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Introduction

Basabdatta Sen Bhattacharya, Amy L. Cochran and Péter Erdi

Computational Neurology and Psychiatry

The mysterious ways of the brain and mind have eluded great thinkers and scientists
for centuries now [1]. Indications of early, albeit vague, understanding of the
intricate connections between the brain and the mind can be traced back to the
Indo-Aryan settlers in the central Asian region, who would depict a third eye on the
mid-forehead of figurines [2], an area that is now known to be the seat of the medial
pre-frontal cortex (a brain structure that “reaches its greatest complexity in the
primate brain” and is thought to play a central role in cognitive behaviour [3]). Such
depictions convey a deep reverence and fear of the unknown realms of the mind,
perhaps implying a belief in the superiority of ‘beings’ who can control the brain
and the mind to foresee or predict. Indeed, early history is littered with evidence of
many a battle won by the virtue of (superior) foresight and prediction capabilities of
kings, queens and warlords.

Fast forward to the 20th Century: Jeff Hawkins in “On Intelligence” argues that
prediction is the basis of human intelligence [4]. The term ‘intelligence’ is used here
in context to the neocortical structure that is much larger in humans, making them
‘superior’ to all other creatures. The neocortex, in association with the sub-cortical
structures, stores environmental and experiential information, termed as ‘memory’,
which allows humans to learn and recall, and thus make predictions in time and
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space; this in turn facilitates fine skills such as language and art. Hawkin’s theory
provides an integral mutual dependency between the evolved advancement in brain
structure (large neocortex) and the advancement of memory and prediction, both of
which are representations of the mind (intelligence). Note the uncanny resemblance
between the concept of superiority of the humans as the possessor of the predictive
powers of the mind, and the concept of the third eye in times BC (around
3000 years ago). Karl Friston lends further credence to this concept with his Free
Energy Principle, hypothesising that the brain acts most efficiently by ‘minimising
surprises’; in other words, by making better predictions! [5].

So then: where are we in our understanding of the brain and mind? Notwith-
standing human’s superior foresight and prediction, we have yet to put forth a
coherent understanding of the brain (neurology) and how it functions as a mind
(psychiatry). The 125th Anniversary Special issue of Science posed ‘125 problems
for scientists to solve’, of which the second problem was posed as: “What Is the
Biological Basis of Consciousness?” [6]. Suffice to say that understanding the
structure and functional ways of the brain is considered as one of the ‘last frontiers
in science’ [7]. As if in a race to conquer this frontier, many countries have set
socio-political agenda around brain research with huge monetary investments. The
sudden surge of interest can be attributed to the near 50 % increase in mental health
problems worldwide, and within a span of around a decade as reported by World
Health Organisation during April 2016 [8]:

Common mental disorders are increasing worldwide. Between 1990 and 2013, the number
of people suffering from depression and/or anxiety increased by nearly 50 %, from 416
million to 615 million. Close to 10 % of the world’s population is affected, and mental
disorders account for 30 % of the global non-fatal disease burden.

The report is based on recent research arguing the need for investment in tackling
the growing menace, and suggesting a quadruple increase in returns [9, 10].

Inability to address the growing world burden of brain disorders is not more
painfully apparent than when examining current treatment options. The funda-
mental drawback of existing pharmacological and therapeutic interventions in
several brain disorders are some serious secondary effects that hinder a return to
normalcy, even if the symptoms of the primary disease condition are often alle-
viated successfully. For example, depression is treated with drugs that increase the
levels of serotonin; however, the quality of life in patients is often impaired seri-
ously. Similarly, Deep Brain Stimulation (DBS) successfully alleviates Parkinso-
nian tremor and restores a large degree of autonomy and dignity in patients, and yet,
it has not been possible to formalise a ‘closed-loop’ treatment, where the neural
conditions can be monitored, and based on this ‘feedback’ data, stimulation can be
provided on a need-based manner. Furthermore, the neuronal mechanisms that
make DBS effective in the disease are understood poorly, which is essential for
treating the underlying disease condition. On the other hand, several brain disorders
such as tinnitus and dementia do not have any pharmacological relief, while
insomnia and other sleeping disorders are treated currently with pills for symp-
tomatic relief only and do not address the root problem.

2 B. Sen Bhattacharya et al.



An essential pre-requisite for enhanced treatment of brain disorders is physio-
logical data that can facilitate the proposition of testable hypotheses and the design
of testable models of the brain and the mind [11, 12]. Thus, it is no wonder that
millions of rodents, mammals and primates are sacrificed in the quest for data on
brain physiology and its complex electro-chemical structure. In this context, the
reader may refer to Alex Boese’s concise (and tragically humorous) account of
some ‘bizarre’ experiments that were undertaken on animals and humans during the
20th century [13]. However, with increased awareness of both animal and human
rights, and formulated regulations and standards, it is getting increasingly difficult
to use animals for collecting experimental data. More importantly, where animal
models are used successfully for drug discovery, many a times, the developed drugs
have proved ineffective in humans [14].

Offering a pioneering direction to brain research during 1940s and 50s, Sir Alan
Hodgkin and Sir Andrew Huxley, for the first time, used mathematics to capture the
underlying physiology of the basic information transfer mechanism used by neu-
rons viz. the action potential (or spike) [15]. Commonly referred to as the
Hodgkin-Huxley neuronal model, this is the first neuronal model to be firmly based
on physiological data and continues to inspire novel directions in computational
neuroscience research [16]. It will indeed not be far-fetched to attribute the popu-
larity of mathematical models in current times to the advent of affordable desktop
computers with user-friendly software, so much so that the term ‘computational
model’ is now generally accepted as referring to computer-based modelling and
simulation in neuroscience research. The primary advantage of computational
models is that hypotheses can be designed and explored in a manner that is quick,
easy, and inexpensive (the reader can find evidence of this in the following chapters
of this book); this is in stark contrast to expensive and time-consuming experi-
mental studies in vivo and in–vitro. An initial exploration of various hypotheses in
silico (i.e. modelling and simulation using computers) can potentially narrow the
targets in future experiments, thus saving on time and cost. Historically, the
importance of in silico studies is perhaps most apparent in the study of epilepsy, and
even early models used biophysically detailed features underlying epileptogenesis
[17]. The field is sufficiently mature for an excellent book nearly a decade ago [18];
current state-of-the-art in epilepsy research is sampled in several chapters in this
book (see section “Scientific Problems Addressed in the Book” for details) as well
as in a recent compilation [19].

However, constraints on computational time and memory requirements have
been one of the primary deterrents to a more rapid progression in the field.
Moreover, during the early 1970s [20–22], there was a growing notion that to
emulate higher order dynamics observed via brain imaging methods (e.g. elec-
troencephalography, functional magnetic resonance imaging), building massive
networks of single neurons may lead to a case of ‘not seeing the wood for the trees’;
rather, modelling the population dynamics underlying such higher level brain
behaviour would be desirable. Thus, the concept of neural field and neural mass
models were proposed in a series of pioneering works, which enabled the simu-
lation of population behaviour in silico, therefore bypassing the need for building
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computationally intensive networks of single neuron models. Subsequently, another
novel computational framework viz. dynamic causal modelling was proposed and
developed based on the statistical technique of Bayesian inference [23]. Collec-
tively, these models play a major role in advancing the understanding of neuro-
logical disorders in current times, and allow the exploration of the fascinating world
of brain oscillatory dynamics, also referred to as “brain rhythms” [24].

More recently, novel perspectives to computational models have emerged in the
fledgling area of computational psychiatry, where both theory-driven and
data-driven approaches have proved to be useful [25–27]; this research area is
further consolidated by the first online journal in the field that is only just estab-
lished (see http://computationalpsychiatry.org/). It is speculated that computational
psychiatry “might enable the field to move from a symptom-based description of
mental illness to descriptors based on objective computational multidimensional
functional variables…” [28] (the term ‘field’ within the quote refers to Psychiatry).
Indeed, in silico psychiatry has the potential to provide a holistic understanding of
how brain oscillations and neurotransmitters are fundamental to the
brain-body-mind function and to the evolution of species [11].

In section “Scientific Problems Addressed in the Book”, we present an overview
of the computational approaches addressed in this book and against the thematic
backdrop of neurological and psychiatric disorders. Some concluding remarks and
thoughts are presented in section “Closing Remarks”.

Scientific Problems Addressed in the Book

This book brings together diverse computational approaches to study disorders
related to the brain and mind, i.e. disorders that fall into the medical fields of
neurology, psychiatry, or both.

The book starts off in chapter “Outgrowing Neurological Diseases:
Microcircuits, Conduction Delay and Childhood Absence Epilepsy” with an
introduction into the dynamical nature of the brain that is at the core of several
neurological disorders. Milton et al. make a case study on Childhood Absence
Epilepsy (CAE) as a dynamical disease caused by underlying channelopathy, i.e.
disturbances in ion channels, that are often inherited. Most cases of CAE subside
naturally with developmental changes accompanying the onset of adolescence, but
the underlying neuronal correlates remain unknown. The model-based investigation
implicates axonal conduction delay in local thalamo-cortical circuits (microcircuits)
as a possible culprit. Furthermore, the model validates that developmental changes
naturally rectify the aberrant biological conditions causing the delay. The parox-
ysmal (sudden onset, as opposed to periodic) oscillations that are hallmarks of EEG
are presented from a dynamical systems perspective with supporting code for
bifurcation and dynamical analysis (see the chapter Appendix).

The theme of channelopathy in epilepsy continues in chapter “Extracellular
Potassium and Focal Seizures—Insight From in Silico Study” with a discussion on
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the role of extracellular potassium concentration in Epileptic focal seizures. Pro-
posed in 1970, the potassium accumulation hypothesis suggests that an abnormal
increase in neuronal firing leads to an excessive extracellular potassium accumu-
lation while there is a lack of compensatory increases in potassium uptake. This
leads to a further increase in neuronal firing, thus initiating an intrinsic synchronous
oscillatory cycle constituting high-amplitude, low-frequency rhythmic spikes,
marker of epileptic seizure. Suffczyński et al. make a model-based study to validate
experimental results (obtained from whole guinea-pig brain in vitro model of epi-
lepsy) that challenge the “traditional view of alteration in excitation/inhibition
balance being the cause of epilepsy”; rather, abnormal increase in spiking activity
of the inhibitory cortical interneurons are implicated as the causal factor in pro-
ducing extracellular potassium accumulation. In an interesting series of
model-based results, the authors raise the increasingly important issue of transla-
tional research in the context of using model-based predictions for novel therapeutic
treatments; a plausible mechanism of need-based extra-cellular potassium absorp-
tion using nanoparticle therapy is proposed.

While still on epilepsy, chapter “Time Series and Interactions: Data Processing
in Epilepsy Research” addresses an issue of prime importance: data processing in
both time and frequency domain. Benkő et al. discuss the pros and cons of tradi-
tional information theoretic, statistical and signal processing approaches in context
to processing of Epileptic time-series data. Essentially, the procedures discussed
in the chapter can be safely claimed as generic to EEG, MEG and LFP time-series
data obtained from patients with other neurological disorders. The authors make
separate discussions on real epileptic data and model-based simulated data.

In chapter “Connecting Epilepsy and Alzheimer’s Disease: Modelling of Normal
and Pathological Rhythmicity and Synaptic Plasticity Related to Amyloidβ (Aβ)
Effects”, we are still touching on epilepsy, however, a novel concept of correlating
the underlying (“hidden”) neuronal pathologies of Temporal Lobe Epileptic
Activity (TLEA) and Alzheimer’s disease (AD) are discussed. “Where is the
connection?” one may ask. Excerpts at the very onset in section “General Remarks”
satiate such queries: “In AD, the incidence of convulsive seizures is ten times
higher than in age-matched general population…Epilepsy is 87 times more frequent
in patients with ‘early onset’ (of AD) …..occurs particularly early in familial AD….
” Furthermore, the authors reveal that the hippocampus is the common seat for both
AD and TLEA. The destructive effects of Amyloid Beta (Aβ) accumulation in AD
is now well-known; the hippocampus and entorhinal cortex are the earliest and
worst affected areas leading to fast progressive cognitive losses in the disease. The
scientific treatment in this chapter deals with kinetic mechanisms of synapses in the
hippocampal cells, and looks into the effects of Aβ on synaptic plasticity, which in
turn are functions of the calcium ion channel dynamics; the authors make an
assumption, based on similar prior research, that NMDA (N-methyl D-aspartate)-
receptors “are the primary sources of calcium”.

This brings us to chapter “Dynamic Causal Modelling of Neurological
Pathology: Using Neural Mass Models to Understand Dynamic Dysfunction in
NMDA-Receptor Antibody Encephalitis”, where Rosch et al. make a model based
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study on NMDA-receptor Antibody Encephalitis, an inflammation of the brain
causing abnormal EEG activity similar to epileptic spike-wave discharges and sharp
wave paroxysms. The authors start the chapter with a brief history of EEG in
context to hallmarks of Epilepsy, and gently build a case towards the urgency in
present day and time for a multi-hierarchical approach for computational model
based studies in neurological disorders. Model parameterisation and optimisation
are also discussed in detail for the underlying cortical framework.

In chapter “Oscillatory Neural Models of the Basal Ganglia for Action Selection
in Healthy and Parkinsonian Cases”, continuing with the computational modelling
approach, Borisyuk et al. introduces the reader to research in Parkinson’s disease
and its correlation with abnormal dopaminergic synaptic levels in the underlying
basal-ganglia circuit. Involuntary tremors in Parkinsonian disease have highlighted
the lack of a holistic understanding of the underlying dynamics of the basal ganglia
circuit; current research specifically implicate possible anomalies in beta band (12–
30 Hz) oscillations. It is indeed surprising that although Deep Brain Stimulation
(DBS) is a fairly successful therapy used for treating Parkinson’s tremor, why and
how exactly it works is still not clear. Borisyuk et al’s presentation addresses this
aspect using and validating a computational model. The model is biologically
informed, and demonstrate the role of partial synchronisation in both “healthy and
parkinsonian basal ganglia”. In addition, the thoughts on translational aspects of
computational model based research are also stressed here, along the lines expressed
in chapter “Time Series and Interactions: Data Processing in Epilepsy Research”.

Still on Parkinson’s disease in chapter “MathematicalModels of Neuromodulation
and Implications for Neurology and Psychiatry”, Best et al. takes the reader to
pharmacological solutions while addressing an important area that computational
models seldom explore: neuro-modulation, an indirect means of synaptic infor-
mation transmission for example “dopaminergic projection to the striatum in the basal
ganglia from cells of the substantia nigra pars compacta”; “serotonergic projection to
the striatum from the dorsal raphe nucleus”. The authors present computational
models of neuromodulation by both serotonin and dopamine, and demonstrates the
importance of serotonin on the widely used levodopa treatment in Parkinsonian
tremor. Once again, and echoing the thoughts in chapters “Time Series and
Interactions: Data Processing in EpilepsyResearch” and “Dynamic CausalModelling
of Neurological Pathology: Using Neural Mass Models to Understand Dynamic
Dysfunction in NMDA-Receptor Antibody Encephalitis”, the authors stress on the
potential of computational models in informing translational research in both neu-
rology and psychiatry.

In chapter “Attachment Modelling: From Observations to Scenarios to Design”,
Petters & Beaudoin further develop the theme of computational modelling by
introducing the concept of Attachment modelling in computational neuropsychi-
atry, which in turn is based on the concept of Attachment Theory proposed and
developed by John Bowlby and co-workers (see chapter for appropriate references).
The authors translate Bolwby’s theory into “contemporary cognitive architecture”,
where agent-based models can simulate attachments and interactions in humans, for
example attachment of infants to their primary carers.
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On this note, we move forward to chapter “Self Attachment: A Holistic
Approach to Computational Psychiatry” where the author, A. Edalat, delves further
into the realms of the mind, and links adult vulnerability to mental disorders with
the insecurities that they faced as a child, mainly in the hands of the primary carer.
The concept of ‘attachment objects’ is introduced, where a child or adult shows
affinity and bonding with ‘objects’, for example a child with its mother, an adult
with his/her religious beliefs. Imaging studies show that similar neural pathways are
activated in three very different types of bond-making viz. romantic love, religious
praying and maternal love. Based on these, the author introduces the concept of
‘self-attachment’ where an adult forms an internal bond with the child in himself.
The author discusses computational models that are used to study self-attachment
viz. game-theoretic model and neural models.

Still on the computational psychiatric trail in chapter “A Comparison of
Mathematical Models of Mood in Bipolar Disorder”, Cochran et al. presents a
mini-review of “mathematical models of mood in bipolar disorder”. The mood
swings that define bipolar disorder are irregular, unpredictable, and lack an
objective biomarker. In this chapter, the authors explore basic modelling tenets for
explaining how the subjective symptoms of mood change over time. Signatures of
existing models are identified that could be compared with longitudinal data of
mood. The authors contend that successful modelling of mood symptoms could
help to describe precisely the symptoms of bipolar disorder, thereby facilitating
better personalised treatment.

Thus far, we have discussed modelling in bespoke neurological and psychiatric
disorders. One crucial aspect that provides a common thread to all of these models
is the underlying mathematical definition of neuronal networks and their functional
behaviour. Often, similar cortical and sub-cortical structures and their oscillatory
dynamics are common to various disorders. On the other hand, modelling para-
digms are often selected based on the problem at hand. Thus, networks of spiking
neuron models are used to understand the spiking behaviour of neurons both as a
single entity and as a part of the larger network. On the other hand, and as pre-
viously mentioned, population and statistical neuronal models are often used to
understand higher-level brain dynamics. Along these lines, chapters
“Computational Neuroscience of Timing, Plasticity and Function in Cerebellum
Microcircuits” to “A neural mass computational framework to study synaptic
mechanisms underlying alpha and theta rhythms” showcase the modelling of
specific brain structures that are vital in several brain disorders: In chapter
“Computational Neuroscience of Timing, Plasticity and Function in Cerebellum
Microcircuits”, Diwakar et al. study a model of the Cerebellum, a structure that is
known to be at the essence of timing in motor planning skills. In chapter “A
Computational Model of Neural Synchronization in Striatum”, Elibol and Sengor
study a model of the Basal Ganglia, another subcortical structure that is at the core
of decision making and action (discussed in previous chapters with context to
Parkinson’s disease). In chapter “A neural mass computational framework to study
synaptic mechanisms underlying alpha and theta rhythms”, Sen Bhattacharya et al.
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present a population model of the thalamocortical structure to understand the
underlying dynamics of EEG and LFP that bear signature of brain states in both
health and disease.

Continuing with the theme of modelling, in chapter The role of simulations in
neuropharmacology, Boutillier & Berger review the increasing importance of
computational methodologies towards understanding the underlying pathology in
both health and disease. From kinetic models of neurotransmitter receptors to
spiking neurons to non-mechanistic models, the authors emphasise the potential and
importance of computational models in the fast growing field of computational
neuroscience. On an ending note, the authors summarise the current challenges in
the field and provide some potential steps that should help in overcoming the
obstacles, for example “using open standards and good modelling practices” to
ensure “reproducible, iterative and collaborative modelling, consequently allowing
iterative incorporation of additional findings while tuning and optimizing the rest of
the model.” This in turn will facilitate personalised treatments and drugs in neu-
rological and psychiatric conditions.

Closing Remarks

If the human brain were so simple
That we could understand it,
We would be so simple
That we couldn’t.
(Emerson M. Pugh, circa 1938 [29])

Designing and building brain-inspired computational models to understand the
brain has made steady advances over the years, and continue to gain increasing
credibility among the highly interdisciplinary scientific community aspiring to
understand brain dysfunction [19, 30]. While critics may cast doubt on the path
forward, one may cite the greatest testimony of computational modelling in current
times—the weather forecast system, which can be deemed as a hugely successful
endeavour [31]. Nevertheless, unravelling the mysteries of the brain will be a
daunting task, as predicted by Pugh [29], and call for a concerted effort worldwide.
This book is a humble effort along these lines and towards breaking Lyall Watson’s
(in-) famous tag of ‘Catch 22’ [32] in brain science.
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Outgrowing Neurological Diseases:
Microcircuits, Conduction Delay and
Childhood Absence Epilepsy

John Milton, Jianhong Wu, Sue Ann Campbell and Jacques Bélair

Introduction

Physicians use the evolution of an illness to formulate a diagnosis and guide a treat-

ment plan. Observations as to whether the disease onset is acute or sub-acute and the

course is self-limited, relapsing-remitting or chronic progressive can be sufficient

by themselves to significantly reduce the list of possibilities. On the other hand,

the experiences of mathematicians and physicists emphasize that careful attention

to how variables, namely something that can be measured, change as a function

of time, referred to herein as dynamics, can uncover the identity of the underlying

mechanisms. From this point of view many diseases may be dynamical diseases and

arise in physiologial control mechanisms in which critical control parameters have
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been altered [1–3]. Consequently important clues related to diagnosis and treatment

may be embedded in the time-dependent changes in the relevant clinical variables,

such as changes in temperature, weight, blood cells number, the electrical proper-

ties of the brain and heart, and so on. As wearable devices for the continuous,

non-invasive monitoring of physiological variables become prevalent, it is likely that

disease dynamics will increasingly become a focus of attention.

A potentially important application of continuous monitoring of physiological

variables arises in the management of a patient with epilepsy. For these patients

issues related to patient morbidity, and even mortality, are more often than not due

to the unpredictability of seizure occurrence rather than to the seizure itself. For

example, seizure occurrence while operating a moving vehicle could potentially be

fatal. However, if seizure occurrence could be predicted, then maybe the seizures can

be aborted [4–9]. At the very least it might be possible to give the patient enough

time to make arrangements that minimize the effects of the impending seizure.

The study of inherited diseases of the nervous system which are characterized by

recurring, paroxysmal changes in neurodynamics would be expected to shed light

onto the answers to these questions [10–12]. In 1995, Milton and Black identified a

number of familial disorders characterized by recurring episodes of abnormal neu-

rodynamics (see Table 1 in [13]). Examples of the episodic changes in neurodynam-

ics included epileptic seizures, headaches, paralysis and abnormal movements. They

referred to these diseases as dynamic diseases. Herein we use the abbreviation DD to

refer to both dynamical and dynamic diseases. Many of the DD’s identified by Milton

and Black were subsequently identified as channelopathies (Section “Dynamic dis-

eases in neurology and psychiatry”). Channelopathies arise because of mutations in

the genes that encode for the protein subunit components of ion channels of neurons

and other exitable cells.

Paroxysmal changes in neurodynamics reflect transient losses in control by neuro-

physiological control mechanisms. The goal of this chapter is to identify possi-

ble mechanisms for paroxysmal seizure recurrence in childhood absence epilepsy

(CAE). CAE is the most common and extensively studied epilepsy associated with

a channelopathy (Table 1). There are two important issues: (1) How can a con-

stantly present molecular defect give rise to the recurring seizures exhibited by the

patient? (Sections “Paroxysmal seizure occurrence”–“Multistability in time delayed

microcircuits”) and (2) Why do seizures in CAE appear during childhood and then

typically abate by late adolescence? (Section “Developmental aspects”). Our liter-

ature review links the paroxysmal nature of seizure occurrence to dynamical sys-

tems which contain time delays and which exhibit multistability. The tendency of

children with CAE to outgrow their seizures is linked with changes in 𝜏 related

to developmental changes in brain myelination. Finally we discuss our findings in

Section “Discussion”.
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Table 1 Gene mutations in neurological DD’s characterized by paroxysmal events

Dynamic disease
a

Mutated gene
b

Triggering events
c

Channelopathies

Andersen-Tawil syndrome Kir2.1 None

Benign familial neonatal epilepsy SCN2A ?

Childhood absence epilepsy GABRA1,

GABRA6,

GABRB3,

GABRG2,

CACNA1H

Hyperventilation

Familial hemiplegic migraine CACNA1A Minor head trauma, cerebral

angiography

Familial hyperplexia GRAR1, GLRB Unexpected auditory or tactile

stimuli

Familial paroxysmal ataxia CACNA1A,

KCNA1, CACNB4

Stress, excitement

Hyperkalemic periodic paralysis SCN4A Fasting, exercise, K
+

foods

Hypokalemic periodic paralysis CACNA1S, SCN4A Insulin, glucose

Juvenile myoclonic epilepsy DRD2, CACNB4,

CLCN2, GABRA1,

GABRD, EFHC1

Awakening

Nocturnal frontal lobe epilepsy CHRNA4,

CHRNB2, CHRNA2

Sleep I-II transition

Paroxysmal choreoathetosis/spasticity SLC2A1 Alcohol, exercise, sleep

deprivation, stress

Paroxysmal non-kinesigenic dyskinesia MR-1 Alcohol, coffee, stress, fatigue

Paroxysmal kinesigenic dyskinesia PRRT2 Sudden voluntary movement

a
Clinical descriptions of these disorders and the identification of the gene mutations associated with

these disorders can be found on the OMIM website (see text)
b
Site of mutation: voltage-gated calcium channel (CACNA1A, CACNA1H, CACNA1S,

CACNB4), cloride channel (CLCN2), dopamine receptor (DRD2), inward-rectifying potassium

channel (Kir2.1), voltage-gated potassium channel (KCNA1), voltage-gated sodium channel

(SCN4A), acetylcholine nictonic receptor (CHRNA4, CHRNA2, CHRNB2), glycine receptor

(GLRA1, GLRB), GABAA receptor (GABRA1, GABRA6, GABRB2, GABRB3), acetylcholine

nictonic receptor (CHRNA4, CHRNA2, CHRNB2), proline rich transmembrane protein (PRRT2),

major histocompatibility complex related gene protein (MR-1), solute carrier gene (SLC2A1)
c
The triggering events refer to stimuli and behaviors most often reported by patients as precipitants

of “their attacks”

Dynamic Diseases in Neurology and Psychiatry

A practical problem for identifying the critical parameters and underlying control

mechanisms for DD is that it is not often possible to monitor the patient at the time

the dynamics change. For this reason patients in which paroxysmal events recur with
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Table 2 Paroxysmal neurological dynamic diseases of childhood and adolescence which may be

outgrown

Dynamic disease
a

Mutated gene
b

Triggering events Outgrown by
c

Epilepsy

Benign familial infantile epilepsy PRRT2 18 months

Benign familial neonatal epilepsy SCN2A 7 years

Benign rolandic epilepsy 11p13 Awakening Adolescence

Absence epilepsy GABRA1,

GABRA6,

GABRB3,

GABRG2,

CACNA1H

Hyperventilation Adolescence

Juvenile absence epilepsy EFHC1 Awakening 3rd–4th decade

Juvenile myoclonic epilepsy DRD2, CACNB4,

CLCN2,

GABRA1,

GABRD, EFHC1

Awakening 3rd–4th decade

Occipital epilepsy ? ? adolescence

Familial hyperekplexia GLRA1, GLRB Unexpected

auditory or tactile

stimuli

Childhood

Motor tics

Tourette’s syndrome ? Anxiety, stress Adolescence

Parasomnias

Bed wetting ? Adolescence

Night terrors ? adolescence

Sleep walking 20q12-q13.12 Stress, alcohol,

sleep deprivation

Adolescence

Sleep talking ? Adolescence

Speech disorders

Stuttering ? Adolescence

a
Clinical descriptions of these disorders and the identification of the gene mutations associated with

these disorders can be found on the OMIM website
b
Site of mutation: EF-hand domain containing protein 1 (EFHC1), gene mutation located on short

arm of chromosome 11 (11p13), gene mutation long arm of chromosome 20 (20q12-q13.12). See

also legend for Table 1
c
These estimates are the most commonly observed age at which the troubling clinical signs disap-

pear

a certain predictability are ideal candidates to characterize the nature of the DD tran-

sition. Thus it becomes possible, at least in principle, to use techniques such as multi-

modal imaging to document the structure of the brain and the physiological changes

that occur at the time the changes in dynamics occur. The hope is that as more and
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more events are recorded, it may be possible to identify the common features and

hence the critical control parameter(s).

Tables 1 and 2 summarize two groups of DD’s of the nervous system that are

potentially well suited for determination of how paroxysmal changes in signs occur

[12]. The first group includes those diseases in which paroxysmal events can be

repeatedly triggered with a certain predictability. The second group includes those

neurological and psychiatric disorders that appear in infancy-childhood and then

spontaneously disappear as the child gets older, typically by mid to late adolescence

(Table 2). It should be noted that the clinical use of the words “periodic” and “parox-

ysmal” differs from their mathematical meaning. Typically physicians use the term

“periodic” to mean that the signs recur “every so often” or “every once in a while”.

The term “paroxysmal” means that the onset of the signs occurs suddenly and with-

out warning.

An exciting development has been the realization that many of the familial parox-

ysmal and periodic neurological diseases are channelopathies. Ion channels are the

transmembrane pores which allow ions to flow across membranes in response to their

electrochemical gradients. Although ion channels can be formed by a single protein

(e.g., the transmembrane chloride conductance regulator in cystic fibrosis [14]), most

often ion channels are formed from an assembly of protein subunits each encoded by

a different gene. Over 400 ion channel genes have been identified: a useful resource

is the Online Mendelian Inheritance in Man (OMIM) website: http://www.ncbi.nlm.

nih.gov/omim.

Many of the DD’s in Tables 1 and 2 are associated with gene mutations related to

various ion channels including the voltage-gated Ca
++

, Cl
−

, K
+

, and Na
+

channels

and the ligand-gated acetylcholine nictonic and 𝛾-aminobutyric acid A (GABAA)

receptors. These ion channels are the “excitable” in the term excitable cell. The work

of Hodgkin and Huxley links the dynamics of excitable cells to the properties of the

ion channels located in their membranes. These models take the general form

C ̇V(t) = −Iion(V ,W1,W2,… ,Wn) + I0 (1)

̇Wi(t) = 𝛽

[ ̂Wi(V) − Wi]
Γ(V)

where V(t) is the membrane potential, Γ is a time constant, C is the membrane capac-

itance, Iion is the sum of V-dependent currents through the various ionic channel

types, I0 is the applied current, Wi describe the fractions of channels of a given type

that are in various conducting states (e.g., open versus closed), ̂Wi(V) describe the

equilibrium functions and 𝛽 is a time scale factor.

Over 50 years of work by mathematicians and neuroscientists have established a

quantitative agreement between experimental observations on neurons and the pre-

dictions of (1) (for review see [15–20]). The predicted neuronal spiking dynamics

include a variety of regular spiking and bursting patterns. It can be anticipated that

it should be possible to draw analogies between abnormal neurodynamics and the

clinical presentations. However, neurons are not the only type of excitable cell.

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
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Cardiac and skeletal muscles and certain endocrine cells such as pancreatic 𝛽-cells

are also excitable. Thus it is not difficult to appreciate the complexity of the clinical

presentations and inheritance patterns of this group of diseases [21, 22].

