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Abstract This work aims to introduce a new method of estimating the variance
components in mixed linear models. The approach will be done firstly for models
with 3 variances components and secondly attention will be devoted to general case
of models with an arbitrary number of variance components. In our approach, we
construct and apply a finite sequence of orthogonalmatrices to themixed linearmodel
variance-covariance structure in order to produce a set of Gauss–Markov sub-models
which will be used to create pooled estimators for the variance components. Nume-
rical results will be given, comparing the performance of our proposed estimator to
the one based on likelihood procedure.

Keywords Mixed linear model · Variance components · Orthogonal matrices ·
Simultaneous diagonalization

1 Introduction

Mixed linear models (MLM) arise due to the necessity of assessing the amount of
variation caused by certain sources in a statistical designs with fixed effects (see
Khuri [7]), for example, the amount of variations that are not controlled by the
experimenters and those whose levels are selected at random. The variances of such
sources of variation, currently refereed to as variance components, has been widely
investigated in the last fifty years of the last century (see Khuri and Sahai [8], Searle
[13, 14], among others) and during the period ranging somewhat from early 1960
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to 1990, due to the proliferation of investigation on genetic and animal breeding as
well as industrial quality control and improvement (for more details, see Anderson
[1–3], Anderson and Crump [4], Searle [13], among others), several techniques of
estimation have been proposed. Among those techniques we highlight the ANOVA
and the maximum likelihood - basedmethods (see, for example, Searle et al. [15] and
Casella and Berger [5]). Nevertheless, notwithstanding the ANOVA method adapt
readily to mixed models with balanced data and save the unbiasedness, it does not
adapt in situation with unbalanced data (mostly because it use computations derived
from fixed effect models rather than mixed models). On its turn, the maximum likeli-
hood - based methods, highlighting the ML and the restricted ML (REML) methods,
provide estimators with several statistical optimal properties such as consistency and
asymptotic normality either for models with balanced data, or for those with unbal-
anced data. For these optimal properties we recommend Miller [9], and for some
details on applications of such methods we recommend, for example, Anderson [2]
and Hartley and Rao [6].

This paper is organized as follows. In Sect. 2 (notation and basic concepts on
matrix theory) we review some needed notions and results on matrix theory, mainly
on matrix diagonalization. A newmethod to estimate the variance components in the
MLM is summarized in Sect. 3, and numerical results ensuring their optimality will
be available in Sect. 4.

2 Notation and Basic Concepts on Matrix Theory

In this section we summarize a few needed notions and results on matrix diagonal-
ization. The proofs for the results can be found in Schott [12].

LetM n×m andS n = {A : A ∈ M n×n, A = A�} stands for the set of thematrices
with n rows andm columns and the set of the n × n symmetric matrices, respectively.
The range and the rank of a matrix Awill be respectively denoted by R(A) and r(A),
and the projection matrix onto the range space of A denoted by PR(A) (see Schott
[12, Chap. 2, Sect. 7] for projection matrix notion). We will denote by tr(A) the
trace of A.

If the eigenvalues λ1, . . . , λr of the matrix M ∈ M r×r are all distinct, it fol-
lows from the Theorem 3.6 of Schott [12] that the matrix X , whose columns
are the eigenvectors associated to those eigenvalues, is non-singular. Thus, by the
eigenvalue - eigenvector equation MX = XD or, equivalently, X−1MX = D, with
D = diag(λ1 . . . λr ), and the Theorem 3.2.(d) of Schott [12], the eigenvalues of D
are the same as those of M . Meanwhile, since M can be transformed into a diagonal
matrix by postmultiplication by the non-singular matrix X and premultiplication by
its inverse X−1 it is said to be diagonalizable.

If the matrix M is symmetric we will have that the eigenvectors associated to
its different eigenvalues will be orthogonal (see Schott [12]). Indeed, if we consider
two different eigenvalues λi and λ j whose associated eigenvectors are xi and x j ,
respectively, we see that, since M is symmetric,
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λix�
i x j = (Mxi )

�x j = x�
i (Mx j ) = λ jx�

i x j .

So, since λi �= λ j , we must have x�
i x j = 0.

According with Theorem 3.10 of Schott [12], without lost in generality, the
columns of the matrix X can be taken to be orthonormal so that X is an orthog-
onal matrix. Thus, the eigenvalue - eigenvector equation can now be written as

X�MX = D or, equivalently, M = XDX�,

which is known as spectral decomposition of M .

Definition 1 Let

A =
⎡
⎢⎣
A11 . . . A1n
...

. . .
...

An1 . . . Ann

⎤
⎥⎦

be a diagonal blockwise matrix. We say that a matrix T sub-diagonalizes A if the
T A produces a blockwise matrix whose matrices in the diagonal are all diagonal
matrices, that is T diagonalizes the matrices A11, . . . , Ann in the diagonal of A.

3 Inference

Variance components estimation in linear models (with mixed and/or fixed effects)
have been widely investigated and consequently several methods for estimation with
important properties have been derived. Some of this methods are summarized in
Searle et al. [15].

In this section we will sub-diagonalize the variance-covariance matrix

V =
r+1∑
d=1

γd Nd

in the Normal MLM
z ∼ Nm (Xβ, V ) , (1)

with γd > 0, d = 1, . . . , r , unknown parameters, Nd = Xd X�
d ∈ S m , Xd ∈ M m×s

known matrices, and Nr+1 = Im , and develop optimal estimators for the variance
components γ1, . . . , γr+1.

Since the components we want to estimate depends only on the random effect
part, it is of our interest to remove the dependence of the distribution of z on the fixed
effect part. With Po = PR(X) denoting the projection matrix onto the column space
of the matrix X , so that Im − Po will be the projection matrix onto its orthogonal
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complement, there is a matrix Bo whose columns are the eigenvectors associated to
the null eigenvalues of Po such that

B�
o Bo = Im−r(Po) and BoB

�
o = Im − Po.

Thus, instead of the model (1) we will approach the restricted model:

y = B�
o z ∼ Nn

(
0n,

r+1∑
d=1

γdMd

)
, (2)

with Md = B�
o Nd Bo, n = m − r(Po), and 0n denotes an n × 1 vector of zeros; that

is, we will diagonalize the variance-covariance matrix

V ∗ =
r+1∑
d=1

γdMd

instead of V .

3.1 The Case r = 2

In this subsectionwewill sub-diagonalize the variance-covariancematrix in theMLM
for r = 2 (recall the general model in (2)), that is

y ∼ Nn (0n, γ1M1 + γ2M2 + γ3 In) . (3)

There exists (see Schott [12, Chap. 4, Sects. 3 and 4]) an orthogonal matrix

P1 =
⎡
⎢⎣
A11
...

