Variance Components Estimation in Mixed
Linear Model—The Sub-diagonalization
Method

A. Silva, M. Fonseca and J. Mexia

Abstract This work aims to introduce a new method of estimating the variance
components in mixed linear models. The approach will be done firstly for models
with 3 variances components and secondly attention will be devoted to general case
of models with an arbitrary number of variance components. In our approach, we
construct and apply a finite sequence of orthogonal matrices to the mixed linear model
variance-covariance structure in order to produce a set of Gauss—Markov sub-models
which will be used to create pooled estimators for the variance components. Nume-
rical results will be given, comparing the performance of our proposed estimator to
the one based on likelihood procedure.

Keywords Mixed linear model + Variance components - Orthogonal matrices -
Simultaneous diagonalization

1 Introduction

Mixed linear models (MLM) arise due to the necessity of assessing the amount of
variation caused by certain sources in a statistical designs with fixed effects (see
Khuri [7]), for example, the amount of variations that are not controlled by the
experimenters and those whose levels are selected at random. The variances of such
sources of variation, currently refereed to as variance components, has been widely
investigated in the last fifty years of the last century (see Khuri and Sahai [8], Searle
[13, 14], among others) and during the period ranging somewhat from early 1960
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to 1990, due to the proliferation of investigation on genetic and animal breeding as
well as industrial quality control and improvement (for more details, see Anderson
[1-3], Anderson and Crump [4], Searle [13], among others), several techniques of
estimation have been proposed. Among those techniques we highlight the ANOVA
and the maximum likelihood - based methods (see, for example, Searle et al. [15] and
Casella and Berger [5]). Nevertheless, notwithstanding the ANOVA method adapt
readily to mixed models with balanced data and save the unbiasedness, it does not
adapt in situation with unbalanced data (mostly because it use computations derived
from fixed effect models rather than mixed models). On its turn, the maximum likeli-
hood - based methods, highlighting the ML and the restricted ML (REML) methods,
provide estimators with several statistical optimal properties such as consistency and
asymptotic normality either for models with balanced data, or for those with unbal-
anced data. For these optimal properties we recommend Miller [9], and for some
details on applications of such methods we recommend, for example, Anderson [2]
and Hartley and Rao [6].

This paper is organized as follows. In Sect. 2 (notation and basic concepts on
matrix theory) we review some needed notions and results on matrix theory, mainly
on matrix diagonalization. A new method to estimate the variance components in the
MILM is summarized in Sect. 3, and numerical results ensuring their optimality will
be available in Sect. 4.

2 Notation and Basic Concepts on Matrix Theory

In this section we summarize a few needed notions and results on matrix diagonal-
ization. The proofs for the results can be found in Schott [12].

Let.Z"™™and.7" = {A: A € .#™", A = AT} stands for the set of the matrices
with n rows and m columns and the set of the n x n symmetric matrices, respectively.
The range and the rank of a matrix A will be respectively denoted by R(A) and r (A),
and the projection matrix onto the range space of A denoted by Pg(a (see Schott
[12, Chap. 2, Sect. 7] for projection matrix notion). We will denote by ¢r(A) the
trace of A.

If the eigenvalues A, ..., A, of the matrix M € .Z"*" are all distinct, it fol-
lows from the Theorem 3.6 of Schott [12] that the matrix X, whose columns
are the eigenvectors associated to those eigenvalues, is non-singular. Thus, by the
eigenvalue - eigenvector equation M X = X D or, equivalently, X "' M X = D, with
D =diag()\; ...\,), and the Theorem 3.2.(d) of Schott [12], the eigenvalues of D
are the same as those of M. Meanwhile, since M can be transformed into a diagonal
matrix by postmultiplication by the non-singular matrix X and premultiplication by
its inverse X! it is said to be diagonalizable.

If the matrix M is symmetric we will have that the eigenvectors associated to
its different eigenvalues will be orthogonal (see Schott [12]). Indeed, if we consider
two different eigenvalues A; and A; whose associated eigenvectors are x; and x;,
respectively, we see that, since M is symmetric,
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)LixiTx_, = (Mxi)ij = XiT(ij) = )‘sz‘TX.i-

So, since A; # A, we must have X;I—Xj =0.
According with Theorem 3.10 of Schott [12], without lost in generality, the
columns of the matrix X can be taken to be orthonormal so that X is an orthog-

onal matrix. Thus, the eigenvalue - eigenvector equation can now be written as
X'"MX=D or, equivalently, M = XDXT,

which is known as spectral decomposition of M.
Definition 1 Let
Al ... A
A = . . .
Anl cee Ann
be a diagonal blockwise matrix. We say that a matrix T sub-diagonalizes A if the

T A produces a blockwise matrix whose matrices in the diagonal are all diagonal
matrices, that is 7' diagonalizes the matrices Ay, ..., A, in the diagonal of A.

3 Inference

Variance components estimation in linear models (with mixed and/or fixed effects)
have been widely investigated and consequently several methods for estimation with
important properties have been derived. Some of this methods are summarized in
Searle et al. [15].

In this section we will sub-diagonalize the variance-covariance matrix

r+1

V= ZVde
d=1

in the Normal MLM

2~ My (XB, V), (1)
with y; > 0,d = 1, ..., r, unknown parameters, N; = Xa;X(;r e .S Xy € M
known matrices, and N,;; = I,,, and develop optimal estimators for the variance
components i, ..., Yr41.

Since the components we want to estimate depends only on the random effect
part, it is of our interest to remove the dependence of the distribution of z on the fixed
effect part. With P, = Pg(x) denoting the projection matrix onto the column space
of the matrix X, so that I,, — P, will be the projection matrix onto its orthogonal
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complement, there is a matrix B, whose columns are the eigenvectors associated to
the null eigenvalues of P, such that

BB, =1, ,p, and B,B] = I, — P,.