Childhood Absence Epilepsy (CAE)

CAE is a channelopathy that exhibits both paroxysmal dynamics and a developmen-

tal pattern (Tables 1 and 2). Many families with absence epilepsy have a defect in

one of the subunits of the 𝛾-aminobutyric acid A (GABAA) receptor. The GABAA
receptor is an anion selective, ligand-gated ion channel [23]. The concept that CAE

reflects a disturbance of inhibition is supported by both animal and human observa-

tions. For example, in cats, systemic injection of penicillin, a weak GABAA receptor

antagonist, causes a dose-dependent transformation of sleep spindles to spike-wave

discharges (SWD), the electro-encephalographic (EEG) signature of CAE [24, 25].

In human CAE, GABA-mimetic anti-epileptic drugs such as vigabatrin and tiagabine

exacerbate absence seizures [26, 27].

Seizure onset is between the ages of 4–6 years and most commonly the seizures

disappear by mid to late adolescence. There are no long term cognitive or behavioral

sequelae. The seizures occur abruptly without warning and consist of brief spells

of staring and unresponsiveness typically lasting 10–20 s. Minimal myoclonic jerks

of the eyes and perioral automatisms can often be observed during the seizure. The

frequency of the spells can be very high (100s per day). The EEG recorded using

electrodes placed on the scalp changes during the seizure demonstrate the presence

of generalized 3–4 Hz SWDs (Fig. 1a). Typically the seizure can be triggered at the

bedside by having the child hyperventilate. Seizures in CAE can often be aborted

using brief sensory stimuli, for example, the mother shaking or speaking to the child,

a loud noise. The ability of sensory stimuli to abort seizures can also be observed in

patients with atypical absence seizures characterized by 1.5–2.5 Hz SWDs (Fig. 1)

[28].

Current debates concern the mode of onset of absence seizures in CAE [29, 30].

At the bedside, the classification of epileptic seizures was based on how a seizure

begins in the first split second as determined by (1) direct observations of the clinical

aspects of the seizure, and (2) correlation between the clinical features of the seizures

and the changes detected in the EEG. If the seizure began in a focal area of the brain it

was called a partial epileptic seizure. If the seizure appeared to begin everywhere at

the same time it was called a primary generalized seizure. Thus historically seizures

in CAE were considered to be primary generalized.

However, the use of scalp EEG recordings is not sufficient to rule out the pos-

sibility that absence seizures in CAE have a focal onset. For example, it would be

very difficult to distinguish a generalized seizure from a focal onset seizure which

rapidly generalizes. Indeed simple calculations based on estimates of seizure prop-

agation velocities suggest that the fastest way to generalize a seizure is via recipro-

cal cortico-thalamic connections [31]. Depth electrode recordings in patients with



Outgrowing Neurological Diseases: Microcircuits . . . 17

Fig. 1 Top Scalp EEG changes recorded during a generalized seizure in 16 year old with atypical

absence epilepsy. Bottom The application of a brief sensory stimulus can shorten the length of the

seizure. Figure reproduced from [28] with permission

generalized seizures were the first to demonstrate that seizure foci located in the

frontal lobes could so rapidly generalize that a focal onset would be missed from

scalp EEG recording [32, 33].

A cortical site for absence seizure onset has been identified in a rodent model

for absence seizures [34]. It is located in peri-oral somatosensory cortex. Recently

high resolution EEG-MEG studies together with advanced signal analysis techniques

of absence seizures in human CAE have shown the presence of localized areas of

pre-seizure activation in frontal cortex, orbito-frontal cortex, the mesial temporal

lobe and the parietal lobe [35–37]. These observations are reminiscent of the con-

cept developed for partial complex seizures that emphasizes the role of a spatially

extended epileptic system that regulates the onset, maintenance and cessation of par-

tial epileptic seizures [38, 39].

The above observations indicate that seizures in CAE are secondarily generalized.

Here we focus our attention on the dynamics of seizure onset and do not consider how

the epileptic activity spreads from the epileptic focus once the seizure is initiated.

Dynamical Systems Approaches to Seizure Onset

At the most basic level, a seizure represents a change in the activity of neurons. The

cortical interictal state is primarily characterized by low frequency neuronal spiking

[40, 41]. The hallmark of the onset of a seizure is a change in neural spiking rates.
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Dynamics is concerned with the description of how variables, such as those

related to neural spiking rates, change as a function of time. The fact that the mag-

nitude of a variable in future time will be known once we know its initial value and

rate of change per unit time is a fundamental property of the differential equation

ẋ ≡

dx
dt

= f (x) , (2)

where x is, for example, the firing rate. The left-hand side of this equation re-iterates

the importance of the change in the variable per unit time and the right-hand side

states the hypothesis proposed to explain the time-dependent changes in the variable.

In this chapter we are particularly interested in the role played by factors related

to the physical separation of neurons on seizure onset. These factors include the

axonal conduction velocity, v, and the distance, r, between neurons. Consequently

(2) becomes the delay differential equation (DDE)

ẋ = f (x(t − 𝜏)) , (3)

where 𝜏 = r∕v is the time delay. An introduction to the numerical methods available

for the analysis of (3) is given in Appendix A. In order to obtain a solution to (3)

it is necessary to specify an initial function, 𝜙, on the interval [−𝜏, 0]. These initial

values can be changed using brief external stimuli. This observation is relevant to

the clinical observation that brief sensory and electrical stimuli can abort an absence

seizure. From a dynamical systems point of view this observation suggests multista-
bility. To understand what is meant by the term multistability, we need to consider

the nature of the solutions of (3).

Solutions of (3) can be classified by the qualitative nature of the changes in the

variable as a function of time. Fixed point solutions are solutions where the values of

the variables are fixed in time. Such solutions would correspond to a constant neural

spiking rate. Periodic solutions are solutions which oscillate in time with some fixed

period. Such solutions would correspond to oscillatory changes in spiking rate such

as seen for a bursting neuron or population.

Another way that solutions can be classified is with respect to their response to

perturbations. From this perspective a solution is called stable if solutions which

have initial conditions close to the solution approach it in the longterm, otherwise

it is called unstable. Stable solutions will be observed in numerical simulations and

experiments. Unstable solutions will not persist in the longterm, but may be observed

transiently. It is possible that an unstable solution may correspond to a seizure [12].

Multistability refers to the situation when there is more than one stable solution in the

system: the long term behavior of the system then depends on the starting, or initial

conditions and whether the system is subjected to any perturbations. If a system has

multiple stable solutions, then it must also have unstable solutions.

A parameter is a variable which changes so slowly in comparison to the time

scale of the variables of interest that it can be regarded as constant. Examples of

parameters relevant for the occurrence of an absence seizure include 𝜏, the number
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of GABA receptors, the receptor binding constant for GABA, the parameters that

govern the gating of the Cl
−

channel, and so on. We will be particularly interested

in how the number, type and stability of solutions change as one or more parameters

are changed. This is called a bifurcation. Parameter values where this occurs are

bifurcation points. When a bifurcation occurs in a system, the qualitative behavior

of the system changes. For example, the system may transition from having a stable

fixed point as the long-term behavior to having a periodic solution as the long-term

behavior.

In summary, we use DDEs to describe the neurophysiological rules that gov-

ern the change rates of the system variables. These equations are often nonlinear

and often involve neural physiological properties such as decay rates of action

potentials and gains, and interconnectivity of the population such as synaptic con-

nection weights, conduction velocities and time delays. These neurophysical prop-

erties, synaptic weights and conduction velocities remain constant in the time scale

of the considered neurodynamics, and are called parameters. Naturally, solutions

of the DDEs depend on both their initial values and the parameters. Understanding

dynamic diseases in systems described by a DDE requires the examination of behav-

iors of solutions—evolutions with respect to time of the variables—for a wide range

of plausible initial conditions and parameter values of the system. An important prop-

erty of a dynamical system is the emerging long-term behaviors, in which solutions

from a set of different initial conditions may converge to a particular solution which

is called an attractor. The set of initial conditions for which the corresponding solu-

tions converge to the attractor is called the basin of attraction. A dynamical system

may have multiple attractors for a particular parameter value. This is called multista-

bility. The same system with two different parameters may have different numbers

and types of attractors, the critical values of parameters through which the system

undergoes changes (bifurcations) in the numbers and types of attractors are called

bifurcation points. Often these attractors take the form of fixed point solutions or

limit cycles or periodic solutions.

In Section “Multistability: Hopfield model” we outline how to determine the num-

ber and stability of fixed points of a model, the nature of the possible bifurcations as

a function of 𝜏 and the conditions for the occurrence of multistability. Our particular

focus is on the situation when the time delay acts a bifurcation parameter. In order

to improve the flow of the presentation of the mathematical results, we will not give

references for all the standard results we use: these can be found in [42–44], and a

more complete (and abstract) approach to the theory of delay differential equations

can be found in [45] or [46].

Paroxysmal Seizure Occurrence

The hallmark of epilepsy is the paroxysmal nature of seizure occurrence [28, 47]

which can even be observed in human neocortical slices [48]. Many computational

models of absence seizures have examined topics related to the identification of the
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mechanism of action of anticonvulsant medications, the generation of the EEG and

the nature of the mechanisms that recruit large populations of neurons into the

evolving seizure (for reviews see [49–53]). Much less attention has been given to

understanding how a seizure begins when it does and why a seizure, once started,

eventually stops (for notable exceptions see [28, 47, 54]).

We take a dynamical systems approach. Our concern is on the dependence of

the solutions of the governing differential equations as regulating parameters (e.g.,

nerve fiber length, conduction velocity) are changed and where these solutions start

from. Bifurcations are qualitative changes in these behaviors. To be more specific, we

briefly recall here some basic concepts relevant to dynamical systems in the context

of DDEs. Under this paradigm, there are four general types of mechanisms in delay

differential equations that can produce a paroxysmal change in dynamics (Fig. 2).

Two of these mechanisms involve changes in parameters and two involve changes in

variables.

The first mechanism proposes that sudden changes in dynamics arise because

of a change in an important parameter such as a feedback gain or 𝜏 [1–3, 55].

Fig. 2 Four mechanisms for producing a seizure (SZ). a A bifurcation caused by moving a parame-

ter across a stability boundary (dashed line), b a change between two attractors caused by changes

in the initial conditions, c a transient unstable oscillation which arises as the system moves from

one attractor to another, d critical phenomena that arise when the dynamical system is tuned very

close to a stability boundary (dashed line)
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The changes in dynamics correspond mathematically to bifurcations in the relevant

nonlinear equations which describe the affected physiological system. Examples of

DD’s which can be attributed to this mechanism include Cheyne-Stokes respira-

tion [2] and blood cell diseases characterized by oscillations in blood cell number

[56–58]. In terms of an explanation for an absence seizure this approach requires

two parameter changes: one parameter change to explain the seizure onset, another

to explain why the seizure stops.

The idea that seizure onset in CAE is related to changes in variables is based

on clinical observations (Fig. 1). A brief sensory or electrical stimuli corresponds

to a change in the initial function 𝜙. This observation is suggestive of a multistable

dynamical system [28, 47]. Figure 2b, c illustrates this concept of a dynamical sys-

tem using the potential energy surface, U(x). The minima (“valley”) corresponds

to a stable solution and the maxima (“hill”) represent an unstable solution. In this

interpretation, the onset of a seizure corresponds to a transition from one valley to the

next, or in other words, a transition into a basin of attraction associated with a seizure.

Brief stimuli abort the seizure by causing a transition from the seizure-related basin

of attraction to one associated with healthy brain dynamics. This mechanism for an

absence seizure also requires two changes in the variables: one change to explain

seizure onset, another to explain why the seizure stops.

There are two mechanisms which incorporate both the onset and cessation of the

seizure. The first involves modification of the multistability concept (Fig. 2c). It relies

on the observation that in time-delayed dynamical systems, an unstable limit cycle

can be associated with the separatrix that separates two stable attractors [12, 59–

61], i.e. the “hump” between the “two valleys”. It must be emphasized that the stable

attractors do not correspond to the seizure, the seizure arises as a transient oscilla-

tion associated with the transition between the attractors [10, 12]. In the two-neuron

microcircuits discussed in Section“ Multistability: Hopfield model” delay-induced

transient oscillations (DITOs) are associated with the presence of an unstable limit

cycle [59, 60].

The final mechanism is based on the concept that the parameters of neural control

mechanisms are tuned very close to the “edge of stability” (Fig. 2d). Indeed excita-

tory synaptic inputs to pyramidal neurons outnumber the inhibitory ones by 6.5 to 1

[62]. The fundamental concept is that a seizure might correspond to a phase transi-

tion. Thus near the bifurcation point, a dynamical system is expected to be character-

ized by collective behaviors for which it is not possible to define a specific correlation

length. There are two clinical observations consistent with this hypothesis. First, the

distribution of seizure sizes and times to occurrence exhibit power law behaviors [6,

63–65]. Second, even for individuals who do not have clinically-evident seizures,

micro-seizures can be observed while the subject sleeps [66]. Thus from this point

of view clinical epilepsy is a disease which is characterized by larger events [67].

However, dynamical systems tuned toward the edge of stability are also expected to

generate a number of critical phenomena, such as critical slowing down and ampli-

tude amplification [68]. These phenomena have not been observed for the majority

of seizure occurrences [69].
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Epileptic Micro-Circuits

Simultaneous recording of thalamic and cortical local field potentials during an

absence seizure in CAE demonstrated that the oscillations are detected in the thala-

mus 1–2 s before SWDs are observed in the cortex [70]. Thus it is currently believed

that the SWDs recorded by the scalp EEG during absence seizures are generated

by the thalamo-cortical-thalamo circuit shown in Fig. 3 [71]. This network involves

reticular thalamic neurons (nRT), thalamic relay neurons (TC) and cortical pyrami-

dal neurons (CT). Inhibitory connections occur in both the thalamus and the cortex.

This same circuit is involved in sleep and early investigators quickly recognized that

the very mechanisms that generate sleep spindles are “hijacked” in CAE to generate

the SWD [24, 25, 72].

It is useful to keep in mind that the thalamocortical circuit shown in Fig. 3 is

for a rodent model of absence epilepsy [73]. However, much of the early work on

absence seizure was done on feline brains [24, 25]. There are important physiolog-

ical and anatomical differences between the thalamus of rodents and felines. For

example, in rodents inhibitory interneurons are absent in almost all thalamic relay

nuclei [74]. Thus intrinsic inhibition is absent in most of the thalamus and inhibition

relies almost entirely on input from nRT. In contrast, in the feline thalamus, intrinsic

GABAergic inhibitory interneurons are present throughout the thalamus, including

its relay nuclei. Here the nRT provides an additional external inhibitory input. The

thalamus in humans is much more developed that in rodents and felines [74, 75] and

hence we can expect even more differences.

For unmyelinated axons, v ∼
√

d, and for myelinated axons, v ∼ dg
√
ln g, where

d is the axon diameter and g is the ratio of d to overall fiber diameter. From Fig. 3 it

can be seen that there is a distribution in the length of interneuronal axons: the length

Fig. 3 Corticothalamic circuit involved in the genesis of absence seizures and sleep spindles. The

cortical-thalamic distances between neurons are of the order of∼5 cm and those within the thalamus

are <1 mm. The cortico-cortical distances range from <1 mm to 5–10 cm
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Fig. 4 Four neural micro-circuits important for the generation of epileptic seizures. a Recurrent

inhibition (RI), counter inhibition (CI), recurrent excitation (RE) and feedforward inhibition (FFI).

b Thalamocortical circuit important for CAE. The dark neurons are inhibitory and the white faced

ones are excitatory

of axons associated with the intrathalamic connections (nRT ↔ TC) are shorter

(< mm’s) than those associated with thalamo-cortical connections (CT ↔ nRT and

CT↔TC) (∼ cm’s). Since 𝜏 = r∕v, we can anticipate that there will be a bimodal dis-

tribution of 𝜏 [76]. This segregation in terms of short and long 𝜏 is further increased

by the facts that (1) many of the cortico-thalamic axons are unmyelinated [77] (hence

𝜏 is increased) and (2) gap junctions exist between nRT neurons [78, 79] (hence 𝜏 is

decreased).

It is increasingly being recognized that the behavior of large ensembles of neurons

can be understood from smaller motifs involving 2–3 neurons [80–82]. Figure 4a

shows four microcircuit motifs which have been emphasized for the generation of

epileptic seizures [81]: (1) recurrent inhibition (RI), (2) counter inhibition (CI), (3)

recurrent excitation (RE) and (4) feedforward inhibition (FFI). For CAE, the GABAA
defect draws attention to those microcircuits which include an inhibitory component.

Thus the thalamo-cortical ciruit shown in Fig. 3 can be interpreted as a FFI micro-

circuit (Fig. 4a, b). Indeed the FFI microcircuit has been considered to be critically

important for the generation of SWD recorded by the EEG.

However, recent observations cast doubt on the importance of the FFI microcir-

cuit for seizure onset [73]. First, seizures occur in the Gria4−∕− mice in which the
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connection between nRT and CT neurons has been deconstructed with optogenetic

techniques [83]. Second, studies of olfactory cortex suggest that whereas FFI and

excitation are balanced, RI dominates the intracortical excitations which are high-

lighted in our analysis [84]. Finally, as already pointed out, absence seizures in CAE

have a focal cortical onset. From a mathematical perspective, FFI requires a model

that involves three neurons. Investigations of similar models [85] have shown that

the delay effects we outline below likely do not play a role in such a circuit when it is

isolated. More complex nonlinear effects involving interactions with other microcir-

cuits [86] may be required to generate the multistable dynamics we emphasize here.

Therefore in the discussion which follows we emphasize the role of RI, RE and CI

for seizure onset.

Multistability in Time Delayed Microcircuits

The dominant theme of our discussion is that DDE models for the CI, RI and RE

microcircuits readily generate multistable dynamics. This multistability is defined

as the simultaneous co-existence of two or more stable states which may be fixed

points (steady states) or periodic solutions. We demonstrate this observation with

three types of models: (1) integrate-and-fire models, (2) Hopfield network models,

and (3) Hodgkin-Huxley networks.

Multistability: Integrate-and-Fire Model

The simplest model for RI that illustrates the interplay between 𝜏 and multistability

is the integrate-and-fire model whose dynamics are shown in Fig. 5a. This recurrent

inhibitory loop involves a single excitatory neuron, E, and an inhibitory neuron, I

[87]. The membrane potential, V , of E increases linearly at a rate, R, until it reaches

the firing threshold, Π. When V = Π, E spikes and V is reset to the resting membrane

potential, V0. The period is T = Π∕R. The spike generated by E excites I, which in

turn after a time delay, 𝜏, delivers an inhibitory post-synaptic potential (IPSP) to E. In

general the effect of this IPSP will be to change the timing of the next spike generated

by E by an amount 𝛿, where 𝛿 is a function of the phase at which the IPSP arrives after

E has fired. However, here we assume that 𝛿 is independent of the phase and hence

the effect of the IPSP when R > 0 is to decrease V by an amount 𝛿. This is equiva-

lent to increasing the time that the next spike generated by E occurs by an amount

𝛿. For simplicity we take V0 = 0 and define the following dimensionless variables:

𝜏
∗ = 𝜏∕T , t∗ = t∕T , v∗ = V∕Π, 𝛥 = 𝛿∕Π, so that the dimensionless firing threshold,

period and voltage growth rate are, respectively, Π∗ = 1,T∗ = 1,R∗ = Π∗∕T∗ = 1.

Dropping the asterisks we see that the dynamics of the recurrent loop depend only

on two parameters, namely 𝜏 > 0 and 𝛥 ≥ 0. When 𝜏 < 1, E spikes periodically with
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Fig. 5 a The time course of the membrane potential v for the integrate-and-fire neuron E in a time-

delayed RI. The dashed line indicates the threshold. b Four co-existence periodic attractors that

occur when 𝜏 = 4.1 and 𝛥 = 0.8. The different patterns are described by the number of inhibitory

pulses between two successive neuron spikings. Thus for the lower left pattern in b we have going

from left to right, 0 inhibitory pulses between the first two spikes, 2 inhibitory pulses between the

next two spikes, then 2 inhibitory spikes, then 0, then 1. After this the pattern repeats. Thus the

shorthand label for this spike pattern is {02201}

period 1 + 𝛥. This is because decreasing the membrane voltage by an amount 𝛥 is

equivalent to increasing the interspike interval by 1 + 𝛥.

The essential condition for multistability in this dimensionless model is that 𝜏 > 1
(Fig. 5b). Complex behaviors become possible since the inhibitory pulses are not

necessarily the result of the immediately preceding excitatory pulse (Fig. 5a). It can

be shown that the solutions which arise can be constructed from segments of length

𝜏, where each segment satisfies an equation of the form

𝜏 = x + m + x𝛥 ,

where m, n are positive integers and 0 < x < 1. For 𝜏, 𝛥 fixed, the total numbers

of pairs that satisfy this relationship is ⌈𝜏∕𝛥⌉, where the notation ⌈.⌉ denotes the

smallest integer greater than 𝜏∕𝛥. Since the number of (m, n) segments is finite for

a given 𝜏 and 𝛥, it follows that all solutions are periodic with period S(1 + 𝛥) where

S is the number of excitatory spikes per period.

Despite the simplicity of this mechanism for generating multistability, it makes

a number of predictions that may be relevant for CAE. First, this model draws

attention to the importance of the long recurrent loops associated with long 𝜏’s

in generating paroxysmal events. For a given recurrent inhibitory loop, multista-

bility can arise either because T is decreased or because 𝜏 is increased. Increasing

the excitatory drive to cortex by, for example, up regulation of excitatory synapses,

decreases T and hence would be expected to produce multistability (seizures) as is

observed experimentally [88, 89]. On the other hand, brain maturation is associ-

ated with increased myelination of neuronal axons which increases their conduction
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velocities (see Section “Developmental aspects”), thereby decreasing 𝜏, and reduc-

ing the number of coexistent attractors. This observation could explain why this

epilepsy is particularly common in children and why seizures tend to decrease in

frequency, and even disappear altogether, as the child gets older.

Multistability: Hopfield Model

The next step is to examine models which describe the dynamics of two interacting

neurons. In particular we explore the dynamics exhibited by the motifs in Fig. 4a

using the equations for a Hopfield network. For 2-neuron circuit we have

ẋ1 = −k1x1(t) + 𝜔11g11(x1(t − 𝜏11)) + 𝜔21g21(x2(t − 𝜏21)) + I1 ,
ẋ2 = −k2x2(t) + 𝜔22g22(x2(t − 𝜏22)) + 𝜔12g12(x1(t − 𝜏12)) + I2 . (4)

In this model, the variables xj(t) (j = 1, 2) are the spiking rates of the neurons at time t
and the kj represent a natural decay of activity in the absence of input. The parameters

𝜔ij represent the strength of the connections:𝜔11 and𝜔22 are the strengths of the self-

connections; 𝜔12 is the synaptic weight from x2 to x1, 𝜔21 is the weight from x1 to x2.

The sign of 𝜔ij determines whether the synapse is excitatory (𝜔ij > 0) or inhibitory

(𝜔ij < 0). The parameters Ij (j = 1, 2) are the external inputs to the neurons. The

function g(x) is sigmoidal and can be written in many ways, most commonly taken

as tanh(cx), xn∕(c + xn), or 1∕(1 + e−cx). Appendices B and C illustrate applications

of the use of readily available computer software packages for the analysis of (4).

The CI, RE and RI micro-circuits depicted in Fig. 4a correspond to the following

choices of signs in (4)

CI [12, 59–61, 90]: 𝜔ij < 0
RE [90–94]: 𝜔ij > 0
RI [87, 90, 95–100]: 𝜔11, 𝜔12 < 0, 𝜔21, 𝜔22 > 0

The fixed point solutions of a system with time delays, x̄, are the same as those of

the corresponding system with zero delay. Thus for (4) we obtain (x̄1, x̄2) by setting

ẋ1 = ẋ2 = 0 and solving

0 = −k1x̄1 + 𝜔11g11(x̄1) + 𝜔21g21(x̄2) + I1 , (5a)

0 = −k2x̄2 + 𝜔22g22(x̄2) + 𝜔12g12(x̄1) + I2 . (5b)

Since our model is two dimensional, we can also visualize the determination of the

fixed points geometrically (Fig. 6). The fixed points are the intersection points of the

curves defined by these equations. It is possible to analyze the equations in some

detail to determine the number of possible fixed points see e.g. [101, 102].
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(a) RI circuit (b) RE circuit

Fig. 6 Nullclines showing single fixed point in RI case and multiple fixed points in RE

case. The solid line gives the x1-nullcline determined from (5a) and the dashed line gives the

x2-nullcline determined from (5b). The nonlinearity is gij(u) = tanh(u − 𝜃). Parameter val-

ues are a 𝜃 = 1.5, k1 = 1, 𝜔11 = −0.6, 𝜔21 = 1, I1 = 1.5, k2 = 1, 𝜔12 = −1, 𝜔22 = 0.5, I2 = 1.5 and

b 𝜃 = 1.5, k1 = 1, 𝜔11 = 0.2, 𝜔21 = 1, I1 = 1.5, k2 = 1, 𝜔12 = 1, 𝜔22 = 0.7, I2 = 1.5

To determine the stability of a fixed point we use linear stability analysis. First

we linearize (4) about a fixed point, x̄:

u̇1 = −k1u1(t) + a11u1(t − 𝜏11) + a21u2(t − 𝜏21) , (6)

u̇2 = −k2u2(t) + a22u2(t − 𝜏22) + a12u1(t − 𝜏12) ,

where u(t) = x(t) − x̄ and aij = 𝜔ijg′ij(x̄i). This model will tell us about the evolution

of solutions which start close enough to a fixed point. To determine whether these

solutions grow or decay in time, we consider trial solutions of the form u ∼ e𝜆t
. Sub-

stituting this form into (6) and simplifying we arrive at the characteristic equation:

(𝜆 + k1 − a11e−𝜆𝜏11 )(𝜆 + k2 − a22e−𝜆𝜏22 ) − a12a21e−𝜆(𝜏12+𝜏21) = 0 . (7)

Any root 𝜆 of this equation leads to a solution of (6). The roots may be real or com-

plex. If all the roots have negative real parts then all solutions of (6) decay to zero in

the longterm. In this case the fixed point of (4) is stable. If at least one root has posi-

tive real part the some solutions of (6) will grow in time. In this case the fixed point

of (4) is unstable. If any root has zero real part then the stability is not determined

by the linearization.

If there are no delays in the model, then (7) is a quadratic polynomial, and has two

roots which can be explicitly determined. The presence of the delays means that there

are an infinite number of roots. Nevertheless, mathematical analysis can be used to

determine if the equilibrium point is stable or not. In particular, one can show that
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all the roots except a finite number (possibly zero) have negative real parts. Of par-

ticular interest is the fact that the delays associated with the connections between

the neurons only appear in the combination 𝜏12 + 𝜏21. Thus, for the motifs we are

considering, it is the total delay of the loop that is important not the individual com-

ponents, as is well-known [85]. Note that the parameter a11 depends explicitly on

𝜔11 but may also depend implicitly on the other 𝜔ij through the value of the fixed

point, x̄1. Similarly for the other aij. This can complicate the analysis.

Bifurcations can occur in the system when a change of stability of an equilib-

rium point occurs. From the discussion above this corresponds to the situation when

at least one root of the characteristic equation has zero real part, and the rest have

negative real parts. To begin we focus on the simplest case, when the characteristic

equation has a zero root (𝜆 = 0). This situation is associated with a bifurcation that

creates or destroys fixed points, thus can be important in the generation of multista-

bility of fixed points.

In the micro-circuit model this type of bifurcation can occur if

(k1 − a11)(k2 − a22) − a12a21 = 0 . (8)

Recalling the definitions of the aij and the signs of the coupling, it is clear that this

type of bifurcation is possible in all the micro-circuits, but only under some con-

straints, for example:

CI a12 a21 sufficiently large, i.e., strong enough coupling between neurons

RE a11 > k1 and a22 > k2 or a11 < k1 and a22 < k2, i.e., similar self-coupling on both

neurons either strong or weak

RI a22 > k2 i.e., strong enough self-coupling on the inhibitory neuron

The next and perhaps most important case is when the characteristic equation

has a pair of pure imaginary roots Ωi. Setting 𝜆 = Ωi in (7) and separating pure and

imaginary parts yield the pair of equations

k1k2 − Ω2 + a11a22 cos(Ω[𝜏11 + 𝜏22]) − a12a21 cos(Ω[𝜏12 + 𝜏21]) − (9)

Ω[a22 sin(Ω𝜏22) + a11 sin(Ω𝜏11)] − k1a22 cos(Ω𝜏22) − k2a11 cos(Ω𝜏11) = 0 ,
(k1 + k2)Ω − a11a22 sin(Ω[𝜏11 + 𝜏22]) + a12a21 sin(Ω[𝜏12 + 𝜏21]) − (10)

Ω[a22 cos(Ω𝜏22) + a11 cos(Ω𝜏11)] + k1a22 sin(Ω𝜏22) + k2a11 sin(Ω𝜏11) = 0 .

Fixing all the parameters except one, these equations can be solved for the value of

the control parameter at which the pure imaginary roots occur and the corresponding

value of Ω. Note that the equations are periodic with respect to each of the delays.

Thus, fixing all of the parameters except one delay, say 𝜏ij, if (Ω∗
, 𝜏

∗
ij ) is a solution

of these equations, then (Ω∗
, 𝜏

∗
ij + 2m𝜋∕Ω), are also solutions for any integer value

of m.

Alternatively, Eqs. (9)–(10) can be thought of as defining curves for two control

parameters in terms of Ω and the other parameters. Figure 7 shows two examples

where the control parameters are the combinations 𝜏12 + 𝜏21 and a12a21.
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(a) τ11 = 1 (b) τ11 = 3

Fig. 7 Bifurcation curves for an RI circuit in connection strength-delay parameter space. The

curves are determined by Eqs. (9)–(10). Due to the periodicity with respect to 𝜏12 + 𝜏21 in these

equations, there is an infinite set of curves, of which two are shown. The parameter values for kj,

𝜔jj, Ij, j = 1, 2 are given in Fig. 6a, 𝜏22 = 0 and 𝜏11 as shown. When the delay in the local loop of

the inhibitory neuron, 𝜏11, is large enough intersection points can occur. The fixed point is stable to

the right of the curves

Under appropriate conditions on the nonlinearities in the model (the functions gij)

the system will undergo a Hopf bifurcation at these points, leading to the creation of

a periodic solution. The stability of this solution also depends on the nonlinearities.

See [43, 46, 103–105] for more details.

It is well known that the presence of delay in a model can facilitate the occurrence

of Hopf bifurcations, this is known as a delay-induced Hopf bifurcation. In the micro-

circuit model, it is straightforward to show that Hopf bifurcations are not possible if

there are no delays (i.e. 𝜏ij = 0) regardless of the signs of the connection weights.

More complex bifurcations can occur if the characteristic equation has multiple

roots with zero real part. In models with delay it has been shown that such behavior

is quite prevalent if the system has multiple delays [103, 106, 107]. Such points,

which correspond to intersection points on the bifurcation curves shown in Fig. 7,

can lead to multistability and more complex dynamics [104, 105]. Examples of this

behavior are illustrated in Fig. 8.

