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Introduction

Experimental techniques have improved remarkably in the past decades, allowing a
deeper understanding of the processes that take place in the central nervous system
at different spatial (spanning from biomolecular mechanisms and synapses, to
neurons and networks), and temporal scales.

These notable improvements have led to an exponential increase in the amount
of data acquired. They have yielded a more quantitative view of the mechanisms
underlying the central nervous systems’ functions and dysfunctions, and the effects
of drugs. Availability of such data enables the development of computational
models that simulate the brain and its changes in response to the application of
exogenous compounds. This chapter gathers examples of biosimulation efforts
aimed at facilitating the generation of new working hypotheses in a structured and
efficient manner, and translating the gained quantitative understanding of the brain,
its normal and pathological hallmarks into the discovery of more efficient therapies.
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Scientific Problem

The Nervous System and Its Complexity

The nervous system is arguably one of the most complex organs of the body.
Despite decades of relentless efforts, much remains to be learnt on how it performs
its wide range of tasks and to this day, many questions remain unanswered. Our
fascination for this complex organ feeds the headlines of health and science jour-
nals, drawing the attention of the neuroscientific community but also society at
large.

The nervous system is afflicted by a variety of dysfunctions, with pathologies that
may appear from a young age (e.g. Tourette syndrome, autism) to aged adulthood
(Alzheimer’s disease, Parkinson’s disease). Understanding these dysfunctions have
proven to be challenging for many reasons, especially due to the nervous system’s
highly multi-temporal and multi-hierarchical nature. An additional complexity stems
from the multifactorial nature of the disease process. Indeed, even for diseases such
as Huntington’s disease in which the well-characterized mutation affects a single
gene (which in the case of Huntington’s disease consists of a trinucleotide repeat
disorder caused by the length of a repeated section of a gene that exceeds normal
range), this single mutation causes a variety of changes that result in the disease’s
pathological hallmarks (Fig. 1).
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Fig. 1 Illustration of the different biological scales that comprise the nervous system, the
corresponding experimental paradigms used to characterize their functions and dysfunctions, and
the different phases in the drug discovery and development pipeline
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Therapeutics Development

Drug discovery and development (DD&D) for disorders of the central nervous
system (CNS) have been plagued with a high and continuously rising attrition rate.
DD&D is a risky business, especially for the nervous system where the probability
that an agent entering clinical development reaches the marketplace is below 7 %.
This number is much lower than the industry average of 15 % across other thera-
peutic areas [1, 2]. Similarly, Development and regulatory approval for cardio-
vascular and gastrointestinal indications took an average of 6.3 and 7.5 years,
versus 12 years for CNS indications [3]—and was reported to reach 18 years from
laboratory bench to market in 2011 [4].

These difficulties result in higher costs for CNS DD&D and undoubtedly explain
why since 2011, GSK, AstraZeneca, Novartis, Pfizer, Sanofi, Janssen and Merck
have initiated a significant downsize in their CNS operations.

The poor success rates outline the prevalent dichotomy often observed in the
DD&D process: drugs that have a potent effect in experimental protocols (e.g.
strong affinity to the desired target, resulting in significant changes in synaptic and
neuronal function or metabolism, etc.) end up having a modest or nonexistent
effect, or prohibitive side effects at the macroscopic level. This is due to several
factors including the CNS drugs’ propensity to cause CNS-mediated side effects
(e.g. nausea, dizziness and seizures), and the additional pharmacokinetic hurdle of
the brain-blood barrier that therapeutic agents must face. Contrary to the devel-
opment of a new antibiotic where the outcome is relatively simple (the bacterium is
killed—or not—in a given and oftentimes relatively short treatment window), CNS
compounds lead to a wide range of effects at different time scales. Recent examples
of failure include suspicions of suicidal thoughts induced by anti-obesity or
smoking cessation drugs. This led the Food and Drug Administration (FDA) to
announce a change in policy in 2008 to mandate drug manufacturers to study the
potential for suicidal tendencies during clinical trials. Compounds may even gen-
erate adverse effects. An example of adverse effect was reported by some patients
taking antidepressants consisting of selective serotonin reuptake inhibitors (SSRIs)
such as Prozac (fluoxetine), Paxil (paroxetine) or Zoloft (sertraline): they experi-
enced suicidal thoughts during the initial phase of the treatment.

