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Abstract Many optimization problems on graphs are reduced to the determination
of a subset of vertices of maximum cardinality which induces a k-regular subgraph.
For example, a maximum independent set, a maximum induced matching and a
maximum clique is a maximum cardinality 0-regular, 1-regular and (ω(G) − 1)-
regular induced subgraph, respectively, were ω(G) denotes the clique number of
the graph G. The determination of the order of a k-regular induced subgraph of
highest order is in general an NP-hard problem. This paper is devoted to the study
of spectral upper bounds on the order of these subgraphs which are determined
in polynomial time and in many cases are good approximations of the respective
optimal solutions. The introduced upper bounds are deduced based on adjacency,
Laplacian and signless Laplacian spectra. Some analytical comparisons between
them are presented. Finally, all of the studied upper bounds are tested and compared
through several computational experiments.

Keywords Spectral graph theory ·Maximum k-regular induced subgraphs · Com-
binatorial optimization

1 Introduction

Throughout the paper, we deal with simple undirected graphs G, with vertex set
V (G) = {1, . . . , n} and edge set E(G) �= ∅. Since this graph has n vertices, we say
that the graph has order n.Wewrite u ∼ vwhenever the vertices u and v are adjacent.
The neighborhood of a vertex i ∈ V (G), that is, the set of vertices adjacent to i , is
denoted by NG(i), the degree of i is dG(i) = |NG(i)|, Δ(G) = maxi∈V (G) dG(i) and
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δ(G) = mini∈V (G) dG(i). The subgraph ofG induced by the vertex subset S ⊂ V (G)

is denoted by G[S]. The graph G is p-regular when all vertices have the same degree
equal to p. A vertex subset S ⊆ V (G) is (k, τ )-regular if it induces a k-regular
subgraph and ∀v /∈ S, |NG(v) ∩ S| = τ . The adjacency matrix AG = (

ai, j
)
is the

n × n matrix defined by

ai, j =
{
1 if i ∼ j,
0 otherwise.

The Laplacian matrix LG = (
li, j

)
and the signless Laplacian matrix QG = (

qi, j
)
of

the graph G, are the matrices LG = DG − AG and QG = DG + AG , respectively,
where DG stands for the diagonal matrix of order n with the i-th entry equal to the
vertex degree dG(i). Therefore, AG, LG and QG are real symmetricmatrices and then
all their eigenvalues are real. These eigenvalues are herein denoted, in nonincreasing
order, respectively by λ1 ≥ · · · ≥ λn , μ1 ≥ · · · ≥ μn and q1 ≥ · · · ≥ qn . If G has at
least one edge, then λ1 > 0 > λn . From now on we consider only simple undirected
graphs with at least one edge which will be called graphs.

Each adjacency eigenvalue of a graph G is main if the corresponding eigenspace
contains an eigenvector which is not orthogonal to the all ones vector, otherwise is
non-main. FromGeršgorin’s theorem, the eigenvalues of LG and QG are nonnegative
real numbers and since the entries of each row of LG sum 0, then the eigenvalueμn =
0 is associated to the all ones eigenvector ê. The multiplicity of 0, as an eigenvalue of
LG , is equal to the number of connected components ofG. Furthermore,G is bipartite
if and only if qn = 0. Further basic details about graph spectra can be found in [6, 8].
A vertex subset inducing a 0-regular subgraph is called an independent (or stable)
set. A maximum independent set is an independent set of maximum cardinality and
its cardinality is called independence number and it is denoted by α(G).

In [3] it was proved that the problem of finding a maximum cardinality subset
of vertices inducing a k-regular subgraph is NP-hard. Throughout this paper, this
maximum is denoted by αk(G). Note that in the particular case of k = 0, α0(G) =
α(G).