Thus, instead of the model (1) we will approach the restricted model:

r+1
y=BJz~m(0,z, Zyde), )
d=1

with M, = BoTNd B,,n=m —r(P,), and 0,, denotes an n x 1 vector of zeros; that
is, we will diagonalize the variance-covariance matrix

r+1
VE="yaMy
d=1

instead of V.

3.1 TheCaser =2

In this subsection we will sub-diagonalize the variance-covariance matrix in the MLM
for r = 2 (recall the general model in (2)), that is

y~ M0, yiMy + oMy + y3l,) . 3)
There exists (see Schott [12, Chap. 4, Sects. 3 and 4]) an orthogonal matrix
Aq ,
_ . (Ziilgi)xn ; ) gixn oo —
P = : eH , with Ay; € A (/L g = n), such that M, =
Ap,

Pl-r D, Py, or equivalently P; M, Pl-r = D;, where

Oulg, 0 ... O
0 6Oinlg,... O
Dy = : C- : )
0 0 ...91;,,Ighl
is a diagonal matrix whose diagonal entries 6y;,i = 1, ..., hy, are the eigenvalues of
the matrix M; with corresponding roots g; = r(AlTi), i =1,...,hy. It must be noted

that the set of columns of each matrix A|; forms a set of g; orthonormal vectors
associated to the eigenvalue 6; of the matrix M; (Theorem 3.10. of Schott [12]
guarantees the existence of such matrix A;ri), so that Al,-AIrl. = I, and AEAU =
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Pgea7)- Hence P P" = I,, and

PP = A A+ + A, Au,
= PR(ATI) + .-+ PR(ATI,I)
=1, )

With

M: =35
. T _ i
AuMyAg = [lev i #s (6)

and cov(v) denoting the variance-covariance matrix of a random vector v, we will
have that

COV(Ply) = )/1P1M1P1T ~|—)/2P]M2Pl—r + )/3P1P1T

Onl, 0 ... O My Wi oo Wi
0 Ol ... 0 W3 M3, ... W3,
=N Do BRCH T
0 0 ...6u1, Wi, Wiy .. M,
I, 0 ... 0
0 I, 0
RN IR
00 ...1
=nDOily, ...0nlg, )+ v2I" + 3Dy, ... I, ), @)

where ) 5 5
M121 W122 leh]
W5 M, ... W2h1

r= ) . .

2 2 2
Wh]l Whl2 cee Mhlh]

It is clear that for the three matrices D (611, ... 0p11g, ), D(Ig, ... I, ) and I”
appearing in (7), the blockwise matrix I” is the only one which is not a diagonal
matrix.

Next we diagonalize the symmetric matrices Mizi, i=1,...,hy, that appear in
the diagonal of the matrix I, i.e, we sub-diagonalize the matrix I".

Since Mizl. is symmetric there exists (see Schott [12, Chap. 4, Sects. 3 and

Agiy ,
4]) an orthogonal matrix Py; = : € .///(z’i" g"f)Xgi, where Ay;; € /80

Adiny
ha;
(Zj;1 gij = &), such that
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Orirlg, O ... 0
0 921'21,‘ 0
D2 = PyM2P] = ) .82' ) ,i=1,...,h. (8
0 0 921'1’!2,’ [8ihzi

It must be noted that the matrix AzTij, i=1,...,h,j=1,..., hy,is anorthogonal
matrix whose columns form a set of g;; = r(AzTi ) orthonormal eigenvectors asso-

ciated to the eigenvalue 6,;; of the matrix M lzl, that is, g;; is the multiplicity of the

eigenvalues 65;;, and AzTijAZij = PR(AzT,/) and AzijAgTij =1,
Thus, with
Py 0 ... 0
P, = 0 P.22 o O e ///(Z,’;‘l Zl;zzil g,/)X(ZL‘I gi)’
0 0 .. P

the new model w, = P, P;y will have variance-covariance matrix

cov(wy) = X(PyP1y) = P2D(9111g1 .. .Q]hllgh])PZT + )/2P2FP2T + )/3P2D(Igl .. 'Ighl)P2T

011 P21 Py} 0 0
0 912P22P2-5 0
=y . ) )
: : . o
0 0 elhlPZhIPZhl
r 2 2 pT 2 pT
D121 . P21W%2P22 P21W12h]1"2_#l
P22W21P21 D22 P22W2h1P2h1
+¥2 . . .
2 pT D T 2
L Pany Wi 1 Poy Pomy Wig o Py - Dj iy,
TPyPy 0 ... 0
0 P22P2T2 0
+ 73 : — : , )
L o 0 ... Py Py,
where
AiAl, 0 ... 0 Iy, 0 ... 0
. 0 Aw2Ag, ... 0 0 Iy ... O
Py Py = . . . = . . s
0 0 o A2ih21A2Tih2i 0 0 Igi”Zi

and, with i # s,
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Asii W2 AZS1 Asit W2 AZS2 e Ag WP AMZS

A2’2WUA251 A212‘/IIISA252 AZ’ZW A2sh2-

PyWEP) =

AZihZIW A2s‘l Az’hZIW A2v2 s A2ih21 W AZshzg

The matrix D, = Py M%P)},i = 1,..., hy, appearing in the diagonal at the right
side of (9) is defined in (8).