We briefly outline some situations that can occur. If the characteristic equation has

a double zero root (a Bogdanov-Takens bifurcation point), it is possible to have mul-

tistability between a slowly varying periodic solution and one or more fixed points.

This has been shown to occur in the RI [108] and CI [85, 107] microcircuits. If the

characteristic equation has a zero root and a pure imaginary pair it is possible to have

multistability between a periodic solution and one or more fixed points. If the char-

acteristic equation has two pairs of pure imaginary eigenvalues without resonance,

then it is possible to have bistability between periodic orbits with an unstable two
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Fig. 8 Bistability between fixed points separated by an unstable limit cycle

(DITO). a–c CI circuit. d–f RE circuit. Details of the CI circuit are given

in [59] and the XPPAUT program ditto.edo can be downloaded from

faculty.jsd.claremont.edu/jmilton/Math_Lab_tool/Programs/XPPAUT.

The program and parameters for the RE circuit are given in Appendix B. The initial conditions

are chosen to place the dynamics near the separatrix that separates the two co-existent stable fixed

points. In each case we show only the activity of one of the neurons and 𝜏 = 𝜏12 = 𝜏21. Note that

the duration of the DITO’s is much longer than 𝜏

torus (or the reverse). This has been shown to occur in the CI and RI microcircuits

[85, 107].

Recalling our interpretation of this model in terms of firing rates, we can give

biological meaning to these figures. For example, in Fig. 8e the neurons are firing at

some steady rate when a brief stimulus switches this to a large amplitude oscillatory

firing rate. This spontaneously disappears after some time and the system settles on a

(different) steady firing rate. The large amplitude oscillation correponds to an unsta-

ble periodic orbit, which is present due to the delay in the system. With no delay, the

system merely switches between two different firing rates (Fig. 8a). The oscillatory

behavior is sometimes referred to as a delayed induced transient oscillation (DITO).

Our main point is that the DITO behavior is very reminiscent of the seizure behavior

observed Fig. 1.
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Multistability: Hodgkin-Huxley Models with Delayed
Recurrent Loops

The next step is to examine the effects of the ion channels on the dynamics of delayed

recurrent loops. Foss et al. [87] described the membrane potential of the excitatory

neuron E using the following Hodgkin-Huxley model (HH) by considering the effect

of IPSP as self-feedback

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Cx′(t) = −gNam3h(x(t) − ENa) − gKn4(x(t) − Ek)
−gL(x(t) − EL) − F(x(t − 𝜏)) + Is(t),

m′(t) = 𝛼m(x)(1 − m) − 𝛽m(x)m,

n′(t) = 𝛼n(x)(1 − n) − 𝛽n(x)n,
h′(t) = 𝛼h(x)(1 − h) − 𝛽h(x)h ,

(11)

where F(x) is the signal function which describes the effect of the inhibitory neu-

ron I on the membrane potential of the excitatory neuron E, and 𝜏 is the time lag.

Other variables and parameters include the membrane potential (x(t)), the membrane

capacitance (C), the stimulus (Is). Constants gNa and gK are the maximum conduc-

tance of sodium and potassium ion channels, the constant gL is the conductance of

leakage channel, constants ENa,EK and EL are empirical parameters called the rever-

sal potential. There are three (gating) variables (m, n, h) that describe the probability

that a certain channel is open, and these variables evolve according to the aforemen-

tioned system of ordinary differential equations with functions 𝛼 and 𝛽 indexed by

(m, n, h) appropriately. The initial function 𝜙 in the interval [−𝜏, 0] was assumed to

have the form of neural spike trains. Namely, it is given by a sum of square pulse

functions.

With sufficiently large Is that makes the neuron fire successively, several coexist-

ing periodic attractors were found [87, 102, 109] (Fig. 9). Solutions starting from

basins of attraction of these periodic solutions exhibit exotic transient behaviors but

eventually become periodic.

The corresponding linear integrate-and-fire model (LIF) and quadratic integrate-

and-fire model (QIF) are given by

x′(t) = −𝛽x(t) − F(x(t − 𝜏)) + Is(t), (12)

x′(t) = 𝛽(x − 𝜇)(x − 𝛾) − F(x(t − 𝜏)) + Is(t), (13)

with the firing time tf :

tf ∶ x(t) = 𝜗1 and x′(t)|t=tf > 0,

and the firing threshold 𝜗1. These models can also exhibit multistability in terms of

coexisting attractive periodic solutions, when the absolute refractoriness is incorpo-

rated. Each time the excitatory neuron fires a spike, a feedback is delivered at time 𝜏

later. The type of multistability not only depends on the time delay 𝜏 but also on the
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Fig. 9 Four coexisting attracting periodic solutions generated by the excitatory neuron E for the

Hodgkin-Huxley model (HH) given by Eq. (11). The right-hand side is the blow up of the solutions

in a given period (not delay 𝜏) to clearly illustrate the patterns of solutions

effective timing of the feedback impacting on the excitatory neuron. The total tim-

ing of the feedback is the portion of the duration when the spike is above the firing

threshold. An important factor determining the effective timing of the feedback is the

absolute refractory period, a short period after the firing of a spike during which the

neuron is not affected by inputs at all. Systematic analysis can be conducted for both

the linear integrate-and-fire model and quadratic integrate-and-fire model to deter-

mine when multistability occurs, how many coexisting attractive periodic solutions

appear and their patterns (inter-spike intervals and oscillatory patterns within these

intervals). See [102].

We note that multistability is also observed in RI models which take into account

the phase resetting properties of each neuron in the loop [97, 110]. The advantage of

this approach is that the phase resetting curve can be measured experimentally and

thus all parameters in the model are known.

Developmental Aspects

The developmental pattern of seizure recurrences in CAE suggests that there must

be processes that are evolving on time scales of the order of years which modify

the impact of the defect in the GABAA on neurodynamics at a given age. There
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are two main changes that occur in the human brain between 3–4 years of age and

adolescence.

First there are changes in synaptic density, namely the number of synapses per

unit volume of cortical tissue [111–113]. At birth the infant brain has a synaptic

density nearly equal to that of the adult brain [112]. Beginning within the first year

of life there is a 30–40 % increase in synaptic density which peaks in the frontal

cortex between ages 3–4 [113]. This is followed by a process of synaptic elimination

so that by adolescence the synaptic density is again approximately equal to that of

the adult.

Second, there are changes in axonal myelination and hence axonal conduction

velocities. The active period for axonal myelination in the brain begins during week

28 of gestation and then slows by mid to late adolescence. In some of the anterior

association areas of the cortex, myelination continues until the 5th decade [114, 115].

The changes in myelination occur in a predictable spatial and temporal sequence

[115]. Myelination proceeds in a posterior to anterior direction so that sensory path-

ways myelinate first, followed by motor pathways and then the association areas.

Within a given functional circuit, sub-cortical structures myelinate before cortical

regions. The corpus callosum, the major white matter bundle connecting the two

hemispheres, begins myelinating at 4 months post-natally and is not complete until

mid to late adolescence: the anterior part is the last to myelinate. The time course

for the disappearance of absence seizures in CAE coincides with the myelination of

the long association and commissural fibers in the anterior quadrants of the brain.

Thus the ages during which seizure activity is highest corresponds to the time when

synapses are being eliminated from the brain and the myelination of axons is increas-

ing. In particular the disappearance of absence seizures coincides with the myelina-

tion of the long association and commissural fibers in the anterior quadrants of the

brain which connect different regions of cortex within the same hemisphere (associ-

ation fibers) and between the two hemisphere (commissural fibers).

It is not known whether changes in synapses and/or changes in axonal conduction

velocities are most important for expression of absence seizures in CAE. However,

the observation that there are no long term cognitive impairments in CAE patients

and the intelligence of children with CAE is within normal limits provided that their

seizures are well controlled suggests that it is unlikely that seizure generation is

related to abnormalities in synaptic density. On the other hand, with the advent of

diffusion tensor imaging (DTI) techniques, abnormalities in myelination have been

identified in children with CAE, particularly in the anterior part of the corpus cal-

losum [116]. Similar abnormalities have been reported in a rat model for absence

epilepsy [117]. Although these associations do not prove causality, they do suggest

the possibility that the dependence of axonal conduction velocities (and hence time

delays) on myelination might be an important parameter for this dynamic disease.

In a similar manner, the developmentally dependent changes related to 𝜏 may

also explain the bimodal incidence of all types of epilepsy shown in Fig. 10. Epilep-

tic seizures are most common in the young and the elderly. Studies on aging mon-

keys suggest that increases in axonal conduction velocity are related to the death

of oligodendrocyctes, namely the cell type responsible for myelinating axons in the
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Fig. 10 Age-related

incidence of epilepsy in

industrialized societies. The

data is from [118] and we

have pooled data for males

and females

brain. When an oligodendrocyte dies, other oligodendrocytes remyelinate the axon.

However, the new myelin sheaths are thinner and the internode distances are shorter.

Consequently, v is decreased and 𝜏 is increased.

Although the concept that the brain is most susceptible to generating seizures

when 𝜏 is long is appealing, it may be an oversimplification. Indeed mean field esti-

mates of cortical instability boundaries suggest that as v increases (𝜏 decreases), the

cortical model is able to reproduce SWDs [119].

Discussion

The brain is a complex dynamical system with a large number of state variables.

This is because the number of neurons is large and signals between them are time

delayed. The dynamics of the microcircuit building blocks of the brain, such as CI,

RE and RI, all exhibit multistability. Thus it is not surprising that many authors have

emphasized metaphors for brain dynamics that take the form of potential landscapes

with many “hills” and “valleys” [28, 67, 120, 121]. Moreover this landscape itself

continually changes as a result of changes in states of arousal, aging, and as the

brain learns and adapts to its environment [12, 122]. Frequent transitions between

the attractors (“hills”) lead to mesoscopic states in which dynamics are bounded

and time-dependent. A lower bound for neurodynamics is ensured because excita-

tory connections exceed inhibitory ones and the upper bound is the result of neural

refractoriness, accommodation and limited energy resources.

Our approach has emphasized that clinically significant changes in neurodynam-

ics, such as the occurrence of an epileptic seizure, may be more related to the unstable

states that separate attractors (“hills”) than to the stable attractors [28, 47]. This con-

cept can be most readily understood in the context of the DDEs that describe the
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microcircuits which generate DITOs [12, 59–61, 93]; however, DITO-like phenom-

ena can also arise in other contexts as well [123]. A DDE corresponds to an infinite

dimensional dynamical system since the number of initial conditions that must be

specified to obtain a solution is infinite. Each initial condition is associated with an

eigenvalue. For the unstable solution that separates two attractors, there must be at

least one positive eigenvalue. This means that in the long time the solutions must con-

verge to one of the attractors. However, the short-time behaviors are influenced by the

eigenvalues which have negative real parts. Consequently, the dynamical behaviors

can be momentarily “trapped” in the vicinity of the unstable fixed-point. Our sug-

gestion is that these “momentarily trapped” behaviors can sometimes be manifested

as an epileptic seizure.

The study of the dynamics of neural microcircuits at the benchtop has a long

history. Most often “hybrid” analogues of microcircuits are created in which a neuron

interacts with an electronic device to collectively form a microcircuit (for a review

see [124]). Modern day approaches use optogenetic techniques to manipulate neural

microcircuits in situ [83]. However, it is not yet known how changes at the level of ion

channels, e.g. the GABAA receptor in CAE, result in episodic seizure recurrences.

It is possible that this will become clear as we understand the rules that relate the

dynamics of single microcircuit to those of large ensembles of microcircuits. In this

way the study of CAE may not only bring relief to its sufferers and their families,

but also provide insights into how the brain functions.
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Appendix A: Numerical Methods

Two numerical techniques which can aid in the study of delay differential equations

such as (4), (11), (12) and (13) are numerical simulation and numerical bifurcation

analysis.

Numerical simulation determines an approximate solution of a differential equa-

tion for a given choice of the initial state. Recall that for a delay differential equation,

the initial state is a function which determines the value of the solution for t in [−𝜏, 0].
For example, for the two-neuron Hopfield networks described by (4), the initial state

is specified as follows

x1(t) = 𝜙1(t), x2(t) = 𝜙2(t), −𝜏 ≤ t ≤ 0.

Typically 𝜙1, 𝜙2 are taken to be a constant, i.e.,
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x1(t) = x10, x2(t) = x20, −𝜏 ≤ t ≤ 0 ,

which is reasonable for most experimental systems. It should be noted that only

solutions which are stable can be accurately approximated using numerical simu-

lation. The presence of unstable solutions may be deduced from transient behavior,

but details of the structure cannot be found through numerical simulation.

There are two commonly used programs for the numerical integration of delay

differential equations. The free, stand-alone package XPPAUT [125] can perform

numerical integration using a variety of fixed-step numerical methods. The program

is run through a graphical user interface which is used not just to visualize results,

but also to modify parameters, initial conditions and even the numerical integration

method. The main benefit of this program is its flexibility and the ease with which

different simulations can be compared. Information on how to download the pack-

age as well as documentation and tutorials are available at http://www.math.pitt.edu/

~bard/xpp/xpp.html. The book [125] gives a overview of the package including many

examples. XPPAUT code for the micro-circuit example (4) considered in this chapter

is included in Appendix B. The MATLAB function, DDE23 [126], is a variable step

size numerical integration routine for delay differential equations. A tutorial on this

routine is available at http://www.mathworks.com/dde_tutorial and the DDE23 code

for the micro-circuit example in Appendix B is given in Appendix C. A benefit of

using DDE23 is that results may be visualized using the extensive graphing tools of

MATLAB.

Numerical bifurcation analysis has two aspects: the approximation of a solution

and the calculation of the stability of this solution. The approximation of a solution is

done using numerical continuation, which uses a given solution for a particular para-

meter value to find a solution for a different (but close) parameter value. Numerical

continuation can find both stable and unstable fixed point and periodic solutions.

More complex solutions (such as tori) are not implemented in all packages. Once

the continuation has found a fixed point solution to a desired accuracy, a numerical

bifurcation program determines approximations for a finite set of the eigenvalues

with the largest real part. The stability of periodic orbits can be numerically deter-

mined in a similar way. Numerical bifurcation packages generally track the stability

of fixed points and periodic orbits, indicating where bifurcations occur.

One commonly used package that carries out numerical bifurcation analysis for

delay differential equations is DDE-BIFTOOL [127], which runs in MATLAB. An

overview of the numerical methods used in this package and some examples of appli-

cations can be found in [128]. The user manual and information on how to download

the package are available at http://www.twr.cs.kuleuven.be/research/software/delay/

ddebiftool.shtml.

A list of other software available for working with delay differential equations can

be found at http://www.twr.cs.kuleuven.be/research/software/delay/software.shtml.

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.mathworks.com/dde_tutorial
http://www.twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
http://www.twr.cs.kuleuven.be/research/software/delay/ddebiftool.shtml
http://www.twr.cs.kuleuven.be/research/software/delay/software.shtml
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Appendix B: Delay Differential Equations Using XPPAUT

Here we illustrate the use of XPPAUT for simulating the neural micro-circuits shown

in Fig. 4 using the Hopfield equations described by (4). Our focus is on how delay

differential equations (DDE) are handled in XPPAUT and how stimuli in the form

of pulses can be used to cause switches between attractors.

In our experience installing XPPAUT on PC computers is quite straight-forward.

However, problems can arise when installing XPPAUT on Mac computers. The IT

department at The Ohio State University has prepared a very useful installation

guide for Mac users which can be accessed at https://docs.math.osu.edu/mac/how-

tos/install-xpp-xppaut-mac/.

# Note: in ODE files, comments are preceded by #
#
# This program numerically integrates the
# Hopfield neural net equations with delay.
# We show the parameter choices for a RE circuit.
# However, the parameter choices we recommend for CI and RI
# are given in Comments 3-4. Note that the # command can be used
# to comment out lines of code which are not required.
#
# EQUATIONS

# See Comment 1

x1’= -k1*x1+w11*f1(delay(x1,tau11))+w21*f2(delay(x2,tau21))+I1+Istim1
x2’= -k2*x2+w12*f1(delay(x1,tau12))+w22*f2(delay(x2,tau22))+I2+Istim2
f1(x)=tanh(n1*(x-theta1))
f2(x)=tanh(n2*(x-theta2))

# See Comment 2

Istim1=I11*(heav(t-tstart1)-heav(t-tend1))
Istim2=I22*(heav(t-tstart2)-heav(t-tend2))

# PARAMETERS
# These parameters will reproduce Fig. 8 b)

# See Comments 3, 4

p k1=1,k2=1
p w11=0.5,w21=1,w22=0.5,w12=0.5
p tau11=1,tau12=7,tau21=7,tau22=15
p n1=1,n2=1,theta1=1.5,theta2=1.5
p I1=1.5,I2=1.5
p I11=0.805,tstart1=100,tend1=120
p I22=0,tstart2=100,tend2=120

# INITIAL CONDITIONS

See Comment 5

https://docs.math.osu.edu/mac/how-tos/install-xpp-xppaut-mac/
https://docs.math.osu.edu/mac/how-tos/install-xpp-xppaut-mac/
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init x1=0.5,x2=0.6
x1(0)=0.5
x2(0)=0.6

# CHANGES FROM XPP’S DEFAULT VALUES

# See Comment 6

@ total=400,dt=.01,xhi=400,maxstor=2000000,delay=10

done

Comments:

1. Terms of the form x(t − 𝜏) become delay(x,tau) in XPPAUT. See also

Comment 5.

2. Switches between co-existing attractors are made by using square pulses. The

magnitude of the pulse is given by I11,I22. The onset of the pulse occurs at

tstart and the end of the pulse occurs at tend.

3. Counter inhibition (CI). Make the following parameter changes to the RE pro-

gram (above):

w12=w21=-1.2

w11=-0.1,w22=-0.2

tau11=tau22=6, tau12=tau21=4.5

I11=I22=1

tstart1=tstart2=300

tend1=tend2=320

with the initial conditions:

init x1=1,x2=2.1

x1(0)=1

x2(0)=2.1

For these choices of the parameters, there are three coexisting attractors: two

stable fixed points and a stable limit cycle. As the time delays tau12,tau21
are decreased the limit cycle disappears.

4. Recurrent inhibition (RI). Make the following parameter changes to the RE pro-

gram (above):

w11=-0.6, w12=-1, w21=1, w22=0.5

tau11=3,tau12=4.5,tau21=4.5,tau22=0

I11=0.45, tstart1=450 tend1=470

I22=0
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with the initial conditions:

init x1=2,x2=2.1

x1(0)=2

x2(0)=2.1

For these choices of the parameters, there is bistability between two limit cycles

with an unstable torus in between. Changing the delays just a little eliminates

the bistability.

5. In mathematics, the initial function, 𝜙, for a DDE is defined on the interval

[−𝜏, 0]. However, in XPPAUT 𝜙 is divided into two parts: the initial condi-

tion at t=0, 𝜙(0), and a function 𝜙(s) where s ∈ [−𝜏, 0). The default choice is

𝜙(s) = 0. The commands x1(0)=0.1 and x2(0)=0.2 set 𝜙(s) to a constant

value. A look up table can be used to introduce an arbitrary 𝜙(s) as shown in

[59]. In running a XPPAUT program for a DDE it is necessary to open three

windows Initial Data, Delay ICs and Parameters. The Initial
Data panel will show the initial data, the Delay ICs will show 𝜙(s) and

the Parameters panel will show the parameter choices to be used for the

simulation. An important point is that to run the simulation one must click on

‘OK’ for each panel and then click on ‘Go’ on one of these panels. Failure to do

this will result in numerical errors since the initial function will not be handled

correctly. Finally when determining the nullclines it is important to set all of the

delays to 0.

6. The parameter delay should be greater than tau. The parameter delay
reserves the amount of memory needed to store 𝜙 for each variable. Since one of

the goals of the simulation is to see the effect of changing 𝜏 on the dynamics, it is

convenient to set delay slightly higher that the largest delay anticipated. If the

program runs out of memory, the amount of memory reserved for this purpose

can be increased by using the command maxstor.

Appendix C: Delay Differential Equations Using Matlab’s
dde23

For users that have access to the latest version of Matlab, it is possible to integrate

the Hopfield equations described by (4) using dde23. Here we give the code that

integrates the RE model for the same parameters as described above. Note that two m

files are required: delay_circuit.m supplies the parameters and performs the

integration; DRHS.m gives the equations to be integrated. The symbol % comments

out the parts of the code that are not needed for the RE circuit. In order to run this

program, put both files in the same directory and then type delay_circuit()
DRHS.m
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function yp = DRHS(t,y,Z);

global k W n theta I Istim tstart tend;

% Z(i,j) = xi(t-tauj)
% tau=[tau11,tau12,tau21,tau22]
ylag11 = Z(1,1); % x1(t-tau11)
ylag12 = Z(1,2); % x1(t-tau12)
ylag21 = Z(2,3); % x2(t-tau21)
ylag22 = Z(2,4); % x2(t-tau22)
yp = [
-k(1)*y(1) + W(1,1)*tanh(n(1)*(ylag11-theta(1))) ...
+ W(2,1)*tanh(n(2)*(ylag21-theta(2))) ...
+ I(1) + Istim(1)*(heaviside(t-tstart(1))-heaviside(t-tend(1)));
-k(2)*y(2) + W(1,2)*tanh(n(1)*(ylag12-theta(1))) ...
+ W(2,2)*tanh(n(2)*(ylag22-theta(2))) ...
+ I(2) + Istim(2)*(heaviside(t-tstart(2))-heaviside(t-tend(2)));
];

Note: The entries for yp are very long. The ... is the Matlab code for breaking up

long equations into shorter ones.

delay_circuit.m

function delay_circuit()

clear all;

close all;

clc;

global tau;

global k W n theta I Istim tstart tend;

% Initialization

% delays

tau11=0.001;

tau22=15;

% other parameters

w11=0.5;

w21=1;

w12=0.5;

w22=0.5;

theta=[1.5,1.5]’;

I=[1.5,1.5]’;

n=[1,1]’;

k=[1,1]’;
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% stimulation parameters

I11=0.805;

tstart1=100;

tend1=120;

I22=0;

tstart2=100;

tend2=120;

% initial conditions

y10=0.5;

y20=0.6;

% start/end values of t

t0=0;

t1=1000;

% min/max for plotting

umin = 0;

umax = 3;

% matrix form of parameters

W=[[w11,w21]’,[w12,w22]’]

Istim=[I11,I22]’

tstart=[tstart1,tstart2]’

tend=[tend1,tend2]’

% initial conditions

yi =[y10,y20]’

% integration time

interval=[t0, t1];

% First plot

tau=[tau11, 1., 1., tau22]

sol = dde23(’DRHS’,tau,yi,interval);

fig1 = figure(1);

subplot(3,1,1);

plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);

title(’\tau_{12}=\tau_{21}=1’);

xlabel(’time t’);

ylabel(’x_2(t)’);

axis([t0 t1 umin umax]);

grid on;

% Second plot

tau=[tau11, 6., 6., tau22]
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sol = dde23(’DRHS’,tau,yi,interval);

subplot(3,1,2);

plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);

title(’\tau_{12}=\tau_{21}=6’);

xlabel(’time t’);

ylabel(’x_2(t)’);

axis([t0 t1 umin umax]);

grid on;

% Third plot

tau=[tau11, 7., 7., tau22]

sol = dde23(’DRHS’,tau,yi,interval);

subplot(3,1,3);

plot(sol.x,sol.y(2,:),’-b’,’LineWidth’,2);

title(’\tau_{12}=\tau_{21}=7’);

xlabel(’time t’);

ylabel(’x_2(t)’);

axis([t0 t1 umin umax]);

grid on;

end
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Extracellular Potassium and Focal
Seizures—Insight from In Silico Study

Piotr Suffczynski, Damiano Gentiletti, Vadym Gnatkovsky
and Marco de Curtis

Introduction

Epilepsy and seizures have been recognized as brain diseases in antiquity. Since
then enormous progress in understanding pathophysiology of epilepsy has taken
place. It led to the development of effective treatments, such as antiepileptic drugs
[1], resective surgery [2], neuromodulation [3] and neurostimulation [4]. Despite
these advances many patients still experience seizures or suffer from side effects
of antiepileptic medications. Further progress in understanding mechanisms of
epileptic brain activity is needed but the brain complexity at various scales of
neuronal organization is the main challenge that needs to be overcome to achieve
this goal. There is no existing technology that could possibly measure complex
behaviours of thousands of individual neurons synchronizing their electrical
activities during seizure. That’s why, many properties of neurons, neuronal popu-
lations and activities of their networks can be best studied in computational models,
where each neuronal element and overall activity may be observed simultaneously.
Furthermore, in the case of the brain, a model as complex as the real system would
probably be just as hard to investigate. Instead, a wise distinction between essential
and irrelevant components of the observed phenomenon may lead to a simplified in
silico representation of the complex neuronal system, that may be studied more
efficiently. Computational epilepsy research is relatively new but rapidly growing
field. Although seizure-like neuronal behaviour has been recreated in a number of
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computational models [5], their applications towards improved clinical practice has
been very limited so far. One of the possible reasons is that most of the models of
epileptic neuronal networks consider neurons and their connections isolated from
the external neuronal environment. Although membrane and synaptic currents are
generated by flow of ions across membranes, modelled intra- and extracellular ion
concentrations are typically assumed, e.g. in Hodgkin and Huxley formalism [6], to
be constant in time and in space. This assumption might hold during normal activity
when ion fluxes are moderate and ion homeostasis can be maintained by a number
of mechanisms including ion pumps and transporters, buffering and diffusion.
However, during periods of increased neuronal discharges, such as seizures,
activity-induced changes in ion concentrations may largely deviate from their
baseline values [7]. These alterations in intra- and extracellular ion concentrations
can impact a number of neuronal processes, such as maintenance of resting
membrane potential, operation of voltage-gated channels, synaptic transmission,
volume regulation and ion transport mediated by ionic pumps and cotransporters. In
particular, extracellular K+ concentration changes have been directly implicated in
epilepsy and seizures [8]. Potassium accumulation hypothesis proposed by Fertzi-
ger and Ranck [9] suggests that increased neuronal discharges lead to an increase of
extracellular K+ concentration, which depolarizes neurons leading to their increased
firing, what in turn contributes to further increase in extracellular K+. Such positive
feedback mechanism was suggested to be at play during seizures development but
also was deemed responsible for seizure termination through
depolarization-induced inactivation of Na+ currents. To date, a lot of experimental
data on ion dynamics associated with seizure activity has been accumulated.
Nonetheless, these findings are usually not incorporated into computational models,
with few notable exceptions (e.g., Durand and Park [10], Kager et al. [11], Krishnan
and Bazhenov [12], Wei et al. [13]). These highly realistic models are usually
dedicated to particular epilepsy or seizure models. Accordingly, their electro-
physiological and ionic patterns might not be similar and it is not yet clear, to what
extent these individual results may be generalized.

In this chapter we explore the influence of ionic dynamics on specific seizure
generation pattern using computational model with activity-dependent ion con-
centration changes. The model is based on the experimental data obtained in in vitro
isolated guinea pig brain preparation, which is considered an animal model of
human focal epilepsy [14]. We show that combined experimental and modelling
approach allowed to obtain new insight into functional role played by various ionic
components, especially potassium, in focal seizure generation. We also suggest that
such better understanding of basic mechanisms underlying epileptic seizures may
advance translation of research findings into novel therapeutic applications.
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The Scientific Problem

As mentioned above, among four main ions shaping electrical activities of neurons,
i.e., Na+, K+, Cl− and Ca2+, dynamics of potassium has been suggested to play an
important role in seizure generation. Therefore, we explain the scientific problem by
first considering the mechanisms by which extracellular K+ concentration ([K+]o)
may modulate neuronal excitably. Next, we describe experimentally observed
seizure pattern and associated [K+]o changes and finally, we formulate the aim of
this modelling study.

Effects of Extracellular K+ Concentration on Neural Activity

Resting Potential

Resting membrane potential is given by the Goldman-Hodgkin-Katz equation
(GHK):

Vm =
RT
F

ln
PK ½K + �o +PNa½Na+ �o +PCl½Cl− �i
PK ½K + �i +PNa½Na+ �i +PCl½Cl− �o

.

For ion concentrations and permeability in typical mammalian cell [15], as
shown in Table 1, the resting membrane potential is −66 mV.

Figure 1 shows the influence of concentrations of K+, Na+ and Cl− on resting
membrane potential, calculated according to GHK equation. On each graph, vari-
ation of the resting membrane potential is shown (solid line) when given concen-
tration is being varied and all others are kept constant, at their baseline values. The
reference value of a concentration being varied is shown on each graph by broken
vertical line. Intersection of solid and broken lines on each graph marks the ref-
erence resting membrane potential, that is Vm = −66 mV. The slope of the solid
line on each graph corresponds to sensitivity of the resting membrane potential to
changes of the given concentration. One can see that resting membrane potential
depends on all concentrations but it is most sensitive to change of extracellular
potassium, as suggested by largest slope of the solid line in Fig. 1 left bottom panel,
as compared to other panels. It suggests that even moderate increase of [K+]o leads
to significant change of the resting potential of the cell into depolarized direction.

Table 1 Ion concentrations
in a typical mammalian cell

Ion Inside (mM) Outside (mM)

K+ 140 5
Na+ 10 145
Cl− 4 110

Ca2+ 1 * 10−4 2.5
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Driving Force

The main role of all potassium currents is to control excitability and stabilize
membrane potential around potassium reversal potential EK, typically around
−90 mV. Ionic current is proportional to the channel conductance and the ionic
driving force, which is the difference between the membrane potential and the ion
reversal potential. The ionic reversal potential in turn depends on the intra- and
extracellular ion concentrations. When extracellular potassium increases, both
potassium reversal potential and the resting membrane potential move to more
positive level. However, EK grows more considerably than membrane potential Vm,
because change of Vm is limited by the presence of Na+ and Cl− leak currents. As a
result, EK moves towards Vm leading to reduction of the driving force of all
potassium currents. Accordingly, the cell’s capability to resist membrane depolar-
ization is diminished and may lead to increased action potential firing.

Fig. 1 Influence of K+, Na+ and Cl− concentration changes on the resting membrane potential.
On each graph, black solid line shows the resting membrane potential calculated with GHK
equation while red vertical broken line shows the reference value of the given concentration.
Crossing of these lines marks the resting membrane potential for the reference conditions, that is
about −66 mV. The resting membrane potential is sensitive to changes of all concentrations but it
most sensitive to change of potassium extracellular concentration. Even minor change of
extracellular K+ concentration around its reference value leads to significant change of the resting
membrane potential
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Synaptic Transmission

Effect of extracellular potassium on synaptic transmission is not trivial as both pre-
and postsynaptic part of the synapse depend on membrane depolarization and
therefore on [K+]o/[K

+]i. It is established experimentally [16] that moderate
increase of [K+]o enhances excitatory synaptic transmission while above certain
level of [K+]o both excitatory and inhibitory synaptic transmission is abolished due
to presynaptic depolarization-related inactivation of Na+ and Ca2+ channels. Yet
another effect is related to interaction between potassium and chloride. GABAA

inhibitory potentials are associated with chloride influx that hyperpolarizes the cell.
The Cl− and K+ ions are coupled by potassium-chloride co-transporter KCC2,
which usually extrudes K+ and Cl− ions from neurons [17]. The KCC2
co-transporter operates at thermodynamic equilibrium defined by [K+]o[Cl

−]o =
[K+]i[Cl

−]i [18]. Under this condition, large increase of extracellular K+ concen-
tration must be compensated by increase of intracellular Cl− and the direction of
transport of K+ and Cl− ions reverses. It leads to intracellular Cl− accumulation and
elevation of the GABAA reversal potential. Accordingly, GABAA inhibitory
potentials will be reduced or may even become depolarizing if EGABAA surpasses
membrane potential of the cell [19].