The study of spectral upper bounds on the order of k-regular induced subgraphs
(it should be noted that the independent sets are 0-regular induced subgraphs)
appear in [3–5]. In [1] (see also [11]) an upper bound on the order of induced
subgraphs with average degree d (based on adjacency eigenvalues) was obtained
for regular graphs, extending the ratio bound (7) to the general case of maximum
k-regular induced subgraphs (when k = 0, this bound coincide with the ratio bound).
A similar resultwas obtained in [3], using convex quadratic programming techniques.
In [4, 5] the arbitrary graph case is analyzed and upper bounds on the order of k-
regular induced subgraphs are presented. In [4], the upper bounds are obtained using
adjacency eigenvalues and eigenvectors, namely the least eigenvalue (whether it is
non-main) and the corresponding eigenspace. In [5], the upper bound is obtained
using a quadratic programming technique jointly with the main angles (see [8] for
details) and the induced subgraph just must have average degree d.
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The main goal of this paper is to introduce some new spectral upper bounds on
the order of k-regular induced subgraphs, making an analytic comparison between
them when possible. These new upper bounds are based on adjacency, Laplacian
and signless Laplacian eigenvalues. Finally, a few computational experiments are
presented.

2 Concepts and Fundamental Results

In this section, we introduce some definitions and we recall the previously obtained
results needed for the deductions in the next section. In particular, we survey results
concerning to spectral upper bounds on the order of k-regular induced subgraphs.

For arbitrary graphs, consider a graph G of order n with V (G) = S ∪ Sc, where
S ⊆ V (G) denotes a vertex subset inducing a k-regular subgraph and Sc is its com-
plement. The set of edges with just one end vertex in S, that is, the cut set defined
by S is denoted ∂(S). Hence, |∂(S)| = |S|(d̄S − k), where d̄S = 1

|S|
∑

i∈S
dG(i).

The next result relates the cardinality of the cut set ∂(S) to the largest eigenvalue
of the Laplacian matrix of a graph G.

Lemma 1 ([16]) Let G be a graph of order n and S ⊆ V (G). Then

|∂(S)| ≤ μ1
|S|(n − |S|)

n
. (1)

Another relationship involving the largest Laplacian eigenvalue and the least adja-
cency eingenvalue of a graph G is (see [8]).

δ(G) − λn ≤ μ1 ≤ Δ(G) − λn. (2)

Now we consider some relationships involving signless Laplacian eigenvalues.
Assuming thatG is a connected graph of order n, according to [7], the least eigenvalue
of QG is zero if and only ifG is bipartite and, in that case, zero is a simple eigenvalue.
They also proved that

2δ(G) ≤ q1 ≤ 2Δ(G). (3)

Moreover, according to [9],
qn < δ(G). (4)

FromWeyl’s inequalities we have an improvement of inequalities (3) and we state
relationships between signless Laplacian and adjacency eigenvalues.

δ(G) + λ1 ≤ q1 ≤ Δ(G) + λ1 (5)

and
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δ(G) + λn ≤ qn ≤ Δ(G) + λn. (6)

We now present some spectral upper bounds on the size of k-regular induced
subgraphs starting with the particular case of k = 0, for which we consider only the
ones most related with this work.

2.1 Bounds on α(G)

In the case of regular graphs, the well known ratio bound, obtained by Hoffman
(unpublished) and presented byLovász in [14] can be stated by the following theorem
where, for the last statement, the necessary condition was proved in [12] and the
sufficient condition was proved in [2].

Theorem 1 ([2, 12, 14]) If G is a regular graph of order n, then

α(G) ≤ n
−λn

λ1 − λn
. (7)

Furthermore, the cardinality of an independent set S attains the upper bound if and
only if S is (0, τ )-regular, with τ = −λn.

The ratio bound (7) was extended by Haemers for arbitrary graphs, according to
the following theorem.

Theorem 2 ([11]) If G is a graph of order n, then

α(G) ≤ −n λn λ1

δ2(G) − λn λ1
. (8)

The next spectral upper bound based on the largest Laplacian eigenvalue was
independently deduced in [10, 15].