A1h1

⎤
⎥⎦ ∈ M

(∑h1
i=1 gi

)
×n
, with A1i ∈ M gi×n (

∑h1
i=1 gi = n), such that M1 =

P�
1 D1P1, or equivalently P1M1P�

1 = D1, where

D1 =

⎡
⎢⎢⎢⎣

θ11 Ig1 0 . . . 0
0 θ12 Ig2 . . . 0
...

...
. . .

...

0 0 . . . θ1h1 Igh1

⎤
⎥⎥⎥⎦ (4)

is a diagonal matrix whose diagonal entries θ1i , i = 1, . . . , h1, are the eigenvalues of
the matrix M1 with corresponding roots gi = r(A�

1i ), i = 1, . . . , h1. It must be noted
that the set of columns of each matrix A�

1i forms a set of gi orthonormal vectors
associated to the eigenvalue θ1i of the matrix M1 (Theorem 3.10. of Schott [12]
guarantees the existence of such matrix A�

1i ), so that A1i A�
1i = Igi and A�

1i A1i =
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PR(A�
1i )
. Hence P1P�

1 = In , and

P�
1 P1 = A�

11A11 + · · · + A�
1h1 A1h1

= PR(A�
11)

+ · · · + PR(A�
1h1

)

= In. (5)

With

A1i M2A
�
1s =

{
M2

i i i = s
W 2

is i �= s
(6)

and cov(ν) denoting the variance-covariance matrix of a random vector ν, we will
have that

cov(P1y) = γ1P1M1P
�
1 + γ2P1M2P

�
1 + γ3P1P

�
1

= γ1

⎡
⎢⎢⎢⎣

θ11 Ig1 0 . . . 0
0 θ12 Ig2 . . . 0
...

...
. . .

...

0 0 . . . θ1h1 Igh1

⎤
⎥⎥⎥⎦ + γ2

⎡
⎢⎢⎢⎣

M2
11 W 2

12 . . . W 2
1h1

W 2
21 M2

22 . . . W 2
2h1

...
...

. . .
...

W 2
h11 W 2

h12 . . . M2
h1h1

⎤
⎥⎥⎥⎦

+ γ3

⎡
⎢⎢⎢⎣

Ig1 0 . . . 0
0 Ig2 . . . 0
...

...
. . .

...

0 0 . . . Igh1

⎤
⎥⎥⎥⎦

= γ1D(θ1 Ig1 . . . θh1 Igh1 ) + γ2Γ + γ3D(Ig1 . . . Igh1 ), (7)

where

Γ =

⎡
⎢⎢⎢⎣

M2
11 W 2

12 . . . W 2
1h1

W 2
21 M2

22 . . . W 2
2h1

...
...

. . .
...

W 2
h11 W 2

h12 . . . M2
h1h1

⎤
⎥⎥⎥⎦ .

It is clear that for the three matrices D(θ1 Ig1 . . . θh1 Igh1 ), D(Ig1 . . . Igh1 ) and Γ

appearing in (7), the blockwise matrix Γ is the only one which is not a diagonal
matrix.

Next we diagonalize the symmetric matrices M2
i i , i = 1, . . . , h1, that appear in

the diagonal of the matrix Γ , i.e, we sub-diagonalize the matrix Γ .
Since M2

i i is symmetric there exists (see Schott [12, Chap. 4, Sects. 3 and

4]) an orthogonal matrix P2i =
⎡
⎢⎣

A2i1
...

A2ih2i

⎤
⎥⎦ ∈ M

(∑h2i
j=1 gi j

)
×gi , where A2i j ∈ M gi j×gi

(
∑h2i

j=1 gi j = gi ), such that
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D2
i i = P2i M

2
i i P

�
2i =

⎡
⎢⎢⎢⎣

θ2i1 Igi1 0 . . . 0
0 θ2i2 Igi2 . . . 0
...

...
. . .

...

0 0 . . . θ2ih2i Igih2i

⎤
⎥⎥⎥⎦ , i = 1, . . . , h1. (8)

It must be noted that the matrix A�
2i j , i = 1, . . . , h1, j = 1, . . . , h2i , is an orthogonal

matrix whose columns form a set of gi j = r(A�
2i j ) orthonormal eigenvectors asso-

ciated to the eigenvalue θ2i j of the matrix M2
i i ; that is, gi j is the multiplicity of the

eigenvalues θ2i j , and AT
2i j A2i j = P

R
(
AT
2i j

) and A2i j AT
2i j = Igi j .

Thus, with

P2 =

⎡
⎢⎢⎢⎣

P21 0 . . . 0
0 P22 . . . 0
...

...
. . .

...

0 0 . . . P2h1

⎤
⎥⎥⎥⎦ ∈ M

(∑h1
i=1

∑h2i
j=1 gi j

)
×

(∑h1
i=1 gi

)
,

the new model w2 = P2P1y will have variance-covariance matrix

cov(w2) = Σ(P2P1y) = γ1P2D(θ11 Ig1 . . . θ1h1 Igh1 )P
�
2 + γ2P2Γ P�

2 + γ3P2D(Ig1 . . . Igh1 )P
�
2

= γ1

⎡
⎢⎢⎢⎣

θ11P21P�
21 0 . . . 0

0 θ12P22P�
22 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . θ1h1 P2h1 P
�
2h1

⎤
⎥⎥⎥⎦

+ γ2

⎡
⎢⎢⎢⎢⎣

D2
11 P21W 2

12P
�
22 . . . P21W 2

1h1
P�
2h1

P22W 2
21P

�
21 D2

22 . . . P22W 2
2h1

P�
2h1

.

.

.
.
.
.

. . .
.
.
.

P2h1W
2
h11

P�
21 P2h1W

2
h12

P�
22 . . . D2

h1h1

⎤
⎥⎥⎥⎥⎦

+ γ3

⎡
⎢⎢⎢⎣

P21P�
21 0 . . . 0

0 P22P�
22 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . P2h1 P
�
2h1

⎤
⎥⎥⎥⎦ , (9)

where

P2i P
�
2i =

⎡
⎢⎢⎢⎣

A2i1A�
2i1 0 . . . 0

0 A2i2A�
2i2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . A2ih2i A
�
2ih2i

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Igi1 0 . . . 0
0 Igi2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . Igih2i

⎤
⎥⎥⎥⎦ ,

and, with i �= s,
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P2iW
2
is P

�
2s =

⎡
⎢⎢⎢⎢⎣

A2i1W 2
is A

�
2s1 A2i1W 2

is A
�
2s2 . . . A2i1W 2

is A
�
2sh2s

A2i2W 2
is A

�
2s1 A2i2W 2

is A
�
2s2 . . . A2i2W 2

is A
�
2sh2s

.

.

.
.
.
.

. . .
.
.
.

A2ih2i W
2
is A

�
2s1 A2ih2i W

2
is A

�
2s2 . . . A2ih2i W

2
is A

�
2sh2s

⎤
⎥⎥⎥⎥⎦

.