Focal Seizure Dynamics

Many types of epileptic seizures are not stationary processes but exhibit intrinsic
dynamics. From the clinical point of view, seizure onset patterns are most impor-
tant, as they are relevant for seizure early detection and localisation. However,
seizure evolution may provide important clues regarding the mechanism involved
in seizure generation. The typical pattern observed with intracranial electrodes in
mesial temporal lobe epilepsy patients consists of low-voltage fast activity
(>25 Hz) at the seizure onset, irregular activity phase with some increase of
amplitude followed by synchronous quasi-rhythmic pattern that increases in spatial
synchrony towards the end of the seizure. These focal seizure patterns can be
reproduced and studied in animal in vitro models, which offer an additional
advantage of performing intracellular and ion-selective recordings together with
extracellular LFP measurements in the intact, whole brain networks.

In in vitro isolated guinea pig brain preparations [20] seizures may be induced
acutely by arterial application of proconvulsant drugs [21]. Seizure patterns in this
model resemble very much those observed in human focal epilepsy [14]. Intracellular
recordings from entorhinal cortex (EC) neurons showed that seizures were initiated
with increased firing of inhibitory interneurons and neuronal silence of principal
cells, which correlated with low-voltage fast LFP oscillations (20–30 Hz). Neuronal
firing of principal cells was subsequently restored with an acceleration-deceleration
firing pattern followed by rhythmic burst activity. Increased firing of principal
neurons correlated with ictal discharges in the LFP signal. An increase of

Extracellular Potassium and Focal Seizures … 53



extracellular potassium concentration was observed throughout the seizure. Typical
intracellular seizure pattern and associated extracellular potassium concentration
time course observed in isolated guinea pig brain is shown in Fig. 3a.

Aim of This Work

Despite the fact that the synaptic and non-synaptic mechanisms mediating seizure
pattern observed in isolated guinea pig brain have been suggested, the specific roles
played by various neural elements during seizures are not fully understood. During
seizure states many mechanisms are interacting in complex ways, making it difficult
to study experimentally. It is becoming recognized that studying these interactions
may contribute to a better understanding of seizure generation. The aim of the
present chapter is to investigate the link between ionic dynamics and experimen-
tally observed seizure pattern, using a computational model, in order to provide
such a synthetic view.

Computational Methods

Model Description

The model consists of two multicompartmental EC cells, a pyramidal neuron and an
inhibitory interneuron, embedded in the common extracellular space (ECS) sur-
rounded by a bath. The size of ECS was estimated by the extracellular volume
fraction α defined by the ratio volume of extracellular space/volume of intracellular
space. Ionic dynamics of K+, Na+, Ca2+ and Cl− was incorporated and
activity-dependent changes in their concentrations were computed. Concentration
changes in a given extra- or intracellular compartment were dependent on a number
of mechanisms such as: active and passive membrane currents, inhibitory synaptic
GABAA currents, Na+/K+ pump, KCC2 cotransporter, glial K+ buffering, radial
diffusion between ECS and bath, and longitudinal diffusion between dendritic and
somatic compartments. At each simulation step all ionic concentrations were updated
and their reversal potentials were computed. The model setup is shown in Fig. 2.
Simulations were performed using NEURON simulator with a fixed integration step
of 0.05 ms. The parameters’ values and units together with their sources are given in
Gentiletti et al. [22]. Modifications in the present model, with respect to original
publication include: (i) simplified cells’ morphology, (ii) leak currents for K+, Na+,
and Cl− (instead of K+, Na+ and fixed leak), (iii) modification of radial diffusion
coefficients to better reproduce experimental results, (iv) taking into account bicar-
bonate and Cl− concentrations for calculation of EGABAA (instead of considering only
Cl−). These changes are described in the subsequent sections, where modified
parameter values are provided.
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Cells’ Morphology

The cells in our model were adapted from the compartmental model of the EC cells
by Fransén et al. [23]. In the original model the pyramidal cell was composed of six
compartments, one representing the soma, three representing the apical dendrite and
two representing basal dendrites. The interneuron was composed of six compart-
ments, one representing the soma, three representing a principal dendrite, and two
representing remaining dendrites. In order to simplify the given models we lumped
together all dendrites in both cells using Rall’s rule. Therefore, the simplified model
of pyramidal cell is composed of two compartments: one representing soma with
length 20 μm and diameter 15 μm, and one representing lumped dendrites with
length 450 μm and diameter 6.88 μm. The interneuron is also composed of two
compartments, one representing soma with length 20 μm and diameter 15 μm and
one representing lumped dendrites with length 700 μm and diameter 3 μm. The
extracellular space is common for both cells, but is physically modelled around the

Fig. 2 Schematic diagram of the model. Two entorhinal cortex cells, a pyramidal cell and an
interneuron are synaptically coupled and are embedded in the common extracellular space, which
is surrounded by a bath. The model includes ionic regulation mechanisms: Na+/K+ pump in both
cells, KCC2 cotransporter in pyramidal cell, glial buffering of K+ ions and diffusion of K+, Na+

and Cl− ions between compartments and between extracellular space and surrounding bath. The
activity in the model can be triggered by excitatory synaptic input to pyramidal cell and current
input to the interneuron
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interneuron. It consists of two cylindrical compartments, one surrounding the soma
and one surrounding the dendrite. Each extracellular compartment communicates
with the corresponding intracellular compartment of the modelled neurons,
neighbouring extracellular compartment, glial buffer and bath. To account for the
fact that each extracellular compartment corresponds to common ECS of pyramidal
cell and interneuron and that each cell contributes roughly similar extracellular
volume, the volume of each common extracellular compartment is given by twice
the volume of the corresponding extracellular compartment of the interneuron.

Cells’ Biophysics

Reversal Potentials and Passive Electrical Properties

The reversal potential of the ions is given by Nernst equation:

EX =
RT
zF

ln
½X�o
½X�i

� �

where [X]i and [X]o represent intra and extracellular concentrations, respectively of
the ionic species X = {Na+, K+, Ca2+, Cl−}, F is Faraday’s constant, R is the gas
constant, z is the valence of the species X and T = 32 °C is temperature (as
specified in Gnatkovsky et al. [24]). Leakage currents were present in all the
compartments of both cells and had the following, standard expressions:

INa, leak = gNa, leakðVm −ENaÞ
IK, leak = gK, leakðVm −EKÞ
ICl, leak = gCl, leakðVm −EClÞ

The resting membrane potential was set to −65 mV in the pyramidal cell and
−75 mV in the interneuron. In pyramidal cell we set initial potassium and chloride
concentrations at the thermodynamic equilibrium of KCC2, i.e., [K+]o[Cl

−]o =
[K+]i[Cl

−]i. In this way, potassium and chloride cotransporter currents were zero
initially and membrane potential was more stable. Specific axial resistance in both
cells was set to Ra = 100 Ohm × cm and specific membrane capacitance was set
to Cm = 1μF/cm2, as in Fransén et al. [23]. It should be noted that under back-
ground excitatory synaptic input, ionic concentrations and membrane potentials
deviated slightly from the equilibrium conditions.
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Active Currents

The pyramidal cell model included the following active membrane currents: the
Na+ and K+ currents present in both compartments and responsible for fast action
potentials (INaT and IKdr, respectively); a persistent Na

+ current INaP in the soma; a
high-threshold Ca2+ current ICaL in both compartments; a calcium-dependent K+

current IKAHP in both compartments; a fast calcium- and voltage-dependent K+

current IKC in both compartments; and a noninactivating muscarinic K+ current IKM
in the soma. The interneuron model had the Na+ and K+ currents, INaT and IKdr, in
both compartments, responsible for fast action potentials. All the models of active
currents were based on Fransén et al. [23]. Some changes of the parameters were
required in order to compensate the additional ionic regulation mechanisms that
were not present in the original model. Implemented modifications together with all
the currents’ formulas and parameters are given in Gentiletti et al. [22].

Synaptic Connections and Network Inputs

The pyramidal cell and inhibitory interneuron are synaptically coupled, as shown in
Fig. 2. An inhibitory synapse is placed in the middle of somatic compartment of the
pyramidal cell, and an excitatory synapse is placed in the middle of dendritic compart-
ment of the interneuron. The synaptic conductances are modelled according to NEU-
RON’s built-in Exp2Syn mechanism with a double-exponential function of the form:

g= gmax½expð− t τ̸2Þ− expð− t τ̸1Þ�

The τ1 and τ2 are the rise and decay time constants respectively, taking values 2 ms
and 6 ms for all synapses. The reversal potential of excitatory postsynaptic currents
(EPSC) was set to 0 mV. In order to investigate the impact of chloride concentration
changes the inhibitory GABAA postsynaptic currents were explicitly mediated by
chloride influx. Because GABAA receptor pore conducts both Cl− and HCO3

− in a
4:1 ratio [25], EGABAA was calculated using the Goldman-Hodgkin-Katz equation
[26]:

EGABAA =
RT
F

ln
4½Cl− �i + ½HCO−

3 �i
4½Cl− �o + ½HCO−

3 �o

� �

For simplicity, HCO3
− concentrations were assumed to be constant and equal to

[HCO3
−]i = 15 mM and [HCO3

−]o = 25 mM. Excitatory and inhibitory synaptic
weights we, wi were equal to 0.001 and 0.002 μS, respectively. With these settings,
the unitary excitatory postsynaptic potential had amplitude of ∼ 2.3 mV at the
soma, while the unitary inhibitory postsynaptic potential had amplitude of ∼ 1 mV
at the soma. A synaptic response was generated in a postsynaptic cell when
presynaptic membrane potential in the soma crossed the threshold of −10 mV.
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Pyramidal cell received excitatory background synaptic input via dendritic excita-
tory synapse activated by a Poisson spike train with 66 Hz rate. In order to
reproduce enhanced interneuronal firing at seizure onset, the inhibitory interneuron
was stimulated by the somatic injection of a depolarizing current with initial
amplitude of 1.3 nA at second 13 that was linearly decreasing toward 0.5 nA at
second 60.

Ion Accumulation

Changes in ion concentrations due to transmembrane currents are described by the
following equation:

d½X�
dt

=
∑ IX
zFV

,

where [X] is the concentration of the ionic species X, ΣIX is the net ion trans-
membrane current, F is Faraday’s constant, V the compartment volume, and z the
valence of the species X. The right-hand side is positive if the net flow is outward
(for positive z), negative, if inward. The longitudinal diffusion contribution is
calculated using the built-in mechanism in the NEURON simulation environment:

d½Xi�
dt

=DX ∑
n

ð½Xj�− ½Xi�ÞSij
LijVi

,

where [Xi] is the ion concentration in the compartment i, DX is the longitudinal
diffusion constant of the ionic species X, Sij is the flux area between the adjacent
compartments i and j, Lij is the distance between the centers of the compartments
i and j, and Vi is the volume of the compartment i. The right-hand side is positive if
the net flow is increasing the ion concentration of the given compartment, negative
otherwise. The sum is made over the total number of contributions to ionic con-
centration in the i-th compartment. For our two compartmental cells and ECS n is
equal to 1. The ions accumulated in the extracellular space can diffuse radially to
the bath representing the extracellular space and vasculature not included in the
model. Radial diffusion represents the net effect of various processes such as
extracellular diffusion to more distant areas of the brain, potassium transport into
capillaries and potassium regulation by the network of glial cells coupled by gap
junctions. The time constant of these joint processes is likely to be much slower
than that of lateral diffusion. Therefore radial diffusion constant is assumed to be
equal to the longitudinal diffusion constant DX, divided by a scale constant
s = 5000. Bath concentrations are assumed to be constant and equal to the initial
extracellular concentrations. For the sake of simplicity, radial ion diffusion was
modelled only for K+, Na+ and Cl−, as Ca2+ fluxes were much smaller than these of
other ion types. The equation implemented to account for radial diffusion is as
follows:
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d½Xi�o
dt

=
1
s
DX

ð½X�bath − ½Xi�oÞSi
ðdr 2̸ÞVi

,

where [X]bath is ion X concentration in the bath, Si is radial flux area corresponding
to the i-th compartment, Vi is the volume of the i-th extracellular compartment, and
dr is the thickness of the extracellular space. The values of radial diffusion constants
(in [μm2/ms]) for K+, Na+ and Cl− were 1.96, 0.226 and 2.03, respectively. The
electrostatic drift of ions was neglected, as the ion movement due electrical
potential gradient in extracellular space is small compared to diffusion.

Na+/K+ Pump

The Na+/K+ pump is moving Na+ and K+ ions across the membrane in order to
maintain their concentration gradients and exchanges 2 K+ ions for 3 Na+ ions. The
Na+ and K+ pump currents are as is [27]:

INa =3Imaxfluxð½Na+ �i, ½K + �oÞ
IK =2Imaxfluxð½Na+ �i, ½K + �oÞ

fluxð½Na+ �i, ½K + �oÞ= 1+
KmK

½K + �o

� �− 2

1 +
KmNa

½Na+ �i

� �− 3

using maximal flux Imax = 0.0013 mA/cm2, KmK = 2 mM and KmNa = 10 mM.

Glial Buffer

Potassium buffering is modelled with a first-order reaction scheme simulating glial
potassium uptake system. It involves three variables: [K+]o—extracellular potas-
sium concentration, [B]—free buffer, [KB]—bound buffer, and backward and
forward rate constants k1 and k2, respectively. The set of differential equations
solved is as follows [27]:

d½K + �o
dt

= − k2½K + �o½B�+ k1½KB�
d½B�
dt

= − k2½K + �o½B�+ k1½KB�
d½KB�
dt

= − k2½K + �o½B�− k1½KB�
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KCC2 Cotransporter

In adult hippocampal cells low intracellular Cl− concentration is maintained by
means of potassium-chloride cotransporter KCC2 that mediates K − Cl cotransport
across the membrane. The transport process involves one for one extrusion of Cl−

ion together with K+ ion. The KCC2 cotransporter currents are modelled according
to Wei et al. [13]:

IK = γUKCC2In
½K + �i½Cl− �i
½K + �o½Cl− �o

� �

ICl = − IK

where UKCC2 = 0.3 mM/s is the cotransporter strength and γ = Si/(FVi) is a con-
version factor from the concentration per second units (mM/s) to the current density
units (mA/cm2). For pyramidal compartments, soma and dendrite, γ takes the value
γs and γd, respectively. The parameters Si, Vi, are the total surface area and total
intracellular volume of the respective cell compartment and F is Faraday’s constant.

Results

In Silico Test of the Whole Brain In Vitro Hypothesis

Experimental studies of seizures in the entorhinal cortex of the in vitro isolated
guinea pig brain [14, 24] showed that onset of ictal episodes is associated with
strong discharge of inhibitory interneurons and initial silence of principal cells,
which are subsequently recruited into progressively synchronized discharges. It was
proposed that interneuronal firing-related increase of extracellular potassium toge-
ther with intracellular chloride accumulation and reduction of GABAA inhibition
results in hyperexcitability of principal cells and progression of a seizure. We tested
this hypothesis using our computational model. A comparison of experimental and
modelling results is shown in Fig. 3. In the model the seizure-like event was
initiated by depolarizing current applied to soma of the inhibitory interneuron as
shown by red trace in Fig. 3b middle panel. Current stimulation triggered strong
interneuronal discharge at the initial rate of about 300 Hz. The membrane potential
of the pyramidal cell transiently decreased and the cell ceased firing following onset
of strong inhibitory drive (considered as the beginning of the seizure). After gap in
firing lasting about 7 s, pyramidal cell resumed its activity reaching maximal firing
rate of about 8 Hz in about 11 s from seizure onset. Throughout the seizure,
inhibitory interneuron exhibited tonic discharges with gradually decreasing spike
amplitude. These changes were accompanied by increase of extracellular potassium
concentration, which increased sharply, reached maximal value of 9 mM within
first seconds of the seizure and slightly decreased afterwards. These simulation
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results agree qualitatively and quantitatively in many respects with the experi-
mentally observed seizures in the isolated guinea pig brain (Fig. 3a). To make the
role of inhibitory interneurons more evident the pyramidal cell shown in Fig. 3a
was stimulated by a steady positive current delivered via the intracellular pipette.
The resulting depolarization was responsible for fast discharge present before the
seizure. Initial discharge of interneurons at a rate about 400 Hz transiently inhibited
pyramidal cells, which stopped firing but resumed their activity within few seconds,
reached maximal firing rate of 9 Hz about 13 s from seizure onset and gradually
decreased afterwards. Strong firing of the interneuron gradually decreased and
exhibited reduction of spike amplitude. Extracellular potassium concentration
attained its maximal value of 9.5 mM few seconds after seizure onset and slowly
decreased subsequently.

End of the seizure, characterized by bursting firing pattern of pyramidal cells, is
not yet captured by the model. If the simulation is prolonged beyond second 60, the
interneuron enters depolarization block (around second 80) and pyramidal cells
exhibits slow and steady decrease of the firing rate, reaching initial background
firing rate around second 120.

Fig. 3 Comparison between experimental data (a) and model simulation (b), Experimental
recordings obtained in entorhinal cortex of in vitro isolated guinea pig brain show intracellular
traces of pyramidal cell (top panel), interneuron (middle panel) and extracellular potassium
(bottom panel). Seizure onset is associated with increased firing of the inhibitory interneuron and
cessation of firing in pyramidal cell for few seconds. Afterwards, principal cell resumes its tonic
activity that progressively transforms into bursts. Extracellular potassium is elevated up to 9 mM
within first few seconds of the seizure and remains elevated throughout the seizure. Activity
patterns of both cells (except bursting) and extracellular potassium time course are reproduced by
the model. In the model discharge of the interneuron is triggered by somatic injection of the
depolarizing current, shown in red in part (b), middle panel
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Relationship Between Intracellular Seizure Patterns and Ion
Concentration Changes

The distinctive firing patterns observed in the model during seizure-like events
result from the interplay between synaptic mechanisms, membrane currents and ion
concentration changes. Summary of changes of concentration gradients and cor-
responding reversal potentials of K+, Na+ and Cl− is shown in Fig. 4. Seizure onset
is associated with fast rise of extracellular potassium concentration and increase of
potassium reversal potentials in both interneuron and pyramidal cell (Fig. 4a, b, first
column). Initially pyramidal cell is inhibited by strong GABAA receptor-mediated
currents and ceases firing. Slowing down of interneuron discharge and intracellular
chloride accumulation in pyramidal cell (Fig. 4a, third column) both contribute to
reduction of IPSPs and increase of membrane potential of pyramidal cell. Addi-
tionally, amplitude of action potentials generated by the interneuron gradually
declines due to decrease of sodium reversal potential (Fig. 4b, second column).
When the spike amplitude in the interneuron falls below −10 mV the inhibitory
synaptic transmission is prevented. An increase of extracellular potassium

Fig. 4 Summary of changes of ionic activities in pyramidal cell (a) and interneuron (b) during
modelled seizure episodes. For each cell and ion type, intra- and extracellular concentrations are
shown in upper panel and reversal potentials are shown in bottom panel. Seizure-like activity is
associated with significant ion concentration changes in both cells. Accordingly, in pyramidal cell
potassium, chloride and GABAA reversal potentials are elevated, while that of sodium is reduced.
In interneuron potassium reversal potential increases while sodium potassium reversal exhibits
markedly declines
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concentration together with loss of inhibition causes pyramidal cell to resume its
activity within few seconds from seizure onset. Initially strong pyramidal cell
discharge slows down as a result of slow decrease of extracellular potassium
leading to decrease of potassium reversal potential and associated increase of
outward potassium leak current.

Neuronal [K+]o Sources and Regulation

The dynamic increase of extracellular potassium concentration seems to be a pri-
mary factor leading to development of seizure-like events in the model. Accord-
ingly, we investigated the sources of [K+]o accumulation in pyramidal cell and
interneuron. To this end, we computed time integral of various potassium mem-
brane currents and divided the result by the volume of the corresponding extra-
cellular space. The contributions of [K+]o from the interneuron soma are shown in
Fig. 5, while those from the pyramidal cell soma are shown in Fig. 6. One can
notice that the dominant [K+]o contribution comes from action potential firing in the
interneuron (Fig. 5, upper panel, red diamonds), while contribution from potassium
leak current in the interneuron is negligible (Fig. 5, upper panel, blue circles).
Potassium current due to Na+/K+ pump contributes to [K+]o removal (Fig. 5, upper
panel, green stars), but cannot balance potassium outflow and the net result is
positive (Fig. 5, lower panel). In the pyramidal cell, contributions from leak and all
voltage-gated potassium membrane currents are negligible. The dominant influence
comes from KCC2 cotransporter, which due to high [K+]o conditions, lowers [K

+]o

Fig. 5 Upper panel cumulated potassium fluxes in the interneuron. The largest outward flux
corresponds to IKdr current (red diamonds), while the inward flux is mediated by potassium current
generated by the Na+/K+ pump (green stars). Lower panel total accumulated potassium in
extracellular space due to potassium fluxes in the interneuron

Extracellular Potassium and Focal Seizures … 63



by cotransport of K+ and Cl− ions into the cell (Fig. 6, upper panel, black triangles).
The transport of K+ by Na+/K+ pump in pyramidal cell is inward and reduces [K+]o
as in interneuron (Fig. 6, upper panel, green stars). Because in pyramidal cell
potassium inward flux is of larger magnitude than the outward flux the net amount
of [K+]o regulated by that cell is negative (Fig. 6, lower panel).

The [K+]o Balance

Apart from membrane contributions and regulation of [K+]o, potassium accumu-
lation is additionally regulated by a glial uptake, lateral diffusion to neighbouring
compartment and radial diffusion to the bath. The net effect of membrane currents
and these additional mechanisms is responsible for time course of [K+]o observed
during model activity. The individual components shaping [K+]o time course in the
somatic extracellular compartment are shown in Fig. 7 (upper panel), while the
resulting extracellular potassium balance is shown in Fig. 7 (lower panel). This
trace is equivalent to that shown in Fig. 3b (lower panel). The dominant contri-
bution to [K+]o comes from the interneuron (Fig. 7, upper panel, red diamonds).
Extracellular potassium clearance is mediated by uptake by glia and pyramidal cell
and by lateral and radial diffusion. Initially glial uptake (Fig. 7, upper panel, green
stars) plays a dominant role but as [K+]o builds up and remains elevated, diffusion
processes (Fig. 7, upper panel, pink circles and black crosses) become main
mechanisms of potassium regulation. Despite both the inward and outward flows of
potassium produce cumulated extracellular concentrations of the order of hundreds

Fig. 6 Upper panel cumulated potassium fluxes in the pyramidal cell. The outward fluxes
mediated by potassium membrane currents are negligible. The inward fluxes are mediated by
potassium current generated by the Na+/K+ pump (green stars) and KCC2 (black triangles).
Lower panel: total cumulated potassium is negative, what means that potassium is up-taken from
extracellular space by pyramidal cell
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of mM, the total cumulated extracellular potassium is of the order of 10 mM,
showing that the processes of potassium release and clearance operate at a fine
balance.

Selective Impairment of Potassium Homeostasis Mechanisms

To investigate the effects of various components of potassium homeostasis
implemented in the model, the potassium clearance mechanisms were selectively
removed and simulations of such altered models were performed. These hypo-
thetical manipulations show how impairment of a certain neuronal process may
affect behaviour of cells and extracellular potassium.

When the glial buffer was removed, [K+]o increased rapidly up to around
25 mM causing depolarization block in pyramidal cell during the whole simulation
(Fig. 8, top trace). Interneuron continued to fire but within few seconds spike
amplitude was severely reduced (Fig. 8, middle trace), limiting further release of
potassium. Consequently [K+]o started to decrease due to clearance by Na+/K+

pump and diffusion (both lateral and radial), reaching a final value of ∼10 mM.
The effect of removal of potassium diffusion in the model is shown in Fig. 9. In

this case, [K+]o increased rapidly up to around 10 mM causing depolarization block
in pyramidal cell during the whole simulation (Fig. 9, top trace). Interneuron fired
with gradually decreasing spike amplitude until second 40 and entered depolar-
ization block afterwards (Fig. 9, middle trace). [K+]o was increasing throughout the
simulation showing limited ability of glial buffer and Na+/K+ pump to clear

Fig. 7 Upper panel cumulated potassium fluxes mediated by the pyramidal cell, interneuron, glial
buffer and diffusion. The outward flux is mediated by potassium action potential currents in the
interneuron (red diamonds). Potassium clearance is mediated initially by glial buffer (green stars)
and subsequently by lateral- and radial diffusion (magenta circles and black crosses). Lower panel
total cumulated potassium due to all potassium fluxes in the model
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potassium effectively (Fig. 9, bottom trace). When glial buffer was filled-up around
second 40, [K+]o rose to the level of around 25 mM causing depolarization block of
the interneuron.

Finally, Fig. 10 shows the model behaviour in the absence of the Na+/K+

pump. Absence of the pump caused abnormal firing of the pyramidal cell (Fig. 10,
top trace), associated with small build-up of [K+]o even before the application of the
depolarizing current to the interneuron (Fig. 10, bottom trace). When interneuron
started to fire, [K+]o rose sharply to a value above 10 mM causing depolarization
block in pyramidal cell. Interneuron fired with gradually decreasing spike amplitude
until second 45 and entered depolarization block afterwards (Fig. 10, middle trace).
The overall time course of [K+]o was similar to that obtained for the reference
conditions but [K+]o levels were slightly higher. Here [K+]o reached maximal and
final value of ∼10.5 mM and ∼7.5 mM, respectively (vs. ∼9.3 mM and ∼7.2 mM
for the intact model).

In summary, removal of any of the potassium regulatory mechanisms had sig-
nificant effect on the model dynamics. Blocking of the diffusion process or glial
buffering system led to depolarization block of pyramidal cell and high extracellular
potassium reaching concentration above 25 mM, what may correspond to spreading
depression episode. Impairment of the Na+/K+ pump led to depolarization block of
both cells but extracellular potassium concentration was similar to that in the intact
model. It shows that in the model, diffusion process and glial buffering is more
effective in potassium clearance that the Na+/K+ pump. This result is in agreement
with earlier observations of relative role of potassium regulatory mechanisms,
illustrated in Fig. 7.

Fig. 8 Model simulations
with removed glial uptake
mechanisms. Soon after
seizure onset [K+]o attains
high value of about 25 mM
and pyramidal cell enters
permanent depolarization
block. Interneuronal activity
is maintained but with
drastically reduced spike
amplitude
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Fig. 9 Model simulations
with removed diffusion
mechanisms. Soon after
seizure onset pyramidal cell
enters permanent
depolarization block. [K+]o
gradually increases and
reaches maximal value about
25 mM around second 40.
Interneuron exhibits firing
with decreasing spike
amplitude for about 30 s and
enters depolarization block
afterwards

Fig. 10 Model simulations
with removed Na+/K+

pump. Absence of the pump
causes slight intial increase of
[K+]o and associated strong
firing of pyramidal cell. Soon
after seizure onset pyramidal
cell enters permanent
depolarization block, similar
to one observed in Figs. 8 and
9. Interneuron enters
depolarization block around
second 45, while extracellular
potassium time course is
similar and only slightly
elevated as compared to
simulation of the intact model
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Future Therapies

Currently 38% of newly diagnosed adult patients with localisation related epilepsy
are drug resistant [28]. This number remains almost unchanged since the discovery
of the first modern antiepileptic drug over hundred years ago [29]. It shows that new
concepts and investigation of other therapeutic strategies is necessary. Using the
model we investigated whether introduction of artificial extracellular potassium
regulation mechanism might successfully control neuronal excitability. Potassium
regulation was implemented as additional potassium buffer with the activation
threshold 3.5 mM and buffering speed 0.8 mM/ms. Such a mechanism could be
possibly realized in practice by a nanoparticle system as innovative applications of
nanomaterials in medicine continue to emerge [30]. Model simulations with
nanoparticle buffering agent present in the extracellular space are shown in Fig. 11.
Strong interneuronal firing (Fig. 11, middle trace) that would normally cause
increase of extracellular potassium and abnormal pyramidal cell discharges was
ineffective in triggering seizure-like episode in the presence of the artificial buffer.
Potassium remained at its baseline level (Fig. 11, bottom trace) and when inhibition
decreased following [Cl−]i accumulation, pyramidal cell resumed normal activity
(Fig. 11, top trace). It shows that such artificial [K+]o regulation mechanism might
lead to successful seizure control.

Fig. 11 Model simulations
with additional nanoparticle
potassium clearance
mechanism included. Despite
strong discharge of the
interneuron, extracellular
potassium remains close to its
reference level and pyramidal
cell resumes normal firing
when GABAA mediated
inhibition decreases due to
chloride accumulation. These
results illustrate that
hypothetical artificial
potassium clearing
mechanisms could lead to
effective antiepileptic
treatment
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The Model with Constant Ion Concentration Gradients

In the absence of extracellular space, i.e., with constant ion concentrations, the cells
communicate only through the synaptic connections and [K+]o remains constant
throughout the whole simulation and is equal to the initial value of 3.5 mM
(Fig. 12, bottom trace). The inhibitory interneuron exerts strong inhibition on the
pyramidal cell, which remains hyperpolarized and silent (Fig. 12, top trace). It
shows that firing patterns observed experimentally and in reference simulation
(Fig. 3a, b) indeed depend on activity-induced changes in intra- and extracellular
ion concentrations.

“Take Home” Message for Neurologists, Psychiatrists

This computational study confirms experimentally based hypothesis that focal
seizures may be triggered by strong discharges of the inhibitory interneurons. When
firing-associated potassium release exceeds potassium clearance, potassium accu-
mulates in the extracellular space, leading to generation of pathological discharges
in pyramidal cells and seizure progression. This scenario challenges the traditional
view of alteration in excitation/inhibition balance being the cause of epilepsy. Our
study points to importance of non-synaptic mechanisms in epilepsy, especially
changes in extracellular potassium. Additionally, simulations reveal the very fine

Fig. 12 Simulation results of
the model with constant ionic
concentrations. Strong
discharge of the interneuron
(middle panel) inhibits the
pyramidal cell, which stops
firing (top panel) while
extracellular potassium
concentration is stable at the
initial value 3.5 mM. These
results illustrate that in order
to account for experimental
results shown in Fig. 3a, ionic
dynamics is essential
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balance that exists between potassium release and uptake and identify dominant
processes responsible for observed overall potassium dynamics. Insight into these
mechanisms would be difficult to grasp by purely experimental observations.