Note that
AanAnry

Aoty A1y
AxniApy

Wy = PPy = | A2mA12y

Aop1 A,y

_A2h1h2h.] A,y
The distribution of the sub-models
Vij = AgijAuy, i=1,...,h, j=1,..., hy
is summarized in the following result.
Proposition 1
Vij ™~ ,/12,1.1. (0g,-,w kijlgij) si=1, .. hy; j=1,..., hy,

where Ajj = y101; + 200 + V3.

Proof Recalling that Aj;jAy; € %" and g;; <n, according with Moser
[10, Theorem 2.1.2] we will have that

2
Yij ~ JI{%( i ZydAleAllMdAhAZU +V3A2!/A1’A11A211)
d=1

The portions > _, yaAz;AiiMsA] A 2” and y3A2;A1 AL A,
covariance matrix yield:

%) in the variance-
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2
ZVdAZijAIiMdAE'A;ij = )/lAZij (elilgi) A;lj + VZAZijMiziA;rij
d=1
= )/191,']&/ + Vzezijlgi/;

and
y3haij AV AL Ay = v3Anijly Ay = ysly,
which, clearly, completes the proof. [

With 0 denoting an adequate null matrix and cov(v, v) denoting the cross-
covariance between the random vectors v and v, from (9) one might note that the
cross-covariance matrix between the sub-models y;; = A;;A;y and ys = AssiAsy,
i,s=1,....h, j,k=1,..., hy is given by

0 i=sj#k
cov(yij, ysk) = y2AsijAuMyALAS, = Aij i=s;j=k (10)
)/2A2ile%A;rsk i ;ﬁ S

withi <'s, j < k (symmetry applies), so that, for i # s, the sub-models y;; and yg
are correlated and for i = s they are not.

3.2 Estimation forr = 2

From the Sect. 3.1 we see that (with i and j respectively replaced by i; and i, for
convenience) w, = P, P;y produces the following sub-models

Viyip ™7 N

gy Vg Aiinlg )y iv=1,... h1, ia=1,... hy, (11

8iyin
of the model y ~ .A4;,(0,, yiM; + y2 M, + y31,), where
Ay = Y101, + 20010, + V3.

An unbiased estimator of A;;, for model (11) is (one based on its maximum
likelihood estimator ):il i)

T
0 Viriy Yiria
S, =—,
12

8iiy
i1:1,...,/’l1, izZl,...,hz,'l.

Indeed (see Rencher and Schaalje [11, Theorem 5.2a]),



Variance Components Estimation in Mixed Linear Model ... 325

E(S}) =

iy

} tr{k

= kiliz. (12)

i1iy glllz}

Thus

E(S,) = Miiy = Y101, + vaboii, +v3, i1 =1,... hy, i =1,... hy

[ St ] [611 61 17
ngzl 011 621h21 1
Aoy O O 1
o “ e P “ e ‘)/l
so that, with S = S%;m ,0=1|061 Onp, 1 |,andy = |y, |, we will have
V3
Sin 91h1 O 1
_Sf%lhzhl . 91/‘“ 92}1 hzhl 1 _
E(S) = Oy. (13)

Thus, fori; =1,...,hy, i =1, ..., hy,, equalizing the variances A;,;, to the
correspondent estimators Sizl i, it yields the following system of equations:

S% = v1011 + 26211 + V3

Slhn = y1011 + 20211, + V3;
S31 = 1012 + 12021 + ¥3;

S3h = V1012 + V2o, + V3

S;%Ihz,,] = Y101, + 20201y, + V3

which in matrix notation becomes

S =oy. (14)
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Since by construction 6;, # 0“;, i1 # i'1 =1,...,h; (they are the different
eigenvalues of M) and 6y;;, # 921.”.;, ir # i/2 =1,..., hy;, (they are the distinct
eigenvalues of Mizl. = Ay, MZAII;I), it is easily seen that the matrix @ is a full rank
one; that is r(®) = 3.

By Rencher and Schaalje [11, Theorem 2.6d] the matrix

h haj h hai h hai
DD I D D IRCITH NN JAD ST

To hi~—h2i, hi~—h2i 52 hy ~—hoiy
0 0= Zi, Ziz 01,02, Zil Ziz 921'11'2 Zil Ziz 62i,i,
haiy haiy

hy ~—hai h h
Zi,l Zi; ] 911’1 Zill Ziz 921'11‘2 Zill Ziz
is positive-definite, and by Rencher and Schaalje [11, Corollary 1], ®T® is non-
singular; we, thus, take its inverse to be (© T®)~!.
Now, premultiplying the system (14) in both side by @ T the resulting system of
equations will be

eOTs=6Toy, (15)

whose unique solution (and therefore an estimator of y) is

y=@Te)'e’s. (16)
"
7 = | 2 | will be referred to as Sub-D estimator and the underlying method referred
V3
to as Sub-D method.
"1
Proposition 2 y is an unbiased estimator of y, withy = | v |.
V3

Proof Indeed, E(y)=E ((@T@)*IQTS) =OTO)'OTES)=©@Te)!
eTey=y. O

Proposition 3 Withi < i*, j < j* (symmetry applies),

(@i=i*j#j": 0;
cov (Sl-zj, Sl-z*j*) =1Bi=i%j=j"": 2%,
ij
©i#i*: 29211 (2 M),
T AT . .
where §2 = VijMZVi*j*r with Vif = —A“AZZ_IL_XZUA“.
; ; 1y

Proof We have that
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T T
Vi Vi Vioow Yik
cov (Slzl’ Sl*]*) = COV(U”, ’/l])
8ij 8i* j*

ALAL AsiiAj AT AL, . Agir ix Aqje
— cov yT 104421 A2ij Ai y, yT LixAR2p% jx 22al™ ] i y
8ij 8i* j*

= Ccov (yTV,-jy, yTVi*j*y)
= 2tr (V,-,-VV;*j* V)

327

= Zfor(Vile Vix jx M1) + 217217 (Vij M1 Vix jx Ma) + 2y1y3tr (Vi M Vi jx )
+ 2ya1tr (Vij Mo Vix jx M) + 2}/22tr(VijM2Vi*j*M2) + 2y2y3tr (Vi M2 Vix jx)

+ 2y391tr (Vi Vix jx M1) + 2y3y2tr (Vi Vix j« Mp) + 2V32lr(vijvi*j*)

=it A 0,
A2,
=1i=i*j=j*: 252,
P#i* 2y2tr (Vi Mo Vis j« Mp).

