approaches the system under consideration is naturally regarded as obtained from
interconnecting simpler subsystems. These interconnections often give rise to alge-
braic constraints between the state space variables of the subsystems; thus leading
to DAE systems.

The key to define port-Hamiltonian DAE systems is the geometric notion of a
Dirac structure, formalizing the concept of a power-conserving interconnection, and
generalizing the notion of an (almost-)Poisson structure matrix J(x) as encountered
before.

Let us return to the basic setting of passivity (see Chap.2), starting with a finite-
dimensional linear space and its dual, with the duality product defining power. Thus,
let F be an �-dimensional linear space, and denote its dual (the space of linear
functions on F) by E := F∗. We call F the space of flows f , and E the space of
efforts e. On the product space F × E , power is defined by

< e | f >, (f , e) ∈ F × E, (6.113)

where < e | f > denotes the duality product, that is, the linear function e ∈ E = F∗
acting on f ∈ F .

Remark 6.6.1 Recall from Chap.2 that ifF is endowed with an inner-product struc-
ture <,>, then E = F∗ can be identified with F in such a way that < e | f >=
< e, f >, f ∈ F , e ∈ E � F .

Example 6.6.2 LetF be the space of generalized velocities, and E = F∗ the space of
generalized forces, then< e | f > is mechanical power. Similarly, letF be the space
of currents, and E = F∗ be the space of voltages, then < e | f > is electrical power.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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In multi-body systems one considers the space of twists F = se(3) (the Lie algebra
of the matrix special Euclidian group SE(3)), with E = F∗ = se∗(3) the space of
wrenches.

As already introduced in Sect. 2.4, there exists on F × E a canonically defined sym-
metric bilinear form

 (f1, e1), (f2, e2) �:=< e1 | f2 > + < e2 | f1 > (6.114)

for fi ∈ F , ei ∈ E, i = 1, 2. Now consider a subspace

D ⊂ F × E (6.115)

and its orthogonal companionD⊥⊥ with respect to the bilinear form , � onF × E ,
defined as

D⊥⊥ = {(f , e) ∈ F × E | (f , e), (f̃ , ẽ) �= 0 for all (f̃ , ẽ) ∈ D} (6.116)

Clearly, if D has dimension d, then the subspace D⊥⊥ has dimension 2 dimF − d
(since  , � is a non-degenerate form on F × E , and furthermore dimF × E =
2 dimF).

Definition 6.6.3 A subspace D ⊂ F × E is a (constant) Dirac structure if

D = D⊥⊥ (6.117)

It immediately follows that the dimension of any Dirac structureD is equal to dimF .
Furthermore, let (f , e) ∈ D = D⊥⊥. Then by (6.114)

0 = (f , e), (f , e) �= 2 < e | f >= 0 (6.118)

Hence, a Dirac structureD defines a power-conserving relation between the variables
(f , e) ∈ F × E . Conversely, we obtain
Proposition 6.6.4 Let F be a finite-dimensional linear space. Then D ⊂ F × E is
a Dirac structure if and only if < e | f >= 0 for all (f , e) ∈ D, and D is a maximal
subspace with this property. In particular, for any subspace D ⊂ F × E satisfying
< e | f >= 0 for all (f , e) ∈ D we have dimD ≤ dimF , while D satisfying < e |
f >= 0 for all (f , e) ∈ D is a Dirac structure if and only if dimD = dimF .

Proof First, consider any subspace D ⊂ F × E satisfying < e | f >= 0 for all
(f , e) ∈ D. Let (f1, e1), (f2, e2) ∈ D. Then also (f1 + f2, e1 + e2) ∈ D, and thus

0 = < e1 + e2 | f1 + f2 > =
< e1 | f2 > + < e2 | f1 > + < e1 | f1 > + < e2 | f2 > =
< e1 | f2 > + < e2 | f1 > =  (f1, e1), (f2, e2) �

(6.119)

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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Hence, D ⊂ D⊥⊥. In view of (6.118), we have thus proved that < e | f >= 0 for
all (f , e) ∈ D if and only if D ⊂ D⊥⊥. Furthermore, D ⊂ D⊥⊥ implies dimD ≤
dimD⊥⊥ = 2 dimF − dimD, and hence dimD ≤ dimF . Conversely, if dimD =
dimF thenD = D⊥⊥, andD is a Dirac structure. Hence, we have proved the second
claim, and the “only if” direction of the first claim using (6.118). For the “if” direction
of the first claim we use again that< e | f >= 0 for all (f , e) ∈ D impliesD ⊂ D⊥⊥.
Now suppose that D � D⊥⊥. Then we can non-trivially extend D to a subspace D′
such that D′ ⊂ D′⊥⊥, and thus D is not maximal. �

Remark 6.6.5 The condition dim D = dimF is intimately related to the statement
that a physical interconnection can not determine at the same time both the flow and
effort (e.g., current and voltage, or velocity and force).

Constant Dirac structures admit different matrix representations.

Proposition 6.6.6 Let D ⊂ F × E , with dim F = �, be a constant Dirac structure.
Take linear coordinates for F and dual coordinates for E = F∗, resulting in F �
Rm � E . Then D can be represented in any of the following ways.

1. (Kernel and Image representation)

D = {(f , e) ∈ F × E | Ff + Ee = 0} (6.120)

for � × � matrices6 F and E satisfying

(i) EFT + FET = 0

(ii) rank [F...E] = �
(6.121)

Equivalently in image representation,

D = {(f , e) ∈ F × E | ∃λ ∈ R� s.t. f = ETλ, e = FTλ} (6.122)

Conversely, for any � × � matrices F and E satisfying (6.121), the subspaces
(6.120) and (6.122) are Dirac structures.

2. (Constrained input–output representation)

D = {(f , e) ∈ F × E | ∃λ s.t. f = Je + Gλ, GTe = 0} (6.123)

for an � × � skew-symmetric matrix J, and a matrix G such that im G = {f |
(f , 0) ∈ D}. Furthermore, ker J = {e | (0, e) ∈ D}. Conversely, for any G and
skew-symmetric J the subspace (6.123) is a Dirac structure.

3. (Hybrid input–output representation).
Let D be given as in (6.120). Suppose rank F = �1 ≤ �. Select �1 independent

6We may also allow F and E to be l′ × l matrices with l′ ≥ l, and satisfying (6.121). This is called
a relaxed kernel representation.
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columnsofF, andgroup them into amatrixF1.Write (possibly after permutations)

F = [F1
...F2], and correspondingly E = [E1

...E2], f =
[
f 1

f 2

]
, e =

[
e1

e2

]
. Then the

matrix [F1
...E2] can be shown to be invertible, and

D =
{[

f 1

f 2

]
,

[
e1

e2

]
|
[
f 1

e2

]
= J

[
e1

f 2

]}
(6.124)

where J := −[F1
...E2]−1[F2

...E1] is skew-symmetric. Conversely, for any skew-
symmetric J the subspace (6.124) is a Dirac structure.

4. (Canonical coordinate representation)
There exist linear coordinates (q, p, r, s) forF such that in these coordinates and
dual coordinates for E = F∗, (f , e) = (fq, fp, fr, fs, eq, ep, er, es) ∈ D if and only
if

fq = ep, fp = −eq
fr = 0, es = 0

(6.125)

Proof (1) It is directly checked that (6.122) defines a Dirac structure. Since by

(6.121) im

[
ET

FT

]
= ker [F...E], also (6.120) defines the same Dirac structure. Con-

versely, any �-dimensional subspace D can be written as D = im

[
ET

FT

]
for some

� × � matrices F,E satisfying rank [F...E] = �. If D is a Dirac structure then 0 =
eT f = (FTλ)TETλ = λTFETλ for allλ ∈ R�. This is equivalent toEFT + FET = 0.
(2)ConsiderD given by (6.123) with J = −JT . Then eT f = eT (Je + Gλ) = eTJe +
eTGλ = (GTe)Tλ = 0. Hence, D ⊂ D⊥⊥. Let now (f̃ , ẽ) be such that 0 =
(f , e), (f̃ , ẽ) � for all (f , e) ∈ D, i.e., f = Je + Gλ,GTe = 0. Then

0 = eT f̃ + ẽT f = eT f̃ + ẽT (Je + Gλ)

for all λ and e with GTe = 0. First take e = 0. Then 0 = ẽTGλ for all λ, implying
thatGT ẽ = 0.Hence, 0 = eT f̃ + ẽT Je = eT (f̃ − Jẽ) for all ewithGTe = 0, implying
that f̃ = Jẽ + Gλ̃, for some λ̃. ThusD⊥⊥ ⊂ D, and thereforeD⊥⊥ = D. On the other
hand, take any Dirac structure D ⊂ F × E . Define the following subspace of E

ED = {e ∈ E | ∃f s.t. (f , e) ∈ D} (6.126)

It can be checked that

E⊥
D = {f ∈ F | (f , 0) ∈ D}, (6.127)

where⊥ denotes orthogonalitywith respect to the duality product< | >. Furthermore,
select any subspace ĒD complementary to ED ⊂ E , i.e.,
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E = ED ⊕ ĒD

Define any matrix G such that ED = ker GT . Define the linear map J : E → F as
follows. Define J to be zero on ĒD. In view of (6.127), there exists for any e ∈ ED a
unique f ∈ Ē⊥

D such that (f , e) ∈ D.Define Je = f . Since (f , e) ∈ Dwehave eT f = 0,
implying skew-symmetry of J . It is readily checked that D is given as in (6.123).
(3) By skew-symmetry of J it directly follows that D defined by (6.124) is a Dirac
structure. With regard to all remaining statements, see [47].
(4) See [72]. �

Remark 6.6.7 One may also convert any matrix representation into any other one.
For example, start from a Dirac structureD given in constrained input–output repre-
sentation (6.123). Define G⊥ as a matrix of maximal rank such that G⊥G = 0 and
with independent rows. Then D is equivalently given in kernel representation as

D = {(f , e) |
[−G⊥

0

]
f +

[
G⊥J
GT

]
e = 0} (6.128)

Example 6.6.8 The combination of Kirchhoff’s current and voltage laws for an
electrical circuit constitute an example of a constrained input–output representation
(6.123) of a Dirac structure. Let F be the space of currents I through the edges of
the circuit graph, and E = F∗ the space of voltages V across the edges. Let D be the
N × M incidence matrix of the circuit graph (N nodes/vertices,M branches/edges).
Then Kirchhoff’s current and voltage laws define the Dirac structure

D := {(I, V ) ∈ RM × RM | DI = 0, ∃λ ∈ RN s.t. V = DTλ}, (6.129)

which is in constrained input–output representation (6.123), with J = 0 and G =
DT . Defining a matrix E such that im DT = ker E one obtains the relaxed kernel
representation DI = 0,EV = 0.

Given a Dirac structure D ⊂ F × E , one can define the following subspaces of F ,
respectively, E ,

G0 := {f ∈ F | (f , 0) ∈ D}
G1 := {f ∈ F | ∃e ∈ E s.t. (f , e) ∈ D}
P0 := {e ∈ E | (0, e) ∈ D}
P1 := {e ∈ E | ∃f ∈ F s.t. (f , e) ∈ D}

(6.130)

It can be readily checked that

P0 = G⊥
1 := {e ∈ E |< e | f >= 0, ∀f ∈ G1}

P1 = G⊥
0 := {e ∈ E |< e | f >= 0, ∀f ∈ G0} (6.131)
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With D expressed in kernel/image representation (6.120), (6.122) one obtains

G1 = im ET , P0 = ker E
P1 = im FT , G0 = ker F

(6.132)

The subspace G1 expresses the set of admissible flows f , and P1 the set of admissible
efforts e. The first subspace will turn out to be instrumental in the determination of
the Casimirs of a port-Hamiltonian DAE system in the next section, and the second
subspace in the characterization of its algebraic constraints.

Another key property of Dirac structures is the fact that the composition of Dirac
structures is again a Dirac structure. In the next section, this will lead to the fun-
damental property that any power-conserving interconnection of port-Hamiltonian
DAE systems defines another port-Hamiltonian DAE system. We will start by show-
ing that the composition of two Dirac structures is again a Dirac structure. This
readily implies that the power-conserving interconnection of any number of Dirac
structures is a Dirac structure.

Thus let us consider a Dirac structure DA ⊂ F1 × F2 × E1 × E2, and another
Dirac structure DB ⊂ F2 × F3 × E2 × E3. The space F2 is the space of shared flow
variables, and E2 is the space of shared effort variables; see Fig. 6.7.

Consider the interconnection equations (the minus sign included for a consistent
power flow convention)

fA = −fB ∈ F2, eA = eB ∈ E2 (6.133)

Then the composition DA ◦ DB of the Dirac structures DA and DB is defined as

DA ◦ DB :=
{
(f1, e1, f3, e3) ∈ F1 × E1 × F3 × E3 | ∃(f2, e2) ∈ F2 × E2
s.t. (f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB

} (6.134)

The next theorem is proved in [63].

Theorem 6.6.9 Let DA ⊂ F1 × E1 × F2 × E2 and DB ⊂ F2 × E2 × F3 × E3
be Dirac structures. Then DA ◦ DB ⊂ F1 × E1 × F3 × E3 is a Dirac structure.
(We refer to the next Sect. 6.7, see in particular (6.165), how this extends to the
composition of multiple Dirac structures.) The following explicit expression can be
given for the composition of two Dirac structures in terms of their kernel/image
representation.

f1

e1

f3

e3

fA

eA

fB

eB

DA DB

Fig. 6.7 The composition of DA and DB
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Proposition 6.6.10 ConsiderDirac structuresDA ⊂ F1 × E1 × F2 × E2,DB ⊂ F2 ×
E2 × F3 × E3, given in combined kernel representation

[
F1 E1 F2A E2A 0 0
0 0 −F2B E2B F3 E3

]
⎡
⎢⎢⎢⎢⎢⎢⎣

f1
e1
f2
e2
f3
e3

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (6.135)

Then define

M =
[

F2A E2A

−F2B E2B

]
(6.136)

and let LA, LB be matrices such

L = [LA LB
]
, ker L = im M

Then a relaxed kernel representation of DA ◦ DB is obtained by premultiplying
(6.135) by the matrix L, resulting in

LAF1f1 + LAE1e1 + LBF3f3 + LBE3e3 = 0

In many cases of interest, the notion of a constant Dirac structure D ⊂ F × E , with
F and E = F∗ linear spaces, is not sufficient for modeling purposes. We already
observed this for input-state-output port-Hamiltonian systems, where the matrices
J,R,P, S,M in (6.3) were allowed to be state-dependent. Furthermore, in many
examples the state spaceX is not a linear space, but instead a manifold. In particular,
this often occurs for 3-D mechanical systems. In such cases, the notion of a con-
stant Dirac structure given in Definition 6.6.3 needs to be extended to the following
definition of Dirac structures on manifolds.

Definition 6.6.11 Let X be a manifold. A Dirac structure D on X is a vector sub-
bundle of the Whitney sum7 TX ⊕ T∗X such that

D(x) ⊂ TxX × T∗
xX

is for every x ∈ X a constant Dirac structure as before.

Simply put, a Dirac structure on a manifold X is point-wise (for every x ∈ X ) a
constant Dirac structure D(x) ⊂ TxX × T∗

xX .
Most of the preceding theory concerning constantDirac structures can be extended

to Dirac structures on manifolds. In particular, the kernel and image, constrained

7The Whitney sum of two vector bundles with the same base space is defined as the vector bundle
whose fiber above each element of this common base space is the product of the fibers of each
individual vector bundle.
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input–output, and hybrid input–output representation of Proposition 6.6.6 carry over
to the case of a Dirac structure on a manifold; the difference being that the matrices
involved may be depending on x, and that the representations may exist only locally
on the state space manifold X .

In particular, given a Dirac structure D on a manifold X and any point x0 ∈ X
there exists a coordinate neighborhood of x0 such that for x within this coordinate
neighborhood

D(x) = {(f , e) ∈ TxX × T∗
xX | F(x)f + E(x)e = 0} (6.137)

for � × � matrices F(x) and E(x) satisfying

E(x)FT (x) + F(x)ET (x) = 0, rank[F(x)
...E(x)] = �, (6.138)

or equivalently,

D(x) = {(f , e) ∈ TxX × T∗
xX | f = ET (x)λ, e = FT (x)λ,λ ∈ R�} (6.139)

Conversely, for any � × � matrices F(x) and E(x) satisfying (6.138), the subspaces
(6.137) and (6.139) define locally a Dirac structure on X .

Furthermore, D may be locally represented as

D(x) = {(f , e) ∈ TxX × T∗
xX | ∃λ s.t. f = J(x)e + G(x)λ, GT (x)e = 0},

(6.140)

for an � × � skew-symmetric matrix J(x), and a matrix G(x). Conversely, for any
G(x) and skew-symmetric J(x) (6.140) defines locally a Dirac structure.

Finally, starting from (6.137) we may locally split the flows f and e, and corre-
spondingly F(x),E(x), in such a way that

D(x) = {(f , e) ∈ TxX × T∗
xX =

{[
f 1

f 2

]
,

[
e1

e2

]
|
[
f 1

e2

]
= J(x)

[
e1

f 2

]}
(6.141)

where J(x) := −[F(x)1
...E(x)2]−1[F(x)2

...E(x)1] is skew-symmetric. Conversely, for
any skew-symmetric J(x) as above (6.141) defines locally a Dirac structure.

On the other hand, the canonical coordinate representation (6.125) is not always
possible for a Dirac structure D on a manifold X . In fact, analogously to the inte-
grability conditions (6.33) characterizing J(x) to be a Poisson structure for which
canonical coordinates as in (6.35) can be found, one can formulate integrability
conditions on D which (together with a constant rank assumption) are necessary
and sufficient for the local existence of canonical coordinates representing D as in
(6.125). We refer to the Notes at the end of this chapter for further information.
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The subspaces G0,G1,P0,P1 defined for a constant Dirac structure in (6.130)
generalize for a Dirac structure D on X to the distributions, respectively,
co-distributions, on X

G0(x) := {f ∈ TxX | (f , 0) ∈ D(x)}
G1(x) := {f ∈ TxX | ∃e ∈ T∗

xX s.t. (f , e) ∈ D(x)}
P0(x) := {e ∈ T∗

xX | (0, e) ∈ D(x)}
P1(x) := {e ∈ T∗

xX | ∃f ∈ TxX s.t. (f , e) ∈ D(x)}
(6.142)

The integrability of the distributions G0,G1 and co-distributions P0,P1 on X is
implied by the integrability of the Dirac structure D; see again the Notes at the end
of this chapter.

Also, the theory regarding composition of constant Dirac structures can be
extended to Dirac structures on manifolds; we refer to the next section for the appro-
priate setting.

6.7 Port-Hamiltonian DAE Systems

From a network modeling perspective (see also the Notes at the end of this chapter),
lumped-parameter physical systems are naturally described by a set of ideal energy-
storing elements, a set of energy-dissipatingor resistive elements, and a set of external
ports by which interaction with the environment can take place. All of them are
interconnected to each other by a power-conserving interconnection, see Fig. 6.8.

This power-conserving interconnection includes idealpower-conserving elements
such as (in the electrical domain) transformers, gyrators, or (in the mechanical
domain) transformers, kinematic pairs, and kinematic constraints. Power-conserving
elements do not store energy, nor dissipate energy, but instead route the energy flow.

Associated with the energy-storing elements are state variables x1, . . . , xn, being
coordinates for some n-dimensional state space manifold X , and a total energy H :
X → R. The power-conserving interconnection is formalized by a Dirac structure

Fig. 6.8 Port-Hamiltonian
DAE system

environment

elements

portsenergy-
storing
elements

power-
conserving

interconnection

resistive
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relating the flows and efforts of the energy-storing, energy-dissipating elements and
external ports

D(x) ⊂ TxX × T∗
xX × FR × ER × FP × EP, x ∈ X , (6.143)

where (fS, eS) ∈ TxX × T∗
xX are the flows and efforts of the energy-storing elements,

(fR, eR) ∈ FR × ER are the flows and efforts of the energy-dissipating elements, and
finally (fP, eP) ∈ FP × EP are the flows and efforts of the external ports.

Remark 6.7.1 Geometrically, D is a Dirac structure on the manifold X × FR ×
FP, which is invariant under translation along FR,FP directions, and therefore only
depending on x ∈ X . See also [41, 218].

In the case of a linear state space X and a constantDirac structureD, the expression
(6.143) simplifies to

D ⊂ FS × ES × FR × ER × FP × EP (6.144)

where FS = X , ES = X ∗. The equally dimensioned vectors of flow variables and
effort variables of the energy-storing elements are given as

ẋ(t) = dx

dt
(t),

∂H

∂x
(x(t)), t ∈ R, (6.145)

which are equated with fS, eS by8

fS = −ẋ
eS = ∂H

∂x (x)
(6.146)

Furthermore, fR, eR are related by a (static) energy-dissipating (resistive) relation,
which can be any subset R ⊂ FR × ER, satisfying the property

eTRfR ≤ 0, for all (fR, eR) ∈ R (6.147)

This leads to the following.

Definition 6.7.2 A port-Hamiltonian DAE system is defined by a Dirac structureD
as in (6.143), a Hamiltonian H : X → R, and an energy-dissipating relation R ⊂
FR × ER satisfying (6.147). The dynamics is given by the requirement that for all
t ∈ R (− dx

dt (t),
∂H
∂x (x(t)), fR(t), eR(t), fP(t), eP(t)

) ∈ D(x(t))
(fR(t), eR(t)) ∈ R (6.148)

It is directly verified that this definition includes the definitions of input-state-output
port-Hamiltonian systems as given before, cf. (6.1), (6.3), (6.6), (6.15), as special

8The minus sign is inserted in order to have a consistent power flow convention.
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cases (with inputs u and outputs y given by (fP, eP). However, in general Definition
6.7.2 entails algebraic constraints on the state variables x.

By the power-conservation property of a Dirac structure (6.118) and (6.147), any
port-Hamiltonian DAE system satisfies the energy-balance

dH
dt (x(t)) = < ∂H

∂x (x(t)) | ẋ(t) >=
= eTRfR(t) + eTP(t)fP(t) ≤ eTP(t)fP(t),

(6.149)

as was the case for input-state-output port-Hamiltonian systems. Thus port-
Hamiltonian DAE systems are cyclo-passive with respect to the supply rate eTPfP,
and passive if H is bounded from below.

The algebraic constraints that are present in a port-Hamiltonian DAE system
are determined by the distribution P1 defined by D (cf. (6.142)), as well as by the
Hamiltonian H. In fact, the condition

(
∂H

∂x
(x), eR, eP

)
∈ P1(x), x ∈ X , (6.150)

may entail algebraic constraints on the state x.
On the other hand, the Casimir functions C : X → R of the port-Hamiltonian

DAE system (6.148) are determined by the distributionG1. Indeed, dCdt = ∂TC
∂x (x)ẋ =

0 if and only ∂TC
∂x (x)fS = 0 for all fS for which there exists fR, fP such that (fS, fR, fP) ∈

G1(x). Furthermore, C is a Casimir for fP = 0 if and only if ∂TC
∂x (x)fS = 0 for all fS

for which there exists fR such that (fS, fR, 0) ∈ G1(x).
Definition 6.7.2 is a geometric, coordinate-free, definition. Equational represen-

tations of port-Hamiltonian DAE systems are obtained by choosing a coordinate
representation of the Dirac structure D as in (6.143). In case the Dirac structure D
is given in kernel representation

D(x) = {(fS, fR, fP, eS, eR, eP) | FS(x)fS + ES(x)eS+
FR(x)fR + ER(x)eR + FP(x)fP + EP(x)eP = 0} (6.151)

for matrices FS(x),ES(x),FR(x),ER(x),FP(x),EP(x) satisfying

(i) ESFT
S + FSET

S + ERFT
R + FRET

R + EPFT
P + FPET

P = 0

(ii) rank

[
FS

...FR
...FP

...ES
...ER

...EP

]
= dimF (6.152)

this leads to the following specification of algebraic constraints and Casimirs. With
respect to the algebraic constraints, we notice that

eS ∈ im FT
S (x), (6.153)
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implying the algebraic constraints

∂H

∂x
(x) ∈ im FT

S (x) (6.154)

With respect to the Casimirs we notice that

fS ∈ im ET
S (x), (6.155)

implying that C : X → R is a Casimir function if and only if dC
dt (x(t)) = ∂TC

∂x (x(t))
ẋ(t) = 0 for all ẋ(t) ∈ im ET

S (x(t)). Hence, C is a Casimir of the port-Hamiltonian
DAE system (6.148) if and only if it satisfies the set of pde’s

ES(x)
∂C

∂x
(x) = 0, x ∈ X (6.156)

Finally, C is a Casimir function for fP = 0 if and only if ∂TC
∂x (x)ES(x)λ = 0 for all λ

such that ET
P (x)λ = 0. As a result, C is a Casimir function for fP = 0 if and only if

it satisfies the conditions

ES(x)
∂C

∂x
(x) ∈ im EP(x), x ∈ X (6.157)

Example 6.7.3 Consider the LC-circuit of Example 6.4.5 without voltage source
(V = 0), and where the two inductors are replaced by two capacitors with charges
Q1,Q2, and dually the capacitor is replaced by an inductor with flux linkage ϕ. This
does not change the Dirac structure (determined by Kirchhoff’s current and voltage
laws). However, while the original LC-circuit has a Casimir ϕ1 + ϕ2, in the present
LC-circuit there is the algebraic constraint

∂H

∂Q1
(Q1,Q2,ϕ) + ∂H

∂Q2
(Q1,Q2,ϕ) = 0 (6.158)

constraining the state variables Q1,Q2.

Example 6.7.4 The constrained Hamiltonian equations (6.42) can be viewed as a
port-Hamiltonian DAE system, with respect to the Dirac structure D given in con-
strained input–output representation (6.123) as

D = {(fS, fP, eS, eP) | 0 = AT (q)eS, eP = BT (q)eS,

−fS =
[

0 In
−In 0

]
eS +

[
0

A(q)

]
λ +

[
0

B(q)

]
fP, λ ∈ Rk}

(6.159)
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The kinematic constraints correspond to the following algebraic constraints on the
state variables (q, p)

0 = AT (q)
∂H

∂p
(q, p), (6.160)

while the Casimir functions C for u = 0 are determined by the equations

∂TC

∂q
(q)q̇ = 0, for all q̇ satisfying AT (q)q̇ = 0 (6.161)

Hence, finding a Casimir function amounts to (partially) integrating the kinematic
constraints AT (q)q̇ = 0. In particular, if the kinematic constraints are holonomic,
and thus can be expressed as in (6.38), then q̄n−k+1, . . . , q̄n generate all the Casimir
functions.

The results concerning composition of Dirac structures as treated in the previous
Sect. 6.6 imply that any power-conserving interconnection of port-Hamiltonian sys-
tems is again a port-Hamiltonian system. Indeed, let us consider k port-Hamiltonian
DAE systems specified by Dirac structures

Di(xi) ⊂ TxiXi × T∗
xiXi × F i

R × E i
R × F i

P × E i
P, xi ∈ Xi, i = 1, . . . , k (6.162)

together with Hamiltonians and energy-dissipating relations

Hi : Xi → R, Ri ⊂ F i
R × E i

R, i = 1, . . . , k (6.163)

Furthermore, define an interconnection Dirac structure

DI ⊂ F1
P × E1

P × · · · × F k
P × Ek

P × F e
P × Ee

P (6.164)

with F e
P, Ee

P spaces of external flows and efforts. DI specifies the way the flows and
efforts f iP, e

i
P of the composing systems are connected to each other and to the new

external flows and efforts f eP , eeP in a power-conserving manner. The composition
through the shared flows and efforts in F1

P × E1
P × · · · × F k

P × Ek
P defines a new

Dirac structure

(D1(x1) × · · · × Dk(xk)) ◦ DI ⊂ TxX × T∗
xX × FR × ER × F e

P × Ee
P (6.165)

(note that this amounts to the composition of two Dirac structures), where

x ∈ X := X1 × · · · × Xk, FR := F1
R × · · · × F k

R, ER := E1
R × · · · × Ek

R (6.166)

As a result, the interconnected system is again a port-Hamiltonian DAE system on
the product state space X with Hamiltonian H : X → R given as H(x) = H1(x1) +
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· · · + Hk(xk), and with energy-dissipating relation R given as the direct product of
R1, . . . ,Rk .

Example 6.7.5 (PID control) Consider the standard Proportional–Integral-
Derivative (PID) controller

yc = kPuc + kI

∫
ucdt + kDu̇c (6.167)

for certain positive constants kP, kI , kD. Trivially rewriting (6.167) as

kDu̇c = −kPuc − kI

∫
ucdt + yc, (6.168)

and defining ξ = ∫ ucdt (or equivalently ξ̇ = uc) and η = kDuc, the PID-controller
can be formulated as the linear input-state-output9 port-Hamiltonian system

[
ξ̇
η̇

]
=
[
0 1

−1 −kP

] [
kIξ
η
kD

]
+
[
0
1

]
yc

uc = [0 1
] [kIξ

η
kD

] (6.169)

with Hamiltonian Hc(ξ, η) = 1
2kIξ

2 + 1
2kD

η2.
Considering any plant input-state-output port-Hamiltonian system as in (6.1)

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.170)

the closed-loop system arising from standard feedback u = −yc, uc = y with the
PID-controller is given by the port-Hamiltonian DAE system

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u[

ξ̇
η̇

]
=
[
0 1

−1 −kP

] [
kIξ
η
kD

]
−
[
0
1

]
u

0 = gT (x) ∂H
∂x (x) − [0 1

] [kIξ
η
kD

] (6.171)

with total Hamiltonian H(x) + 1
2kIξ

2 + 1
2kD

η2. This port-Hamiltonian system is in
constrained input–output representation (6.123),withu acting as a vector ofLagrange
multipliers.

9Note that yc serves as an input to (6.169) and uc as an output, contrary to the intuitive use of a
PID-controller, where uc equals the output of the plant system and −yc is the input applied to the
plant system. This is of course caused by the fact that the D-action involves a differentiation.
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We close this section by indicating two direct extensions from the input-state-
output port-Hamiltonian case to the DAE case. The first concerns shifted passivity.
Consider a port-Hamiltonian DAE system for which we can find coordinates in
which theDirac structure is constant. Furthermore, assume that the resistive structure
R is linear. A steady-state x̄, corresponding to steady-state values f̄R, ēR, f̄P, ēP, is
characterized by

(
0,

∂H

∂x
(x̄), f̄R, ēR, f̄P, ēP

)
∈ D, (f̄R, ēR) ∈ R (6.172)

Using now the linearity of D and R, we can subtract (6.172) from (6.148), so as to
obtain

(−ẋ(t),
∂H

∂x
(x(t)) − ∂H

∂x
(x̄),

fR(t) − f̄R, eR(t) − ēR, fP(t) − f̄P, eP(t) − ēP) ∈ D
(fR(t) − f̄R, eR(t) − ēR) ∈ R

(6.173)

Similar to Proposition 6.5.1, this defines a shifted port-Hamiltonian system with
respect to the sameDirac structureD and resistive structureR, and with Hamiltonian
given by the shifted Hamiltonian function Ĥx̄, and shifted external port variables
fP − f̄P, eP − ēP.

The second extension concerns the notion of steady-state input–output relation
(4.31). For a port-Hamiltonian DAE system, � this relation is given as

�ss = {(f̄P, ēP) | ∃x̄, f̄R, ēR such that(
0, ∂H

∂x (x̄), f̄R, ēR, f̄P, ēP
) ∈ D(x̄), (f̄R, ēR) ∈ R} (6.174)

It directly follows that ēTP f̄P ≥ 0 for all (f̄P, ēP) ∈ �ss.

6.8 Port-Hamiltonian Network Dynamics

Section4.4 already presented a treatment of passive network systems. In this section
we will go one step further, by identifying large classes of network systems as port-
Hamiltonian systems, where the Dirac structure of the network system is determined
by the network interconnection structure.

Let us start with some basic notions regarding graphs, extending the background
already provided in Sect. 4.4. Like in Sect. 4.4 “graph” throughout means “directed
graph.” Given a graph, we define its vertex space �0 as the vector space of all
functions from V to some linear spaceR. In the examples,R will be mostlyR = R

in which case �0 can be identified with R
N . Furthermore, we define the edge space

�1 as the vector space of all functions from E toR. Again, ifR = R then �1 can be
identifiedwithR

M . The dual spaces of�0 and�1 will be denoted by�0, respectively,
by �1. The duality pairing between f ∈ �0 and e ∈ �0 is given as

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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< f | e >=
∑
v∈V

< f (v) | e(v) > , (6.175)

where < | > on the right-hand side denotes the duality pairing between R and R∗.
A similar expression holds for f ∈ �1 and e ∈ �1 (with summation over the edges).

The incidence matrix D of the graph induces a linear map D̂ from the edge space
to the vertex space as follows. Define D̂ : �1 → �0 as the linear map with matrix
representation D ⊗ I , where I : R → R is the identity map and ⊗ denotes the Kro-
necker product. D̂ will be called the incidence operator. For R = R the incidence
operator reduces to the linear map given by the matrixD itself, in which case we will
throughout use D both for the incidence matrix and for the incidence operator. The
adjoint map of D̂ is denoted as

D̂∗ : �0 → �1,

and is called the coincidence operator. ForR = R
3 the coincidence operator is given

by DT ⊗ I3, while forR = R the coincidence operator is simply given by the trans-
posed matrix DT , and we will throughout use DT both for the co-incidence matrix
and for the coincidence operator.

In order to define open network systems we will identify a subset Vb ⊂ V of
boundary vertices. The remaining subsetVi := V − Vb are called the internal vertices
of the graph.

The splitting of the vertices into internal and boundary vertices induces a splitting
of the vertex space and its dual, given as

�0 = �0i ⊕ �0b, �0 = �0i ⊕ �0b, (6.176)

where �0i is the vertex space corresponding to the internal vertices and �0b the
vertex space corresponding to the boundary vertices. Consequently, the incidence
operator D̂ : �1 → �0 splits as

D̂ = D̂i ⊕ D̂b, (6.177)

with D̂i : �1 → �0i and D̂b : �1 → �0b. For R = R we will simply write

D =
[
Di

Db

]
(6.178)

Furthermore, we define the boundary space �b as the linear space of all functions
from the set of boundary vertices Vb to the linear space R. Note that the boundary
space �b is equal to the linear space �0b, and that the linear mapping D̂b can be also
regarded as a mapping D̂b : �1 → �b. The dual space of �b will be denoted as �b.
The elements fb ∈ �b are called the boundary flows and the elements eb ∈ �b the
boundary efforts.
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A paradigmatic example of a port-Hamiltonian network system is amass–spring–
damper system. Let us start with mass–spring systems, as already considered in
Chap.4, Example 4.4.5, as an example of a passive network system. Any mass–
spring system is modeled by a graph G with N vertices corresponding to the masses
and M edges corresponding to the springs, specified by an incidence matrix D. For
ease of notation, consider first the situation that the mass–spring system is located
in one-dimensional space R = R, and the springs are scalar. A vector in the vertex
space �0 then corresponds to the vector p of the scalar momenta of all N masses,
i.e., p ∈ �0 = RN . Furthermore, a vector in the dual edge space �1 will correspond
to the total vector q of extensions of allM springs, i.e., q ∈ �1 = RM .

Next ingredient is the Hamiltonian H : �1 × �0 → R, which is the sum of the
kinetic and potential energies of each mass and spring. In the absence of boundary
vertices the dynamics of the mass–spring system is described as

[
q̇
ṗ

]
=
[

0 DT

−D 0

][ ∂H
∂q (q, p)
∂H
∂p (q, p)

]
, (6.179)

defined with respect to the constant Poisson structure on the linear state space �1 ×
�0 given by the skew-symmetric matrix

J :=
[

0 DT

−D 0

]
(6.180)

implicitly already encountered in Sect. 4.4; see (4.83).
The inclusion of boundary vertices, and thereby of external interaction, can be

done in different ways. The first option is to associate boundary masses to the bound-
ary vertices. We are then led to the port-Hamiltonian input-state-output system

q̇ = DT ∂H

∂p
(q, p)

ṗ = −D
∂H

∂q
(q, p) + Efb

eb = ET ∂H

∂p
(q, p)

(6.181)

Here E is a matrix with as many columns as there are boundary vertices; each
column consists of zeros except for exactly one 1 in the row corresponding to the
associated boundary vertex. Furthermore fb ∈ �b are the external forces exerted (by
the environment) on the boundary masses, and eb ∈ �b are the velocities of these
boundary masses.

A second possibility is to regard the boundary vertices as being massless. In this
case, we obtain the port-Hamiltonian input-state-output system (with p now denoting
the vector of momenta of the masses associated to the internal vertices)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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q̇ = DT
i

∂H

∂p
(q, p) + DT

b e
b

ṗ = −Di
∂H

∂q
(q, p)

fb = Db
∂H

∂q
(q, p)

(6.182)

with eb ∈ �b the velocities of the massless boundary vertices, and fb ∈ �b the forces
at the boundary vertices as experienced by the environment. Note that in this second
case the external velocities eb of the boundary vertices can be considered to be inputs
to the system and the forces fb to be outputs; in contrast to the previously considered
case (boundary vertices corresponding to boundary masses), where the forces fb are
inputs and the velocities eb the outputs of the system.

For a mass–spring–damper system the edges will correspond partly to springs,
and partly to dampers. This corresponds to an incidence matrix

D = [Ds Dd
]
, (6.183)

where the columns of Ds reflect the spring edges and the columns of Dd the damper
edges. For the casewithout boundary vertices the dynamics of amass–spring–damper
system with linear dampers takes the form

[
q̇
ṗ

]
=
[

0 DT
s

−Ds −DdRDT
d

]
⎡
⎢⎢⎣

∂H

∂q
(q, p)

∂H

∂p
(q, p)

⎤
⎥⎥⎦ (6.184)

with R the diagonal matrix of damping coefficients. In the presence of boundary
vertices, we may again distinguish between massless boundary vertices, with inputs
being the boundary velocities and outputs the boundary (reaction) forces, and bound-
ary masses, in which case the inputs are the external forces and the outputs the
velocities of the boundary masses.

The formulation of mass–spring–damper systems in R = R directly extends to
R = R3 using the incidence operator D̂ = D ⊗ I3 as defined before. Furthermore,
the set-up can be extended [298] to multi-body systems and spatial mechanisms
(networks of rigid bodies in R

3 related by joints) by considering the linear space
R := se∗(3), the dual of the Lie algebra of the Lie group SE(3) describing the
position of a rigid body in R

3. Finally we note that other examples like hydraulic
networks are analogous to mass–spring–damper system; see e.g., [287].

Remark 6.8.1 The example of a power network given in Example 4.4.4 defines a
port-Hamiltonian system which is similar to a mass–spring–damper system, with
the difference that in this case the dampers (corresponding to A) are associated to
the vertices of the graph and the edges correspond to the transmission lines with
potential energies −γj cos qj, j = 1, . . . ,M.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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Remark 6.8.2 Note the slight discrepancy of the role of the flows f and efforts
e with respect to the definition of a port-Hamiltonian DAE systems given in the
previous Sect. 6.7. Indeed, in Sect. 6.7 flows and efforts are used interchangeably,
with the exception of the flows and efforts fS, eS corresponding to the energy-storing
elements, which (cf. (6.146)) are given by fS = −ẋ and eS = ∂H

∂x (x). In the current
network setting, the flows f are elements of the spaces �0,�1, and the efforts e of
their dual spaces �0,�1. In particular, the flows in �1 correspond to the classical
[211] through variables, and the efforts in �1 to the across variables.

The port-Hamiltonian formulation of the dynamics (6.184) leads to the following
stability analysis. Without loss of generality10, we throughout assume that the graph
is connected, or equivalently, see Sect. 4.4, kerDT

s ∩ kerDT
d = span 1, where1 is the

vector of all ones. We start with the following proposition regarding the equilibria.

Proposition 6.8.3 Consider the dynamics (6.184). Its set of equilibria E is given as

E = {(q, p) ∈ �1 × �0 | ∂H

∂q
(q, p) ∈ kerDs,

∂H

∂p
(q, p) ∈ span 1} (6.185)

Proof (q, p) is an equilibrium whenever

DT
s

∂H

∂p
(q, p) = 0, Ds

∂H

∂q
(q, p) + DdRD

T
d

∂H

∂p
(q, p) = 0 (6.186)

Premultiplication of the second equation by the row-vector ∂TH
∂p (q, p), making use

of the first equation, yields ∂TH
∂p (q, p)BdRBT

d
∂H
∂p (q, p) = 0, or equivalently DT

d
∂H
∂p

(q, p) = 0, which implies Ds
∂H
∂q (q, p) = 0. Hence, ∂H

∂p (q, p) ∈ kerDT
s ∩ kerDT

d =
span 1. �
In other words, for (q, p) to be an equilibrium, the elements of the vector of velocities
∂H
∂p (q, p) should be equal to each other,whereas ∂H

∂q (q, p) should be in the space kerDs

of cycles of the subgraph of masses and springs (resulting in zero net spring forces
applied to the masses at the vertices).

Similarly, the Casimirs are computed as follows.

Proposition 6.8.4 The Casimir functions of (6.184) are functions C(q, p) satisfying

∂C

∂p
(q, p) ∈ span 1,

∂C

∂q
(q, p) ∈ kerDs (6.187)

Proof The function C(q, p) is a Casimir if
[
∂C

∂q
(q, p)

∂C

∂p
(q, p)

] [
0 DT

s
−Ds −DdRDT

d

]
= 0, (6.188)

or equivalently (see Proposition6.4.2)

10Since otherwise the same analysis can be performed on each connected component of the graph.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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∂TC

∂p
(q, p)Ds = 0,

∂TC

∂q
(q, p)DT

s = 0,
∂TC

∂p
(q, p)DdRD

T
d = 0 (6.189)

Post-multiplication of the third equation by ∂C
∂p (q, p), making use of the first equation,

gives the result. �

Therefore, all Casimir functions can be expressed as functions of the linear Casimir
functions

C(q, p) = 1Tp, C(q, p) = kTq, k ∈ kerDs (6.190)

This implies that starting from an arbitrary initial position (q0, p0) ∈ �1 × �0 the
solution of the mass–spring–damper system (6.184) will be contained in the affine
space

A(q0,p0) :=
[
q0
p0

]
+
[

0
ker 1T

]
+
[
im DT

s
0

]
(6.191)

i.e., for all t the difference q(t) − q0 remains in the space im DT
s of co-cycles of the

mass–spring graph, while 1Tp(t) = 1Tp0.
Under generically fulfilled conditions on the Hamiltonian H(q, p), each affine

space A(q0,p0) will intersect the set of equilibria E in a single point (q∞, p∞), which
qualifies as the point of asymptotic convergence starting from (q0, p0). For sim-
plicity, consider linear mass–spring–damper systems, corresponding to a quadratic
Hamiltonian function

H(q, p) = 1

2
qTKq + 1

2
pTGp, (6.192)

whereK is the positive diagonalmatrix of spring constants, andG is the positive diag-
onal matrix of reciprocals of the masses. In this case, the set of equilibria is given as
E = {(q, p) ∈ �1 × �0 | Kq ∈ ker Bs,Gp ∈ span 1}, while indeed it is easily seen
that for each (q0, p0) there exists a unique point (q∞, p∞) ∈ E ∩ A(q0,p0). In fact, q∞
is given by the spring graph co-cycle/cycle decomposition

q0 = v0 + q∞, v0 ∈ im DT
s ⊂ �1,Kq∞ ∈ kerDs ⊂ �1 (6.193)

Furthermore, p∞ is uniquely determined by

Gp∞ ∈ span 1, 1Tp∞ = 1Tp0 (6.194)

This leads to the following asymptotic stability theorem. First note that

d

dt
H(q, p) = −∂TH

∂p
(q, p)DdRD

T
d

∂H

∂p
(q, p)

= −pTGDdRD
T
d Gp ≤ 0

(6.195)
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Theorem 6.8.5 Consider a linear mass–spring–damper system with H(q, p) =
1
2q

TKq + 1
2p

TGp, where K and G are diagonal positive matrices. Then for every
(q0, p0), there exists a unique equilibrium point (q∞, p∞) ∈ E ∩ A(q0,p0), determined
by (6.193), (6.194). Define the spring Laplacian matrix Ls := DsKDT

s . Then for every
(q0, p0) the following holds: the trajectory starting from (q0, p0) converges asymp-
totically to (q∞, p∞) if and only if the largest GLs-invariant subspace contained in
kerDT

d is equal to span 1.