We also show proof-of-concept of the feasibility of seizure control by a novel
antiepileptic nanoparticle treatment. The proposed hypothetical mechanism would
be able to recognize the level of extracellular potassium concentration in a sur-
rounding medium, buffer excess of potassium if it exceeded a certain threshold and
possibly release accumulated potassium back to the neuronal environment if the
normal extracellular potassium level was restored by natural potassium homeostasis
mechanisms. Nanoparticle therapies already exist as alternative means for drug and
gene delivery and their applications towards ion absorption, like the one hypoth-
esized here, might be possible in the future.

“Take Home” Message for Computationalists

Our modelling study, as well as some other models mentioned earlier, suggest that
accurate modelling of seizure activity should include activity dependent changes in
intra- and extracellular concentrations and ion homeostasis mechanisms. Significant
shifts in ion concentration gradients are observed during epileptic seizures [7] and it
is reasonable to assume that seizure initiation, maintenance and termination are
causally related to the ionic dynamics. Our model with constant ion concentrations
cannot reproduce experimental results (Fig. 12) and couldn’t contribute to under-
standing the key mechanisms that determine seizure initiation and evolution. It
shows that in order to explain pathophysiology of seizures in terms of realistic
mechanisms, models should incorporate ion concentration dynamics. Such models
may help to elucidate the complex interactions between neurons and their envi-
ronment during seizures and may ultimately lead to development of new therapeutic
strategies targeting regulation of ion concentration gradients.
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Time Series and Interactions: Data
Processing in Epilepsy Research

Zsigmond Benkő, Dániel Fabó and Zoltán Somogyvári

Introduction

Computational methods can have significant contribution to epilepsy research not

only through modeling, but through data analysis as well. Data analysis in epileptol-

ogy has a varied set of aims that relate to possible treatment methods. For surgical

treatment, data analysis aims to find any marker to localize the epileptic tissue, the

seizure onset zone (SOZ). For deep or intracranial stimulations, the aim is to predict

seizures and the effect of stimulation. For pharmacological treatment, the aim is to

understand the roles of different channels to the cellular and network dynamics, and

their possible modulation. In this review, we will focus on the first aim: data analysis

for SOZ determination, which supports surgical planing, thereby resulting in more

restricted resections, better outcomes, and less side effects.

A new era of brain research was opened with the vast amount of neural data that

is now available. New data analysis methods are needed to take full advantage of

the available resources. The traditional way to determine SOZ relies on human’s

natural skills in pattern matching or mismatch recognition to try to identify the first

pathological patterns at the initiation of the epileptic seizures. Pathological patterns

typically differ in their frequency and wave-shape, but they could appear in different

forms. This plurality of wave-shapes, as well as the possibility of possible multiple or
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deep origins and a quick spreading of signals through intracortical pathways, makes

it difficult to identify the SOZ, even for seizures that are precisely recorded. The

challenges of SOZ identification arise in three settings, outlining a roadmap for data

analysis in epilepsy:

∙ Identification of the SOZ based on invasive methods (i.e. high density, subdural

electrode recordings) during the initiation of the epileptic seizure.

∙ Identification of the SOZ based on invasive recordings without epileptic seizures.

∙ Identification of the SOZ with noninvasive methods.

While identification of the SOZ with noninvasive methods seems to be achiev-

able only in long run, the first two aims are reachable in many cases. The precision

of the identification, however, strongly depends on mathematical methods. In this

chapter, detection and analysis methods for possible markers of the epileptic tis-

sue, either ictal and interictal, are discussed, starting with detection algorithms for

interictal spikes and high frequency oscillations and open questions for these algo-

rithms. We continue along with methods for analyzing continuous signals, such as

time-frequency analysis and entropy calculations, and finish with methods for deter-

mining causal interactions among signals and their usage in locating epileptic foci.

Short Pathological Events as Biomarkers

Interictal Epileptic Spikes

Interictal epileptic spikes are the first candidate we discuss for a biomarker of

epilepsy, promising to identify the SOZ in the absence of ictal recordings. From

the point of view of data analysis, interictal epileptic spikes are relatively easy to

detect, due to their large amplitude and stereotyped waveforms. The only major dif-

ficulty is caused by movement and other artifacts. However, these spikes occur in

regions well beyond the limits of the actual epileptic tissue, and so, intensity maps

of these spikes are poor indicators of seizure onset zone. Presumably, interictal spikes

are more widely observed, because they can be evoked by synaptic activity arriving

from (perhaps a distant) seizure onset zone. This observation raises the question. Are

there reliable morphological differences between a spike that originated locally from

one that originated in remote origin? If there are reliable differences between them,

then this information could delimit the seizure onset zone without recorded seizures.

In the SOZ (proven post hoc) and nearby tissue, chronic laminar microelectrode

recordings revealed differences in the laminar profile between locally-generated and

remotely-evoked neocortical epileptic spikes [1]. Although the ECoG signals on the

surface of the brain are only projections of the whole laminar profile, the different

laminar profile could be reflected in differences on the surface potentials as well,

forming a possible basis for the possible distinction of the central and peripheral

spikes.
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High Frequency Oscillations—Ripples

Ripples are short duration, small amplitude sinusoidal high frequency oscillations

(HFO) in the nervous system. Although HFOs are physiological in some brain areas,

such as CA regions of the hippocampus, they are considered pathological and linked

to the seizure onset zone in other cortical areas. They are often accompanied by

epileptic interictal spikes. HFO events are now divided into ripples whose charac-

teristic frequency peak is between 80–250 Hz and fast ripples in the 250–500 Hz

frequency regime. These two types may differ not only in their peak frequency but

the underlying physiological mechanisms as well.

Detecting HFOs by a human observer is very time consuming, thus it is of high

importance to develop automatic detection algorithms. These algorithms will not

only disburden the human researchers from this task, but also provide more objec-

tive and comparable results. Comparing HFOs within channels is important since

this forms the basis HFO intensity maps and supports the surgical planing process.

Comparing HFOs between patients is also important for developing conclusions that

generalize across patients.

HFO identification has a number of challenges. First, identifying any transient

patterns in the electrocorticography (ECoG) signal is affected by movement and

muscle artifacts and different noise levels of different channels. Movement and mus-

cle artifacts lead to signals with variable frequencies of high amplitude, so they can

deceive even sophisticated detectors. Second, in contrast to interictal spikes, the

amplitude of HFOs are low, comparing to the ongoing EEG activity. Thus, their

identification mainly based on the emergence of specific frequencies only, but these

specific frequencies can vary between brain areas and patients. Third, the specific

frequencies of interest emerge only for short durations, and hence, the signal should

be decomposed using time-frequency methods, such as wavelets, instead of more tra-

ditional frequency spectra methods. Last, the signal is accompanied by sharp spikes

that appear independently and have wide range frequency content, which after high-

pass filtering, can result in ripple-like patterns that can deceive not only an auto-

matic detector algorithm, but even a well trained neurologist as well. This observa-

tion emphasizes that, although the filtering can help the neurologist to find the ripple

candidate events, it is highly important to check the original signal as well and accept

the event as ripple only if the sinusoid oscillation is observable superimposed on the

accompanying spike [2].

The first automatic detector algorithms were based on few simple criteria,

extracted from the cumulative experience of neurologists. These simple criteria try

to formulate the known properties of HFOs, which discriminate HFOs from the nor-

mal ECoG. Such criteria included increases in power and the number of cycles cor-

responding to specific frequency regimes [3]. These approaches were validated using

a dataset of HFO events detected by human experts. Later works compared different

criteria [4] or tried to adapt criteria to the background activity or noise level of the

actual ECoG channels by applying relative power criteria [5] or iteratively adapting

thresholds for channels of high HFO background [6]. A promising new direction of
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finding proper features for HFO detection was applied by [7]. They calculated the

approximate entropy of the signal, expressing the unpredictability or disorder of the

signal, and characterized HFOs by elevated entropy.

Application of these simple rules has the advantage that it is clearly interpretable,

but it does not guarantee to get close to the optimal results from the detection point of

view. Considering the difficulty of the HFO detection, more principled approaches

are required.

An alternative approach was to use supervised learning methods from the artifi-

cial neural network literature to optimize the performance of detection algorithms.

The set of events detected by experts were used as a training set for the algorithms.

A set of features is calculated over all events, and then the features of events detected

by experts are used to train the detection algorithm. During the supervised learning

procedure, a learning algorithm is applied to features in the training set to optimize

decision boundaries for approximating the performance of the human experts. For

detection, application of low dimensional feature spaces, such as the predefined crite-

ria in the above mentioned algorithms, is disadvantageous since it creates an informa-

tional bottleneck. Low dimensional problems can be embedded into higher dimen-

sional feature spaces, even if at random. This embedding tends to transform problems

which may be linearly non-separable in the lower dimensional space into problems

that are linearly separable in higher dimension. In simpler terms, lower dimensions

require more complex decision boundaries, and thus more complex learning meth-

ods, whereas higher dimensions could use simpler methods. As an example for low

dimensional feature space but complex learning process, [7] used a feature set deter-

mined by tree consecutive value of approximate entropy and then trained an artificial

neural network with recurrent hidden layer using Cubature Kalman Filter to deter-

mine decision boundaries.

In these learning approaches and in other optimization procedures, it is important

to divide the available hand-sorted data set to a distinct training and test set to avoid

overfitting. Overfitting can arise when the fitted decision boundary or the neural

network is highly complex with a large number of free parameters to fit. In this case,

one could get near-perfect or perfect recognition performance on the training set, but

because the decision boundary does not generalize to other sets, poor results on the

test set. Reliable algorithms can only be developed by using independent datasets to

train and to test performance [8].

In contrast to the above algorithms, which use supervised learning, data driven

approaches can also use unsupervised learning or clustering methods and do not

require ground truth in the form of a training set of events detected by experts [9, 10].

In these approaches, pre-selection is first applied to remove short, high-frequency

candidate epochs from the continuous signal. Next, the candidate epochs are clus-

tered and the optimal number of clusters is determined. [9] found a description with

4 clusters to be optimal (Fig. 1). They then characterized the clusters using the pre-

viously applied criteria, such as power ratio, peak and centroid frequency and line

length, and found that the 4 clusters corresponded to ripples (36.5 %), fast ripples

(8.5 %), spike-like artifacts (24 %) and mixed frequency signals (31 %).
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Fig. 1 Example ripple waveforms from the 4 HFO clusters identified by Blanco et al. [9]. They

found that the 4 clusters corresponded to ripples (Cluster 4, 36.5 %), fast ripples (Cluster 3, 8.5 %),

spike-like artifacts (Cluster 2, 24 %) and mixed frequency signals (Cluster 1, 31 %). Reproduced

from [9] with permission

Independent of the method of detection, the final goal is to relate the occurrence of

different types of HFOs to the epileptic cortical mechanisms and make them useful

in identification of seizure onset zone [11].

Analysis of the Continuous Signal

Frequency Analysis

Since many epilepsy-related phenomena are defined by its specific frequency con-

tent, it is of natural interest to determine the dominant frequencies in the signal.

Although it sounds simple, it is not always so simple. There are two main prob-

lems related to the frequency analysis. The first is that the frequency content of

the signal changes over time. The second is related to the Heisenberg uncertainty

principle: from a data processing point of view, it says that the amplitude of low

frequencies can be determined only from appropriately long time series; thus, the
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temporal resolution for low frequencies is inherently low. On the other hand, shorter

time series are enough to determine high frequencies, but the frequency resolution

is proportional to the length of the analyzed segments; thus, shorter segments results

in worse frequency resolution. As a result, there is a trade off between the temporal

and frequency resolution: longer segments results in better frequency resolution but

worse temporal resolution and vice versa. Thus, in the case of temporally-changing

frequency content, one has to find a compromise between frequency and temporal

resolution. The traditional Fourier-transform has maximal frequency resolution, but

no temporal resolution. The Wavelet-transformation applies optimal tilling of the

time-frequency space. It starts from a mother wavelet function, which is a localized

wave packet either in time and frequency. If the mother wavelet is upscaled in tem-

poral length according to a geometrical series and then convolved with the signal,

then the result is to decrease the temporal resolution but inversely increase frequency

resolution towards the lower frequencies. As we can see, the short duration of HFO

events means inherently wrong frequency resolution independently from the applied

method: 100 ms length results no more than 10 Hz frequency resolution at best.

Epileptic seizures are typical examples for a spectrum changing over time.

Figure 2 shows wavelet analysis for ECoG of evoked seizures in rats: A and D shows

normal ECoG activity and its time-frequency spectrum by Morlet-wavelet and B

and E shows seizure evoked by 4-Aminopyridin. Wavelet-transformation clearly

shows that the dominant frequency decreasing rapidly during the first period of the

seizure, while the amplitude of the oscillation increases. During the second and the

third phase of the seizure the dominant frequency remained relatively constant for a

while. Together with the highest amplitude peak, this may imply a resonance phe-

nomenon in the cortex. Subfigures C and F shows an epileptic seizure evoked by

4-Amionopyridin after Trans-Amino-1,3-dicarboxycyclopentane (ACPD, a

metabotropic glutamate receptor agonist) treatment, which caused higher seizure

susceptibility and amplitude. Note that wavelet-transform reveals not only the fre-

quency decay during the seizure, but a short period dominated by an increasing

frequency peak at the onset of the seizure.

An additional problem is determining significant peaks of the calculated time-

frequency maps. The existing mathematical results on significant peak detection,

either based on dominant peak selection or analytical (typically Gaussian function)

model fitting are rarely applied in epilepsy research. An interesting direction of

peak detection is based on building up a signal from an overcomplete set of time-

frequency basis functions called Gabor-atoms, along with the matching pursuit algo-

rithm. Gabor-atoms are actually wavelets, but in this case the algorithm uses more

basis functions than is minimally necessary to fit any continuous functions. The use

of overcomplete set of the basis functions results in more than one (actually infinite)

possible decompositions, and thus, freedom to choose among them. The matching

pursuit fitting algorithm choses the Gabor-atom which has the largest projection to

the signal, thereby implicitly building up a more sparse representation of the signal

than the wavelet-transformation. The sparse decomposition typically provides more

clear peaks either in frequency and in time.
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Fig. 2 Wavelet analysis of ECoG of evoked seizures in rats. a and d normal ECoG activity and its

time-frequency spectrum by Morlet-wavelet. b and e seizure evoked by 4-Aminopyridin. Wavelet-

transformation clearly shows that the dominant frequency decreasing rapidly during the first period

of the seizure, while the amplitude of the oscillation increases. During the second and the third phase

of the seizure the dominant frequency remained relatively constant for a while. c and f Epileptic

seizure evoked by 4-Amionopyridin after Trans-ACPD treatment, which caused higher seizure sus-

ceptibility and amplitude. Note that the wavelet-transform reveals not only the frequency decay

during the seizure, but a short period dominated by an increasing frequency peak at the onset of the

seizure. Modified from [12]

Entropy of the Signal

Entropy of a signal captures its complexity or unpredictability. Although entropy (H)

is well-defined theoretically, it is not straightforward to approximate, depending on

the definition of the state space in which the probability is measured. Entropy H is

given by

H(X) = −
∑

i
p
(
xi
)
log p

(
xi
)
,

where X is some discrete random variable, xi are possible values of X, and p(xi) is

the probability that X = xi?
There are two widespread methods to calculate the entropy of a signal: spectral

entropy (SE) and approximate entropy (AE). The spectral entropy measures the flat-

ness of the spectrum,and hence, its closeness to the spectrum of the white noise.

Approximate entropy quantifies unpredictability by measuring how likely nearby

states in the state space remain close after an iteration [13]. As show in Fig. 3, AE

increases significantly during the initial low amplitude phase of the seizure, but then

decreases below the baseline during the high amplitude phase of the seizure. The
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Fig. 3 Approximate entropy (AE) of the ECoG during seizure initialization: a The position of

the subdural grid electrodes on the brain surface. b Colored lines represents the 48 channel during

an epileptic seizure, parallel to the corresponding AE values. AE is significantly increased solely

during the initial, low amplitude phase of the seizure, then AE is decreased below the baseline

during the high amplitude phase of the seizure. c Temporal zoom of the initiation of the seizure. d
Color coded representation of the AE values on each channels (horizontal lines) during the initial

period of the seizure. Time scale is the same as in graph c and color code is as on graph (e). AE

have been increased only on specific channels. e Color coded AE calculated from the first second of

the seizure is projected to the surface of the brain. The positions of the increased AE values during

the first sec of the seizure corresponds very well to the seizure onset zone determined by experts

and marked by stars

positions of the increased AE values during the first second of the seizure corre-

sponds very well to the seizure onset zone. AE also served as a basis for seizure

prediction systems [14].

Analysis of Interactions Among Signals

Correlation

Linear correlation coefficient (𝜌xy) is the simplest and most natural measure to quan-

tify association between two signals:
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𝜌xy =
∑

t
(
xt − 𝜇x

) (
yt − 𝜇y

)

N𝜎x𝜎y

where xt and yt are the data points of two time series, 𝜇x and 𝜇y are their respective

mean values, 𝜎x and 𝜎y are the respective standard deviations, and N is the number

of data points.

This correlation method assumes that signals depend on each other linearly and

that there is no time delay between the analyzed signals; linear dependency effec-

tively means that the signals have the same waveforms in the case of time series.

In the case of macroscopic electric signals from the brain, high correlation, and

thus high instantaneous linear coupling, is often the consequence of electric crosstalk

between electrodes and wires or the effect of far fields. If high correlation is observed,

care should be taken to eliminate these effects.

Besides the assumption of instant and linear interaction, the correlation method

has a third important constraint: it is a symmetric measure, and hence, an undirected

measure of connection strength. There are methods to exceed these limitations and

overcome these three constraints, but there is no one perfect method. The simplicity

of the linear correlation is always an advantage because it not only requires less

computational resource, but more importantly less data and is also less sensitive to

noise.

Mutual Information

The most important symmetric connection measure, which can reveal any types of

nonlinear dependencies, is mutual information. It is based on the entropy measure of

a signal and quantifies the information known about a random variable with knowl-

edge of an other random variable. Specifically, it calculates the difference between

the entropy of the joint distribution of the two variable (H (X,Y)) and the entropies

of the individual variables (H (X), H (Y)):

I (X;Y) = H (X) + H (Y) − H (X,Y)

Although it can reveal nonlinear connections, its calculation requires constructing

probability density functions for each marginal variable and for the joint variable,

typically by means of histograms. Much more data is typically required to deter-

mine the full probability distribution function with the necessary precision, espe-

cially when compared to the simpler linear correlation method. Generally, calcula-

tion of mutual information requires more data and more computational efforts, but

rarely gives proportionally more information about the existence of the interaction.

It is because the majority of the interactions, even the nonlinear forms can be approx-

imated linearly to some extent, thus can be revealed by linear correlation, and those

forms of interactions are rare which can not be approximated linearly at all, thus can

not be revealed by correlation.
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Cross Correlation Function and Coherence

The cross correlation function measures the linear correlation coefficient between

one signal and a time-delayed version of an second signal as a function of the time

delay between the two signals, thereby overcoming the instataneous assumption of

the simple linear correlation:

𝜌xy (𝜏) =
∑

t
(
xt − 𝜇x

) (
yt+𝜏 − 𝜇y

)

N𝜎x𝜎y
.

Here, 𝜌xy (𝜏) is the correlation coefficient for 𝜏 time lag and yt+𝜏 is the 𝜏-lagged

version of the timeseries yt.
The cross correlation function is also used to determine two functions: cross-

spectrum (Sxy (𝜔)) and its normalized version called the coherence (Cxy (𝜔)) given

by

Cxy (𝜔) =
|||Sxy (𝜔)

|||
2

Sxx (𝜔) Syy (𝜔)

Specifically, the cross spectrum Sxy (𝜔), also called cross-spectral density, is the

Fourier transform of the cross-correlation function.

Coherence expresses the stability of the phase lag on different frequency regimes

between the two time series. As a Fourier-spectrum, coherence represents phase rela-

tions with complex numbers. High amplitude in a given frequency regime means that

the two oscillations follow each other by a constant phase lag through the majority of

the time, whereas small amplitude means that the phase leg changes randomly in that

frequency regime. The specific phase lag between the two signals is contained by the

argument of the complex number. By using complex wavelet transform, instead of

Fourier transform, even temporal changes in the phase coherence and phase lag can

be described.

An interesting application of coherence can be found in the micro electric imag-

ing concept introduced in [15]. Coherence has been calculated between local field

potential (LFP) recordings of a high channel count microelectrode array system,

chronically implanted into the hippocampus of a rat. It was assumed that the elec-

trodes, which monitor the same synaptic layer of the hippocampus, will show high

coherence, since they receive the same input, albeit at different delays. Thus, coher-

ence was calculated between signals from each possible pair of electrodes to mea-

sure their similarity, and a clustering method was applied to the set of coherences

measured between electrodes. Clustering can then lead to an anatomical dissection

of the hippocampus, where electrodes belonging to the same cluster are inervated

by the same synaptic pathway. As Fig. 4 shows, high coherence in the gamma fre-

quency regime (20–90 Hz) marked almost all synaptic layers of the hippocampus.

This synaptic layer structure can be complemented by a high frequency (300 Hz)
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Fig. 4 Electroanatomy of the hippocampus. a Distribution of high-frequency power (300± 10 Hz)

on each of the 256 sites of the silicon probe. The 32 × 8 color matrix is a representation of the 256-

site probe. Each rectangle represents a 300µm (intershank distance) by 50µm (vertical intersite

distance) area to mimic the 2-dimensional geometry of the probe coverage. Clustered neurons,

assigned to the largest amplitude recording sites, are superimposed on the power map. b Coherence

maps of gamma activity (30–90 Hz). The 10 example sites (black dots) served as reference sites,

and coherence was calculated between the reference site and the remaining 255 locations for a 1 s

long recording segment.c Composite figure of the combined coherence maps. Left 2-dimensional

combined map of gamma coherence and high-frequency power distribution. Right coastline map of

layer-specific coherence contours. d Histological reconstruction of the recording tracks (arrows).
The shifting of the tracks in the neocortex is due to a slight displacement of the neocortex/corpus

callosum relative to the hippocampus during the tissue sectioning process. DG, dentate gyrus. Right
physiology-based map superimposed on the recording tracks. From [15] with permission
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power map to denote the somatic layers, resulting in an almost full reconstruction

of the hippocampal structure, based simply on the LFP recordings. The structure

was not fully marked, because the outer layer of the startum moleculare of Dentate

Gyrus and the stratum lacumosum-moleculare of the CA1 were not distinguished

by the coherence method, presumably because they are innervated by same synaptic

input pathway innervates, i.e. the perforant path from the entorhinal cortex.

Applying this coherence clustering method to neocortical micro-electrode record-

ings resulted in a less clear structure, but supragranular, granular and infragranu-

lar layers can be identified clearly on the micro-electroanatomical structure (Fig. 5).

Even the different (granular versus agranular) structure of S1 and M1 cortical area

and the borderline between them is recognizable in the left hemisphere, as the gran-

ular layer (marked by white) ends at the transition zone.

Coherence were applied to identify differences in subtypes of temporal lobe

epilepsies [16]. Walker et al. [17] found excessive delta and theta power in slow

foci in all intractable patients, and hypocoherence in theta in 75 % of patients. In

this study, the aim for neurofeedback training was to restore the normal, healthy

coherence pattern between EEG channels. When power and coherence abnormali-

ties could be restored by the neurofeedback training, patients become seizure free

[17].

Fig. 5 Electroanatomy of the neocortex. a Combined coherence map of gamma activity (30–

90 Hz) as in Fig. 4b. Each site served as a reference, and coherence was calculated between the

reference site and the remaining 255 locations. The resulting combined map is superimposed on

the histologically reconstructed tracks in the sensorimotor cortex. Note reliable separation of layer

IV, superficial, and deep layers and the lack of a layer IV coherence band in the adjacent motor

cortex (shanks 6–8). Modified from [15]
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Causality Analysis

The cross correlation function, as well as coherence spectrum, could be used to deter-

mine directional effects between the analyzed signals based on the phase of the peak,

corresponding to the time delay between the signals in a given frequency (eq. phase

leg index). However, this approach builds on two main assumptions. First, it assumes

that there are no difference in the observational delays for the two signals; second, it

assumes similar wave-shapes on the two channels, as it is based on the linear corre-

lation coefficient implicitly. Although both assumptions can be valid in many situa-

tions, it is hard to verify them in general.

The majority of causality analysis methods are based on Norbert Wiener’s prin-

ciple on predictability: a time series is said to be causal to an other, if it’s inclusion

makes the prediction of the caused time series more precise [18]. The first practical

and applicable implementation of this principle is the Granger-causality introduced

by Clive Granger in 1969 [19]. The Granger formalization is based on autoregres-

sive (AR) models, where the next element of a time series is approximated by the

linear mixture on the recent elements. Specifically, the formalization can written as

follows:

xt =
p∑

i=1
aixt−i + 𝜀t

xt =
p∑

i=1
bixt−i +

q∑

j=1
cjyt−j + 𝜂t

Fy→x = log

(
𝜎
2
𝜀

𝜎
2
𝜂

)

where ai, bi and cj are the AR coefficients; p and q control the order of the models;

𝜀t and 𝜂t are error residuals; 𝜎-s are the variances of residual errors and Fy→x is

the directed Granger-causality index. Inclusion of the recent past of the other time

series into the autoregressive model does not necessarily results same improvement

of prediction error in both directions, thus Fy→x and Fx→y are generally non-equal.

The original Granger method quantifies the effect of including the other time series

using the log-ratio of the variance of the residual error signal between a prediction

with the other time series and a prediction without the other time series.

Since then, numerous versions and improvements of the original Wiener-Granger

idea exists. Directed transfer function and Partial Directed Coherence solves the

Granger problem in the frequency domain instead of time domain [20–22]. Con-

ditional or multivariate Granger causality includes non-pairwise comparisons and

there are nonlinear extensions as well. A version of Granger-causality called short-

time directed transfer function has been adapted to analyze the event related activity,

developed by [23] and applied to reveal information transmission during visual stim-

ulation of the brain.
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A non-parametric translation of Norbert Wiener’s original idea to information

theory’s language is Transfer Entropy introduced by Thomas Schreiber in 2008 [24].

Transfer Entropy quantifies the predictive information transfer, the Mutual Informa-

tion between present X values and past Y states (Y−
) conditioned on past X states

(X−
):

TE (Y → X) = I (X;Y−|X−)

Transfer Entropy and Granger causality are equivalent in the case of jointly gaussian

variables. TE was used to reconstruct interaction delays in turtle visual system [25].

There are several toolboxes for the computation of TE, for example JIDT with python

bindings or TRENTOOL for Matlab.

Sugihara’s Causality

A dynamical system perspective on causality detection was invented by George Sug-

ihara in 2012 [26]. A dynamical system is a system whose state (Z) changes with

time. From the current state of a system, one can predict all the coming future states,

if time evolution rules are known:

Zt = Φt
(
Z0
)

The actual state is a point in state space, the space with state variables on each

axe. As time evolves, the system’s state traces out a trajectory in state space. In many

cases, the system’s state is attracted to a lower dimensional subspace of state space

and the points form a manifold.

Sugihara’s idea is based on Takens theorem [27] which claims that the state of a

chaotic dynamical system can be restored (reconstructed) with the aid of one time

series measurement from that system by a process called time delay embedding. The

method has two parameters the embedding dimension (m) and the embedding delay

(𝜏) with

xt → Xt =
(
xt, xt−𝜏 , xt−2𝜏 ,… , xt−(m−1)𝜏

)

According to Takens theorem, the time delay procedure for m ≥ 2d + 1 is an

embedding where d is the dimensionality of the original state space. That is to say, for

every point, there is an invertible smooth mapping (whose derivative is also injective)

between the reconstructed and the original state space [27]. It follows that the mani-

fold formed by the points in the reconstructed state space is topologically equivalent

to the manifold in the original state space, meaning that every point has the same set

of neighboring points in both spaces.

Deyle and Sugihara [28] generalized Takens theorem into a multivariate form,

when not only the different time lags of a time series provides the state-space embed-

ding, but different observation functions of the same dynamical systems as well.

Based on this theorem, they found a new principle for causality analysis: The new
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idea is that if two time series measurements (X, Y) were from the same dynam-

ical system, then the reconstructed state spaces can be mapped back to the same

original manifold, and so, there should also be a smooth mapping between the two

reconstructed state spaces. In this case, one can identify causality between the two

variable as well.

An asymmetrical relationship between the variables can also be revealed when

their original state-spaces are not the same, but one of them is a lower dimensional

sub-manifold, a (not necessarily linear) projected version of the other. The mapping

works in one direction, but is non-invertible. In this case, one can speak about unidi-

rectional causal relationship, wherein one variable causes the other variable but not

the reverse.

If there are no such mappings between the two reconstructed manifolds, they do

not belong to the same dynamical system. In this case, one can say that there is

no causality between the two variables. Convergent Cross-Mapping is a procedure

which tests the existence of this mapping. It is considered a cross-mapping proce-

dure, because it estimates the mapping between the two reconstructed manifolds; it

is considered convergent because this estimate converges to the true mapping as one

lengthens the time series.

Sugihara’s method is able to detect the direction of causality, without needing to

assume the two signals are observed at the same time. However, if this assumption

holds, the method could be extended to detect delays in the interaction between vari-

ables [29]. Parallel work of Schumacher et al. is based on similar principles and also

contains time delay detection and in addition they applied their method to neural

data [30].

There are various methods to test the existence of the smooth mapping between

the reconstructed trajectories. Ma et al. used a feed forward neural network to explic-

itly estimate the smooth mapping between the embedded times series. When the

mapping error was sufficiently small, they detected a causal relationship, otherwise

they said that the two time series were independent in the time segment [31].

Sugihara’s method works well on deterministic data and when there is direct

causality between variables, but it cannot detect hidden common causes. So far, we

found only one attempt in the data analysis literature to distinguish direct causality

from common cause, but this method has yet to be applied neural data [32]. Moreover

the crosstalk or linear mixing, which always appears between multiple electric sig-

nals recorded in a volume conductor restricts the applicability of Sugihara’s method

on raw extracellular signals. Due to linear mixing, each of the recorded signals con-

tains the effect of all neural sources with different weights. Thus, all the sources can

be reconstructed from all recorded mixtures to some extent, resulting false detection

of circular causal connections between all recordings. To avoid these false positive

detections, determination of the individual sources from the measured potentials is

necessary and the causality analysis should be applied between the reconstructed

time series of the sources, in stead of potentials. This could be achieved by current

source density calculation [33–37] or linear demixing due to independent component

analysis [38].
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Causality of Epilepsy

Causality analysis is a natural tool for revealing functional connections between brain

areas during epileptic events. It is also natural to assume that functional connections

change as one develops an epileptic seizure. However, the nature of this change is

less clear.