Thematrix D2
i i = P2i M2

i i P
�
2i , i = 1, . . . , h1, appearing in the diagonal at the right

side of (9) is defined in (8).
Note that

w2 = P2P1y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A211A11y
...

A21h21 A11y
A221A12y

...

A22h22 A12y
...
...

A2h11A1h1 y
...

A2h1h2h1
A1h1 y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The distribution of the sub-models

yi j = A2i j A1i y, i = 1, . . . , h1, j = 1, . . . , h2i

is summarized in the following result.

Proposition 1

yi j ∼ Ngi j

(
0gi j , λi j Igi j

)
, i = 1, . . . , h1; j = 1, . . . , h2i ,

where λi j = γ1θ1i + γ2θ2i j + γ3.

Proof Recalling that A2i j A1i ∈ M gi j×n and gi j ≤ n, according with Moser
[10, Theorem 2.1.2] we will have that

yi j ∼ Ngi j

(
0gi j ,

2∑
d=1

γd A2i j A1i Md A
�
1i A

�
2i j + γ3A2i j A1i A

�
1i A

�
2i j

)
.

The portions
∑2

d=1 γd A2i j A1i Md A�
1i A

�
2i j and γ3A2i j A1i A�

1i A
�
2i j in the variance-

covariance matrix yield:
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2∑
d=1

γd A2i j A1i Md A
�
1i A

�
2i j = γ1A2i j

(
θ1i Igi

)
A�
2i j + γ2A2i j M

2
i i A

�
2i j

= γ1θ1i Igi j + γ2θ2i j Igi j ;

and

γ3A2i j A1i A
�
1i A

�
2i j = γ3A2i j Igi A

�
2i j = γ3 Igi j

which, clearly, completes the proof. �

With 0 denoting an adequate null matrix and cov(ν, υ) denoting the cross-
covariance between the random vectors ν and υ, from (9) one might note that the
cross-covariance matrix between the sub-models yi j = A2i j Ai y and ysk = A2sk As y,
i, s = 1, . . . , h1, j, k = 1, . . . , h2i is given by

cov(yi j , ysk) = γ2A2i j A1i M2A
�
1s A

�
2sk =

⎧⎨
⎩

0 i = s; j �= k
λi j i = s; j = k

γ2A2i jW 2
is A

�
2sk i �= s

(10)

with i ≤ s, j ≤ k (symmetry applies), so that, for i �= s, the sub-models yi j and ysk
are correlated and for i = s they are not.

3.2 Estimation for r = 2

From the Sect. 3.1 we see that (with i and j respectively replaced by i1 and i2, for
convenience) w2 = P2P1y produces the following sub-models

yi1i2 ∼ Ngi1 i2
(0gi1 i2

, λi1i2 Igi1 i2 ), i1 = 1, . . . , h1, i2 = 1, . . . , h2i1 , (11)

of the model y ∼ Nn(0n, γ1M1 + γ2M2 + γ3 In), where

λi1i2 = γ1θ1i1 + γ2θ2i1i2 + γ3.

An unbiased estimator of λi1i2 for model (11) is (one based on its maximum
likelihood estimator λ̂i1i2 )

S2i1i2 = y�
i1i2

yi1i2
gi1i2

,

i1 = 1, . . . , h1, i2 = 1, . . . , h2i1 .

Indeed (see Rencher and Schaalje [11, Theorem 5.2a]),
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E(S2i1i2) = 1

gi1i2
tr

{
λi1i2 Igi1 i2

}

= λi1i2 . (12)

Thus

E(S2i1i2) = λi1i2 = γ1θ1i1 + γ2θ2i1i2 + γ3, i1 = 1, . . . , h1, i2 = 1, . . . , h2i1

so that, with S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S211
. . .

S21h21
S221
. . .

S22h22
. . .

. . .

S2h11
. . .

S2h1h2h1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ11 θ211 1
. . . . . . . . .

θ11 θ21h21 1
θ12 θ221 1
. . . . . . . . .

θ12 θ22h22 1
. . . . . . . . .

. . . . . . . . .

θ1h1 θ2h11 1
. . . . . . . . .

θ1h1 θ2h1h2h1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and γ =
⎡
⎣

γ1
γ2
γ3

⎤
⎦, we will have

E(S) = Θγ. (13)

Thus, for i1 = 1, . . . , h1, i2 = 1, . . . , h2i1 , equalizing the variances λi1i2 to the
correspondent estimators S2i1i2 it yields the following system of equations:

S211 = γ1θ11 + γ2θ211 + γ3;
. . . . . . . . . . . . . . . . . . ;

S21h21 = γ1θ11 + γ2θ21h21 + γ3;
S221 = γ1θ12 + γ2θ221 + γ3;
. . . . . . . . . . . . . . . . . .

S22h22 = γ1θ12 + γ2θ22h22 + γ3;
. . . . . . . . . . . . . . . . . . ;
. . . . . . . . . . . . . . . . . . ;
S2h11 = γ1θ1h1 + γ2θ2h11 + γ3;
. . . . . . . . . . . . . . . . . . ;

S2h1h2h1 = γ1θ1h1 + γ2θ2h1h2h1 + γ3;

which in matrix notation becomes

S = Θγ. (14)
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Since by construction θ1i1 �= θ1i ′1
, i1 �= i

′
1 = 1, . . . , h1 (they are the different

eigenvalues of M1) and θ2i1i2 �= θ2i1i
′
2
, i2 �= i

′
2 = 1, . . . , h2i1 (they are the distinct

eigenvalues of M2
i i = A1i1M2A�

1i1 ), it is easily seen that the matrix Θ is a full rank
one; that is r(Θ) = 3.

By Rencher and Schaalje [11, Theorem 2.6d] the matrix

Θ�Θ =

⎡
⎢⎢⎢⎢⎢⎣

∑h1
i1

∑h2i1
i2

θ2
1i1

∑h1
i1

∑h2i1
i2

θ1i1θ2i1i2
∑h1

i1

∑h2i1
i2

θ1i1

∑h1
i1

∑h2i1
i2

θ1i1θ2i1i2
∑h1

i1

∑h2i1
i2

θ2
2i1i2

∑h1
i1

∑h2i1
i2

θ2i1i2

∑h1
i1

∑h2i1
i2

θ1i1
∑h1

i1

∑h2i1
i2

θ2i1i2
∑h1

i1

∑h2i1
i2

⎤
⎥⎥⎥⎥⎥⎦

is positive-definite, and by Rencher and Schaalje [11, Corollary 1], Θ�Θ is non-
singular; we, thus, take its inverse to be (Θ�Θ)−1.

Now, premultiplying the system (14) in both side by Θ� the resulting system of
equations will be

Θ�S = Θ�Θγ, (15)

whose unique solution (and therefore an estimator of γ ) is

γ̂ = (Θ�Θ)−1Θ�S. (16)

γ̂ =
⎡
⎣

γ̂1
γ̂2
γ̂3

⎤
⎦will be referred to as Sub-D estimator and the underlyingmethod referred

to as Sub-D method.