The condition that the largest GLs-invariant subspace contained in kerDT
d is equal to

span 1 amounts to pervasive damping: the influence of the dampers spreads through
the whole system.

Another feature of the dynamics of the mass–spring–damper system (6.184) is
its robustness with regard to constant external (disturbance) forces. Indeed, con-
sider a mass–spring–damper system with boundary masses and general Hamiltonian
H(q, p), subject to constant forces f̄b

[
q̇
ṗ

]
=
[

0 DT
s

−Ds −DdRDT
d

]
⎡
⎢⎢⎣

∂H

∂q
(q, p)

∂H

∂p
(q, p)

⎤
⎥⎥⎦+

[
0
E

]
f̄b, (6.196)

where we assume11 the existence of a q̄ such that

Ds
∂H

∂q
(q̄, 0) = Ef̄b (6.197)

The shifted Hamiltonian Ĥ(q̄,0)(q, p) := H(q, p) − (q − q̄)T ∂H
∂q (q̄, 0) − H(q̄, 0) as

defined before in (6.92) satisfies

d

dt
Ĥ(q̄,0)(q, p) = −∂TH

∂p
(q, p)DdRD

T
d

∂H

∂p
(q, p) ≤ 0 (6.198)

Specializing to a quadratic Hamiltonian H(q, p) = 1
2q

TKq + 1
2p

TGp one obtains
Ĥ(q̄,0)(q, p) = 1

2 (q − q̄)TK(q − q̄) + 1
2p

TGp, leading to the following analogofThe-
orem 6.8.5.

Proposition 6.8.6 Consider a linear mass–spring–damper system (6.196) with con-
stant external disturbance f̄b and Hamiltonian H(q, p) = 1

2q
TKq + 1

2p
TGp, where

K and G are diagonal positive matrices. and with im E ⊂ im Ds. The set of steady
states is given by Ē = {(q, p) ∈ �1 × �0 | DsKq = Ef̄b,Gp ∈ span 1}. For every
(q0, p0) there exists a unique equilibrium point (q̄∞, p∞) ∈ Ē ∩ A(q0,p0). Here p∞ is
determined by (6.194), while q̄∞ = q̄ + q∞, with q̄ such that DsKq̄ = Ef̄b and q∞
the unique solution of (6.193) with q0 replaced by q0 − q̄. Furthermore, for each

11If the mapping q �→ ∂H
∂q (q, 0) is surjective, then there exists for every f̄b such a q̄ if and only if

im E ⊂ im Ds.
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(q0, p0) the trajectory starting from (q0, p0) converges asymptotically to (q̄∞, p∞)

if and only if the largest GLs-invariant subspace contained in kerDT
d is equal to

span 1.

Note that the above proposition has the classical interpretation in terms of robustness
of integral control with regard to constant disturbances: the springs act as integral
controllers which counteract the influence of the unknown external force f̄b so that
the vector of velocities M−1p will still converge to span 1.

An alternative to the above formulation of mass–spring–damper systems is to
consider instead of the spring extensions q the configuration vector qc ∈ �0 =: Qc

describing the positions of the masses. For ordinary springs, the relation between
qc ∈ �0 and q ∈ �1 describing the extensions of the springs is given as q = DTqc.
Hence, the energy can be also expressed as the function Hc of (qc, p) defined as

Hc(qc, p) := H(DTqc, p) (6.199)

It follows that the dynamics of the mass–spring–damper system is alternatively given
by the following Hamiltonian equations in the state variables qc, p

q̇c = ∂Hc

∂p
(qc, p)

ṗ = −∂Hc

∂qc
(qc, p) − DdRD

T
d

∂Hc

∂p
(qc, p) + Efb

eb = ET ∂Hc

∂p
(qc, p)

(6.200)

What is the relation with the formulation given before? It turns out that this relation
is precisely given by the standard procedure of symmetry reduction of a Hamiltonian
system. Indeed, since1TD = 0 theHamiltonian functionHc(qc, p) given in (6.199) is
invariant under the action of the groupR acting on the phase space�0 × �0 � R2N

by the symplectic group action

(qc, p) �→ (qc + α1, p) , α ∈ R (6.201)

From standard reduction theory of Hamiltonian dynamics with symmetries, see e.g.,
[179, 197], it thus follows that we may factor out the configuration space Qc := �0

to the reduced configuration space

Q := �0/R (6.202)

Using the identification Q := �0/R � DT�0 ⊂ �1 the reduced state space of the
mass–spring–damper system is given by im DT × �0, with im DT ⊂ �1, and the
Hamiltonian equations (6.200) on�0 × �0 reduce to the port-Hamiltonian equations
(6.184) on im DT × �0 ⊂ �1 × �0 as before.



162 6 Port-Hamiltonian Systems

The above example of a mass–spring–damper system on a graph can be general-
ized as follows. First note that a mass–spring–damper system with additive Hamil-
tonian H given by (6.192) can be also interpreted as the interconnection of port-

Hamiltonian systems ṗi = u0i , y
0
i = ∂H0

i
∂pi

(pi) corresponding to the masses (index i

ranging over the vertices), port-Hamiltonian systems q̇j = u1j , y
1
j = ∂H1

j

∂qj
(qj) cor-

responding to the springs (with j ranging over the spring edges), and static port-
Hamiltonian systems y1k = rju1k, rk > 0, corresponding to dampers (with index k
ranging over the damper edges), via the interconnection equations

uv = −Dyb, ub = DTyv (6.203)

Here the superscripts v, b, again refer to inputs and outputs of the port-Hamiltonian
systems associated to, respectively, the vertices and edges (branches). In the same
waywe can therefore consider arbitrary port-Hamiltonian systemswith scalar inputs
and outputs associated with the vertices and the edges, interconnected by (6.203).
Like in the general theory of interconnection of port-Hamiltonian systems this again
defines a port-Hamiltonian DAE system, with Dirac structure determined by the
Dirac structures of the port-Hamiltonian systems associated to the vertices and to the
edges, and by the interconnection (6.203).

Remark 6.8.7 Similar to the second scenario considered for passive systems in
Sect. 9.94, we may also consider the interconnection of single-input single-output
port-Hamiltonian systems associated to the vertices of a graph by the interconnec-
tion u = −Ly + e, cf. (4.91), where L is a balanced Laplacian matrix. Decomposing
L into its symmetric and skew-symmetric part we then obtain an interconnected
port-Hamiltonian system with extra energy-dissipating terms corresponding to the
symmetric part of L.

Remark 6.8.8 Another paradigmatic exampleof port-Hamiltonian systemsongraphs
areRLC-electrical circuits. In this case, all the energy-storing and energy-dissipating
elements are associated to the edges of the circuit graph. This leads to the consider-
ation of the Kirchhoff–Dirac structure defined as

DK := {(f1, e1, fb, eb) ∈ �1 × �1 × �b × �b |
Dif1 = 0,Dbf1 = fb, ∃ e0i ∈ �0i s.t. e1 = −DT

i e
0i − DT

b e
b} (6.204)

capturing Kirchhoff’s current and voltage laws. The port-Hamiltonian formulation
of the electrical circuit is obtained by supplementing the Kirchhoff–Dirac structure
by energy-storage relations corresponding to either capacitors or inductors, and by
energy-dissipating relations corresponding to the resistors [297].

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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6.9 Scattering of Port-Hamiltonian Systems

In Sects. 2.4 and 3.4, we already introduced the scattering transformation from flow
and effort vectors f , e to wave vectors v, z. Thus, let F be an �-dimensional linear
space of flows, and consider the canonically defined symmetric bilinear form, cf.
(6.114), on F × E , with E = F∗, given as

 (f1, e1), (f2, e2) �:=< e1 | f2 > + < e2 | f1 > (6.205)

for fi ∈ F , ei ∈ E∗, i = 1, 2. Furthermore, as in Sect. 2.4, let V ⊂ F × E be any
�-dimensional positive space of  , �, and Z ⊂ F × E an �-dimensional nega-
tive space of  , �, which is orthogonal (in the sense of  , �) to V . This means
that

F × E = V ⊕ Z (6.206)

Now, consider a constant Dirac structure D ⊂ F × E , that is

D = D⊥⊥ (6.207)

with⊥⊥ denoting orthogonal companionwith respect to , �. It follows that , �
is zero when restricted to D, and thus

D ∩ V = 0, D ∩ Z = 0 (6.208)

This implies that theDirac structureD can be represented as the graph of an invertible
linear map O : V → Z , that is,

D = {(f , e) = v + z | z = Ov}, (6.209)

where v + z ∈ V ⊕ Z is the scattering representation of (f , e) ∈ F × E with respect
to the scattering subspaces V,Z .

Furthermore, for any (f1, e1), (f2, e2) ∈ D, with scattering representation v1 + z1,
respectively, v2 + z2, we obtain by (2.35) and (6.207)

0 =< e1 | f2 > + < e2 | f1 >=< v1, v2 >V − < z1, z2 >Z , (6.210)

where <, >V and <, >Z are the inner-products on V , respectively, Z , induced
from  , �; see Sect. 2.4, Eq. (2.35). This implies that

< z1, z2 >Z=< Ov1,Ov2 >Z=< v1, v2 >V (6.211)

for all v1, v2 ∈ V . Hence, the linear mapO : V → Z is an inner-product preserving
map fromV ,with inner product<, >V , toZ with inner-product<, >Z . Conversely,
letO : V → Z be an inner-product preserving map. If we now define D by (6.209),

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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then by (6.210) and (6.211)

0 =< v1, v2 >V − < z1, z2 >Z=< e1 | f2 > + < e2 | f1 > ,

and thusD ⊂ D⊥⊥. Furthermore, because dimD = �, we concludeD = D⊥⊥, imply-
ing that D is a Dirac structure. Hence constant Dirac structures D ⊂ F × E are in
one-to-one correspondence with inner-product preserving linear mapsO : V → Z .
This leads to the following definition.

Definition 6.9.1 Let D ⊂ F × E be a Dirac structure, and let (V,Z) be a pair of
scattering subspaces. The mapO : V → Z satisfying (6.209) is called the scattering
representation of D.

A matrix representation of the scattering representation O of a Dirac structure D is
obtained as follows. Consider a basis a1, . . . , a� for F and dual basis a∗

1, . . . , a
∗
� for

E , together with the resulting scattering transformation as in (2.40). Furthermore,
corresponding to this basis let D be given in kernel representation as

D = {(f , e) | Ff + Ee = 0}, (6.212)

with F,E square � × � matrices satisfying

EFT + FET = 0, rank[F ...E] = � (6.213)

Proposition 6.9.2 Let the Dirac structure D be given by (6.212). The matrix repre-
sentation of its scattering representation O : V → Z is the orthonormal matrix

O = (F − E)−1(F + E) (6.214)

Proof D is equivalently given in image representation asD = {(f , e)|f = ETλ, e =
FTλ,λ ∈ R�}. The coordinate relation between (f , e) ∈ F × E and its scattering
representation v + z is given as (cf. (2.41))

v = 1√
2
(f + e)

z = 1√
2
(−f + e)

(6.215)

Thus in scattering representation D is given as

D =
{
v + z | v = 1√

2
(ET + FT )λ, z = 1√

2
(−ET + FT )λ,λ ∈ R�

}
(6.216)

We claim that ET + FT is invertible. Indeed, suppose x ∈ ker (ET + FT ), that is,
ETx = −FTx. Since by (6.213) EFTx + FETx = 0 for all x, this implies EETx =
−EFTx = FETx = −FFTx, and thus

http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
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[EET + FFT ]x = 0, (6.217)

which in view of rank [F ...E] = � implies x = 0. Hence, ET + FT and F + E are
invertible. Therefore

D = {(v, z) | z = (FT − ET )(FT + ET )−1v} (6.218)

Similarly, it follows that −ET + FT and thus F − E are invertible. Comparing with
(6.209)we conclude thatO = (FT − ET )(FT + ET )−1. Finally, adding, respectively,
subtracting, EFT + FET = 0 to the expression FFT + EET yields the equality

(F + E)(FT + ET ) = (F − E)(FT − ET ) (6.219)

and thus O is also expressed as in (6.214). Furthermore, (6.219) implies

OOT = (F − E)−1(F + E)(FT + ET )(FT − ET )−1

= (F − E)−1(F − E)(FT − ET )(FT − ET )−1 = I�,

showing that O is orthonormal. �

Example 6.9.3 Let the Dirac structure D be given by a skew-symmetric matrix J ,
that is, D = {(f , e) | f = Je, J = −JT }. Then the scattering representation of D is
the orthonormal matrix

O = (I + J)−1(I − J) (6.220)

(known as the Cayley transform of J).

Remark 6.9.4 The same result holds for Dirac structures on a manifold X . In this
case, the Dirac structure is represented by an orthonormal matrixO(x) depending on
x ∈ X (where also the scattering subspaces V andZ may depend on x). In particular,
the scattering representation of the Dirac structure defined as the graph of J(x) =
−JT (x) is O(x) = (I + J(x))−1 (I − J(x)).

A special type of Dirac structures (called 0- and 1-junctions) are defined as follows

D0 ={(f , e) ∈ R� × R� | f1 + · · · + f� = 0, e1 = · · · = e�}
D1 ={(f , e) ∈ R� × Rn | e1 + · · · + e� = 0, f1 = · · · = f�} (6.221)

Using scattering representations they can be characterized as follows.

Proposition 6.9.5 Scattering representations O0,O1 of D0,D1 are given by

O0 = 2

�
I� − I�, O1 = −2

�
I� + I� (6.222)
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where I� denotes the � × � matrix filled with ones and I� is the � × � identity matrix.
Moreover, O0 and O1 are the only orthonormal � × � matrices that have equal
diagonal elements and equal off-diagonal elements.

Proof With respect to the last claim note that O = aI� + bI� is orthonormal if and
only �a + 2b = 0 and b2 = 1. The case b = 1 givesO1 = − 2

�
I� + I�, while b = −1

yields O0 = 2
�
I� − I�. The rest follows by direct computation. �

Similarly to Sect. 3.4, let us finally apply scattering to a standard input-state-output
port-Hamiltonian form

ẋ = [J(x) − R(x)] ∂H
∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

(6.223)

Consider a scattering representation of (fP, eP) = (u, y) (but not of (fS, eS)), defined
as

v = 1√
2
(u + y)

z = 1√
2
(−u + y)

(6.224)

The inverse of this transformation is u = 1√
2
(v − z), y = 1√

2
(v + z), which by sub-

stitution in (6.223) yields

ẋ = [J(x) − R(x) − g(x)gT (x)
]

∂H
∂x (x) + √

2g(x)v
z = √

2gT (x) ∂H
∂x (x) − v

(6.225)

Note that, compared with (6.223), artificial energy dissipation has been inserted in
two ways: (i) by an extra resistive structure matrix g(x)gT (x) ≥ 0, (ii) by a negative
unity feedthrough from v to z.

Finally, composition of Dirac structures takes the following form in scattering
formulation. Consider two Dirac structures DA,DB as in Theorem 6.6.9, composed
by setting

fA = −fB ∈ F , eA = eB ∈ E (6.226)

Now consider scattering representations (fA, eA) = vA + zA and (fB, eB) = vB + zB
with respect to the same scattering subspaces V,Z ⊂ F × E . Then (6.226) becomes

zA = vB
zB = vA

(6.227)

expressing that the outgoing wave vector for DA equals the incoming wave vector
for DB, and conversely. Hence, the composition of DA,DB is seen to correspond to
the configuration depicted in Fig. 6.9, known as the Redheffer star product [259] of
the orthonormal matrices OA and OB. This is formulated in the next proposition.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Fig. 6.9 Redheffer star
product of OA and OB

v1

v3

z1

z3

OA

OB

vA= zB zA= vB

Proposition 6.9.6 Let the orthonormal mappings OA and OB be scattering rep-
resentations of DA and DB with respect to the same scattering subspaces. Then
the scattering representation of DA ◦ DB is given by OA � OB, with � denoting the
Redheffer star product.

Remark 6.9.7 Since DA ◦ DB is a Dirac structure it directly follows that the
Redheffer star product of the orthonormal mappings OA and OB is again an ortho-
normal mapping.

6.10 Notes for Chapter 6

1. Port-Hamiltonian systems were originally introduced (under the slightly differ-
ent name of port-controlled Hamiltonian systems) in Maschke & van der Schaft
[201, 202], Maschke, van der Schaft & Breedveld [203] and van der Schaft &
Maschke [294, 295].

2. A broad coverage of port-Hamiltonian systems and the background theory of
port-based modeling, including application areas, can be found in [93] and
the references quoted therein. The port-Hamiltonian formulation of bond-graph
models is described in Golo, van der Schaft, Breedveld, Maschke [115]. A
recent introductory survey of port-Hamiltonian systems theory, emphasizing
new developments, is [291].

3. For port-Hamiltonian systems (6.1) two geometric structures play a role: (i)
an (almost-)Poisson structure determined by the skew-symmetric matrix J(x),
(ii) the singular Riemannian metric determined by the symmetric positive semi-
definite matrix R(x). For some results and ideas on the interplay between these
two structures, and its consequences for the resulting dynamics we refer toMor-
rison [223], and the references quoted therein. Similar structures have been used
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in the description of thermodynamical systems, see e.g., Öttinger [246] and the
references therein.

4. One can also define a bracket with respect to the combined structure F(x) :=
J(x) − R(x), called the Leibniz bracket; see e.g., Ortega & Planas-Bielsa [236].

5. The formulation of detailed-balanced mass action kinetics chemical reaction
networks as in Example 6.1.7 can be found in van der Schaft, Rao & Jayaward-
hana [299]; see also [258, 301] for the generalization to complex-balanced
reaction networks. The port-Hamiltonian formulation was emphasized in van
der Schaft, Rao & Jayawardhana [300].

6. A broader discussion about the obstruction to a port-Hamiltonian formulation
indicated in Example 6.1.9 can be found in [213].

7. The formulation of autonomous Hamiltonian dynamics with regard to a Poisson
structure which not necessarily has full rank, is standard in the literature on
geometric mechanics, see e.g., Marsden & Ratiu [197], Olver [235].

8. The dual to any Lie algebra is endowed with a canonical Poisson structure, see
e.g.,Weinstein [347],Marsden&Ratiu [197]. For instance the Poisson structure
given in Example 6.2.2 for the Hamiltonian formulation of Euler’s equations is
the Lie–Poisson structure on so∗(3).

9. For an in-depth treatment of mechanical systems with kinematic constraints,
including the constrained Euler–Lagrange equations, see e.g., Bloch [43], Bullo
& Lewis [53], and the older reference Neimark & Fufaev [230]. For a classical
survey on the kinematic model, regarding the admissible velocities as being
directly controlled, we refer to Kolmanovsky & McClamroch [167].

10. The introduction of the new “momentum” variables p̃ in (6.45) is close to the
classical use of quasi-coordinates (see e.g., Steigenberger [326] for a survey).

11. The description in Sect. 6.2 of mechanical systems with kinematic constraints as
port-Hamiltonian systems defined with respect to the almost-Poisson structure
Jc on the constrained state space Xc given by (6.48) and (6.51) is taken from
van der Schaft & Maschke [293], where also the result can be found that Jc is
a Poisson structure (i.e., satisfying the Jacobi-identity (6.33)) if and only if the
kinematic constraints are holonomic. See also van der Schaft & Maschke [295]
and Dalsmo & van der Schaft [78]. For a survey on almost-Poisson structures
in nonholonomic mechanics see Cantrijn, de Leon & de Diego [60].

12. The port-Hamiltonian formulation of the classical eight-dimensional model of
the synchronous generator, see e.g., Kundur [177], in Example 6.3.4 is taken
from Shaik Fiaz, Zonetti, Ortega, Scherpen & van der Schaft [98]; see also van
der Schaft & Stegink [303].

13. Hamiltonian functions involving two kinds of state variables in a non-separable
way not only show up in multi-physics systems, as illustrated in Sect. 6.3, but
also in “cyber-physical systems” such as variable impedance control. In its
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most simple form a variable impedance controller is defined by a (virtual) linear
spring with energy H(q) = 1

2kq
2, where we regard, next to the extension q of

the spring, also the spring “constant” k as a state variable whose value may
change in time. This leads to the consideration of the port-Hamiltonian system
with inputs u1, u2 and outputs y1, y2 given as

[
q̇
k̇

]
=
[
u1
u2

]
,

[
y1
y2

]
=
[
kq
1
2q

2

]
(6.228)

Here the port (u1, y1) corresponds to interaction with the environment (defining
an impedance k), while the port (u2, y2) defines a control port, regulating the
value of the impedance k based on the output y2 = 1

2q
2, possibly modulated by

information about other variables in the total system. In robotics, this basic idea
is referred to as variable stiffness control; see e.g., [354] for a survey.

14. An extensive treatment of Casimir functions for autonomous Hamiltonian
dynamics as discussed in Sect. 6.4 can be found e.g., in Marsden & Ratiu [197]
and Olver [235]. For the Energy-Casimir method see e.g., Marsden & Ratiu
[197] and the references quoted in there. Here also the close connection with
symmetries can be found. Solving the pde’s (9.92) involves integrability condi-
tions on the structure matrices J(x) and R(x). In particular, if J(x) is a Poisson
structure (i.e., satisfying the Jacobi-identity), then there always exist r indepen-
dent solutions C1, . . . ,Cr of the pde’s ∂TC

∂x (x)J(x) = 0, with r = dim ker J(x).

15. System theoretic properties of the closely related class of input–output Hamil-
tonian systems introduced in Brockett [50] are investigated e.g., in van der
Schaft [269], Crouch & van der Schaft [73], Nijmeijer & van der Schaft [233]
(Chap.12).

16. A subclass of port-Hamiltonian systems, called reciprocal port-Hamiltonian
systems can be converted into a gradient system [71] formulation (with respect
to an indefinite Hessian Riemannian metric); cf. van der Schaft [284] and van
der Schaft & Jeltsema [291].

17. A systematic treatment of port-Hamiltonian systems with switching structure
matrices (with applications to switching electrical circuits or mechanical sys-
tems) can be found e.g., in Escobar, van der Schaft &Ortega [95], van der Schaft
& Camlibel [290], Valentin, Magos & Maschke [340]; see also van der Schaft
& Jeltsema [291].

18. The property that a system is shifted passive with respect to any constant ū and
corresponding steady-state x̄, cf. Sect. 6.5 and Proposition 6.5.1, was coined as
equilibrium independent passivity in Arcak, Meissen & Packard [11].

19. Proposition 6.5.4 is due to Ferguson, Middleton & Donaire [97].

20. Example 6.5.3 is taken from Bürger & De Persis [54]; see also Arcak [10], van
der Schaft & Stegink [303].

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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21. The construction of the modified Hamiltonian H̃ in (6.106) can be found in
[199].

22. The definition of Dirac structure was originally intended as a generalization of
both Poisson and symplectic structures; cf. Courant [72], Dorfman [85]. The
name apparently originates from the concept of the Dirac bracket as appearing
for Hamiltonian systems with constraints in Dirac [81, 82]. The kernel, image
and constrained input–output representations of Dirac structures can be found in
Dalsmo & van der Schaft [78], see also Courant [72]. The hybrid input–output
representation is due to Bloch & Crouch [47]. See also van der Schaft [282] for
a survey.

23. The proof of Theorem 6.6.9, as well as of Proposition 6.6.10, can be found in
Cervera, van der Schaft & Banos [63] using ideas from Narajanan [228]; see
also van der Schaft [281].

24. The definition of port-Hamiltonian systems with respect to Dirac structures was
first given in van der Schaft & Maschke [294], and further developed in van
der Schaft & Maschke [189, 292]; see also Bloch & Crouch [47] for the use
of Dirac structures in the modeling of general LC circuits. For a treatment of
constrained mechanical systems in this context, see Maschke & van der Schaft
[206].

25. Integrability of Dirac structures (generalizing the Jacobi-identity for Poisson
structures) is treated in Courant [72], Dorfman [85]. See also Merker [218]
and the references quoted therein for further developments. For applications
of the integrability of Dirac structures to properties of port-Hamiltonian DAE
systems, including the connection to integrability of kinematic constraints, we
refer to Dalsmo & van der Schaft [78]; see also van der Schaft & Jeltsema [291]
and the references quoted therein. Necessary and sufficient conditions for the
integrability of composed Dirac structures are obtained in Blankenstein & van
der Schaft [40].

26. A further treatment of port-Hamiltonian DAE systems and their equational rep-
resentations can be found in van der Schaft [286].

27. Section6.8 is largely based on [298]. The port-Hamiltonian modeling of gen-
eral LC circuits can be found in Maschke, van der Schaft & Breedveld [205],
Maschke & van der Schaft [207]. See also Blankenstein [39]. The formulation
of RLC-circuits alluded to in Remark 6.8.8 can be found in van der Schaft &
Maschke [297]; with the notion of Kirchhoff–Dirac structure in (6.204) given
in van der Schaft & Maschke [298].

28. The scattering representation of Dirac structures as dealt with in Sect. 6.9 can be
found in Cervera, van der Schaft & Banos [63]. The proof of Proposition 6.9.2
is based on ideas from Courant [72].

29. Proposition 6.9.5 is originally due to Hogan & Fasse [128].
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30. Many of the definitions and results in this chapter can be extended to distributed-
parameter port-Hamiltonian systems; see e.g., van der Schaft [296], Duindam,
Macchelli, Stramigioli & Bruyninckx [93], van der Schaft & Jeltsema [291],
and the references quoted therein.

31. For a theory of symmetries of port-Hamiltonian systems, and the resulting reduc-
tion and existence of Casimirs, see e.g., van der Schaft [280], Blankenstein &
van der Schaft [41], Merker [218].

32. An extension of the port-Hamiltonian formalism to thermodynamical systems
can be found in Eberard, Maschke & van der Schaft [94].



Chapter 7
Control of Port-Hamiltonian Systems

In this chapter we will exploit the port-Hamiltonian structure for control, going
beyond passivity. We will mainly concentrate on the problem of set-point stabiliza-
tion. Section7.1 focusses on control by interconnection, by attaching a controller
port-Hamiltonian system to the plant port-Hamiltonian system. Section7.2 takes
a different perspective by emphasizing direct shaping of the Hamiltonian and the
structure matrices by state feedback. Other control opportunities will be indicated in
Sect. 7.3; see also the Notes at the end of this chapter.

7.1 Stabilization by Interconnection

Consider an input-state-output port-Hamiltonian systems (6.1), for ease of exposition
without feedthrough terms,

� : ẋ = [J (x) − R(x)] ∂H
∂x (x) + g(x)u, x ∈ X , u ∈ Rm

y = gT (x) ∂H
∂x (x), y ∈ Rm (7.1)

The simplest situation in stabilization is when the set-point x∗ ∈ X is a strict min-
imum1 of the Hamiltonian H . In this case, the port-Hamiltonian system (6.1) is
passive, and thus we may directly apply the asymptotic stabilization theory of pas-
sive systems provided in Chap.4, Sect. 4.2, by employing output feedback u = −Dy,
with D = DT a positive definite matrix, and using the Hamiltonian H as Lyapunov
function. In particular we can directly apply Corollary 4.2.2 as illustrated by the next
examples.

Example 7.1.1 Consider a fully actuatedmechanical system (6.23), with H given by
(6.24). Assume that the potential energy P is such that P(q∗) = 0 for the set-point
configuration q∗, while P(q) > 0, q �= q∗ and ∂P

∂q (q) �= 0, q �= q∗.Then (6.23) with
output y = q̇ is zero-state detectablewith respect to (q∗, p∗ = 0). Thus, the feedback

1“Local” or “global”; we leave this open for flexibility of exposition.
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u = −Dy, D = DT > 0, asymptotically stabilizes the equilibrium (q∗, p = 0) . In
the case of an underactuated system (6.26) asymptotic stability results whenever the
system is zero-state detectable with respect to the output y = BT (q)q̇ .

Example 7.1.2 (Example 6.4.5 continued) H has a global minimum at Q = 0,ϕ1 =
ϕ2 = 0, and the system is zero-state detectable. Therefore, the insertion of a resistor
u = −Ry, R > 0, at the place of the voltage source will asymptotically stabilize this
equilibrium.

Example 7.1.3 (Example 6.2.1 continued) The kinetic energy H has a global min-
imum at px = py = pz = 0. Consider the feedback u = −dy, d > 0, resulting in
d
dt H = −dy2. The largest invariant set within y = 0 is determined as follows. First
of all, consider the plane

P := {(
px , py, pz

) | y = 0
} =

{(
px , py, pz

) | bx
Ix

px + by
Iy

py + bz
Iz
pz = 0

}

Second, we have the cone

C := {(
px , py, pz

) | ẏ = 0
} = {(px , py, pz) |

bx (Iy − Iz)py pz + by(Iz − Ix )pz px + bz(Ix − Iy)px py = 0}

Furthermore, the trajectories of (6.31) for u = 0 remain on an energy level given by
the ellipsoid Ec = {(

px , py, pz
) |H (

px , py, pz
) = c

}
for a constant c. The inter-

section P ∩ C ∩ Ec consists only of isolated points, which thus have to be equilibria
of (6.31) for u = 0. The set of equilibria of (6.31) for u = 0 is given by the union of
the px , py and pz axis. Since these isolated points also have to be in P it follows that
the largest invariant set within y = 0 equals the origin if and only if bx �= 0, by �= 0
and bz �= 0. Hence, it follows from LaSalle’s Invariance principle that the feedback
u = −dy, d > 0, is asymptotically stabilizing to zero if and only if bx �= 0, by �= 0,
bz �= 0.

Up to now we only exploited the passivity of the port-Hamiltonian system. The
situation becomes different when the set-point x∗ is not a strict minimum of the
Hamiltonian H . A new twist as compared to the stabilization theory of Sect. 4.2
based on passivity is then provided by the possible existence of Casimir functions;
cf. Sect. 6.4. Indeed, assume one can find a Casimir functionC such that themodified
Hamiltonian

Hmod(x) := �(H(x),C(x)) (7.2)

for somemap� : R2 → R has a strict minimum at the set-point x∗. Then the system
can be rewritten as the modified input-state-output port-Hamiltonian system

ẋ = [J (x) − R(x)] ∂Hmod
∂x (x) + g(x)u

ymod := gT (x) ∂Hmod
∂x (x),

(7.3)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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which is passivewith respect to themodified output ymod.Hence, as above, asymptotic
stabilization of x∗ may be achieved by feedback u = −Dymod, D > 0, employing
Hmod as Lyapunov function, provided a detectability condition is satisfied.

Example 7.1.4 Consider the LC-circuit of Example 6.4.5. Wemay consider as mod-
ified Hamiltonian any quadratic function

Hmod(x) = 1

2L1
ϕ2
1 + 1

2L2
ϕ2
2 + γ(ϕ1 + ϕ2), γ ∈ R (7.4)

serving as candidate Lyapunov function for non-zero set-points (0,ϕ∗,ϕ∗). This
leads to the modified output ymod = 1

L1
ϕ1 + γ. We note that this can be naturally

extended to arbitrary nonlinear inductors.

The stability analysis method of finding Casimirs C1, . . . ,Cr such that a suitable
function �(H,C1, . . . ,Cr ) of the energy H and the Casimirs has a strict minimum
at the equilibrium under consideration is called the Energy-Casimir method. We will
use the same terminology for the corresponding asymptotic stabilization method.

Remark 7.1.5 Note that the Energy-Casimir method can be extended to the asymp-
totic stabilization of steady states x̄ corresponding to a non-zero input ū; at least
in the case that the matrices J, R, g are all constant. Indeed, in this case the input-
state-output port-Hamiltonian systemmay be rewritten as a shifted port-Hamiltonian
system with shifted external variables u − ū, y − ȳ and shifted Hamiltonian Ĥ ; see
Sect. 6.5. Candidate Lyapunov functions will now be sought as combinations of Ĥ
and the Casimirs.

Next, suppose that H does not have a strict minimum at x∗, and that no useful
Casimirs C can be found for direct application of the Energy-Casimir method. In
this case, we will take recourse to dynamical controller systems that are also in
port-Hamiltonian form, in order to generate Casimirs for the closed-loop system.
As known from Sect. 6.7 any power-conserving interconnection of port-Hamiltonian
systems is again port-Hamiltonian. In particular, the interconnection of the plant port-
Hamiltonian system � given by (7.1) with a controller port-Hamiltonian system

�c : ξ̇ = [Jc(ξ) − Rc(ξ)] ∂Hc
∂ξ

(ξ) + gc(ξ)uc, ξ ∈ Xc, uc ∈ Rm

yc = gT
c (ξ) ∂Hc

∂ξ
(ξ), yc ∈ Rm (7.5)

with Jc(ξ) = −J T
c (ξ), Rc(ξ) = RT

c (ξ) ≥ 0, via the standard negative feedback inter-
connection

u = −yc + v

uc = y + vc
(7.6)

where v, vc are external input signals, results in the closed-loop system

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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[
ẋ
ξ̇

]
=

⎛
⎜⎜⎜⎝
[

J (x) −g(x)gT
c (ξ)

gc(ξ)g
T (x) Jc(ξ)

]
︸ ︷︷ ︸

Jcl (x,ξ)

−
[
R(x) 0
0 Rc(ξ)

]
︸ ︷︷ ︸

Rcl (x,ξ)

⎞
⎟⎟⎟⎠
[

∂H
∂x (x)
∂Hc
∂ξ

(ξ)

]

+
[
g(x) 0
0 gc(ξ)

] [
v

vc

]

[
y
yc

]
=
[
gT (x) 0
0 gT

c (ξ)

][ ∂H
∂x (x)
∂Hc
∂ξ

(ξ)

]
(7.7)

This is again an input-state-output port-Hamiltonian system (7.1), with state space
X × Xc, Hamiltonian H(x) + Hc(ξ), interconnection structure matrix Jcl(x, ξ),
resistive structure matrix Rcl(x, ξ), inputs (v, vc) and outputs (y, yc).

Now let us investigate the Casimir functions of this closed-loop system, especially
those relating the state variables ξ of the controller port-Hamiltonian system to the
state variables x of the plant port-Hamiltonian system. Indeed, if we can find Casimir
functions Ci (x, ξ), i = 1, . . . , r , relating ξ to x , then by the Energy-Casimir method
the Hamiltonian H(x) + Hc(ξ) of the closed-loop system may be replaced by a
candidateLyapunov function�(H + Hc,C1, . . . ,Cr ) for any choice of� : Rr+1 →
R and Hc, thus creating the possibility of shaping the dependence on x in a suitable
way.

The following basic example illustrates the main idea.

Example 7.1.6 Consider as plant system � an actuated mass m, written in port-
Hamiltonian form as

� :

[
q̇
ṗ

]
=
[
0 1

−1 0

][ ∂H
∂q

∂H
∂ p

]
+
[
0
1

]
u

y = [
0 1

] [ ∂H
∂q

∂H
∂ p

] (7.8)

with q the position and p the momentum of the mass, with plant Hamiltonian
H(q, p) = 1

2m p2 (kinetic energy). Suppose we want to asymptotically stabilize the
mass to a set-point (q∗, p∗ = 0). Clearly H does not have a strict minimum at
(q∗, p∗ = 0), while there are no nontrivial Casimirs. Now interconnect as in Fig. 7.1

m
v

d

kc

mc

k

Fig. 7.1 Controlled mass
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� given by (7.8) via feedback u = −yc + v, uc = y to a port-Hamiltonian controller
system �c consisting of another mass mc and two springs kc, k, given by

�c :

⎡
⎣ q̇c

ṗc
�̇q

⎤
⎦ =

⎡
⎣ 0 1 0

−1 −d 1
0 −1 0

⎤
⎦
⎡
⎢⎢⎣

∂Hc
∂qc
∂Hc
∂ pc
∂Hc
∂�q

⎤
⎥⎥⎦ +

⎡
⎣0
0
1

⎤
⎦ uc

yc = ∂Hc
∂�q

(7.9)

where qc is the extension of the spring kc, �q the extension of the spring k, pc the
momentum of the mass mc, d ≥ 0 is a damping constant, and v is an external force.
In particular, the controller Hamiltonian is

Hc (qc, pc,�q) = 1

2

p2c
mc

+ 1

2
k(�q)2 + 1

2
kcq

2
c (7.10)

The closed-loop system with v = 0 is seen to possess the Casimir functions

C(q,�qc,�q) = q − �q − qc − δ (7.11)

for constant δ. Hence we may consider for the closed-loop system a candidate
Lyapunov function

V (q,�q, qc, p, pc) := 1

2m
p2 + 1

2mc
p2c + 1

2
k(�q)2 + 1

2
kcq

2
c + γ(q − �q − qc − δ)2 (7.12)

with the positive constants k, kc,mc, as well as δ, γ yet to be designed. It is clear
that for any set-point q∗ we may select these constants in such a way that V has
a minimum at p = 0, q = q∗, for some accompanying values (�q)∗, q∗

c , p
∗
c of the

controller states. By a direct application of LaSalle’s Invariance principle it follows
that this equilibrium of the closed-loop system is asymptotically stable whenever
d > 0. Furthermore, the procedure canbe extended to a plantHamiltonian H(q, p) =
1
2m p2 + P(q) for any plant potential energy function P(q). In this case the constants
need to be chosen such that

P(q) + 1

2
k(�q)2 + 1

2
kcq

2
c + γ(q − �q − qc − δ)2 (7.13)

has a strict minimum at (q∗, q∗
c , (�q)∗) for some value s q∗

c , (�q)∗.

Remark 7.1.7 In the above example, the dimension of the controller
port-Hamiltonian system is larger than the dimension of the plant port-Hamiltonian
system. This is mainly due to the fact that we chose to insert the damping into
the controller system, instead of directly adding damping to the plant system by a
feedback −dy. Following this latter strategy, one could have replaced the controller
port-Hamiltonian system by a one-dimensional system corresponding to a single



178 7 Control of Port-Hamiltonian Systems

spring k with extension �q. On the other hand, the control strategy described above
has the advantage of being relatively insensitive to the presence of noise in the mea-
surement of the velocity y. Furthermore, the availability of extra degrees of freedom
makes it easier to control the transient behavior, and to attenuate disturbances.

The general theory proceeds as follows. Consider a plant port-Hamiltonian system�

given by (7.1) in feedback interconnection to a port-Hamiltonian controller system
�c given by (7.5). However, for the moment we will not assume that Rc(ξ) ≥ 0 (thus
allowing for internal energy creation in the controller).

Without much loss of generality2 we consider Casimir functions for the closed-
loop of the form

ξi − Fi (x), i = 1, . . . , r ≤ dim nc (7.14)

Thismeans, see (6.72), that we are looking for solutions of the pde’s (with ei denoting
the i-th basis vector)

[
−∂T Fi

∂x
(x) eTi

] [
J (x) − R(x) −g(x)gT

c (ξ)
gc(ξ)g

T (x) Jc(ξ) − Rc(ξ)

]
= 0,

or written out
∂T Fi
∂x (x) [J (x) − R(x)] − gic(ξ)g

T (x) = 0

∂T Fi
∂x (x)g(x)gT

c (ξ) + J ic (ξ) − Ri
c(ξ) = 0

(7.15)

with ∂T Fi
∂x denoting as before the gradient vector

(
∂Fi
∂x1

, . . . , ∂Fi
∂xn

)
, and gic, J

i
c , R

i
c

denoting the i-th row of gc, Jc, respectively, Rc. Defining F := (F1, . . . , Fr )
T , we

write (7.15) for i = 1, . . . , r in compact form as

∂T F
∂x (x) [J (x) − R(x)] − g̃c(ξ)g

T (x) = 0

∂T F
∂x (x)g(x)gT

c (ξ) + J̃ (ξ) − R̃c(ξ) = 0
(7.16)

with ḡc denoting the submatrix of gc composed of the first r rows, and J̃c, R̃c the
submatrix of Jc, respectively, Rc, composed of its first r rows.

By post-multiplication of the first equation of (7.16) by ∂F
∂x (x), and using the

second equation, one obtains

∂T F

∂x
(x) [J (x) − R(x)]

∂F

∂x
(x) = J̄c(ξ) + R̄c(ξ) (7.17)

2Indeed, suppose we have r Casimirs Ci (x, ξ), i = 1, . . . , r , where the partial Jacobian matrix
∂C
∂ξ (x, ξ) of the mapC : X × Xc → Rr with componentsCi has full rank r . Then by an application
of the Implicit Function theorem the level sets C1(x, ξ) = c1, . . . ,Cr (x, ξ) = cr for constants
c1, . . . , cr , can be equivalently described by level sets of functions of the form (7.14).

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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with J̄c(ξ), R̄c(ξ) the r × r left-upper submatrices of Jc, respectively, Rc. Collecting
on both sides of (7.17) the skew-symmetric and the symmetric parts we conclude
that (7.17) is equivalent to

∂T F

∂x
(x)J (x)

∂F

∂x
(x) = J̄c(ξ) (7.18)

− ∂T F

∂x
(x)R (x)

∂F

∂x
(x) = R̄c(ξ) (7.19)

From the second equation, it follows that if R̄c(ξ) ≥ 0 (which is the case if the
controller system is a true port-Hamiltonian system), then necessarily

∂T F

∂x
(x)R (x)

∂F

∂x
(x) = 0, R̄c(ξ) = 0 (7.20)

Furthermore since R(x) ≥ 0 Eq. (7.20) implies

R(x)
∂F

∂x
(x) = 0 (7.21)

Proposition 7.1.8 Consider the plant port-Hamiltonian system � given by (7.1)
in negative feedback interconnection u = −yc + v, uc = y + vc with the controller
port-Hamiltonian system �c given by (7.1). The functions ξi − Fi (x), i = 1, . . . ,
r ≤ nc, satisfy (7.15), and thus are Casimirs of the closed-loop system (7.7) for
v = 0, vc = 0, if and only if F = (F1, . . . , Fr )

T satisfies

∂T F
∂x (x)J (x) ∂F

∂x (x) = J̄c (ξ)

∂T F
∂x (x)J (x) = ḡc(ξ)g

T (x)

R(x) ∂F
∂x (x) = 0

R̄c(ξ) = 0

(7.22)

Furthermore, if � : Rr+1 → R and Hc(ξ) can be found such that the candidate
Lyapunov function

V (x, ξ) = �(H(x) + Hc(ξ), ξ1 − F1(x), . . . , ξr − Fr (x)) (7.23)

has a strict minimum at (x∗, ξ∗) for a certain choice of ξ∗, then (x∗, ξ∗) is a stable
equilibrium. Moreover, the additional control action

v = −DgT (x)
∂V

∂x
(x, ξ), vc = −Dcg

T
c (ξ)

∂V

∂ξ
(x, ξ) (7.24)

for certain matrices D = DT ≥ 0, Dc = DT
c ≥ 0, results in
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d

dt
V (x, ξ) ≤ −∂T V

∂x
(x, ξ)g(x)DgT (x)

∂V

∂x
(x, ξ)

−∂T V

∂ξ
(x, ξ)gc(ξ)Dcg

T
c (ξ)

∂V

∂ξ
(x, ξ)

(7.25)

and asymptotic stability of (x∗, ξ∗) can be investigated by application of LaSalle’s
Invariance principle.