The general assumption, based on the spreading nature of the seizure, is that the

SOZ should play the role of a causal source during the initiation of a seizure. How-

ever, it is possible that the brain areas connected to the active focus (the cortical

umbra) which are ‘attacked’ by a massive synaptic bombardment during the ini-

tial phase of the seizure, produce a strong, possibly inhibitory, ‘defensive’ synaptic

answers towards the SOZ. Such an answer would also be a strong effect and thus,

measurable by the causality analysis methods. Even if we can accept the more likely

assumption, that the SOZ should work as a causal source during the initiation and

spread of the seizure, it is less clear what kind of causal changes should precede the

seizure. Do the connections between areas strengthen as the system gets closer to

the seizure onset, or just the opposite, do the physiologically-well connections stop

their activity if one of its connected nodes operates outside its normal regime? Per-

haps both types changes occur and perhaps they occur through spatial or temporal

separation. As some observations suggest, spatial separation could result from the

epileptic network becoming more modular as local connections strengthen and long

range connections weaken. Regardless, causal analysis methods are well suited to

answer these numerous questions, which require collecting and systematizing the

results of the causal analysis.

Sabesan et al. [39] identifies the SOZs by calculating the spatially averaged net

transfer entropy, where net transfer entropy is the difference between the outgoing

and the incoming causality for a node. Thus, they assumed, that the SOZ corresponds

to a net entropy source. Similar idea was implemented by Epstein et al. [40], but

by using Granger-causality in the high frequency regime between 80–250 Hz. They

found that the net causality outflow from the SOZ area increased only for short bursts

before the seizure with 2–42 s, instead of keeping high value continuously or building

up monotonously.

Conclusions

Despite the significant arsenal of analytical methods applied to localize the SOZ

based on ECoG signals, a general and robust solution is still missing. Although, we

have good reasons to believe that increasing information content of the high channel-

count subdural surface and deep electrodes will make precise SOZ determination

increasingly possible, provided this additional information can be exploited by the

proper mathematical analysis. It is also clear that the increasing data flow could not

be handled by the traditional way. Analytical and advanced visualization tools are

also necessary to evaluate the results and to ensure the results can be incorporated
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into surgical practice. Maybe the most promising research directions apply causality

analysis, which not only reveals pathological alternations from the normal behavior,

but could also provide deeper understanding of the underlying mechanisms due to the

quantification of the neural interactions and network structure of brain areas under

normal and epileptic conditions.
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Connecting Epilepsy and Alzheimer’s
Disease: Modeling of Normal and
Pathological Rhythmicity and Synaptic
Plasticity Related to Amyloid𝜷 (A𝜷) Effects

Péter Érdi, Takumi Matsuzawa, Tibin John, Tamás Kiss and László Zalányi

Alzheimer’s Disease and Epilepsy: The Big Picture

General Remarks

Hidden links have been demonstrated between neurodegeneration due to Alzheimer’s

disease (AD) and temporal lobe epileptic activity (TLEA).

Alzheimer’s disease is a devastating neurodegenerative disorder likely affecting

millions of people. Neurodegeneration in early AD primarily affects the hippocam-

pal formation in the medial temporal lobe, leading to severe memory loss [1]. This

region is also the main focus of TLEA. In AD the incidence of convulsive seizures is

ten times higher than in age-matched general population [2, 3]. Epilepsy is 87 times

more frequent in patients with ’early onset’ disease and occurs particularly early in

familial AD, as an integral part of the pathophysiology [4]. There is accumulating

evidence [2, 5, 6] that seizures in the cortico-hippocampal system might contribute

to cognitive decline. Cognitive decline starts 5.5 years earlier in AD patients with

epilepsy than in those without [7]. In a mouse model of AD, combined video and

electroecephalograpic (EEG) recordings revealed abundant non-convulsive seizures

characterized by cortical and hippocampal spikes and sharp waves [8]. Together

these lines of evidence indicate a strong association between the mechanisms of AD

and epilepsy, but one that may often be masked by the covert, non-convulsive nature

of seizures. Common mechanisms of epilepsy and dementia extend to other neu-

rodegenerative disorders as well. For example, Lewy body dementia (LBD) is the

second most frequent cause of dementia in the elderly and often co-exists with both
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sporadic and familial AD. LBD is characterized by EEG abnormalities, including

epileptiform activity, and can sometimes show an overlap of clinical phenotype with

epileptic seizures [9]. A better understanding of possible common neural mecha-

nisms underlying AD, LBD and TLEA is crucial for an efficient clinical management

of these conditions.

Many facts have been accumulated to support hypotheses that link the elevated

level of human amyloid precursor protein (hAPP) related 𝛽-amyloid (A𝛽) to

pre-clinical and clinical observations related to AD [5, 10]. The most significant

elements of a working hypothesis assume:

∙ A𝛽 alters hippocampal rhythmicity (sections “Modeling Hippocampal Rhythm

Generation and Control: A𝛽 Pathology” and“A𝛽 Overproduction and Hippocam

pal Network Dysfunction: Modeling the Age-Dependent Effects”).

∙ A𝛽 alters long term synaptic plasticity by several mechanisms, enhance long-term

depression (LTD) and impair long-term potentiation (LTP)) (section “Two-Way

Relationship Between Altered Synaptic Activity and Neuronal Dysfunction”)

∙ Elevated A𝛽 implies neuronal dysfunction resulting from an impaired balance

between positive and negative feedback loops in modulation of synaptic trans-

mission (section “Two-Way Relationship Between Altered Synaptic Activity and

Neuronal Dysfunction”).

∙ Non-convulsive, subclinical partial seizures worsen the memory and behavioral

symptoms in AD (section “Non-convulsive, Subclinical Partial Seizures Worsen

the Memory and Behavioral Symptoms in AD”).

∙ Antiepileptic drugs can reduce the deteriorating effects of epileptiform activity in

AD (section “Antiepileptic Drugs Can Reduce the Deteriorating Effects of Epilep-

tiform Activity in AD”).

Computational modeling is an appropriate tool to test the hypothesis. Figure 1

summarizes the big picture to explain the multiple and multilevel effects of A𝛽:

from altered synaptic plasticity via network dysfunction to cognitive deficit. The

figure contains three connected columns. The left column is about the relationship

between hippocampal structure and normal and pathological rhythms. Based on the

classical knowledge going back to Cajal on the morphology and trisynaptic circuit

of hippocampal formation a computational model has previously been constructed

to simulate the generation of gamma-related theta-frequency resonance and pharma-

cological control of the septo-hippocampal theta rhythm [11–13].

Several neuron populations are modeled using individual conductance-based cell

models. These biophysically realistic conductance-based single cell models corre-

spond to resistor-capacitor circuits with time and voltage-dependent parallel resis-

tors representing different types of experimentally verified channels in each cell type.

A previous study [12] demonstrated a correlation between the effects of experimen-

tal and computational manipulations on theta power. With the view that this model

is thus validated with respect to physiologically-relevant septo-hippocampal theta

rhythm generation, the single compartment models consisting of uniform channel

densities for hippocampal basket interneurons, horizontal oriens interneurons, and

GABAergic neurons of the medial septum are further used without modification.
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Fig. 1 Hypothetical causal chain to explain the multiple and multilevel effects of A𝛽: from

altered synaptic plasticity via network dysfunction to cognitive deficit. A skeleton network of

the hippcampal system generates gamma and theta rhythms. A𝛽 concentration-dependent altered

synaptic plasticity implies network dysfunction including epileptiform activity. This activity

contributes to cognitive deficit by positive feedback cellular mechanisms.

The multi-compartmental model of a CA1 pyramidal cell, capable of demonstrating

the many firing patterns of this neuron, is also used without change unless otherwise

specified.

The second column is about altered synaptic plasticity due to the effect of 𝛽-

amyloid. The starting point of the analysis is the three middle plots, demonstrating

the dual qualitative effects of elevated A𝛽, i.e. LTD facilitation and LTP impairment.

The bottom diagram shows a hypothetical relationship between A𝛽 concentration

and synaptic activity, the details will be discussed in section “Two-Way Relationship

Between Altered Synaptic Activity and Neuronal Dysfunction”. The top panel shows

a computational model of bidirectional plasticity [14]. In this paper we offer an exten-

sion of the model to take into account the multiple effects of A𝛽 to synaptic plasticity.

The third column displays two interconnected sub-processes. Pathologically ele-

vated A𝛽 and altered synaptic activity implies abnormal synchronized activity

exhibiting (maybe subclinical) epileptic seizures. We believe that no computational

models have addressed the problem of falsifying/supporting hypotheses on the causal

relationship between A𝛽-related synaptic depression and aberrant network activity.

There might be a two-way relationship between synaptic activity and network dys-

function. One main hypothesis to be tested assumes that A𝛽-induced increases in
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excitatory network activity lead to synaptic depression by a homeostatic plastic-
ity compensatory mechanism. (Homeostatic plasticity is interpreted as “staying the

same through change”). Homeostatic plasticity is a neural implementation of a feed-

back control strategy with the goal of stabilizing the firing rate by changing synap-

tic parameters such as receptor density and synaptic strength [15, 16]. Homeostatic

plasticity is supposed to compensate for the unstable features of Hebbian synapses.

Failure of this stabilizing mechanism may imply hyperactivity, hypersynchronization

and epileptiform activities. However, we leave this problem for another publication.

Altered network activity at least is correlated to cognitive deficit. The main working

hypothesis is that seizures amplify the process of AD progression by some posi-

tive feedback mechanisms involving A𝛽 deposition and cell death [2]: both pre- and

postsynaptic mechanisms provide the molecular bases for modeling of such kinds

of positive feedback mechanisms. The two bottom panels show results of memory

tests for mouse and human experiments. In a later phase of this project we will build

memory tests of neural networks into the computational platform to model normal

and impaired cognitive performance. Behavioral tests used to assess memory func-

tions in AD mouse models are indispensable for characterizing the degree and type

of memory deterioration [17]. Memory functions associated with different subre-

gions of the hippocampus, namely dentate gyrus, CA3 and CA1, were tested both

experimentally and by computational models. Different subregions may implement

different functions, such as spatial and temporal pattern separation, short-term or

working memory, pattern association, and temporal pattern completion [18]. These

domain-specific memory performance tests will be implemented and used.

Our big goal is to provide insight using the tools of computational neuroscience

on how cellular and synaptic level effects of A𝛽 accumulation translate across spatial

scales into network level changes in theta and gamma rhythms [19], and aberrant net-

work synchronization leading to cognitive deficits. Our multi-level model considers

the brain as a hierarchical dynamical system. To specify a dynamical system, charac-

teristic state variables and evolution equations governing the change of state must

be defined. The dynamic laws at the molecular level can be identified with chemical

kinetics, at the channel level with biophysical detailed equations for the membrane

potential, and at the synaptic and network levels with learning rules to describe the

dynamics of synaptic modifiability, see Table 1. Overall, our perspective on multi-

level hippocampal modeling is summarized here [20].

Modeling Hippocampal Rhythm Generation
and Control: A𝜷 Pathology

Skeleton Network Model

The skeleton network model (Fig. 2) of the hippocampal CA1 region and the septum

introduced in [12] consisted of five cell populations: pyramidal cell, basket cells, two

types of horizontal neurons and the septal 𝛾-Aminobutyric acidergic (GABAergic)

cells.
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Table 1 The brain as a hierarchical dynamical system. The possible state variables and dynamical

equations are shown for different levels in the hierarchy

Level Variables Equations

Molecule Chemical composition Reaction kinetics

Membrane Membrane potential Hodgkin–Huxley-type equations

Cellular Cellular activity Integrate-and-fire neurons

Synapse Synaptic efficacy Elementary learning rules (short term

and long term plasticity)

Network Synaptic weight matrix Hebbian and homeostatic learning

rules

Fig. 2 Structure of septo-hippocampal network model. Red symbols and black circles indicate

inhibitory populations and synapses, respectively; yellow symbols and open triangles indicate exci-

tatory populations and synapses. Representative connectivity specified quantitatively with diver-

gence numbers (blue) defining the number of cells in the target population that each cell in the

presynaptic population innervates. Each target cell was chosen from a uniform distribution over the

target population cells for each network instantiation. Similarly, convergence numbers (red) define

the number of presynaptic neurons innervating each cell in target population. Total simulated cell

numbers in each population are given in parentheses

Connections within and among cell populations were created by faithfully fol-

lowing the hippocampal structure. The main excitatory input to horizontal neu-

rons is provided by the pyramidal cells via alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) mediated synapses [21]. Synapses of the septally

projecting horizontal cells [22] and synapses of the other horizontal cell population,

the oriens-lacunosum moleculare (O-LM) cell population innervating distal apical



98 P. Érdi et al.

dendrites of pyramidal cells [23] are of the GABAA type synapses are taken into

account. O-LM neurons also innervate parvalbumin containing basket neurons [24].

Basket neurons innervate pyramidal cells at their somatic region and other basket

neurons [25] as well. Septal GABAergic cells innervate other septal GABAergic

cells and hippocampal interneurons [26, 27] (Fig. 2).

The above described model captures several elements of the complex structure

of the hippocampal CA1 and can be used to account for very precise interactions

within this region. However, when the focus of interest is instead on general phe-

nomena taking place during rhythm generation, modelers might settle for a simpler

architecture. In [11] we described gamma [28] related theta oscillation generation in

the CA3 region of the hippocampus. The architecture of the model is exceedingly

simplified: only an interneuron network is simulated in detail. This simplification,

however, allowed the authors to introduce an extrahippocampal input and study its

effect on rhythm generation. As a result, the model is able to account for basic phe-

nomena necessary for the generation of gamma related theta oscillation.

We plan to adapt, extend and combine our models of the hippocampal rhythm

generation for describing mechanisms not yet studied by computational models. The

extended version will be able to take into account aberrant changes in cellular

and synaptic morphology, intrinsic membrane and synaptic parameters to study the

causal chains between A𝛽 induced structural changes and pathological rhythms.

Recently, Scott et al. [29] observed an age-dependent reduction in the amplitude of

a slow oscillation in the extracellular electric potential of the hippocampus of mice

overexpressing A𝛽, as Fig. 3 shows. The goal of our computational model [30] was

to demonstrate how A𝛽 affects the ability of neurons in hippocampal networks to fire

Fig. 3 Age-dependent reduction in the amplitude of theta rhythm elicited by electrical stimulation

of the brainstem nucleus pontis oralis for transgenic mice (APP/PS1) exhibiting increasing A𝛽

plaque loads from 2 months to 8 months. No theta power reduction was observed in wildtype (WT)

mice, which do not exhibit A𝛽 plaques. Data from [29]
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in unison at theta frequencies to reduce the amplitude of theta rhythm. For the results

see section “A𝛽 Overproduction and Hippocampal Network Dysfunction: Modeling

the Age-Dependent Effects”, also in [31].

Two-Way Relationship Between Altered Synaptic Activity
and Neuronal Dysfunction

In a seminal paper entitled Synaptic Depression and Aberrant Excitatory Network
Activity in Alzheimer’s Disease: Two Faces of the Same Coin? [32] discusses the

intricate (presumably two-way) relationship between altered synaptic activity and

network dysfunction. Elevated A𝛽 implies neuronal dysfunction due to the conse-

quence of the impaired balance between positive and negative feedback loops in

modulation of synaptic transmission. Two main possibilities have been suggested:

(i) “...depression of excitatory synaptic activity could lead to network disinhibition, if

it affected inhibitory interneurons more than principal excitatory cells..”; (ii) “...A𝛽–

induced increases in excitatory network activity lead to synaptic depression through

homeostatic or compensatory mechanisms.”

As suggested by Palop and Mucke [5], A𝛽 might have a concentration-dependent

dual control effect on excitatory synapses: reduced efficacy of the presynaptic com-

ponent, presynaptic facilitation and postsynaptic depression appear for low, inter-

mediate and high A𝛽 concentrations, respectively. Since pathologically elevated A𝛽

impairs LTP and enhances LTD related to the partial block of N-Methyl-D-aspartate

(NMDA) receptors, it is assumed that small increases in postsynaptic calcium trigger

LTD, whereas large increases induce LTP [14, 33].

Non-convulsive, Subclinical Partial Seizures Worsen
the Memory and Behavioral Symptoms in AD

There is accumulating evidence [2, 5, 6, 34] that seizures in the cortico-hippocampal

systems might contribute to cognitive decline. Seizures in individuals with AD have

been described previously and by today there is a robust data-based foundation to

support clinical comorbidity. The question now is as it was formulated by [2]: “Two

Disorders or One?” Both mouse models and human data support the structural con-

nection between the two disorders. Impairment of inhibitory mechanisms (the phe-

nomenon called disinhibition) may destabilize network oscillatory activity at early

stages of the disease. Hyperexcitability and hypersynchrony in cellular and circuit

activities may imply subclinical seizures in the temporal lobe and aggravate mem-

ory loss, as it was identified in mouse models of AD. There is a remarkable regional

overlap in human AD and TLEA, and it looks to be a testable working hypothe-

sis that subconvulsive seizures due to plasticity within hippocampal circuitry con-
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tribute to the memory impairment of AD. Therefore, one might cautiously assume

that these animal models of AD may have temporal lobe epilepsy-like syndromes.

Similarities and differences between epilepsy and AD from studying mechanisms of

hyperexcitability and seizures have been analyzed by [6]. Seizures facilitate produc-

tion of A𝛽 and can cause impairments in cognition and behavior in both animals and

humans. There seems to be a correlative relationship between duration of epilepsy

and degree of impairments in episodic memory.

A recent review [35] on co-morbidity of AD and seizures hypothesizing common

pathological mechanism highlights that (i) clinical data from familial and sporadic

AD patients reveal increased seizure risk; (ii) many APP-linked AD mouse models

develop seizures and other EEG abnormalities; (iii) APP and/or APP-derived pep-

tides may link AD pathology to epileptiform activity; and (iv) epileptiform activity

in AD mouse models can be rescued independent of A𝛽 reduction.

Our longer term plan is to use a computational model to test possible mecha-

nisms, which suggest that high levels of A𝛽 imply aberrant (epileptiform) activity

and the failure of compensatory inhibitory responses contributes to the emergence

of cognitive deficits associated with AD.

Antiepileptic Drugs Can Reduce the Deteriorating Effects
of Epileptiform Activity in AD

There is also growing evidence suggesting that some antiepileptic drugs (such as

levetiracetam (LEV)) can reduce abnormally enhanced electrical activity, and slow

down or even reverse hippocampal synaptic dysfunction, and cognitive deficits in

hAPP mice, or even in human patients [36–38].

It seems to be convincing that perturbations of brain network activity are observed

in AD patients and aberrant network activity might contribute to AD-related cog-

nitive decline. Human APP transgenic mice simulate key aspects of AD, including

pathologically elevated levels of A𝛽 peptides in brain, aberrant neural network activ-

ity, remodeling of hippocampal circuits, synaptic deficits, and behavioral abnormal-

ities. Computational modeling seems to be an indispensable tool to study whether

there is any causal mechanism to connect these elements.

To explore whether A𝛽-induced aberrant network activity contributes to synaptic

and cognitive deficits, [38] treated patients with amnestic mild cognitive impairment

(aMCI; a condition in which memory impairment is greater than expected for a per-

son’s age and which greatly increases risk for Alzheimer’s dementia) with different

antiepileptic drugs. It was shown that very low doses of the drugs calm hyperac-

tivity in patients’ brain. Among the drugs tested, LEV effectively reduced abnor-

mal spike activity detected by electroencephalography. Chronic treatment with LEV

also reversed hippocampal remodeling, behavioral abnormalities, synaptic dysfunc-

tion, and deficits in learning and memory in hAPP mice. These findings support the

hypothesis that aberrant network activity contributes causally to synaptic and cog-
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nitive deficits in hAPP mice. Consequently, LEV might also help ameliorate related

abnormalities in people who have or are at risk for AD.

There are more and more recent studies [34, 35], which support the view that

some antiepileptic drugs also reverse memory deficits at least in aMCI patients,

adding further support to the hypothesis that neuronal network hyperactivity may

causally contribute to cognitive impairment in both aMCI and AD mouse models.

Dynamical system theory helps us to understand the neural mechanisms of tem-

poral and spatio-temporal neural activities. The discipline of computational neu-
ropharmacology [39] emerges as a new tool of drug discovery by constructing bio-

physically realistic mathematical models of neurological and psychiatric disorders.

Nowadays the term “Quantitative Systems Pharmacology” is used and defined as an

approach to translational medicine that combines experimental and computational

methods to apply new pharmacological concepts to the development of new drugs.

We have adapted methods of computational neuroscience to the emerging field

of computational neuropharmacology [12, 30, 39–46]. The computational frame-

work was developed for testing hypotheses related to pharmacotherapy of anxiety

and schizophrenia. Subsequently, based on a similar but extended model of septo-

hippocampal theta rhythm generation and control further preliminary results were

obtained related to AD [47]. Specifically, it was shown that reduced density of fast

sodium current channels in basket cells and oriens-lacunosum-moleculare interneu-

rons, a possible physiological effect of A𝛽, resulted in an increase in theta rhythm

amplitude in the 8–10 Hz range. Furthermore, distinct effects on single cell firing pat-

terns included a reduction of action potential amplitude in basket cells as reported

experimentally [48].

A𝜷 Effects on Synaptic Plasticity: Brief Summary
of the Experimental Background

It is well known that glutamatergic synaptic transmission is controlled by the num-

ber of active NMDA receptors (NMDARs) and AMPA receptors (AMPARs) at the

synapse. NMDAR activation has a central role, as it can induce either LTP or LTD,

depending on the intracellular calcium rise in dendritic spines. Activation of synaptic

NMDARs and large increases in calcium concentration are required for LTP, whereas

internalization of synaptic NMDARs, activation of perisynaptic NMDARs and lower

increases in intracellular calcium concentration are necessary for LTD. LTP induc-

tion implies recruitment of AMPARs and growth of dendritic spines, while LTD

induces spine shrinkage and synaptic loss.

The multiple effects of pathologically elevated A𝛽 on synaptic plasticity are being

studied [5, 49]. Generally speaking, it now seems to be accepted that A𝛽 impairs LTP

and enhances LTD. Most likely soluble oligomers rather than plaques are the major

cause of synaptic dysfunction and ultimately neurodegeneration [50], for a review

see [51].
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Fig. 4 Summary of A𝛽 effects on synaptic plasticity

The detailed mechanism underlying A𝛽-induced LTP and LTD modifications are

not fully understood. Computational models of normal bidirectional synaptic plas-

ticity could be supplemented with A𝛽-induced effects to elaborate on this ques-

tion. Both phenomenological and more detailed receptor-kinetic models (taking into

account receptor internalization, desensitization, etc.) should be studied. This paper

makes a step into this direction.

Figure 4 is the reproduction of Fig. 2 of [5]

Below is the list of stylized facts based on [5] to be explained by model studies

in a consistent way:

∙ A𝛽 suppresses basal excitatory synaptic transmission

∙ A𝛽 facilitates LTD after subthreshold LTD inductions

∙ A𝛽 occludes LTD
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∙ A𝛽 facilitates LTD by inducing activation of metabotropic glutamate receptors

(mGluRs) and NMDARs

∙ A𝛽-induced facilitation of mGluR-dependent LTD is suppressed by mGluR antag-

onists

∙ A𝛽-induced facilitation of NMDAR-dependent LTD is suppressed by NMDAR

antagonists

∙ A𝛽-induced LTP deficits depend on activation of LTD pathways. A𝛽 potently

inhibits LTP

∙ Blocking LTD-related signaling cascades with mGluR5 antagonists or an inhibitor

of p38 MAP prevents A𝛽 induced LTP impairment

Model Construction

We suggest here that the findings and hypotheses should be explained within the

framework of calcium dependent models of bidirectional synaptic plasticity [14].

Modeling Modulation of Synaptic Transmission by A𝜷

As Shankar and Walls [52] wrote: “How A𝛽 mediates its effects on synaptic plasticity

may take many years to fully understand. . . ”. It seems likely that A𝛽 influences the

feedback loop that controls neuronal excitability. Palop and Mucke [5], suggests that

reduced presynaptic efficacy, presynaptic facilitation and postsynaptic depression

may occur at small, intermediate, and large A𝛽 concentrations, respectively. An often

used simple implementation of the calcium control hypothesis [14, 53] is given by

Eq. 1:

dWi (t)
dt

= 𝜂([Ca2+ (t)])
(
𝛺([Ca2+ (t)]) − 𝜆Wi (t)

)
. (1)

Here Wi is the synaptic weight of synapse i, the value of the function 𝛺 depends

on calcium concentration, and determines both sign and magnitude of the change of

synaptic strength. 𝜂 is the learning rate, and also depends (typically monotonously

increasingly) on calcium concentration, 𝜆 is a decay constant. To complete the model

we need an equation which prescribes calcium dynamics. A simple assumption is

that the source of calcium depends on the NMDA current, as Eq. 3 defines:

d
[
Ca2+ (t)

]

dt
= I

NMDA
(t) − 1

𝜏
Ca

[
Ca2+ (t)

]
, (2)

where [Ca2+(t)] is the calcium concentration at the spine, I
NMDA

(t) is the NMDA

current, and 𝜏
Ca

is the decay time constant of calcium in the spine. The details of the
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calculation of the NMDA currents are given in [53] based on the assumption that

NMDARs are the primary sources of calcium.

I
NMDA

= P0GNMDA

[
I
f
𝜃 (t) e

−t
𝜏f + I

s
𝜃 (t) e

−t
𝜏s

]
H (V) (3)

where I
f

and I
s

are the relative magnitude of the slow and fast component of the

NMDAR current. I
f

+ I
s

= 1 is assumed. H(V) is the general form of the voltage

dependence. 𝜃 = 0 if t < 0 and 𝜃 = 1 if t ≥ 0. P0 is the fraction of NMDARs in the

closed state, and set to be 0.5.
The functional form selected for 𝛺 function is based on experimental data of [54]

(for the underlying mathematical details see also Supporting Information of [14]) and

given as

𝛺

([
Ca2+ (t)

])
= e𝛽2([Ca2+(t)]−𝛼2)

1 + e𝛽2([Ca2+(t)]−𝛼2)
− 𝛾

e𝛽1([Ca2+(t)]−𝛼1)

1 + e𝛽1([Ca2+(t)]−𝛼1)
+ 𝛾 (4)

The function is visualized with the blue line of Fig. 5.

Construction of 𝜴 Function to Implement A𝜷 Effects

The 𝛺 function (Fig. 5) plays a crucial role in the calcium control hypothesis, and

determines the behavior of the synaptic weight at different calcium concentration.

Essentially, the shape of the 𝛺 function determines when LTP or LTD occurs. This

implies that abnormal synaptic plasticity can be modeled by modifying the 𝛺 func-

tion in Eq. 1.

A new 𝛺 function was constructed to incorporate the effect of A𝛽. As reviewed

in [5] A𝛽 affects only the LTD-related pathways and yet besides strenghtening LTD

it also impairs LTP. In the original paper by Shouval et al. [14] the 𝛺 function con-

tains two terms in which LTP and LTD processes are phenomenologically described

in a mixed form. This way the selective effect of A𝛽 on LTD-related pathways can

not be incorporated. Moreover, as reviewed in [55] LTP and LTD processes uti-

lize partially separate molecular pathways. According to these findings the new 𝛺

function assumes competition of LTP and LTD processes. In Eq. 5 𝛺
LTP

describes

the onset of LTP as a sigmoid function with threshold set at 𝛼3. In contrast to 𝛺
LTP

,

𝛺
LTD

consists of two sigmoid functions capturing the onset and the offset of the LTD

process. Here the threshold parameters are functions of A𝛽 concentration. These two

processes supposed to be equal in strength providing the possibility to cancel each

other, which is one possible way to eliminate LTP in the model according to the

findings reviewed in [5]. The two processes are balanced but not weighted equally,

a synapse can be potentiated three times stronger than its basal level but can only

be weakened to zero. To achieve this weighting in the normalized synaptic process

model a sigmoid function is composed with the two competing processes with the

ability to set the basal synaptic strength level arbitrarily.
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𝛺
new

([Ca2+ (t)],A𝛽) = e𝛽(k1𝛺LTP
−k2𝛺LTD

)−𝜖

1 + e𝛽(k1𝛺LTP
−k2𝛺LTD

)−𝜖

𝛺
LTP

([Ca2+ (t)]) = e𝛽3([Ca2+(t)]−𝛼3)

1 + e𝛽3([Ca2+(t)]−𝛼3)

𝛺
LTD

([Ca2+ (t)],A𝛽) = e𝛽1([Ca2+(t)]−𝛼1(A𝛽))

1 + e𝛽1([Ca2+(t)]−𝛼1(A𝛽))
− e𝛽2([Ca2+(t)]−𝛼2(A𝛽))

1 + e𝛽2([Ca2+(t)]−𝛼2(A𝛽))
(5)

In section “Altered Synaptic Plasticity” it will be shown that by using the con-

structed new 𝛺 function the simulation results are in accordance with the experi-

mental data on altered synaptic plasticity. In section “Biophysical Backgrounds of

the Effects of A𝛽 on 𝛺 Function” some explanation is given for the kinetic basis of

altered synaptic plasticity.

Simulation Results

A𝜷 Overproduction and Hippocampal Network Dysfunction:
Modeling the Age-Dependent Effects

The simulations described here investigate possible mechanisms behind the exper-

imentally observed age-dependent reduction in theta rhythm power in A𝛽-over-

producing transgenic mice (Fig. 3).

A𝜷 Pathology Initially Decreases Hippocampal Theta Power
with Subsequent frequency Reduction and Power Normalization

Age-dependent neurophysiological effects on both cellular and network levels

observed in mice models of amyloid pathology approximately between the ages of

2 and 8 months were incorporated to describe what may determine age-dependent

reduction of elicited theta power. These age-dependent changes appear in sodium

conductance, and in the number and connectivity of O-LM cells (Table 2). Reduc-

tion in theta power and eventual reduction in theta frequency (each determined from

a power spectrum) were observed when these progressive effects were applied to the

computational model (Fig. 6).

Pyramidal Cells Exhibit Reduced Population Synchrony Dependent
on Cellular Events

The initially declining local field potential (LFP) theta power suggests further inves-

tigation of whether reduced temporal coordination amongst the cells or fewer active

cells participating in the rhythm occurs. Since the source of LFP patterns is thought
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Table 2 Simulation of progressive neurophysiological changes observed in A𝛽 overproducing

mice. These represent approximate parameter changes corresponding to age [56–58] in the neural

network model

Simulated age

(mo.)

KDR, gmax (%
increase)

Na, gmax(%
increase)

No. of OLM cells

(% loss)

Divergence,

OLM cells (%
increase)

2 100 0 0 0

4 100 0 40 33.33

6 100 50 50 50

8 100 50 60 75

Fig. 5 The𝛺 (blue) and𝛺new (black and red) functions are plotted against the intracellular calcium

concentration.𝛺new with a pathological parameter set decreases the LTD threshold and impairs LTP

by weakening the LTP strength

to be synaptic activity acting along pyramidal cells, the population-level spike tim-

ing of pyramidal cells can provide clues as to the source of theta rhythm attenuation

observed in Fig. 6, and can be observed in this computational model. The correla-

tion amongst spike times in pyramidal cells was reduced by the incorporated cellular

effects of A𝛽 accumulation in addition to theta power changes in the local field poten-

tial, pointing toward alterations in mutual spike timing regulation mechanisms in the

network model (Fig. 7).