Proposition 2 γ̂ is an unbiased estimator of γ , with γ =
⎡
⎣

γ1
γ2
γ3

⎤
⎦.

Proof Indeed, E(γ̂ ) = E
(
(Θ�Θ)−1Θ�S

) = (Θ�Θ)−1Θ�E(S) = (Θ�Θ)−1

Θ�Θγ = γ . �

Proposition 3 With i ≤ i∗, j ≤ j∗ (symmetry applies),

cov
(
S2i j , S2i∗ j∗

) =

⎧⎪⎨
⎪⎩

(a) i = i∗; j �= j∗ : 0,

(b) i = i∗; j = j∗ : 2
λ2
i j

gi j
,

(c) i �= i∗ : 2γ 2
2 tr(ΩM2),

where Ω = ∇i j M2∇i∗ j∗ , with ∇i j = A�
1i A

�
2i j A2i j A1i

gi j
.

Proof We have that
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cov
(
S2i j , S

2
i∗ j∗

)
= cov

(
y�
i j yi j

gi j
,
y�
i∗ j∗ yi∗ j∗

gi∗ j∗

)

= cov

(
y�

(
A�
1i A

�
2i j A2i j A1i

gi j

)
y, y�

(
A�
1i∗ A

�
2i∗ j∗ A2i∗ j∗ A1i∗

gi∗ j∗

)
y

)

= cov
(
y�∇i j y, y�∇i∗ j∗ y

)

= 2tr
(∇i j V∇i∗ j∗V

)

= 2γ 2
1 tr(∇i j M1∇i∗ j∗ M1) + 2γ1γ2tr(∇i j M1∇i∗ j∗ M2) + 2γ1γ3tr(∇i j M1∇i∗ j∗ )

+ 2γ2γ1tr(∇i j M2∇i∗ j∗ M1) + 2γ 2
2 tr(∇i j M2∇i∗ j∗ M2) + 2γ2γ3tr(∇i j M2∇i∗ j∗ )

+ 2γ3γ1tr(∇i j∇i∗ j∗ M1) + 2γ3γ2tr(∇i j∇i∗ j∗ M2) + 2γ 2
3 tr(∇i j∇i∗ j∗ )

=

⎧⎪⎨
⎪⎩

i = i∗; j �= j∗ : 0,

i = i∗; j = j∗ : 2
λ2i j
gi j

,

i �= i∗ : 2γ 2
2 tr(∇i j M2∇i∗ j∗ M2).

For the case (a), that is i = i∗; j �= j∗, we have that

∇i j M1∇i j∗ = 1

gi j gi j∗
A�
1i A

�
2i j A2i j A1i M1A

�
1i A

�
2i j∗ A2i j∗ A1i

= 1

gi j gi j∗
A�
1i A

�
2i j A2i j

(
θ1i Igi

)
A�
2i j∗ A2i j∗ A1i

= 0gi×gi (see (4) for the explanation); (17)

∇i j M2∇i j∗ = 1

gi j gi j∗
A�
1i A

�
2i j A2i j A1i M2A

�
1i A

�
2i j∗ A2i j∗ A1i

= 1

gi j gi j∗
A�
1i A

�
2i j A2i j

(
M2

i i

)
A�
2i j∗ A2i j∗ A1i

= 0gi×gi (see (8) for the explanation); (18)

∇i j∇i j∗ = 1

gi j gi j∗
A�
1i A

�
2i j

(
0gii×gi j∗

)
A2i j∗ A1i

= 0gi×gi . (19)

Therefore, (17)–(19) together with Schott [12, Theorem 1.3.(d)] proves the case
(a).

For the case (c), that is i �= i∗, the desired result becomes clear if use the Theorem
1.3.(d) of Schott [12] and note that

A1i M1A1i∗ = A1i A1i∗ = 0gi×gi∗ .
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Finally, for the case (b), that is i = i∗; j = j∗, recalling yi j ∼ Nn
(
0gi j , λi j Igi j

)
,

it holds

cov
(
S2i j

) = Σ

(
y�
i j yi j

gi j
,
y�
i j yi j

gi j

)
= 2tr

{
λi j

gi j
Igi j

λi j

gi j
Igi j

}
= 2

λ2
i j

g2i j
tr

{
Igi j

}

= 2
λ2
i j

gi j
, (20)

and therefore the proof is complete. �

Thenext result introduce thevariance-covariancematrix of the sub-diagonalization
estimator:

γ̂ = (Θ�Θ)−1Θ�S.

Proposition 4 In order to simplify the notation, let ΣSi j Skl denote cov(S2i j , S2kl).
Then,

cov(γ̂ ) = (Θ�Θ)−1Θ�cov(S)Θ(Θ�Θ)−1, (21)

where cov(S) =

⎡
⎢⎢⎢⎢⎢⎣

D1 Λ12 Λ13 . . . Λ1h1
Λ21 D2 Λ23 . . . Λ2h1
Λ31 Λ32 D3 . . . Λ3h1
...

...
...

. . .
...

Λh11 Λh12 Λh13 . . . Dh1

⎤
⎥⎥⎥⎥⎥⎦
, with Di = 2

⎡
⎢⎢⎢⎢⎢⎣

λ2
i1

gi1
0 . . . 0

0 λ2
i2

gi2
. . . 0

...
...

. . .
...

0 0 . . .
λ2
ih2i

gih2i

⎤
⎥⎥⎥⎥⎥⎦

and

Λks =

⎡
⎢⎢⎢⎣

ΣSk1Ss1 ΣSk1Ss2 . . . ΣSk1Ssh2s
ΣSk2Ss1 ΣSk2Ss2 . . . ΣSk2Ssh2s

...
...

. . .
...

ΣSkh2k Ss1
ΣSkh2k Ss2

. . . ΣSkh2k Ssh2s

⎤
⎥⎥⎥⎦.

Proof The proof is a consequence of the Proposition 3. �

3.3 The General Case: r ≥ 1

Now, without lost in generality, lets consider the generalMLM in (2):

y ∼ Nn

(
0n,

r+1∑
d=1

γdMd

)
, with Md = Xd X

�
d ∈ S n and Mr+1 = In.
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One may note that y = ∑r+1
d=1 B

�
o Xdβd , where βd ∼ N(0, γd I ), d = 1, . . . , r ,

βr+1 ∼ N(0, γd In), and β1, . . . , βr+1 are not correlated.
With i1 = 1, . . . , h1, i j = 1, . . . , h j,i1,...,i j−1 , consider the finite sequence of r

matrices P1, P2, …, Pr defined as follow:

P1 =

⎡
⎢⎢⎢⎣

A11

A12
.
.
.