Proof Only the second equality of (7.22) remains to be shown. This follows directly
from the first line of (7.16) together with (7.21). �

Remark 7.1.9 As can be seen from (7.1) (and in accordance with Proposition 6.4.2),
the presence of energy dissipation imposes constraints on the availability of Casimir
functions, which can be only mitigated by allowing for energy creation (Rc(ξ) � 0)
in the controller system. This is referred to as the dissipation obstacle.

In the special case r = nc the Eqs. (7.22) for F = (F1, . . . , Fnc)
T amount to

∂T F
∂x (x)J (x) ∂F

∂x (x) = Jc (ξ)

∂T F
∂x (x)J (x) = gc (ξ) gT (x)

R(x) ∂F
∂x (x) = 0 = Rc(ξ)

(7.26)

Example 7.1.10 Amechanical systemwith damping and actuated by external forces
u is described by the port-Hamiltonian system (see (6.26) for the undamped case)

[
q̇
ṗ

]
=
([

0 Ik
−Ik 0

]
−
[
0 0
0 D(q)

])[
∂H
∂q (q, p)

∂H
∂ p (q, p)

]
+
[

0
B(q)

]
u

y = BT (q) ∂H
∂ p (q, p)

(7.27)

with q ∈ Rk the vector of generalized position coordinates, p ∈ Rk the vector of
generalized momenta, and D(q) = DT (q) ≥ 0 the damping matrix. The outputs y ∈
Rm are the generalized velocities corresponding to the generalized external forces
u ∈ Rm .

Now consider a port-Hamiltonian controller system (7.5) with nc = m. Then
(7.26) with F = (F1(q, p), . . . , Fm(q, p))T reduces to

Jc = 0,
∂F

∂q
(q, p) = gT

c (ξ)B(q),
∂F

∂ p
(q, p) = 0 (7.28)

Hence with gc(ξ) equal to the m × m identity matrix, there exists a solution F to
(7.28) if and only if the columns of the input forcematrix B(q) satisfy the integrability
conditions

∂Bil

∂q j
(q) = ∂Bjl

∂qi
(q), i, j = 1, . . . k, l = 1, . . .m (7.29)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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Fig. 7.2 Modulated control by interconnection

A useful relaxation of the conditions (7.26) for set-point stabilization is to allow the
port-Hamiltonian controller system �c given by (7.5) to be modulated by the plant
state variables x . This means that the matrices Jc, Rc and gc are allowed to depend
on x ; see Fig. 7.2.

In this case the closed-loop system (7.7) continues to be a port-Hamiltonian sys-
tem, while the conditions (7.26) take the more amenable form

∂T F
∂x (x)J (x) ∂F

∂x (x) = Jc(ξ, x)
∂T F
∂x (x)J (x) = gc(ξ, x)gT (x)

R(x) ∂F
∂x (x) = 0 = Rc(ξ, x)

(7.30)

In particular, the integrability conditions (7.29) on the input force matrix B(q) may
be avoided by taking gT

c (ξ, x) = B−1(q) (assuming B to be invertible).

Remark 7.1.11 Allowing only gc to depend on x may equivalently be formulated as
modifying the feedback u = −yc, uc = y to the state modulated feedback

u = −β(x)yc, uc = βT (x)y (7.31)

for some matrix β(x), which can be considered as an “integrating factor” for the
pde’s (7.26).

In many cases of interest, including the above Example 7.1.10, the conditions (7.26)
for r = nc simplify to

∂T F
∂x (x)J (x) ∂F

∂x (x) = 0 = Jc (ξ)

∂T F
∂x (x)J (x) = gc (ξ) gT (x)

R(x) ∂F
∂x (x) = 0 = Rc(ξ)

(7.32)

If additionally gc(ξ) equals them × m identitymatrix, then the action of the controller
port-Hamiltonian system amounts to (nonlinear) integral action on the output y of
the plant port-Hamiltonian system, i.e., the controller system is given as
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u = −∂Hc

∂ξ
(ξ) + v, ξ̇ = y + vc (7.33)

Example 7.1.12 Consider the mathematical pendulum with angle q, having Hamil-
tonian (with all parameters set equal to 1)

H(q, p) = 1

2
p2 + (1 − cos q) (7.34)

and actuated by a torque u with output y = p (angular velocity). Suppose we wish
to stabilize the pendulum at a non-zero angle q∗ and p∗ = 0. Apply the nonlinear
integral control

u = −∂Hc

∂ξ
(ξ) + v, ξ̇ = y + vc (7.35)

The Casimirs C(q, p, ξ) of the closed-loop system for v = 0, vc = 0 are found by
solving

[
∂C
∂q

∂C
∂ p

∂C
∂ξ

]⎡⎣ 0 1 0
−1 0 −1
0 1 0

⎤
⎦ = 0 (7.36)

leading to solutions C(q, p, ξ) = K (q − ξ) for arbitrary K : R → R. Consider a
candidate Lyapunov function

V (q, p, ξ) = 1

2
p2 + (1 − cos q) + Hc(ξ) + K (q − ξ) (7.37)

In order to let V have a local minimum at (q∗, p∗ = 0, ξ∗) for some ξ∗, determine
K , Hc, and ξ∗ such that

• Equilibrium assignment

sin q∗ + dK
dz (q∗ − ξ∗) = 0

− dK
dz (q∗ − ξ∗) + dHc

dξ
(ξ∗) = 0

(7.38)

• Minimum condition
⎡
⎢⎣
cos q∗ + d2K

dz2 (q∗ − ξ∗) 0 − d2K
dz2 (q∗ − ξ∗)

0 1 0
− d2K

dz2 (q∗ − ξ∗) 0 d2K
dz2 (q∗ − ξ∗) + d2Hc

dξ2
(ξ∗)

⎤
⎥⎦ > 0 (7.39)

This has many solutions K , Hc, ξ
∗. Additional damping feedback v = −d ∂V

∂ p

(q, p, ξ) = −dp, vc = −dc
dHc
dξ

(q, p, ξ) + dc
dK
dz (q − ξ)with d, dc > 0 will asymp-

totically stabilize this equilibrium.
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The integral action perspective also motivates the following extension of the
method. First note that given the plant port-Hamiltonian system (7.1) we could con-
sider instead of the given output y = gT (x) ∂H

∂x (x) any other output

yA := [G(x) + P(x)]T ∂H

∂x
(x) + [M(x) + S(x)]u (7.40)

for G, P, M, S satisfying

g(x) = G(x) − P(x), M(x) = −MT (x),

[
R(x) P(x)
PT (x) S(x)

]
≥ 0 (7.41)

Indeed, by (6.5) any such output satisfies

d

dt
H(x) ≤ uT yA (7.42)

We call an output yA satisfying (7.42) an alternate passive output.
A special choice of alternate passive output is obtained by rewriting the dynamics

ẋ = [J (x) − R(x)] ∂H
∂x (x) + g(x)u as (assuming J (x) − R(x) to be invertible)

ẋ T [J (x) − R(x)]−1 ẋ = ẋ T
∂H

∂x
(x) + ẋ T [J (x) − R(x)]−1g(x)u (7.43)

Since ẋ T [J (x) − R(x)]−1 ẋ ≤ 0 and ẋ T ∂H
∂x (x) = d

dt H(x) this leads to (7.42) with
respect to the alternate passive output defined as

yA := gT (x)[J (x) + R(x)]−1[J (x) − R(x)] ∂H
∂x (x)+

gT (x)[J (x) + R(x)]−1g(x)u
(7.44)

called the “swapping the damping” alternate passive output. If R = 0 this particular
alternate passive output is just the original output with the addition of the feedthrough
term gT (x)J (x)−1g(x)u, while in the special case J = 0 it equals

yA = −gT (x)
∂H

∂x
(x) + gT (x)R(x)−1g(x)u, (7.45)

corresponding to3 G(x) = 0, P(x) = −g(x), S(x) = gT (x)R(x)−1g(x).
Now in order to generate novel Casimirs based upon integral action of alternate

passive outputs we consider the following alternate passive outputs. Assuming that
im g(x) ⊂ im [J (x) − R(x)], x ∈ X , there exists an n × m matrix �(x) (unique if
[J (x) − R(x)] has full rank) such that

3Note that in this case the extended resistive structure matrix

[
R(x) P(x)
PT (x) S(x)

]
is a minimal rank

extension of R(x), since its rank is equal to the rank of R(x) (= n).

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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[J (x) − R(x)]�(x) = g(x) (7.46)

Then define the alternate output

yA := [J (x)�(x) + R(x)�(x)]T ∂H
∂x (x)

+[−�T (x)J (x)�(x) + �T (x)R(x)�(x)]u (7.47)

It is directly checked that this is an alternate passive output satisfying (7.41). Inte-
gral action ξ̇ = yA for arbitrary Hc leads to the following closed-loop system for
v = 0, vc = 0 (leaving out arguments x)

[
ẋ
ξ̇

]
=
[

J − R −J� + R�

−�T J + �T R �T J� − �T R�

][ ∂H
∂x (x)
∂Hc
∂ξ

(ξ)

]
(7.48)

(Recall that g(x) = J (x)�(x) − R(x)�(x).) It is immediately verified that at any
x ∈ X [

J − R −J� + R�

−�T J + �T R �T J� − �T R�

] [
�

Im

]
= 0, (7.49)

where Im is the m × m identity matrix. Hence if there exist4 functions F1, . . . , Fm

such that the columns of �(x) satisfy

� j (x) = −∂Fj

∂x
(x), j = 1, . . . ,m, (7.50)

then the functions ξ j − Fj (x), j = 1, . . . ,m, are Casimirs of the closed-loop sys-
tem, yielding new possibilities for the construction of a suitable Lyapunov function
V (x .ξ). Finally, by Poincaré’s lemma local existence of solutions F1, . . . , Fm to
(7.50) is equivalent to �(x) satisfying the integrability conditions

∂� j i

∂xk
(x) = ∂� jk

∂xi
(x), i, j, k = 1, . . . , n (7.51)

Remark 7.1.13 Obviously, also partially integrable situations (corresponding to
some of the columns of �(x) being integrable) may be considered, leading to a
smaller number of Casimirs for the closed-loop system.

Example 7.1.14 Consider an RLC-circuit with voltage source u, where the capacitor
is in parallel with the resistor. The dynamics is given as

4In view of (7.46) this means that the input vector fields g j are “Leibniz vector field” with respect
to the Leibniz structure J (x) − R(x) and potential functions −Fj . Note that the same assumption
was made in (6.106) in the context of generating Lyapunov functions for port-Hamiltonian systems
driven by constant inputs.

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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[
Q̇

φ̇

]
=
[− 1

R 1
−1 0

][ Q
C
φ
L

]
+
[
0
1

]
u (7.52)

with R, L ,C , respectively, the resistance, inductance, and capacitance. Suppose we
want to stabilize the system at some feasible non-zero set-point value (Q∗,φ∗) =
(Cū, L

R ū) for ū �= 0. Integral action of the natural passive output y = φ
L (the current

through the voltage source) does not help in creating Casimirs. Instead consideration
of (7.46) yields the solution �T = [

1 1
R

]
, and the resulting alternate passive output

yA = 2

R

Q

C
− φ

L
+ 1

R
u (7.53)

Integral action of this alternate passive output yields the Casimir Q + 1
Rφ − ξ for

the closed-loop system, resulting in a candidate Lyapunov function V (Q,φ, ξ) =
1
2C Q2 + 1

2L φ2 + Hc(ξ) + �(Q + 1
Rφ − ξ). It can be verified that Hc and � can be

found such that V has a minimum at (Q∗,φ∗, ξ∗) for some ξ∗.
Note that in alternative case of a series RLC-circuit integral action of the natural

output suffices, resulting in a controller system that emulates an extra capacitor,
thereby shifting the zero equilibrium to any feasible equilibrium (Q∗,φ∗) = (Cū, 0).
From a physical point of view a main difference between these two cases is that in
the parallel RLC-circuit there is energy dissipation at equilibrium whenever ū �= 0,
in contrast with the series RLC-circuit.

7.2 Passivity-Based Control

Suppose there exists a solution F to the Casimir equation (7.26) with r = nc, in
which case all controller states ξ are related to the plant states x . It follows that for
any choice of the vector of constants λ = (λ1, . . . ,λnc) the multi-level set

Lλ := {(x, ξ) | ξi = Fi (x) + λi , i = 1, . . . , nc} (7.54)

is an invariant manifold of the closed-loop system for v = 0, vc = 0. Furthermore,
the dynamics restricted to Lλ is given as

ẋ = [J (x) − R(x)]
∂H

∂x
(x) − g(x)gT

c (F(x) + λ)
∂Hc

∂ξ
(F(x) + λ) (7.55)

Using the second and third equality of (7.26) and the chain-rule for differentiation

∂Hc(F(x) + λ)

∂x
= ∂F

∂x
(x)

∂Hc

∂ξ
(F(x) + λ) (7.56)

Equation (7.55) can be rewritten as
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ẋ = [J (x) − R(x)]
∂Hs

∂x
(x) (7.57)

with
Hs(x) := H(x) + Hλ(x), Hλ(x) := Hc(F(x) + λ) (7.58)

This constitutes a port-Hamiltonian system with the same interconnection structure
matrix J (x) and resistive structurematrix R(x) as the original plant port-Hamiltonian
system, but with shaped Hamiltonian Hs .

An energy-balancing interpretation of the extra term Hλ in Hs is the following.
Since by (7.26) Rc(ξ) = 0, the controller Hamiltonian Hc satisfies

dHc

dt
= uT

c yc = −uT y (7.59)

in view of u = −yc and uc = y.Therefore on anymulti-level set Lλ, up to a constant,

Hλ(x(t)) = −
∫ t

0
uT (τ )y(τ )dτ , (7.60)

which isminus the energy supplied to the plant system (7.1) by the controller system
(7.5).

Alternatively, the dynamics (7.57) could have been obtained directly by applying
to the plant port-Hamiltonian system (7.1) a state feedback u = αλ(x) such that

g(x)αλ(x) = [J (x) − R(x)]
∂Hλ

∂x
(x) (7.61)

In fact, by (7.55) such an αλ(x) is given as

αλ(x) = −gT
c (F(x) + λ)

∂Hc

∂ξ
(F(x) + λ) (7.62)

The state feedback u = αλ(x) is customarily called a passivity-based state feedback,
since it is based on the passivity properties of the original plant system (7.1), and
transforms (7.1) into another passive system with shaped storage function; in this
case Hs .

Seen from this perspective the passivity-based state feedback u = αλ(x) satisfy-
ing (7.61) can be derived from the feedback interconnection of the port-Hamiltonian
plant system (7.1) with a controller port-Hamiltonian system (7.5), and thus inherits
its robustness properties.

Finally, we note that since the Casimirs are anyway defined up to a constant we
can also leave out the dependence on λ and simply consider the passivity-based state
feedbacks

α(x) := −gT
c (F(x))

∂Hc

∂ξ
(F(x)) (7.63)
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for any solution F to (7.26).

Example 7.2.1 (Example 7.1.10 continued) Assuming gc to be the m × m identity
matrix and B(q) to satisfy (7.29) there exist Casimirs ξi − Fi (q), i = 1, . . . ,m. The
resulting passivity-based state feedback is given by

α(q) = −∂Hc

∂ξ
(F1(q), . . . , Fm(q)) (7.64)

with shaped Hamiltonian Hs(q, p) = H(q, p) + Hc(F1(q), . . . , Fm(q)). In partic-
ular, if H is in the common “kinetic plus potential energy” form 1

2 p
T M−1(q)p +

P(q), then this corresponds to shaping of the potential energy P(q) into

P(q) + Hc(F1(q), . . . , Fm(q)) (7.65)

A comparison of the actual implementation of the passivity-based state feedback law
(7.63) with respect to the implementation of the port-Hamiltonian controller system
(7.5) depends on the application. For example, in a robotics context themeasurements
of the generalized velocities y = BT (q)q̇ are more noisy than the measurements of
the generalized positions q, since typically the first are obtained by differentiation
of the latter.

Example 7.2.2 (Example 7.1.12 continued) Consider, as a special case of Example
7.2.1, the equations of a normalized pendulum as in Example 7.1.12. The solution
of (7.28) for gc(ξ) = 1 is F(q) = q. Let q∗ be the set-point angle of the pendulum,
and let us try to shape the potential energy P(q) = 1 − cos q in such a way that it
has a minimum at q = q∗. The simplest choice for the controller Hamiltonian Hc(ξ)
in order to achieve this is to take

Hc(ξ) = cos ξ + 1

2
(ξ − q∗)2 (7.66)

The shaped potential energy (cf. (7.65)) is then given as

(1 − cos q) + cos(q + λ) + 1

2
(q + λ − q∗)2 (7.67)

which has a minimum at q = q∗ for λ = 0. Hence, the resulting passivity-based state
feedback is simply

α0(x) = −∂Hc

∂ξ
(q) = sin q − (q − q∗) (7.68)

which is the well-known “proportional plus gravity compensation control.”

In the rest of this section we develop a general theory of passivity-based state
feedbacks u = α(x) for the asymptotic stabilization of a set-point x∗ of the plant port-
Hamiltonian system (7.1). This proceeds in two steps: (I) shape by state feedback the
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Hamiltonian H in such a way that it has a strict minimum at x = x∗, implying that x∗
is a (marginally) stable equilibrium of the controlled system, (II) add damping to the
system such that x∗ becomes an asymptotically stable equilibrium of the controlled
system. Note that Step II has been treated before, see in particular Sects. 7.1 and 4.2,
so that we may concentrate on Step I.

Proposition 7.2.3 Consider the port-Hamiltonian system (7.1). Assume we can find
a feedback u = α(x) and a vector function h(x) satisfying

[J (x) − R(x)] h(x) = g(x)α(x) (7.69)

such that
(i) ∂hi

∂x j
(x) = ∂h j

∂xi
(x), i, j = 1, . . . , n

(i i) h(x∗) = − ∂H
∂x (x∗)

(i i i) ∂h
∂x (x

∗) > − ∂2H
∂x2 (x∗)

(7.70)

with ∂h
∂x (x) the n × n matrix with i-th column given by ∂hi

∂x (x), and ∂2H
∂x2 (x∗) denoting

the Hessian matrix of H at x∗. Then x∗ is a stable equilibrium of the closed-loop
system

ẋ = [J (x) − R(x)]
∂Hd

∂x
(x) (7.71)

where Hd(x) := H(x) + Ha(x), with Ha defined locally around x∗ by

h(x) = ∂Ha

∂x
(x) (7.72)

Proof From (7.70)(i) it follows by Poincaré’s lemma that locally around x∗ there
exists Ha satisfying (7.72). Then by (7.69) the closed-loop system equals (7.71).
Furthermore by (7.70)(ii) x∗ is an equilibrium of (7.71), which is stable by (iii) since
∂2Hd
∂x2 (x∗) > 0, implying that Hd has a strict minimum at x∗. �

Example 7.2.4 Consider a mechanical system (7.27), with Hamiltonian H(q, p) =
1
2 p

T M−1(q)p + P(q). Equation (7.69) reduces to

h(q, p) =
[

0
h2(q, p)

]
, h2(q, p) = B(q)α(q, p) (7.73)

Furthermore, from (7.70)(i) it follows that h2 (and thus α) only depends on q, while

∂h2i
∂q j

(q) = ∂h2j
∂qi

(q) i, j = 1, . . . k (7.74)

Finally, (7.70)(ii) and (iii) reduce to, respectively,

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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h2(q∗) = −∂P

∂q
(q∗)

∂h2

∂q
(q∗) > −∂2P

∂q2
(q∗)

(7.75)

This implies that the shaped potential energy Pd(q) = P(q) + Pa(q), with Pa
such that h2(q) = ∂Pa

∂q (q), has a strict minimum at q = q∗, and thus Hd(q, p) =
1
2 p

T M−1(q)p + Pd(q) has a strict minimum at (q∗, p = 0).

Example 7.2.5 (Example 6.2.3 continued) The Hamiltonian H of the rolling coin
does not have a strict minimum at the desired equilibrium x = y = θ = φ = 0,
p1 = p2 = 0, since the potential energy is zero. Equations (7.69) and (7.70) reduce to

[
0 0 0 −1

− cosφ − sin φ −1 0

]
⎡
⎢⎢⎢⎢⎣

∂Pa
∂x
∂Pa
∂y
∂Pa
∂θ
∂Pa
∂φ

⎤
⎥⎥⎥⎥⎦ =

[
0 1
1 0

] [
α1

α2

]
(7.76)

with Pa and α1,α2 functions of x, y, θ,φ. Taking Pa(x, y, θ,φ) = 1
2 (x

2 + y2 +
θ2 + φ2) leads to the state feedback

u1 = −x cosφ − y sin φ − θ + v1
u2 = −φ + v2

(7.77)

By adding damping v1 = −y1 = −p2, v2 = −p1, the trajectories of the closed-loop
system will converge to the set of equilibria

{(x, y, θ,φ) | p1 = p2 = 0, φ = 0, x + θ = 0} (7.78)

The use of different potential functions Pa leads to different sets of equilibria which,
however, always contain an infinite number of points, in accordance with the fact that
mechanical systems with nonholonomic kinematic constraints cannot be asymptot-
ically stabilized using continuous state feedback; see Corollary 6.4.7.

Remark 7.2.6 The conditions (7.70) (i), (iii) can be stated in a more explicit way if
there exist functions F1, . . . , Fm such that

[J (x) − R(x)]
∂Fj

∂x
(x) = −g j (x), j = 1, . . . ,m (7.79)

(Note that these are exactly the conditions involved in the generation of Casimirs for
the closed-loop system resulting from integral action on alternate passive outputs;
cf. (7.46) and (7.50).) In this case, any feedback of the form

u = α(x) := −∂G

∂ξ
(F1(x), . . . , Fm(x)) (7.80)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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for some G : Rm → R, satisfies (7.69), and (7.70)(i) with h(x) = ∂Ha
∂x (x), and

Ha(x) = G(F1(x), . . . , Fm(x)). Furthermore, there exists a feedback (7.80) such
that additionally (7.70)(iii) is satisfied if and only if the Hessian ∂2H

∂x2 (x∗) is positive
definitewhen restricted to the subspace ker Fx (x∗), where Fx(x∗) is them × nmatrix
of gradient row vectors of F1, . . . , Fm [143, 270].

The conditions for existence of solutions h(x) and α(x) to (7.69) can be simplified
as follows.

Proposition 7.2.7 Consider the plant port-Hamiltonian system (7.1), where it is
assumed that g(x) has full column rank for every x ∈ X . Denote by g⊥(x) a matrix
of maximal rank such that g⊥(x)g(x) = 0. Let h(x),α(x) be a solution to (7.69).
Then h(x) is a solution to

g⊥(x)[J (x) − R(x)]h(x) = 0 (7.81)

Conversely, if h(x) is a solution to (7.81) then there exists α(x) such that h(x),α(x)
is a solution to (7.69). In fact, α(x) is uniquely given as

α(x) = (
gT (x)g(x)

)−1
gT (x) [J (x) − R(x)] h(x) (7.82)

Proof The first claim is immediate. The expression (7.82) follows by noting that(
gT (x)g(x)

)−1
gT (x) is the Moore–Penrose pseudoinverse of g(x). �

The Eq. (7.81) is called the energy shaping matching equation, and character-
izes the possible vectors h(x), and therefore Ha , which may be used in order to
shape H to Hd = H + Ha . Note that this matching equation is closely related to the
Eq. (7.46) for constructing alternate passive outputs for Casimir generation. Indeed,
by allowing for modulated feedback (7.31) as in Remark 7.1.11 the alternate passive
output Eq. (7.46) generalizes to [J (x) − R(x)]�(x) = g(x)β(x) for some matrix
β(x), which is equivalent to

g⊥(x)[J (x) − R(x)]�(x) = 0 (7.83)

Hence, the set of solutions h(x) to (7.81) is contained in im �(x), and in this sense
energy shaping by state feedback is equivalent to finding alternate passive outputs
for Casimir generation.

An important extension to the above method for energy shaping, which consid-
erably enlarges the set of possible Ha and therefore of Hd , is to additionally allow
for shaping of the structure matrices J (x) and R(x) in (7.1). Thus, the interconnec-
tion and damping assignment passivity-based control (IDA-PBC) design objective
is to obtain by state feedback u = α(x) a closed-loop system of the shaped port-
Hamiltonian form

ẋ = [Jd(x) − Rd(x)]
∂Hd

∂x
(x), (7.84)
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where Jd(x) = −J T
d (x) and Rd(x) = RT

d (x) ≥ 0 are desired interconnection and
resistive structure matrices, and, as before, Hd is a desired (shaped) Hamiltonian
having a minimum at x∗. Transforming (7.1) into (7.84) by application of state
feedback u = α(x) amounts to the equation

[J (x) − R(x)]
∂H

∂x
(x) + g(x)α(x) = [Jd(x) − Rd(x)]

∂Hd

∂x
(x) (7.85)

Proposition 7.2.8 Consider the port-Hamiltonian system (7.1) and a desired equi-
librium x∗ to be stabilized. Assume that we can find α(x) and Hd(x) = H(x) +
Ha(x), and matrices Jd(x) and Rd(x) satisfying (7.85) and such that the following
conditions are met:
• Equilibrium assignment: at x∗ the gradient of Ha(x) satisfies

∂Ha

∂x
(x∗) + ∂H

∂x
(x∗) = 0 (7.86)

• Minimum condition: the Hessian of Ha(x) at x∗ satisfies

∂2Ha

∂x2
(x∗) + ∂2H

∂x2
(x∗) > 0 (7.87)

Then, x∗ is a stable equilibrium of the closed-loop system (7.84). It will be asymptot-
ically stable if, in addition, the largest invariant set under the closed-loop dynamics
contained in {

x ∈ X
∣∣∣∣∂

T Hd

∂x
(x)Rd(x)

∂Hd

∂x
(x) = 0

}

equals {x∗}.
As before, see (7.81) in Proposition 7.2.7, the dependence of (7.85) on the unknown
α(x) can be eliminated. Indeed, assume that g(x) has maximal column rank for all
x ∈ X . Denoting by g⊥(x) a maximal rank annihilator of g(x), premultiplication of
both sides of (7.85) by g⊥(x) results in

g⊥(x) [J (x) − R(x)]
∂H

∂x
(x) = g⊥(x) [Jd(x) − Rd(x)]

∂Hd

∂x
(x) (7.88)

This is called the IDA-PBCmatching equation. Interconnection and damping assign-
ment passivity-based control is thus concerned with finding Jd , Rd and Hd satisfying
(7.88) such that Hd has its minimum at the desired equilibrium x∗. Once (7.88) has
been solved, the required state feedback u = α(x) follows, and is uniquely given as

α(x) = (
gT (x)g(x)

)−1
gT (x)

×
(
[Jd(x) − Rd(x)]

∂Hd

∂x
(x) − [J (x) − R(x)]

∂H

∂x
(x)

) (7.89)
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Solving the IDA-PBCmatchingEq. (7.88) can be a tedious process; basically because
there are many degrees of freedom Jd , Rd in order to construct Hd having its mini-
mum at x∗.

Example 7.2.9 (Example 6.3.2 continued) Suppose that we first try to stabilize the
levitated ball at a desired height q∗ by only shaping the Hamiltonian without altering
the interconnection and resistive structurematrices J (x), R(x) given in (6.5.9). Then
(7.69) for h(x) = ∂Ha

∂x (x) amounts to

∂Ha

∂q
= 0,

∂Ha

∂ p
= 0, −R

∂Ha

∂ϕ
= α(x) (7.90)

The first two equalities mean that Ha can only depend on ϕ, while the third defines
the state feedback α(x). Thus, the closed-loop Hamiltonian Hd = H + Ha , with H
the original Hamiltonian given by (6.60), takes the form

Hd(q, p,ϕ) = mgq + p2

2m
+ 1

2L(q)
ϕ2 + Ha(ϕ) (7.91)

Even though, with a suitable selection of Ha , we can satisfy the equilibrium assign-
ment condition, Hd will never be positive definite at this equilibrium. This is due
to the lack of effective coupling between the electrical and mechanical subsystems.
Indeed, the interconnectionmatrix J only couples positionwithmomentum. To over-
come this problem, a coupling between the flux-linkage ϕ and the momentum p is
enforced by modifying J to

Jd =
⎡
⎣ 0 1 0

−1 0 1
0 −1 0

⎤
⎦ (7.92)

Furthermore, we take Rd = R. Then Hd = H + Ha solves (7.85) if

∂Ha

∂ p
= 0, −∂Ha

∂q
+ ∂Ha

∂ϕ
+ ϕ

L(q)
= 0 (7.93)

The first equation implies that Ha only depends on q,ϕ. For L(q) given by L(q) =
k

1−q the second equation has the following set of solutions

Ha(q,ϕ) = ϕ3

6k
− 1

2k
(1 − q)ϕ2 + �(q + ϕ), (7.94)

with � : R2 → R arbitrary. This results in the class of shaped Hamiltonians

Hd(q, p,ϕ) = mgq + p2

2m
+ ϕ3

6k
+ �(q + ϕ) (7.95)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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By a suitable choice of � the shaped Hamiltonian Hd indeed has a minimum at
x∗ = (q∗, 0,

√
2kmg).

An interesting case of IDA-PBC matching equations is obtained for mechanical
systems, as treated in Sect. 6.2; see also Example 7.1.10. Consider the mechanical
system

� :
[
q̇
ṗ

]
=
[

0 In
−In 0

][ ∂H
∂q (q, p)

∂H
∂ p (q, p)

]
+
[

0
G(q)

]
u, (7.96)

where q ∈ Rn are the generalized position coordinates, p ∈ Rn are the momenta,
given as p = Mq̇ with M the inertia matrix, and the Hamiltonian is given by

H(q, p) = 1

2
p�M−1(q)p + V (q) (7.97)

We assume that G(q) has constant rank m ≤ n. Hence a matrix G⊥(q) of rank
n − m exists such that G⊥(q)G(q) = 0. Mechanical IDA-PBC is to design a state
feedback u = α(q, p) + v that transforms � into a closed-loop system, which is
again a mechanical system

�d :
[
q̇
ṗ

]
= (Jd(q, p) − Rd(q, p))

[ ∂Hd
∂q (q, p)

∂Hd
∂ p (q, p)

]
+
[

0
G(q)

]
v (7.98)

with Hd(q, p) = 1
2 p

�M−1
d (q)p + Vd(q) the desired total energy, where Md > 0 is

the desired inertia matrix and Vd(q) the desired potential energy function. The upper-
half of the IDA-PBC matching equations immediately implies that Jd is restricted to
the form

Jd =
[

0 M−1(q)Md(q)

−Md(q)M−1(q) J2(q, p)

]
(7.99)

for some J2(q, p) = −J�
2 (q, p). The resulting lower-half of the IDA-PBCmatching

equations is given as

G⊥(q)Md(q)M−1(q) ∂
∂q

(
1
2 p

�M−1
d (q)p

) − G⊥(q)J2(q, p)M−1
d (q)p

+G⊥(q)Md(q)M−1(q) ∂
∂q Vd(q)

= G⊥(q) ∂
∂q

(
1
2 p

�M−1(q)p
) + G⊥(q) ∂

∂q V (q)

(7.100)

These equations split into an p-dependent and p-independent part, given by

G⊥(q)Md(q)M−1(q) ∂
∂q

(
1
2 p

�M−1
d (q)p

) − G⊥(q)J2(q, p)M−1
d (q)p =

G⊥(q) ∂
∂q

(
1
2 p

�M−1(q)p
)

G⊥(q)Md(q)M−1(q) ∂
∂q Vd(q) = G⊥(q) ∂

∂q V (q)

(7.101)

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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It follows that J2(q, p) is necessarily linear in p. The aim is to find a shaped potential
energy function Vd that has a minimum at the set-point q∗. In case Md = M (energy
shapingpassivity-based control) the second equation confines shapingof the potential
energy to take place in the actuated degrees of freedom corresponding to im G(q)

(as we have seen before). By allowing shaping of M to Md (and thereby of J to Jd ,
with J2 an additional degree of freedom), the options for shaping of V into Vd are
considerably enlarged.

7.3 Control by Energy-Routing

In the previous sections, we addressed the problem of asymptotic set-point stabiliza-
tion of port-Hamiltonian systems. The main idea was to shape the Hamiltonian into
a suitable Lyapunov function, either by interconnection with a dynamical controller
system in port-Hamiltonian form or by direct state feedback, and then to add damp-
ing to the system by feeding back the resulting passive outputs. In this final section,
we indicate other uses of the port-Hamiltonian structure for control. In particular, we
explore the option of controlling the Poisson or Dirac structure in order to regulate
the power flow through the system.

As a first example of this, we consider the problem of energy transfer. Consider
two port-Hamiltonian systems�i (without internal dissipation) in input-state-output
form

�i :
ẋi = Ji (xi )

∂Hi

∂xi
(xi ) + gi (xi )ui , ui ∈ Rm

yi = gT
i (xi )

∂Hi

∂xi
(xi ), yi ∈ Rm

i = 1, 2, (7.102)

both satisfying the power-balance Ḣi (xi ) = yTi ui . Suppose now that we want to
transfer the energy from system �1 to system �2, while keeping the total energy
H1 + H2 constant. This can be done by using the following output feedback

[
u1
u2

]
=
[

0 −y1yT2
y2yT1 0

] [
y1
y2

]
, (7.103)

which, due to its skew-symmetry property, is power preserving. Hence, the closed-
loop system composed of �1 and �2 is energy preserving, that is Ḣ1 + Ḣ2 = 0.
However, if we consider the individual energies then we notice that

Ḣ1(x) = −yT1 y1y
T
2 y2 = −||y1||2||y2||2 ≤ 0, (7.104)

implying that H1 is decreasing as long as ||y1|| and ||y2|| are different from 0.
Conversely, as expected since the total energy is constant,
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Ḣ2(x) = yT2 y2y
T
1 y1 = ||y2||2||y1||2 ≥ 0, (7.105)

implying that H2 is increasing at the same rate. In particular, if H1 has a minimum at
the zero equilibrium, and�1 is zero-state detectable, then all the energy H1 of�1 will
be transferred to�2, as long as ||y2|| is not zero. If there is internal energy dissipation
in �1 and/or �2, then this energy transfer mechanism still works. However, the fact
that H2 grows or not will depend on the balance between the energy delivered by
�1 to �2 and the internal loss of energy in �2 due to dissipation. We conclude that
this particular scheme of power-conserving energy transfer is accomplished by a
skew-symmetric output feedback, which is modulated by the values of the output
vectors of both systems. Note that this implies that the interconnection matrix of the
closed-loop system is, strictly speaking, not an (almost-)Poisson structure, since it
is modulated by the co-tangent vectors ∂H1

∂x1
and ∂H2

∂x2
, instead of by the state variables

x1, x2.
A related scenario for energy-routing is the case where the interconnection matrix

J (or, more generally, the Dirac structure) is depending on the control u. Such a
case, for example, occurs in the control of power converters, where different switch
positions lead to different circuit topologies (and thus to different J matrices), and
where the duty ratio’s may be taken as control variables, leading to J (u), see, e.g.,
[95, 200]. Especially in case external sources and sinks are present, this allows for
a control of the power flow through the system in such a manner that certain crucial
variables are kept close to their desired values. In a robotics context continuously
variable transmission components, corresponding to a modulated Dirac structure,
may be designed for energy-efficient control [89]. Finally, control dependence may
also appear in the energy storage and energy dissipation. For the first case, we refer
to Note 13 in Sect. 6.10 (variable stiffness control).

7.4 Notes for Chapter 7

1. Example 7.1.3 is based on Aeyels & Szafranski [3].

2. The idea of stabilizing mechanical systems by shaping the potential energy via
feedback and by adding damping can be traced back at least to Takegaki &
Arimoto [334], and is one of the starting points of passivity-based control; see
Ortega & Spong [243]), as well as Ortega, Loria, Nicklasson & Sira-Ramirez
[239]. For the closely related topic of stabilization of Hamiltonian input-output
systems, see van der Schaft [270], Nijmeijer & van der Schaft [233].

3. Instead of controlling the system to the minimal level of its energy by damping
injection as in Sect. 7.1, onemay also use similar strategies to bring the system to
any desired level of energy H̄ by controlling (H − H̄)2 to zero. Furthermore, this
can be extended to stabilizing the system to any (multi-)level set of its Casimir
functions. This idea is explored in Fradkov,Makarov, Shiriaev&Tomchina [102]
and the references quoted therein.

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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4. The Energy-Casimir method for investigating stability of Hamiltonian dynamics
can be found in e.g., Marsden & Ratiu [197] and the references quoted therein.
A classical example is the stability analysis of non-zero equilibria of Euler’s
equations6.31 for the dynamics of the angular momenta of a rigid body. See
Aeyels [2] for the stabilization application. The method of generating Casimirs
for the closed-loop system resulting from interconnection with a controller port-
Hamiltonian systems is initiated in Stramigioli,Maschke& van der Schaft [330],
and further developed in Ortega, van der Schaft, Mareels & Maschke [241] and
Ortega, van der Schaft, Maschke & Escobar [242].

5. Example 7.1.6 is taken from Stramigioli, Maschke & van der Schaft [330]; see
also Stramigioli [328].

6. Closed-loopCasimir generationwith controller systemsnot satisfying Rc(ξ) ≥ 0
is addressed in [168].

7. The “swapping the damping” alternate passive output in (7.44) is introduced in
Jeltsema, Ortega & Scherpen [147].

8. The construction to generate Casimirs based on integral action of alternate pas-
sive outputs and as described at the end of Sect. 7.1, see (7.46), is initiated (in
a different context and form) in Maschke, Ortega & van der Schaft [198, 199].
For a general approach to alternate passive outputs for port-Hamiltonian DAE
systems see Venkatraman & van der Schaft [342].

9. Section7.2 is largely based on Ortega, van der Schaft, Mareels &Maschke [241]
and Ortega, van der Schaft, Maschke & Escobar [242]. A survey on IDA-PBC is
Ortega &Garcia–Canseco [238]. See Ortega, van der Schaft, Castanos &Astolfi
[240] and Castanos, Ortega, van der Schaft & Astolfi [62] for further develop-
ments, in particular about the close relations between “control by interconnec-
tion” and IDA-PBC. Example 7.2.9 is from Ortega, van der Schaft, Mareels &
Maschke [241]. Example 7.2.5 is based on Maschke & van der Schaft [204].

10. IDA-PBC control of linear port-Hamiltonian systems is investigated in Prajna,
van der Schaft & Meinsma [256].

11. The IDA-PBC matching equations for mechanical systems (7.100) and (7.101)
are due to Ortega, Spong, Gomez–Estern & Blankenstein [244]; see also
Blankenstein, Ortega & van der Schaft [42]. The extension to matching equa-
tions for mechanical systems with damping is treated in Gomez-Estern & van
der Schaft [116]. In parallel to IDA-PBC of mechanical systems the theory of
controlled Lagrangians is developed in Bloch, Leonard & Marsden [44, 45],
Bloch, Chang, Leonard & Marsden [46], Chang, Bloch, Leonard, Marsden &
Woolsey [64]), with eventually equivalent results; see also Auckly, Kapitanski
& White [17] and Hamberg [118].

12. Relatively little attention has been paid to the extension of the control theory of
this chapter to port-Hamiltonian DAE systems; see however Macchelli [191].
The characterization of achievable Dirac structures and achievable Casimirs

http://dx.doi.org/10.1007/978-3-319-49992-5_6
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through control by interconnection is addressed in Pasumarthy & van der
Schaft [251].

13. The energy transfer scheme (7.103) is taken from Duindam & Stramigioli [91];
see also Duindam, Blankenstein & Stramigioli [90], Duindam, Stramigioli &
Scherpen [92], where it is used for asymptotic path-following of mechanical
systems (converting kinetic energy orthogonal to the tangent of the desired path
into kinetic energy along it). The fact that the interconnection matrix of the
closed-loop system is not a (almost-)Poisson structure matrix anymore (since
it is depending on the gradient vector of the Hamiltonian) is similar to the sit-
uation encountered in thermodynamical systems, see Eberard, Maschke & van
derSchaft [94].

14. Related to the ideas exposed in Sect. 7.3 is the theory of impedance control as
formulated inHogan [127]. See furthermoreStramigioli [329], and the references
quoted in there, for various ideas on “energy-aware control” in robotics.



Chapter 8
L2-Gain and the Small-Gain Theorem

In this chapter, we elaborate on the characterization of finite L2-gain for state space
systems, continuing on the general theory of dissipative systems in Chap.3. Within
this framework we revisit the Small-gain theorem and its implications for robustness
(Sect. 8.2), and extend the small-gain condition to network systems (Sect. 8.3). Fur-
thermore, we provide an alternative characterization of L2-gain in terms of response
to periodic input functions (Sect. 8.4), and in Sect. 8.5 we end by sketching the close
relationships to the theory of (integral-)input-to-state stability.

8.1 L2-Gain of State Space Systems

Recall from Chap.3 the following basic definitions regarding L2-gain of a general
state space system �

� : ẋ = f (x, u), x ∈ X , u ∈ Rm

y = h(x, u), y ∈ Rp (8.1)

with n-dimensional state space manifold X .

Definition 8.1.1 A state space system � given by (8.1) has L2-gain ≤ γ if it is
dissipative with respect to the supply rate s(u, y) = 1

2γ
2||u||2 − 1

2 ||y||2; that is, there
exists a storage function S : X → R+ such that

S(x(t1)) − S(x(t0)) ≤ 1

2

∫ t1

t0

(γ2||u(t)||2 − ||y(t)||2)dt (8.2)

along all input functions u(·) and resulting state trajectories x(·) and output functions
y(·), for all t0 ≤ t1. Equivalently, if S is C1

© Springer International Publishing AG 2017
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Sx (x) f (x, u) ≤ 1

2
γ2||u||2 − 1

2
||h(x, u)||2 , ∀ x, u (8.3)

The L2-gain of � is defined as γ(�) = inf{γ | � has L2-gain ≤ γ}. � is said to
have L2-gain < γ if there exists γ̃ < γ such that � has L2-gain ≤ γ̃. Finally, � is
called inner if it is conservative with respect to s(u, y) = 1

2 ||u||2 − 1
2 ||y||2.