For the case (a), thatis i = i*; j # j*, we have that

1
ViiMi Vi = s —— A Ay Avij A M A Ay Agijr Ay
ij&ij*
1
= ——A[ A Agij (01i1g,) Agy e Agije Ay
gugu

= 0,4, (see (4) for the explanation);

1
ViiMyV,je = s ——A[ A Agij AL Mo AT A Agije Ay
ij&ij*
1

= AIAZUAZU (MLZI) A;j*AZij*Ali
8ij8ij*
= 0,4, (see (8) for the explanation);

1 T
Vl]VU = A11A21] (Ogingij*)Azij*Ali
8ij8ij*
= Og, ;-

7)

(18)

19)

Therefore, (17)—(19) together with Schott [12, Theorem 1.3.(d)] proves the case

(a).

For the case (¢), thatisi # i*, the desired result becomes clear if use the Theorem

1.3.(d) of Schott [12] and note that

AiMiAy- = A Ay = Ogngi*'
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Finally, for the case (b), thatis i = i*; j = j*, recalling y;; ~ A; (0g,, Aij1y, ),
it holds

T T 2
yvihyii vl yii A A AL

coy (Slzj) =X lj_lj’ lj_lj =21r [llgifilgij] = 2%1‘7‘ {Igii}
8ij 8ij 8ij  &ij 8ij

=24 (20)

and therefore the proof is complete. [J

The nextresult introduce the variance-covariance matrix of the sub-diagonalization

estimator:
y=@Te)'e’s.

Proposition 4 In order to simplify the notation, let Xs, s, denote cov(Sizj, S,fl).
Then,

cov(@) = (©O@TO) 'O Tcov($)OOTO) !, 2D
D Ap Ay ... A, 2—{2;0...
A21 D2 A23 c e A2h1 O i L
where cov(S) = | A3 A2 D3 oo Asn | yith D; =2 o . | and
SRR i
Ah11 Ah12 Ah13 Dh1 0 0... %
Esklsn ESHSu s ESkISAhZJ

Eskzsn ESkZSAZ ES/(ZSA/IZJ
Ags = . . .

Eskth Ss1 Eskth Ss2 v 0 Eskth Ssipg

Proof The proof is a consequence of the Proposition 3. [J]

3.3 The General Case: r > 1

Now, without lost in generality, lets consider the general MLM in (2):

r+1
Y~ (on, > yde), with My = X,X] € ." and M, = I,.
d=1
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One may note that y = ;4;11 BUTXd,Bd, where B; ~ MO, y,I0),d=1,...,r,

Bri1 ~ MO, yul,), and By, ..., Br41 are not correlated.
With iy =1,...,h, i;=1,..., hj,,'],___,,-,;], consider the finite sequence of r

matrices Py, P,, ..., P. defined as follow:

An
Ay o hy
P = ) e ///(Z"l b'l)xn, with Ay, € A (note:Zg,-l =n); (22)
. i
Aln,
Py 0 ... 0
0 Pp... 0 (Zf’l "2y gii )x g
= . . . . e\ Zip iz (z” l), where
LO 0 ... Py,
[ Az
Azip2 (Zflz'il 8iyi )xg; ]
Py = : AN " g Withzgiliz = gi, and Agjj, € 4811278
. in
LA2iihy;,
Py 0 ... O
h ho 3.1 in ha
b 0 Pyp... 0 . //[(zgll S g _giliziS)X(Z:’ll s lgl_]iz)
0 0 ... P
P31 0 ... 0
0 P3l']2 N 0 (thvil Zhli].iz 8ivini )X(thvil . )
i i iyipi i 8iyip
where P3;, = . L . e M\"? 3 1253 2 712/ and
0 0 ... Psiiny,
Asijiyl
A3i1i22 (2(13.1’1‘1'2 Sitini )xg,- i M iz
Psjyi, = . e.M\" 12 12, with Z 8i1iis = &iyip and
i3

A3y i2h3i) iy

X
A3i|i2i3 c M8z 81112;

Thus, for » > 2, each matrix P, will be given by (P is given in (22)):
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Py 0 ... 0
0 Pyr... O
P=| . .. . (23)
0 0 ...Py
hy hrig iy h M —1),i] ey _n
c %<Zil "‘Zi, gll‘,.l,)x(zil ...Z,’(’A_]) 8iyig—1) ,
where
Pin O ... 0
0 Pip... 0
Pril = . . .
0 0 ...Pim,
iy iy iy iy B(r=1),i1 seomsip—2
e%(ziz DI T i )X\ 2, ..AZ,»(’A_]) " iy ,
Pril...i(,,z)l O AR O
0 Pril...i(,,z)Z e 0
Priy.ipey = . : .
0 0 s Pril~~~i(r—2)hr—].i1,...,i,,2
B =1}, ooy — PR i B =13, ey _o
G%(Zi(r7|) > iy iy | X Z,.(FU iy ’
Avi gl
Ani i ( iy iy
1d-1)2 > 8iyir ) X8iyiry)
and Pri]...l'(,,]) = . € % N