A1h1

⎤
⎥⎥⎥⎦ ∈ M

(∑h1
i1

gi1

)
×n

, with A1i1 ∈ M (gi1 )×n

(
note:

h1∑
i1

gi1 = n

)
; (22)

P2 =

⎡
⎢⎢⎢⎣

P21 0 . . . 0
0 P22 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . P2h1

⎤
⎥⎥⎥⎦ ∈ M

(∑h1
i1

∑h2,i1
i2

gi1 i2

)
×

(∑h1
i1

gi1

)
, where

P2i1 =

⎡
⎢⎢⎢⎣

A2i11

A2i12
.
.
.

A2i1h2i1

⎤
⎥⎥⎥⎦ ∈ M

(∑h2,i1
i2

gi1 i2

)
×gi1

, with

h2,i1∑
i2

gi1i2 = gi1 and A2i1i2 ∈ M gi1 i2×gi1 ;

P3 =

⎡
⎢⎢⎢⎣

P31 0 . . . 0
0 P32 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . P3h1

⎤
⎥⎥⎥⎦ ∈ M

(∑h1
i1

∑h2,i1
i2

∑h3,i1,i2
i3

gi1 i2 i3

)
×

(∑h1
i1

∑h2,i1
i2

gi1 i2

)

,

where P3i1 =

⎡
⎢⎢⎢⎣

P3i11 0 . . . 0
0 P3i12 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . P3i1h2,i1

⎤
⎥⎥⎥⎦ ∈ M

(∑h2,i1
i2

∑h3,i1,i2
i3

gi1 i2 i3

)
×

(∑h2,i1
i2

gi1 i2

)

and

P3i1i2 =

⎡
⎢⎢⎢⎣

A3i1i21

A3i1i22
.
.
.

A3i1i2h3,i1,i2

⎤
⎥⎥⎥⎦ ∈ M

(∑h3,i1,i2
i3

gi1 i2 i3

)
×gi1 i2

, with

h3,i1,i2∑
i3

gi1i2i3 = gi1i2 and

A3i1i2i3 ∈ M gi1 i2 i3×gi1 i2 ;

Thus, for r ≥ 2, each matrix Pr will be given by (P1 is given in (22)):
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Pr =

⎡
⎢⎢⎢⎣

Pr1 0 . . . 0
0 Pr2 . . . 0
...

...
. . .

...

0 0 . . . Prh1

⎤
⎥⎥⎥⎦ (23)

∈ M

(∑h1
i1

...
∑hr,i1 ,...,ir−1

ir
gi1 ...ir

)
×

(∑h1
i1

...
∑h(r−1),i1 ,...,ir−2

i(r−1)
gi1 ...i(r−1)

)

,

where

Pri1 =

⎡
⎢⎢⎢⎣

Pri11 0 . . . 0
0 Pri12 . . . 0
...

...
. . .

...

0 0 . . . Pri1h2,i1

⎤
⎥⎥⎥⎦

∈ M

(∑h2,i1
i2

...
∑hr,i1 ,...,ir−1

ir
gi1 ...ir

)
×

(∑h2,i1
i2

...
∑h(r−1),i1 ,...,ir−2

i(r−1)
gi1 ...i(r−1)

)

,

. . . . . . . . . . . . . . .

Pri1...i(r−2) =

⎡
⎢⎢⎢⎣

Pri1...i(r−2)1 0 . . . 0
0 Pri1...i(r−2)2 . . . 0
...

...
. . .

...

0 0 . . . Pri1...i(r−2)hr−1,i1 ,...,ir−2

⎤
⎥⎥⎥⎦

∈ M

(∑h(r−1),i1 ,...,ir−2
i(r−1)

∑hr,i1 ,...,ir−1
ir

gi1 ...ir

)
×

(∑h(r−1),i1 ,...,ir−2
i(r−1)

gi1 ...i(r−1)

)

,

and Pri1...i(r−1) =

⎡
⎢⎢⎢⎣

Ari1...i(r−1)1

Ari1...i(r−1)2
...

Ari1...i(r−1)hr,i1 ,...,ir−1

⎤
⎥⎥⎥⎦ ∈ M

(∑hr,i1 ,...,ir−1
ir

gi1 ...ir

)
×gi1 ...i(r−1)

,

with

hr,i1 ,...,ir−1∑
ir

gi1...ir = gi1...i(r−1) ,

h1∑
i1

gi1 = n, Ari1...ir ∈ M gi1 ...ir ×gi1 ...i(r−1) ;

Theorem 1 Let the matrices P1, P2, . . . , Pr defined above be such that:

(c1) The columns of A�
1i1 , i1 = 1, . . . , h1, form a set of gi1 = r(A�

1i1) orthonormal
eigenvectors associated to the eigenvalues θ1i1 of the matrix M1 (θ1i1 has mul-
tiplicity gi1);
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(c2) The columns of A�
2i1i2 , i2 = 1, . . . , h2,i1 , form a set of gi1i2 = r(A�

2i1i2) ortho-
normal eigenvectors associated to the eigenvalues θ2i1i2 of the matrix M2

i1i1
=

A1i1M2A�
1i1 (θ2i1i2 has multiplicity gi1i2 );

(c3) The columns of A�
3i1i2i3 , i3 = 1, . . . , h3,i1,i2 , form a set of gi1i2i3 = r(A�

3i1i2i3)

orthonormal eigenvectors associated to the eigenvalues θ3i1i2i3 of the matrix

A2i1i2M
3
i1i1 A

�
2i1i2 = A2i1i2 A1i1M3A

�
1i1 A2i1i2

(θ3i1i2i3 has multiplicity gi1i2i3);
…………

(cr ) The columns of A�
ri1...ir

, ir = 1, . . . , hr,i1,...,ir−1 , form a set of gi1...ir = r(A�
ri1...ir

)

orthonormal eigenvectors associated to the eigenvalues θri1...ir of the matrix

A(r−1)i1...i(r−1) . . . A1i1Mr A
�
1i1 . . . A�

(r−1)i1...i(r−1)

(θri1...ir has multiplicity gi1...ir ).

Then each matrix Pd , d = 1, . . . , r , in the finite sequence of matrices
P1, P2, . . . , Pr will be an orthogonal matrix.

Proof By the way Pd is defined (see (23)), since

Pdi1...i(d−1) =

⎡
⎢⎢⎢⎣

Adi1...i(d−1)1

Adi1...i(d−1)2
...