A more explicit form of the differential dissipation inequality (8.3) can be obtained
for systems that are affine in the input u and without feedthrough term

�a : ẋ = f (x) + g(x)u
y = h(x),

(8.4)

with g(x) an n × m matrix. In this case, the differential dissipation inequality (8.3)
for �a amounts to

Sx (x)[ f (x) + g(x)u] − 1

2
γ2||u||2 + 1

2
||h(x)||2 ≤ 0, ∀ x, u (8.5)

This can be simplified by computing the maximizing u∗ (as a function of x) for the
left-hand side, i.e.,

u∗ = 1

γ2
gT (x)STx (x), (8.6)

and substituting (8.6) into (8.5) to obtain the Hamilton–Jacobi inequality

Sx (x) f (x) + 1

2

1

γ2
Sx (x)g(x)gT (x)STx (x) + 1

2
hT (x)h(x) ≤ 0, ∀ x ∈ X (8.7)

Thus, �a has L2-gain ≤ γ with a C1 storage function if and only if there exists a C1

solution S ≥ 0 to (8.7). Furthermore, it follows from the theory of dynamic program-
ming that if the available storage Sa and required supply Sr (assuming existence) are
C1, they are actually solutions of the Hamilton–Jacobi (-Bellman) equality

Sx (x) f (x) + 1

2

1

γ2
Sx (x)g(x)gT (x)STx (x) + 1

2
hT (x)h(x) = 0 (8.8)

More information on the structure of the solution set of the Hamilton–Jacobi inequal-
ity (8.7) and equality (8.8) will be provided in Chap. 11.

An alternative view on L2-gain, directly relating to Proposition 1.2.9 in Chap.1,
is provided by the following definition and proposition.

Definition 8.1.2 Given the state space system� given by (8.1) define the associated
Hamiltonian input–output system �H as

http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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�H :
ẋ = ∂H

∂ p (x, p, u)

ṗ = − ∂H
∂x (x, p, u)

ya = ∂H
∂u (x, p, u)

(8.9)

with state (x, p), inputs u and outputs ya , where the Hamiltonian H(x, p, u) is
defined as

H(x, p, u) := pT f (x, u) + 1

2
hT (x, u)h(x, u) (8.10)

Here p ∈ T ∗
x X � Rn denotes the co-state vector.

Remark 8.1.3 Geometrically, the state space of�H is given by the cotangent bundle
T ∗X , with p ∈ T ∗

x X . See [24, 73] for further information. In case of a linear system,
ẋ = Ax + Bu, y = Cx + Du with transfer matrix K (s) = C(s I − A)−1B + D,
the transfer matrix of the associated input–output Hamiltonian system is given as
KT (−s)K (s).

Proposition 8.1.4 Consider � satisfying f (0, 0) = 0, h(0, 0) = 0, with input–
output map G0 : L2e(R

m) → L2e(R
p), which is assumed to be L2-stable. Then

the input–output map GH
(0,0) of �H for initial state (x, p) = (0, 0) is equal to the

composed map
GH

(0,0)(u) = (DG0(u))∗ ◦ G0(u) (8.11)

with DG0(u) the Fréchet derivative of the map G0. In particular, it follows that the
input–output map G0 is inner if and only if GH

(0,0) is the identity-map.

Proof Follows directly from the definition of the Fréchet derivative DG0(u) of G0

at u. The last statement follows from Proposition 1.2.9 in Chap.1. �

8.2 The Small-Gain Theorem Revisited

In this section, we provide a state space interpretation of the Small-gain Theorem
2.1.1 for input–output maps in Chap. 2.

Let us consider, as in Chap.4, the standard feedback configuration �1‖ f �2 of
two input-state-output systems

�i : ẋi = fi (xi , ui ), xi ∈ Xi , ui ∈ Ui

yi = hi (xi , ui ), yi ∈ Yi
i = 1, 2 (8.12)

with U1 = Y2, U2 = Y1, cf. Fig. 4.1. Suppose �1 and �2 in (8.12) have L2-gain
≤ γ1, respectively ≤ γ2. Denote the storage functions of �1, �2 by S1, S2, with
corresponding dissipation inequalities

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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S1(x1(t1)) − S1(x1(t0)) ≤ 1
2

∫ t1
t0

(γ2
1 ||u1(t)||2 − ||y1(t)||2)dt

S2(x2(t1)) − S2(x2(t0)) ≤ 1
2

∫ t1
t0

(γ2
2 ||u2(t)||2 − ||y2(t)||2)dt (8.13)

Consider now the feedback interconnection with e1 = e2 = 0

u1 = −y2, u2 = y1, (8.14)

and assume γ1 · γ2 < 1. Then we can find an α such that

γ1 < α <
1

γ2
(8.15)

Substitute (8.14) into (8.13), multiply the second inequality of (8.13) by α2, and add
both resulting inequalities, to obtain

S(x1(t1), x2(t1)) − S(x1(t0), x2(t0)) ≤
1
2

∫ t1
t0

[(α2γ2
2 − 1)||y1(t)||2 + (γ2

1 − α2)||y2(t)||2]dt (8.16)

where S(x1, x2) := S1(x1)+α2S2(x2). Sinceα satisfies (8.15) it immediately follows
that

S(x1(t1), x2(t1)) − S(x1(t0), x2(t0)) ≤ −ε

∫ t1

t0

||y1(t)||2 + ||y2(t)||2dt (8.17)

for a certain ε > 0. Thus S is a candidate Lyapunov function for the closed-
loop system. In fact, we may immediately apply the reasoning of Lemma 3.2.16,
resulting in

Theorem 8.2.1 (Small-gain theorem; state space version) Suppose�1 and�2 have
L2-gain ≤ γ1 and ≤ γ2, with γ1 · γ2 < 1. Suppose S1, S2 ≥ 0 satisfying (8.13) are
C1 and have strict local minima at x∗

1 = 0, x∗
2 = 0, and �1 and �2 are zero-state

detectable. Then x∗ = (x∗
1 , x

∗
2 ) is an asymptotically stable equilibrium of the closed-

loop system �1‖ f �2 with e1 = e2 = 0, which is globally asymptotically stable if
additionally S1, S2 have global minima at x∗

1 , x
∗
2 and are proper.

We leave the refinement of Theorem 8.2.1 to positive semidefinite S1 and S2 based
on Theorem 3.2.19 to the reader (see also [312]). Instead we formulate the following
version based on Proposition 3.2.22. For simplicity, assume that �i , i = 1, 2, are
affine systems

�ai : ẋi = fi (xi ) + gi (xi )ui
yi = hi (xi )

(8.18)

Proposition 8.2.2 Suppose the affine systems�a1 and�a2 as in (8.18) have L2-gain
≤ γ1 and ≤ γ2, with γ1 · γ2 < 1. Suppose S1, S2 ≥ 0 satisfying (4.52) are C1 and

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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S1(x∗
1 ) = S2(x∗

2 ) = 0 (that is, S1 and S2 are positive semidefinite at x∗
1 , respectively,

x∗
2 ). Furthermore, assume that x∗

i is an asymptotically stable equilibrium of ẋi =
fi (xi ), i = 1, 2. Then (x∗

1 , x
∗
2 ) is an asymptotically stable equilibrium of the closed-

loop system �1‖ f �2 with e1 = 0, e2 = 0.

Proof The closed-loop system �1‖ f �2 with e1 = 0, e2 = 0 can be written as

ẋ = f (x) + g(x)k(x)

with x = (x1, x2), and

f =
[
f1
f2

]
, g =

[
g1 0
0 g2

]
, k =

[−h2
h1

]
(8.19)

By (8.17)
Sx (x1, x2) [ f (x) + g(x)k(x)] ≤ −ε||k(x)||2, (8.20)

while by assumption (x∗
1 , x

∗
2 ) is an asymptotically stable equilibrium of ẋ = f (x).

The statement now follows from Proposition 3.2.22. �

Remark 8.2.3 Contrary to the Small-gain Theorem 2.1.1 for input–output maps in
Chap.2 we can relax the small-gain condition γ1 · γ2 < 1 to γ1 · γ2 ≤ 1, in the sense
that for γ1 ·γ2 = 1 the inequalities (8.17) and (8.20) remain to holdwith ε = 0. Hence
under appropriate conditions on S1, S2 stability continues to hold if γ1 · γ2 = 1.

Remark 8.2.4 Note that the small-gain theorem is equally valid for the positive
feedback interconnection u1 = y2, u2 = y1.

Theorem 8.2.1 and Proposition 8.2.2 have immediate applications to robustness
analysis. A simple corollary of Theorem 8.2.1 is the following.

Corollary 8.2.5 Consider a nominal set of differential equations ẋ = f (x),
f (0) = 0, with perturbation model

ẋ = f (x) + ḡ(x)�h̄(x) , (8.21)

where ḡ(x) is a known n × m̄ matrix, h̄ : X → R p̄, h̄(0) = 0, is a known mapping,
and� is an unknown m̄× p̄ matrix representing the uncertainty. Suppose the system

�̄ : ẋ = f (x) + ḡ(x)ū, ū ∈ Rm

ȳ = h̄(x), ȳ ∈ Rp (8.22)

has L2-gain≤ γ (from ū to ȳ), withC1 storage function having a strict localminimum
at 0, or having a local minimum at 0 while 0 is an asymptotically stable equilibrium
of ẋ = f (x). Then 0 is an asymptotically stable equilibrium of the perturbed system
(8.21) for all perturbations � having largest singular value less than 1

γ
.

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_2


204 8 L2-Gain and the Small-Gain Theorem

Proof Take in Propositions 8.2.1 or 8.2.2 �1 = �̄, and �2 equal to the static system
corresponding to multiplication by�. The L2-gain of�2 is the largest singular value
of �. �

Another direct consequence of the preceding theory concerns robustness of finite
L2-gain.

Corollary 8.2.6 Consider the perturbed state space system

�p : ẋ = [ f (x) + ḡ(x)�h̄(x)] + g(x)u, x ∈ X , u ∈ Rm,

y = h(x), y ∈ Rp (8.23)

where ḡ, h̄, and � are as in Corollary 8.2.5, with � = 0 representing the nomi-
nal state space system. Suppose there exists a solution S ≥ 0 to the parametrized
Hamilton–Jacobi inequality

Sx (x) f (x) + 1
2

1
γ2 Sx (x)g(x)gT (x)STx (x) + 1

2h
T (x)h(x)+

1
2

1
γ2

1
ε2
Sx (x)ḡ(x)ḡT (x)STx (x) + 1

2ε
2h̄T (x)h̄(x) ≤ 0

(8.24)

(with ε a fixed but arbitrary scaling parameter), meaning that the extended system

ẋ = f (x) + g(x)u + 1
ε
ḡ(x)ū

y = h(x)
ȳ = εh̄(x)

(8.25)

has L2-gain ≤ γ from (u, ū) to (y, ȳ). Then the perturbed system �p has L2-gain
≤ γ for all perturbations � having largest singular value ≤ 1

γ
.

Proof For all � with largest singular value ≤ 1
γ

Sx (x)ḡ(x)�h̄(x) ≤ 1

2

1

γ2

1

ε2
Sx (x)ḡ(x)ḡT (x)STx (x) + 1

2
ε2h̄T (x)h̄(x)

and thus the expression

Sx (x)[ f (x) + ḡ(x)�h̄(x)] + 1

2

1

γ2
Sx (x)g(x)gT (x)STx (x) + 1

2
hT (x)h(x)

is bounded from above by the left-hand side of (8.24), implying that �p has
L2-gain ≤ γ. �

This last corollary can be extended to dynamic perturbations � in the following
way.

Proposition 8.2.7 Consider the extended system (8.25), and assume that there exists
a solution S ≥ 0 to (8.24) (implying that (8.25) has L2-gain ≤ γ from (u, ū) to
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(y, ȳ)). Consider another dynamical system � with state ξ, inputs ȳ and outputs ū,
and having L2-gain ≤ 1

γ
with C1 storage function S�(ξ) ≥ 0. Then the closed-loop

system has L2-gain ≤ γ from u to y, with storage function S(x) + γ2S�(ξ).

Proof By (8.24)

Ṡ ≤ 1

2
γ2‖u‖2 − 1

2
‖y‖2 + 1

2
γ2‖ū‖2 − 1

2
‖ȳ‖2 (8.26)

Furthermore, since � has L2-gain ≤ 1
γ
with storage function S�, i.e.,

Ṡ� ≤ 1

2

1

γ2
‖ȳ‖2 − 1

2
‖ū‖2 (8.27)

Premultiplying (8.27) by γ2, and adding to (8.26) yields

Ṡ + γ2 Ṡ� ≤ 1

2
γ2‖u‖2 − 1

2
‖y‖2 (8.28)

�

Similar to the developments in Chap.4, cf. Definition 4.7.1, we can formulate
the following state space version of incremental L2-gain, as already defined for
input–output maps in Definition 2.1.5.

Definition 8.2.8 Consider a system (8.1). The system � has incremental L2-gain
≤ γ if there exists a function, called the incremental storage function,

S : X × X → R+ (8.29)

such that
S(x1(T ), x2(T )) ≤ S(x1(0), x2(0))

+ 1
2

∫ T
0 γ2‖u1(t) − u2(t)‖2 + ‖y1(t) − y2(t)‖2 dt , (8.30)

for all T ≥ 0, and for all pairs of input functions u1, u2 : [0, T ] → Rm and all pairs
of initial conditions x1(0), x2(0), with resulting pairs of state and output trajectories
x1, x2 : [0, T ] → X , y1, y2 : [0, T ] → Rp.

As before in the context of incremental passivity, cf. Remark 4.7.2, it can be assumed
without loss of generality that the storage function S(x1, x2) satisfies the symmetry
property S(x1, x2) = S(x2, x1).

The differential version of the incremental dissipation inequality (8.29) takes the
form

Sx1(x1, x2) f (x1, u1) + Sx2(x1, x2) f (x2, u2)
≤ 1

2γ
2‖u1 − u2‖2 + 1

2‖y1 − y2‖2 (8.31)

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_4
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for all x1, x2, u1, u2, y1 = h(x1, u1), y2 = h(x2, u2), where Sx1(x1, x2) and Sx2
(x1, x2) denote row vectors of partial derivatives with respect to x1, respectively x2.

Let us, as above, specialize to systems (8.4), in which case the incremental dissi-
pation inequality (8.31) becomes

Sx1(x1, x2) f (x1) + Sx1(x1, x2)g(x1)u1 +
Sx2(x1, x2) f (x2) + Sx1(x1, x2)g(x2)u2

≤ 1
2γ

2‖u1 − u2‖2 + 1
2‖h(x1) − h(x2)‖2

(8.32)

In general, this inequality is hard to solve for the unknown incremental storage
function S(x1, x2). Assuming1 that g(x) is independent of x and restricting attention
to incremental storage functions of the form S(x1, x2) = S̄(x1 − x2), implying that
Sx1(x1, x2) = −Sx2(x1, x2) = S̄x (x1 − x2), the inequality (8.32) reduces to

S̄x (x1 − x2)[ f (x1) − f (x2)] + S̄x (x1 − x2)g[u1 − u2]
≤ 1

2γ
2‖u1 − u2‖2 + 1

2‖h(x1) − h(x2)‖2 (8.33)

By “completion of the squares” in the difference u1 − u2, this can be seen to
further reduce to the Hamilton–Jacobi inequality

S̄x (x1 − x2)[ f (x1) − f (x2)] + 1
γ2 S̄x (x1 − x2)ggT S̄Tx (x1 − x2)

+ 1
2‖h(x1) − h(x2)‖2 ≤ 0

(8.34)

for all x1, x2.

Remark 8.2.9 A trivial example is provided by a linear system having L2-gain ≤ γ
with quadratic storage function 1

2 x
T Qx . In this case, S(x1, x2) := 1

2 (x1−x2)T Q(x1−
x2) defines an incremental storage function, and hence the system also has incremen-
tal L2-gain ≤ γ.

8.3 Network Version of the Small-Gain Theorem

The small-gain theorem concerns the stability of the interconnection of two systems
in negative or positive feedback interconnection. A network version of this can be
formulated as follows.

Consider a multiagent system, corresponding to a directed graph G with N ver-
tices and input-state-output systems �i , i = 1, . . . , N , associated to these vertices.
Furthermore, assume that the edges of the graph are specified by an N×N adjacency

1Or assuming the existence of coordinates in which g(x) is constant, which is, under the assumption
that rankg(x) = m, equivalent to the Lie brackets of the vector fields g1, . . . , gm defined by the
columns of g(x) to be zero [233].
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matrix [48, 114] A with elements 0, 1, corresponding to interconnections2

ui = y j (8.35)

if and only if the (i, j)-th element of A is equal to 1.
Now assume that the systems �i have L2-gain ≤ γi , i = 1, . . . , N . This means

that there exist storage functions Si : Xi → R+ such that3

Ṡi ≤ 1

2
γ2
i ‖ui‖2 − 1

2
‖yi‖2, i = 1, . . . , N (8.36)

Then define the following N × N matrix with nonnegative elements

� := diag(γ2
1 , . . . , γ

2
N )A (8.37)

The Perron–Frobenius theorem yields the following lemma.

Lemma 8.3.1 ([79]) Denote by z > 0 a (column or row) vector z with all elements
positive, and by z ≥ 0 a vector with nonnegative elements. Furthermore, let IN
denote the N × N identity matrix.

Consider an N × N matrix � with all nonnegative elements. Then there exists a
vector μ > 0 such that

μT (� − IN ) < 0 (8.38)

if and only if
r(�) < 1, (8.39)

where r(�) denotes the spectral radius of �.

Proof (If). If r(�) < 1 then by the Perron–Frobenius theorem there exists μ > 0
such that μT� < μT , or equivalently μT (� − IN ) < 0.
(Only if). Conversely, if r(�) ≥ 1 then there exists ν ≥ 0, ν �= 0, such that
(� − IN )ν ≥ 0, whence for any μ > 0 we have μT (� − IN )ν ≥ 0, contradicting
μT (� − IN ) < 0. �

Based on this lemma we obtain the following theorem.

Theorem 8.3.2 (Small-gain network theorem) Consider a directed graph G with
systems �i associated to its vertices, which have L2-gains ≤ γi with C1 storage
functions Si , i = 1, . . . , N, and which are interconnected through the adjacency
matrix A defined by (8.35). Consider the matrix � given by (8.37). If the spectral

2The typical situation being that each row in theAmatrix contains only one 1. Multiple occurrence
of ones in a row is allowed but will imply an equality constraint on the corresponding outputs,
leading to algebraic constraints between the state variables.
3The subsequent argumentation directly extends to the case of non-differentiable storage functions,
replacing the differential dissipation inequalities by their integral counterparts.
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radius r(�) < 1, then there exists μ > 0 such that μT (� − IN ) < 0 and the
nonnegative function

S(x1, . . . , xN ) :=
N∑
i=1

μi Si (xi ) (8.40)

satisfies along trajectories of the interconnected system

Ṡ ≤ −ε1‖y1‖2 − ε2‖y2‖2 · · · − εN‖yN‖2 (8.41)

for certain positive constants ε1, . . . , εN . Hence, if Si has a strict minimum at x∗
i ,

i = 1, . . . , N, then x∗ = (x∗
1 , . . . , x

∗
N ) is a stable equilibrium of the interconnected

system, which is asymptotically stable provided the interconnected system is zero-
state detectable.

Proof Denote the vector with components ‖yi‖2, i = 1, . . . , N , by ŷ. Then

Ṡ = ∑N
i=1 μi Ṡi (xi ) ≤ 1

2

∑N
i=1 μi (γ

2
i ‖ui‖2 − ‖yi‖2) = 1

2μ
T (� − IN )ŷ

≤ −ε1‖y1‖2 − ε2‖y2‖2 · · · − εN‖yN‖2 (8.42)

for certain positive constants ε1, . . . , εN . �

Example 8.3.3 In case of the feedback interconnection u1 = y2, u2 = y1 of two
systems �1, �2 with L2-gain ≤ γ1, respectively, ≤ γ2, application of Theorem 8.3.2
leads to the consideration of the matrix

� =
[
0 γ2

1
γ2
2 0

]
, (8.43)

which has spectral radius< 1 if and only if γ1 ·γ2 < 1; thus recovering the small-gain
condition of Theorem 8.2.1.

8.4 L2-Gain as Response to Periodic Input Functions

An interesting interpretation of the L2-gain of a nonlinear state space system� given
by (8.1) in terms of the response to periodic input functions was obtained in [140].

Assume that f (0, 0) = 0, and that thematrix A := ∂ f
∂x (0, 0) has all its eigenvalues

in the open left half plane. Let � have L2-gain ≤ γ, and consider a periodic input
function u p(·) (of period T > 0), which is generated by a dynamical system (“exo-
system”)

�e : u̇ = s(u), s(0) = 0, (8.44)

whose linearization has all its eigenvalues on the imaginary axis. Then it follows
from center manifold theory (see, e.g., [61]) that the series interconnection of the
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exo-system �e with �, given as

ẋ = f (x, u)

u̇ = s(u)
(8.45)

and having augmented state (x, u), has a center manifold, which is the graph C =
{(x, u) | x = c(u)} of a mapping x = c(u). Furthermore, for initial conditions close
enough to C the solutions of the composed system (8.45) tend exponentially to C,
and thus, since u p(·) is periodic of period T , the solution x(·) converges to a steady
state solution xp(·), with xp(t) = c(u p(t)), also having period T (see [141]).

It follows that yp(t) = h(xp(t), u p(t)) has period T as well, and furthermore by
the L2-gain dissipation inequality (8.2)

∫ t0+T

t0

‖yp(t)‖2dt ≤ γ2
∫ t0+T

t0

‖u p(t)‖2dt (8.46)

(since xp(t0 + T ) = xp(t0)), for all t0.
Defining the rms values of any periodic signal z with period T as

‖z‖rms := 1

T
(

∫ t0+T

t0

‖z(t)‖2dt)1/2, (8.47)

the property that � has L2-gain ≤ γ therefore implies that

‖yp‖rms ≤ γ ‖u p‖rms , (8.48)

for all periodic input functions u p which are generated by the exo-system
u̇ = s(u), s(0) = 0, and all initial conditions close enough to C.

8.5 Relationships with IIS- and iIIS-Stability

An alternative approach to extending Lyapunov stability theory of autonomous sys-
tems ẋ = f (x) to systems with inputs ẋ = f (x, u) is offered by the theory of
(integral-)Input-to-State Stability ((i)ISS). In this section, we will briefly indicate
the close relationships of (i)ISS with dissipative systems theory and (a generalized)
version of L2-gain. We will do so by not giving the original definitions of IIS and
iIIS, but instead by providing their equivalent characterizations in terms of dissipative
systems theory.

By itself the close relation between dissipative systems theory on the one hand
and stability theory based on the IIS or iIIS property on the other is not surprising.
Indeed, we have already seen in Chap.3 how dissipativity implies Lyapunov stability
properties of the system for u = 0. Furthermore, for u �= 0 the dissipation inequality

http://dx.doi.org/10.1007/978-3-319-49992-5_3


210 8 L2-Gain and the Small-Gain Theorem

may be used for deriving properties of the relationships between input, state and
output functions.

Recall that a function α : R+ → R+ is of class K∞, denoted α ∈ K∞, if it is
continuous, strictly increasing, unbounded, and satisfies α(0) = 0.

Turning the characterization of input-to-state stability (IIS) as given in [323] into
a definition we formulate

Definition 8.5.1 ([323]) A system

ẋ = f (x, u) , f (0, 0) = 0, x ∈ Rn, u ∈ Rm (8.49)

is ISS if there exist functions α,β ∈ K∞ such that the input-state-output system
ẋ = f (x, u), y = x, is dissipative with respect to the supply rate

s(u, y) = β(‖u‖) − α(‖y‖) (8.50)

with a C1 and radially unbounded storage function S satisfying S(x) > 0, x �=
0, S(0) = 0.

Note the conceptual difference with dissipative systems theory (apart from minor
technical differences like the a priori assumption of strict positivity and radial
unboundedness of S). In dissipative systems theory, one starts with a given sup-
ply rate on the space of inputs and outputs, and derives properties of the system
based on this. On the other hand, ISS theory aims at providing stability results for
systems with inputs ẋ = f (x, u), f (0, 0) = 0, and seeks criteria, which can be
translated into the existence of a supply rate (8.50), where the functions α,β may
not be easy to determine explicitly.

We remark that the supply rate (8.50) can be regarded as a generalization of the L2-
gain supply rate. In fact, by taking α and β to be the quadratic functions α(r) = 1

2r
2

and β(r) = 1
2γ

2r2 for some constant γ one recovers the L2-gain≤ γ case for y = x .
Conversely, by allowing for arbitrary nonlinear coordinate transformations on the
space U = Rm of inputs and X = Rn of states, the dissipation inequality for L2-
gain (from u to y = x) can be seen to transform into (8.50) for certainα,β ∈ K∞. See
also the discussion in Note 2 in Sect. 2.5 on the related notion of nonlinear L2-gain.

With regard to integral input-to-state stability (iIIS) case we have the following
characterization in terms of dissipative systems theory.

Definition 8.5.2 ([9]) A system (8.49) is iISS if there exists a function γ ∈ K∞
and a function α : R+ → R+ with α(0) = 0,α(r) > 0, r �= 0, such that the
input-state-output system ẋ = f (x, u), y = x, is dissipative with respect to the
supply rate (8.50) with a C1 and radially unbounded storage function S satisfying
S(x) > 0, x �= 0, S(0) = 0.

From the above characterization, it is clear that IIS implies iIIS, while the converse
does not hold. That is, there are systems which are iIIS but not IIS. An example is
provided by the system

http://dx.doi.org/10.1007/978-3-319-49992-5_2
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ẋ = −x + ux (8.51)

See, e.g., [9, 319] for a further discussion regarding the differences between ISS and
iISS.

Another version of the relationship between iIIS and dissipative systems theory
is provided in the following proposition.

Proposition 8.5.3 ([9]) A system 8.49 is iIIS if and only if there exists a contin-
uous output function y = h(x) with h(0) = 0 for which the resulting system
ẋ = f (x, u) , y = h(x) is zero-detectable and there exists β ∈ K∞ and a func-
tion α : R+ → R+ with α(0) = 0,α(r) > 0, r �= 0, such that the system is
dissipative with respect to the supply rate (8.50) with a C1 and radially unbounded
storage function S satisfying S(x) > 0, x �= 0, S(0) = 0.

Note that the “if” part of the last proposition with α(r) = 1
2r

2 and β(r) = 1
2γ

2r2

implies that a zero-detectable input-state-output system with finite L2-gain having a
C1 and radially unbounded storage function S satisfying S(x) > 0, x �= 0, S(0) = 0,
is iIIS.

8.6 Notes for Chapter8

1. Corollary 8.2.6 is a nonlinear generalization of a result given for linear systems
in Xie & De Souza [358], and may be found in Shen & Tamura [313].

2. SeeAngeli [8] for further information regarding incremental L2-gain as discussed
in Sect. 8.2.

3. Applications of incremental L2-gain to model reduction of nonlinear systems can
be found in Besselink, van de Wouw & Nijmeijer [38].

4. Section8.3, in particular Lemma 8.3.1, is largely based on Dashkovskiy, Ito &
Wirth [79]. There is a wealth of literature on other network versions of the small-
gain theorem; see, e.g., Jiang & Wang [150], Liu, Hill & Jiang [182], Rüffer
[261].

5. See Pavlov, van de Wouw & Nijmeijer [254] and the references quoted therein
for theory related to Sect. 8.4.

6. The notions of (integral-)Input-to-State Stability were introduced and explored
by Sontag and co-workers, see, e.g., Sontag & Wang [323], Sontag [318, 319,
324], Angeli, Sontag & Wang [9] and the references quoted in there. See also
the survey Sontag [321], and the account of the relation with dissipative systems
theory provided in Isidori [139].

7. The characterization of the set of pairs of functions (β,α) such that the system
is dissipative with respect to the supply rate (8.50) is addressed in Sontag &
Teel [322].



Chapter 9
Factorizations of Nonlinear Systems

In this chapter, we apply the L2-gain concepts and techniques from Chaps. 3 and 8 to
obtain some useful types of representations of nonlinear systems, different from the
standard input-state-output representation. In Sect. 9.1 we will derive stable kernel
and stable image representations of nonlinear systems, and we will use them in order
to formulate nonlinear perturbation models (with L2-gain bounded uncertainties)
in Sect. 9.2. In Sect. 9.3 we will employ stable kernel representations in order to
derive a parametrization of stabilizing controllers, analogous to the Youla–Kucera
parametrization in the linear case. Section9.4 dealswith the factorizationof nonlinear
systems into a series interconnection of aminimum phase system and a systemwhich
preserves the L2-norm. This allows us to control the system based on its minimum
phase factor system, using a nonlinear version of the Smith predictor.

9.1 Stable Kernel and Image Representations

A cornerstone of linear robust control theory is the theory of stable factorizations
of transfer matrices. Let G(s) be a p × m rational proper transfer matrix. A stable
left, respectively right, factorization of G(s) is G(s) = D−1(s)N (s), respectively,
G(s) = Ñ (s)D̃−1(s), where D(s), N (s), D̃(s) and Ñ (s) are all stable proper rational
matrices. These two factorizations can be alternatively interpreted as follows. The
relation y = D−1(s)N (s)u for a stable left factorization (with u and y denoting the
inputs and outputs in the frequency domain) can be equivalently rewritten as

0 = z = [D(s)
... − N (s)]

[
y
u

]
, (9.1)
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and thus can be considered as a stable kernel representation of the system corre-

sponding to G(s). Indeed, [D(s)
... −N (s)] is a stable transfer matrix with “inputs” y

and u, and “outputs” z, while the input–output behavior of the system corresponding

to G(s) are all pairs (y, u) which are mapped by [D(s)
... − N (s)] onto z = 0.

On the other hand, the relation y = Ñ (s)D̃−1(s)u for a stable right factorization
can be rewritten as [

y
u

]
=

[
Ñ (s)
D̃(s)

]
l, (9.2)

where l is an arbitrarym-vector ofauxiliaryvariables. Thus the input–output behavior
of the system corresponding to G(s) are all pairs (y, u) (in the frequency domain)

which are in the image of the stable transfer matrix

[
Ñ (s)
D̃(s)

]
. Hence a stable right

factorization can be regarded as a stable image representation.
Let us generalize this to nonlinear input-state-output systems. For simplicity of

exposition we only consider affine systems �a , which throughout Sects. 9.1 and 9.2
of this chapter will be simply denoted as

� : ẋ = f (x) + g(x)u , x ∈ X , u ∈ Rm

y = h(x) , y ∈ Rp (9.3)

In analogy with Chap.1 we will say that the state space system � is L2-stable if all
its input–output maps Gx0 , x0 ∈ X , are L2-stable. Recall from Chap.1 that if � has
L2-gain ≤ γ for some γ then it is L2-stable. Since we will only consider Lq -stability
for q = 2 the terminology “L2-stable” will be sometimes abbreviated to “stable”.

Definition 9.1.1 A kernel representation of � given by (6.8) is any system

K� :
ẋ = F(x, u, y) , x ∈ X , u ∈ Rm, y ∈ Rp

z = G(x, u, y) , z ∈ Rq
(9.4)

such that for every initial condition x(0) = x0 ∈ X and every function u(·) there
exists a unique solution y(·) to (9.4) with z = 0, which equals the output of �

for the same initial condition and same input u(·). K� is called a L2-stable kernel
representation of � if moreover K� is L2-stable (from (u, y) to z).

An image representation of � is any system

I� :
ẋ = F(x, l) , x ∈ X , l ∈ Rk

[
y
u

]
= G(x, l)

(9.5)

such that for every initial condition x(0) = x0 ∈ X and every input function u(·) and
resulting output function y(·) of� there exists a function l(·) such that the pair (u, y)

http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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produced by I� for the same initial condition x0 coincides with the input–output pair
(u, y) of �. I� is an L2-stable image representation if I� is L2-stable from l to
(u, y).

In case � is already itself an L2-stable input-state-output system, a stable kernel
representation of � is simply

K� : ẋ = f (x) + g(x)u
z = y − h(x)

(9.6)

while a stable image representation of � is given by

I� :
ẋ = f (x) + g(x)l
y = h(x)
u = l

(9.7)

If � is not L2-stable then we may proceed as follows. Consider the following two
versions of the same Hamilton–Jacobi equation

Vx (x) f (x) − 1

2
Vx (x)g(x)gT (x)V T

x (x) + 1

2
hT (x)h(x) =0 (9.8)

Wx (x) f (x) + 1

2
Wx (x)g(x)gT (x)WT

x (x) − 1

2
hT (x)h(x) =0 (9.9)

Suppose there exists a C1 solutionW ≥ 0 to (9.9). Additionally, assume there exists
an n × p matrix k(x) satisfying

Wx (x)k(x) = hT (x) (9.10)

Then the system with “inputs” u and y and “outputs” z given by

K� : ẋ = [ f (x) − k(x)h(x)] + g(x)u + k(x)y
z = y − h(x)

(9.11)

is a stable kernel representation of �. Indeed, by setting z = 0 in (9.11) we recover
the original system �. Second, from (9.9), (9.10) it follows that

Wx (x)([ f (x) − k(x)h(x)] + g(x)u + k(x)y) =
−1

2
||u − gT (x)WT

x (x)||2 − 1

2
||z||2 + 1

2
||u||2 + 1

2
||y||2 ≤

−1

2
||z||2 + 1

2
||u||2 + 1

2
||y||2 (9.12)

showing that K� has L2-gain ≤ 1 from (u, y) to z. Moreover, from z = y − h(x)
it is easily seen that there does not exist γ < 1 such that the L2-gain of K� is
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≤ γ. Therefore, the L2-gain of K� is actually equal to 1. We summarize this in the
following proposition.

Proposition 9.1.2 Assume there exist solutions W ≥ 0 to (9.9) and k(x) to (9.10),
then K� given by (9.11) is a stable kernel representation of � which has L2-gain
equal to 1.

Remark 9.1.3 Equation (9.9) is theHamilton–Jacobi–Bellman equation correspond-
ing to the “optimal control problem in reversed time” or the “optimal filtering
problem”

min
u

∫ 0

−∞
(||u(t)||2 + ||y(t)||2)dt , x(−∞) = 0, x(0) = x, (9.13)

and W is the corresponding value function. Conditions for local solvability of (9.9)
will be derived in Chap.11 (see Remark 11.2.4).

Remark 9.1.4 SupposeW has a minimum (or, more generally, a stationary point) at
some x0 with h(x0) = 0. For simplicity set x0 = 0. Then Wx (0) = 0 and h(0) = 0.
It follows by standard arguments (see, e.g., [136, 233]) that we may write, locally
about 0,

Wx (x) = xT M(x) , h(x) = C(x)x (9.14)

for certain matrices M(x),C(x), with entries smoothly depending on x . If M(x) is
invertible then the unique solution k(x) to (9.10) is given as

k(x) = M−1(x)CT (x) (9.15)

In Chap.11, Remark 11.2.4, it will be shown that under minimality assumptions on
the system linearized at x = 0, the matrix M(0), and thus M(x) for x near 0, is
always invertible.

Remark 9.1.5 Substitution of u = 0, y = 0 in (9.12) yields

Wx (x)[ f (x) − k(x)h(x)] ≤ −1

2
hT (x)h(x) (9.16)

Assume that x0 is an equilibrium, i.e., f (x0) = 0 and h(x0) = 0, and that W has
a strict local minimum at x0. It follows that the zero-output constrained dynamics
of � (see Sect. 5.1) is at least stable around x0. This property can be regarded as
a weak form of zero-state detectability (see Definition 3.2.15). Conversely, if � is
zero-state detectable then (cf. Lemma 3.2.16) it follows that x0 is an asymptotically
stable equilibrium of ẋ = f (x) − k(x)h(x).

Remark 9.1.6 For a linear system �, K� equals the normalized left coprime factor-
ization, see, e.g., [212].

http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_5
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Let us now move to image representations. In this case, we consider the
Hamilton–Jacobi equation (9.8), and the basic proposition is as follows.

Proposition 9.1.7 Assume there exists a C1 solution V ≥ 0 to (9.8), then the system

I� :
ẋ = [ f (x) − g(x)gT (x)V T

x (x)] + g(x)s
y = h(x)
u = s − gT (x)V T

x (x)
(9.17)

with auxiliary variables s is a stable image representation of �, which has L2-gain
(from s to (y, u)) equal to 1.

Proof Clearly I� is an image representation. (Eliminate from the last equations the
auxiliary variables as s = u + gT (x)V T

x (x).) In view of (9.8)

Vx (x)( f (x) − g(x)gT (x)V T
x (x)) + Vx (x)g(x)s =

−1

2
Vx (x)g(x)gT (x)V T

x (x) − 1

2
hT (x)h(x) + Vx (x)g(x)s =

−1

2
||s − gT (x)V T

x (x)||2 + 1

2
||s||2 − 1

2
||y||2 = (9.18)

1

2
||s||2 − 1

2
||u||2 − 1

2
||y||2

implying that I� has L2-gain = 1. �

Remark 9.1.8 In fact I� is conservative (see Definition 3.1.2) with regard to the
supply rate 1

2 ||s||2 − 1
2 ||u||2 − 1

2 ||y||2.
Remark 9.1.9 (Compare with Remark 9.1.3 and (3.64)) Equation (9.8) is the
Hamilton–Jacobi–Bellman equation for the optimal control problem

min
u

∫ ∞

0
(||u(t)||2 + ||y(t)||2)dt, x(0) = x, x(∞) = 0, (9.19)

and conditions for local solvability of (9.8) will be derived in Chap.10, Sect. 10.2.
Clearly, the existence of a solution V requires some kind of stabilizability of �.

Remark 9.1.10 For a linear system �, I� equals the normalized right coprime fac-
torization (cf. [212]).

Finally assume that C1 solutions V ≥ 0,W ≥ 0 and k to, respectively, (9.8)–(9.10)
all exist, and thus that both K� and I� given by (9.11) and (9.17) are well-defined.
In this case, we note that a right inverse to K� is given by

K−1
� :

ṗ = f (p) − g(p)gT (p)V T
p (p) + k(p)ξ

u = −gT (p)V T
p (p)

y = ξ + h(p)
(9.20)

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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Indeed, if p(0) = x(0), then the input–output map (from ξ to z) of K� ◦ K−1
� is the

identity map. Furthermore, a left inverse to I� is given by

I−1
� :

ṗ = [ f (p) − k(p)h(p)] + g(p)u + k(p)y

ξ = u + gT (p)V T
p (p)

(9.21)

since the input–output map of I−1
� ◦ I� (from s to ξ) for p(0) = x(0) is again the

identity map.

Remark 9.1.11 Note that I−1
� is itself a kernel representation, and K−1

� is itself an
image representation of the same system

�̃ :
ṗ = f (p) − g(p)gT (p)V T

p (p) + k(p)[y − h(p)]
u = −gT (p)V T

p (p)
(9.22)

The system �̃ is a “certainty equivalence” controller: in the optimal state feedback
u = −gT (x)V T

x (x) corresponding to the optimal control problem (9.19) the actual
state x is replaced by its estimate p, with the dynamics of p being driven by the
observation error y − h(p). In fact, if � is a linear system then �̃ is exactly the
optimal LQG controller (interpreted in a deterministic manner).

As a direct application of the preceding developments, let us consider the control
figuration depicted in Fig. 9.1 (customarily called an observer–controller configura-
tion), with � the plant system, having a stable image representation I� with inverse
I−1
� given by (9.21). Furthermore, let M denote an input-state-output system with
state variables z, defining input–output maps Mz0 for every initial state z0.

Taking p(0) = x(0) = x0 we obtain the input–output relations

u = v − Mz0(I
−1
� (I�(s))) = v − Mz0(s) (9.23)

Fig. 9.1 Observer–
controller
configuration +

C

L

Σ

M

v yu+
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Furthermore, since I� is an image representation of�, the input signal u is generated
by (cf. (9.17))

ẋ = [
f (x) − g(x)gT (x)V T

x (x)
] + g(x)s, x(0) = x0

u = s − gT (x)V T
x (x)

(9.24)

Denoting the input–output map (from s to u) of (9.24) by Dx0 , we obtain from (9.23)

Dx0(s) = v − Mz0(s) (9.25)

Hence, whenever Mz0 is such that the relation Rvs defined by (9.25) is L2-stable, we
conclude that for v ∈ L2 also s will be in L2, and thus also u, y ∈ L2. Thus we have
obtained a parametrization of the stabilizing controllers C in observer–controller
configuration. More explicitly, all systems M with the property that Dx0 + Mz0 has
a L2-stable inverse define a stabilizing controller C .

9.2 L2-Gain Perturbation Models

As in the linear case [212], the stable kernel representation K� and the stable image
representation I� both give rise to nonparametric perturbation models of �.

Recall that given a stable left factorization G(s) = D−1(s)N (s) a perturbed
transfer matrix is G�(s) := [D(s)+�D(s)]−1[N (s)+�N (s)], with�D,�N stable
transfer matrices. This corresponds to a perturbed stable kernel representation

0 = [D(s) + �D(s)
... − N (s) − �N (s)]

[
y
u

]

= [D(s)
... − N (s)]

[
y
u

]
+ [�D(s)

... − �N (s)]
[
y
u

] (9.26)

Analogously, based on the stable kernel representation K� of � given by (9.11) we
consider the perturbed stable kernel representation

K�,� :
ẋ = ( f (x) − k(x)h(x)) + [g(x)

... k(x)]
[
u
y

]

ep := e + w = y − h(x) + w,

(9.27)

where w is the output of a nonlinear system � with input

[
u
y

]
given as
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� : ξ̇ = α(ξ, u, y)
w = β(ξ, u, y)

(9.28)

having finite L2-gain. Setting ep = 0 in (9.27) yields the perturbed system

�� : ẋ = f (x) + g(x)u − k(x)w
y = h(x) − w

(9.29)

withw being the output of (9.28). Note that the size of the perturbation� is measured
via its L2-gain.

Alternatively, recall that given a stable right factorizationG(s) = Ñ (s)D̃−1(s) the
perturbed transfermatrixG�̃(s) can be defined asG�̃(s) := [Ñ (s)+�Ñ (s)][D̃(s)+
�D̃(s)]−1, with �Ñ ,�D̃ stable transfer matrices. This corresponds to a perturbed
stable image representation

[
y
u

]
=

[
Ñ (s) + �Ñ (s)
D̃(s) + �D̃(s)

]
l =

[
Ñ (s)
D̃(s)

]
l +

[
�Ñ (s)
�D̃(s)

]
l (9.30)

Analogously, based on the stable image representation I� given in (9.17) we consider
the perturbed stable image representation

I�,� :
ẋ = f (x) − g(x)gT (x)V T

x (x) + g(x)s
y = h(x) + w1

u = s − gT (x)V T
x (x) + w2,

(9.31)

where w = (w1, w2) is the output of a nonlinear system �̃ with input s given by

�̃ :
ξ̇ = α̃(ξ, s)
w1 = β̃1(ξ, s)
w2 = β̃2(ξ, s)

(9.32)

and having finite L2-gain (from s to w). Elimination of the auxiliary variables s in
(9.31) leads to the perturbed system

��̃ : ẋ = f (x) + g(x)u − g(x)w2

y = h(x) + w1
(9.33)

with w = (w1, w2) the output of the system �̃, with its input s replaced by

s = u + gT (x)V T
x (x) − w2 (9.34)

Note that again the size of the perturbation �̃ is measured by its L2-gain (from
s to w).
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Example 9.2.1 Consider a port-Hamiltonian system (6.1) without dissipation
(R(x) = 0), given as

� :
ẋ = J (x) ∂H

∂x (x) + g(x)u

y = gT (x) ∂H
∂x (x)

, J (x) = −J T (x), (9.35)

with internal energy H ≥ 0. Nonnegative solutions of theHamilton–Jacobi–Bellman
equations (9.8) and (9.9) are both given by V = H and W = H . Note furthermore
that the solution k(x) to (9.10) is simply k(x) = g(x). Thus based on the stable
kernel representation we obtain the perturbed system

�� : ẋ = J (x) ∂H
∂x (x) + g(x)u − g(x)w

y = gT (x) ∂H
∂x (x) − w

(9.36)

with w the output of � given by (9.28). On the other hand, the perturbed system
based on the stable image representation is given as

��̃ :
ẋ = J (x) ∂H

∂x (x) + g(x)u − g(x)w2

y = gT (x) ∂H
∂x (x) − w1

(9.37)

with (w1, w2) the output of �̃ in (9.32) driven by the signal s = u+gT (x) ∂H
∂x (x)−w2.