Average zero time-lag cross-correlations using a synchrony time window of 10 ms

for each pair of spike trains in pyramidal cells revealed a significant reduction in this

measure of coherence across the simulated mice groups (Fig. 8).
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Fig. 6 Synthetic local field potential power spectra time course due to integrated age-dependent

neurophysiological effects. Progressive reduction in power of theta rhythm at about 4 Hz for 2-

and 4-month old simulated transgenic mice networks is followed by reduction in peak frequency to

below 4 Hz accompanied by subsequent increase in power for 6- and 8-month old mice simulated

transgenic networks. Error bars denote standard error of the mean

Pyramidal Cells Exhibit Increased Spiking Period Variability

To investigate the loss of correlation amongst action potential timings at theta fre-

quency caused by amyloid pathology effects, the time intervals between spikes of

individual neurons were analyzed for variability using a Poincaré plot. This plot

relates each spike period to its preceding period for all pyramidal cells in representa-

tive network instantiations, revealing greater variation around the line-of-identity

when amyloid pathology induced effects were implemented, suggesting spiking

variability occurs primarily on the time-scale of consecutive pyramidal cell spikes

(Fig. 9).

Pyramidal Cells Exhibit Altered Resonance Properties Dependent
on Cellular Events

Since the intrinsic cell property of resonance or frequency preference can con-

tribute to spike timing of individual cells in a rhythmic network [59], we tested res-

onance properties of the pyramidal cell model after cellular alterations correspond-

ing to Table 2. This was performed at a range of transmembrane potentials seen in

wildtype-network simulations, since resonance in pyramidal cells has been shown

to be voltage-dependent [60]. Injecting a ZAP current into these model cells, we
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Fig. 7 Subthreshold membrane potential response of WT pyramidal cell model (upper left) during

ZAP current stimulus with a DC component of 0 A and an AC amplitude of 10 pA, varying lin-

early in frequency from 0 to 20 Hz over 10 s (both left and right lower panel, reproduced twice for

clarity). This stimulus was chosen such that the response matched the range of membrane poten-

tials exhibited by the model cell in the full theta-generating network (centered around –60 mV).

The same stimulus was provided to model simulating ion channel expression modifications (top
right) corresponding to changes observed in mouse models overproducing A𝛽, exhibiting a weaker

response at theta frequency stimuli around 6 Hz (at 3 s) relative to other frequencies, in addition to

exhibiting an overall hyperpolarized response, both of which potentially contribute to theta rhythm

attenuation in the full network

found a lowering of response to theta frequencies of the stimulus in cell models with

potassium channel gain and sodium channel loss (Fig. 7). This reduction in frequency

preference could contribute to loss of rhythmicity in spikes in pyramidal cells in the

context of the oscillating network, and the lower baseline response at all frequen-

cies after sodium channel loss could contribute to the reduction in frequency of the

network (Fig. 7). These results suggest cellular events in pyramidal cells that affect

sodium and potassium channel expression in early Alzheimer’s disease mouse mod-

els may contribute to the early reduction in theta rhythm observed experimentally as

in (Figs. 3, 5 and 10).

Altered Synaptic Plasticity

The constructed function 𝛺new alters synaptic plasticity. This is done by simply

replacing 𝛺 in Eq. 4 with 𝛺new in Eq. 5. LTP and LTD in Eq. 5 are interpreted as

activity of each process. In Eq. 5, 𝛼1,2,3 characterize calcium concentration when



Connecting Epilepsy and Alzheimer’s Disease: Modeling of Normal . . . 109

LTP and LTD processes are active. LTD process is active when the intracellular cal-

cium concentration is between 𝛼1 and 𝛼2. When the calcium concentration is higher

than 𝛼3, LTP process is active. k1,2 is activity coefficient for LTP and LTD respec-

tively. If LTD process were blocked entirely, k2 would become zero. 𝛽 and 𝛽1,2,3
determine the steepness of the sigmoid functions. 𝜖 is related to the initial synap-

tic strength. Note that there are only 5 parameters in Eq. 4: 𝛼
′
1,2, 𝛽

′
1,2 and 𝛾

′
. We

refer to them using primed letters to distinguish them from parameters of 𝛺new.

For 𝛺new, however, there are 10 parameters: 𝛼1,2,3, 𝛽1,2,3, k1,2, 𝛽, and 𝜖. We can

construct the parameter set which exhibits normal synaptic behavior by choosing

𝛼
′
1 = 𝛼1, 𝛼

′
2,3 = 𝛼2, 𝛽

′
1,2,3 = 𝛽1,2, and 𝜖 = log( 1

𝛾
′ − 1). The next step is to find a para-

meter set that exhibits the pathological synaptic plasticity. The pathological parame-

ter set should produce results which correspond to the stylized facts summarized in

the section “A𝛽 Effects on Synaptic Plasticity: Brief Summary of the Experimen-

tal Background”. The A𝛽-induced basal synaptic depression can be modeled by

decreasing 𝜖. To enhance the LTD, 𝛼1 is decreased and 𝛼2 is increased. This change

widens the region of the calcium level in which LTD occurs. The simulation results

for both normal and pathological cases are shown in Figs. 11, 12, 13 and 14. A𝛽
facilitates LTD after a subthreshold LTD induction (Fig. 11). Figure 12 illustrates

LTD for both normal and pathological cases. The pathological parameter set exhibits

stronger LTD than the normal one. When the activity coefficient for the LTD process

is small, LTD disappears even if LTD is induced. Figure 14 illustrates LTP for both

normal and pathological cases. The induced LTP for the pathological parameter set

is clearly impaired compared to the normal parameter set. If LTD-related pathways

were blocked, LTP would be no longer impaired. Again, the key idea of 𝛺new is a

Fig. 8 Top panel represents

firing raster plots of the

pyramidal cell population in

wildtype simulations, and

bottom panel shows firing for

8 month effects exhibiting

reduced synchrony. Time

windows in which two spikes

are considered synchronous

was 10 ms. Significantly

lower coherence was

observed across all simulated

transgenic mice group in

comparison to wildtype

simulations (ANOVA, F4,35

= 3.72, p = 0.0127, not

showed here)
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competition between the LTD and LTP processes. A𝛽 enhances the LTD but not the

LTP process, leading to an impairment of the LTP. Blocking the LTD pathways may

remove the LTP impairment.

Biophysical Backgrounds of the Effects of A𝜷 on 𝜴 Function

Kinetic Models: Some Remarks

Many kinetic models have been constructed to explain the molecular mechanisms

behind bidirectional synaptic plasticity. Since there are many (the order of magni-

Fig. 9 Greater variation

perpendicular to the line of

identity representing greater

consecutive period variation

was observed in addition

longer interspike intervals

when effects of A𝛽 at the 8
month stage are

implemented (lower) than in

the baseline network

(upper). Axes of ellipses

represent standard deviation

in each direction. Points

represent spike intervals of

eight pyramidal cells in

individual representative

random network trials
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Fig. 10 The learning rate function 𝜂 in Eq. 1 is plotted against the intracellular calcium concen-

tration

Fig. 11 Subthreshold LTD induction produces no change in the weight when 𝛺new with a normal

parameter set replaced 𝛺 in Eq. 1; however, it induced LTD for 𝛺new with a pathological parameter

set

tude is about hundred) molecules involved in the biochemical pathways of synaptic

plasticity, a huge number of mathematical models have been suggested (for reviews,

see [61–63]). A subset of these models explain bidirectionality.

In [64] both a phenomenological kinetic model and a biophysical (but simplified)

model of the phosphorylation cycle were given to derive the functional form of the

𝛺 function. The phenomenological model is based on the insertion/removal of post-

synaptic AMPARs. Both models paved the road towards the understanding of the
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Fig. 12 LTD induction protocol properly induced LTD for 𝛺new with a normal and pathological

parameter set

Fig. 13 LTD induction protocol properly induced LTD for 𝛺new with a normal and pathological

parameter set. Block of the LTD process (k = 0.01) properly prevented the LTD induction

molecular basis of the calcium control hypothesis, but did not give a full descrip-

tion.

In our own studies we specifically chose to use three kinetic models with increas-

ing complexity studied by [65]. These models have been constructed to grasp the

requirements of calcium-induced bidirectional synaptic plasticity. The models use

a signal molecule S∗ (the Ca
2+

/calmodulin complex), which activates two different

pathways to control the production of either the active conformation R∗
or the inac-
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Fig. 14 LTP was induced for 𝛺new with a normal and pathological parameter set. LTP was

observed for the normal, and the LTP was impaired for the pathological case. The LTP was once

again observed when the LTD process was blocked

tive conformation R of a response molecule, respectively. The two pathways can be

identified as the phosphorylation and dephosphorylation pathways associated with

potentiation and depression of the AMPAR activity, respectively.

Kinetic Modeling of Normal and Pathological 𝜴 Function

Figure 15 shows the three kinetic models with increasing complexity (from [65]).

The Model I and II consist of an activator A and an inhibitor I which are modulated

by a signal molecule S*. If the activation and inactivation of a response molecule

Fig. 15 d’Alcantara’s kinetic model of phosphorylation
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Fig. 16 A steady state solution of AMPAR concentration in the Model III from [65] is plotted
against calcium concentration. The 𝛺 function can be obtained by scaling the R∗ curve

R were regulated through independent pathways (Model I), the system would be

biphasic [65]. The concentration of the response molecule in an active conformation

would be modeled by a sigmoid function. If the stimulation were regulated through

interdependent pathways (Model II), the system would exhibit a U-shaped biphasic

response [65].

The Model III in Fig. 15 is an extension of Model II, and would also exhibit a

U-shaped response (Fig. 16). Assuming that the binding of Ca2+ to calmodulin is

always at equilibrium, the stationary solution of the system can be calculated. See

[65] for the details. We may construct the 𝛺 function by scaling the R∗
curve in

Fig. 16. The 𝛺 function constructed by this process is comparable to the 𝛺 func-

tion in Eq. 5. Remember that the 𝛺 function in Eq. 5 assumes the competition of

LTP and LTD activity. In the current model, the phosphorylation and dephosphory-

lation pathways regulate the potentiation of AMPAR activity. It is noteworthy that

the interpretation of the 𝛺 function in Eq. 5 is consistent, and the current kinetic

model produces a curve similar to the 𝛺 function.

A𝛽 impairs the LTP and enhances LTD while it affects only LTD-related path-

ways. There are essentially 9 kinetic parameters to solve for a steady-state solution

of the Model III: Kd, nH , k1∕k2, k3∕k4, r1∕r2, r3∕r4, n2∕n1, d1∕d2, and p1∕p2. Out

of these 9 parameters, r1∕r2, r3∕r4, n2∕n1, d1∕d2, and p1∕p2 are relevant parameters

for dephosphorylation. To ease computation, we have only focused on r3∕r4, n2∕n1,

and p1∕p2 to implement the effect of A𝛽. We may strengthen the depression of the

AMPAR activity by decreasing r3∕r4 and n2∕n1, and increasing p1∕p2. Figure 17

shows the R∗
against calcium concentration for the normal and pathological cases.



Connecting Epilepsy and Alzheimer’s Disease: Modeling of Normal . . . 115

Fig. 17 Decreasing r3∕r4 widens the region of LTD, and impairs LTP strength. (This does not

explain the subthreshold LTD induction). Increasing p1∕p2 achieves the subthreshold LTD induc-

tion

The parameters for the pathological R∗
are optimized so that the 𝛺 function should

achieve certain features (1) decrease in the LTD threshold (2) impairment of LTP.

The optimized parameter set does not only achieve these features, but also increase

the LTD strength. The depression of the AMPAR activity with the pathological para-

meter set is greater than that with the normal set. This is not originally considered in

the 𝛺 function in Eq. 5; however, it agrees with the stylized facts because it enhances

LTD.

Further Plans

This chapter constitutes the first step toward the implementation of the proposal

sketched in section “General Remarks”. We have a plan to build a two-stage model.

First, the model should connect synaptic events to altered network dynamics.

Computational simulations will support the existence of a causal relationship
between two A𝛽 induced phenomena, namely (1) reduced excitatory transmission

and plasticity at the synaptic level; (2) epileptiform activity at the network level.

According to our best knowledge, no computational models have addressed the prob-

lem of falsify/support hypotheses on the causal relationship between synaptic depres-

sion and aberrant network activity. One main hypothesis to be tested assumes that

A𝛽-induced increases in excitatory network activity lead to synaptic depression by a

homeostatic plasticity compensatory mechanism. (Homeostatic plasticity is inter-

preted as “staying the same through change"). Homeostatic plasticity is a neural
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implementation of a feedback control strategy with the goal of stabilizing the firing

rate by changing such synaptic parameters as receptor density and synaptic strength

[15, 16]. Homeostatic plasticity is supposed to compensate for the unstable features

of Hebbian synapses. Failure of this stabilizing mechanism may imply hyperactivity,

hypersynchronization and epileptiform activities.

Second, the model should be extended to explain the transition from altered net-

work activity to cognitive deficit. The main working hypothesis of this second stage

is that seizures amplify the process of AD progression by some positive feedback

mechanisms involving A𝛽 deposition and cell death [2]: both pre- and postsynap-

tic mechanisms provide the molecular bases for modeling of such kinds of positive

feedback mechanisms.

Messages for Neurologists and Computer Scientists

A significant amount of data and hypotheses about the neural mechanisms of the

interaction of these diseases have been accumulated. Computational models have

proved to be efficient tools to test working hypotheses about normal and pathological

neural mechanisms. Such kinds of models offer an integrative perspective to organize

scattered data obtained by methods of anatomy, electrophysiology, brain imaging,

neurochemistry, behavioral studies, etc. into a coherent picture.

Our specific message for neurologists is that computational platform under devel-

opment constitutes an appropriate tool to test the hypotheses related to the potential

mechanisms and multiple effects of elevated levels of human amyloid precursor
protein related 𝛽-amyloid (A𝛽) [5, 10].

The main specific message for computer (better saying computational) scientists

is that combining different neural models, such as compartmental techniques, phe-

nomenological and biophysically detailed descriptions of synaptic plasticity includ-

ing biochemical kinetic models, network models of synchronized activity, memory

models will undoubtedly help uncovering the hidden links between epilepsy and

Alzheimers Disease.
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Professor.
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Dynamic Causal Modelling of Dynamic
Dysfunction in NMDA-Receptor Antibody
Encephalitis

Richard E. Rosch, Gerald Cooray and Karl J. Friston

Introduction

The invention of electroencephalography (EEG) in the early 20th century facilitated
a revolutionary insight into the dynamic behaviour of the human brain. For the first
time, clinicians and researchers were able to examine direct evidence of brain
function, in both normal human participants and patients with neurological con-
ditions [36]. Clinically this new way of assessing brain function has had significant
impact on our understanding of a number of neurological and psychiatric condi-
tions, but none more so than epileptic seizure disorders.

Epilepsy is the label given to a number of heterogeneous conditions charac-
terised by an enduring risk of epileptic seizures—because of their heterogeneity,
these conditions are now often referred to as ‘the epilepsies’ [51]. The term epileptic
seizure describes the transient occurrence of signs and symptoms caused by
abnormally excessive or synchronous activity in the brain [17]. Whilst the concept
that abnormal electrical activity causes epileptic seizures predates the invention of
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EEG, much of our current physiological understanding and clinical decision
making is based on EEG recordings from patients suffering from epilepsy [16].

Descriptions and analyses of EEG recordings have remained virtually unchanged
since its conception. Its clinical use largely rests on the description of visually
recognisable features and their phenomenological categorisation, with the exception
of some recently adopted advanced source localisation algorithms [63]. But relying
just on these visually apparent pathological patterns does not capture the entire
breadth of information that is available in an EEG recording.

One of the main advantages of EEG (which it shares with magnetoen-
cephalography, MEG) over other methods assessing brain function is its temporal
resolution, which still remains unparalleled when it comes to investigating the
human brain in vivo. This results in rich datasets, which capture interacting fluc-
tuations of electric activity across frequencies that may be two or three orders of
magnitude apart. Whilst surface EEG recorded non-invasively from the scalp has a
limited spatial resolution, it does allow for the simultaneous recording of neuronal
activity across almost the entirety of the cortical surface. Furthermore, the spatial
resolution limitations have been addressed by developing invasive EEG recording
devices that can be implanted neurosurgically where a better understanding of the
spatial origins of an EEG signal are deemed clinically necessary.

Much of the information contained within these datasets is not accessible
through visual inspection alone, but rather needs to be elicited utilising more
quantitative analysis methods [59]. Applying such quantitative analysis methods
has led to the description of a wide variety of novel electrophysiological findings.
For example, analysing the correlation between the time series of individual EEG
channels will yield a matrix of channel-to-channel correlation measures. These can
be read as indicators of functional connectivity, with the results interpreted in a
graph theory framework as functional network; analysis [5]. Another example can
be found in the recent emergence of cross-frequency coupling as a potentially
important mechanism for neuronal computation: Quantitative analysis of power at
different EEG frequencies in humans has shown that amplitude fluctuations are
measurably modulated and time locked to the phase of concurrent slower frequency
oscillation, known as phase-amplitude cross-frequency coupling [6].

At the same time as advances in the detailed quantitative analysis of macroscopic
EEG signals in health and disease, there has been an exponential increase in our
understanding of the molecular, and to some extend cellular basis of many of the
epilepsies [30, 58]. Increasingly, knowledge of associated molecular abnormalities,
such as the presence of relevant gene mutations or specific autoantibodies against
synaptic targets, influences prognosis, clinical management and specific treatment
decisions for patients with epilepsy.

Features of these disease-associated molecular abnormalities have also lead to a
putative understanding of the pathophysiological mechanisms underlying different
epileptic seizure disorders. For example, the frequency of mutations in ion channel
genes has led to the concept of epilepsies and other paroxysmal neurological dis-
orders being channelopathies, i.e. disorders in neuronal ion channel function [56],
which can be further investigated in appropriate animal model systems.
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However, with the increase in knowledge, new challenges arise. The availability
and increased clinical use of testing for specific mutation and autoantibodies has
quickly led to the realisation that even apparently specific molecular abnormalities
are associated with a wide variety of disease pictures in human patients. The same
mutation in the voltage gated sodium channel gene SCN1A for example, can cause a
diverse selection of phenotypes within the same family: ranging from compara-
tively mild phenotypes consisting of childhood febrile seizures, to a severe epileptic
disorder characterised by difficult to control frequent daily seizures associated with
global developmental delay [46]. Similarly, mutations in the GRIN2A gene, coding
for a subunit of the N-methyl-D-aspartate receptor (NMDAR), can cause a range of
electroclinical syndromes, even within the same family [40].

This opens an explanatory gap: On one side there is an increased understanding
of the putative molecular and cellular causes of dynamic disorders of the brain; on
the other there are macroscale measures of abnormal brain function that, whilst
loosely associated with some microscale abnormalities, do not allow a direct
one-to-one mapping. Bridging this gap is likely to require an intermediate step—a
conceptual bridge that can link information about molecular dysfunction with its
expression in neuronal function at an intermediate level, the mesoscale, in order to
understand the emergence of phenotypic variability observed in human patients.

In other fields within neuroscience, this approach is emerging as a necessary step
for linking observations at the microscale (e.g. cellular neuronal circuits) with the
observations at the macroscale (e.g. organism behaviour). Whilst descriptions of the
cellular circuitry may include too many particular details to understand their
functional contributions to the overall behaviour, evaluating only a behaviour in the
whole organism may not sufficiently represent the complexity of the underlying
neuronal processes. Bridging this gap requires the identification recurrent themes at
an intermediate functional level, such as neuronal computations, which may be
implemented through differing neuronal circuits, but produce similar effects [7].

In the context of clinical neurology, a similar approach would suggest that in
order to link putative molecular causes (microscale) with diverse disease pheno-
types observed in patients (macroscale), we need to consider the intermediate step:
Dysfunction at the level of neuronal computations (mesoscale, Fig. 1). Linking
molecular abnormalities to in vivo neuronal dysfunction is now a standard com-
ponent of identifying disease mechanisms in emerging genetics and autoimmune
conditions [50]. Attempts in relating macroscale findings to models of mesoscale
neuronal dynamics have been less forthcoming, and will be the focus here.

This chapter will discuss the use of computational models of neuronal circuit
function to link abnormalities in clinical neurophysiological measurements to
pathophysiological mechanisms. An introduction of population models of neuronal
function will be followed by an in-depth discussion of how such models can be
used to make inference on the mechanism underlying specific electrophysiological
changes. This approach will then be illustrated using an exemplar clinical case with
a known underlying molecular diagnosis of NMDAR antibody encephalitis.
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The Scientific Problem

The functional validation of possible molecular causes of neurological diseases is
an essential step in any description of new pathophysiological mechanisms. In order
to increase confidence that a genetic mutation that is epidemiologically linked with
a specific phenotype could actually play a causative role in the disease, some
evidence that this can have an effect on neuronal function is considered a standard
requirement [53].

Fig. 1 Understanding epileptic dynamics at different scales: Different lines of evidence lead to
descriptions of pathology on different scales. Clinical syndromes often rely on the description of
recognisable phenotype at the macroscale. Recent advances in understanding associated molecular
abnormalities have improved our pathophysiological understanding of many diverse epilepsies,
but robustly linking clinical phenotypes with microscale abnormalities has proven difficult.
Including an intermediate consideration of network dynamics may aid both prediction, and allow
for addressing the inverse problem of inferring pathophysiology from whole-brain electrophys-
iological measurements
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This approach usually relies on replicating the molecular abnormality in a model
organism or system and evaluating the model for any resultant deficits, particularly
in regards to neuronal function. For example, to provide evidence for the direct
pathogenicity of NMDAR antibodies in the recently described NMDAR-antibody
associated encephalitis [10], the antibody-rich patient cerebrospinal fluid was
applied to murine hippocampal slices prepared for voltage-clamp recordings in
order to measure the effects of antibody exposure on glutamate transmission. This
provided evidence both for acute antagonism of the NMDAR by the antibody, as
well as chronic reduction of NMDAR associated with antibody exposure [33].

Whilst this approach is powerful, and necessary in order to evaluate candidate
molecular causes of neurological disorders in the context of neuronal function,
several problems remain unsolved when relying on this approach alone:

• Animal models for human disease: Model systems used to assess the patho-
logical effects of molecular abnormalities are usually non-human organisms or
tissues, leaving uncertainty as to whether similar effects would be evident in the
human brain.

• Emergent properties at different scales: There may be a gap between indi-
vidual cell and small circuit abnormalities assessable in an experimental model
system, and the inference drawn on larger networks and systems. These models
are particularly prone to neglecting emergent properties at different scales (e.g.
bistability of a network), and the effects of unknown modulators in the whole
system that may enhance or suppress the observed microscale abnormality

• Human phenotypic variability: An unexpected result of the recent increase in
molecular diagnoses in neurology is the discovery of large phenotypic vari-
ability even where a molecular cause has been identified and well characterized
[31]. Functional investigations in homogeneous model systems do not address
the mechanisms underlying phenotypic diversity.

Issues of disease pathology in humans, understanding whole-organism, and
delineating relevant categories within phenotypically diverse groups are essential
for translating basic neuroscientific findings into clinically relevant advances. In
order to start addressing these issues, the inverse problem has to be addressed: How
do macroscale abnormalities relate to underlying pathophysiology?

The EEG signal, despite containing a lot of rich information, is a poor measure
of neuronal function at the cellular, or synaptic level: because of the spatial inac-
curacies and the summation of many million individual neurons’ activity into a
composite signal, there are an infinite number of possible neuronal constellations
that could cause the same measureable EEG signatures. Attempting to relate this
composite, diffuse signal to underlying neuronal dysfunction is thus an ill-posed
problem, where no unique solution exists.

Ill-posed problems are common in neuroscience, both in terms of problems
researchers encounter when investigating nervous systems (e.g. the source local-
ization problem for EEG signals, [21]), and problems that nervous systems
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themselves have to address (e.g. the feature binding problem, [42]). These problems
are not impossible to solve, as is evident in the successful application of
source-reconstruction algorithms in identifying epileptogenic brain areas for sur-
gery [39], and the brain’s successful and reliable decoding of visual information
[37].

With underdetermined ill-posed problems, providing constraints to the possible
solutions is crucial [20]. Constraining the problem reduces the space of possible
solutions and makes the problem more tractable. These constraints also help in
keeping inverse solutions more interpretable and relevant to the scientific question
at hand.

One way to constrain such inverse problems in neuroscience is the use of
computational models of neuronal populations as a mesoscale representation of
neuronal dynamics. This casts the inverse problem of attempting to infer microscale
causes of macroscopic phenomena into a more restricted problem: Assuming basic
mechanisms of neuronal function and organization are met (i.e. the neuronal model
applies), which setup of the known circuitry could produce an observed effect (i.e.
which specific set of model parameters can produce the observed macroscale
response?)

In the following, we will use advanced computational methods to address this
problem, inferring underlying neuronal circuitry abnormalities from clinical EEG
recordings of a patient with a known molecular abnormality: Specifically we will
use mesoscale neuronal modelling to assess what synaptic abnormalities underlie
paroxysmal EEG abnormalities in a paediatric patient with NMDAR antibody
encephalitis.

NMDAR antibody encephalitis is a recently described autoimmune encephalitis
[10], i.e. an inflammatory condition of the brain associated with, and most likely
caused by, autoantibodies against molecular targets relevant for synaptic function.
EEG abnormalities are commonly associated with the condition and have some
diagnostic value [25], but are very varied between patients [18] and evolve over
time [49]. In paediatric patients the common abnormalities described include
non-specific sharp wave paroxysms, longer runs of rhythmic activity and more
clearly epileptic spike and wave discharges (see Fig. 2 for examples from our own
clinical cohort).

In the following sections we will discuss mesoscale models of neuronal function
and how they can be used to explain observed EEG phenomena by constraining the
inverse problem. We will then highlight a specific computational approach—
dynamic causal modelling (DCM)—and apply the method to EEG abnormalities
observed in one NMDAR antibody encephalitis patient. We will then discuss our
results in terms of their relation to other findings regarding the pathophysiology in
NMDAR, as well as further implications for computational methods in the age of
exponential discovery of candidate molecular mechanisms in neurology.
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Computational Methods

In this section we will discuss how computational models of neuronal function can
be used to make inference on causative mechanisms underlying phenomena
observed in human EEG recordings. This will be done in three parts—the first will
give a short overview of generative models of neuronal function and different
approaches to linking them to empirical data. In the second part we will introduce
the approach applied to our empirical case—namely dynamic causal modelling—in
a little more detail. And in the concluding part of this section we will illustrate how
dynamic causal modelling can be used to fit a generative neuronal model to
empirical EEG data and make inference on underlying mechanisms using an
illustrative case of NMDAR encephalitis.

Generative Models of Neuronal Population Activity

Neuronal systems are highly nonlinear coupled systems [61]. This means that
predicting input-output relationships is challenging and often counterintuitive. One
of the great strengths of computational models is that they can be used to explore
input-output relationships systematically and help in identifying some of the
unexpected effects produced by nonlinear interactions.

Fig. 2 EEG abnormalities observed in paediatric patients with NMDAR antibodies: The figure
collates three different EEG findings from separate paediatric NMDAR antibody encephalitis
patients. Abnormalities range from non-specific sharp wave paroxysms (left panel), to rhythmic
activity with or without impairment of consciousness (middle panel) to clearly epileptic
spike-wave activity (right panel)
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The pioneering work by Hodgkin and Huxley [32] produced one of the first such
computational models, and by some measures the most successful one developed so
far. Using empirical voltage clamp measurements from the giant squid axon, they
elegantly developed a model of neuronal membrane dynamics based entirely on
voltage dependent ion channels, that could predict many patterns of neuronal
behaviour observed empirically.

Since then, models are being developed on a multitude of different neuronal
scales, ranging from subcellular compartment dynamic models, to models
describing the output of whole neuronal populations. Because of the spatial scales
of measurement, those models that represent whole neuronal populations are par-
ticularly informative when relating them to EEG measurements.

One of the earliest such models was the Wilson and Cowan neural mass model
[62]—they describe the behaviour of a whole set of interconnected neurons not
individually but as whole aggregates, based on similar approaches in particle
physics. They also provide a justification for this method based, interestingly, not
just in its computational tractability, but rather the conceptually different inference
this approach enables:

It is probably true that studies of primitive nervous systems should be focused on individual
nerve cells and their precise, genetically determined interactions with other cells. […] [S]
ince pattern recognition is in some sense a global process, it is unlikely that approaches
which emphasize only local properties will provide much insight. Finally it is at least a
reasonable hypothesis that local interactions between nerve cells are largely random, but
that this randomness gives rise to quite precise long-range interactions [62].

Using this approach they arrive at a system of two ordinary differential equations
describing a neuronal oscillator consisting of two different populations, one exci-
tatory, one inhibitory:

τe
dE
dt

= −E+ ke − reEð ÞSe c1E− c2I +Pð Þ ð1Þ

τi
dI
dt

= − I + ki − riIð ÞSi c3E− c4I +Qð Þ ð2Þ

This system describes two neuronal populations, whose current states (E, I:
proportion of cells in the population firing) influence each other through weighted
connections (c1− 4, weights of population connections, see Fig. 3a). This coupling
is mediated through a sigmoid activation function (Se i̸Þ, which acts like a switch
integrating all incoming synaptic influences and translating them into a postsynaptic
state change within a defined dynamic range (i.e. 0–1). The sigmoid functions are
population specific (and can therefore be parameterised independently) and are the
source of non-linearity in the model.

Even despite the extreme simplification of these models of neuronal function, a
whole range of dynamic behaviours can be reproduced with WC-type models at the
scale of neuronal populations or cortical patches [29, 45, 60]. Because of the
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Fig. 3 The Wilson-Cowan neural mass model a The model consists of one inhibitory and one
excitatory neuronal population, coupled through synaptic connections of a specific connection
strength (ci parameters). These can be excitatory (black) or inhibitory (red). The system receives
external stimulating current input (P parameter) and acts as a neuronal oscillator. b The model
generates particular oscillation patterns for different parameter constellations—this figure
illustrates steady state oscillatory responses with decreasing values for the input parameter
P. Excitatory populations are represented by the solid lines, inhibitory populations by dashed lines.
c Synthetic data illustrating a noisy measurement of neuronal population oscillation driven with
P = 1.4. We show how oscillatory frequency alone can be used to derive the P-parameter from
noisy measurements such as this: d Estimates of steady state oscillatory frequency can be derived
from the model for a range of different values for P. Plotting the squared difference between
estimated frequencies and that derived from the noisy synthetic signal, we can identify the P value
that produces the minimal error. This approach identifies P = 1.4 as the value producing the
minimal error (indicated by the red arrow). e If more than one parameter is allowed to vary (e.g.
input P, and self-excitation strength c1) the error landscape becomes more complex and error
minimisation alone does not produce unambiguous results—the red arrow indicates the same
parameter constellation identified in 3D). The model specifications were taken directly from the
model’s original description [62]. Parameters for the modelling were taken from one of the known
oscillatory states and unless otherwise stated were: c1 = 16, c2 = 12, c3 = 15, c4 = 3, P = 1.25
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coupled nonlinearities, however, ‘forward’ predictions of model behaviour given
specific parameters is non-intuitive and usually requires simulation of the model
response. Recurrent simulations for varying parameter values can then be used to
establish a link between model parameterisation and overall dynamic response
(Fig. 3b).