Ari| b=l i

Ry oy I
i E = E = 8iy iy X8iyir_1y
with 8iy.iy = 8ir.igory» 8y =N, Aril...i, € M5 T8 n;
i i

Theorem 1 Let the matrices Py, Ps, ..., P, defined above be such that:

(c1) The columns ofAlTi], iv=1,...,hy, forma set of g;, = r(AlTil) orthonormal
eigenvectors associated to the eigenvalues 6,;, of the matrix M, (0y;, has mul-
tiplicity g;,);



Variance Components Estimation in Mixed Linear Model ... 331
(c2) The columns of AzTi,iz’ ir=1,..., hy;, form a set of gi,i, = r(A;';]iz) ortho-
normal eigenvectors associated to the eigenvalues 0y;,;, of the matrix Ml-2] 0=
T . . . .
A1,~1M2Aul (62i,i, has multiplicity g, );
T . T
(c3) The columns of Ay; ;.. i3 =1,..., h3; ., form a set of giiiy = r(Ay; ;)
orthonormal eigenvectors associated to the eigenvalues 03;,,i, of the matrix
3 4T T
Agiyiy M Agyy iy = Aziin Ariy M3 Ay Ay
(03i,i,i5 has multiplicity ;i );
(¢;) The columns OfA;El...i,’ ir=1,...,h 4 i, formasetof g i = r(A;ril...i,)
orthonormal eigenvectors associated to the eigenvalues 6,;, ;. of the matrix
T T
A(r—l)il,..i<,,1) . ..A]i]MrA LA

iy (=Dt
(0riy..i., has multiplicity g;, ;. ).

Then each matrix P;, d=1,...,r, in the finite sequence of matrices
Py, Py, ..., Pr will be an orthogonal matrix.

Proof By the way P, is defined (see (23)), since

Agi,.

Adi i
1ed(@—1) .
Puiy gy = : s lg-n =1, .. h@—1)iy,ia s

..l'(d,l)l

Adil~~~i(d—l)hd.i1,....id,1

and according with condition c¢; we see that the matrices Py;,..;,_, are orthog-
onal. Thus, the desired result comes if we see that PJ P; will be a diagonal
blockwise matrix whose diagonal entries are P[;[r.l Pyi,, i1 =1,..., hy. The diag-
onal entries PdT[] Py;, will be diagonal blockwise matrices whose diagonal entries
will be PJMZ Pyuiyiy, i =1, ..., hy;. Proceeding this way d — 2 times, we will
find that the diagonal eqtries of the blockwise matrices PJI___WJ) Piiy ivga Ld—2) =
1, ey h(d—Z),il,...,it/,g’ will be

T _ T .
Pdil...i(d,l) Pdil---l'(d—n = Adi1...i(d,l)lAdllml(d-nl
T
teeet Adil---i(d—l)hd,il“.uid,l Adll---’<dfl)hdvi1~~~idf|
= Igil,..i(lFl) ’

reaching, therefore, the desired result. Proceeding in same way we would also see

that Py, . P is a Blockwise diagonal matrix whose diagonal entries are
1 diy...ig-1

Adil_,i(‘H)1A;1___i(d71)j,j =1,...,ha.,.. i, s0that PdP;— is an identity matrix. [

@1
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The model w, = P, ... P, P;y will produces the following sub - models:

Virir = Ariy iy A=y iy - - - A2iyin ALy Vs

ih=1,... ,l’l],ij =1,... 7hjsilx~~~»ij—l'
We summarize the distribution of each of the sub-model y;, ;. in the following
result.
Proposition 5§
Yivoip ™ ‘/K,’il...i,- (Ogil..,i,- ’ )\'il---ir Igi]...i,) ’
where Ai, i, = 24—y Vabai,..i; + Vr+1-

Proof The proof becomes obvious after looking to the proofs of the Proposition 1.
O

From the results about cross-covariance on the preceding sections we easily con-
clude that the cross-covariance matrix between the sub-models y;, ;, and y;:_;:, with

i, iy =1,..., hy;ij, ;= 1,..., hj,,-],m,i/,f,, is given by
0 i1 =1y,
Aiy.i ij=1i"j
j
CoV(Yiy.ip> Yit..ip) = ' =1 [
=L By
r T ; ;
2a=n VaAriy iy - AiMaAye Ay i1 #if

so that, for i # i}, the sub-models y;, ; and y;;. ;. are correlated and for i} = if
they are not.

3.4 Estimation for the General Case: r > 1

Recalling that for the MLM in (1), P, ... P, P,y produces the following sub-models

Yiria.dr ~ Ny

8iyin..ir (Ogil..j, ’ )\’iliz---ir Igiliz..jr )s
h=1...,h,i;=1,....hj i, 24)

where

.
Airiy..iy = E YaOaiy..ig + Vrt1-
d=1

The matrices P;,d =1, ..., r, are defined in the Sect. 3.3.
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An unbiased estimator of A;;, ;. in the sub-model (24) is (the one based on its
maximum likelihood estimator A;,;, ;)

1
2 _ T '
Sirineiy = = Yirig.iy Virinwis
8iris...iy

Indeed (see Rencher and Schaalje [11], Theorem 5.2(a), and the explanation for

12)).