9.3 Stable Kernel Representations and Parametrization
of Stabilizing Controllers

Given a nonlinear plant system together with a stabilizing controller system, we
shall derive in this section a parametrization of all stabilizing controllers. This para-
metrization generalizes the well-known Youla–Kucera parametrization in the linear
case. Key element is the stable kernel representation of the plant and controller sys-
tem. On the other hand, we need a strengthened notion of closed-loop stability, which
in the nonlinear case may be different from the classical one given in Chap.1 and
also different from internal state space (Lyapunov) stability.

Consider a pair of nonlinear state space systems

�i : ẋi = fi (xi ) + gi (x)ui , xi ∈ Xi , ui ∈ Rmi

yi = hi (xi ) , yi ∈ Rpi , i = 1, 2
(9.38)

Assume both systems admit stable kernel representations and suppose for simplicity
of exposition that these stable kernel representations are of the affine form as in
(9.11), i.e.,

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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Fig. 9.2 Closed-loop system
{�1, �2}

y

Σ1

u

u1 y1

y2 u2
Σ2

K�i : ẋi = [ fi (xi ) − ki (xi )hi (xi )] + gi (xi )ui + ki (xi )yi
zi = yi − hi (xi ) , zi ∈ Rpi , i = 1, 2

(9.39)

However, ki need not necessarily be constructed as in (9.10), and thus K�i need not
necessarily have L2-gain equal to one, but are only required to be L2-stable. In fact,
the approach works equally well for general stable kernel representations as defined
in Definition 9.1.1.

Let m := m1 = p2 and p := p1 = m2, and consider the feedback interconnec-
tion of �1 and �2. Different from the previous chapters we throughout consider (for
simplicity of notation and without loss of generality), the positive feedback intercon-
nection. Furthermore, we will not consider external inputs e1, e2. Hence we consider
throughout the interconnection equations

u := u1 = y2, y := y1 = u2 (9.40)

The resulting (autonomous) closed system as given in Fig. 9.2 will be denoted by
{�1, �2}.Wewill sometimes compare {�1, �2}with the closed-loop system�1‖ f �2

with external inputs e1, e2 as defined before (with the difference that we consider the
positive feedback interconnection u1 = y2, u2 = y1).

A stable kernel representation of the closed-loop system {�1, �2} (with outputs
y and u, and without inputs) is obtained by substituting u := u1 = y2, y := y1 = u2
into (9.39) :

K{�1,�2} :

ẋ1 = [ f1(x1) − k1(x1)h1(x1)] + g1(x1)u + k1(x1)y

ẋ2 = [ f2(x2) − k2(x2)h2(x2)] + g2(x2)y + k2(x2)u

z1 = y − h1(x1)

z2 = u − h2(x2)

(9.41)

Indeed, by setting z1 = 0, z2 = 0 one recovers the closed-loop system {�1, �2} of
Fig. 9.2. On the other hand we may invert in (9.41) the map from y, u to z1, z2 by
solving y and u as y = z1 + h1(x1), u = z2 + h2(x2) to obtain the inverse system of
(9.41), denoted as {K�1 , K�2}, given by
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{K�1 , K�2} :

ẋ1 = f1(x1) + g1(x1)h2(x2) + g1(x1)z2 + k1(x1)z1

ẋ2 = f2(x2) + g2(x2)h1(x1) + g2(x2)z1 + k2(x2)z2

y = z1 + h1(x1)

u = z2 + h2(x2)

(9.42)

Note that this inverse system can also be regarded as some kind of closed-loop
system of �1 and �2, with external signals z1 and z2. Indeed, if k1 = 0 and k2 = 0
then (9.42) is exactly the closed-loop system �1‖ f �2 of Fig. 4.1 (for the positive
feedback interconnection) with e1 = z2, e2 = z1. However if k1 �= 0 or k2 �= 0 then
{K�1 , K�2} will be in general different from �1‖ f �2.

Just as the definition of �1‖ f �2 leads to a notion of closed-loop stability (cf.
Definition 1.2.11), the definition of {K�1 , K�2} leads to another notion of closed-
loop stability:

Definition 9.3.1 The closed-loop system {K�1 , K�2} of �1, �2 with stable kernel
representations K�1 and K�2 given by (9.42), is called strongly (L2-) stable if for
every pair of initial conditions xi (0) = xi0 ∈ Xi , i = 1, 2, and every pair of functions
z1(·) ∈ L2(R

p), z2(·) ∈ L2(R
m), the solutions u(·) and y(·) to (9.42) are in L2(R

m),
respectively, L p

2 . (That is, the system (9.42) with inputs z1, z2 and outputs y, u is
L2-stable.) If the above property holds for initial conditions xi0 in a subset X i of
Xi , i = 1, 2, then {K�1 , K�2} is called strongly stable over X 1 × X 2.

Remark 9.3.2 It should be stressed that if k1 = 0, k2 = 0 in (9.42), then
{K�1 , K�2} = �1‖ f �2 and strong L2-stability equals L2-stability of �1‖ f �2. For
instance, see (6.16), if �1 and �2 are themselves L2-stable, then k1 and k2 in (9.42)
may be taken equal to zero.

A special case arises if one of the systems is the zero-system given by the zero
input–output map

O : u 	→ y = 0 (9.43)

with empty state space X = ∅. A stable kernel representation KO of O is simply

KO : (y, u) 	→ z = y (9.44)

Proposition 9.3.3 Consider a state space system� with stable kernel representation

K� : ẋ = [ f (x) − k(x)h(x)] + g(x)u + k(x)y
z = y − h(x)

(9.45)

Then {K�, KO} is strongly L2-stable if and only if the system

ẋ = f (x) + g(x)z2 + k(x)z1
w = h(x)

(9.46)

is L2-stable from (z1, z2) to w.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
http://dx.doi.org/10.1007/978-3-319-49992-5_1
http://dx.doi.org/10.1007/978-3-319-49992-5_6
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Proof Consider (9.42) with �1 = � and �2 = O . Then (9.42) reduces to

ẋ = f (x) + g(x)z2 + k(x)z1
y = z1 + h(x)
u = z2

(9.47)

which is strongly L2-stable if and only if (9.46) is L2-stable, as follows
immediately. �

Corollary 9.3.4 If k = 0 in K� , then {K�, KO} is strongly L2-stable if and only if
� is L2-stable.

Now we interpret �1 as the plant and �2 as the controller. We will say that �2 is
strongly stabilizing for �1 if {K�1 , K�2} is strongly stable.

Based on a strongly stabilizing �2 we wish to parametrize all the strongly stabi-
lizing controllers. The key idea is to consider the external signals z1 and z2 in (9.39)
as input and output signals for another state space system

Q : ξ̇ = ϕ(ξ) + ψ(ξ)z1
z2 = θ(ξ)

, ξ ∈ XQ, (9.48)

which we assume to be L2-stable, and thus having a stable kernel representation

KQ : ξ̇ = ϕ(ξ) + ψ(ξ)z1
ω = z2 − θ(ξ)

(9.49)

with external signal ω. Substituting for z1 and z2 the expressions from the stable
kernel representations K�i in (9.39) (with u = u1 = y2 and y = y1 = u2) one
obtains

K�
Q
2

:
ξ̇ = ϕ(ξ) − ψ(ξ)h1(x1) + ψ(ξ)y
ẋ1 = f1(x1) − k1(x1)h1(x1) + g1(x1)u + k1(x1)y
ẋ2 = f2(x2) − k2(x2)h2(x2) + g2(x2)y + k2(x2)u
ω = u − h2(x2) − θ(ξ)

(9.50)

By setting ω = 0, and solving for u, it follows that (9.50) is a stable kernel repre-
sentation of the following input-state-output system (with input y and output u):

�
Q
2 :

ξ̇ = ϕ(ξ) − ψ(ξ)h1(x1) + ψ(ξ)y
ẋ1 = f1(x1) − k1(x1)h1(x1)

+g1(x1)h2(x2) + g1(x1)θ(ξ) + k1(x1)y
ẋ2 = f2(x2) − k2(x2)h2(x2)

+k2(x2)h2(x2) + k2(x2)θ(ξ) + g2(x2)y
u = θ(ξ) + h2(x2)

(9.51)

Note that the stable kernel representation K�
Q
2
corresponds to Fig. 9.3.
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Fig. 9.3 Stable kernel
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We interpret �
Q
2 as a perturbation of the controller system �2. Note that the

state space of the perturbed controller system �
Q
2 , defined by �1 and Q, equals

X1 × X2 × XQ .

Theorem 9.3.5 Suppose {K�1 , K�2} is strongly L2-stable. Then for every L2-stable
system Q the closed-loop system {K�1 , K�

Q
2
}, with state spaceX1×(X1×X2×XQ),

is strongly L2-stable over diag(X1 × X1) × X2 × XQ.

Proof Consider K�1 (with u1 = u, y1 = y) and K�
Q
2
. By Definition 9.3.1 strong

L2-stability follows if for all initial conditions in diag(X1 ×X1) ×X2 ×XQ , and all
z1,ω ∈ L2 the signals y and u are in L2. Thus let z1,ω ∈ L2 and consider initial
conditions in diag(X1×X1)×X2×XQ . Since Q is L2-stable we obtain by Corollary
9.3.4 that z1, z2 are in L2. Since {K�1 , K�2} is assumed to be strongly L2-stable, this
implies that y and u are in L2. (Note that the state of the closed-loop system remains
in diag(X1 × X1) × X2 × XQ , and that z̃1 = z1 in Fig. 9.4.) �

Loosely speaking, we may conclude that if �2 is a strongly stabilizing controller
of �1, then also �

Q
2 will be a strongly stabilizing controller of �1 for every stable

system Q. Moreover, we obtain in this way all the strongly stabilizing controllers,
in the following sense.
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Theorem 9.3.6 Suppose {K�1 , K�2} is strongly L2-stable. Consider a controller�∗
different from �2

�∗ : ẋ∗ = f ∗(x∗) + g∗(x∗)y
u = h∗(x∗) x∗ ∈ X ∗ (9.52)

with stable kernel representation

K�∗ : ẋ∗ = f ∗(x∗) + g∗(x∗)y + k∗(x∗)u
z∗ = u − h∗(x∗) (9.53)

Suppose also {K�1 , K�∗ } is strongly L2-stable. Then define KQ∗ by composing K�∗

with {K�1 , K�2} given by (9.42), i.e.,

KQ∗ :
ẋ = f ∗(x∗) + g∗(x∗)(z1 + h1(x1)) + k∗(x∗)(z2 + h2(x2))
ẋ1 = f1(x1) + g1(x1)h2(x2) + g1(x1)z2 + k1(x1)z1
ẋ2 = f2(x2) + g2(x2)h1(x1) + g2(x2)z1 + k2(x2)z2
z∗ = z2 + h2(x2) − h∗(x∗)

(9.54)

This is a stable kernel representation (set z∗ = 0 and solve for z2) of the following
system with input z1 and output z2:

Q∗ :

ẋ∗ = f ∗(x∗) + g∗(x∗)(z1 + h1(x1)) + k∗(x∗)h∗(x∗))
ẋ1 = f1(x1) + g1(x1)h∗(x∗) + k1(x1)z1
ẋ2 = f2(x2) + g2(x2)h1(x1) + g2(x2)z1

+k2(x2)(h∗(x∗) − h2(x2))
z2 = h∗(x∗) − h2(x2)

(9.55)

Note that the state space of Q∗ is XQ∗ = X1 × X2 × X ∗. Consider as in (9.51) the
system �

Q∗
2 with state space X1 ×X2 ×XQ∗ = X1 ×X2 ×X1 ×X2 ×X ∗. Then the

input–outputmapof�Q∗
2 for initial condition (x10, x20, x10, x20, x∗

0 ) equals the input–
output map of �∗ for initial condition x∗

0 , and this holds for all (x10, x20) ∈ X1 ×X2

and all x∗
0 ∈ X ∗.

Proof The input–output map of the kernel representation K
�

Q∗
2

for initial condition
(x10, x20, x10, x20, x∗

0 ) is given by

K
x∗
0

�∗ ◦
[
K (x10,x20)

{�1,�2}
]−1 ◦ K (x10,x20)

{�1,�2} = K
x∗
0

�∗ , (9.56)

with the superscripts denoting the initial conditions for the respective input–output
maps. �

Remark 9.3.7 In the linear case one recovers the Youla–Kucera parametrization of
all stabilizing controllers as follows. Take all initial conditions to be equal to zero. Let
�1 be given by the transfer matrix P(s) = D−1(s)N (s), and let �2 be a stabilizing
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controller given by C(s) = X−1(s)Y (s), where D(s), N (s), X (s), and Y (s) are
stable rational matrices. Equivalently, the systems �1 and �2 are associated with the

kernels of [D(s)
... −N (s)], respectively, [Y (s)

... −X (s)]. Let Q(s) be a stable rational
matrix, corresponding to a stable input–output map z2 = Q(s)z1, or, equivalently, to

the kernel of [I ... − Q(s)]. It follows that the set of all linear stabilizing controllers
is given by the kernels of

(I
... − Q(s))

(
D(s) −N (s)

−Y (s) X (s)

)
=

(D(s) + Q(s)Y (s)
... − N (s) − Q(s)X (s))

(9.57)

or, equivalently, by the transfer matrices (D(s) + Q(s)Y (s))−1(N (s) + Q(s)X (s)).

Finally, let us consider as a special case of Theorem 9.3.5 the situation that�1 is itself
already L2-stable. Then, as noted before in (6.16), a stable kernel representation K�1

of �1 is given as

K�1 : ẋ1 = f1(x1) + g1(x1)u1
z1 = y1 − h1(x1)

Furthermore, in this case the zero-controller�2 = 0with stable kernel representation
KO given by (9.44) yields a closed-loop system {K�, KO} which is by Corollary
9.3.4 strongly L2-stable.

Now, consider any L2-stable system Q, given by (9.48) with stable kernel rep-
resentation KQ as in (9.49). It follows that the stabilizing controller �

Q
2 is given as

(cf. (9.51))

�
Q
2 :

ξ̇ = ϕ(ξ) + ψ(ξ)(y1 − h1(x1))
u = θ(ξ)
ẋ1 = f1(x1) + g1(x1)u

(9.58)

Hence every stabilizing controller�Q
2 contains amodel (or copy) of the plant, which

can be regarded as a generalization of the concept of Internal Model Control (see,
e.g., [222]) to the nonlinear setting.

9.4 All-Pass Factorizations

Throughout this section, we consider state space systems � satisfying

� : ẋ = f (x, u), f (0, 0) = 0, u ∈ Rm, x ∈ X
y = h(x, u), h(0, 0) = 0, y ∈ Rp (9.59)

Recall, cf. Definitions 3.1.6 and 8.1.1, that a system � is inner if it is conservative
with respect to the L2-gain supply rate s(u, y) = 1

2 ||u||2 − 1
2 ||y||2, that is, there

http://dx.doi.org/10.1007/978-3-319-49992-5_6
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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Fig. 9.5 All-pass
factorization � = � ◦ �̄

u y

u
Σ

ΘΣ
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y

exists S : X → R+ such that along every trajectory of (9.59)

S(x(t1)) − S(x(t0)) = 1

2

∫ t1

t0

(||u(t)||2 − ||y(t)||2)dt (9.60)

The topic of this section is to factorize the nonlinear system � as a series intercon-
nection � ◦ � of an inner system � preceded by another nonlinear system �, in the
sense that for every initial condition of � there should exist initial conditions of �

and � such that the corresponding input–output map of � equals the composition
of the respective input–output maps of � and � (see Fig. 9.5).

We will call this factorization an all-pass factorization.1 An important motivation
for this type of factorization is that in view of (9.60) the asymptotic properties of �

and � are similar, while � may be simpler to control than �. In such a case, the
control of � may be based on the control of �, as we will see at the end of this
section.

The all-pass factorizations of � are based on the following reversed dissipation
inequality for �

V (x(t1)) − V (x(t0)) + 1

2

∫ t1

t0

||h(x(t), u(t))||2dt ≥ 0 (9.61)

in the unknown V ≥ 0, or its differential version (V assumed to be C1)

Vx (x) f (x, u) + 1

2
||h(x, u)||2 ≥ 0 , for all x, u (9.62)

Suppose there exists2 V ≥ 0 satisfying (9.62). Then consider the positive function

KV (x, u) := Vx (x) f (x, u) + 1

2
||h(x, u)||2 (9.63)

1Called “all-pass” since a single-input single-output linear system is inner if and only if its transfer
function has amplitude 1 for all frequencies.
2Many of the subsequent developments continue to hold for any C1 function V satisfying (9.62)
(not necessarily≥ 0). However, in this case the factor system�will not be inner anymore; but only
cyclo-conservative with respect to the supply rate 1

2‖ȳ‖2 − 1
2‖y‖2.
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Assumption 9.4.1 There exists a C1 map h : X × Rm → Rp such that

KV (x, u) = 1

2
||h(x, u)||2 (9.64)

Sufficient conditions for the local existence of a smooth h satisfying (9.64) are
provided by the next lemma which follows from an application of Morse’s lemma;
see the Notes at the end of this chapter for a sketch of the proof.

Lemma 9.4.2 Suppose that KV is C2, and that its Hessian matrix, i.e.,

[
∂2KV
∂x2 (x, u) ∂2KV

∂x∂u (x, u)

∂2KV
∂u∂x (x, u) ∂2KV

∂u2 (x, u)

]
(9.65)

has constant rank p on a neighborhood of (x, u) = (0, 0). Then locally near (0, 0)
there exists a C1 mapping h : X × Rm → Rp such that (9.64) holds.

Then define the factor system

� : ˙̄x = f (x̄, u), x̄ ∈ X , u ∈ Rm

y = h(x̄, u), ȳ ∈ Rp (9.66)

Obviously h(0, 0) = 0, and thus � is also within the class (8.1).
Furthermore, define the system � with inputs y and outputs y given in image

representation (cf. Definition 9.1.1) as

I� :
ξ̇ = f (ξ, u)

y = h(ξ, u)

y = h(ξ, u)

(9.67)

It immediately follows from (9.63) and (9.64) that � has the property

V (ξ(t1)) − V (ξ(t0)) = 1

2

∫ t1

t0

(||y(t)|| − ||y(t)||2)dt (9.68)

along every solution ξ(·). Furthermore, if in (9.59) (9.66) (9.67), x(t0) = x(t0) =
ξ(t0), then it immediately follows that x(t) = x(t) = ξ(t), t ≥ t0, so that indeed
� = � ◦ �.

Now, if the equation y = h(ξ, u) can be solved for u as u = α(ξ, y), then the
image representation (9.67) can be reduced to a standard input-state-output system

� : ξ̇ = f (ξ,α(ξ, y))
y = h(ξ,α(ξ, y))

(9.69)

defining an inner system.

http://dx.doi.org/10.1007/978-3-319-49992-5_8
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We obtain the following asymptotic relation between � and �.

Definition 9.4.3 Define for every (xe, ue) such that f (xe, ue) = 0, the steady-state
output amplitude3 as ||h(xe, ue)||.
Proposition 9.4.4 Consider� and a factor system�. The set of steady-state output
amplitudes of � and � are equal.

Proof Consider (9.63) and (9.64), and substitute f (xe, ue) = 0. �

All-pass factorizations of � have an immediate interpretation in terms of the Hamil-
tonian input–output system �H associated to � (Definition 8.1.2) given by

�H :
ẋ = ∂H

∂ p (x, p, u)

ṗ = − ∂H
∂x (x, p, u)

ya = ∂H
∂u (x, p, u),

(9.70)

where

H(x, p, u) = pT f (x, u) + 1

2
hT (x, u)h(x, u) (9.71)

Recall from Proposition 8.1.4 that the input–output map GH
(0,0) of�

H for initial state
(x, p) = (0, 0) is equal to GH

(0,0)(u) = (DG0(u))∗ ◦G0(u), where (DG0(u))∗ is the
adjoint of the Fréchet derivative of the input–output map G0 of �.

Now consider an all-pass factorization � = � ◦ � as above, with � inner.
Denote the input–output map for zero initial condition of � by G0, of � by G0, and
the input–output map of � for zero initial condition by A0. It follows that

(DG0(u))∗ ◦ G0(u) = (
D(A0 ◦ G0)(u)

)∗ ◦ (A0 ◦ G0)(u)

= (
DG0(u)

)∗ (
DA0(G0(u))

)∗ ◦ A0 ◦ G0(u)

= (
DG0(u)

)∗ ◦ G0(u)

(9.72)

The last equality holds since A0 is inner, and thus, in view of (1.24) in Proposition
1.2.9, (

DA0(G0(u))
)∗ ◦ A0(G0(u)) = G0(u) (9.73)

Hence the input–output map GH
(0,0) of the Hamiltonian input–output system �H

associated to � is equal to the input–output map G
H
(0,0) of the Hamiltonian input–

output system �
H
associated to �.

This motivates the following state space level interpretation. Consider any C1

solution V to the dissipation inequality (9.62), with corresponding factor system �.
Define the following change of coordinates for �H :

3If (xe, ue) is an asymptotically stable steady state then ||h(xe, ue)|| is the steady-state value of the
norm of the output y for a step input with magnitude ue.

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_1
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x̄ = x, p̄ = p − V T
x (x) (9.74)

In the new coordinates for T ∗X the Hamiltonian H transforms into

H(x̄, p̄, u) = ( p̄ + V T
x (x))T f (x, u) + 1

2h
T (x, u)h(x, u)

= p̄T f (x, u) + 1
2h

T
(x, u)h(x, u)

(9.75)

Therefore, the Hamiltonian input–output system�H given by (9.70) transforms into

˙̄x = ∂H
∂ p̄ (x̄, p̄, u)

˙̄p = − ∂H
∂ x̄ (x̄, p̄, u)

ya = ∂H
∂u (x̄, p̄, u)

(9.76)

which is exactly the associated Hamiltonian input–output system �
H
. Thus the

Hamiltonian input–output systems associated to � and � are equal, in accordance
with the equality of their input–output maps discussed above. This is summarized in
the following proposition.

Proposition 9.4.5 Consider a system � as in (9.59) and a solution V to the
reversed dissipation inequality (9.62), together with a resulting all-pass factorization

� = � ◦ � as in Fig.9.5. Then �H = �
H
.

Remark 9.4.6 In case of a linear system � : ẋ = Ax + Bu, y = Cx + Du the
transformation of � to � corresponds to a spectral factorization of the “spectral
density” matrix

(
DT + BT (−I s − AT )−1CT

) (
C(I s − A)−1B + D

)
. In the same

spirit, the transformation from a nonlinear system � to � can be interpreted as a
“nonlinear spectral factorization” of the associated input–outputHamiltonian system
�H .

The reversed dissipation inequality (9.62) is intimately related to the optimal control
problem of minimizing for every initial condition x0 of � the cost-functional

J (x0, u) =
∫ ∞

0
||y(t)||2dt (9.77)

along the trajectories of � starting at t = 0 at x0. Define for every x0 ∈ X the value
function (see Sect. 11.2 for further information)

V ∗(x0) = inf
u

{J (x0, u) | u admissible, lim
t→∞ x(t) = 0}, (9.78)

where u : R+ → Rm is called admissible if the right-hand side of (9.77) is well-
defined.

Assumption 9.4.7 V ∗(x0) exists for every x0 ∈ X (i.e., the system is stabilizable),
and V ∗ is a C1 function on X .

http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Proposition 9.4.8 (i) V ∗ satisfies the reversed dissipation inequality (9.62), and
V ∗(0) = 0.

(ii) Let V satisfy (9.62) and V (0) = 0, then V (x) ≤ V ∗(x) for every x ∈ X .

Proof (i) Follows directly from the definition of V ∗.
(ii) Consider (9.61)with t0 = 0 and t1 = T , and let u be such that limT→∞ x(T ) =

0. Then it follows from (9.61) for T → ∞ that

1

2

∫ ∞

0
||y(t)||2dt ≥ V (x(0)),

and thus by definition of V ∗ we obtain V ∗(x(0)) ≥ V (x(0)). �

Let us denote the factor system � obtained by considering V ∗ as �
∗
, that is

�∗ : ẋ = f (x, u), f (0, 0) = 0
y∗ = h∗(x, u), h∗(0, 0) = 0

(9.79)

with h∗ satisfying

V ∗
x (x) f (x, u) + 1

2
||h(x, u)||2 = 1

2
||h∗(x, u)||2 (9.80)

The factor system �
∗
has special properties among the set of all factor systems �.

First, it is characterized by the following appealing property. Denote the inner system
corresponding to �

∗
by �∗, given by the image representation (see (9.67))

I�∗ :
ξ̇ = f (ξ, u)

y∗ = h∗(ξ, u)

y = h(ξ, u)

(9.81)

Consider any other all-pass factorization � = � ◦ �, with � and I� as in (9.66),
respectively (9.67). Corresponding to � there exists a function V ≥ 0 satisfying
(9.68), and corresponding to �∗ there is the function V ∗ satisfying

V ∗(ξ(t1)) − V ∗(ξ(t0)) = 1

2

∫ t1

t0

(||y∗(t)||2 − ||y(t)||2)dt (9.82)

Assume as before that V and V ∗ are C1, and without loss of generality let
V (0) = V ∗(0) = 0. Then it follows that V and V ∗ are both solutions to the reversed
dissipation inequality (9.62), with V ∗ being themaximal solution (Proposition 9.4.8).
Thus, subtracting (9.68) from (9.82), one obtains

(V ∗ − V )(ξ(t1)) − (V ∗ − V )(ξ(t0)) = 1

2

∫ t1

t0

(||y∗(t)||2 − ||y(t)||2)dt (9.83)
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Therefore, if we take t0 = 0, t1 = T, ξ(t0) = 0, then

∫ T

0
||y∗(t)||2dt ≥

∫ T

0
||y(t)||2dt, for all T ≥ 0 (9.84)

In this sense, the all-pass factorization � = �∗ ◦ �
∗
is the “minimal delay factor-

ization,” since for zero initial conditions the truncated L2-norm of the output of the
factor �

∗
ismaximal among the outputs of all other factor systems �; and this holds

for every input function u.

Remark 9.4.9 In the linear case the above interpretation of �
∗
amounts to the clas-

sical definition of �
∗
being minimum phase.

A very much related characterization of �
∗
is by the stability of its zero-output

constrained dynamics. Consider first the case that the optimal control problem of
minimizing J (x0, u) given in (9.77) is regular, in the sense that there exists a unique
solution u = u∗(x, p) to

∂

∂u

[
pT f (x, u) + 1

2
||h(x, u)||2

]
= 0, (9.85)

whichminimizes the expression pT f (x, u)+ 1
2 ||h(x, u)||2 as a function of u for every

x, p. Then (by dynamic programming) it follows that V ∗ is the unique solution of
the Hamilton–Jacobi–Bellman equation

Vx (x) f (x, u
∗(x, V T

x (x))) + 1

2
||h(x, u∗(x, V T

x (x)))||2 = 0, (9.86)

such that V (0) = 0 and
ẋ = f (x, u∗(x, V T

x (x))) (9.87)

is globally asymptotic stable with regard to x = 0.

Proposition 9.4.10 The zero-output constrained dynamics of �
∗
(see Sect.5.1) is

globally asymptotically stable with regard to the equilibrium x = 0.

Proof Consider (9.80) and (9.86) for V = V ∗. It follows from the regularity of
the optimal control problem that u = u∗(x, V T

x (x)) is the unique input such that
h∗(x, u) = 0, as follows from (9.86) and (9.80). Thus the zero-output constrained
dynamics of �

∗
is given by the asymptotically stable dynamics (9.87). �

Remark 9.4.11 In the case of an affine nonlinear system

ẋ = f (x) + g(x)u, f (0) = 0, u ∈ Rm, x ∈ X
y = h(x) + d(x)u, h(0) = 0, y ∈ Rp (9.88)

http://dx.doi.org/10.1007/978-3-319-49992-5_5
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the optimal control problem is regular if and only if the m × m matrix E(x) :=
dT (x)d(x) is invertible for all x . Furthermore, in this case the Hamilton–Jacobi–
Bellman equation (9.86) reduces to

Vx (x)[ f (x) − g(x)E−1(x)dT (x)h(x)] − 1
2Vx (x)g(x)E−1(x)gT (x)V T

x (x)
+ 1

2h
T (x)[Ip − d(x)E−1(x)dT (x)]h(x) = 0

(9.89)

Furthermore, the map h∗(x, u) is explicitly given as

h∗(x, u) = d(x)E−1(x)[dT (x)h(x) + gT (x)V ∗T
x (x)] + d(x)u, (9.90)

where V ∗ is the unique solution to (9.89) such that

ẋ = f (x) − g(x)gT (x)V ∗T
x (x) (9.91)

is asymptotically stable with respect to x = 0, and where d(x) is any m ×m matrix
such that

dT (x)d(x) = d
T
(x)d(x) (9.92)

(for example, d(x) = d(x)).

In case the optimal control problem is not regular we proceed as follows. The zero-
output constrained dynamics (or output-nulling dynamics) for a general system �

given by (9.59) is defined to be the set of all state trajectories x(·) generated by some
input trajectory u(·) such that y(t) = h(x(t), u(t)) is identically zero. Under some
regularity conditions (see [135, 233]) the zero-output constrained dynamics can be
computed as follows. First, we compute the maximal controlled invariant output-
nulling submanifoldN ∗ ⊂ X (if it exists) as the maximal submanifoldN ⊂ X , for
which there exists a smooth feedback u = α(x), α(0) = 0, such that

f (x,α(x)) ∈ TxN , h(x,α(x)) = 0, for all x ∈ N (9.93)

In general such a smooth feedback α(x) is not unique (even not restricted toN ), and
(again under some regularity conditions; see [233, Chap.11]) the whole family of
feedbacks u = α(x) satisfying (9.93) for N = N ∗ can be parametrized as α(x, v),
with v ∈ Rm̃ , m̃ ≤ m. Then the zero-output constrained dynamics is generated by
the lower dimensional dynamics

�̃ : ˙̃x = f̃ (̃x, v), x̃ ∈ N ∗, f̃ (0, 0) = 0, (9.94)

where f̃ (̃x, v) := f (̃x,α(̃x, v)), and v ∈ Rm̃ is a remaining input vector.

Definition 9.4.12 � in (9.59) isweaklyminimumphase if its zero-output constrained
dynamics �̃ on N ∗ given (9.94) can be rendered Lyapunov stable with regard to
x = 0 by a smooth feedback v = α̃(̃x). If the zero-output constrained dynamics �̃
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can be rendered locally asymptotically stable with respect to x = 0, then � is called
minimum phase.

Remark 9.4.13 For linear systems �, minimum phase is equivalent to the require-
ment that the transmission zeros of � are all in the open left half plane.

Now return to the singular optimal control problem (9.78). Recall Assumption 9.4.7,
and consider the factorization (9.80), with the resulting system �

∗
given by (9.79).

For this system, we can again consider the singular optimal control problem (9.77),
but now with y replaced by the new output y∗. Equivalently, we can consider the
reversed dissipation inequality (9.62) with h replaced by h∗.

Lemma 9.4.14 The maximal solution to the reversed dissipation inequality (9.62)
with h(x, u) replaced by h∗(x, u) is the zero function.

Proof Clearly V = 0 satisfies (9.62) with h(x, u) replaced by h∗(x, u). Let now
V be an arbitrary solution to (9.62) with h(x, u) replaced by h∗(x, u). Then it is
immediately verified that V + V

∗
is a solution to the original dissipation inequality

(9.62) for h(x, u). Since V
∗
is maximal this implies that V ≤ 0. �

An equivalent formulation of Lemma 9.4.14 is the statement that

P(x0) := inf
u(·)

{
1

2

∫ ∞

0
‖y∗(t)‖2dt | u admissible s.t. lim

t→∞ x(t) = 0

}
(9.95)

is zero for all x0 ∈ X .
Note that ifwewould be allowed to replace in (9.95) “inf” by “min” for all x0 ∈ N ∗

then we could directly conclude that �
∗
is minimum phase, since in this case there

exists an admissible control u such that ‖y∗(t)‖ = 0, t ≥ 0, and lim
t→∞ x(t) = 0. Thus

the remaining question is how in general P(x0) = 0 for all x0 implies that �
∗
is

minimum phase.
To answer this question, we take recourse to the linearization of�

∗
and the linear

theory for the singular LQ optimal control problem developed in [104, 311]. First,
we consider for �

∗
the regularized cost criterion

1

2

∫ ∞

0

(‖y(t)‖2 + ε2‖u(t)‖2) dt (9.96)

for ε small. This is a regular optimal control problem, and thus the maximal solution
Pε of the regularized reversed dissipation inequality

Pε
x (x) f (x, u) + 1

2
‖h∗(x, u)‖2 + 1

2
ε2‖u‖2 ≥ 0 (9.97)

is given as the stabilizing solution of the Hamilton–Jacobi–Bellman equation

H ε
opt(x, (P

ε
x (x))

T ) = 0, (9.98)
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Here H ε
opt(x, p) := H ε(x, p, u∗(x, p)), where u∗(x, p) is the solution to

∂H ε

∂u (x, p, u) = 0, and

H ε(x, p, u) = pT f (x, u) + 1

2
‖h∗(x, u)‖2 + 1

2
ε2‖u‖2 (9.99)

Since all data f (x, u), h∗(x, u) are smooth near 0, also the solution Pε of the
Hamilton–Jacobi–Bellmann equation (9.98) is a smooth function near x = 0 (cf.
Chap. 11). It follows from the interpretation as an optimal control problem that
Pε ≥ 0, and that Pε is nondecreasing as a function of ε. Hence the pointwise limit
P lim(x) := lim

ε↓0 Pε(x) ≥ 0 exists. We obtain the following theorem.

Theorem 9.4.15 Assume that the zero-output constrained dynamics of �
∗
does not

have invariant eigenvalues on the imaginary axis (that is, it is hyperbolic). Further-
more assume that P lim is a C1 function. Then � is minimum phase.

Proof Suppose �̄ is not minimum phase. By the assumption of hyperbolicity this
means that the zero-output constrained dynamics is exponentially unstable. Thus for
every smooth feedback u = α(x) such that the output y∗ = h∗(x̃,α(x̃)) is identically
zero along the closed-loop dynamics ˙̃x = f (x̃,α(x̃)), x̃ ∈ N ∗, this closed-loop
dynamics is exponentially unstable. Linearizing at x̃ = 0, this yields that for any
such α, ∃λ ∈ C, Re λ > 0, and ∃v ∈ Cn, v �= 0, such that

[
∂ f
∂x (0, 0) + ∂ f

∂u (0, 0) ∂α
∂x (0)

]
v = λv[

∂h∗
∂x (0, 0) + ∂h∗

∂u (0, 0) ∂α
∂x (0)

]
v = 0

(9.100)

However, this implies that the linear system

ẋ = ∂ f
∂x (0, 0)x + ∂ f

∂u (0, 0)u =: Ax + Bu

ȳ = ∂h∗
∂x (0, 0)x + ∂h∗

∂u (0, 0)u =: Cx + Du
(9.101)

is not weakly minimum phase (transmission zeros in the open right half plane).
However by linear theory [104, 311] this means that there exists a solution
X = XT ≥ 0, with X �= 0, to the quadratic inequality corresponding to (9.97),
i.e.,

xT X (Ax + Bu) + 1

2
(Cx + Du)T (Cx + Du) ≥ 0 (9.102)

By continuity the regularized dissipation inequality (9.97) converges for ε ↓ 0 to

P lim
x (x) f (x, u) + 1

2
‖h∗(x, u)‖2 ≥ 0 (9.103)

and hence P lim = P = 0. On the other hand, by linearization at x = 0

http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Fig. 9.6 Controller C�̄

based on factor system �̄ +
− CΣ̄

¯

∂2Pε

∂x2
(0) ≥ X �= 0 (9.104)

for all ε > 0, which yields a contradiction. �

Finally, we will discuss the use of the all-pass factorization� = �∗ ◦�
∗
for control,

as already alluded to before. Throughout let us assume that the nonlinear system �

given by (9.59) is asymptotically stable4 with respect to x = 0.
As noted before in Proposition 9.4.4, a useful property of �

∗
as related to the

original system � is that �
∗
and � have the same steady-state output amplitudes.

This has the important consequence that the norm of the steady-state step responses
of� and� are equal for every constant u. This suggests that output set-point control
of � may be based on the factor system �. Furthermore, since �

∗
is minimum

phase, inversion techniques for its control can be used (e.g., by means of nonlinear
input–output decoupling [135, 233]). A main open question is then how, once a
suitable controller for the factor system �

∗
has been obtained, this can be translated

to a suitable controller for the original system �. This problem will be solved by
a nonlinear version of the structure of the classical Smith predictor.5 In fact, this
allows to convert a controller C� for any factor system � (not necessarily �

∗
) to a

controller C for the original system �.
Thus consider the plant system � and an arbitrary factor system �. Suppose that

we have constructed for� a controller systemC� , resulting in the closed-loop system
as depicted in Fig. 9.6. How do we derive from this configuration a controller for the
original system �? We use the following argument stemming from the derivation
of the classical Smith predictor for linear systems. We add to the configuration of
Fig. 9.6 two additional signal flows which exactly compensate each other, leading to
Fig. 9.7. Subsequently, we shift the signal flow of y to the left-hand side of the block
diagram, in order to obtain Fig. 9.8. The system within the dotted lines is now seen
to be a controller for the original system �.

Note that the above construction based on the nonlinear Smith predictor may lead
to problems in case � is not a stable system. Indeed, in this case the transition from

4In this case �
∗
is called an outer system: asymptotically stable with asymptotic stable zero-output

constrained dynamics.
5I thank Gjerrit Meinsma for an illuminating discussion on the derivation of the Smith predictor.
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Fig. 9.7 Addition of
compensating signal flows
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Fig. 9.8 Resulting
controller for �
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Figs. 9.6 to 9.7 may lead to diverging signal behavior, in the sense that although in the
absence of disturbances the two added signal flows exactly compensate each other,
any disturbance or mismatch may cause instabilities.

9.5 Notes for Chapter9

1. Sections9.1 and 9.2 are largely based on Scherpen & van der Schaft [310],
van der Schaft [279], as well as Paice & van der Schaft [248, 249]. For the
parametrization of stabilizing controllers in observer–controller configuration
we refer to Viswanadham & Vidyasagar [345], and Banos [27].

2. Section9.3 is based on Paice & van der Schaft [247, 249]. In these papers the
more general and symmetric result is obtained of parametrizing all the pairs of
state space systems �1 and �2 which are in stable closed-loop configuration.

3. With regard to the Youla–Kucera parametrization of stabilizing linear controllers
of a linear system we refer, e.g., to Francis [103], and Green & Limebeer [117],
and the references quoted therein. Apparently, the interpretation given inRemark
9.3.7, due to Paice & van der Schaft [247, 249], is new for linear systems.

4. Section9.4 is based on van der Schaft & Ball [289]; see also van der Schaft &
Ball [288], Ball & van der Schaft [24], which in its turn was motivated by work
of Ball and Helton on inner–outer factorization of nonlinear operators, see, e.g.,
[21], and the theory of linear inner–outer factorization, see, e.g., Francis [103].
The approach taken in van der Schaft &Ball [288] and Ball & van der Schaft [24]
emphasizes the “nonlinear spectral factorization” point of view of Proposition
9.4.5 and Remark 9.4.6.

5. The interpretation of the minimum phase factor as a “minimal delay factor,” see
Remark 9.4.9, can be found in Robinson [260]; see also Anderson [6].
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6. The Morse Lemma (see, e.g., Abraham&Marsden [1]) can be stated as follows.
Consider a C2 function H : X → R, with Hx (0) = 0 and n× n Hessian matrix
Hxx (0) which is supposed to be nonsingular. Then locally near 0 there exist
coordinates z1, . . . , zn such that

H(z) = H(0) + 1

2
z21 + · · · + 1

2
z2k − 1

2
z2k+1 − · · · − 1

2
z2n, (9.105)

with k the number of positive eigenvalues of Hxx (0). The following slight gen-
eralization can be easily proven (see, e.g., Maas [188]):
Consider a C2 function H : Rn → R, with Hx (0) = 0, and Hxx (x) of constant
rank n̄ in a neighborhood of x = 0. Then locally near 0 there exist coordinates
z1, . . . , zk, zk+1, . . . , zn such that

H(z) = H(0) + 1

2
z21 + · · · + 1

2
z2k − 1

2
z2k+1 − · · · − 1

2
z2n̄ (9.106)

with, as above, k the number of positive eigenvalues of Hxx (0). The application
of this result to the factorization in (9.64) is done by considering the function
KV , and assuming that its partial derivatives with regard to x and u are zero at
(x, u) = (0, 0), and that its Hessian matrix with regard to x and u has constant
rank. Since KV ≥ 0 and KV (0) = 0 it then follows that there exists new
coordinates z for X × Rm with zi = h̄i (x, u), i = 1, . . . , p̄, where p̄ the rank
of the Hessian, such that locally (9.64) holds.

7. The problem of parametrizing the class of stabilizing controllers for a nonlin-
ear plant is also addressed, using related approaches, in Lu [184], Imura &
Yoshikawa [133], Fujimoto & Sugie [109, 110].

8. For studies of kernel representations in the context of closed-loop identification
of nonlinear systems we refer to Linard, Anderson & De Bruyne [181] and
Fujimoto, Anderson & De Bruyne [107].

9. The approach to all-pass factorization in Sect. 9.4 is largely based on Ball,
Petersen & van der Schaft [25]; see also Ball & van der Schaft [24] for the
regular case.

10. The idea of basing the control of a stable but nonminimum phase system on its
minimum phase factor is well known in linear process control, see, e.g., Morari
& Zafiriou [222], and Green & Limebeer [117]. The extension of this idea to
nonlinear systems has been discussed in Doyle, Allgöwer & Morari [87], and
Wright & Kravaris [357]. For a description of the Smith predictor in the linear
case see, e.g., Morari & Zafiriou [222] and Meinsma & Zwart [216]. In this last
reference also the treatment of the modified Smith predictor in case the linear
plant is not asymptotically stable can be found.
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11. For a study of nonlinear controllability and observabilityGramians, their relation
to the associated Hamiltonian system �H , and their use for nonlinear Hankel
singular values and balancing of nonlinear systems, we refer to, e.g., Scherpen
[308], Scherpen & van der Schaft [310], Fujimoto, Scherpen & Gray [108].



