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Abstract AnM∨-matrix A has the form A = sI − B, with B an eventually nonneg-
ative matrix and s ≥ ρ(B), the spectral radius of B. In this paper we study iterative
procedures associated with a splitting of A, to solve the linear system Ax = b, with
the coefficient matrix A an M∨-matrix. We generalize the concepts of regular and
weak regular splitting of a matrix using the notion of eventually nonnegative matrix,
and term them asE-regular andweakE-regular splitting, respectively.We obtain nec-
essary and sufficient conditions for the convergence of these types of splittings. We
also discuss the convergence of Jacobi and Gauss-Seidel splittings forM∨-matrices.

Keywords E-regular splitting ·Weak E-regular splitting · Jacobi splitting · Gauss-
Seidel splitting

1 Introduction

Consider the linear system
Ax = b (1)

where x, b ∈ Rn and A ∈ Rn,n, is an invertible matrix. An iterative technique to
solve the linear system (1) involves an initial approximation x0 to the solution x
and determines a sequence {xk} that converges to the exact solution x. Most of these
methods reduce to the iterative scheme xk+1 = Hxk + c, with k ≥ 0,where thematrix
H is called an iteration matrix of the system (1). It is well known that the iterative
scheme converges to the exact solution x of (1) if and only if ρ(H) < 1 for ρ(H) the
spectral radius of H.

As it iswell knownwith a splittingA = M − N ofA, onemay associate an iterative
scheme
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xk+1 = M−1Nxk + M−1b (2)

for solving the system (1) (see [2, 15]), and the convergence of such iterative scheme
depends on the spectral radius of M−1N . An M-matrix has the form A = sI − B
with B a nonnegative matrix and s ≥ ρ(B). To solve (1) with the coefficient matrix
A an M-matrix, deserves attention due to its occurrence in a wide variety of areas
including finite difference method for solving partial differential equations. In [8],
the authors considered such system of linear equations with A an M-matrix, and
the convergence of iterative scheme (2) was obtained via regular and weak regular
splittings of A, concept introduced in [12, 15].

Initiated by Friedland [7], attempts were made to study generalized nonnegative
matrices, called eventually nonnegative matrices (see [3, 4, 6, 9, 10]), and sub-
sequently generalized M-matrices were studied (see [5, 11]). In [11], the authors
introducedM∨-matrices,which have the formA = sI − B, whereB is eventually non-
negative and s ≥ ρ(B). Thereafter, in [13, 14], researchers studied some combinato-
rial properties of this class of matrices. One of the reason that motivated researchers
to study this class of matrices is due to its occurrence in engineering, biological and
economic applications (see [1]).

Elhashash and Szyld in [5], generalized the concept of regular and weak regular
splitting based on Perron-Frobenius property and studied the convergence of such
splittings for another generalization of M-matrices, known as GM-matrices. In this
paper, we are concerned with the system (1), where the coefficient matrix A is an
M∨-matrix.Wegeneralize regular andweak regular splitting using the notion of even-
tually nonnegative matrices, to study the convergence of the iterative scheme (2).

The paper proceeds as follows. In Sect. 2, we consider the basic definitions and
some preliminary notations. In Sect. 3, we generalize the concept of regular andweak
regular splitting and discuss the convergence of the iterative scheme (2), when the
coefficient matrix A in (1) is a nonsingularM∨-matrix. In particular, we concern with
the convergence of Jacobi and Gauss-Seidel methods for such type of linear systems.
Lastly, in Sect. 4, we consider singular linear systems and derive a necessary and
sufficient condition for semi-convergence of the linear system (1).

2 Notations and Preliminaries:

Let Rm,n denote the set of all m × n real matrices. We say a matrix A ∈ Rm,n is
nonnegative (or positive) if aij ≥ ( or >)0, for all i, j, and we denote it by A ≥
0 (or A > 0). For any matrix A ∈ Rn,n, and for any negative integer k with 0 <

|k| < n, tril(A, k) is the lower triangular part of A with aij = 0 for i = j + r, r =
0, 1, 2, . . . , |k| − 1, and for any positive integer k with 0 < k < n, triu(A, k) is the
upper triangular part of A with aij = 0 for j = i + r, r = 0, 1, 2, . . . , k − 1.