Adi1...i(d−1)hd,i1 ,...,id−1

⎤
⎥⎥⎥⎦ , i(d−1) = 1, . . . , h(d−1),i1,...,id−2 ,

and according with condition cd we see that the matrices Pdi1...i(d−1) are orthog-
onal. Thus, the desired result comes if we see that P�

d Pd will be a diagonal
blockwise matrix whose diagonal entries are P�

di1
Pdi1 , i1 = 1, . . . , h1. The diag-

onal entries P�
di1

Pdi1 will be diagonal blockwise matrices whose diagonal entries
will be P�

di1i2
Pdi1i2 , i2 = 1, . . . , h2,i1 . Proceeding this way d − 2 times, we will

find that the diagonal entries of the blockwise matrices P�
di1...i(d−2)

Pdi1...i(d−2) , i(d−2) =
1, . . . , h(d−2),i1,...,id−3 , will be

P�
di1...i(d−1)

Pdi1...i(d−1) = A�
di1...i(d−1)1Adi1...i(d−1)1

+ · · · + A�
di1...i(d−1)hd,i1,...,id−1

Adi1...i(d−1)hd,i1,...,id−1

= Igi1 ...i(d−1)
,

reaching, therefore, the desired result. Proceeding in same way we would also see
that Pdi1...i(d−1) P

�
di1...i(d−1)

is a Blockwise diagonal matrix whose diagonal entries are

Adi1...i(d−1)1A
�
di1...i(d−1) j

, j = 1, . . . , hd,i1,...,id−1 , so that Pd P
�
d is an identity matrix. �
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The model wr = Pr . . . P2P1y will produces the following sub - models:

yi1...ir = Ari1...ir A(r−1)i1...i(r−1) . . . A2i1i2 A1i1 y,

i1 = 1, . . . , h1, i j = 1, . . . , h j,i1,...,i j−1 .

We summarize the distribution of each of the sub-model yi1...ir in the following
result.

Proposition 5
yi1...ir ∼ Ngi1 ...ir

(
0gi1 ...ir

, λi1...ir Igi1 ...ir

)
,

where λi1...ir = ∑r
d=1 γdθdi1...id + γr+1.

Proof The proof becomes obvious after looking to the proofs of the Proposition 1.
�

From the results about cross-covariance on the preceding sections we easily con-
clude that the cross-covariance matrix between the sub-models yi1...ir and yi∗1 ...i∗r , with
i1, i∗1 = 1, . . . , h1; i j , i∗j = 1, . . . , h j,i1,...,i j−1 , is given by

cov(yi1...ir , yi∗1 ...i∗r ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 i1 = i∗1 ,

λi1...ir i j = i∗ j
j = 1, . . . , h j,i1,...,i j−1∑r

d=2 γd Ari1...ir . . . A1i Md A�
1i∗1

. . . Ari∗1 ...i∗r i1 �= i∗1

so that, for i1 �= i∗1 , the sub-models yi1...ir and yi∗1 ...i∗r are correlated and for i1 = i∗1
they are not.

3.4 Estimation for the General Case: r ≥ 1

Recalling that for theMLM in (1), Pr . . . P2P1y produces the following sub-models

yi1i2...ir ∼ Ngi1 i2 ...ir
(0gi1 ...ir

, λi1i2...ir Igi1 i2 ...ir
),

i1 = 1, . . . , h1, i j = 1, . . . , h j,i1,...,i j−1 (24)

where

λi1i2...ir =
r∑

d=1

γdθdi1...id + γr+1.

The matrices Pd , d = 1, . . . , r , are defined in the Sect. 3.3.
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An unbiased estimator of λi1i2...ir in the sub-model (24) is (the one based on its
maximum likelihood estimator λ̂i1i2...ir )

S2i1i2...ir = 1

gi1i2...ir
y�
i1i2...ir yi1i2...ir

Indeed (see Rencher and Schaalje [11], Theorem 5.2(a), and the explanation for
(12)),

E
(
S2i1i2...ir

) = λi1i2...ir

gi1i2...ir
tr

[
Igi1 i2 ...ir

]

= λi1i2...ir . (25)

For convenience, in what follows, instead of S2i1i2...ir , we may sometimes use the
notation S2i1i2...i(r−1)ir

.
Thus

E(S2i1i2...i(r−1)ir ) =
r∑

d=1

γdθdi1...id + γr+1

= γ1θ1i1 + γ2θ2i1i2 + · · · + γrθri1i2...i(r−1)ir + γr+1,

i1 = 1, . . . , h1; i j = 1, . . . , h j,i1,...,i j−1

so that, with S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S211...11
S211...12
. . .

S211...1hr,1,...,1
S211...21
. . .

S211...2hr,1,...,2
. . .

. . .

. . .

S2h11...11
. . .

. . .

. . .

S2h1h2,h1 ...hr,h1 ,...,hr−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ11 θ211 θ3111 . . . θr11...11 1
θ11 θ211 θ3111 . . . θr11...12 1
. . . . . . . . . . . . . . . . . .

θ11 θ211 θ3111 . . . θr11...1hr,1,...,1,hr−1
1

θ11 θ211 θ3111 . . . θr11...21 1
. . . . . . . . . . . . . . . . . .

θ11 θ211 θ3111 . . . θr11...2hr,1,...,2,hr−1
1

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

θ1h1 θ2h11 θ3h111 . . . θrh11...11 1
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

θ1h1 θ2h1h2,h1 θ3h1h2,h1h3,h1 ,h2
. . . θrh1h2,h1 ...h(r−1),h1 ,...,hr−2 hr,h1 ,...,hr−1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
γ3
. . .

. . .

γr
γ(r+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, we will have

E(S) = Θγ. (26)

Thus, for i1 = 1, . . . , h1, i j = 1, . . . , h j,i1,...,i j−1 , j > 1, equalizing the variances
λi1i2...ir to the correspondent estimators S2i1i2...ir it yields the following system of
equations (in matrix notation)

S = Θγ. (27)

Since by construction θ1i1 �= θ1i ′1
(they are the different eigenvalues ofM1), θ2i1i2 �=

θ2i1i
′
2
(they are the distinct eigenvalues of M2

i i = A1i1M2A�
1i1 ), θ3i1i2i3 �= θ3i1i2i

′
3
(they

are the distinct eigenvalues of A2i1i2 A1i1M2A�
1i1 A

�
2i1i2), …, θri1i2...i(r−1)ir �= θri1i2...i(r−1)i

′
r

(they are the distinct eigenvalues of A(r−1)i1i2...i(r−1) . . . A1i1Mr A�
1i1 . . . A�

(r−1)i1i2...i(r−1)
)

where i j �= i
′
j , j = 1, . . . , r , it is easily seen that the matrix Θ is of full rank; that

is r(Θ) = r + 1.
According with Theorem 2.6d (Rencher and Schaalje [11]), with

∑
denoting∑h1

i1

∑h2,i1
i2

. . .
∑hr,i1 ,...,ir−1

ir
, the matrix
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Θ�Θ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
θ21i1

∑
θ1i1θ2i1i2

∑
θ1i1θ3i1i2i3 . . .

∑
θ1i1θri1...ir

∑
θ1i1

∑
θ1i1θ2i1i2

∑
θ22i1i2 θ2i1i2θ3i1i2i3 . . .

∑
θ2i1i2θri1...ir

∑
θ2i1i2

∑
θ1i1θ3i1i2i3

∑
θ2i1i2θ3i1i2i3

∑
θ23i1i2i3 . . .