Necessity for a Quantitative Understanding of Mechanisms
Underlying Pathology

These problems outline our lack of quantitative understanding of CNS dynamics.
Unlike antibiotics, a CNS molecule may have a very small therapeutic window to
induce a positive outcome without generating an army of harmful or undesired side
effects. They also underscore our limited understanding of the mechanisms
underlying pathologies. Finally, the DD&D pipeline is fragmented in multiple
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phases. From compound identification, to preclinical to clinical, preparations are
inherently different and yield readouts that are arguably disconnected from the
biological system, whose behavior we ultimately try to alter. Additionally, the use
of animal models may contribute to a poor translatability of the observed effects of
drug candidates to human patients population [5].

These compounded factors inherently result in a limited success rate, plaguing
both the pharmaceutical industry and academic laboratories. They lead to
increasingly higher costs, slow down the discovery process and delay the avail-
ability of potent drugs for patients.

A FDA report published in 2004 [6] outlined the need for innovative solutions to
the healthcare challenges. It outlined how critical it has become to (i) integrate the
data obtained in a uniform and standardized manner, while (ii) taking into account
the dynamical properties inherent to biological systems. Together, these two
measures will facilitate the generation of new working hypotheses in a structured
and efficient manner, and translate our deepened understanding into more effica-
cious therapies. To this end, computational models constitute an innovative
approach that may integrate up-to-date knowledge on the biological system; they
may span multiple biological and temporal levels, encompassing mechanisms at the
microscopic level as well as the resulting observations at the macroscopic level in a
dynamic and integrated manner. They can replicate observables of function and
dysfunctions, the effects of drugs on their respective target(s), and their subsequent
effects on neuronal function, network function and ultimately on macroscopic
observables, such as those obtained with functional neuroimaging.

Computational Methods

Unifying Computational Neuroscience

Computational neuroscience has witnessed tremendous growth in the past decade.
However, given the complexity of the system studied, no unified methodology or
tool exists that is able to span all hierarchical biological scales. Indeed, modeling
methodologies are numerous, and differ quite significantly depending on the scale
of the system under investigation. We refer the reader to other readings that provide
an overview of the different modeling techniques as a function of the system
investigated (see [7], Chap. 9). One notable point lays in the conceptual difference
that separates computational neuroscience to computational neurology. Bridging
this gap will deepen our understanding of CNS function and pave the path to
individualized medicine.



The Role of Simulations in Neuropharmacology 433

Computational Neurology: Linking Observed Dysfunctions,
Underlying Mechanisms and Individualized Treatments

In the context of pathologies, the computational methods described above often
focus on modeling the mechanisms that underlie functions and dysfunctions.
Whether at the biomolecular level (e.g. downstream effects of amyloid beta accu-
mulation observed in Alzheimer’s disease patients), neuron or network level
(changes in spiking frequency and/or network-level activity), or systems level
(models of brain function and its biophysics [8]), each of these computational
models focuses on the pathology, and more precisely the mechanisms underlying
the pathology and the consequences on the system (and its scale) of interest.

On the other hand, computational neurology and psychiatry focus primarily on
the patient and its diagnosis to suggest efficacious therapies. Consequently, com-
putational neurology has historically involved primarily a top-down approach that
is oftentimes disconnected from the actual mechanisms underlying the pathology.
Instead, it often relies on inference modeling (through database analysis, mathe-
matical modeling, clinical algorithms) and statistical intelligence (Fig. 2a bottom).