Theorem 3 ([10, 15]) If G is a graph of order n, then

α(G) ≤ n
μ1 − δ(G)

μ1
. (9)

2.2 Bounds on αk(G)

Cardoso, Kamińsky and Lozin in [3] introduced the following family of convex
quadratic programming problems:

υk(G) = max
x≥0

2êT x − τ

k + τ
xT

(
AG

τ
+ In

)
x, (10)
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where ê is the all ones vector, In the identity matrix of order n, k ∈ N ∪ {0} and
τ = −λn and they proved that αk(G) ≤ υk(G), where αk(G) is the cardinality of a
vertex subset inducing a k-regular subgraph of maximum order. In fact, in [3], the
obtained result was stated as follows.

Theorem 4 ([3]) Let G be a graph and k a non-negative integer. If S ⊆ V (G)

induces a subgraph of G with average degree k, then |S| ≤ υk(G). The equality
holds if and only if τ + k ≤ |NG(v) ∩ S| ∀v /∈ S.

Considering the particular case of regular graphs we have the following theorem,
where the upper bound was obtained in [11] and the last statement was proved in [3].

Theorem 5 ([3, 11]) If G is a p-regular graph of order n, then

αk(G) ≤ n
k − λn

p − λn
. (11)

Furthermore, the equality holds if andonly if there exists S ⊆ V (G)which (k, k + τ)-
regular, with τ = −λn. In this case, αk(G) = |S| = n k−λn

p−λn
.

In [4], considering the quadratic program not necessary convex (10), with τ > 0,
it was proved that

αk(G) ≤ λmax (AGc) + k + 1, (12)

where Gc denotes the complement of the graph G, that is, the graph such that
V (Gc) = V (G) and E(Gc) = {i j : i j /∈ E(G)}. Furthermore, the following upper
bound was obtained.

Theorem 6 ([4]) Consider a graph G such that λmin(AG) = λn = · · · = λn−(p−1)

is a non-main eigenvalue with multiplicity p. Assuming that the eigenvectors
û1, . . . , ûn , associated to the eigenvalues λ1, . . . , λn, respectively, are unitary and
pairwise orthogonal, then

αk(G) ≤
n−p∑

j=1

−λn + k

−λn + λ j
(êT û j )

2. (13)

Later, in [5], using a quadratic programming technique jointly with the main
angles of G, the upper bound (13) was improved as follows.

Theorem 7 ([5]) Let G be a graph of order n, and let S be a set of vertices which
induces a k-regular subgraph of G (0 ≤ k ≤ n − 1). If t > −λn then

αk(G) ≤ hG
k (t), (14)

where hG
k (t) = (k + t)

(
1 − PGc (t−1)

(−1)n PG (−t)

)
and PG(x) = det(x I − A).
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3 Upper Bounds Based on the Spectrum of AG , LG and QG

Now it is worth to recall the following theorem obtained by Haemers.

Theorem 8 ([11]) Let G be a graph on n vertices of average degree d and let the
vertex set of G be partitioned into two sets such that G1 and G2 are the subgraphs
induced by these two sets. For i = 1, 2 let ni be the number of vertices of Gi , di be
the average of vertex degrees of Gi and let d̄i be the average of vertex degrees in G
over the vertices of Gi . Then

(i) λ1λ2 ≥ ndi d−ni d̄i
2

n−ni
≥ λ1λn.

(ii) If the equality holds on one of the sides, then G1 and G2 are regular and also
the degrees in G are constant over the vertices of G1 and G2.

As a consequence of this theorem, we have the following corollary.

Corollary 1 If G is a graph of order n, then,

αk(G) ≤ 2k|E(G)| − nλ1λn

δ(G)2 − λ1λn
. (15)

Proof Let us consider the vertex partition V (G) = S ∪ Sc, where S induces a k
regular subgraph of G. Applying Theorem 8-(i), setting n1 = |S| and d1 = k, we
have,

nkd − d̄1
2|S|

n − |S| ≥ λ1λn ⇔ λ1λn(n − |S|) ≤ nkd − d̄1
2|S|

⇔ |S|(d̄12 − λ1λn) ≤ nkd − nλ1λn

⇔ |S| ≤ nkd − nλ1λn

d̄1
2 − λ1λn

.