2 _ 1112...1,
E (Siliz...i,) 4. . tr [Igi]iz.“ir]
8iiiy...iy
= Xiriy..y - (25)
For convenience, in what follows, instead of Sizl i,..i,» We may sometimes use the

notation S7, , ..
Vi2edro1yiy
Thus

,
E(Si21i2~-'i(r—l)ir) = z ydgdi““id + Ve
d=1

= Y101, + V2000, + + F+ VeOririg.ip_ri, T Vel

ir=1,....h;i;=1,..., hji . i

— 2 -
Slzl...ll
Sll...12

2
Sl]...lhr,l,,..J
2
Sll...21

2
STl 2m s

so that, with S = - ,

2
Shll...l]

2
_Shlhz,h1 ey

-
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O 6 03111 Or11..11 1
O 6n O3111 Or11..12 1
011 0o 03111 . Ot then 1, 1
011 a1 O3111 e Or11..21 1
O 6 03111 .. Or11. 21, 1
e = ,
Oth, Oon O3, 11 Orpy1..11 1
_91}11 92h1h2./x] 93h1h2.h|h3.11|.112 s el‘hlhzh, ey hy iy Py ey _

4!
V2
V3
andy = | ... [, we will have

Vr
LYGe+1)

E(S) = Oy. (26)

Thus, fori; =1,...,h,i;=1,. ..,hj,,-,,___,,'jfl,j > 1, equalizing the variances
Aiyiy..i, to the correspondent estimators Sizli it yields the following system of
equations (in matrix notation)

2.0y

S=0y. 27)

Since by construction 6y;, # 6, i (they are the different eigenvalues of M), 62;,i, #
021.”.; (they are the distinct eigenvalues of Mizi = A ,~1M2A1Til), B3i,iris 7= 931']1'21'; (they
are the distinct eigenvalues of Ay; ;, A1;, MQAII.] A;liz), coos Oriviy i onyiv G,i],-z___i(ril)i:
(they are the distinct eigenvalues of A(—1)i,i,...i¢_y - - - Al M,AlTi] ... Ag—l)iliz...i(,.,”)
where i; #i i j=1,...,r,itis easily seen that the matrix @ is of full rank; that
isr(®) =r+1.

According with Theorem 2.6d (Rencher and Schaalje [11]), with > denoting

), hy hyi vl .
> the matrix

i i :
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i 2912,-1 > 01,6210, D01, 03iyini5 > 01 Oriyir - 201 ]
> 01,021y 2922,-1,-2 02i1ir03ivinis -+ 2 02i1inOriyir D 02t
20 iinis 20ty X O3 e 2 OiisisOririr 2630
e'e=
2010 0riyir 202002 6riy.ir D OiyinisOriy.ir - - - 0% i 2 Orivir
L 2.6 > 0iiy 2 03irinia 2 Oriy_ir >

is positive-definite, and according with Corollary 1 of (Rencher and Schaalje [11],
p.27) © T @ is non-singular; that s, itis invertible. We denote its inverse by (@ T @)1,
Now, premultiplying the system (27) in both side by ® T the resulting system of

equations will be

e's=0Toy,

(28)

whose unique solution (and therefore an estimator of y) will be the Sub-D estimator

y=@©"e)'e’s.

Proposition 6 p = (07 ©)~'O7S is an unbiased estimator of

(29)

71 Y1
V2 )
v3 V3
y = , where
Yr Vr
| Yo+ | Yo+

Indeed, E(p) = E (©7T0)'0TS) = (©TO)'OTES) = (©TO) !0 Oy =
Y-

4 Numerical Results

In this section we carry numerical tests to the sub-diagonalization method for the
case r = 2, that is for a model with 3 variances components. For this case we pick
the particular model z ~ 451 (XB, yiN1 + Y2 N2 + y3151), where N; = XjX].T, j=
1, 2, with design matrices
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1; 0; 02
15 05 Os 04 14 04
X1 =1001909 | , X, =05 05 1 |,
07 07 157 14 04 O4
03 13 03

and X = 1,;. 1; and Oy denote, respectively, k x 1 vectors of 1 and 0.

Let B, be a matrix whose columns are the eigenvectors associated to the null
eigenvalues of %le. Then B,B, = I — %Jﬂ and B B, = I, and so the new
model will be

y =Bz~ N0 (00, yiM; + y2M + y31)

where M; = BOTNdBo.

Since r(N;) =3 we have that (see Schott [12, Theorem 2.10c]) r(M;) =
r(BJNl By) = 3. The eigenvalues of M are 0y, = 7.979829, 6;, = 5.639219, and
013 =0 (613 with multiplicity (root) equal to 18). Thus we have that Mlz1 =
A11M2A1T] = 5.673759 and M222 = A12M2A]T2 = 0.6246537 will be 1 x 1 matrices,
and M3, = A;3M>A]; an 18 x 18 matrix.

We have the following: M?, has eigenvalue 6;; = 5.673759; M3, has eigen-
value 6,51 = 0.6246537; M323 has 3 eigenvalues: 631 = 6.390202; 6,3, = 1.216148;
0233 = 0 (6233 with multiplicity equal to 16).

Finally we found that

ST =[190.779246 8.866357 5.234293 53.654627 1.334877]

7.979829 5.6737590 1
5.639219 0.6246537 1

and © = 0 6.3902016 1
0 1.2161476 1
0 0 1

With B ~ A2 (03, yiI3), k = 1,2, and e ~ A50(029, ¥3120), and taking y3 = 1,
the model can be rewritten as y = BoTXl,Bl + BOTXZ,BQ + B;re.

We consider y; and y, taking values in {0.1, 0.25,0.5,0.75, 1, 2, 5, 10}. Thus,
for each possible combination of y; and y», the model y is observed 1000 time,
and for each observation the sub-diagonalization method is applied and the variance
components estimated for each observed y. The Tables 1 and 3 present the ave-
rage of the estimated values of y; and y», respectively. In order to compare the sub-
diagonalization method performance with the REML, for the same 1000 observations
of y, the REML method is applied and the results presented in both Tables 2 and 4.