From a methodological standpoint, the constraints of computational neurology
imply unifying top-down and bottom-up approaches to link macroscopic observ-
ables with nanoscopic mechanisms. The necessary steps are summarized in Fig. 2b:
(i) Starting from the patient, generate measurements; (ii) these measurements pro-
vide insights on the amplitude of dysfunctions observed at the macroscopic level,
and allow calibration of the parameters of a simulation platform (i.e. virtual in silico
patient), enabling quantification of biomolecular and neuron/network levels chan-
ges and characterization of the pathogenic features; (iii) the parameters of the
computational platform are calibrated to replicate the measurements from (ii) (-
generation in silico of the same ‘virtual’ observables), leading to (iv) a precise
diagnosis; (v) different therapies may be tested on the virtual model—leading to the
identification of the optimal treatment.

Computational neuropharmacology may greatly benefit from such centralized
and integrated approach, removing gaps in the different phases of drug discovery
and development. This will reduce error-prone interpolations and increase success
rates.

The computational methods used in the results presented here use open tools and
software. They comprise NEURON [9], EONS [10-12] and Libroadrunner [13].
Systems Biology Markup Language [14] is the preferred format in which all models
are implemented and stored.
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Fig. 2 a Illustration of the
current states of
computational neuroscience
and computational neurology.
b The future of computational
neurology: a patient-centered
discipline that is a superset of
computational neuroscience
and includes observables of
mechanistic (micro) and
behavioral (macro) nature
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NMDA Receptor Antagonism: Friend or Foe

We herein present results we obtained through Modeling and Simulation that
yielded a better comprehension of the effects of compounds on the NMDA receptor
and its associated channel, with direct significance on neuropharmacology of the
excitatory synaptic transmission. The N-methyl-D-aspartate receptor (also known
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as NMDA receptor or NMDAR), is a glutamate receptor and ion channel found on
excitatory postsynaptic spines. Its activation requires the binding of glutamate and
glycine (or D-serine), and leads to the opening of its ion channel that is nonselective
to cations with a reversal potential close to 0 mV. While the opening and closing of
the ion channel is primarily gated by ligand binding, the flow of ions through the
channel is voltage-dependent, due to the blockade of the channel by extracellular
magnesium and zinc ions. Blockade removal allows the flow of sodium Na+ and
small amounts of calcium Ca2+ ions into the cell, and potassium K+ out of the
cell.

NMDA receptors are thought to play a critical role in the central nervous
system. Interestingly, while competitive antagonists such as D-2-amino-5-
phosphopentanoic acid (APS5) impair learning and memory, memantine, a
non-competitive receptor antagonist has been reported to be paradoxically benefi-
cial to patients with mild to moderate Alzheimer’s disease (AD). In this study, we
use a Markov kinetic model and look at the differences in the receptor dynamics and
its associated channel current in response to changes in the presence of either
molecule.

The kinetic schema used was proposed by Schorge [15] and presented in Fig. 3.
The receptor model takes into account the two binding sites for glutamate, the two
binding sites for the co-agonist glycine, and two open states Ol and O2; the
non-linear voltage dependency is taken into account and depends on surrounding
concentration of magnesium. Additional details and parameter values of the model
may be found in [16]. Modifications of the kinetic model allow analysis of the
effects of AP5 on receptor-channel current as it binds to the NMDAR in a com-
petitive manner to the glutamate binding site. Association and dissociation rate
constants (kon and koff) for AP5 were set at 0.38 mM ™' ms™' and 0.02 ms™'
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Fig. 3 The 15 states kinetic model of the NMDA receptor
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Fig. 4 NMDA receptor model modified to account for APS5 (competitive) and memantine
(non-competitive) binding

respectively, based on published experimental results [17]. On the other hand,
memantine has been shown to bind to the NMDA receptor in a voltage-dependent
manner [18] (Fig. 4).

Learning and memory is associated on a cellular basis with changes in synaptic
strengths due to repetitive stimulation of the synaptic connection. We therefore
proposed to study the inhibitive effects of AP5 on the response of the NMDA
receptor to trains of pulses of neurotransmitters at different frequencies; we quan-
tified the cumulated inhibition on a 5 s window, and compared the response in the
presence of AP5 with the one elicited when the receptor is in the presence of
memantine. Simulations take place in voltage-clamp mode, meaning that the
postsynaptic voltage is held constant. This removes the non-linear voltage depen-
dency of the NMDA receptor associated channel.