Since d̄1 ≥ δ and d = 2|E(G)|
n , the inequality (15) follows. �

Notice that, whenG is p-regular, λ1 = δ(G) and |E(G)| = np
2 whereby the upper

bound (15) is equal to (11).
The next corollary is a consequence of Lemma 1.

Corollary 2 If G is a graph of order n, then

αk(G) ≤ n
k + μ1 − δ(G)

μ1
. (16)

Proof Considering a vertex subset S ⊆ V (G) inducing a k-regular subgraph and
taking into account that (as defined before) dS = 1

|S|
∑

i∈S dG(i), it follows that

|∂(S)| = |S|(d̄S − k). Then applying Lemma 1 we have



Spectral Bounds for the k-Regular Induced Subgraph Problem 111

|S|(d̄S − k) ≤ μ1
|S|(n − |S|)

n
⇔ n(d̄S − k)

n − |S| ≤ μ1

⇔ μ1|S| ≤ nμ1 − n(d̄S − k)

⇔ |S| ≤ n
k + μ1 − d̄S

μ1
.

Since d̄S ≥ δ(G), the inequality (16) follows. �

If a graph G is p-regular, from (2) μ1 + λn = p and we may conclude that the
upper bound (16) is equal to (11).

Before the introduction of a new upper bound on the order of k-regular induced
subgraphs in function of the largest and the least eigenvalues of the signless Laplacian
matrix, it is worth to introduce the following lemma.

Lemma 2 Let G be a graph of order n without isolated vertices. If G is bipartite or
δ(G) ≥ Δ(G)

2 or q1 < 4δ(G), then 4δ(G)2 − qnq1 > 0.

Proof Let δ = δ(G) and Δ = Δ(G).

1. If G is bipartite without isolated vertices, then qn = 0, δ > 0 and therefore,
4δ2 − qnq1 > 0.

2. If δ ≥ Δ
2 , we have δ2 ≥ δΔ

2 ⇔ 4δ2 ≥ 2δΔ and, taking into account (3) and (4),
since q1 ≤ 2Δ and δ > qn it follows 4δ2 − qnq1 > 0.

3. Finally, if q1 < 4δ, then q1qn ≤ 4δqn < 4δ2, that is, q1qn < 4δ2 and so
4δ2 − qnq1 > 0.

�

Notice that there are graphs G, with δ = δ(G), such that 4δ2 − qnq1 ≤ 0, as
it is the case of the graph depicted in Fig. 1 which has δ = 2, qn = 1.4991 and
q1 = 10.8517.

Theorem 9 Let G be a graph of order n such that 4δ2(G) − qnq1 > 0. Then

2k|E(G)| − nλ1λn

δ2(G) − λ1λn
≤ 4|E(G)|(Δ(G) + k) − nqnq1

4δ2(G) − qnq1
. (17)

Proof Considering ε = |E(G)|, δ = δ(G), Δ = Δ(G) and assuming that the ine-
quality of (17) holds, we have

Fig. 1 Graph G, with
4δ(G)2 − qnq1 ≤ 0
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2kε − nλ1λn

δ2 − λ1λn
− ε(Δ + k) − n q1

4 qn
δ2 − q1

4 qn
≤ 0

�
2kεδ2 − q1

2
qnkε − nδ2λ1λn − δ2Δε − δ2kε + nδ2

q1
4
qn + λ1λnεΔ + λ1λnεk ≤ 0

�
k(δ2ε − q1

2
qnε + λ1λnε) − nδ2λ1λn − δ2Δε + nδ2

q1
4
qn + λ1λnεΔ ≤ 0

Let f (k) = k(δ2ε − q1
2 qnε + λ1λnε) − nδ2λ1λn − δ2Δε + nδ2

q1
4 qn + λ1λnεΔ.