Taking a look at tables, and comparing the averages estimated values from the sub-
diagonalization method to the ones of the REML methods (see Tables 1, 2, 3, and 4),
the reader may easily concludes that the results provided by the sub-diagonalization
method are in general slightly more realistic. In other hand, the averages variability
of the sub-diagonalization methods is relatively higher than those of REML method
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(see Tables 5, 6, 7, and 8); this is because of the correlation between the sub-models.
This gap will be fixed in future works.

5 Concluding Remarks

Besides its simple and fast computational implementation once it depends only on
the information retained on the eigenvalues of the design matrices and the quadratic
errors of the model, Sub-D provides centered estimates whether for balanced or
unbalanced designs, which is not the case of estimators based on ANOVA methods.
As seen at Sect. 4, Sub-D provides a slightly more realistic estimates than the REML
estimator, but with more variability (when the model is balanced they have a compa-
rable variability). However, since in any computational program (source code) when
we are interested in share the code, create package or use it repeatedly, we might
consider its efficiency and, for this matter, the code run-time constitutes a good start
point. Doing so, to compute the estimates and the corresponding variance for each
pair y; and y; taking values in {0.25, 0.5, 1, 2, 5, 10}, for 1000 observations of the
model, we found that the Sub-D run-time is about 0.25 s while the REML estimator
run-time is about 35.53 s, which means that the code for Sub-D is more than 70 times
faster than the one for REML. The code was run using R software.

It seems that the problem of the little higher variability in Sub-D comparing to
REML estimator is due to the correlation between the sub-models (for the case

of models with three variance components, for example) y;;, i =1,...,h, j =
1,..., hy,. From (10) we see that the variance components matrix of the model
wy = P, Py is a blockwise matrix whose diagonal matrices are D;,.. ., Dy,, where
D; =diag(Ai, ..., Ainy,), corresponding to cov(y;j, ysx) fori =s, j =k, and the

off diagonal matrices are the non-null matrices y>Ay;; W,'25A2sk’ corresponding to
cov(yij, ysi) for i # s. This problem will be handled in future work. Confidence
region will be obtained and tests of Hypothesis for the variance components will be
derived in future works.
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Appendix

Table 1 Sub-diagonalization method - average estimate for y;

n/y: 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.0917 | 0.0984 | 0.0828 | 0.1162 |0.0833 |0.1052 | 0.1102 |0.1053
0.25 02716 | 02954 | 02698 | 0.2538 [0.3041 [0.2882 | 0.1993 |0.3322
0.5 0.5010 | 05127 | 0.4929 | 05088 |0.5297 |0.4613 | 0.5314 |0.5569
0.75 0.7279 | 0.7683 | 0.7685 | 0.7755 |0.7693 |0.7504 | 0.6982 |0.8215
1 1.0305 | 1.0293 | 1.0143 | 09971 [1.0309 |1.0013 | 1.0046 |1.0809
2 19844 | 2.0004 | 2.0032 | 1.9702 [2.0827 [2.0893 | 2.0643 |2.2640
5 51864 | 5.0386 | 49128 | 5.0722 |52111 |5.0170 | 4.8472 |5.1269
10 9.6167 |10.1588 |10.2468 | 10.1263 |9.6940 |9.9046 | 10.0246 |9.8474

Table 2 REML method - average estimate for y;

niva 01 0.25 0.5 0.75 1 2 5 10

0.1 0.1431 | 0.1683 | 0.1779 | 0.1884 [0.1975 [0.2154 |0.2189 |0.2156
0.25 02872 | 03157 | 03379 | 03286 |0.3416 03316 |0.3740 |0.3480
0.5 0.5191 | 0.5546 | 0.5244 | 0.5637 |0.6110 |0.5897 |0.6469 | 0.6281
0.75 07271 | 07620 | 0.7587 | 0.7908 |0.8159 |0.8245 |0.8373 |0.8241
1 1.0300 | 1.0026 | 1.0245 | 1.0172 |1.0138 |1.0726 |1.0352 |1.0515
2 19343 | 1.9884 | 1.9565 | 2.0178 |2.1510 |2.1482 |2.0774 |2.2323
5 5.1267 | 49747 | 47743 | 50955 |5.1395 |4.9907 |4.8066 |4.8150
10 9.5043 | 10.0881 |10.1912 |10.0269 |9.4706 |9.7784 |9.9445 |9.6754

Table 3 Sub-diagonalization method - average estimate for y»