∑
θ3i1i2i3θri1...ir

∑
θ3i1i2i3

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

∑
θ1i1θri1...ir

∑
θ2i1i2θri1...ir

∑
θ3i1i2i3θri1...ir . . .

∑
θ2ri1...ir

∑
θri1...ir

∑
θ1i1

∑
θ2i1i2

∑
θ3i1i2i3 . . .

∑
θri1...ir

∑

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is positive-definite, and according with Corollary 1 of (Rencher and Schaalje [11],
p. 27)Θ�Θ is non-singular; that is, it is invertible.Wedenote its inverse by (Θ�Θ)−1.

Now, premultiplying the system (27) in both side by Θ� the resulting system of
equations will be

Θ�S = Θ�Θγ, (28)

whose unique solution (and therefore an estimator of γ ) will be the Sub-D estimator

γ̂ = (Θ�Θ)−1Θ�S. (29)

Proposition 6 γ̂ = (Θ�Θ)−1Θ�S is an unbiased estimator of

γ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
γ3
. . .

. . .

γr
γ(r+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ̂1
γ̂2
γ̂3
. . .

. . .

γ̂r
ˆγ(r+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Indeed, E(γ̂ ) = E
(
(Θ�Θ)−1Θ�S

) = (Θ�Θ)−1Θ�E(S) = (Θ�Θ)−1Θ�Θγ =
γ .

4 Numerical Results

In this section we carry numerical tests to the sub-diagonalization method for the
case r = 2, that is for a model with 3 variances components. For this case we pick
the particular model z ∼ N21 (Xβ, γ1N1 + γ2N2 + γ3 I21), where N j = X j X�

j , j =
1, 2, with design matrices
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X1 =
⎡
⎣
15 05 05
09 19 09
07 07 17

⎤
⎦ , X2 =

⎡
⎢⎢⎢⎢⎣

12 02 02
04 14 04
08 08 18
14 04 04
03 13 03

⎤
⎥⎥⎥⎥⎦

,

and X = 121. 1k and 0k denote, respectively, k × 1 vectors of 1 and 0.
Let Bo be a matrix whose columns are the eigenvectors associated to the null

eigenvalues of 1
21 J21. Then BoB�

o = I21 − 1
21 J21 and B�

o Bo = I20, and so the new
model will be

y = B�
o z ∼ N20 (020, γ1M1 + γ2M2 + γ3 I20) ,

where Md = B�
o Nd Bo.

Since r(N1) = 3 we have that (see Schott [12, Theorem 2.10c]) r(M1) =
r(B�

0 N1B0) = 3. The eigenvalues of M1 are θ11 = 7.979829, θ12 = 5.639219, and
θ13 = 0 (θ13 with multiplicity (root) equal to 18). Thus we have that M2

11 =
A11M2A�

11 = 5.673759 and M2
22 = A12M2A�

12 = 0.6246537 will be 1 × 1 matrices,
and M2

33 = A13M2A�
13 an 18 × 18 matrix.

We have the following: M2
11 has eigenvalue θ211 = 5.673759; M2

22 has eigen-
value θ221 = 0.6246537; M2

33 has 3 eigenvalues: θ231 = 6.390202; θ232 = 1.216148;
θ233 = 0 (θ233 with multiplicity equal to 16).

Finally we found that

S� = [190.779246 8.866357 5.234293 53.654627 1.334877]

and Θ =

⎡
⎢⎢⎢⎢⎣

7.979829 5.6737590 1
5.639219 0.6246537 1

0 6.3902016 1
0 1.2161476 1
0 0 1

⎤
⎥⎥⎥⎥⎦
.

With βk ∼ N20 (03, γk I3), k = 1, 2, and e ∼ N20(020, γ3 I20), and taking γ3 = 1,
the model can be rewritten as y = B�

o X1β1 + B�
o X2β2 + B�

o e.
We consider γ1 and γ2 taking values in {0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10}. Thus,

for each possible combination of γ1 and γ2, the model y is observed 1000 time,
and for each observation the sub-diagonalization method is applied and the variance
components estimated for each observed y. The Tables 1 and 3 present the ave-
rage of the estimated values of γ1 and γ2, respectively. In order to compare the sub-
diagonalizationmethod performancewith theREML, for the same 1000 observations
of y, the REML method is applied and the results presented in both Tables 2 and 4.

Taking a look at tables, and comparing the averages estimated values from the sub-
diagonalization method to the ones of the REMLmethods (see Tables 1, 2, 3, and 4),
the reader may easily concludes that the results provided by the sub-diagonalization
method are in general slightly more realistic. In other hand, the averages variability
of the sub-diagonalization methods is relatively higher than those of REML method
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(see Tables 5, 6, 7, and 8); this is because of the correlation between the sub-models.
This gap will be fixed in future works.

5 Concluding Remarks

Besides its simple and fast computational implementation once it depends only on
the information retained on the eigenvalues of the design matrices and the quadratic
errors of the model, Sub-D provides centered estimates whether for balanced or
unbalanced designs, which is not the case of estimators based on ANOVA methods.
As seen at Sect. 4, Sub-D provides a slightly more realistic estimates than the REML
estimator, but with more variability (when the model is balanced they have a compa-
rable variability). However, since in any computational program (source code) when
we are interested in share the code, create package or use it repeatedly, we might
consider its efficiency and, for this matter, the code run-time constitutes a good start
point. Doing so, to compute the estimates and the corresponding variance for each
pair γ1 and γ2 taking values in {0.25, 0.5, 1, 2, 5, 10}, for 1000 observations of the
model, we found that the Sub-D run-time is about 0.25 s while the REML estimator
run-time is about 35.53 s, which means that the code for Sub-D is more than 70 times
faster than the one for REML. The code was run using R software.

It seems that the problem of the little higher variability in Sub-D comparing to
REML estimator is due to the correlation between the sub-models (for the case
of models with three variance components, for example) yi j , i = 1, . . . , h1, j =
1, . . . , h2hi . From (10) we see that the variance components matrix of the model
w2 = P2P1y is a blockwise matrix whose diagonal matrices are D1,. . ., Dh1 , where
Di = diag(λi1, . . . , λih2i ), corresponding to cov(yi j , ysk) for i = s, j = k, and the
off diagonal matrices are the non-null matrices γ2A2i jW 2

is A2sk , corresponding to
cov(yi j , ysk) for i �= s. This problem will be handled in future work. Confidence
region will be obtained and tests of Hypothesis for the variance components will be
derived in future works.
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Appendix

Table 1 Sub-diagonalization method - average estimate for γ1

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.0917 0.0984 0.0828 0.1162 0.0833 0.1052 0.1102 0.1053