Results outlined in Fig. 5 show that for both AP5 and memantine, the
dose-responses are shifted to the right, indicating that more antagonist is needed to
obtain the same level of inhibition when stimulation frequency increases.

In voltage-clamp mode, we then varied the postsynaptic voltage from —120 to
+20 mV in low and high stimulation frequencies (10 and 100 Hz for APS, and 10
and 200 Hz for MEM). The results indicate that AP5-induced inhibition decreases
with frequency, but increases with voltage (when magnesium is present). In
contrary, memantine-induced inhibition decreases with both frequency and voltage.
This result is more clearly outlined in Fig. 6 which plots variations of the IC50
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Fig. 5 Cumulative inhibition of the NMDA receptor current in the presence of AP5 (a) and
memantine (b), in response to glutamate pulses applied at different frequencies (postsynaptic
voltage is held constant at —60 mV). The inhibitory effect of both the competitive and
non-competitive antagonists decreases as the stimulation frequency increases indicated by a shift
to the right of the IC50 as pulses frequency increases [16]
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Fig. 6 Variations of cumulative inhibition of AP5 and memantine as a function of voltage at
different glutamate application frequencies [16]

(concentration at which the amplitude of the output reaches 50 % of its maximum
value) as a function of voltage at different frequencies (Fig. 7).

Our results indicate clear differences in the effects produced by APS5 and
memantine on their target receptor and the resulting dynamics of its associated
channel. AP5-induced inhibition is characterized by a weak voltage dependence,
and an increase in IC50 values with heightened glutamate stimulation frequencies,
indicating reduced inhibition. This suggests that in the presence of a large quantity
of glutamate, APS5 loses its competitive advantage on the receptor’s binding site,
rendering it less potent. This may account for the failure of competitive antagonists
reported in clinical trials, especially with respect to stroke. Indeed, stroke may be
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Fig. 7 Evolution of memantine IC50 as a function of voltage for 10 and 200 Hz glutamate pulse
frequencies

characterized by an increase in neuronal firing frequency in the affected area due to
excess glutamate. Maintaining AP5-induced inhibition would require several fold
increases in AP5 concentration, which would then lead to serious and potentially
toxic side effects.

On the contrary, our results indicate that memantine has a strong dependence on
both voltage and stimulation frequency, which supports the notion that memantine
provides a tonic blockade of the receptor in basal conditions. This could account for
its neuroprotective attribute. However, this inhibition is lifted when stimulation
frequency increases and postsynaptic membrane depolarizes (conditions presum-
ably associated with learning new information), which would explain why
memantine does not negatively impact learning.

Neuropharmacology of Combinations: Modeling
Jrom Biomolecular Mechanisms to Neuronal Spiking

One of the fundamental characteristics of the brain is its hierarchical and temporal
organization; both space and time must be considered to fully grasp the impact of the
system’s underlying mechanisms on brain function. Complex interactions taking
place at the molecular level regulate neuronal activity, which further modifies the
function and structure of millions of neurons connected by trillions of synapses. This
ultimately gives rise to phenotypic function and behavior at the system level. This
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spatial complexity is also accompanied by a complex temporal integration of events
taking place at the microsecond scale, leading to slower changes occurring at the
second, minute and hour scales. Simulation of mechanisms spanning multiple scales
makes modeling a challenging task both from an implementation and numerical
standpoint. Yet, these integrations are necessary for studying the effects of combi-
nations of therapeutic agents that target very distinct systems and determining how
these drugs interact to shape function at more integrated levels of complexity.