Then,

f ′(k) = δ2ε − q1
2
qnε + λ1λnε

= ε(δ2 − q1
2
qn + λ1λn).

From (6),

δ + λn < qn ⇔ δ2 + δλn < δqn ⇔ δ2 − δqn + δλn < 0.

Since, from (3), q1
2 ≥ δ and, as it is well known, λ1 ≥ δ, it follows that δ2 − q1

2 qn +
λ1λn ≤ δ2 − δqn + δλn < 0, that is, f ′(k) < 0. Therefore, f (k) is a decreasing func-
tion.

Considering the function f (k) and setting k = 0 and Δ = δ + ξ with ξ a nonne-
gative integer we may define the function

g(δ, ξ) = −nδ2λ1λn − δ2(δ + ξ)ε + nδ2
q1
4
qn + λ1λnε(δ + ξ).

Then

∂g(δ, ξ)

∂ξ
= −δ2ε + λ1λnε

= ε(−δ2 + λ1λn)

< 0.

Therefore, g(δ, ξ) is a decreasing function with respect to ξ . Since g(δ, 0) =
−nδ2λ1λn − δ3ε + nδ2

q1
4 qn + λ1λnεδ and δ = Δ it follows that λ1 = δ. Further-

more, from (3), q1
2 = δ and from (6), qn = δ + λn . Therefore,

g(δ, 0) = −nδ3λn − δ3ε + n
δ3

2
(δ + λn) + λnεδ

2

= −nδ3λn − δ3ε + n
δ4

2
+ n

δ3

2
λn + λnεδ

2.
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Finally, since ε = nδ
2 we obtain g(δ, 0) = −nδ3λn − n δ4

2 + n δ4

2 + n δ3

2 λn + n δ3

2 λn =
0 and thus, for all nonnegative integers δ and ξ , g(δ, ξ) ≤ 0. Therefore, f (0) ≤
0 and, since f (k) is a decreasing function, we may conclude that f (k) ≤ 0 for
all k. �

As immediate consequence of Corollary 1 and Theorem 9 we have the following
corollary.

Corollary 3 If G is a graph of order n, ε edges, Δ = Δ(G) and δ = δ(G), such
that 4δ2 − qnq1 > 0, then

αk(G) ≤ 4ε(Δ + k) − nqnq1
4δ2 − qnq1

. (18)

According to [7], a graph G with n vertices and ε edges is regular if and only
if 4ε = nq1. Furthermore, when G is regular its degree is equal to q1

2 . Thus, assu-
ming that G is p-regular, has n vertices and ε edges, by Lemma 2 the hypothesis of
Corollary 3 is fulfilled and then we may write

αk(G) ≤ nq1(p + k − qn)

2pq1 − qnq1
(since Δ(G) = δ(G) = p = q1

2
and 4ε = nq1)

= n(p + k − qn)

2p − qn
= n

k − λn

p − λn
(since qn − λn = p).

Therefore, for regular graphs, all the upper bounds (11) (15), (16) and (18) are equal.
Notice that there are graphs for which these upper bounds are tight. For instance,
if G = Kn (a complete graph of order n), then λ1 = n − 1 and λn = −1. Thus, if
S ⊆ V (Kn) induces a k-regular subgraph, then n k−λn

λ1−λn
= k + 1 = |S|. Therefore,

when G is a complete graph, for each k, the upper bounds (15), (16) and (18) on
the cardinality of vertex subsets inducing k-regular subgraphs are all reached. More
generally, according to Theorem 5, ifG is a regular graph and S ⊂ V (G) is a (k, k +
τ)-regular set, with τ = −λn , then all the above referred upper bounds are reached.