The spectral radius ofA is denoted by ρ(A), and by σ(A), wemean the spectrum of
A. Letλ ∈ σ(A), then indexλ(A) defines the size of the largest Jordan block associated
with λ. When A is singular, we simply write index(A) for index0(A).

We begin with some preliminary definitions.
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Definition 1 ([11]) A matrix B is said to be an eventually nonnegative matrix if
there exists a positive integer k0 such that Bk ≥ 0 for all k ≥ k0. A matrix A which
has the form A = sI − B, with eventually non-negative B and s ≥ ρ(B), is called an
M∨-matrix.

Definition 2 ([9]) A matrix B is said to possess Perron-Frobenius property if there
exists a nonnegative vector y �= 0 such that By = ρ(B)y. By WPFn, we denote the
collectionof allmatricesB ∈ Rn,n such that bothB andBT possessPerron-Frobenious
property.

Definition 3 ([12, 15]) Recall that a splitting of a matrix A is of the form

A = M − N (3)

with a nonsingular matrix M. Then the splitting (3) is called

(i) a nonnegative splitting ifM−1N ≥ 0.
(ii) a regular splitting if M−1 ≥ 0 and N ≥ 0.
(iii) a weak regular splitting ifM−1N ≥ 0 and M−1 ≥ 0.

Lemma 1 ([2]) Let A = M − N ∈ Rn,n with nonsingular matrices A and M. Then
for H = M−1N and c = M−1b, the iterative method (2) converges to the solution
A−1b of (1) for each x0 if and only if ρ(H) < 1.

The following definition is due to Elhashash and Syzld, which generalized the above
definition.

Definition 4 ([6]) A splitting A = M − N is called a Perron-Frobenius splitting if
M−1N is a nonnilpotent matrix having the Perron-Frobenius property.

3 Splitting of NonsingularM∨-matrices

In this section we generalize the concepts of regular and weak regular splitting using
the notion of eventually nonnegativematrices and call them asE-regular andweakE-
regular splitting, respectively.We study the convergence of such types of splittings for
nonsingular A. We also obtain sufficient conditions for the convergence of classical
Jacobi and Gauss-Seidel iterative methods, in case the coefficient matrix A of (1) is
a nonsingularM∨-matrix. We now define the new splittings introduced in this paper.

Definition 5 For A ∈ Rn,n, a splitting of A is defined as A = M − N , with nonsin-
gular M. The splitting A = M − N is said to be an E-regular splitting if both M−1

and N are nonnilpotent eventually nonnegative matrices.
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Definition 6 For A ∈ Rn,n, a splitting A = M − N is said to be a weak E-regular
splitting if both M−1N and M−1 are nonnilpotent eventually nonnegative matrices.

We now consider the iterative schemes (2) starting with two different initial
approximations and show that their convex combination approximates the exact
solution A−1b of (1). We also give a sufficient condition for the existence such initial
guess.

Theorem 1 Let A = M − N with nonsingularmatricesAandM, and let the iterative
matrix H = M−1N be a nonnilpotent eventually nonnegative matrix. Consider the
system (1) and the iterative scheme (2).

(i) If there exist vectors x0 and y0 such that x0 ≤ x1, x0 ≤ y0, y0 ≤ y1, where x1

and y1 are computed from the iterative scheme (2) with initial values x0 and y0,
respectively, then there exists k0 such that

xk0 ≤ xk0+1 ≤ . . . ≤ xk ≤ . . . ≤ A−1b ≤ . . . ≤ yk ≤ . . . ≤ yk0+1 ≤ yk0 (4)

and for any scalar λ

A−1b = λ lim
k→∞

xk + (1 − λ) lim
k→∞

yk . (5)

(ii) If the iterative scheme (2) converges, then the existence of such x0 and y0 is
ensured.