Chapter 10
NonlinearH∞ Control

Consider the following standard control configuration, see Fig. 10.1. Let � be a
nonlinear system on an n-dimensional state space manifold X of the general form

� :
ẋ = f (x, u, d)

y = g(x, u, d)

z = h(x, u, d)

(10.1)

with two sets of inputs u and d, two sets of outputs y and z, and state x .
Here u stands for the vector of control inputs, d are the exogenous inputs

(disturbances-to-be-rejected or reference signals to-be-tracked), y are the measured
outputs, and finally z denote the to-be-controlled outputs (tracking errors, cost vari-
ables). The optimal H∞ control problem,1 roughly speaking, is to find a controller
C , processing the measurements y and producing the control inputs u, such that in
the closed-loop configuration of Fig. 10.2 the L2-gain from exogenous inputs d to
to-be-controlled outputs z is minimized, while furthermore the closed-loop system
is stable.

Instead of directly minimizing the L2-gain the more feasible suboptimal H∞ con-
trol problem is addressed. This consists in finding, if possible, for a given disturbance
attenuation level γ a controller C such that the closed-loop system has L2-gain ≤ γ,
and is stable. The solution to the optimal H∞ control problem can then be approxi-
mated by an iteration of the suboptimalH∞ control problem (successively decreasing
γ toward the optimal disturbance attenuation level).

1The terminology H∞ stems from the fact that in the linear case the L2-gain of a stable system is
equal to the H∞ norm of its transfer matrix.

© Springer International Publishing AG 2017
A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control,
Communications and Control Engineering, DOI 10.1007/978-3-319-49992-5_10
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Fig. 10.1 Standard control
configuration
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Fig. 10.2 Standard
closed-loop configuration
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10.1 State FeedbackH∞ Control

In the state feedback suboptimal H∞ control problem we assume that the whole state
is available for feedback; or equivalently y = x in (10.1).

We first study the state feedback problem for nonlinear systems of the special
affine form

� :
ẋ = a(x) + b(x)u + g(x)d , u ∈ Rm, d ∈ Rr

z =
[

h(x)

u

]
x ∈ X , z ∈ Rs (10.2)

All data will be assumed to be Ck , with k ≥ 2. Recall the notation Px (x) for the row

vector
(

∂P
∂x1

(x), . . . , ∂P
∂xn

(x)
)
of partial derivatives of a function P : X → R. We

start by stating the main result.

Theorem 10.1.1 Let γ > 0. Suppose there exists a Cr (k ≥ r > 1) solution P ≥ 0
to the Hamilton–Jacobi inequality (HJ1a) (“a” standing for affine):

(HJ1a)
Px (x)a(x) + 1

2 Px (x)
[

1
γ2 g(x)gT (x) − b(x)bT (x)

]
PT

x (x)

+ 1
2hT (x)h(x) ≤ 0 (10.3)

Then with the Cr−1 state feedback



10.1 State Feedback H∞ Control 243

u = −bT (x)PT
x (x) (10.4)

the closed-loop system (10.2), (10.4), that is,

ẋ = a(x) − b(x)bT (x)PT
x (x) + g(x)d

z =
[

h(x)

−bT (x)PT
x (x)

]
(10.5)

has L2-gain ≤ γ (from d to z).
Conversely, suppose there exists a Cr−1 feedback

u = �(x) (10.6)

such that there exists a C1 storage function P ≥ 0 for the closed-loop system (10.2),
(10.6) with supply rate 1

2γ
2||d||2 − 1

2 ||z||2. Then P ≥ 0 is also a solution of (HJ1a).

Proof Suppose P ≥ 0 is solution to (HJ1a). Rewrite (HJ1a) as

Px (x)
[
a(x) − b(x)bT (x)PT

x (x)
] + 1

2
1
γ2 Px (x)g(x)gT (x)PT

x (x)

+ 1
2 Px (x)b(x)bT (x)PT

x (x) + 1
2hT (x)h(x) ≤ 0

(10.7)

In view of (8.7) this means that P is a storage function for (10.5) with L2-gain supply
rate 1

2γ
2||d||2 − 1

2 ||z||2. Conversely, let P ≥ 0 be a solution to

Px (x) [a(x) + b(x)�(x)] + 1
2

1
γ2 Px (x)g(x)gT (x)PT

x (x)

+ 1
2�

T (x)�(x) + 1
2hT (x)h(x) ≤ 0

(10.8)

Then by “completion of the squares”

Px (x)
[
a(x) − b(x)bT (x)PT

x (x)
]

= Px (x) [a(x) + b(x)l(x)] − Px (x)b(x)
[
bT (x)PT

x (x) + l(x)
]

≤ − 1
2

1
γ2 Px (x)g(x)gT (x)PT

x (x) − 1
2hT (x)h(x)

− 1
2 ||l(x) + bT (x)PT

x (x)||2 − 1
2 Px (x)b(x)bT (x)PT

x (x)

≤ − 1
2

1
γ2 Px (x)g(x)gT (x)PT

x (x) − 1
2 Px (x)b(x)bT (x)PT

x (x)

− 1
2hT (x)h(x)

(10.9)

showing that P is a solution to (10.7), and thus to (10.3). �

Note that we did not say anything sofar about the stability of the closed-loop system
(10.5) resulting from the state feedback u = −bT (x)PT

x (x). However, since P ≥ 0 is

http://dx.doi.org/10.1007/978-3-319-49992-5_8
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a storage function for (10.5) we can simply invoke the results of Chap.3, in particular
Propositions 3.2.12 and 3.2.16.

Proposition 10.1.2 Let P ≥ 0 be a solution to (HJ1a).

(i) Suppose the system
ẋ = a(x)

z =
[

h(x)

−bT (x)PT
x (x)

]
(10.10)

is zero-state observable, then P(x) > 0 for x �= 0.

(ii) Suppose P(x) > 0 for all x �= 0 and P(0) = 0, and suppose (10.10) is zero-state
detectable. Then x = 0 is a locally asymptotically stable equilibrium of

ẋ = a(x) − b(x)bT (x)PT
x (x) (10.11)

If additionally P is proper, then x = 0 is a globally asymptotically stable
equilibrium of (10.11).

Proof Apply Propositions 3.2.12 and 3.2.16 to (10.5), using (HJ1a) rewritten as
(10.7), and note that a(x) − b(x)bT (x)PT

x (x) = a(x) whenever z = 0. �

Remark 10.1.3 We leave the generalization of Proposition 10.1.2 to positive
semi-definite P ≥ 0, based on Theorem 3.2.17 and Proposition 3.2.19, to the reader.

At this point one may wonder where the Hamilton–Jacobi inequality (HJ1a) comes
from, and how similar expressions may be obtained for systems of a more general
form than (10.2). An answer to both questions is obtained from the theory of differ-
ential games. Indeed, one may look at the H∞ suboptimal problem as a two-player
zero-sum differential game with cost criterion

− 1

2
γ2||d||2 + 1

2
||z||2 (10.12)

(one player corresponds to the control input u, the other player to the exogenous
input d).

The pre-Hamiltonian corresponding to this differential game is given as

Kγ(x, p, d, u) := pT [a(x) + b(x)u + g(x)d] − 1

2
γ2||d||2 + 1

2
||z||2 (10.13)

with p being the co-state. From the equations ∂Kγ

∂d = 0 and ∂Kγ

∂u = 0 we determine,
respectively,

d∗(x, p) = 1
γ2 g

T (x)p
u∗(x, p) = −bT (x)p, (10.14)

which have the saddle point property

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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Kγ(x, p, d, u∗(x, p)) ≤ Kγ(x, p, d∗(x, p), u∗(x, p))

≤ Kγ(x, p, d∗(x, p), u) (10.15)

for every d, u and every (x, p). The input u∗ may be called the optimal control, and
d∗ the worst-case exogenous input (disturbance).

Substitution of (10.14) in Kγ(x, p, d, u) leads to the (optimal) Hamiltonian

Hγ(x, p) = pT a(x) + 1
2 pT

[
1
γ2 g(x)gT (x) − b(x)bT (x)

]
p

+ 1
2hT (x)h(x)

(10.16)

The Hamilton–Jacobi inequality (HJ1a) (10.3) is now also expressed as

Hγ(x, PT
x (x)) ≤ 0, (10.17)

which is known in the theory of differential games as the Hamilton–Jacobi–Isaacs
equation.

The same procedure may be followed for more general equations than (10.2), e.g.,

ẋ = f (x, u, d)

z = h(x, u, d) (10.18)

by considering the pre-Hamiltonian

Kγ(x, p, d, u) := pT f (x, u, d) − 1

2
γ2||d||2 + 1

2
||z||2 (10.19)

Suppose, as above, that Kγ has a saddle point u∗(x, p), d∗(x, p), i.e.,

Kγ(x, p, d, u∗(x, p)) ≤ Kγ(x, p, d∗(x, p), u∗(x, p))

≤ Kγ(x, p, d∗(x, p), u) (10.20)

for every d, u, and every (x, p). Then we consider the Hamilton–Jacobi inequality

(HJ1)Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, PT
x (x))) ≤ 0 (10.21)

Analogously to Theorem 10.1.1 we obtain

Proposition 10.1.4 Consider the system (10.18). Let γ > 0. Assume there exist
u∗(x, p), d∗(x, p) satisfying (10.20). Suppose there exists a Cr (k ≥ r > 1) solution
P ≥ 0 to the Hamilton–Jacobi inequality (HJ1) given by (10.21). Then the Cr−1 state
feedback

u = u∗(x, PT
x (x)) (10.22)
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is such that the closed-loop system (10.18), (10.22), i.e.,

ẋ = f (x, u∗(x, PT
x (x)), d)

z = h(x, u∗(x, PT
x (x)), d) (10.23)

has L2-gain ≤ γ.
Conversely, suppose there exists a Cr−1 feedback

u = l(x) (10.24)

such that there exists a C1 storage function P ≥ 0 for the closed-loop system (10.18),
(10.24) with supply rate 1

2γ
2||d||2 − 1

2 ||z||2. Then P ≥ 0 is also a solution of (HJ1).

Proof Let P ≥ 0 satisfy (10.21). Substitute p = PT
x (x) in the first inequality in

(10.20) to obtain

Px (x) f (x, u∗(x, PT
x (x)), d) − 1

2γ
2||d||2 + 1

2 ||h(x, u∗(x, PT
x (x)), d)||2

≤ Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, PT
x (x))), (10.25)

and thus by (10.21) for all d

Px (x) f (x, u∗(x, PT
x (x)), d)

≤ 1
2γ

2||d||2 − 1
2 ||h(x, u∗(x, PT

x (x)), d)||2, (10.26)

showing that (10.23) has L2-gain≤ γ with storage function P . Conversely, let P ≥ 0
be a solution to

Px (x) f (x, l(x), d) ≤ 1

2
γ2||d||2 − 1

2
||h(x, l(x), d)||2 (10.27)

Then by substituting p = PT
x (x) and u = l(x) in the second inequality in (10.20)

we obtain

Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, PT
x (x))) (10.28)

≤ Kγ(x, PT
x (x), d∗(x, PT

x (x)), l(x))

and thus by (10.27) with d = d∗(x, PT
x (x)) we obtain (10.21). �

Remark 10.1.5 The above proof reveals the essence of suboptimal state feedback
H∞ control. Solvability of the Hamilton–Jacobi inequality (HJ1) together with the
first inequality in (10.20) yields the feedback (10.22) for which the closed-loop
system (10.23) has L2-gain ≤ γ. Conversely, if the second inequality in (10.20)
holds then the existence of u = l(x) for which the closed-loop system has L2-gain
≤ γ implies the solvability of (HJ1).
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Remark 10.1.6 Note that in case of the affine system equations (10.2) the point
u∗(x, p), d∗(x, p) given by (10.14) not only satisfies the saddle point property
(10.20) but in fact the stronger property

Kγ(x, p, d, u) ≤ Kγ(x, p, d∗(x, p), u)

Kγ(x, p, d, u∗(x, p)) ≤ Kγ(x, p, d, u), ∀u, d (10.29)

We leave it to the reader to formulate the analog of Proposition 10.1.2 for the general
case treated in Proposition 10.1.4.

Example 10.1.7 Consider the system

ẋ = (1 + x2)u + d , z =
[

x
u

]
(10.30)

The Hamilton–Jacobi inequality (HJ1a) reads

(
d P

dx
(x)

)2 (
(1 + x2)2 − 1

γ2

)
≥ x2, (10.31)

which has a nonnegative solution for γ > 1, e.g.,

P(x) = 1

2
ln

(
1 + x2 +

√
(1 + x2)2 − 1

γ2

)
, (10.32)

leading to the feedback

u = −(1 + x2)

(
(1 + x2)2 − 1

γ2

)− 1
2

x, (10.33)

stabilizing the system about x = 0.

Example 10.1.8 Consider the system

ẋ = u + (arctan x)d , z =
[

x
u

]
(10.34)

The Hamilton–Jacobi inequality (HJ1a) reads as

(
d P

dx
(x)

)2 (
1 − arctan2 x

γ2

)
≥ x2, (10.35)

having solutions P ≥ 0 for all γ such that

| arctan x | < γ , ∀x ∈ R, (10.36)



248 10 Nonlinear H∞ Control

that is, for all γ > π
2 . The feedback is given as

u = −x

(
1 − arctan2 x

γ2

)− 1
2

(10.37)

Example 10.1.9 Consider the system

ẋ = x(u + d) , z =
[

x
u

]
(10.38)

The Hamilton–Jacobi inequality (HJ1a) is

(
d P

dx
(x)

)2 (
1

γ2
− 1

)
x2 + x2 ≤ 0 (10.39)

which has for γ > 1 the so-called viscosity solution (see the Notes at the end of this
chapter)

P(x) = γ√
γ2−1

|x |
u = − γ√

γ2−1
|x | (10.40)

Note that P is not differentiable at x = 0, however the closed-loop system

ẋ = − γ√
γ2 − 1

|x |x + xd (10.41)

is asymptotically stable about x = 0.

Now let us come back to the L2-gain perturbation models formulated in Sect. 9.2,
based on stable kernel or stable image representations. Consider an affine nonlinear
input-state-output system

� :
ẋ = f (x) + g(x)u , x ∈ X , u ∈ Rm

y = h(x) , y ∈ Rp
(10.42)

First, we consider the perturbation�� based on the stable kernel representation K� ,
given in (9.29):

�� : ẋ = f (x) + g(x)u − k(x)w

y = h(x) − w
w ∈ Rp, (10.43)

with w being the output of some nonlinear system � with input

[
u
y

]

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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Fig. 10.3 Perturbed
nonlinear system

y
u

w y

ỹ

u

u

ΣΔ

Δ

� :
ξ̇ = α(ξ, u, y)

w = β(ξ, u, y)

(10.44)

having finite L2-gain γ� (see Fig. 10.3). Here the matrix k(x) is determined by
Eq. (9.10), that is, Wx (x)k(x) = hT (x), with W being a nonnegative solution to the
“filter” Hamilton–Jacobi equation (9.9).

We now formulate the robust stabilization problem as the problem of constructing
a controller C processing the measurements ỹ and producing the control u such that
the L2-gain (fromw to z) of�� in closed-loop with C is minimized, say equal to γ∗.
In the present section, we consider the robust stabilization problem by state feedback
where we take ỹ = x , and in the next section we will consider the measurement
feedback case where ỹ = y.

Once we have solved the robust stabilization problem, it follows from the small-
gain theorem that the closed-loop system given in Fig. 10.4 will be closed-loop stable
for all perturbations � with γ� · γ∗ < 1.

That is, in an input–output map context Theorem 2.1.1 implies that whenever the
signals e1, e2 ∈ L2 are such that the signals w and z are in L2e, then actually w and
z in L2. Furthermore, in a state space context Theorem 8.2.1 will ensure internal
stability of the controlled perturbed nonlinear system for e1 = e2 = 0.

Clearly, the problem of minimizing the L2-gain (from w to z) of �� by state
feedback is a nonlinear H∞ optimal control problem. The suboptimal version
(for decreasing values of γ > 0) is addressed, as above, by considering the pre-
Hamiltonian corresponding to (10.43):

Kγ(x, p, u, w) = pT [ f (x) + g(x)u − k(x)w] − 1
2γ

2||w||2
+ 1

2 ||u||2 + 1
2 ||h(x) − w||2 (10.45)

As in (10.14) we obtain a saddle point u∗(x, p), w∗(x, p) given as

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_8
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e1

z = y
u

w

e2

x

C

ΣΔ

Δ

u

+

+ +

+

Fig. 10.4 Controlled perturbed nonlinear system (state feedback case)

u∗ = −gT (x)p , w∗ = −1

γ2 − 1
(kT (x)p + h(x)) (10.46)

Necessarily γ ≥ 1, since y = h(x)+w and hence the L2-gain from w to z is always
≥ 1. Substitution of (10.46) into (10.45) leads to the Hamilton–Jacobi inequality
(HJ1), written out as

Px (x)[ f (x) + (γ2 − 1)−1k(x)h(x)] + 1
2γ

2(γ2 − 1)−1hT (x)h(x)

+ 1
2 Px (x)[(γ2 − 1)−1k(x)kT (x) − g(x)gT (x)]PT

x (x) ≤ 0 (10.47)

Proposition 10.1.10 Let γ > 1. Suppose there exists a solution P ≥ 0 to (10.47).
Then the state feedback

u = −gT (x)PT
x (x) (10.48)

will be such that the controlled system

ẋ = [ f (x) − g(x)gT (x)PT
x (x)] − k(x)w

z =
[

h(x) − w

−gT (x)PT
x (x)

]
(10.49)

has L2-gain ≤ γ (from w to z).
Furthermore, let � have L2-gain γ� < 1

γ
with storage function P�. Suppose P

and P� have strict local minima at x∗ = 0, respectively, ξ∗ = 0, and �� and � are
zero-state detectable. Then (x∗, ξ∗) is a locally asymptotically stable equilibrium of
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the closed-loop system (10.49), (10.44), which is globally asymptotically stable if P
and P� have global minima at x∗ = 0 and ξ∗ = 0 and are proper.

Proof The first part immediately follows from Proposition 10.1.4. The second part
follows from the small-gain theorem in the state space setting (Theorem 8.2.1). �

Remark 10.1.11 By taking fixed initial conditions for the controlled system as well
as for the perturbation system � and considering the resulting input–output maps
onemay also formulate closed-loop stability statements in the spirit of the small-gain
theorem in the input–output mapping setting (Theorem 2.1.1). We leave this to the
reader.

Alternatively, we may consider the perturbation ��̃ based on the stable image rep-
resentation I� of �, given in (9.33), i.e.,

��̃ : ẋ = f (x) + g(x)u − g(x)w2

y = h(x) + w1
(10.50)

with (w1, w2) the output of some nonlinear system �̃

�̃ :

ξ̇ = α̃(ξ, s)

w1 = β̃1(ξ, s)

w2 = β̃2(ξ, s)

(10.51)

with s = u + gT (x)V T
x (x) − w2, having finite L2-gain (from s to (w1, w2)). The

robust stabilization problem for this perturbation model is to minimize the L2-gain
(from (w1, w2) to s) of

ẋ = f (x) + g(x)u − g(x)w2

s = u + gT (x)V T
x (x) − w2

(10.52)

In the state feedback case this problem admits an easy solution.

Proposition 10.1.12 The state feedback

u = −gT (x)V T
x (x) (10.53)

renders the L2-gain of (10.52) equal to 1. Furthermore, for every other controller C
the L2-gain from (w1, w2) to s is ≥ 1.

Proof Since s = u + gT (x)V T
x (x) − w2 it is easily seen that the L2-gain from w2

to s is always ≥ 1. On the other hand, (10.53) clearly renders the L2-gain equal
to 1. �

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_2
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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The above result has a clear interpretation. Recall (see Remark 9.1.9 and Sect. 11.2)
that (10.53) is the feedback that minimizes the cost criterion

∫ ∞

0
(||u(t)||2 + ||y(t)||2)dt (10.54)

for ẋ = f (x) + g(x)u, y = h(x). Proposition 10.1.12 shows that (10.53) also
optimizes the robustness margin for the perturbed system ��̃.

We leave the further translation of the statements of Proposition 10.1.10 to the
perturbation model ��̃ to the reader.

Example 10.1.13 (Example 9.2.1 continued) Consider a port-Hamiltonian system
with energy H ≥ 0 and without energy dissipation

ẋ = J (x)H T
x (x) + g(x)u, J (x) = −J T (x)

y = gT (x)H T
x (x) (10.55)

In Example 9.2.1, we have derived the perturbed systems �� and ��̃, see (9.36),
(9.37). With respect to the perturbed system �� the Hamilton–Jacobi inequality
(HJ1) takes the form

Px (x)[J (x)H T
x (x) + (γ2 − 1)−1g(x)gT (x)H T

x (x)]
+ 1

2 [γ2 − 1)−1 − 1]Px (x)g(x)gT (x)PT
x (x)

+ 1
2γ

2(γ2 − 1)−1Hx (x)g(x)gT (x)H T
x (x) ≤ 0,

(10.56)

having for γ >
√
2 the positive solution P(x) = γ2

γ2−2 H(x). Thus by Proposition
10.1.10 the state feedback

u = − γ2

γ2 − 2
gT (x)H T

x (x) , γ >
√
2, (10.57)

robustly stablizes �� for every perturbation � with L2-gain < 1
γ
. Alternatively, cf.

Proposition 10.1.12, the feedback

u = −gT (x)H T
x (x) (10.58)

robustly stabilizes ��̃ for every perturbation �̃ with L2-gain < 1.

10.2 Output FeedbackH∞ Control

Consider the nonlinear system (10.1), that is,

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9


10.2 Output Feedback H∞ Control 253

� :

ẋ = f (x, u, d), x ∈ X , u ∈ Rm, d ∈ Rr

y = g(x, u, d), y ∈ Rp

z = h(x, u, d), z ∈ Rs

(10.59)

In the output feedback suboptimal H∞ control problem we want to construct, if
possible, for a given attenuation level γ ≥ 0 an output feedback controller

C :
ξ̇ = ϕ(ξ, y)

u = α(ξ)
(10.60)

such that the closed-loop system has L2-gain ≤ γ (from d to z). Here
ξ = (ξ1, . . . , ξν) are local coordinates for the state space manifold Xc of the con-
troller C , and ϕ and α are mappings whose degree of differentiability in general will
depend on the degree of differentiability of the mappings f, g, and h. As before, we
assume them to be at least C2.

In this section, we will be primarily concerned with finding necessary conditions
for the solvability of the output feedback suboptimal H∞ problem, as well as with
the analysis of the structure of controllers that solve the problem. In order to do so,
let us assume that a controller C as in (10.60) solves the output feedback suboptimal
H∞ control problem for� given by (10.59), for a given disturbance attenuation level
γ. Moreover, assume that there exists a differentiable storage function S(x, ξ) ≥ 0
for the closed-loop system with respect to the supply rate 1

2γ
2||d||2 − 1

2 ||z||2, that is,

Sx (x, ξ) f (x,α(ξ), d) + Sξ(x, ξ)ϕ(ξ, g(x,α(ξ), d))

− 1
2γ

2||d||2 + 1
2 ||h(x,α(ξ), d)||2 ≤ 0, for all d (10.61)

Now consider the equation
Sξ(x, ξ) = 0, (10.62)

and assume this equation has a differentiable solution ξ = F(x). (By the Implicit
Function theorem this will locally be the case if the partial Hessian matrix Sξξ(x, ξ)
is nonsingular for every (x, ξ) satisfying (10.62).) Define

P(x) := S(x, F(x)) (10.63)

Substitution of ξ = F(x) into (10.61) yields (noting that Px (x) = Sx (x, F(x)) since
Sξ(x, F(x)) = 0)

Px (x) f (x,α(F(x)), d) − 1

2
γ2||d||2 + 1

2
||h(x,α(F(x)), d||2 ≤ 0 (10.64)

for all d. Hence the state feedback u = α(F(x)) solves the state feedback suboptimal
H∞ control problem for�,with storage function P . Therefore, P is solution of (HJ1).
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Thus we have obtained a logical necessary condition for solvability of the output
feedback suboptimal H∞ control problem, namely solvability of the corresponding
state feedback problem.

A second necessary condition is obtained by restricting to the (natural) class of
controllers C which produce zero control u for measurements y being identically
zero, at least for “zero initial condition”. More specifically, we assume that the
controller C satisfies

ϕ(0, 0) = 0,α(0) = 0 (10.65)

Defining
R(x) := S(x, 0), (10.66)

substitution of ξ = 0 and y = 0 in (10.61) then yields

(HJ2) Rx (x) f (x, 0, d) − 1

2
γ2||d||2 + 1

2
||h(x, 0, d)||2 ≤ 0 (10.67)

for all disturbances d such that the measurements y = g(x, 0, d) remain zero.
Thus a second necessary condition for solvability of the output feedback H∞

suboptimal control problem is the existence of a solution R ≥ 0 to (HJ2). This
necessary condition also admits an obvious interpretation; it tells us that if we wish
to render � dissipative by a controller C satisfying (10.65), then � constrained by
u = 0 and y = 0 already has to be dissipative.

If we specialize (as in the previous Sect. 10.1) the equations for � and C to

�a :

ẋ = a(x) + b(x)u + g(x)d1
y = c(x) + d2

z =
[

h(x)

u

]
,

(10.68)

respectively,

Ca :
ξ̇ = k(ξ) + �(ξ)y, k(0) = 0

u = m(ξ), m(0) = 0,
(10.69)

then (10.67) reduces to

Rx (x) [a(x) + g(x)d1] − 1

2
γ2(||d1||2 + ||d2||2) + 1

2
||h(x)||2 ≤ 0 (10.70)

for all d = [d1
d2

]
such that y = c(x) + d2 is zero; implying that d2 = −c(x).

Computing the maximizing disturbance d∗
1 = 1

γ2 g
T (x)RT

x (x), it follows that (10.70)
is equivalent to the Hamilton–Jacobi inequality
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(HJ2a)
Rx (x)a(x) + 1

2
1
γ2 Rx (x)g(x)gT (x)RT

x (x)

+ 1
2hT (x)h(x) − 1

2γ
2cT (x)c(x) ≤ 0 , x ∈ X (10.71)

Remark 10.2.1 In cases different from (10.68) the constraint y = 0 may impose
constraints on the state spaceX , in which case we would obtain, contrary to (10.71),
a Hamilton–Jacobi inequality defined on a subset of X .

Thus we have derived, under mild technical assumptions, two necessary conditions
for the solvability of the output feedback suboptimal H∞ control problem; namely
the existence of a solution P ≥ 0 to the first Hamilton–Jacobi inequality (HJ1), and
the existence of a solution R ≥ 0 to the second Hamilton–Jacobi inequality (HJ2).

Furthermore, it is clear from the way we have derived the solutions P ≥ 0 and
R ≥ 0 to these two Hamilton–Jacobi inequalities, that P and R are not unrelated. In
fact, as we now will show, the solutions P and R have to satisfy a certain coupling
condition. The easiest way of obtaining this coupling condition is to consider, as
above, P(x) = S(x, F(x)) and R(x) = S(x, 0) and to additionally assume that S
has a minimum at (0, 0), i.e.,

S(0, 0) = 0, Sx (0, 0) = 0, Sξ(0, 0) = 0, S(x, ξ) ≥ 0, ∀x, ξ, (10.72)

and furthermore that the Hessian matrix of S at (0, 0)

[
Sxx (0, 0) Sxξ(0, 0)
Sξx (0, 0) Sξξ(0, 0)

]
=:

[
S11 S12
ST
12 S22

]
(10.73)

satisfies S22 = Sξξ(0, 0) > 0. By the Implicit Function theorem this will imply
the existence of a unique F(x) defined near x = 0 such that Sξ(x, F(x)) = 0. It
immediately follows that

P(0) = 0, Px (0) = 0, R(0) = 0, Rx (0) = 0, (10.74)

and moreover from the definition of P and R it can be seen that

Pxx (0) = S11 − S12S−1
22 ST

12 , Rxx (0) = S11 (10.75)

As a consequence one obtains the “weak” coupling condition

Pxx (0) ≤ Rxx (0), (10.76)

with strict inequality if S12 �= 0, in which case P(x) < R(x) for x near 0. In fact, in
case of a linear system this amounts to the same coupling condition as obtained in
linear H∞ control theory [117]. See also Corollary 11.4.9 in the next Chap.11.

A stronger, and more intrinsic, coupling condition can be derived as follows. Sup-
pose there exists a controller C satisfying (10.65) which solves the output feedback

http://dx.doi.org/10.1007/978-3-319-49992-5_11
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suboptimal H∞ control problem with a storage function S for the closed-loop sys-
tem satisfying S(0, 0) = 0 (or, equivalently, S has a minimum at (0, 0)). Then the
closed-loop system satisfies, whenever x(−T1) = 0, ξ(−T1) = 0

1
2

∫ 0
−T1

(γ2||d(t)||2 − ||z(t)||2) dt

+ 1
2

∫ T2

0 (γ2||d(t)||2 − ||z(t)||2) dt ≥ 0

for all T1 ≥ 0, T2 ≥ 0, and all disturbance functions d(·) on [−T1, T2]. In particular,
we obtain for x(−T1) = 0, ξ(−T1) = 0

− ∫ T2

0
1
2 (γ

2||d(t)||2 − ||z(t)||2) dt

≤ ∫ 0
−T1

1
2 (γ

2||d(t)||2 − ||z(t)||2) dt
(10.77)

for all T1 ≥ 0, T2 ≥ 0, and all disturbance functions d(·) on [−T1, T2] such that
the measurements y(·) are zero on [−T1, 0]. Taking in (10.78) the supremum on the
left-hand side, and taking the infimum on the right-hand side we obtain

sup
d(·) on [0,T2],T2≥0

− ∫ T2

0
1
2 (γ

2||d(t)||2 − ||z(t)||2)dt

≤ inf
∫ 0
−T1

1
2 (γ

2||d(t)||2 − ||z(t)||2)dt,

(10.78)

where the infimum on the right-hand side is taken over all T1 ≥ 0 and all disturbance
functions d(·) on [−T1, 0] such that y(t) = 0 for t ∈ [−T1, 0]. We note that the
right-hand side of (10.78) is precisely equal to Sr (x(0)); the required supply from
the state x∗ = 0 (cf. Theorem 3.1.16), with regard to all d(·) on [−T1, 0] such that
y(t) = 0, t ∈ [−T1, 0]. Furthermore, the left-hand side of (10.78) is considered for
one fixed control strategy u(·) on [0, T2], namely the one delivered by the output
feedback controller C . It follows that for all T2 ≥ 0

inf
u(·)

sup
T2≥0, d(·) on [0,T2]

1

2

∫ T2

0
||z(t)||2 − γ2||d(t)||2 dt ≤ Sr (x(0)) (10.79)

for all x(0)which can be reached from x(−T1) = 0 by a disturbance function d(·) on
[−T1, 0]. Finally, from the theory of (zero-sum) differential games (see, e.g., [325],
and the references quoted in the Notes for this chapter it follows that the function
P(x(0)) determined by the left-hand side of (10.79) is, whenever it is differentiable,
a solution of the first Hamilton–Jacobi inequality (in fact, equality) (HJ1). Thus we
have reached the conclusion that there exists a solution P ≥ 0 to the first Hamilton–
Jacobi inequality (HJ1) such that

P(x(0)) ≤ Sr (x(0)) (10.80)

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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for all x(0) reachable from x = 0 by a disturbance d(·) leaving the measurements
y equal to zero. From dissipative systems theory as treated in Chap. 3 it follows that
the function R(x) := Sr (x), whenever it is differentiable and defined for all x , is a
solution of the second Hamilton–Jacobi inequality (HJ2). Thus we have derived as
a third necessary condition for solvability of the output feedback suboptimal H∞
control problem that there need to exist solutions P ≥ 0 and R ≥ 0 to (HJ1),
respectively (HJ2), which satisfy the strong coupling condition

P(x) ≤ R(x), for all x ∈ X (10.81)

Furthermore, from Chap.3 (Theorem 3.1.16) it follows that R := Sr is in fact the
maximal solution to (HJ2), while the theory of differential games indicates that the
left-hand side of (10.79) is theminimal solution of the first Hamilton–Jacobi inequal-
ity (HJ1). (This has been explicitly proven for linear systems; see also Sect. 11.1.)

Example 10.2.2 Consider a system

�a :
ẋ = f (x) + g(x)u, u, y ∈ Rm, f (0) = 0

y = h(x), x ∈ X , h(0) = 0
(10.82)

which is lossless (i.e., conservative with respect to the passivity supply rate uT y).
Hence there exists a nonnegative storage function (for clarity denoted by H ≥ 0)
such that

Hx (x) f (x) = 0 , Hx (x)g(x) = hT (x) (10.83)

Furthermore assume that H(0) = 0, and that the system ẋ = f (x), y = h(x) is
zero-state detectable (Definition 3.2.15).

Consider the output feedback suboptimal H∞ control problem associated with
the equations

ẋ = f (x) + g(x)u + g(x)d1, x ∈ X , u ∈ Rm, d1 ∈ Rm

y = h(x) + d2, y ∈ Rm, d2 ∈ Rm

z =
[

h(x) + d2
u

]
,

(10.84)

where the L2-gain from d = [d1
d2

]
to z is sought to be minimized. Clearly, because of

the direct feedthrough term in the z equations, theH∞ control problem can never be
solved for γ < 1. The Hamilton–Jacobi inequality (HJ1a) for γ > 1 takes the form

Px (x) f (x) − 1

2

γ2 − 1

γ2
Px (x)g(x)gT (x)PT

x (x) + 1

2

γ2

γ2 − 1
hT (x)h(x) ≤ 0 (10.85)

The stabilizing solution P ≥ 0 with P(0) = 0 to (10.85) is given as

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_3
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P(x) = γ2

γ2 − 1
H(x) (10.86)

Indeed, by zero-state detectability the vector fields

ẋ = f (x) − αb(x)bT (x)H T
x (x) (10.87)

for α > 0 are all asymptotically stable. In Sect. 11.1 it will be shown that the stabi-
lizing solution to (10.85) is also the minimal solution.

The second Hamilton–Jacobi inequality (HJ2a) takes the following form (see
(10.71)):

Rx (x) f (x) + 1

2

1

γ2
Rx (x)g(x)gT (x)RT

x (x) − 1

2
γ2hT (x)h(x) ≤ 0 (10.88)

Using again zero-state detectability it is seen that

R(x) = γ2H(x) (10.89)

is the antistabilizing solution to (10.88), and thus (see Sect. 11.1) the maximal solu-
tion. Therefore, the coupling condition tells us that necessarily

γ2

γ2 − 1
H(x) ≤ γ2H(x) ⇔ γ2 ≥ 2 (10.90)

On the other hand, the unity output feedback

u = −y (10.91)

yields a closed-loop system with L2-gain ≤ √
2. Indeed, by (10.91),

||d1||2 + ||d2||2 = ||d1 + d2 − y||2 − (y − d2)T (y − d1) + ||y||2
= ||d1 + d2 − y||2 + ||y||2 + (y − d2)T (d1 + u) (10.92)

By integrating from 0 to T , and observing that, since the system is lossless,∫ T
0 (y − d2)T (d1 + u)dt = H(x(T )) − H(x(0)), it follows that

∫ T

0
||d(t)||2dt ≥

∫ T

0
||y(t)||2dt + H(x(T )) − H(x(0)), (10.93)

and thus

∫ T

0
||z(t)||2dt ≤ 2

∫ T

0
||d(t)||2dt + 2H(x(0)) − 2H(x(T )) (10.94)

http://dx.doi.org/10.1007/978-3-319-49992-5_11
http://dx.doi.org/10.1007/978-3-319-49992-5_11


10.2 Output Feedback H∞ Control 259

This implies that the closed-loop system has L2-gain ≤ √
2 (with storage function

equal to H ). We conclude that the unity output feedback (10.91) in fact solves the
optimal output feedbackH∞ problem, for the optimal disturbance attenuation level
γ∗ = √

2.

Next we elaborate on the necessary structure of a controller C solving the output
feedback suboptimalH∞ control problem. Consider again the dissipation inequality
(10.61) for the closed-loop system. Under quite general conditions the left-hand side
of (10.61) as a function of the disturbance d is maximized by a certain d̄∗(x, ξ), in
which case it reduces to the Hamilton–Jacobi inequality

Sx (x, ξ) f (x,α(ξ), d̄∗(x, ξ)) + Sξ(x, ξ)ϕ(ξ, g(x,α(ξ), d̄∗(x, ξ))
− 1

2γ
2 ‖ d̄∗(x, ξ) ‖2 + 1

2 ‖ h(x,α(ξ), d̄∗(x, ξ)) ‖2 ≤ 0
(10.95)

for x ∈ X , ξ ∈ Xc. Assume that (10.96) is satisfied with equality (this happens, for
example, if S is the available storage or required supply, cf. Chap.3 and/orChap.11).
Assume furthermore, as before, that Sξ(x, ξ) = 0 has a solution ξ = F(x). Finally,
assume that P(x) = S(x, F(x)) and that

α(F(x)) = u∗(x, PT
x (x)), (10.96)

where u∗(x, p) is theminimizing input of the state feedback problem, that is, satisfies
(10.15). It is easily seen that d̄∗(x, F(x)) = d∗(x, PT

x (x)), with d∗ satisfying (10.15).
Under these three assumptions, differentiate (10.94) with equality with regard to
ξ, and substitute afterward ξ = F(x). Because of the maximizing, respectively
minimizing, property of d∗ and u∗, differentiating to ξ via d∗ and α in ξ = F(x)

yields zero. Thus what remains is

Sξx (x, F(x)) f (x, u∗(x, PT
x (x)), d∗(x, PT

x (x)))

+ Sξξ(x, F(x))ϕ(F(x), g(x, u∗(x, PT
x (x)), d∗(x, PT

x (x))) = 0 (10.97)

Furthermore, since Sξ(x, F(x)) = 0 for all x , differentiation of this expression with
respect to x yields

Sxξ(x, F(x)) + Sξξ(x, F(x))Fx (x) = 0 (10.98)

Combination of (10.97) and (10.98) leads to

Sξξ(x, F(x))ϕ(F(x), g(x, u∗(x, PT
x (x)), d∗(x, PT

x (x))) =
Sξξ(x, F(x))Fx (x) f (x, u∗(x, PT

x (x)), d∗(x, PT
x (x))) (10.99)

Thus, imposing the fourth assumption that the Hessian matrix Sξξ(x, F(x)) is non-
singular, it follows that

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_11
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Fx (x) f (x, u∗(x, PT
x (x)), d∗(x, PT

x (x))) = ϕ(F(x), y) (10.100)

with
y = g(x, u∗(x, PT

x (x)), d∗(x, PT
x (x))) (10.101)

This constitutes an invariance principle. Indeed, whenever ξ(t0) = F(x(t0)), then
during the occurrence of the worst-case disturbance d∗(x(t), PT

x (x(t))), it follows
that Fx (x(t))ẋ(t) = ξ̇(t), and thus ξ(t) = F(x(t)) for t ≥ t0. Therefore, the con-
troller C has a certainty equivalence property. This is especially clear if F is a
diffeomorphism, in which case we may choose coordinates ξ for Xc such that F is
the identity mapping. Then C is an observer, and ξ(t) is an estimate for the actual
state x(t) (for the worst-case disturbance), while the control u is given as the state
feedback u∗(x, PT

x (x)) with the actual state x replaced by this estimate ξ.
Finally, in the last part of this section we will transform the output feedback

suboptimal H∞ control problem for � into an output feedback suboptimal H∞
control problem for another system �̃, based on the solvability of the state feedback
suboptimal H∞ control problem. By this we may focus on the inherent difficulties
associated with the output feedback problem. Furthermore, the transformation will
lead us to a parametrization of the controllers solving the output feedback problem.
Wewill show that the transformation is very close to the all-pass factorization treated
in Sect. 9.4.

We start by considering a general system �, as given by Eq. (10.59), and we
assume the existence of a solution P ≥ 0 to the state feedback Hamilton–Jacobi
equality (HJ1), that is,

Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, PT
x (x))) = 0 (10.102)

with d∗, u∗ satisfying (10.15), and Kγ given as in (10.19). Now consider the function
Kγ(x, PT

x (x), d, u). By (10.102) and (10.20), we have

Kγ(x, PT
x (x), d, u∗(x, PT

x (x))) ≤ 0 ≤ Kγ(x, PT
x (x), d∗(x, PT

x (x)), u) (10.103)

Now assume that there exist mappings

r = r(x, u, d)

v = v(x, u, d) (10.104)

such that

Kγ(x, PT
x (x), d, u) = −1

2
γ2||r ||2 + 1

2
||v||2 (10.105)

If the system equations are given by (10.68), then the factorization (10.105) is in fact
easy to obtain by completing the squares, and is given as

http://dx.doi.org/10.1007/978-3-319-49992-5_9


10.2 Output Feedback H∞ Control 261

r1 = d1 − 1
γ2 g

T (x)PT
x (x), r2 = d2

v = u + bT (x)PT
x (x)

(10.106)

with P ≥ 0 satisfying (HJ1a). In general, the factorization is of the same type
as the one considered in Sect. 9.4 (the main difference being the indefinite sign).
Local existence of the factorization can be again guaranteed by an application of
the Morse Lemma if the Hessian matrix of Kγ(x, PT

x (x), d, u) with respect to d
and u is nonsingular (see Lemma 9.4.2 in Chap.9). Let us additionally assume that
the mapping given by (10.104) is invertible in the sense that d can be expressed as
function of u and r (and x), and u as function of v and d (and x), i.e.,

d = d(x, u, r)

u = u(x, v, d) (10.107)

This assumption is trivially satisfied for (10.106), since in this case we may write

d1 = r1 + 1
γ2 g

T (x)PT
x (x), d2 = r2

u = v − bT (x)PT
x (x)

(10.108)

The system � is now factorized as in Fig. 10.5, with �̃ denoting the transformed
system

�̃ :

˙̃x = f (x̃, u, d(x̃, u, r)) =: f̃ (x̃, u, r)

y = g(x̃, u, d(x̃, u, r)) =: g̃(x̃, u, r)

v = v(x̃, u, d(x̃, u, r)) =: h̃(x̃, u, r)

(10.109)

while the system � is given as

� :
θ̇ = f (θ, u(θ, v, d), d)

r = r(θ, u(θ, v, d), d)

z = h(θ, u(θ, v, d), d)

(10.110)

Fig. 10.5 Factorization of � d z

r

u

vΣ :

Σ̃

Θ

y

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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It can be readily seen that if x̃(t0) = θ(t0) = x(t0), then also x̃(t) = θ(t) = x(t), t ≥
t0, and that z(t) and y(t) produced in Fig. 10.5 coincide with z(t) and y(t) produced
by� for the same u(t) and d(t). Thus Fig. 10.5 indeed constitutes a valid factorization
of �. Furthermore, the following proposition is immediately derived from (10.105).