Throughout the paper, in all the proofs of the presented results, only the average
degree in S is used and then, in all the obtained results we may replace k-regular
induced subgraph by induced subgraph with average degree k. Moreover, all the
obtained results remain validwhenwe consider positiveweights on the edges, assum-
ing in that case that the degree of a vertex v is then the sum of the weights of the
edges incident to v.

4 Computational Experiments and Conclusions

In this section, several computational experiments with the upper bounds (15), (16)
and (18) are presented in Table1. In each row of this table appears the order n, the
maximum degreeΔ, theminimum degree δ, the degree of a regular induced subgraph
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Table 1 Computational experiments with the upper bounds (15), (16) and (18)

Graph n Δ(G) δ(G) k (15) (16) (18)

c-fat200-1 200 17 14 0 74.01 82.31 97.27

1 83.87 90.72 109.28

2 93.73 99.13 121.29

6 133.18 132.75 169.33

7 143.04 141.16 181.34

c-fat200-2 200 34 32 0 55.72 57.29 63.19

1 60.28 61.75 67.86

2 64.83 66.21 72.53

16 128.65 128.65 137.88

17 133.21 133.10 142.55

c-fat200-5 200 86 83 0 45.85 48.56 50.10

1 47.74 50.39 52.06

2 49.64 52.21 54.01

39 119.79 119.72 126.41

40 121.69 121.55 128.36

MANN-a9 45 41 40 0 3.76 4.46 4.23

1 4.81 5.47 5.32

2 5.86 6.48 6.41

18 22.69 22.70 23.84

19 23.74 23.72 24.93

MANN-a27 378 374 364 0 5.17 13.43 13.19

1 6.22 14.43 14.27

2 7.27 15.43 15.36

3 8.32 16.44 16.45

4 9.37 17.44 17.53

Keller4 171 124 102 0 34.76 45.74 109.56

1 36.20 46.96 110.51

2 37.65 48.19 111.47

51 108.46 108.37 158.11

brock200-1 200 165 130 0 20.25 44.83 75.10

1 21.82 46.02 77.09

2 23.40 47.22 79.08

64 121.22 121.22 202.28

65 122.80 122.41 204.26

brock200-2 200 114 78 0 37.48 69.19 161.29

1 40.12 70.87 165.49

2 42.75 72.54 169.69

33 124.54 124.53 300.04

34 127.18 126.21 304.24

(continued)
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Table 1 (continued)

Graph n Δ(G) δ(G) k (15) (16) (18)

brock200-3 200 134 99 0 29.41 57.79 113.35

1 31.51 59.23 116.37

2 33.61 60.66 119.39

43 119.58 119.56 243.18

44 121.68 121.00 246.20

brock200-4 200 147 112 0 24.94 51.73 91.73

1 26.76 53.05 94.15

2 28.59 54.38 96.58

54 123.58 123.22 222.61

55 125.40 124.54 225.03

k and the computed upper bounds on the order of this induced subgraphs for some
of the graphs of the family considered in the Second DIMACS Implementation
Challenge (see [13]).

Notice that for the particular case of regular graphs the upper bounds (15), (16)
and (18) are all equal. Moreover since, according to the Theorem 9, the upper bound
(15) is less or equal than the upper bound (18), it follows that

4|E(G)|(Δ(G) + k) − nqnq1
4δ(G)2 − qnq1

≥ min

{
2k|E(G)| − nλ1λn

δ2 − λ1λn
, n

k + μ1 − δ

μ1

}
.

Concerning the comparison between the upper bounds (15) and (16) and also
between (16) and (18), the computational results presented in the Table1 show that
none of them is always better than the others.

In fact, regarding the upper bounds (15) and (16), for k = 0, 1, 2, the former is
better than the later. However, for much greater values of k, there are several graphs
for which the upper bound (16) is better than (15). Finally, it should be noted that for
the graphs MANN-a9 and MANN-a27 for k = 0, 1, 2 the upper bound (18) is better
than the upper bound (16).
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