Proof (i) As H is eventually nonnegative, so there exists a positive integer k0 such
that Hk ≥ 0, for all k ≥ k0. Equation (2) implies that for any k ≥ k0 we have

xk = Hkx0 + Hk−1M−1b + Hk−2M−1b + . . . + HM−1b + M−1b
and xk+1 = Hkx1 + Hk−1M−1b + Hk−2M−1b + . . . + HM−1b + M−1b,
so that xk+1 − xk = Hk(x1 − x0) ≥ 0. Thus xk+1 ≥ xk , for all k ≥ k0.
Similarly it can be checked that for k ≥ k0, yk+1 ≤ yk and xk ≤ yk . Thus for
any k we have

xk0 ≤ xk0+1 ≤ . . . ≤ xk ≤ yk ≤ . . . ≤ yk0+1 ≤ yk0 ,

so that both sequences {xk} and {yk} are bounded and so they converge. Hence
both the iterative schemes (2) with initial values x0 and y0 converge to A−1b.

(ii) Suppose that the iterative scheme (2) converges, say to x. Then it follows that x =
A−1b andρ(H) < 1. SinceH is nonnilpotent eventually nonnegative, there exists
z ≥ 0 such that Hz = ρ(H)z < z (see [3]). If we take x0 = A−1b − z and y0 =
A−1b + z, then y0 − x0 = 2z ≥ 0 and x1 = Hx0 + M−1b = HA−1b − ρ(H)z +
M−1b. As A−1 = (I − H)−1M−1, which implies that M−1 = (I − H)A−1, so
x1 = A−1b − ρ(H)z ≥ A−1b − z = x0. Similarly, it can be verified that y1 ≤ y0.
�
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Our next result contains a necessary and sufficient condition for the convergence of a
weak E-regular splitting. We first state a theorem from [9], used to prove our result.

Theorem 2 ([9]) If (i) AT ∈ Rn,n possesses the Perron-Frobenius property and x ≥
0 (x �= 0) is such that Ax − αx ≤ 0 for a constant α > 0, or, (ii) A ∈ Rn,n possesses
the Perron-Frobenius property and x ≥ 0 (x �= 0) is such that xTA − αxT ≤ 0, for a
constant α > 0, then α ≤ ρ(A).

Theorem 3 Let A = sI − B ∈ Rn,n, with B a nonnilpotent eventually nonnegative
matrix, be a nonsingular matrix. Then A is an M∨-matrix if and only if every weak
E-regular splitting A = M − N with M ≥ 0 is convergent.

Proof Suppose that ρ = ρ(M−1N) ≥ 1. AsM−1N is a nonnilpotent, eventually non-
negative matrix, there exists x ≥ 0 (x �= 0) such that M−1Nx = ρx which implies
that Nx = ρMx ≥ Mx, that is, Ax ≤ 0 or, sx ≤ Bx. Hence by Theorem 2 we have
that s ≤ ρ(B), which is a contradiction. Hence the splitting A = M − N converges.

Conversely let every weak E-regular splitting is convergent. As A = sI − B is a
weak E-regular splitting of A, hence ρ(s−1B) < 1, that is ρ(B) < s. Thus A is an
M∨-matrix. �

We now turn to the special splitting ofM∨-matrices, namely Jacobi and Gauss-Seidel
splittings and to their convergence.

Corollary 1 Let A = sI − B be an nonsingular M∨-matrix with positive diagonals.
If the Jacobi iterativematrix J = D−1(L + U), withD = diag(A) L = − tril(A,−1),
U = triu(A, 1), is a nonnilpotent eventually nonnegative matrix, then the Jacobi
splitting converges.

Similarly, if the Gauss-Seidel iterative matrix G = (D − L)−1U is a nonnilpotent
eventually nonnegative matrix and L ≥ 0, then Gauss-Seidel method for solving the
system (1) converges.

In [2], the authors established that for nonsingular M-matrices, both Jacobi and
SOR(and hence Gauss-Seidel) splittings converge. But the following example shows
that neither Jacobi nor Gauss-Seidel methods may converge for M∨-matrices, if the
associated iterative matrix is not a nonnilpotent eventually nonnegative matrix.

Example 1 Consider the nonsingular M∨-matrix A = 12.5I − B, with

B =
⎡
⎣

9.5 1 1.5
−14.5 16 10.5
10.5 −3 4.5

⎤
⎦ .

Consider the Jacobi splittingA = M − N , withM = diag(A) andN = M − A. If J =
M−1N is the Jacobi iteration matrix, ρ(J) = 2.0454 and hence the Jacobi splitting
of A does not converge.