Proposition 10.2.3 Let P ≥ 0 satisfy (10.102). Consider the factorization of �

given in Fig.10.5. Then for all d(·), v(·), and all t1 ≥ t0 and θ(t0)

P(θ(t1)) − P(θ(t0)) + 1
2

∫ t1
t0

(||z(t)||2 − γ2||d(t)||2)dt =
1
2

∫ t1
t0

(||v(t)||2 − γ2||r(t)||2)dt (10.111)

or equivalently,

P(θ(t1)) − P(θ(t0)) = 1
2

∫ t1
t0

(||v(t)||2 + γ2||d(t)||2) dt
− 1

2

∫ t1
t0

(||z(t)||2 + γ2||r(t)||2) dt (10.112)

Thus � is inner (Definitions 3.1.6 and 8.1.1) from

[
γd
v

]
to

[
z
γr

]
.

A first consequence of Proposition 10.2.3 is that the solution of the output feedback
suboptimalH∞ control problem for� can be reduced, in a certain sense, to the same
problem for �̃:

Proposition 10.2.4 Let P ≥ 0 satisfy (10.102). Consider the factorization of
Fig.10.5.

(i) A controller C which solves the output feedback suboptimalH∞ control problem
for �̃ also solves the same problem for �.

(ii) Suppose the controller C solves the output feedback suboptimal H∞ control
problem for � with a storage function S(x, ξ) satisfying

S(x, ξ) − P(x) ≥ 0, x ∈ X , ξ ∈ Xc (10.113)

Then the same controller also solves the output feedback suboptimalH∞ control
problem for �̃ with storage function S(x̃, ξ) − P(x̃).

Proof (i) Rewrite (10.111) as

1
2

∫ T
0 (‖z(t)‖2 − γ2‖d(t)‖2)dt =

1
2

∫ T
0 (‖v(t)‖2 − γ2‖r(t)‖2)dt + P(θ(0)) − P(θ(T ))

(10.114)

If a controller C bounds the first term on the right-hand side by a constant depending
on the initial conditions x̃(0), ξ(0), then the same holds for the left-hand side (since
P(θ(T )) = P(x(T )) ≥ 0).

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_8


10.2 Output Feedback H∞ Control 263

(ii) If C solves the output feedback suboptimal H∞ control problem for �, then
1
2

∫ T
0 (‖z(t)‖2 − γ2‖d(t)‖2)dt ≤ S(x(0), ξ(0)) and thus by (10.114)

1

2

∫ T

0
(‖v(t)‖2 − γ2‖r(t)‖2)dt ≤ S(x̃(0), ξ(0)) − P(x̃(0)) (10.115)

�

Remark 10.2.5 Note that for part (i) P only needs to satisfy the state feedback
Hamilton–Jacobi inequality (HJ1).

Since we have already used in the transformation from � to �̃ the knowledge of
the existence of a solution P ≥ 0 to the state feedback Hamilton–Jacobi equation
(HJ1) we may expect that the output feedback suboptimal H∞ control problem for
�̃ will be “easier” than the same problem for �. At least the solution of the state
feedback H∞ control problem for �̃ has become trivial; u = u∗(x, PT

x (x)) and
d∗ = d∗(x, PT

x (x)) solve the equations

0 = v(x, u, d)

0 = r(x, u, d), (10.116)

and thus yield a trivial solution to the state feedback H∞ control problem for �̃. In
particular, in the affine case, where r and v are given by (10.106), the state feed-
back u = −bT (x)PT

x (x) renders v equal to zero and thus solves the disturbance
decoupling problem for �̃.

A second consequence of the factorization in Fig. 10.5 and Proposition 10.2.3
concerns the parametrization of controllers solving the output feedback subopti-
mal H∞ problem. Consider a controller C in closed-loop with the factorization of
Fig. 10.6. Denote the system within dotted lines by K . Then it follows from Propo-
sition 10.2.3 that if K has L2-gain ≤ γ (from r to v), then � in closed-loop with the
“controller” K will also have L2-gain ≤ γ (from d to z). We may also reverse this
relation. Consider an auxiliary system Q with inputs r and outputs v

Q : q̇ = fQ(q, r)

v = hQ(q, r) (10.117)

and suppose Q has L2-gain ≤ γ. Thus, there exists a storage function SQ(q) ≥ 0
such that along the trajectories of Q

SQ(q(T )) − SQ(q(0)) ≤ 1

2

∫ T

0
(γ2||r(t)||2 − ||v(t)||2)dt (10.118)

Now consider this system Q in conjunction with the system �̃, i.e.,
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y

z

u

Θ

C

K

d

Σ̃

v r

Fig. 10.6 Factorized system in closed-loop with controller C

y

CΘ Σ̃

z

d r

v u

Fig. 10.7 Chain-scattering representation

q̇ = fQ(q, r)

˙̃x = f̃ (x̃, u, r)

y = g̃(x̃, u, r)

hQ(q, r) = h̃(x̃, u, r)

(10.119)

The idea is now to look at (10.119) as a generalized form of image representation
(with driving variable r ) of a controller CQ (producing controls u on the basis of the
measurements y). By construction this implicitly defined controller CQ solves the
output feedback suboptimal H∞ control problem for �. Thus for every system Q
with L2-gain ≤ γ we obtain in this way a controller CQ solving the H∞ problem.

Amore explicit way of describing these controllersC can be obtained by rewriting
the configuration of Fig. 10.6 into the form of Fig. 10.7.

Assume that � and �̃ are invertible in the sense that � admits an input–output
representation with inputs r and v and outputs d and z, and that �̃ admits an input–
output representation with inputs y and u and outputs r and v. In this case one speaks
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about the chain-scattering representation. For more details, we refer to the literature
cited in the Notes for this chapter.

10.3 Notes for Chapter 10

1. The computational complexity of obtaining (approximate) solutions to (HJ1)
and/or (HJ2) is a major issue for the applicability of the theory. Power series
solutions around an equilibrium are described in van der Schaft [275], Isidori
and Kang [142], continuing on earlier similar approaches in nonlinear optimal
control by Al’brekht [5] and Lukes [187]. See Krener, Aguilar & Hunt [172],
Aguilar &Krener [4] for further developments, including the Toolbox by Krener
[171]. Various other computational schemes have been proposed and analyzed
in the literature; wemention Knobloch, Isidori & Flockerzi [166],McEneaney&
Mease [210], Huang & Lin [130], Kraim, Kugelmann, Pesch & Breitner [169],
Beard, Saridis & Wen [33], Beard, Saridis & Wen [34], Beard & McLain [32],
Beeler, Tran & Banks [35], Sakamoto [263], Holzhüter [129], Osinga & Hauser
[245], Navasca & Krener [229], Sakamoto & van der Schaft [265], Sakamoto &
van der Schaft [266], Sassano & Astolfi [268], Sakamoto [264].

2. For general information concerning theH∞ control problem for linear systems
we refer to, e.g., Francis [103], Green & Limebeer [117], Kwakernaak [178],
Scherer [305], Stoorvogel [327]. The state space solution to the linear suboptimal
H∞ control problem is due to Doyle, Glover, Khargonekar & Francis [88], see
also, e.g., Khargonekar, Petersen & Rotea [162], Scherer [304], Tadmor [333].
For the differential game approach to linear H∞ control theory see especially
Basar & Bernhard [30].

3. The solution to the nonlinear suboptimal H∞ control problem as described in
Sect. 10.1 was given in van der Schaft [272, 273, 275], Isidori & Astolfi [140],
Ball, Helton & Walker [23]. H∞ control for general nonlinear systems (not
necessarily affine in the inputs and disturbances) is treated in Isidori & Kang
[142], Ball, Helton & Walker [23], see also van der Schaft [277]. For earlier
work on nonlinear H∞ control we refer to Ball & Helton [19, 20].

4. The treatment of the robust stabilization problem in Sect. 10.1 is based on van
der Schaft [279]; see also Imura, Maeda, Sugie & Yoshikawa [131], and Astolfi
& Guzzella [14], Pavel & Fairman [252] for other developments.

5. The existence of nonnegative solutions to (HJ1) and (HJ2), together with the
(weak) coupling condition (10.76), as a necessary condition for the solvability
of the nonlinear output feedbackH∞ control problemwas shown in Ball, Helton
& Walker [23], van der Schaft [276]. The key idea of deriving (HJ2) for linear
systems via the dissipativity of the constrained system (u = 0, y = 0) is due to
Khargonekar [161].



266 10 Nonlinear H∞ Control

6. The invariance property of controllers solving the nonlinear suboptimal H∞
problem, as described in Sect. 10.1, is due to Ball, Helton & Walker [23], with
the present generalization given in van der Schaft [278].

7. As already shown inExample 10.1.9 it is often necessary, as indicated inChaps. 3,
8 and 9, to consider generalized solutions of the Hamilton–Jacobi inequalities
encountered in this chapter; see, e.g., Frankowska [105], James & Baras [145],
Ball & Helton [22], Soravia [325], and Yuliar, James & Helton [361], and Day
[80] for further information.

8. Much effort has been devoted to finding sufficient conditions for solvability of
the output feedback suboptimalH∞ control problem, but we have decided not to
include these important contributions in this book.One line of research is devoted
to finding sufficient conditions for the existence of output feedback controllers
with dimension equal to the dimension of the plant and having an observer
structure (compare with the invariance principle in Sect. 10.2), cf. Isidori &
Astolfi [140], Ball, Helton & Walker [23], Isidori [136], Lu & Doyle [185,
186], Isidori & Kang [142]. Another approach is via the theory of differential
games (see, e.g., Basar & Olsder [31]), interpreting the output feedback sub-
optimal H∞ control problem as a two-player zero-sum differential game with
partial information, see Basar & Bernhard [30], Bernhard [37], Soravia [325].
The resulting “central” controller, however, is in general infinite-dimensional,
see Didinsky, Basar & Bernhard [84], van der Schaft [278], Bernhard [37],
James & Baras [145]. Under the assumption of a “worst-case certainty equiva-
lence principle” the equations for the central controller are derived in Didinsky,
Basar & Bernhard [84], van der Schaft [278], Krener [170], Bernhard [37]. The
methods and difficulties in this case are very similar to the ones encountered in
nonlinear filtering theory, see, e.g., Mortensen [224], Hijab [121]. Another, more
general, approach is to transform the differential game with partial information
into an infinite-dimensional differential game with complete information, see,
e.g., Helton & James [120]. This “information-state” approach has been detailed
in the monograph by Helton & James [119]. For developments exploiting Max-
Plus methods see McEneaney [209].

9. Example 10.2.2 is taken from van der Schaft [278].

10. If the system �̃ as obtained in Fig. 10.5 is stable and minimum phase, then the
factorization obtained in Fig. 10.5 is also called an J-inner-outer factorization
of �. A constructive approach to J-inner-outer factorization of � (under the
assumption of invertibility from d to y) is given in Ball & van der Schaft [24],
using theHamiltonian extension�H of� and “nonlinear spectral factorization”;
cf. Sect. 9.4.Relatedwork isBaramov&Kimura [29], Pavel&Fairman [253] and
Baramov [28]. For further information on the chain-scattering representation,
see Kimura [165], Ball & Helton [20], Ball & Verma [26], Ball & Helton [22].
The presentation of the parametrization ofH∞ controllers given in Sect. 10.2 is
inspired by Ji & Gao [148]; see Doyle, Glover, Khargonekar & Francis [88], for

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_9
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similar ideas in the linear case. For other related works on the parametrization
ofH∞ controllers, see Lu & Doyle [186].

11. Forwork onnonlinearH∞-filteringwe refer to, e.g.,Nguang&Fu [231],Berman
& Shaked [36], Krener [170].

12. In case the control variables u do not enter the equations for z in an “injective
way,” or if the disturbance variables d do not enter the equations for y in a
“surjective way,” then we speak about the singular H∞ control problem; see
for the linear case Stoorvogel [327], and the references included therein. For
a treatment of the nonlinear state feedback singular H∞ control problem we
refer to Maas & van der Schaft [189], Maas [188], Baramov [28]. The nonlinear
H∞ almost disturbance decoupling problem, which can be seen as a special
case of the singular H∞ control problem has been treated for a special class of
systems in Marino, Respondek, van der Schaft & Tomei [196]. An interesting
feature of the latter paper is that the solution to the dissipation inequality is
constructed in an explicit recursive manner, thus avoiding the issue of solvability
ofmultidimensionalHamilton–Jacobi inequalities. The results of [196] are vastly
expanded in Isidori [137, 138]. The idea of solvingHamilton–Jacobi inequalities
in a recursive manner for multiple cascaded systems is explored in Pan & Basar
[250]; see also Dalsmo & Maas [77] for related work.

13. Some applications of nonlinear H∞ control theory can be found in Kang, De
& Isidori [157], Chen, Lee & Feng [65], Feng & Postlethwaite [96], Astolfi &
Lanari [15], Kang [156], Dalsmo & Egeland [75, 76], Kugi & Schlacher [176].

14. The nonlinear suboptimal H∞ control problem for γ ≥ 0 is the problem of
finding a controller such that the closed-loop system is dissipative with respect
to the L2-gain supply rate 1

2γ
2||d||2 − 1

2 ||z||2. This suggests to consider the
general dissipative control problem of finding a controller which renders the
closed-loop system dissipative with respect to a given supply rate s(d, z); see
Yuliar & James [360], Yuliar, James &Helton [361], Shishkin &Hill [314]. This
includes the problem of rendering a system passive as treated in Chap. 5. The
problem of considering “finite power” instead of finite L2-gain is addressed in
Dower & James [86].

15. Using the notion of robust L2-gain (cf. Chap. 8, Corollary 8.2.6) one can also
consider a “robust” nonlinear H∞ control problem, see Shen & Tamura [313],
Nguang [232]. A robustness result concerning the solution to the state feedback
suboptimalH∞ control problemwith static perturbations on the inputs is derived
in van der Schaft [278] (Proposition 4.7).
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Chapter 11
Hamilton–Jacobi Inequalities

In the previous chapters, we have encountered at various places Hamilton–Jacobi
equations, or, more generally, Hamilton–Jacobi inequalities. In this chapter, we take
a closer look at conditions for solvability of Hamilton–Jacobi inequalities and the
structure of their solution set using invariant manifold techniques for the correspond-
ing Hamiltonian vector field (Sect. 11.1). In Sect. 11.2 we apply this to the nonlinear
optimal control problem. An important themewill be the relation betweenHamilton–
Jacobi inequalities and the Riccati inequalities obtained by linearization, in particular
for dissipativity (Sect. 11.3), and nonlinear H∞ control (Sect. 11.4).

11.1 Solvability of Hamilton–Jacobi Inequalities

In Chaps. 3, 4, and 8 we considered differential dissipation inequalities

Sx (x) f (x, u) ≤ s(u, h(x, u)), ∀x, u (11.1)

in an (unknown) storage function S. If the corresponding pre-Hamiltonian

K (x, p, u) := pT f (x, u) − s(u, h(x, u)) (11.2)

has a maximizing u∗(x, p), that is

K (x, p, u) ≤ K (x, p, u∗(x, p)), ∀x, p, u, (11.3)

then the dissipation inequality (11.1) is equivalent to

K (x, ST
x (x), u∗(x, ST

x (x))) ≤ 0, ∀x (11.4)
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Defining in this case the Hamiltonian

H(x, p) := K (x, p, u∗(x, p)) (11.5)

we are thus led to Hamiltonian–Jacobi inequalities

H(x, ST
x (x)) ≤ 0, ∀x (11.6)

in the unknown S. Also in Chap.9, we encountered Hamilton–Jacobi inequalities
(in fact equations) in the factorization of nonlinear systems, while in Chap.10
Hamilton–Jacobi inequalities turned out to be key in the study of the (sub-)optimal
H∞ control problem.

In this section, we will be concerned with deriving conditions for the solvability
of Hamilton–Jacobi inequalities, and with the structure of their solution set. Many
of the results presented in this section will not be proven here; proofs can be found
in the references cited in the Notes at the end of this chapter.

We start on a general level. Consider an n-dimensional manifold M with local
coordinates x = (x1, . . . , xn). The cotangent bundle T ∗M is a 2n-dimensional mani-
fold, with natural local coordinates (x, p) = (x1, . . . , xn, p1, . . . , pn) defined in the
following way. Take any set of local coordinates x = (x1, . . . , xn) for M . Let σ be
any one-form on M (i.e., σ(q) ∈ T ∗

q M is a cotangent vector for every q ∈ M), in the
coordinates x = (x1, . . . , xn) for M expressed as

σ = σ1dx1 + σ2dx2 + · · · + σndxn (11.7)

for certain smooth functions σ1(x), . . . ,σn(x). Then, the natural coordinates
(x1, . . . , xn, p1, . . . , pn) for T ∗M are defined by attaching to σ(q) the coordinate
values

(x1(q), . . . , xn(q),σ1(x(q)), . . . ,σn(x(q))),

with xi (σ(q)) = xi (q), pi (σ(q)) = σi (q), i = 1, . . . , n
(11.8)

Given the natural coordinates (x1, . . . , xn, p1, . . . , pn) for T ∗M we may locally
define the canonical two-form ω on T ∗M as

ω =
n∑

i=1

dpi ∧ dxi (11.9)

The two-form ω is called the (canonical) symplectic form on the cotangent bundle
T ∗M .

Definition 11.1.1 An n-dimensional submanifold N of T ∗M is Lagrangian if ω
restricted to N is zero.

Now consider any C2 function S : M → R, and the n-dimensional submanifold
NS ⊂ T ∗M , in local coordinates given as

http://dx.doi.org/10.1007/978-3-319-49992-5_9
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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NS =
{
(x, p) ∈ T ∗M | pi = ∂S

∂xi
(x), i = 1, . . . , n

}
(11.10)

It can be immediately checked that NS is Lagrangian. (In fact, this amounts to the
property ∂2S

∂xi ∂x j
(x) = ∂2S

∂x j ∂xi
(x), i, j = 1, . . . , n.) Conversely, defining the canonical

projection
π : T ∗M → M, (x, p)

π
→ x, (11.11)

we obtain by Poincaré’s lemma (see, e.g., [1]):

Proposition 11.1.2 Let N be a Ck−1 Lagrangian submanifold of T ∗M such that
π : N → M is a Ck−1 diffeomorphism. Then locally (or globally if M is simply
connected) there exists a Ck function S : M → R such that N = NS.

The property that π : N → M is a Ck−1 diffeomorphism will be referred as “para-
metrizability of N by the x-coordinates”. Now take any Ck function H : T ∗M → R
(not necessarily of the special type as obtained in (11.5)), and consider the Hamilton–
Jacobi equality (equation)

H(x, ST
x (x)) = 0 (11.12)

in the unknown S : M → R. The Hamiltonian vector field X H on T ∗M correspond-
ing to the Hamiltonian H is defined in natural coordinates as

ẋi = ∂H

∂ pi
(x, p)

ṗi = −∂H

∂xi
(x, p)

i = 1, . . . , n (11.13)

There is a close connection between solutions of the Hamilton–Jacobi equation
(11.12) and invariant submanifolds of the Hamiltonian vector field (11.13). Recall
(see Chap.3, Theorem 3.2.8) that a submanifold N ⊂ T ∗M is an invariant manifold
for X H if the solutions of (11.13) starting on N remain in N .

Proposition 11.1.3 Let S : M → R, and consider the submanifold NS ⊂ T ∗M
locally given by (11.10). Then

H(x, ST
x (x)) = constant, for all x ∈ M, (11.14)

if and only if NS is an invariant submanifold for X H .

Note that by subtracting a constant value from H (not changing the Hamiltonian
vector field X H ), we may always reduce (11.14) to (11.12). Solutions of (11.12) may
thus be obtained by looking for invariant Lagrangian submanifolds of X H which are
parametrizable by the x-coordinates and thus, by Proposition 11.1.2, of the form NS

for some S. Not every n-dimensional invariant submanifold of X H is Lagrangian,
but the following two special invariant submanifolds of X H always are. Consider an
equilibrium (x0, p0) of X H , that is

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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∂H

∂xi
(x0, p0) = ∂H

∂ pi
(x0, p0) = 0, i = 1, . . . , n. (11.15)

Define N− ⊂ T ∗M as the set of all points in T ∗M converging along the solutions of
the vector field X H for t → ∞ to (x0, p0), and N+ as the set of all points converging
in negative time to (x0, p0). Clearly, N− and N+ are invariant sets for X H .

Proposition 11.1.4 N− and N+ are submanifolds of T ∗M, called the stable invari-
ant manifold of X H , respectively the unstable invariant manifold of X H . Furthermore
ω restricted to N− and to N+ is zero. Hence if dim N− = n (dim N+ = n), then N−
(respectively N+) is a Lagrangian submanifold of T ∗M.

Under additional conditions on the linearization of X H at an equilibrium (x0, p0)we
can be more explicit. Consider the linearization of X H at (x0, p0), that is the 2n × 2n
matrix

DX H (x0, p0) =
⎡
⎣

∂2H
∂x∂ p (x0, p0)

∂2H
∂ p2 (x0, p0)

− ∂2 H
∂x2 (x0, p0) − ∂2 H

∂ p∂x (x0, p0)

⎤
⎦

=:
[

A P
−Q −AT

]
=: H

(11.16)

The matrix H = DX H (x0, p0) is a Hamiltonian matrix, that is

HT J + JH = 0, (11.17)

with J the linear symplectic form

J =
[
0 −In

In 0

]
(11.18)

It follows from (11.17) that if λ is an eigenvalue of H, then so is −λ, and therefore
the set of eigenvalues of H is symmetric with regard to the imaginary axis.

The equilibrium (x0, p0) is called hyperbolic ifH = DX H (x0, p0) does not have
purely imaginary eigenvalues. This results in

Proposition 11.1.5 Let (x0, p0) be a hyperbolic equilibrium of X H . Then N− and
N+ are Lagrangian submanifolds, and N− (respectively N+) is tangent at (x0, p0)

to the stable (respectively unstable) generalized eigenspace of DX H (x0, p0).

The linearization at (x0, p0) of the Hamiltonian vector field X H given by (11.13) is
given by [

ẋ
ṗ

]
= H

[
x
p

]
, (11.19)

which is by itself a linear Hamiltonian vector field with respect to the linear sym-
plectic form J (which can be understood as the evaluation of ω at (x0, p0)) and the
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Hamiltonian

pT Ax + 1

2
pT Pp + 1

2
xT Qx, (11.20)

consisting of the quadratic part of H . Equivalently, the symmetric matrix

[
Q AT

A P

]
(11.21)

is the Hessian of H at (x0, p0).
The Hamilton–Jacobi equation (11.12) for this quadratic Hamiltonian reduces to

the Riccati equation
AT X + X A + X P X + Q = 0 , (11.22)

in the unknown symmetric n × n matrix X (not to be confused with the Hamiltonian
vector field X H ). Conversely, the solutions S(x) to (11.12) for a quadratic H given
by (11.20) may be restricted to quadratic functions S(x) = 1

2 xT X x , thus leading to
(11.22).

Similarly toDefinition11.1.1, aLagrangian subspace L ofR2n is ann-dimensional
subspace such that J restricted to L is zero. If the Lagrangian subspace L is parame-

trizable by the x-coordinates (meaning that L and span

[
0
In

]
are complementary,

i.e., L ⊕ span

[
0
In

]
= R2n), then as in Proposition 11.1.2 there exists X = X T

such that

L = span

[
I

X

]
(11.23)

Furthermore

Proposition 11.1.6 Let (x0, p0) be an equilibrium of X H . Suppose N ⊂ T ∗M is an
invariant Lagrangian submanifold of X H through (x0, p0). Then, the tangent space
L to N at (x0, p0) is a Lagrangian subspace of R2n which is an invariant subspace
of DX H (x0, p0). In particular, if S is a solution to (11.12) with ∂S

∂xi
(x0) = 0, i =

1, . . . , n, then the Hessian matrix X := Sxx (x0) is a solution to (11.22).

Suppose now we have found an invariant Lagrangian submanifold N of X H through
an equilibrium (x0, p0), for example, N− or N+. Then in view of Proposition 11.1.6
the question of parametrizability by the x-coordinates, and thus by Proposition 11.1.2
the existence of a solution S to the Hamilton–Jacobi equality (11.12), can be locally
checked by investigating the parametrizability of the Lagrangian subspace L tangent
to N at (x0, p0). For this linear problem we may invoke the following proposition.

Proposition 11.1.7 Consider the Hamiltonian matrix H given by (11.18). Let P be
either ≥ 0 or ≤ 0.
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(i) If (A, P) is controllable, then every Lagrangian subspace ofR2n which is invari-

ant for H is complementary to span

[
0
In

]
(that is, parametrizable by the x-

coordinates).
(ii) Assume thatH does not have purely imaginary eigenvalues, implying that the sta-

ble eigenspace L− of H, as well as the unstable eigenspace L+, are Lagrangian.

If (A, P) is stabilizable, then L− and span

[
0
In

]
are complementary. If (−A, P)

is stabilizable, then L+ and span

[
0
In

]
are complementary.

With regard to the Hamilton–Jacobi equation (11.12) we derive the following corol-
lary.

Corollary 11.1.8 Let H : T ∗M → R be a Hamiltonian function, with
Hamilton–Jacobi equation (11.12), and Hamiltonian vector field X H , satisfying
∂H
∂x (x0, p0) = ∂H

∂ p (x0, p0) = 0, and with linearization DX H (x0, p0) = H given by

(11.18). Assume P = ∂2 H
∂ p2 (x0, p0) is either ≥ 0 or ≤ 0.

(i) If (A, P) is controllable, then every Lagrangian invariant submanifold of X H

is locally near (x0, p0) of the form NS for a certain function S(x) defined for x
near x0.

(ii) Let (x0, p0) be a hyperbolic equilibrium. If (A, P) is stabilizable then locally
near (x0, p0) the stable invariant manifold N− is given as NS− for a certain
function S−(x) defined near x0. If (−A, P) is stabilizable then N+ is given as
NS+ for a certain S+(x) defined near x0.

Let us now assume that the solutions S− and S+ to the Hamilton–Jacobi equation
(11.12), corresponding to the stable, respectively unstable, invariant manifold, exist
globally. It is to be expected that they have special properties among the set of all
solutions to the Hamilton–Jacobi equation or even among the set of all solutions
to the Hamilton–Jacobi inequality (11.6). In fact, for Hamiltonians H arising from
dissipation inequalities we obtain the following results.

Proposition 11.1.9 Consider a Hamiltonian function H given as (cf. (11.5))
H(x, p) := K (x, p, u∗(x, p)), where

K (x, p, u) = pT f (x, u) − s(u, h(x, u)) (11.24)

satisfies (11.3). Additionally, let f (0, 0) = 0, h(0, 0) = 0, s(0, 0) = 0, and sup-
pose (0, 0) is a hyperbolic equilibrium of X H . Suppose the stable and unstable invari-
ant manifolds N− and N+ of X H through (0, 0) are globally parametrizable by the
x-coordinates, leading to solutions S− and S+ to (11.12) with S−(0) = S+(0) = 0.
Then every other solution S with S(0) = 0 to the dissipation inequality (11.1), or
equivalently, to the Hamilton–Jacobi inequality (11.6), satisfies

S−(x) ≤ S(x) ≤ S+(x), ∀x ∈ X (11.25)
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Proof S− satisfies (leaving out for convenience all the “transpose” signs)

S−
x (x) f (x, u∗(x, S−

x (x))) = s(u∗(x, S−
x (x)), h(x, u∗(x, S−

x (x)))), (11.26)

and since it corresponds to the stable invariant manifold

f (x, u∗(x, S−
x (x))) is glob. asymptotically stable w.r.t. x = 0 (11.27)

Let S be an arbitrary solution to the dissipation inequality (11.1). Then

Sx (x) f (x, u∗(x, S−
x (x))) ≤ s(u∗(x, S−

x (x)), h(x, u∗(x, S−
x (x)))) (11.28)

Subtracting (11.26) from (11.28) yields

[
Sx (x) − S−

x (x)
]

f (x, u∗(x, S−
x (x))) ≤ 0 (11.29)

and thus by integration along ẋ = f (x, u∗(x, S−
x (x)))

[
S(x(t1)) − S−(x(t1))

] ≤ [
S(x(t0)) − S−(x(t0))

]
(11.30)

Letting t1 → ∞, and using (11.27), it follows that S(x(t0)) ≥ S−(x(t0)) for every
initial condition, proving the left-hand side of the inequality (11.25).

For proving the right-hand side we replace S− by S+, noting that by definition of
S+

− f (x, u∗(x, S+
x (x))) is glob. asymptotically stable w.r.t. x = 0 (11.31)

and therefore letting t0 → −∞ in (11.30), with S− replaced by S+, we obtain
S(x(t1)) ≤ S+(x(t1)) for every x(t1). �

Remark 11.1.10 It can be also shown that S−(x) < S+(x) for all x ∈ X , x = 0.

Up to now we did not address the issue of nonnegativity of solutions of the
Hamilton–Jacobi inequality (11.6),which is especially important if (11.6) arises from
the dissipation inequality (11.1). The following sufficient conditions are straightfor-
ward.

Proposition 11.1.11 Consider the dissipation inequality (11.1) and the Hamilton–
Jacobi inequality (11.6). Suppose f (0, 0) = 0, h(0, 0) = 0, and s(0, 0) = 0.

(i) If ẋ = f (x, 0) is globally asymptotically stable with respect to x = 0, then every
solution S to (11.1) or (11.6), with S(0) = 0, will be nonnegative whenever
s(0, y) ≤ 0 for all y.

(ii) Suppose S− exists globally, and s(u∗(x, S−
x (x)), h(x, u∗(x, S−

x (x)))) ≤ 0 for all
x. Then every solution S to (11.1) or (11.6) with S(0) = 0 will be nonnegative.
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Proof (i) Consider Sx (x) f (x, 0) ≤ s(0, h(x, 0)) ≤ 0, and integrate along ẋ =
f (x, 0) to obtain S(x(t1)) ≤ S(x(t0)). Letting t1 → ∞, and thus S(x(t1)) → S(0) =
0 yields the result.
(ii) Consider the inequality

Sx (x) f (x, u∗(x, ST
x (x))) ≤ s(u∗(x, ST

x (x)), h(x, u∗(x, ST
x (x)))) ≤ 0,

and integrate along the globally asymptotically vector field ẋ = f (x, u∗(x,

ST
x (x)))]. �

Let us now apply the results obtained so far to the Hamilton–Jacobi inequalities
encountered in the L2-gain analysis of nonlinear systems (Chap. 8) and in nonlinear
H∞-control (Chap.10). (Wepostpone the treatment of theHamilton–Jacobi-Bellman
equations appearing in Chap.9 to Sect. 11.2.) For the L2-gain case we restrict atten-
tion to affine nonlinear systems

�a : ẋ = f (x) + g(x)u, f (0) = 0

y = h(x), h(0) = 0
(11.32)

with regard to the L2-gain supply rate

s(u, y) = 1

2
γ2||u||2 − 1

2
||y||2 (11.33)

The Hamiltonian H now takes the form

H(x, p) = pT f (x) + 1

2

1

γ2
pT g(x)gT (x)p + 1

2
hT (x)h(x), (11.34)

leading to the Hamilton–Jacobi inequality

Sx (x) f (x) + 1

2

1

γ2
Sx (x)g(x)gT (x)ST

x (x) + 1

2
hT (x)h(x) ≤ 0, (11.35)

and the Hamiltonian matrix

H =
[

F 1
γ2 GGT

−H T H −F T

]
, F = ∂ f

∂x
(0), G = g(0), H = ∂h

∂x
(0) (11.36)

Corollary 11.1.8 andPropositions 11.1.9, 11.1.11 all apply in this case, andweobtain:

Corollary 11.1.12 AssumeHdoes not have purely imaginary eigenvalues. If (F, G),
respectively (−F, G) is stabilizable, then locally about x = 0 there exists a solution
S−, respectively S+, to (11.35) with equality, such that S−(0) = 0, S+(0) = 0, and

http://dx.doi.org/10.1007/978-3-319-49992-5_8
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f (x) + 1
γ2 g(x)gT (x)S−

x (x) asymptotically stable

−
[

f (x) + 1
γ2 g(x)gT (x)S+

x (x)
]

asymptotically stable
(11.37)

If S− and S+ exist globally, then any other solution S of (11.35) with S(0) = 0
satisfies

S−(x) ≤ S(x) ≤ S+(x), ∀x ∈ X (11.38)

In particular, if S− ≥ 0, which is the case (see Proposition 11.1.11) if ẋ = f (x)

is globally asymptotically stable, then S− = Sa (the available storage, cf. Theorem
3.1.11), and whenever Sr (the required supply from x∗ = 0) exists, then S+ = Sr (see
Theorem 3.1.16).

Next let us consider the Hamilton–Jacobi inequality (HJ2a) arising in the output
feedback H∞ control problem, that is (see (10.71))

Rx (x)a(x) + 1

2

1

γ2
Rx (x)g(x)gT (x)RT

x (x) + 1

2
hT (x)h(x) − 1

2
γ2cT (x)c(x) ≤ 0

corresponding to the dissipation inequality (see (11.103))

Rx (x)[a(x) + g(x)d1] ≤ 1

2
γ2||d1||2 + 1

2
γ2||c(x)||2 − 1

2
||h(x)||2 (11.39)

The Hamiltonian H for this case is given as

H(x, p) = pT a(x) + 1

2

1

γ2
pT g(x)gT (x)p + 1

2
hT (x)h(x) − 1

2
γ2cT (x)c(x)

(11.40)
and leads to the Hamiltonian matrix

H =
[

A 1
γ2 GGT

−H T H + CT C −AT

]
,

A = ∂a
∂x (0), G = g(0), H = ∂h

∂x (0), C = ∂c
∂x (0)

(11.41)

In this case only Corollary 11.1.8 and Proposition 11.1.9 apply, while the conditions
of Proposition 11.1.11 will not be satisfied. Thus we obtain:

Corollary 11.1.13 Assume H given by (11.41) does not have purely imaginary
eigenvalues. If (F, G) (resp. (−F, G)) is stabilizable then locally about x = 0
there exists a solution S− (resp. S+) to (11.35) with equality, such that S−(0) = 0,
S+(0) = 0, and

http://dx.doi.org/10.1007/978-3-319-49992-5_3
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f (x) + 1
γ2 g(x)gT (x)S−

x (x) asymptotically stable

−[ f (x) + 1
γ2 g(x)gT (x)S+

x (x)] asymptotically stable
(11.42)

If S− and S+ exist globally then any other solution S of (11.35) with S(0) = 0 satisfies

S−(x) ≤ S(x) ≤ S+(x), ∀x ∈ X (11.43)

In particular, if there exists a solution S ≥ 0 to (11.35) with S(0) = 0, and if Sr (the
required supply for ground state x∗ = 0) for the dissipation inequality (11.39) exists
(i.e., is finite) and is C1, then S+ = Sr ≥ 0.

Proof Only the last statement needs some clarification. If there exists S ≥ 0 to
(11.39), and if Sr exists and is C1 then Sr is solution of (11.39) and (11.35), and
by Theorem 3.1.16 equals the maximal solution. �

Finally, let us consider the Hamilton–Jacobi inequality (HJ1a) of the state feedback
H∞ control problem, for affine nonlinear systems given as (see (10.3))

Px (x)a(x) + 1

2
Px (x)

[
1

γ2
g(x)gT (x) − b(x)bT (x)

]
PT

x (x)

+1

2
hT (x)h(x) ≤ 0 (11.44)

This Hamilton–Jacobi inequality does not correspond to a dissipation inequality. The
Hamiltonian

H(x, p) = pT a(x) + 1

2
pT

[
1

γ2
g(x)gT (x) − b(x)bT (x)

]
p + 1

2
hT (x)h(x)

(11.45)
leads to the Hamiltonian matrix

H =
[

A 1
γ2 GGT − B BT

−H T H −AT

]
,

A = ∂a
∂x (0), G = g(0), B = b(0), H = ∂h

∂x (0),

(11.46)

and we conclude that Corollary 11.1.8 and Propositions 11.1.9, 11.1.11 do not apply.
Of course, the general Proposition 11.1.5 may still be invoked, guaranteeing local
existence of a solution P to (HJ1a) ifH does not have purely imaginary eigenvalues
and its stable (or unstable) eigenspace can be parametrized by the x-coordinates.
We will come back to this in Sect. 11.4. The same remarks, of course, can be made
about the general Hamilton–Jacobi inequality (HJ1) of the state feedbackH∞ control
problem, that is (see (10.21))

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, PT
x (x))) ≤ 0 (11.47)

where (see (10.19))

Kγ(x, p, d, u) = pT f (x, u, d) − 1

2
γ2||d||2 + 1

2
||h(x, u, d)||2 (11.48)

On the other hand, we will now show that, under some additional conditions, the
solution set of (11.47), or, a fortiori, of (11.44), contains a minimal element which
corresponds to the stabilizing solution of (11.47) or (11.44). Let us throughout assume
that

f (0, 0, 0) = 0, h(0, 0, 0) = 0, (11.49)

and that the Hamiltonian H(x, p) corresponding to (11.48), i.e.,

H(x, p) := Kγ(x, p, d∗(x, p), u∗(x, p)) (11.50)

has a Hamiltonian matrixH = DX H (0, 0), see (11.16), which does not have purely
imaginary eigenvalues. Now consider an arbitrary solution P ≥ 0 to (11.47) with
P(0) = 0. Define the feedback

α0(x) := u∗(x, PT
x (x)) (11.51)

It immediately follows that the closed-loop system

�0 : ẋ = f (x,α0(x), d)

z = h(x,α0(x), d)
(11.52)

has L2-gain ≤ γ (from d to z), since

Kγ(x, PT
x (x), d∗(x, PT

x (x)),α0(x)) ≤ 0 (11.53)

Now define the Hamiltonian

H0(x, p) := Kγ(x, p, d∗(x, p),α0(x)) (11.54)

This Hamiltonian is of the type as considered in Proposition 11.1.9. Assume that the
stabilizing solution P1 := S− with P1(0) = 0 to H0(x, ST

x (x)) = 0 exists globally,
and that

ẋ = f (x,α0(x), 0) is globally asymptotically stable (11.55)

Then it follows from Propositions 11.1.9 and 11.1.11(i) that

0 ≤ P1 ≤ P (11.56)

http://dx.doi.org/10.1007/978-3-319-49992-5_10
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Subsequently, define the feedback

α1(x) := u∗(x, P1T
x (x)) (11.57)

Then, by using the second inequality of (10.20)

0 = H0(x, P1T
x (x)) = Kγ(x, P1T

x (x), d∗(x, P1T
x (x)),α0(x))

≥ Kγ(x, P1T
x (x), d∗(x, P1T

x (x)), u∗(x, P1T
x (x)))

= Kγ(x, P1T
x (x), d∗(x, P1T

x (x)),α1(x)))

(11.58)

Hence also the closed-loop system

�1 : ẋ = f (x,α1(x), d)

z = h(x,α1(x), d)
(11.59)

has L2-gain ≤ γ, with storage function P1. Define the corresponding Hamiltonian

H1(x, p) := Kγ(x, p, d∗(x, p),α1(x)), (11.60)

and assume again that the stabilizing solution P2 := S− with P2(0) = 0 to
H1(x, ST

x (x)) = 0 exists globally, while

ẋ = f (x,α1(x), 0) is globally asymptotically stable (11.61)

Application of Propositions 11.1.9 and 11.1.11 then yields

0 ≤ P2 ≤ P1 ≤ P, (11.62)

and we subsequently define the feedback

α2(x) := u∗(x, P2T
x (x)) (11.63)

Continuing this process we arrive at the following conclusion

Proposition 11.1.14 Consider the Hamilton–Jacobi inequality (11.47), and assume
that (11.49) holds, while DX H (0, 0) corresponding to (11.50) does not have
purely imaginary eigenvalues. Let P ≥ 0 be any solution to (11.47). Define as
above inductively α0,α1, . . . and H0, H1, . . .. Assume that the vector fields ẋ =
f (x,αi (x), 0), i = 0, 1, . . . are all globally asymptotically stable, and that the sta-
bilizing solutions P1, P2, . . . to Hi (x, ST

x (x)) = 0 with Pi (0) = 0 exist globally.
Then

P ≥ P1 ≥ P2 ≥ · · · ≥ 0 (11.64)

http://dx.doi.org/10.1007/978-3-319-49992-5_10
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Assume that the pointwise limit P∗(x) := lim
i→∞ Pi (x) is C1. Then P∗ ≤ P is the

unique solution to (11.47) with equality, with the property that

ẋ = f (x, u∗(x, P∗T
x (x)), d∗(x, P∗T

x (x))) (11.65)

is globally asymptotically stable

Proof Pi is the unique solution to

Kγ(x, PT
x (x), d∗(x, PT

x (x)), u∗(x, P (i−1)T
x (x))) = 0, (11.66)

with the property that

ẋ = f (x, u∗(x, P (i−1)T
x (x)), d∗(x, PT

x (x))) (11.67)

is globally asymptotically stable

Therefore P∗ is a solution to (11.47) with equality, such that the vector field in
(11.65) is at least stable. However by assumption DX H (0, 0) does not have imaginary
eigenvalues, and so necessarily (11.65) holds. �

Note that if the conditions of Proposition 11.1.14 are satisfied for all solutions P ≥ 0
to (11.47), then P∗, the stabilizing solution of (11.47), is also the minimal solution
of (11.47).

Remark 11.1.15 With a similar procedure and under similar conditions, one can
show that the anti-stabilizing solution of (11.47) is also the maximal one.

11.2 An Aside on Optimal Control

In this section, we apply some of the techniques developed in the preceding section to
the standard optimal control problem as already encountered in Chaps. 3 and 9. It will
be seen that this problem is indeed very much related to the dissipation inequalities
and Hamilton–Jacobi inequalities treated above.

Let us consider the infinite horizon optimal control problem

min
u

∫ ∞
0 L(x(t), u(t))dt,

ẋ = f (x, u),
(11.68)

where L(x, u) is a cost function, which we assume to be non-negative, that is

L(x, u) ≥ 0, ∀x, u (11.69)

We associate with (11.68) the reversed dissipation inequality

http://dx.doi.org/10.1007/978-3-319-49992-5_3
http://dx.doi.org/10.1007/978-3-319-49992-5_9


282 11 Hamilton–Jacobi Inequalities

Vx (x) f (x, u) + L(x, u) ≥ 0, ∀x, u (11.70)

in the unknown V . The basic reason for introducing this inequality is that by the
principle of optimality the value function

V̄ (x0) := min
u

{∫ ∞

0
L(x(t), u(t))dt | ẋ = f (x, u), x(0) = x0

}
(11.71)

satisfies (whenever it exists) for all t1 ≥ t0, and for all u(·)

V̄ (x(t0)) ≤ V̄ (x(t1)) +
∫ t1

t0

L(x(t), u(t))dt, (11.72)

and thus satisfies, if it is differentiable, the inequality (11.70).
In order to apply the invariantmanifold techniques of Sect. 11.1wewill throughout

assume that

f (0, 0) = 0, L(0, 0) = 0,
∂L

∂x
(0, 0) = 0,

∂L

∂u
(0, 0) = 0 (11.73)

Define the linearizations

F = ∂ f
∂x (0), G = ∂ f

∂u (0, 0),

Q = ∂2L
∂x2 (0, 0), R = ∂2L

∂u2 (0, 0), N = ∂2L
∂x∂u (0, 0)

From (11.69) it follows that [
Q N

N T R

]
≥ 0, (11.74)

and we will moreover assume the regularity condition

R > 0 (11.75)

Defining the pre-Hamiltonian corresponding to (11.70) as

K (x, p, u) := pT f (x, u) + L(x, u), (11.76)

then by the Implicit Function theorem the condition (11.75) implies that at least
locally near (0, 0) there exists u∗(x, p) such that

K (x, p, u) ≥ K (x, p, u∗(x, p)) =: H(x, p), ∀x, p, (11.77)

but we will assume that u∗(x, p) exists globally. Under this assumption the dissipa-
tion inequality (11.70) is equivalent to the (reversed) Hamilton–Jacobi inequality
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H(x, V T
x (x)) ≥ 0, ∀x ∈ X (11.78)

The Hamiltonian matrix H = DX H (0, 0) corresponding to H can be immediately
computed as

H =
[

F − G R−1N T −G R−1GT

−Q + N R−1N T −(F − G R−1N T )T

]
(11.79)

Because of (11.74) and (11.75) we see that not only the right upper block ofH is non-
positive but also the left-lower block (being a Schur complement of a non-positive
matrix). This allows us to state the following strengthened version of Proposition
11.1.7(ii) (see the references in the notes at the end of this chapter).