To illustrate proposed solutions to this challenge, we combine the NMDA-R
competitive antagonist AP5 described earlier with a molecule known to act on the
GABA A receptor. The GABA A receptor is an ionotropic receptor and ligand-
gated ion channel that is found in inhibitory synapses; its endogenous ligand is
GABA (y aminobutyric acid), the major inhibitory neurotransmitter in the brain.
Activation of this receptor leads to opening of its associated channel pore which
selectively conducts chlorine ions inside the cell, resulting in hyperpolarization of
the postsynaptic neuron. We propose to study the effect of bicuculline, a compet-
itive antagonist of GABA A receptors, not only on the target’s function, but also on
the resulting spiking pattern when these receptors are placed on a CAl pyramidal
neuron [19].

The modeling framework consists of a co-simulation comprising multiple
instances of the EONS simulator linked to NEURON through the message-passing
interface MPJ Express [20] distributed on a high-performance computer cluster.
The stimulation protocol consists in presenting a train of action potentials with
random inter-pulse intervals at a mean frequency of 10 Hz (within the range of
physiological frequencies reported in the hippocampus) as presynaptic inputs to
both excitatory (i.e. glutamatergic) and inhibitory (i.e. GABAergic) synapses of a
CAl pyramidal neuron. The neuron model used is the pyramidal cell described in
[21], which uses digitally reconstructed dendritic morphology described in [22] in
which synaptic currents are integrated along dendritic branches (112 excitatory
glutamatergic synapses located in the stratum radiatum area and 14 inhibitory
synapses located close to the soma). The kinetic model for the GABA A receptor is
the one presented in [23] (Fig. 8).

The model allows for readouts of molecular, synaptic (postsynaptic current and
voltage) and neuronal nature (somatic potential, and spiking activity). Four con-
ditions were simulated: a control condition (i.e. no modulator), with IC50
concentration of AP5 (established at 100 pM in the section “NMDA Receptor
Antagonism: Friend or Foe”), with IC50 concentration of bicuculline, and with both
antagonists combined at IC50 concentrations. The somatic potentials resulting from
the 10 Hz random interval train is presented in Fig. 9 for all four conditions.

The somatic potentials obtained in the four conditions outline the high levels of
non-linearity that arise at different levels of neuronal integration. Decreases in
NMDA receptor current (50 % of the peak amplitude) at the molecular level result
in a dramatic reduction in somatic spiking (77 % reduction) once placed in synapses
and integrated along the dendritic tree of the pyramidal cell. Adversely, antago-
nizing the GABA A receptor results in over 50 % increase in the number of action
potentials generated. When both modulators are applied, the number of spikes
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Fig. 8 Right Illustration of excitatory (green) and inhibitory (red) synapses distributed on a CA1
pyramidal neuron. Left Diagram illustrating the distribution of processes and communication flow
on the high performance computer cluster

returns to a value close to the control condition (8 versus 9 action potentials), but
with a very different (regularized) spiking pattern—likely to result in a very dif-
ferent outcome at the network level.

From Mechanistic to Non-mechanistic Modeling

The previous section outlined the notion that phenomena taking place at a specific
scale in the nervous system may often interact in a non-linear manner and thereby
yield emerging properties at other (often overlooked) scales. Indeed, exogenous
compounds, modulators of excitatory and inhibitory synaptic receptors function
were shown to interact and modulate the spike-timing patterns of a CAl pyramidal
neuron. The previous example, computed on several nodes of a high performance
computer cluster, also outlines that integrating multiple levels of complexity
(whether temporal or hierarchical) may result in a prohibitively large computational
burden. Each synapse may de facto represent thousands of differential equations,
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Fig. 9 From [19]. a Presynaptic input stimulation applied (random inter-pulse interval train with a
Poisson distribution and a 10 Hz mean firing frequency). b—e CA1 hippocampal neuron somatic
potential in response to stimulation a. b with no modulation. ¢ Response with 100 pM AP5 (IC50
concentration). d Response with a 50 % decrease in GABA A current. e Response with both
glutamatergic and gabaergic modulations combined

yet neurons can comprise thousands of synapses, and brain structures are composed
of different neurons populations, each potentially containing millions of cells.
Simulating such computational load requires (i) increased computational muscle
(e.g. IBM BlueGene) and/or (ii) better management of the complexity of the models
simulated. This section proposes to focus on the latter—suggesting the use of
non-mechanistic modeling methodologies capable of capturing the non-linear
dynamics of the system of interest, while significantly reducing the computational
load.