Again, if we consider the Gauss-Seidel iterative matrix G = (D − L)−1U, with
L = − tril(A,−1) and U = − triu(A, 1), ρ(G) = 4.248, the Gauss-Seidel splitting
of A also diverges.
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As both Jacobi and Gauss-Seidel methods converge forM-matrices, andM-matrices
have nonnegative diagonals and off-digonals are nonpositive, so one may raise the
question whether Jacobi and Gauss-Seidel methods converge for M∨-matrices if
D ≥ 0 or −L − U ∈ WPFn or eventually nonnegative matrices. But this is not the
case as the following example shows.

Example 2 Consider the M∨-matrix A = 12I − B, where

B =
⎡
⎣

9.5 1 1.5
−14.5 11.9 10.5
10.5 −3 4.5

⎤
⎦

Let M = diag(A) and N = −L − U, where L = tril(A,−1), U = triu
(A, 1). Note that M ≥ 0, and the eigenvalues of N are − 3.8763, − 1.9381 ±
6.4435i. The Jacobi iterative matrix J = M−1N has eigenvalues −0.4678 ± 9.9908i
so that Jacobi method does not converge, because ρ(J) = 10.0018 > 1.

LetM = diag(A) + L andN = −U,whereL = tril(A,−1), U = triu(A, 1).Note
that the Gauss iterative matrix G = M−1N has eigenvalues 0,−65.2610, 0.9010 so
that Jacobi method does not converge, because ρ(G) = 65.2610 > 1.

The following example shows that there are someM∨-matrices for which both Jacobi
and Gauss-Seidel methods converge, whereas the corresponding iterative matrices
are not eventually nonnegative matrices.

Example 3 Consider the M∨-matrix A = 3I − B with

B =

⎡
⎢⎢⎣
0 1 1 −1
1 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

Consider the Jacobi splitting A = M − N , withM = diag(A) and N = M − A. If
J = M−1N is the Jacobi iteration matrix, ρ(J) = 0.5 < 1 and hence Jacobi splitting
of A converges. But note that the matrix

J =

⎡
⎢⎢⎢⎣

0 1
3

1
3 − 1

3
1
3 0 1

3
1
3

0 0 0 0.5

0 0 0.5 0

⎤
⎥⎥⎥⎦

is not an eventually nonnegative matrix.
Again if we consider the Gauss-Seidel iterative matrix G = (D − L)−1U, with

L = − tril(A,−1) and U = − triu(A, 1), ρ(G) = 0.8431, the Gauss-Seidel splitting
of A also converges, whereas the matrix
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G =

⎡
⎢⎢⎣

0 0.3333 0.3333 −0.3333
0.6667 −0.1111 0.2222 0.4444

0 0 0 0.5
0 0 1 −0.25

⎤
⎥⎥⎦

is not an eventually nonnegative matrix.

Remark 1 Jacobi splitting of the matrix A in Example 3 is not an E-regular splitting,
but the splitting converges. Like with Theorem 3, it is not possible to characterize
nonsingular M∨-matrices in terms of convergence of E-regular splittings.

The following theorem gives a sufficient condition for a matrix A = sI − B with B
an eventually nonnegative matrix to be an M∨-matrix and for the convergence of
the Jacobi method for A. But the condition is not necessary. An example has been
considered to illustrate the fact.

Lemma 2 If M ∈ Rn and D = diag(di), is an nonsingular diagonal matrix, then
min
i

|di| · ρ(M) ≤ ρ(DM) ≤ max
i

|di| · ρ(M).

Proof Let y be a nonzero vector such that yTDM = λyT , where |λ| = ρ(DM). Let
x be a nonzero vector such that Mx = ρx, where |ρ| = ρ(M). Then DMx = ρDx
implies that λyTx = ρyTDx. But,

|ρ| · min
i

|di| · |yTx| ≤ |ρ| · |yTDx| ≤ |ρ| · max
i

|di| · |yTx|.