Proposition 11.2.1 Consider H given by (11.79). Assume the pair
(F − G R−1N T , G R−1GT ) is stabilizable, and assume that the purely imaginary
eigenvalues of F − G R−1N T (if existing) are (Q − N R−1N T )-detectable. Then
H does not have purely imaginary eigenvalues, and the stable eigenspace L− of

H is Lagrangian and complementary to span

[
0
In

]
. Hence L− = span

[
I

X−

]
for

some symmetric matrix X−, satisfying X− ≥ 0. If the pair (Q − N R−1N T , F −
G R−1N T ) is observable then X− > 0.

As in Corollary 11.1.8 it follows that under the assumptions of Proposition 11.2.1 the
stable invariant manifold N− of X H through the equilibrium (0, 0) is given as NV −

for a certain function V −(x) defined near 0. Let us assume that V − exists globally.
Note that ∂V −

∂x (0) = 0, ∂2V −
∂x2 (0) = X−, and without loss of generality V −(0) = 0.

Proposition 11.2.2 Assume that the stable invariant manifold of X H through (0, 0)
is given as NV − with V −(0) = 0. Then V − ≥ 0, and every other solution V of (11.70)
with V (0) = 0 satisfies

V (x) ≤ V −(x), ∀x ∈ X (11.80)

Proof Similar to Proposition 11.1.9 we consider

V −
x (x) f (x, u∗(x, V −

x (x)) + L(x, u∗(x, V −
x (x))) = 0 (11.81)

where

f (x, u∗(x, V −
x (x))) is glob. asymptotically stable w.r.t. x = 0 (11.82)

By integration of (11.81) from 0 to T , and letting T → ∞, using (11.82) and non-
negativity of L(x, u) (see (11.69)) it immediately follows that V − ≥ 0. Since any
solution V to (11.70) satisfies

Vx (x) f (x, u∗(x, V −
x (x))) + L(x, u∗(x, V −

x (x))) ≥ 0 (11.83)

we obtain
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[
V −

x (x) − Vx (x)
]

f (x, u∗(x, V −
x (x))) ≤ 0, (11.84)

and the result follows from integration from 0 to T , and letting T → ∞, using again
(11.82). �

Remark 11.2.3 Analogously we may prove that every solution V to (11.70) satisfies
V +(x) ≤ V (x), with NV + the unstable invariant manifold of X H .

Remark 11.2.4 Similarly we may look at Hamilton–Jacobi–Bellman equations cor-
responding to optimal control problems in reversed time, where we replace the inte-
gral

∫ ∞
0 by

∫ 0
−∞. In particular, in Sect. 9.1 we studied the Hamilton–Jacobi–Bellman

equation

Wx (x) f (x) + 1

2
Wx (x)g(x)gT (x)W T

x (x) − 1

2
hT (x)h(x) = 0 (11.85)

corresponding to a reversed-time optimal control problem. The Hamiltonian matrix
in this case is

H =
[

F GGT

H T H −F T

]
, (11.86)

with F, G as in (11.74), and H = ∂h
∂x (0). By considering −H and applying

Proposition 11.2.1 it immediately follows that if (−F, G) is stabilizable, and the
purely imaginary eigenvalues of F are H -detectable, then H will not have purely
imaginary eigenvalues, and the unstable eigenspace L+ of H is of the form span[

I
X+

]
with X+ ≥ 0 and X+ > 0 if (H, F) is observable. It follows that at least

locally there exists a solution W ≥ 0 to (11.85), satisfying W (0) = 0, Wx (0) =
0, Wxx (0) = X+.

For the solution of the optimal control problem the following observation is cru-
cial. Let V be any solution to (11.78) with equality, that is, the
Hamilton–Jacobi(–Bellman) equation

H(x, V T
x (x)) = 0 (11.87)

Then by (11.77)
R(x, u) := K (x, V T

x (x), u) ≥ 0 (11.88)

for all x, u. Since K (x, V T
x (x), u) = Vx (x) f (x, u) + L(x, u) we obtain by

integration

∫ T

0
L(x(t), u(t))dt =

∫ T

0
R(x(t), u(t))dt + V (x(0)) − V (x(T )) (11.89)

for every input function u(·), and for every T .

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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Proposition 11.2.5 Consider any globally defined solution V to (11.87) with the
property that V (0) = 0 and the feedback u = −gT (x)V T

x (x) is asymptotically sta-
bilizing. Then

V (x0) = min
u

{∫ ∞

0
L(x(t), u(t)) dt | ẋ = f (x, u), x(0) = x0, lim

t→∞ x(t) = 0

}

(11.90)

Additionally, since L(x, u) ≥ 0 this implies that for any such V we have V ≥ 0. In
particular, assume that V − exists globally, then the above holds for V −, with optimal
stabilizing control given in feedback form as

u = u∗(x, V −T
x (x)) (11.91)

Proof Since lim
T →∞ x(T ) = 0 the right-hand side of (11.89) is minimized by

substituting (11.91). �

On the other hand, it is not clear if (11.91) is also the optimal control correspond-
ing to the original optimal control problem (11.68) without the terminal constraint
lim

t→∞ x(t) = 0. Indeed, let V be any other non-negative solution to (11.87). Then by

considering (11.89) for this V , and noting that V (x(T )) ≥ 0, while R(x, u) can be
rendered zero by choosing u = u∗(x, V T

x (x)), it immediately follows that

min
u

{∫ ∞

0
L(x(t), u(t))dt | ẋ = f (x, u), x(0) = x0

}
≤ V (x0) (11.92)

Thus if there exists a non-negative solution V with V (0) = 0 to (11.87) different
from V −, that is (see Proposition 11.2.2), V (x) < V −(x) for some x ∈ X , then
(11.91) will not be the optimal control and V − will not be the value function V̄ . The
existence of non-negative solutions V to (11.87) different from V − can be excluded
by imposing a (nonlinear) detectability condition.

Proposition 11.2.6 Let V − exist globally, and let the optimal control problem
(11.68) be solvable. Suppose f (x, u), L(x, u) satisfy the following detectability
property

lim
t→∞ L(x(t), u(t)) = 0, along solutions of ẋ(t) = f (x(t), u(t)),

implies lim
t→∞ x(t) = 0

(11.93)

Then the only non-negative solution V to (11.87) with V (0) = 0 is V −. Furthermore,
the solution to the optimal control problem (11.68) is given by (11.90) with value
function V̄ = V −.
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Proof If min
u

∫ ∞
0 L(x(t), u(t))dt exists, then necessarily along the optimal trajectory

lim
t→∞ L(x(t), u(t)) = 0, and thus by (11.93) lim

t→∞ x(t) = 0. Thus the optimal control

problem (11.68) is the same as the optimal control problem (11.90), which has by
Proposition 11.2.5 the solution (11.91) with value function V −. By the reasoning
preceding Proposition 11.2.6, see (11.92), it thus follows that there cannot exist any
non-negative solution V to (11.87) with V (0) = 0 different from V −. �

Remark 11.2.7 Note that without the detectability condition (11.93) the value func-
tion V̄ (which in this case may be different from V −) still satisfies the property
lim

t→∞ V̄ (x(t)) = 0 along optimal trajectories.

Finally, let us compare (11.89), which is derived under the regularity assumption
of existence of u∗(x, p) satisfying (11.77), with the general dissipation inequality
(11.70), written in integral form as

∫ T

0
L(x(t), u(t))dt ≥ V (x(0)) − V (x(T )) (11.94)

for every input function u. Clearly, the Eq. (11.94) contains much less information
than (11.89), but it already suffices to draw the following conclusion, which is also
valid if u∗(x, p), and thus H(x, p) in (11.77), cannot be defined. The following
proposition was already stated in a more restricted form in Sect. 9.4 as Proposition
9.4.8.

Proposition 11.2.8 For every x0 define V ∗(x0) as

min
u

{∫ ∞

0
L(x(t), u(t))dt | ẋ = f (x, u), x(0) = x0, lim

t→∞ x(t) = 0

}
(11.95)

and assume that V ∗ exists for every x0. Then

(i) V ∗ ≥ 0 satisfies the dissipation inequality (11.94), and V ∗(0) = 0.
(ii) Let V satisfy (11.94) and V (0) = 0, then V (x) ≤ V ∗(x) for every x ∈ X .

Proof Consider (11.94) for u(·) such that lim
T →0

x(T ) = 0. Then

∫ ∞

0
L(x(t), u(t))dt ≥ V (x(0)),

and by definition of V ∗ we obtain V ≤ V ∗. �

http://dx.doi.org/10.1007/978-3-319-49992-5_9
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11.3 Dissipativity of a Nonlinear System
and Its Linearization

In this section we will relate the dissipativity of a nonlinear state space system

� : ẋ = f (x, u), f (0, 0) = 0

y = h(x, u), h(0, 0) = 0
(11.96)

to the dissipativity of its linearization at (x, u) = (0, 0), and vice versa.
We will do so for supply rates s(u, y) satisfying

s(0, 0) = 0,
∂s

∂u
(0, 0) = 0,

∂s

∂y
(0, 0) = 0, (11.97)

including the (output or input strict) passivity and L2-gain supply rates. Moreover,
we throughout assume that there exists a storage function S ≥ 0 for the dissipation
inequality

Sx (x) f (x, u) ≤ s(u, h(x, u)), (11.98)

which is C2 and has a minimum at x = 0 with S(0) = 0, implying that

S(0) = 0,
∂S

∂x
(0) = 0, X := ∂2S

∂x2
(0) ≥ 0 (11.99)

Defining

A = ∂ f
∂x (0, 0), B = ∂ f

∂u (0, 0), C = ∂h
∂x (0, 0), D = ∂h

∂u (0, 0)

P = ∂2s
∂u2 (0, 0), Q = ∂2s

∂y2 (0, 0), R = ∂2s
∂u∂y (0, 0)

(11.100)

it follows by collecting the quadratic terms in (11.98) that

1

2
x̄ T X (Ax̄ + Bū) ≤ 1

2

[
ūT ȳT

] [
P R

RT Q

] [
ū

ȳ

]
, ∀x̄, ū (11.101)

where ȳ := Cx̄ + Dū.
This implies that the linearized system

� :
˙̄x = Ax̄ + Bū

ȳ = Cx̄ + Dū
(11.102)
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is dissipative with respect to the quadratic supply rate

s̄(ū, ȳ) := 1

2

[
ūT ȳT

] [
P R

RT Q

] [
ū

ȳ

]
, (11.103)

with storage function 1
2 x̄ T X x̄ = 1

2 x̄ T ∂2S
∂x2 (0)x̄ . In this sense, dissipativity of the non-

linear system� with respect to the supply rate s implies dissipativity of its lineariza-
tion � with respect to the supply rate s̄.

Conversely, let us investigate underwhich conditions dissipativity of the linearized
system � implies dissipativity of the nonlinear system �.

Proposition 11.3.1 Consider the nonlinear system � given by (11.96), with lin-
earization � given by (11.102). Consider the supply rate s satisfying (11.97) with
quadratic part s̄ defined by (11.103) and (11.100). Suppose that � is dissipative with
respect to the supply rate s̄. Assume D = 0 and P > 0, and that the Hamiltonian
matrix

H =
[

A − B P−1RC B P−1BT

CT QC −(A − B P−1RC)T

]
(11.104)

does not have purely imaginary eigenvalues. Also assume that the pair (A −
B P−1RC, B P−1BT ) is stabilizable. Then there exists a neighborhood V of x = 0
and U ⊂ Rm of u = 0, and a function S : V ⊂ X → R with S(0) = 0, ∂S

∂x (0) = 0,
such that

Sx (x) f (x, u) ≤ s(u, h(x, u)), for all x ∈ V, all u ∈ U (11.105)

Thus if S ≥ 0 then � is locally dissipative with respect to the supply rate s.

Proof The pre-Hamiltonian corresponding to (11.105) is

K (x, p, u) = pT f (x, u) − s(u, h(x, u)) (11.106)

By the Implicit Function theorem and P > 0 there exists locally a function u∗(x, p)

satisfying (11.3). Furthermore, the resulting Hamiltonian H(x, p) = K (x, p, u∗
(x, p)) has corresponding Hamiltonian matrix H given by (11.104). By Corollary
11.1.8 there exists locally near x = 0 a function S with S(0) = 0, ∂S

∂x (0) = 0 satis-
fying H(x, ST

x (x)) = 0 (in fact, S corresponds to the stable invariant manifold of
X H ). It follows that S satisfies (11.105). �

Remark 11.3.2 For D = 0 a similar statement can be proved, by replacing the
assumption P > 0 by P + RD + DT RT + DT Q D > 0, and by defining a more
complicated Hamiltonian matrixH.

The main drawback of Proposition 11.3.1 is that it does not provide conditions
which guarantee that the obtained function S satisfying (11.105) is non-negative on
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a neighborhood of the equilibrium x = 0, and so is a valid storage function. One
possible set of sufficient conditions for non-negativity of S is given in the following
corollary.

Corollary 11.3.3 Consider a nonlinear system � satisfying (11.97), with lineariza-
tion � having D = 0 and a supply rate s satisfying (11.97). Suppose � is dissipative
with respect to the supply rate s̄ given by (11.103). Assume P > 0, and assume that
the Hamiltonian matrix H in (11.104) does not have purely imaginary eigenvalues.
Also assume that A is asymptotically stable, and that s(0, y) ≤ 0 for all y. Then there
exists a neighborhood V of x = 0, and S : V ⊂ X → R with S(0) = 0, ∂S

∂x (0) = 0,
satisfying (11.105) and such that S(x) ≥ 0, x ∈ V . Thus � is locally dissipative on
V with respect to the supply rate s.

Proof The proof of Proposition 11.3.1 yields locally a function S with S(0) =
0, ∂S

∂x (0) = 0, and satisfying H(x, ST
x (x)) = 0. By (11.3) it thus follows that

Sx (x) f (x, 0) ≤ s(0, h(x)) ≤ 0. Since A = ∂ f
∂x (0, 0) is asymptotically stable, locally

near x = 0 also ẋ = f (x, 0) is asymptotically stable, and S ≥ 0 follows by integra-
tion from 0 to T , and letting T → ∞, using asymptotic stability. �

For the L2-gain supply rate s(u, y) = 1
2γ

2||u||2 − 1
2 ||y||2 we obtain the following

particularly pleasing corollary.

Corollary 11.3.4 Consider the nonlinear system � given by (11.96), with lineariza-
tion � having D = 0. Let γ > 0, and suppose that � has L2-gain < γ. Assume that
A = ∂ f

∂x (0, 0) is asymptotically stable. Then there exists a neighborhood V of x = 0
and U of u = 0 such that � has locally L2-gain < γ for x ∈ V and u ∈ U.

Proof Since � has L2-gain < γ the corresponding Hamiltonian matrix H as in
(11.104) does not have purely imaginary eigenvalues (see e.g., [117]). Thus we may
apply Corollary 11.3.3 yielding neighborhoods V of x = 0 and U of u = 0, and a
function S : V → R+ such that

Sx (x) f (x, u) ≤ 1

2
γ2||u||2 − 1

2
||h(x)||2 (11.107)

for all x ∈ V ⊂ X and all u ∈ U ⊂ Rm . This shows that � has locally L2-gain ≤ γ.
Since the same story can be repeated for some γ̃ < γ arbitrarily close to γ, it follows
that actually � has locally L2-gain < γ. �

Remark 11.3.5 For an affine system ẋ = f (x) + g(x)u, y = h(x) we may always
take U = Rm .

Remark 11.3.6 Since � is assumed to have L2-gain < γ there exists X = X T ≥ 0
such that AT X + X A + 1

γ2 X B BT + CT C ≤ 0, and thus AT X + X A ≤ −CT C . If
(C, A) is detectable, then this actually implies that A is asymptotically stable [356].
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Fig. 11.1 Mathematical
pendulum
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Remark 11.3.7 Since � is assumed to have L2-gain < γ it can be shown [117] that
there exists X = X T ≥ 0 satisfying

AT X + X A + CT C + 1

γ2
X B BT X < 0 (11.108)

It readily follows that also S(x) := 1
2 xT X x will satisfy (11.107), for different neigh-

borhoods V and U , however. (In fact, we conjecture that the neighborhoods will be
smaller than the ones obtained in Corollary 11.3.4; see also the similar discussion in
Sect. 11.4.)

Contrary to the L2-gain supply rate, the passivity supply rate s(u, y) = uT y does not
satisfy the conditions of Proposition 11.3.1, since P = 0 in this case. The following
physical example shows that, in fact, passivity of the linearized system does not
imply (local) passivity of the nonlinear system.

Example 11.3.8 Consider a mathematical pendulum with input torque u as depicted
in Fig. 11.1 (see also Examples 7.1.12 and 7.2.2). Taking as output the angular veloc-
ity ϕ̇, the nonlinear system is passive (in fact, lossless) with storage function equal
to the total energy

S(ϕ, ϕ̇) = 1

2
m�2ϕ̇2 + �(1 − cos ϕ) (11.109)

Indeed, d S
dt = uϕ̇. By the discussion preceding Proposition 11.3.1 the system lin-

earized about ϕ = 0, ϕ̇ = 0, u = 0 is also passive. On the other hand, if we take as
output the horizontal velocity of the endpoint, that is

y = d

dt
(� sin ϕ) = � cos ϕ · ϕ̇, (11.110)

http://dx.doi.org/10.1007/978-3-319-49992-5_7
http://dx.doi.org/10.1007/978-3-319-49992-5_7
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then the linearized output (about ϕ = 0) remains the same, and thus the linearized
system is still passive. However, as we will now demonstrate, the nonlinear system
is not passive anymore. Indeed, the equations of the nonlinear system with output
y = � cos ϕ · ϕ̇ are given as (take for simplicity � = 1, m = 1, and denote q = ϕ)

q̇ = p

ṗ = − sin q + u

y = p cos q

(11.111)

Suppose S(q, p) is a (locally defined) storage function with respect to the supply
rate s(u, y) = uy. Then by (4.15) for all q, p close to zero

(i)
∂S

∂q
p + ∂S

∂ p
· − sin q ≤ 0, (ii)

∂S

∂ p
= p cos q (11.112)

From (ii) we infer S(q, p) = 1
2 p2 cos q + F(q), for some function F . Substitution

in (i) yields

(i i i) − 1

2
p3 sin q + p [d F

dq
− sin q cos q] ≤ 0 (11.113)

For fixed q, the left hand side of (11.113) is a polynomial ap3 + bp. For p
small, the linear term dominates, and thus the inequality (11.113) implies that
b = ∂F

dq − sin q cos q = 0. Hence,− 1
2 p3 sin q ≤ 0 for all p, q close to zero, which is

a contradiction. We conclude that there are no storage functions, and thus the system
is not passive.

11.4 H∞ Control of a Nonlinear System
and Its Linearization

In this section we investigate, in a spirit similar to the previous section, the relations
between the (suboptimal) H∞ control problem for a nonlinear system with given
equilibrium on the one hand, and the same problem for its linearization on the other
hand. In particular we show that if the state feedback strictly suboptimalH∞ control
problem for the linearization is solvable, then the same problem for the nonlinear
system is solvable on a neighborhood of the equilibrium. Thus solvability of the
“linearized problem” implies local solvability of the “nonlinear problem”. Similar
results will be shown to hold for the output feedback H∞ problem. These results
are quite useful since the solvability of the linear H∞ problems is relatively easy
to check (certainly compared with the nonlinear H∞ problems). Also the optimal
disturbance level for the linearized problem will provide a useful lower bound for
the optimal nonlinear disturbance level.

http://dx.doi.org/10.1007/978-3-319-49992-5_4
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Let us start with the state feedback H∞ problem. For simplicity of exposition1

we focus on affine non-linear systems as in (10.2), that is

� :
ẋ = a(x) + b(x)u + g(x)d, u ∈ Rm, d ∈ Rr

z =
[

h(x)

u

]
, x ∈ X , z ∈ Rs

(11.114)

Since we wish to consider the linearization of � we assume the existence of an
equilibrium x = 0, that is,

a(0) = 0, h(0) = 0 (11.115)

We denote the linearization of � about x = 0 by

� :
˙̄x = Ax̄ + Bū + Gd̄, ū ∈ Rm, d̄ ∈ Rr

z̄ =
[

H x̄
ū

]
, x̄ ∈ Rn, z̄ ∈ Rs

(11.116)

with

A = ∂a

∂x
(0), B = b(0), G = g(0), H = ∂h

∂x
(0) (11.117)

Recall, see (10.3), that the state feedback Hamilton–Jacobi equation (HJ1a) of � is
given as

Px (x)a(x) + 1

2
Px (x)

[
1

γ2
g(x)gT (x) − b(x)bT (x)

]
PT

x (x) + 1

2
hT (x)h(x) = 0

(11.118)
It immediately follows that if P ≥ 0 is a solution to (11.118) satisfying

P(0) = 0 (11.119)

(implying also Px (0) = 0), then the Hessian matrix Pxx (0) of P at 0

X := Pxx (0) ≥ 0 (11.120)

is a solution of the Riccati equation

AT X + X A + X

(
1

γ2
GGT − B BT

)
X + H T H = 0 (11.121)

Furthermore, if P ≥ 0 satisfying (11.119) is a solution to the Hamilton–Jacobi
inequality (HJ1a), then X is a solution to the Riccati inequality (11.121), with =

1However the results to be obtained are directly extendable to more general system classes.

http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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replaced by ≤. This Riccati equation (or inequality) is governing the state feedback
H∞ control problem for the linear system (11.116). In fact we have the following
specialization and refinement of Theorem 10.1.1 and Proposition 10.1.2 to the linear
case.

Theorem 11.4.1 Assume (H, A) is detectable. Let γ > 0. Then there exists a linear
feedback

ū = Lx̄ (11.122)

such that the closed-loop system (11.116, 11.122) has L2-gain ≤ γ and is asymp-
totically stable (i.e., the linear state feedback suboptimal H∞ control problem has
been solved), if and only if there exists a solution X ≥ 0 to (11.121). Furthermore,
there exists a linear feedback ū = Lx̄ such that the closed-loop system has L2-gain
strictly less than γ and is asymptotically stable (i.e., the linear state feedback strict
suboptimalH∞ control problem has been solved), if and only if there exists a solution
X ≥ 0 to (11.121), satisfying additionally

σ

(
A − B BT X + 1

γ2
GGT X

)
⊂ C− (11.123)

(C− being the open left half plane). Moreover, if X ≥ 0 is a solution to (11.121) then
the linear feedback ū = Lx̄ with

L = −BT X (11.124)

solves the linear state feedback suboptimal H∞ control problem, respectively the
strict suboptimal problem if X satisfies additionally (11.123).

We recall (see e.g., Sect. 10.1) that the Hamiltonian corresponding to (HJ1a) given
by (11.118) is

H(x, p) = pT a(x) + 1

2
pT

[
1

γ2
g(x)gT (x) − b(x)bT (x)

]
p + 1

2
hT (x)h(x),

(11.125)
with corresponding Hamiltonian matrix

H =
[

A 1
γ2 GGT − B BT

−H T H −AT

]
(11.126)

Following the approach of Sect. 11.1 we notice that X is a solution to (11.121,

11.123) if and only if the subspace span

[
I
X

]
is the stable generalized eigenspace

of H. Application of Propositions 11.1.5 and 11.1.6 yields the following result.

http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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Theorem 11.4.2 Assume (H, A) is detectable. Let X ≥ 0 be a solution to (11.121,
11.123). Then there exists a neighborhood W of x = 0 and a smooth function P ≥ 0
defined on W with P(0) = 0, Px (0) = 0, such that P is a solution of (HJ1a) given
by (11.118) on W .

Proof The local existence of a solution P to (11.118) with P(0) = 0, Px (0) =
0, Pxx (0) = X , immediately follows from Propositions 11.1.5, 11.1.6. Furthermore
since by Theorem 11.4.1 A − B BT X is asymptotically stable the vector field a −
bbT PT

x is locally asymptotically stable. Rewriting (11.118) as

Px [a − bbT PT
x ] = −1

2

1

γ2
PxggT PT

x − 1

2
Px bbT PT

x − 1

2
hT h,

this implies by integration from 0 to T along the asymptotically stable vector field
a − bbT PT

x , letting T → ∞, that locally about x = 0 P ≥ 0. �
The local existence of a solution P ≥ 0 to (11.118) yields a local solution to the
nonlinear H∞ control problem, as formulated in the following corollary.

Corollary 11.4.3 Let P ≥ 0 defined on a neighborhood W of x = 0 be a solution
to (11.118). Then with the locally defined feedback

u = −bT (x)PT
x (x), x ∈ W, (11.127)

the closed-loop system has locally L2-gain ≤ γ, in the sense that

∫ T

0
||z(t)||2dt ≤ γ2

∫ T

0
||d(t)||2dt + 2P(x(0)) (11.128)

for all x(0) ∈ W , all T ≥ 0 and all L2 functions d(·) on [0, T ] such that the state
space trajectories starting from x(0) do not leave W .

The locally defined feedback (11.127) corresponding to a local solution P ≥ 0 to
(11.118) is not the only feedback resulting in a closed-loop system having locally L2-
gain ≤ γ. In fact for an arbitrary state feedback u = α(x) we may rewrite H(x, p)

given by (11.125) as

H(x, p) = pT [a(x) + b(x)α(x)] + 1
2

1
γ2 pT g(x)gT (x)p +

1
2α

T (x)α(x) + 1
2hT (x)h(x) − 1

2‖bT (x)p + α(x)‖2
(11.129)

Thus if we take the linear feedback

α(x) = −BT X x (11.130)

with X = Pxx (0) ≥ 0 being the solution to (11.121), then the zero-th, first and sec-
ond order terms of ‖ bT (x)p + α(x) ‖2 are all zero. Thus the Hamiltonian matrix
corresponding to H̃(x, p) := H(x, p) + 1

2 ‖ bT (x)p + α(x) ‖2 given as
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H̃(x, p) = pT [a(x) + b(x)α(x)] + 1
2

1
γ2 pT g(x)gT (x)p+

1
2α

T (x)α(x) + 1
2hT (x)h(x)

(11.131)

is equal to H in (11.126). Hence there exists locally also a solution P̃ ≥ 0 to the
Hamilton–Jacobi equation

P̃x (x)[a(x) − b(x)BT X x] + 1
2

1
γ2 P̃x (x)g(x)gT (x)P̃T

x (x)

+ 1
2 xT X B BT X x + 1

2hT (x)h(x) = 0
(11.132)

This implies that the inequality (11.128) also holds for the closed-loop system result-
ing from the feedback u = −BT X x if we replace P by P̃ , and W by a neighborhood
W̃ of x = 0 which in general will be different from W . Generalizing this observation
a little further we obtain

Corollary 11.4.4 Let X ≥ 0 be a solution to (11.121, 11.123). Then any feedback
u = α(x) with

α(0) = 0,
∂α

∂x
(0) = −BT X, (11.133)

yields a closed-loop system satisfying (11.128) for some neighborhood W of x = 0
and some solution P ≥ 0 to the Hamilton–Jacobi inequality (HJ1a).

Example 11.4.5 Consider the system of Example 10.1.8

ẋ = u + (arctan x) d, z =
[

x
u

]
(11.134)

Clearly, its linearization at x = 0 is not affected by disturbances, and the Riccati
equation (11.121) is given as X2 = 1 (independent of γ), yielding the positive solu-
tion X = 1. The state-feedback Hamilton–Jacobi equation (HJ1a) takes the form

(
d P

dx
(x)

)2 [
1 − 1

γ2
arctan2 x

]
= x2, (11.135)

which has for every γ a solution Pγ ≥ 0 on the neighborhood

Wγ = {x ∈ R | | arctan x | < γ} (11.136)

yielding a feedback u = αγ(x) = −x(1 − 1
γ2 arctan2 x)− 1

2 . Note that the solution Pγ

aswell as the feedbackαγ become unbounded for x approaching the boundary of Wγ .
Applying instead of u = αγ(x) its linear part u = −x one obtains the closed-loop
system

ẋ = −x + (arctan x)d, z =
[

x
−x

]
(11.137)

http://dx.doi.org/10.1007/978-3-319-49992-5_10
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with L2-gain Hamilton–Jacobi equation given as

− d P̃

dx
(x)x + 1

2

1

γ2

(
d P̃

dx
(x)

)2

arctan2 x + 1

2
x2 + 1

2
x2 = 0, (11.138)

having a solution P̃γ ≥ 0 on the neighborhood

W̃γ = {x ∈ R | | arctan x | <
1

2

√
2 · γ} (11.139)

It should be noted that the neighborhood W̃γ arising from applying the linearized
feedback u = −BT X x in the above example is smaller than the neighborhood Wγ

arising from applying the full nonlinear feedback u = −bT (x)PT
x (x). This can be

conjectured to be true in general; the nonlinear controller will solve theH∞ control
problemon a larger domain than its linearization.Apossible starting point for proving
such a conjecture is the observation that by (11.129) H̃(x, p) ≥ H(x, p) for all x, p,

and thus every solution of H̃ (x, PT
x (x)) ≤ 0will be also a solution of H(x, PT

x (x)) ≤
0, while the converse is not true. Since the main obstruction for extending a local
solution P ≥ 0 of H(x, PT

x (x)) ≤ 0 into a global one seems to be the fact that P
can become infinite for finite x (see for instance Example 11.4.5), this suggests that
P corresponding to the stable invariant manifold of H(x, p) (which by Sect. 11.1
is the minimal solution to H(x, PT

x (x)) ≤ 0 !) and the corresponding feedback u =
−bT (x)PT

x (x) have the largest domain of validity.

Example 11.4.5 also shows that in some cases we need to make a compromise
between the achievable level of disturbance attenuation γ, and the domain of validity
of the feedback. Indeed comparing with Example 10.1.8 we see that global distur-
bance attenuation is possible for every γ > π

2 , while a disturbance attenuation level
0 ≤ γ ≤ π

2 can be only met on the neighborhood Wγ (with Wγ shrinking to the origin
for γ ↓ 0).

The following example shows that the nonlinear feedback u = −bT (x)Px (x)

corresponding to a (local) solution P ≥ 0 to the Hamilton–Jacobi inequality (HJ1a)
may have other advantages when compared to its linear part u = −BT X x .

Example 11.4.6 ([142]) Consider the system

ẋ1 = x1x2

ẋ2 = x2
1 + u + d

, z =
[

x2 − x2
1

u

]
(11.140)

The Hamilton–Jacobi inequality (HJ1a) takes the form

∂P

∂x1
x1x2 + ∂P

∂x2
x2
1 + 1

2

(
1

γ2
− 1

) (
∂P

∂x2

)2

+ 1

2
(x2 − x2

1 )
2 ≤ 0 (11.141)

This has for γ > 1 locally positive solutions

http://dx.doi.org/10.1007/978-3-319-49992-5_10
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P(x1, x2) = ax2
1 + bx2

2 + cx2
1 x2, (11.142)

provided a > 0, and b, c are large enough. This yields the feedback

u = − ∂P

∂x2
= −2bx2 − cx2

1 (11.143)

which, apart from rendering the L2-gain of the closed-loop system locally ≤ γ,
also locally asymptotically stabilizes the system. On the other hand, the linearized
feedback

u = −2bx2 (11.144)

does not locally asymptotically stabilize the system. In fact it may be proved that
there does not exist any linear feedback which renders the system (11.140) locally
asymptotically stable. (Note that the linearization of (11.140) does not exactly fit the
assumptions of Theorem 11.4.2 and its Corollaries since it is not detectable.)

Next let us consider the output feedback case. Again, for simplicity of exposition we
focus on affine systems (10.68), that is

ẋ = a(x) + b(x)u + g(x)d1, a(0) = 0

y = c(x) + d2, c(0) = 0

z =
[

h(x)

u

]
, h(0) = 0

(11.145)

Apart from the state feedback Hamilton–Jacobi equation (HJ1a) given by (11.118)
we also consider, see (10.71), the Hamilton–Jacobi equation (HJ2a) given as

Rx (x)a(x) + 1

2

1

γ2
Rx (x)g(x)gT (x)RT

x (x) + 1

2
hT (x)h(x) − 1

2
γ2cT (x)c(x) = 0

(11.146)
By collecting second-order terms it follows that for any solution R ≥ 0 of (11.146),
with R(0) = 0 and thus Rx (0) = 0, the matrix

W := Rxx (0) ≥ 0 (11.147)

is a solution of the Riccati equation

AT W + W A + 1

γ2
W GGT W + H T H − γ2CT C = 0, (11.148)

where, as before A = ∂a
∂x (0), G = g(0), H = ∂h

∂x (0), and additionally

C = ∂c

∂x
(0) (11.149)

http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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If W is invertible, then Y := γ2W −1 is the solution to the “dual” Riccati equation

Y AT + AY + GGT + 1

γ2
Y H T HY − Y CT CY = 0 (11.150)

The Riccati equation (11.150), together with the Riccati equation (11.121), is gov-
erning the linear H∞ output feedback problem for the system linearized at x = 0
given as

˙̄x = Ax̄ + Bū + Gd̄1

ȳ = Cx̄ + d̄2

z̄ =
[

H x̄
ū

] (11.151)

Indeed we recall the following basic theorem from linear H∞ control theory, see
[88, 117].

Theorem 11.4.7 Consider the linear system (11.151). Assume the triples (A, B, H)

and (A, G, C) are stabilizable and detectable. Then there exists a linear dynamic
controller such that the closed-loop system has L2-gain < γ and is asymptotically
stable if and only if there exist solutions X ≥ 0, Y ≥ 0 to (11.121), respectively
(11.150), satisfying additionally (11.123), respectively

σ

(
A − Y CT C + 1

γ2
Y H T H

)
⊂ C−, (11.152)

together with the coupling condition

σmax(XY ) < γ2 (11.153)

where σmax denotes the largest singular value. Furthermore one such controller
(called the “central controller”) is given as

ż =
(

A − B BT X + 1
γ2 GGT X

)
z +

(
I − 1

γ2 Y X
)−1

Y CT (y − Cz)

u = −BT Xz
(11.154)

We have seen before that the existence of a solution X ≥ 0 to (11.121, 11.123)
implies the local existence of a solution P ≥ 0 to (HJ1a). Let us now additionally
assume that the solution Y ≥ 0 to (11.150, 11.152) is positive definite, that is, Y > 0.
Then W = γ2Y −1 > 0 satisfies (11.148), while (11.152) can be rewritten as

σ

(
A + 1

γ2
GGT W

)
⊂ C+ (11.155)
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Thismeans that span

[
I

W

]
is theunstablegeneralized eigenspace of theHamiltonian

matrixH corresponding to (HJ2a) and (11.150), given as

H =
[

A 1
γ2 GGT

γ2CT C − H T H −AT

]
(11.156)

Application of Propositions 11.1.5 and 11.1.6 (with respect to the unstable invariant
manifold) yields

Proposition 11.4.8 Let Y > 0 be a solution to (11.150, 11.152). Then there exists a
neighborhood U of x = 0 and a smooth function R > 0 defined on U with R(0) =
0, Rx (0) = 0, such that R is a solution of (HJ2a) on U.

Proof The local existence of a solution R to (HJ2a) with R(0) = 0, Rx (0) = 0 and
Rxx (0) = γ2Y −1 follows fromPropositions 11.1.5, 11.1.6. Since Rxx (0) = γ2Y −1 >

0 it follows that R > 0 on a neighborhood of x = 0. �

Finally, note that the coupling condition σmax(XY ) < γ2 can be rewritten as

X < γ2Y −1 (11.157)

Since Pxx (0) = X and Rxx (0) = γ2Y −1 it follows that for all x near 0

P(x) < R(x) (11.158)

and so we recover, in a strict inequality but local form, the weak coupling derived in
Sect. 10.2. This is summarized in the following form.

Corollary 11.4.9 If there exist solutions X ≥ 0, Y > 0 to (11.121), respectively
(11.150), satisfying (11.123), respectively (11.152), then there exists a neighborhood
U of x = 0 and smooth functions P ≥ 0 and R > 0 on U with Pxx (0) = X and
Rxx (0) = γ2Y −1, which are solutions of (HJ1a), respectively (HJ2a), and satisfy
(11.158) on U.

Therefore, loosely speaking, the solvability of the output feedback suboptimal H∞
control problem for the linearization (11.151) implies that locally all the necessary
conditions derived in Sect. 10.2 for solvability of the same problem for the nonlinear
system are satisfied.

Furthermore (andmore importantly), under the assumptions ofTheorem11.4.7we
can derive a controllerwhich locally solves the nonlinear output feedback suboptimal
H∞ control problem.

Proposition 11.4.10 Consider the nonlinear system (11.145), together with its lin-
earization (11.151). Assume the triples (A, B, H) and (A, G, C) are stabilizable and
detectable. Let X ≥ 0, Y > 0 be solutions to (11.121, 11.123), respectively (11.150,

http://dx.doi.org/10.1007/978-3-319-49992-5_10
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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11.152), and satisfying (11.153), leading by Corollary 11.4.9 to local solutions P ≥ 0
and R > 0 of (HJ1a), respectively (HJ2a). Then the nonlinear controller

ξ̇ = a(ξ) − b(ξ)bT (ξ)PT
ξ (ξ) + 1

γ2 g(ξ)gT (ξ)PT
ξ (ξ)

+ γ2
[
Rξξ(ξ) − Pξξ(ξ)

]−1 ∂cT

∂ξ
(ξ) [y(t) − c(ξ)]

u = −bT (ξ)PT
ξ (ξ), ξ ∈ Xc := X

(11.159)

locally solves the output feedback suboptimal H∞ control problem for (11.145), in
the sense that there exists a neighborhood W of the equilibrium (0, 0) ∈ X × Xc

and a function S ≥ 0 defined on it, such that the closed-loop system (11.145, 11.159)
satisfies

∫ T

0
||z(t)||2dt ≤ γ2

∫ T

0
||d(t)||2dt + 2S(x(0), ξ(0)) (11.160)

for all (x(0), ξ(0)) ∈ W , and all T ≥ 0 and d ∈ L2(0, T ) such that the (x(t), ξ(t))
trajectories do not leave W .

Proof The linearization of (11.159) at ξ = 0 is precisely the central controller
(11.154). Hence the linearization of the closed-loop system (11.145, 11.159) equals
the linear closed-loop system (11.151, 11.154), which by Theorem 11.4.7 has L2-
gain < γ and is asymptotically stable. Hence by Corollary 11.3.4 also the nonlinear
closed-loop system has locally L2-gain < γ in the sense of (11.160) for some neigh-
borhood W of (x, ξ) = (0, 0). �

Remark 11.4.11 Note that W may be smaller than the neighborhood U × U of
(x, ξ) = (0, 0), with U as obtained in Corollary 11.4.9.

Similarly to Corollary 11.4.4 we derive from the proof of Proposition 11.4.10 the
following corollary.

Corollary 11.4.12 Under the conditions of Proposition 11.4.10 every nonlinear
controller whose linearization equals the “central controller” (11.154) locally solves
the output feedback suboptimal H∞ control problem.

The important issue is thus to construct a controller which solves the nonlinear output
feedback suboptimalH∞ control problem on a domain which is as large as possible.
Since the controller (11.159) incorporates in a “maximal way” all the nonlinear
characteristics of the nonlinear system under consideration (as compared with the
other controllers whose linearization equals the central controller), there is some
reason to believe that the controller (11.159) has a large domain of validity.
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11.5 Notes for Chapter 11

1. Section11.1 is an expanded and generalized version of results presented in van
der Schaft [272, 275, 278].

2. The Hamilton–Jacobi–Isaacs equation is at the core of dynamic game theory;
cf. Basar & Olsder [31].

3. Propositions 11.1.3, 11.1.5 and 11.1.6 can be found in van der Schaft [272].

4. Proposition 11.1.7(i) can be found e.g. in Kucera [175] (Lemma 3.2.1) and part
(ii) in Molinari [221], Francis [103].

5. The main idea explored in Proposition 11.1.14 can be found in van der Schaft
[275].

6. Section11.2 is close in spirit to the treatment of the linear quadratic optimal
control problem in Anderson & Moore [7], Willems [349].

7. Proposition 11.2.1 can be found in Kucera [174], Francis [103], Kucera [175].

8. For a result related to Proposition 11.2.6 we refer to Byrnes & Martin [57].

9. Using the invariant manifold techniques of Sect. 11.1 it can be also shown that
solvability of the linearized optimal control problem (for the linearized system
and the quadratic part of the cost criterion) implies local solvability of the nonlin-
ear optimal control problem, see van der Schaft [274] (compare with Sect. 11.3).

10. Section11.3 is a generalized version of some results presented in van der Schaft
[272, 275] for the L2-gain case, and Nijmeijer, Ortega, Ruiz & van der Schaft
[234] for the passivity case.

11. The Hamiltonian matrix H as in (11.104) reduces for the L2-gain supply rate
1
2γ

2||u||2 − 1
2 ||y||2 (see Corollary 11.3.4) to

Hγ =
[

A 1
γ2 B BT

CT C −AT

]
(11.161)

with A assumed to be asymptotically stable.
It follows (see e.g., Green & Limebeer [117], Scherer [304]) that there exists
γ∗ ≥ 0 such that if

(a) γ > γ∗, thenHγ does not have purely imaginary eigenvalues.
(b) 0 ≤ γ ≤ γ∗, thenHγ does have purely imaginary eigenvalues.

In the dynamical systems literature this is known as a Hamiltonian Hopf bifur-
cation of the corresponding Hamiltonian vector field (van der Meer [214]): for γ
smaller than γ∗ and monotonously increasing the purely imaginary eigenvalues
of Hγ become or remain of even multiplicity at γ = γ∗, and for γ > γ∗ split
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of into eigenvalues located in the open left-half plane and in the open right-half
plane, symmetrically with respect to the imaginary axis.

12. Section8.4 is largely based on van der Schaft [275, 278]. Example 11.4.6 is due
to Isidori & Kang [142].

13. The relations between viscosity solutions of Hamilton–Jacobi equations and the
properties of the corresponding Lagrangian submanifolds are explored e.g., in
Day [80].

14. For computational schemes for solving Hamilton–Jacobi equations and inequal-
ities we refer to the list of references given in Note 1 in Sect. 10.3 at the end of
the previous Chap.10.

http://dx.doi.org/10.1007/978-3-319-49992-5_8
http://dx.doi.org/10.1007/978-3-319-49992-5_10
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