The biochemical mechanisms underlying synaptic function have been shown to
display a high level of non-linearities—both on the presynaptic and postsynaptic
sides [24-27]. These non-linearities are critical and most likely play a significant
role in shaping the functions of synapses and neurons, giving them the ability to
learn and generate long term changes used to encode memories. Yet these mech-
anisms, if they are to be modeled in their mechanistic dynamical complexity yield a
large number of differential equations, thereby resulting in substantial (and poten-
tially prohibitively large) computational complexity.

An alternative approach is to consider the system of interest as a black box,
focusing the computational complexity on replicating the functional dynamics, i.e.
the outputs the system generates in response to a series of inputs, rather than the
internal mechanisms comprised in the system. This approach was reported to be
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models. Examples of synaptic models spanning different levels of complexity may be found in
[32]; example of very complex models are also described in [11, 33-35]

successfully applied with the use of Volterra kernels [28] on the dynamics of
neuronal populations [29, 30], yielding highly predictive models with minimal
computational complexity. We proposed to adapt this methodology to model
electrical properties of glutamatergic synapses [31] and evaluate it both in terms of
predictability and computational complexity (Figs. 10 and 11).

The properties modeled are the changes in conductance values of AMPA and
NMDA receptors elicited by the response to presynaptic release of neurotransmitter.
Estimation of parameters values in non-mechanistic models (interchangeably
labeled input-output models in this context) is a crucial step that requires training
the model with respect to reference input-output sequences obtained with the
mechanistic model. Using long sequences captures a large number of nonlinear
behavior thereby minimizing prediction errors by improving parameters estimation.
The model structure comprises two sets of kernels with a slow and a fast time
constant for each receptor model; we estimated the parameters of the model using a
train of 1000 pulses at a 2 Hz random interval train (i.e. using a 500 s long
simulation) (Fig. 12).

Having established that the response of the input-output model is very close to
the response obtained with the mechanistic synapse model in the dynamical range
of behaviors, we can now focus our attention on determining the computational
speed gain obtained by replacing the mechanistic synapse model with an IO model.
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Fig. 12 5 s sample of dynamic response of the mechanistic model (used to calibrate the
parameters values of the non-mechanistic model) and the non-mechanistic (I0) model. Visual
inspection yields virtually identical response; the total root mean square (RMS) error calculated on
a 500 s simulation with novel presynaptic events yield a 3.3 % error

To benchmark the models, multiple instances of the IO synapse model were inte-
grated in a neuron model and simulation duration was compared to the one obtained
with the original mechanistic models.

We chose the hippocampal pyramidal neuron model proposed by Jarsky [36]. To
minimize the computational load necessary to perform neuron-related calculations,
we assigned the weight of each synapse with a zero value—thereby ensuring that
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Fig. 13 Adapted from [31]. Simulation Time (represented in logarithmic scale) varies as a
function of the number of synapse instances. Computation time required for the kinetic synapse
model is within the range of 10-20 min, while the computation time required for the IO synapse
model is consistently at least an order of magnitude lower, ranging between 3 and 30 s. Dashed
green line represents the speedup obtained with the 10 synapse model compared to the mechanistic
model as a function of the number of synapses modeled. The insert on the top right corner
illustrates the process of having glutamatergic synapses added onto a pyramidal neuron model. At
low number of synapses, the speedup of the IO synapse model is highest (around 150 X faster than
the computation time required for the kinetic synapse model). The speedup decreases, but
stabilizes at around 50 X speedup for larger number of synapses

(i) the time needed to calculate the neuron model remains constant independently of
the number of synapses, and (ii) the largest extent of computational time is spent
calculating synapses outputs. The number of synapses was varied and we recorded
the simulation times. Results are presented in Fig. 13.