Hence |ρ| · min
i

|di| · |yTx| ≤ |λ| · |yTx| ≤ |ρ| · max
i

|di| · |yTx| Thus, if yTx �= 0,

ρ(M) · min
i

|di| ≤ ρ(DM) ≤ ρ(M) · max
i

|di|. (6)

If yTx = 0, we consider a small perturbation of the matrices M and D such that
the corresponding eigenvectors x̃ and ỹ of M and DM, respectively, satisfy ỹT x̃ �=
0. Equation (6) holds for the new matrices and as the eigenvalues are continuous
functions on the matrix entries, so (6) is true for the given M and DM. �

Theorem 4 Let A = sI − B = D + L + U, where D = diag(A), L = tril(A,−1)
and U = triu(A, 1), and let B be an eventually nonnegative matrix. If (−L − U) ∈
WPFn and ρ(L + U) < min

i
|aii|, then A is a nonsingular M∨-matrix and the Jacobi

splitting of A converges.

Proof If A is an M∨-matrix and ρ(L + U) < min
i

|aii|, then from the righthand side

inequality of Lemma 2, ρ(−D−1(L + U)) ≤ ρ(L+U)

min
i

|aii| < 1, and hence the Jacobi split-

ting converges.
Letmin

i
|aii| = d, and letλ = ρ(L + U). As (−L − U) ∈ WPFn andB is an even-

tually nonnegative matrix, we choose nonnegative vectors x, y such that
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(L + U)x = −λx and yTA = λnyT , where λn = s − ρ(B). Now, yTAx = yT (D −
λI)x ≥ (d − λ)yTx. Therefore λn ≥ (d − λ), if yTx �= 0. Otherwise, the statement
is also true considering perturbed matrices and using the continuity of spectral
radius on the entries of the matrix, as discussed in Lemma 2. Thus, in any case
λn ≥ (d − λ) > 0, and hence s > B, so that A is a nonsingular M∨-matrix. �

Example 4 Consider the M∨-matrix A = 3I − B with

B =

⎡
⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 1 1

−1 −1 1 1

⎤
⎥⎥⎦

Consider the Jacobi splitting A = M − N , withM = diag(A) and N = M − A. If
J = M−1N is the Jacobi iteration matrix, ρ(J) = 0.5 < 1 and hence Jacobi splitting
of A converges. But note that the matrix N = −L − U /∈ WPFn.

4 Splitting of SingularM∨-matrices

In this section we consider singular M∨-matrices and characterize an interesting
subclass of these matrices A with index(A) ≤ 1, with the convergence of weak E-
regular splitting of A and with eventually monotone property.

Definition 7 ([2]) A matrix A ∈ Rn,n is said to be semiconvergent if lim
j→∞Aj exists.

Theorem 5 ([2]) Let A ∈ Rn,n. Then A is semiconvergent if and only if each of the
following conditions hold.

(i) ρ(A) ≤ 1.
(ii) if ρ(A) = 1, then index1(A) = 1.
(iii) if ρ(A) = 1, then λ ∈ σ(A) with |λ| = 1, implies that λ = 1.

Definition 8 Let A ∈ Rn,n and S ⊆ Rn. Then we say that A is eventually monotone
on S, if there exists a positive integer k0, such that for any x ∈ S, Akx ≥ 0, for all
k ≥ k0, implies x ≥ 0.

Theorem 6 Let A = ρI − B be a singular M∨-matrix where ρ(B) = ρ, B is an
irreducible, nonnilpotent, eventually nonnegative matrix with index(B) ≤ 1. Then
A is an M∨-matrix with index(A) ≤ 1 if and only if every weak E-regular splitting
A = M − N with M−1 eventually monotone on range(M) is semiconvergent.

Proof Suppose that every weak E-regular splitting is semiconvergent. Note that A =
sI − B is an weak E-regular splitting of A and hence by the assumption ρ(s−1B) ≤ 1
so thatA is anM∨-matrix. If ρ(B) < s, thenA is nonsingular and hence index(A) < 1.
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As the splittingA = sI − B is semiconvergent, so Theorem 5 implies that index(A) =
1.

Conversely, suppose that A is anM∨-matrix with index(A) ≤ 1 and choose k0 > 0
such that for all k ≥ k0, (M−1N)k ≥ 0, M−k ≥ 0. For k ≥ k0, consider the series
∞∑
i=0

(M−1N)iM−(k+1)x, where x ≥ 0 and x ∈ range(MkA).