niva ol 0.25 0.5 0.75 1 2 5 10

0.1 01026 |0.2643 [0.5147 [0.7147 [1.0286 |1.9595 |4.9390 | 9.9718
0.25 0.1051 |0.2589 |0.4918 |0.7827 |1.0172 |2.0427 48713 | 9.7690
0.5 0.0903 [0.2323 |0.5043 |0.7865 |1.0117 |1.9496 |4.8136 | 9.8913
0.75 0.0855 |0.3068 |0.5144 |0.7676 |1.1207 |2.0762 |4.7910 | 9.7847
1 00581 [0.2746 |0.5052 |0.7969 |1.0035 |2.1009 |5.0871 |10.2702
2 0.0902 |0.2966 |0.6198 |0.7870 |0.9909 |1.9605 |5.217 9.7318
5 0.1759 |0.3403 |0.5565 |0.7276 |1.0007 |2.036 | 4.8617 | 9.7160
10 0.1614 02562 |0.5649 |0.7481 |0.9934 |2.1402 |5.1631 |10.1369
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Table 4 REML method - average estimate for y»
vi/v2 0.1 0.25 0.5 0.75 1 2 5 10
0.1 0.1539 |0.2701 |0.5143 |0.7095 |0.9992 |1.9007 |4.9153 9.9579
0.25 0.1630 |0.2965 |0.5165 |0.7840 |1.0271 |2.0990 |4.7929 9.5820
0.5 0.1867 [0.3061 |0.5490 |0.7964 |1.0400 |1.9358 |4.7022 9.6481
0.75 0.1976 |0.3501 |0.5480 |0.8079 |1.0678 |2.1196 |4.6759 9.7793
1 0.2008 |0.32890 |0.5488 |0.8134 |1.0282 |2.0205 |5.0126 |10.3663
2 0.2186 [0.3379 |0.5703 |0.8469 |1.0249 |1.9900 |5.4291 9.5900
5 0.2198 |0.3799 |0.5603 |0.7773 |1.0027 |2.0142 |4.7727 9.6886
10 0.2284 |0.3551 |0.5906 |0.7792 |1.1087 |2.0735 |4.9235 |10.0843
Table 5 Sub-diagonalization method - variation of the estimated y;
yi/v2 0.1 0.25 0.5 0.75 1 2 5 10
0.1 0.1264| 0.2253| 0.4626| 0.8296| 1.2005| 4.3832| 19.6631| 83.6993
0.25 0.2637| 0.3814| 0.6248| 1.0775| 1.5931| 4.7676| 20.1332| 72.7948
0.5 0.5737| 0.7863| 1.1830| 1.7217| 23142 4.7103| 22.8545| 78.2997
0.75 0.9224| 1.2110| 1.5779| 2.0896, 3.3078 7.4140| 20.7793| 77.7225
1 77.7225| 1.8328| 2.4022| 2.9417| 3.8380| 7.6562| 27.1356|101.9337
2 4.8401| 5.6613| 6.9492| 6.8652| 8.4356| 13.2666| 37.4524|107.8436
5 30.5767| 31.3904| 34.2362| 36.0102| 36.5273| 43.1085| 72.8085|157.0055
10 111.1505| 117.9503 | 114.2234 | 120.8808 | 124.3445 | 138.0213 | 192.7288 | 288.9592
Table 6 Sub-diagonalization method - variation of the estimated y»
yi1/v2 0.1 0.25 0.5 0.75 1 2 5 10
0.1 0.1532 | 02972 | 0.6524 | 1.1154 | 2.0379 | 6.4364 | 33.8728|138.7916
0.25 0.2379 | 0.4537 | 0.7838 | 1.3616 | 2.0686 | 7.7435 | 32.4170|112.701
0.5 0.5232 | 0.7162 | 1.1545 | 1.7515 | 2.7932 | 6.1609 | 31.2810|117.2392
0.75 0.7703 | 1.0841 | 1.4314 | 1.9380 | 3.3226 | 7.6266 | 35.7370|139.0834
1 1.1496 | 1.4291 | 1.8988 | 2.6630 | 3.6221 | 8.7960 | 39.6377|159.5489
2 3.8362 | 4.5207 | 4.6976 | 5.5365 | 6.9396 |11.6933 | 47.5170|140.7587
5 21.0152 |22.2408 |24.2194 |24.0984 |29.4643 |34.2175 | 65.9059|176.7041
10 81.3183 | 82.3035 |89.9235 |85.9040 |85.1849 |93.4313 |153.1855|265.6179
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Table 7 REML method - variation of the estimated y;
Y1/v2 0.1 0.25 0.5 0.75 1 2 5 10

0.1

0.07807 0.0880, 0.1324| 0.1579| 0.1801| 0.2524| 0.2679| 0.2052

0.25 0.20365 02229 0.2729| 0.2676| 0.3350, 0.3365| 0.4485| 0.3235

0.5

0.4747 0.6030| 0.5822| 0.7576| 0.8165| 0.7607| 0.8321| 0.9255

0.75 0.8896 09458 1.0035| 1.1702| 1.2667 1.2627| 1.2131 1.4153

1

1.4500 1.4368| 1.7622| 1.7407| 1.8813| 1.9144| 1.8597| 1.9659

2 4.6049 4.9522| 4.8249| 5.6586| 6.0638| 6.3735| 6.0565| 7.8698
5 28.4367 | 29.6686| 29.0413| 32.1312| 29.1439| 28.4656| 28.1731| 29.3058
10 106.6903 | 108.3732| 106.734 | 105.7222|106.4887 | 101.2775| 111.1112 | 104.9005

Table 8 REML method - variation of the estimated y»

n/y: 0.1 0.25 0.5 0.75 1 2 5 10

0.1

0.0833 |0.1798 |0.5192 |0.7836 |1.4306 |4.8877 |27.2749 |100.2321

0.25 0.0914 02295 |0.5842 |0.9688 |1.5517 |6.1586 |25.9314 | 92.9996

0.5

0.1260 | 0.2744 |0.5607 |1.2902 |1.8142 |4.4948 |23.3488 | 94.9688

0.75 0.1534 |0.3081 |0.6120 |1.2712 |1.6747 |5.9940 |26.5791 |110.6777

1

0.1732 03270 |0.6852 |1.2331 |1.8197 |5.2857 |29.3231 | 126.1761

2

0.2289 |0.3608 |0.7416 |1.5226 |1.7834 |5.7763 |31.7812 |101.8187

5

0.2399 ]0.4452 |0.8946 |1.2738 |1.6384 |5.2879 |26.9691 | 97.7408

10

02280 |0.4149 |0.7789 |1.2234 |2.1941 |5.7251 |31.2616 | 98.4346
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