The results in Fig. 13 indicate that the IO model consistently yields faster
computation times even as the number of synapses modeled increases. The speedup
decreases and seems to reach a plateau at around 50 X (this value was verified with
higher number of synapses—up to 10,000—not represented in the figure to focus
on the non-asymptotic range).

Appropriately trained non-mechanistic models constitute a viable replacement
for detailed mechanistic models in large scale models, yielding a significant gain in
computational speed, while maintaining high predictability levels—thereby
allowing larger scale models to be simulated while preserving biologically relevant
subtleties in dynamics and non-linearities.

The non-mechanistic modeling methodology presented is generalizable and fully
applicable, not only to other types of synapses (i.e. inhibitory or modulatory), but
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also other processes with identified inputs-outputs—yielding a natural solution for
hierarchical large scale multiscale modeling challenges.

Messages for Neurologists and Computer Scientists

Experimental techniques have grown tremendously in the past decades, leading to a
deeper understanding of the mechanisms that take place in the nervous system at
multiple levels—ranging from genes and biomolecular mechanisms to brain level
activity obtained through imaging methodologies. These notable improvements
lead to an exponential increase in the amount of data acquired. They also lead to a
more quantitative understanding of the roles of the mechanisms underlying the
central nervous system’s functions and dysfunctions. Finally, they yield a better
understanding of the effects of perturbations that can occur within these processes,
as well as those of exogenous compounds. This deepened understanding enables
the construction of predictive computational models capable of simulating the
nervous system (in its control and pathological states), and the changes that can take
place in response to exogenous compounds.

One of the advantages of multiscale computational models is their inherent
ability to integrate, within the same model, experimental observations obtained
using different (often incompatible) experimental modalities (or experimental
paradigms as defined in Fig. 1), leading to the creation of a single modeled entity
which characteristics reproduce all (or at least most) observations. This inherent
ability can lead to the creation of virtual patients—patients with normal neuronal
function, or with pathological dysfunctions. These virtual patients comprise within
the same simulation framework the biomolecular mechanisms that have been
demonstrated to take place in the normal and pathological cases, along with the
consequences at higher levels of hierarchical (i.e. neuronal, structural and behav-
ioral) and temporal (e.g. neurodegeneration) aggregated scales. The creation of this
integrated model will constitute a major accomplishment of the emerging field of
computational neurology, the patient-centered successor of computational
neuroscience.

This also constitutes a tremendous opportunity for the pharmaceutical industry—
leading to an integrated model on which multiple steps of the drug pipeline may be
performed in silico in a unified manner—encompassing a large number of processes
from target identification to efficacy, side effects and toxicity evaluations. This can
lead to much needed defragmentation of the drug discovery process, consequently
reducing the attrition rate that plagues drug discovery and development.

The ‘dream’ described above, and more broadly discussed in this book is met by
several roadblocks, amongst which are computational power: despite our computers
seemingly ever increasing processing power, creating large integrated models
spanning several hierarchical and temporal levels constitutes a real challenge. This
challenge may be faced using hybrid models that consist of a combination of
mechanistic and non-mechanistic models interacting in a seamless manner—
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leading to efficient simulation of complex non-linear dynamics with a high level of
functional realism. Another roadblock is constituted by our limited knowledge of
many of the intricate mechanisms that underlie the complex biology of the nervous
system. This challenge will ultimately be tackled as the field matures: using open
standards and good computational modeling practices will ensure reproducible,
iterative and collaborative modeling, consequently allowing iterative incorporation
of additional findings while tuning and optimizing the rest of the model. This
maturation will also see the development of frameworks compatible with the large
number of methodologies and standards currently in use for modeling the multiple
spatial and temporal scales of the nervous system.

Finally, a major shift will place the patient at the center. This shift has already
started with the emergence of personalized medicine. It will expand to computa-
tional neurology to generate in silico models with personalized parameters values
for utmost personalized medical prognosis and diagnosis.
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