0.25 0.2716 0.2954 0.2698 0.2538 0.3041 0.2882 0.1993 0.3322

0.5 0.5010 0.5127 0.4929 0.5088 0.5297 0.4613 0.5314 0.5569

0.75 0.7279 0.7683 0.7685 0.7755 0.7693 0.7504 0.6982 0.8215

1 1.0305 1.0293 1.0143 0.9971 1.0309 1.0013 1.0046 1.0809

2 1.9844 2.0004 2.0032 1.9702 2.0827 2.0893 2.0643 2.2640

5 5.1864 5.0386 4.9128 5.0722 5.2111 5.0170 4.8472 5.1269

10 9.6167 10.1588 10.2468 10.1263 9.6940 9.9046 10.0246 9.8474

Table 2 REML method - average estimate for γ1

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1431 0.1683 0.1779 0.1884 0.1975 0.2154 0.2189 0.2156

0.25 0.2872 0.3157 0.3379 0.3286 0.3416 0.3316 0.3740 0.3480

0.5 0.5191 0.5546 0.5244 0.5637 0.6110 0.5897 0.6469 0.6281

0.75 0.7271 0.7620 0.7587 0.7908 0.8159 0.8245 0.8373 0.8241

1 1.0300 1.0026 1.0245 1.0172 1.0138 1.0726 1.0352 1.0515

2 1.9343 1.9884 1.9565 2.0178 2.1510 2.1482 2.0774 2.2323

5 5.1267 4.9747 4.7743 5.0955 5.1395 4.9907 4.8066 4.8150

10 9.5043 10.0881 10.1912 10.0269 9.4706 9.7784 9.9445 9.6754

Table 3 Sub-diagonalization method - average estimate for γ2

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1026 0.2643 0.5147 0.7147 1.0286 1.9595 4.9390 9.9718

0.25 0.1051 0.2589 0.4918 0.7827 1.0172 2.0427 4.8713 9.7690

0.5 0.0903 0.2323 0.5043 0.7865 1.0117 1.9496 4.8136 9.8913

0.75 0.0855 0.3068 0.5144 0.7676 1.1207 2.0762 4.7910 9.7847

1 0.0581 0.2746 0.5052 0.7969 1.0035 2.1009 5.0871 10.2702

2 0.0902 0.2966 0.6198 0.7870 0.9909 1.9605 5.217 9.7318

5 0.1759 0.3403 0.5565 0.7276 1.0007 2.036 4.8617 9.7160

10 0.1614 0.2562 0.5649 0.7481 0.9934 2.1402 5.1631 10.1369
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Table 4 REML method - average estimate for γ2

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1539 0.2701 0.5143 0.7095 0.9992 1.9007 4.9153 9.9579

0.25 0.1630 0.2965 0.5165 0.7840 1.0271 2.0990 4.7929 9.5820

0.5 0.1867 0.3061 0.5490 0.7964 1.0400 1.9358 4.7022 9.6481

0.75 0.1976 0.3501 0.5480 0.8079 1.0678 2.1196 4.6759 9.7793

1 0.2008 0.3289 0.5488 0.8134 1.0282 2.0205 5.0126 10.3663

2 0.2186 0.3379 0.5703 0.8469 1.0249 1.9900 5.4291 9.5900

5 0.2198 0.3799 0.5603 0.7773 1.0027 2.0142 4.7727 9.6886

10 0.2284 0.3551 0.5906 0.7792 1.1087 2.0735 4.9235 10.0843

Table 5 Sub-diagonalization method - variation of the estimated γ1

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1264 0.2253 0.4626 0.8296 1.2005 4.3832 19.6631 83.6993

0.25 0.2637 0.3814 0.6248 1.0775 1.5931 4.7676 20.1332 72.7948

0.5 0.5737 0.7863 1.1830 1.7217 2.3142 4.7103 22.8545 78.2997

0.75 0.9224 1.2110 1.5779 2.0896 3.3078 7.4140 20.7793 77.7225

1 77.7225 1.8328 2.4022 2.9417 3.8380 7.6562 27.1356 101.9337

2 4.8401 5.6613 6.9492 6.8652 8.4356 13.2666 37.4524 107.8436

5 30.5767 31.3904 34.2362 36.0102 36.5273 43.1085 72.8085 157.0055

10 111.1505 117.9503 114.2234 120.8808 124.3445 138.0213 192.7288 288.9592

Table 6 Sub-diagonalization method - variation of the estimated γ2

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.1532 0.2972 0.6524 1.1154 2.0379 6.4364 33.8728 138.7916

0.25 0.2379 0.4537 0.7838 1.3616 2.0686 7.7435 32.4170 112.701

0.5 0.5232 0.7162 1.1545 1.7515 2.7932 6.1609 31.2810 117.2392

0.75 0.7703 1.0841 1.4314 1.9380 3.3226 7.6266 35.7370 139.0834

1 1.1496 1.4291 1.8988 2.6630 3.6221 8.7960 39.6377 159.5489

2 3.8362 4.5207 4.6976 5.5365 6.9396 11.6933 47.5170 140.7587

5 21.0152 22.2408 24.2194 24.0984 29.4643 34.2175 65.9059 176.7041

10 81.3183 82.3035 89.9235 85.9040 85.1849 93.4313 153.1855 265.6179
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Table 7 REML method - variation of the estimated γ1

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.07807 0.0880 0.1324 0.1579 0.1801 0.2524 0.2679 0.2052

0.25 0.20365 0.2229 0.2729 0.2676 0.3350 0.3365 0.4485 0.3235

0.5 0.4747 0.6030 0.5822 0.7576 0.8165 0.7607 0.8321 0.9255

0.75 0.8896 0.9458 1.0035 1.1702 1.2667 1.2627 1.2131 1.4153

1 1.4500 1.4368 1.7622 1.7407 1.8813 1.9144 1.8597 1.9659

2 4.6049 4.9522 4.8249 5.6586 6.0638 6.3735 6.0565 7.8698

5 28.4367 29.6686 29.0413 32.1312 29.1439 28.4656 28.1731 29.3058

10 106.6903 108.3732 106.734 105.7222 106.4887 101.2775 111.1112 104.9005

Table 8 REML method - variation of the estimated γ2

γ1/γ2 0.1 0.25 0.5 0.75 1 2 5 10

0.1 0.0833 0.1798 0.5192 0.7836 1.4306 4.8877 27.2749 100.2321

0.25 0.0914 0.2295 0.5842 0.9688 1.5517 6.1586 25.9314 92.9996

0.5 0.1260 0.2744 0.5607 1.2902 1.8142 4.4948 23.3488 94.9688

0.75 0.1534 0.3081 0.6120 1.2712 1.6747 5.9940 26.5791 110.6777

1 0.1732 0.3270 0.6852 1.2331 1.8197 5.2857 29.3231 126.1761

2 0.2289 0.3608 0.7416 1.5226 1.7834 5.7763 31.7812 101.8187

5 0.2399 0.4452 0.8946 1.2738 1.6384 5.2879 26.9691 97.7408

10 0.2280 0.4149 0.7789 1.2234 2.1941 5.7251 31.2616 98.4346
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