Let Sp =
p−1∑
i=0

(M−1N)iM−(k+1). Note that {Spx} is a monotonic increasing

sequence. If we set x = MkAz and z ≥ 0, then

Spx =
p−1∑
i=0

(M−1N)iM−(k+1)x =
p−1∑
i=0

(M−1N)iM−1Az = z − (M−1N)pz

so that for a large value of p, Spx ≤ z. Thus the sequence {Spx} converges, and hence
the series

∞∑
i=0

(M−1N)iM−(k+1)x converges.

Assume that ρ = ρ(M−1N) and let ρ > 1. Let z be a nonzero nonnegative vector

such that M−1Nz = ρz, so that z =
(

1
1−ρ

)
M−1Az. Now, if we set α =

(
1

1−ρ

)
, then

∞∑
i=0

(M−1N)iz = α

∞∑
i=0

(M−1N)iM−(k+1)MkAz =
∞∑
i=0

(M−1N)iM−(k+1)x,

where x =
(

1
1−ρ

)
MkAz ∈ range(Mk) for large k, which implies thatM−kx =

(
1

1−ρ

)

Az = Mz so that M−(k+1)x ≥ 0, for sufficiently large k. As M−1 is eventually

monotone on range(M) =
∞⋂
k=1

range(Mk), then x ≥ 0.Hence the series
∞∑
i=0

(M−1N)iz

converges, which contradicts the fact that ρ > 1. Hence we have ρ ≤ 1.
If ρ < 1, the Drazin inverse (I − M−1N)# = (I − M−1N)−1 exists. Let ρ = 1 so

that M−1A = I − M−1N is an M∨-matrix. As index(A) < 1 and M is nonsingular,
index(M−1A) < 1 and hence (I − M−1N)# exists. �

The following example shows that the condition index(B) ≤ 1 in Theorem 6 can
not be relaxed.

Example 5 Consider an M∨-matrix A = 2I − B, with

B =

⎡
⎢⎢⎣

0 0 1 1
0 0 1 1
1 1 1 1

−1 −1 1 1

⎤
⎥⎥⎦
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Consider the splitting A = M − N of A, where

M = tril(A) =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0

−1 −1 1 0
1 1 −1 1

⎤
⎥⎥⎦ and N = M − A.

AsM−1 =

⎡
⎢⎢⎢⎣

1
2 0 0 0

0 1
2 0 0

1
2

1
2 1 0

0 0 1 1

⎤
⎥⎥⎥⎦ andM−1N =

⎡
⎢⎢⎢⎣

0 0 1
2

1
2

0 1
2

1
2 0

0 0 1 2

0 0 0 1

⎤
⎥⎥⎥⎦ are bothnonnegativematrices, the

splittingA = M − N is aweakE-regular splitting ofA. But index(I − M−1N) = 2 >

1, and hence (I − M−1N)# does not exist, which implies that the E-regular splitting
A = M − N is not semiconvergent. Note that index(A) = 1 and index(B) = 2 > 1
and thus the condition index(B) < 1 in Theorem 6 cannot be relaxed.

5 Conclusion

In this article, we considered splittings of M∨-matrices. We introduced two types
of splittings of a matrix, named as E-regular and weak E-regular splittings. We
characterized an important subclass ofM∨-matrices in terms of convergence of weak
E-regular splittings. We also discussed necessary conditions for the convergence of
Jacobi and Gauss-Seidel methods for M∨-matrices, and examples are considered to
illustrate that the conditions are not sufficient.

Theorems 6 and 3, respectively, characterize an important subclass of singular and
nonsingular M∨-matrices in terms of weak E-regular splittings. As E-regular split-
tings generalize regular splittings using the notion of eventually nonnegative matri-
ces, andM-matrices are characterized using regular splittings (see [8]), an interesting
open problem in this context is to discuss the convergence of E-regular splittings,
in particular to develop necessary and sufficient conditions for their convergence, or
for the convergence of Jacobi and Gauss-Seidel splittings.

As in the entire work we use the Perron-Frobenius property of the matrix B, where
A = sI − B, the results obtained in the paper are also true for GM-matrices which
have the form A = sI − B, where s ≥ ρ(B) and B ∈ WPFn.
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