These parameter/response relationship can be exploited to make inference on
model parameters underlying a given observations. Faced for example, with noisy
measurements of a population oscillation (Fig. 3c), one can use systematic varia-
tions of a model parameter to identify the specific parameter value that best fits the
data (Fig. 3d, illustrated for the stimulating current parameter P). However, even
adding a single additional free parameter (e.g. the connection parameter c1) creates
a complex model prediction error landscape that is much more difficult to optimise
(Fig. 3e)—an important problem that we will return to later.

WC models allow for generation of complex dynamics that remain computa-
tionally tractable enough to explore different parameter compositions and attempt
inference on parameter combinations producing a certain dynamic response.
However, in the original formulation consisting of a single excitatory and inhibitory
population, they are limited in how well they can represent the range and com-
plexity of cortical dynamics observed in the laminate cortex.

A major extension of the WC model was introduced by Jansen and Rit in [34]
building on an extant literature of adaptations of the WC-type models [44]. The
Jansen and Rit (JR) model explicitly models dynamics of a local cortical circuit by
ascribing different neuronal populations to specific cortical lamina and describing
their dynamics in terms of differential equations. In this model, an additional
excitatory neuronal population is added allowing separate parameterisation for two
excitatory neuronal populations.

τe
dx1
dt

=He P+ S1 v2ð Þð Þ− 2x1 −
v1
τe

ð3Þ

dv1
dt

= x1 ð4Þ

τi
dx2
dt

=HiS2 v3ð Þ− 2x2 −
v2
τi

ð5Þ

dv2
dt

= x2 ð6Þ

τe
dx3
dt

=HeS3 v1 − v2ð Þ− 2x3 −
v3
τe

ð7Þ

dv3
dt

= x3 ð8Þ
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This constellation of neuronal populations allows a diverse spectrum of
frequency mixtures to be modelled, and is capable of producing a host of response
dynamics also observed in empirical measurements of cortical potential fluctuations
[1, 27, 34]. An additional benefit that emerges from the laminar specificity of the
JR model, is that it relates naturally to commonly available brain recordings in
humans—specifically MEG and EEG. The electromagnetic activity measurable at
the scalp is thought to mainly reflect postsynaptic currents in the apical dendrites of
populations of pyramidal cells [43]. These are explicitly modelled in the JR model,
so that their selective contribution to EEG/MEG measurements can be distinguished
from the activity of other cell populations.

The laminar specificity and the wide range of physiological frequencies that can
be modelled mean that JR-type models are commonly employed in computational
models of cortical function. They currently form one of model-based approaches for
the analysis of large scale brain dynamics, such as the dynamic causal modelling
(DCM) framework, which will be discussed in more detail later [11]. Because they
aim to represent biophysical connectivity patterns found in actual cortical micro-
circuits, their architecture is also congruent with computational motifs thought to be
the basis of cortical processing (e.g. predictive coding, [3]).

Within the DCM framework, several extensions of existing neuronal models
have been developed to address specific hypotheses regarding neuronal function
[47]. One of the extensions to the classical JR model employed in DCM is the
so-called ‘canonical microcircuit’ or CMC (Fig. 4). Here the single JR pyramidal
cell population is separated into distinct ‘superficial’ and ‘deep’ pyramidal cells.
This allows not only for afferent and efferent projections to be separated into
distinct cortical laminae, but also accommodates differences in spectral output
among different layers of the same cortical column - that are seen empirically in
invasive measurements [4].

The model consists of a simple extension of the differential equations given in
Eqs. 3–8. Using the mean-field approximation the model can also be reconceptu-
alised in terms of average membrane potentials and firing rates interacting through
specific kernels that summarise the activity-dependent integration of input at the
postsynaptic membrane, and the nonlinear transformation of all input into an output
firing rate (Fig. 4b) [12].

Because the architecture of the CMC model represents neuroanatomical features
of the cortex, most of the modelling parameters are neurophysiologically mean-
ingful and thus easily interpretable. The model parameters can be directly manip-
ulated to reproduce many different dynamic behaviours—increasing the degree of
self inhibition in superficial pyramidal cells for example will produce high fre-
quency oscillations (Fig. 5, [52]).

Clearly the more intriguing question is whether inference on the model
parameters can be made from empirical measurements, to identify which functional
abnormality in the microcircuitry produced an abnormal measurement. This prob-
lem usually has more than one possible solution—meaning that many different
possible constellations of parameters may cause identical appearing measurements,
particularly where only some of the system’s states are measureable, or observable
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(e.g. local field potentials), whilst many remain hidden (e.g. intracellular ion con-
centration fluctuations); the problem is ill-posed. This becomes particularly prob-
lematic where many different parameters can be used to explain a limited set of
observed states. Even for the WC models with very few free parameters, simple
optimisation routines as indicated in Fig. 3d, e quickly become intractable, with
complex multidimensional error landscapes that cannot be comprehensively map-
ped. The flexibility afforded by the increased number of free parameters in the CMC
model comes at the cost of increased complexity of the space of possible solutions,
making it difficult to evaluate which best explains observed behaviours.

There are several possible approaches to addressing this ill-posed problem, many
of which have been employed in the computational modelling of epileptic seizures
and EEG abnormalities. In the following, we will introduce a few of these
approaches, with a focus on dynamic causal modelling. This will then be applied to
address the question as to what abnormalities in the functional architecture can
explain the paroxysms observed in patients with NMDAR antibody encephalitis.

Fig. 4 The Canonical Microcircuit (CMC) Model: a This extension of the Jansen-Rit model
consists of four neuronal populations (left panel) mapping onto different cortical laminae (right
panel). The middle panel shows the intrinsic excitatory (black) and inhibitory (red) connections
contained in the model (for simplicity, recurrent self-inhibition present for each population is not
shown). b Two operators define the evolution of population dynamics: First a synaptic kernel
performs a linear transformation of presynaptic input into an average postsynaptic potential,
dispersed over time (left panel). This is parameterised by synaptic gain parameters and averaged
time constants. Second there is a nonlinear transformation of average membrane potential into
population firing rates, described as a parameterised, population-specific sigmoid function (right
panel)
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Model Inversion for EEG Abnormalities

One of the most intuitive strategy to inversely link observed EEG features to
changes in the parameters of an underlying generative model—i.e. to invert the
model—is to systematically vary the parameters and evaluate how well the model
simulations then fit the observed measurements. This can be done ‘by hand’,
choosing individual parameter ranges and assessing the individual modelling out-
comes (illustrated in Fig. 3d, e for the simple case of estimating input currents
producing a specific frequency output in the WC model). This approach can be
informative, even in complex models of laminar cortical connectivity [15], but is
limited to a small numbers of varying parameters if comprehensive parameter
mapping is attempted.

This limitation can be overcome by finessing (1) how the space of possible
parameter values is explored to find a model that explains the data better (termed
optimization algorithms), and (2) by utilising different measures to rank models
against each other, i.e. to evaluate which model is the ‘better’ model (e.g. using a
cost function). A large number of different approaches to both of these issues exist,
of which a variety have been employed in inverting models of neuronal function to
fit EEG data.

Optimisation Algorithms

Optimisation algorithms describe computational strategies to identify parameter
constellations within a range of possible values that produce a model output that
best matches the observed results. There is a large literature regarding competing

Fig. 5 Changes in intrinsic connectivity produce characteristic responses: gradual changes to the
recurrent self-inhibition gain parameter gi are introduced to a CMC model of the cortical column at
around 1 s, changing the intrinsic modulation from 0 to −0.5, 0.5, and 1.5 respectively (left,
middle, right panels). These changes produce characteristic signatures in the spectral output,
apparent in both the time traces (top panels), and the spectral densities (bottom panels), with
increases in self-inhibition leading to high power high frequency oscillations
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optimisation methods in a whole host of different areas of science and engineering,
so in this section we will only discuss a few algorithms applied in fitting neuronal
models to EEG data.

One of the most commonly applied algorithms is that of gradient descent (or
ascent, depending on whether one is attempting to find minima or maxima). The
basic idea is that from a random starting point, in order to find a minimum, one
could iteratively take steps following the direction of the steepest downward gra-
dient until no more changes are made at each step, i.e. the algorithm converges.
Because the local gradient is defined by the first derivative of the cost function at
any point, the cost function has to be locally differentiable for gradient ascent to be
applicable. This approach is intuitive and easy to apply to a range of optimisation
problems, such as seizure classification [57], or to refine aspects of EEG source
reconstruction [28].

There are a two major limitations to this approach, however, which apply to the
problem at hand—namely inverting complex, multi-parameter neural mass model
to fit EEG data:

(1) The gradient descent approach relies on the cost function to be smooth and
continuous in order to be able to calculate the derivatives. Furthermore, in
systems where there are unobserved variables in addition to unknown param-
eters that need to be inferred, calculating the derivatives directly is often not
possible because of recursive dependencies between variables and parameters.

(2) It is designed to identify a local optimum, not the global optimum. Where the
cost function is complex and has multiple local extrema, the local optimum
identified in this approach may be far from the global optimum possible in the
parameter ranges.

There are several alternative optimisation algorithms that address these prob-
lems. Genetic algorithms for example resemble the process of natural selection by
producing random parameter variations and propagating the most ‘successful’ ones.
After iteratively varying some of the parameters (introducing mutations) and then
choosing the best variants (selection), the algorithm will converge to the best global
solution, without requiring estimation of local gradients for its progression. This has
been applied to fitting parameters of a detailed phenomenological model of indi-
vidual EEG abnormalities in clinical EEG recordings, identifying patient-specific
differences in the transition through parameter space [48]. Similarly, algorithms
such as particle swarm optimization, or simulated annealing use direct search
strategies that do not rely on knowledge of the gradients. Thee algorithms converge
to a global maximum without getting stuck in local optima. A variety of these have
been used in model based analysis of EEG signals [13, 26, 54].

Therefore we have two broad classes of algorithms: (1) global direct search
strategies, that yield robust convergence to global optima but come at a high
computational cost, and (2) gradient descent algorithms that are more computa-
tionally efficient but may get stuck in local optima and not yield a global resolution.
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The balance of these competing limitations dictates which optimisation algorithm is
most appropriate in a given situation.

When making inference on models with relatively few parameters, it is often
possible to use one of the global algorithms for a model inversion, as the com-
putational requirements for inverting a model of only a few parameters are usually
manageable. However, in models, such as the CMC, where there are many free
parameters that need to be fitted, the computational expense of these stochastic
algorithms can be prohibitive and the more efficient gradient descent algorithms are
called upon. In this setting, prior constraints are used to ensure model inversion is
less susceptible to arresting in local optima. Paradoxically, the local minima
problem can also be finessed by have many free parameters (as ‘escape routes’ are
more likely to be present where there are many different dimensions of parameter
space).

The gradient descent approach can be further finessed to address some of the
remaining problems: local linearization can be used to estimate gradient where the
underlying cost function is expensive to calculate; expectation-maximisation
(EM) algorithms can be employed to invert probabilistic models where not all
variables are observed [14], hierarchical model inversion can help to avoid local
extrema [24]. Each of these strategies is employed within the DCM framework, but
crucially hinge on the cost-function employed—i.e. what is being optimised.

Cost Functions

In order to apply optimisation routines and improve how well a model represents
data, we need to define which measure should be optimised. Often the most intu-
itive approach is to calculate the difference between the numerical predictions of the
model states and the empirical measurements, and try and reduce the sum of
squared errors between model prediction and empirical measurement. This
approach has been successfully applied to EEG in a variety of ways [2, 55].

If closeness of the model fit is the only criterion for the optimisation function, all
free parameters within the models will be adjusted in order to produce the best
model fit. Especially in models with many free parameters, this can lead to
idiosyncratic results that resemble specific features of a given dataset, but show
poor generalisability across different, similar datasets—a problem that has been
termed overfitting. Several strategies can be employed to avoid overfitting and
ensure generalisability of the modelling results.

One such approach has emerged naturally from reformulating the cost function
not in terms of an absolute error that needs to be reduced, but rather in terms of the
Bayesian model evidence (also known as the marginal likelihood) that needs to be
maximised. The evidence is simply the probability of getting some data under a
model of how those data were caused. This is generally evaluated by trying to
estimate the underlying parameters of a model. In more detail: within the Bayesian
framework, one estimates the probability of a given parameterisation ϑ, given a set
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of observations, or data y, by assuming that these were produced from a model m as
follows:

pðϑjy,mÞ= pðyjϑ,mÞpðϑ,mÞ
pðyjmÞ ð10Þ

This posterior probability is not easy to estimate directly, but various approaches
can be used to approximate it. Variational Bayes is a generic approach to the
analysis of posterior probability densities. In this approach, the free energy repre-
sents a bound on the log of the model evidence and can therefore be used in
optimisation routines to identify optima in the model evidence distribution [22].
The (log-) evidence or marginal likelihood is defined as follows (where D (||)
denotes the Kulback-Leibler, or KL divergence—a measure of the difference
between two probability distributions; y denotes data; m denotes the model; ϑ
denotes a set of model parameters; q(ϑ) denotes the variational density, i.e. the
approximating posterior density which is optimised; thus −〈ln q(ϑ)〉q—denotes the
entropy and 〈L(ϑ)〉q denotes the expected energy; F denotes the free energy):

ln p yjmð Þ=F +DðqðϑÞjjpðϑjy,mÞÞ ð11Þ

F = ⟨L ϑð Þ⟩q − ⟨lnqðϑÞ⟩q ð12Þ

The log evidence itself can be split into an accuracy and a complexity term, and
thus automatically contains a penalty for overly complex models that are prone to
overfitting. In the context of DCM the complexity of the model is established on the
basis of how far parameters deviate from their prior values. Therefore, maximizing
this Bayesian estimate of model evidence provides a compromise between good-
ness of model fit, and the generalizability of the model.

Specifically in regards to epilepsy there are further specific problems that need to
be addressed: Often the changes of a parameter that varies with time are of interest
(for example whilst trying to track network changes during the transition into a
seizure). If no account were taken of the temporal contiguity between individual
time steps, the already computationally expensive model inversion needs to be fully
repeated at each time step, treating each window as independent sample.

For dynamic systems, where there is a temporal dissociation between fast
varying states and more slowly changing underlying model parameters, this
problem can be overcome through optimization approaches that take into account
the temporal dependencies between parameter values at neighboring time points.
One of the most successful of these approaches it the Kalman filter. This was
originally developed for linear systems, but soon extended to nonlinear systems
[35]. The Kalman approach has been used very successfully to estimate parameters
underlying transitions into seizure state, where it has proved to benefit from its
ability to estimate unobserved (hidden) states [19].

A similar (and mathematically equivalent) approach can be implemented within
the DCM framework, where each time step receives the preceding model inversion
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posteriors as prior expectations, resulting in evidence accumulation (also known as
Bayesian belief updating) across the whole modelling time [9]. More recently, a
generic approach to estimating parameters at two modelling levels has allowed to
accommodate arbitrary relationships between individual model inversion steps in a
computationally efficient way (parametric empirical Bayesian approach, [23].

In summary, a Bayesian framework for the cost function allows incorporation of
the required constraints to solve the inverse problem as prior beliefs regarding the
parameters (consisting of expected value, and uncertainty measures). The use of
priors furthermore allows the model evidence to be cast directly in terms of
accuracy—complexity, and therefore preventing overfitting of excessively complex
models. Furthermore, several computationally efficient techniques are available to
accommodate modelling of time series data. We will now illustrate these proce-
dures using a worked example.

Workflow for Analysis of NMDAR Antibody-Related
Paroxysms

Patients with NMDAR antibody encephalitis show a whole variety of apparently
different EEG paroxysms. The aim of the subsequent analysis is to identify possible
causative mechanisms of how the molecular pathology is translated into an
observable abnormal dynamic state. In order to address this aim, we call on the
computational mechanisms introduced above.

Specifically, we utilise recent advances in parametric empirical Bayes within the
DCM framework [23, 24, 41], which allows for a two-stage modelling approach:

1. Fit parameters of canonical microcircuit neural mass model to both background
and paroxysmal conditions separately, in order to find the parameter constel-
lation that provides the best fit

2. Estimate the evidence for models of reduced complexity (i.e. fewer free
parameters) to identify subset of parameters that explain most of the changes
between background and paroxysms using Bayesian model comparison

The workflow for the analysis of an individual patient is illustrated in Fig. 6.
Note that in line with recent advances in dynamic causal modelling, first a ‘full’
model is inverted—i.e. all typically changing parameters are freed up and are
allowed to change in order to explain observed data. Bayesian model comparison is
conducted between models with reduced complexity, where the differences between
conditions are explained by only a pre-defined subset of parameters. This second
step allows for direct comparison of competing hypotheses (about which specific
synaptic parameters mediate seizure onset) within the Bayesian framework.

The specific hypotheses tested in this analysis are founded in the existing
knowledge of the molecular mechanism associated with abnormal EEG features:
NMDA receptor antibodies affect glutamatergic, excitatory connections. Here we
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want to explore whether the resultant effects in the microcircuit mainly have an
effect on the time constant of specific neuronal populations (parameterised as time
constant, τ), or on the connection strength of excitatory connections (parameterised
as g). The specific parameters of interest are summarised in Table 1.

Thus, the Bayesian model comparison in the second stage of the analysis will be
used to decide whether changes in the connection strength of excitatory connec-
tions, or the temporal integration dynamics of individual neuronal subpopulations
best explain the observed transitions from background EEG to paroxysmal
abnormalities.

◀Fig. 6 Analysis workflow: a Abnormal paroxysmal activity is visually identified on the EEG and
source localised to a single source [9] in order to extract a single ‘virtual electrode’ local field
potential-like trace that contains the main spectral features of the activity. A matching number of
time windows of background EEG activities is selected from artefact-free portions of the EEG.
b Dynamic causal modelling is used to respectively fit a single source canonical microcircuit to the
paroxysmal, and the background activity. c Parametric empirical Bayes is used estimate the free
energy for models that explain both background, and paroxysmal activity with changes in only a
subset of free parameters. d Bayesian model comparison estimates the evidence for each of the
reduced models from the previous step and is used to decide which model is most likely to have
caused the observed data features

Table 1 Model parameters and combinations for reduced model comparison

Model parameters evaluated in reduced models

τ1 Superficial pyramidal cells g1 Connection from ss to sp

τ2 Spiny stellate cells g2 Connection from dp to ii
τ3 Inhibitory interneurons g3 Connection from ss to ii
τ4 Deep pyramidal cells
Reduced models (i.e. combination of free parameters to explain both conditions)

Model 1 τ1 Model 16 g1
Model 2 τ2 Model 17 g2
Model 3 τ3 Model 18 g3
Model 4 τ4 Model 19 g1, g2
Model 5 τ1, τ2 Model 20 g1, g3
Model 6 τ1, τ3 Model 21 g2, g3
Model 7 τ1, τ4 Model 22 g1, g2, g3
Model 8 τ2, τ3
Model 9 τ2, τ4
Model 10 τ3, τ4
Model 11 τ1, τ2, τ3
Model 12 τ1, τ2, τ4
Model 13 τ2, τ3, τ4
Model 14 τ1, τ2, τ3, τ4

Dynamic Causal Modelling of Dynamic Dysfunction in NMDA-Receptor … 139



Results

Here we report a single case analysis of fitting a neuronal mass model of cortical
dynamics to paroxysmal abnormalities in a patient with NMDA receptor
encephalitis. Utilising the laminar and cell-type specificity of the canonical
microcircuit and the computational efficiency of the variational Bayes approach to
fitting the parameters, allows estimating the most likely constellations of bio-
physically relevant parameters that explain the observed EEG patterns.

Time windows of 2 s around visually defined episodic EEG activity (Fig. 7a
shows an example) is source localised to a single point and their power spectral
densities are averaged across time windows (total number = 12). The same number
of time windows is randomly selected from artefact free background activity and
source activity is estimated at the same cortical source for estimation of the power
spectral densities.

In the first stage of the analysis, a single source canonical microcircuit is fitted
to the empirical spectral densities for each of the two conditions separately.

Fig. 7 Bayesian model selection and parameter averages: a Two-second windows around all
paroxysms (total: 12) and an equal number of background EEG windows were selected visually
from the whole-scalp EEG—an exemplar single time window is shown here for background (top)
and episodic (bottom) activity. b Single source canonical microcircuits were fitted to average
source localised background, and episodic power spectral densities respectively. Models that
explained the difference between background and episodic activity with a limited set of free
parameters (cf. Table 1) were then compared through Bayesian Model Selection—the winning
model here was one where changes in all time constants were required to explain the difference
between background EEG and episodic EEG. c Bayesian model averaging was performed to
estimate the parameter differences that explain the transition from background to episodic activity.
A significant increase of time constants was estimated in spiny stellate, inhibitory interneuron and
deep pyramidal cell populations. Variables. time constants: τ1—superficial pyramidal cells, τ2—
spiny stellate cells, τ3—inhibitory interneurons, τ4—deep pyramidal cells; connection strengths:
g1—spiny stellate to superficial pyramidal cells, g2—deep pyramidal cells to inhibitory
interneurons, g3—spiny stellate to inhibitory interneurons
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This results in two fully fitted DCMs, where all parameters are allowed to change
between background and episodic activity. In order to assess which of these
parameter changes is necessary for the observed differences conditions, Bayesian
model selection was performed over a set of reduced model, where only a subset of
parameters are allowed to change between episodic and background activity. This
model space is laid out in detail in Table 1—and broadly divides models into those
with different combinations of changes in the synaptic dynamics (i.e. time con-
stants, models 1–14), and the synaptic connection strengths (models 16–22).
Comparing these models, the model with changes in all time constants provides the
best fit (posterior probability ∼0.76), followed by the model with changes in τ2, τ3,
and τ4 only (posterior probability ∼0.13) as shown in Fig. 7b.

Bayesian model averaging further provides estimates of the size and direction of
changes of each parameter between background and episodic activity, shown in
Fig. 7c. Because the Bayesian model averaging takes into account uncertainty over
specific parameter estimates, this allows for the calculation of a Bayesian confi-
dence interval, and inference whether any given parameter change has a probability
exceeding a certain significance threshold (here 99 %). According to these esti-
mates, we find that the episodic spectral densities are associated with a significant
increase of time constants in the spiny stellate (τ2), inhibitory interneuron (τ3) and
deep pyramidal cell (τ4) populations.

The model fits can be seen in Fig. 8. Figure 8a, b show the fits of the inde-
pendently inverted full DCMs, whilst Figure c and d show the model fits for the
reduced winning model where parameters across both conditions are identical apart
from the time constants τ1, τ2, τ3, and τ4. The paroxysms have a clear frequency
peak in the low beta frequency range, which are present in both the full model fits
(8B) and the reduced fits (8D) of that condition. Whilst the model fits for the full
model are better for both he episodic and the background activity, most of the
important differences between them are preserved well even in the reduced models
where only a small subset of parameters contributes to explaining the differences
seen. Most notably, the emergence of an additional frequency component in the
beta range with an identical peak frequency is modelled well, whilst the relative
power of high and low frequencies is not preserved as well in the reduced model
prediction.

These findings are interesting in two ways. Firstly, identifying changes in
parameters that carry biophysical relevance means that results from human EEG
measurements can be used to evaluate hypotheses that emerge from molecular
findings. Specifically for our case, a significant body of work has already estab-
lished that antibodies against NMDAR have direct effects on glutamate transmis-
sion dynamics in a mouse model of NMDAR antibody encephalitis [33].

These experiments investigating the blockade of NMDAR transmission show
that (1) it affects mostly the temporal dynamics of the glutamate response, and not
its size (as the latter is largely determined by the preserved AMPA-receptor
response); and (2) the most significant effect on NMDAR availability in the mice
treated with NMDAR antibody positive CSF was not within the dendritic spines
(the sites of classical synaptic transmission), but on extrasynaptic NMDARs.
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Our hypothesis space for the analysis presented was specifically designed to
address the first aspect: In humans, can dynamic abnormalities on the EEG caused
by NMDAR antibody exposure be best explained by changes in the time constants
(as predicted from mouse models), or by a change in excitatory connection
strengths. The findings from the Bayesian model selection in fact support changes
in temporal dynamics underlying the observed EEG abnormalities, providing the
first evidence from human studies that the mechanism observed in other model
systems may explain the pathological features seen in patients.

However, our analysis pathway tried to explain transitions between background
and paroxysmal activity within an individual patient (and during a single EEG
recording) through changes in network parameters, even though the presumed
underlying cause—the NMDAR antibody—are present and active throughout the
recording. Our interpretations of the findings therefore do not suggest that NMDAR
cause a permanent change in the time constants, but rather promote a volatility in
time constants that facilitates the transient appearance of paroxysmal abnormalities.

Time constants themselves are known to be a composite measures that depend
on particular physiological states and are therefore not actually constant, but are
themselves dynamic in their expression [38]. One identified mechanism of
activity-dependent changes in the temporal profile of postsynaptic integration is the
recruitment of extrasynaptic NMDAR during excessive stimulation at

Fig. 8 Model fits for power spectral densities: model fits are shown for the full DCM inversions
(a, b) and the winning reduced models (c, d), where the differences between episodic and
background activity are explained by changes in the time constants only. The top panels show the
background activity, whilst the bottom panels show the paroxysmal, episodic abnormality. Model
predictions and power estimation range from 4–60 Hz
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AMPAR-only synapses [8]. The observations made in animal models suggest that
NMDAR antibodies change the balance between extrasynaptic and synaptic
NMDAR, and are therefore likely to change the dynamics of time-constant changes
governing physiological synaptic transmission, making the transient changes in
temporal dynamics described in our model a plausible pathophysiological
mechanism.

The main effect as estimated from the canonical microcircuit is an increase of the
time constants in a variety of neurons. The increased time constants may facilitate
temporal integration of neuronal signal and therefore result in an increase in the
coupling between superficial and deep pyramidal cells, potentially explaining the
high amplitude paroxysmal activity observed on the EEG.

Limitations

In this study we applied DCM to episodic abnormalities in patient EEGs. In the
process of this study, many simplifying assumptions are required to render such an
empirical inversion tractable.

We have chosen to investigate intrinsic changes in neuronal population coupling
and dynamics, based on a single trace extracted from a ‘virtual electrode’ at a
source location estimated from the paroxysmal abnormalities. Thus we have not
specifically addressed any larger scale topographic heterogeneity or network level
interactions in this study.

Furthermore, the current analysis describes only the state switching between
short paroxysmal abnormalities and the patient-specific background, and not the
transition into pathological EEG patterns at the onset of illness (as this data is rarely
available). This means that the inference we draw is one regarding fluctuations in an
already pathological state, that may explain the variations in the EEG phenotypes
observed.

The study also is specifically designed to investigate different mechanisms
intrinsic to a single cortical source—we therefore do not model differences in input
or extrinsic connectivity. However, these are likely to contribute to state switching
between the different dynamical states illustrated here, and will be the focus of
further modelling research.

Take Home Message for Clinicians

This chapter offers an introduction to using empirical electrophysiological data to
inform the parameterisation of advanced mesoscale neuronal models. This approach
is particularly suited to link conditions where long-lasting, or even permanent
pathologies (such as a lesion, or a molecular abnormality) find their pathophysio-
logical expression only transiently in abnormal neuronal dynamics. The prime
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example for this is epilepsy, where abnormalities in the neuronal network produce
intermittent and unpredictable abnormal states—epileptic seizures; but the same
approach is also relevant to neuropsychiatric conditions, or the encephalitides, as
discussed in this chapter.

Linking macroscopic, and often transient observations—such as clinical features,
or EEG measurements—to underlying causes, even where they are understood in
some detail is far from intuitive. Whilst the discovery of NMDAR binding antibody
in the context of clinical autoimmune encephalitis clearly suggest a direct
pathophysiological role for the antibody, understanding how it affects synaptic
transmission in order to produce the abnormalities observed in neuronal states still
remains difficult. This currently limits the prognostic and diagnostic value of EEG
recordings, as well as hindering the development of targeted therapies.

The chapter introduces mesoscale computational modelling as a possible link
between molecular or microstructural pathology, and macroscale phenotypes.
Exploiting recent advances in both neuronal models of cortical function, and the
fitting of parameters to empirical data within the well-established framework of
Dynamic Causal Modelling allows for the testing of specific mechanistic
hypotheses. The approach presented here allows researchers to directly address
specific questions emerging from other disease models and evaluate whether evi-
dence for similar mechanisms can be identified in human patients.

These computational models can facilitate a thorough understanding of the
dynamic effects of apparently static abnormalities within an organism. Whilst they
are not set up to reproduce the complexity of whole organisms, they allow the
mapping of changes in the model parameters and dynamic outputs of the model.
They are therefore an ideal tool to further explore hypotheses derived from newly
identified genetic mutations, other molecular causes, or animal models of specific
conditions.

Regarding the example of NMDAR encephalitis, the computational approach
presented here provides empirical evidence for electrophysiological abnormalities
being caused by changes in the temporal dynamics of synaptic transmission, rather
than changes in connection strength. This replicates findings from animal models,
providing converging lines of evidence that the observations made in the animal
models is in fact related to the dynamic abnormalities we see in human patients.

Take Home Message for Computationalists

Advanced computational modelling in the analysis of electrophysiological signals
is currently limited to a few source localisation algorithms in routine clinical
practice. Yet recent advances both in machine learning algorithms, and the
increased availability of computational resources provide an opportunity to inte-
grate advanced computational analysis of neuronal signals into clinical practice.

The approach presented in this chapter is deliberately using empirical data to
parameterise an existing, full generative model of neuronal population function (as
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opposed to more data driven machine learning approaches): The generative model
both constrains the inverse problem we face by attempting to make inference on
mesoscale mechanisms from macroscale recordings. But crucially it also forces the
results of the computational analysis to be cast within biophysically plausible terms.

The work presented here should not be seen in isolation, but instead provides a
novel, and necessary perspective on an existing scientific question. When
attempting to identify causative mechanisms in NMDAR encephalitis, neither
computational nor animal-based approaches will give us the full answer. Rather the
strength of the evidence lies in the use of existing evidence from other model
systems to constrain the computational analysis to only address specific, competing
hypotheses. This ‘evidence accumulation’ is easiest where all lines of evidence refer
to similar neurophysiological concepts (e.g. connection strengths, time constants,
gain parameters). Indeed on can foresee the application of dynamic causal mod-
elling to data from animal models to provide a formal integration of animal and
human measurements.

The Dynamic Causal Modelling approach presented here furthermore has the
benefit that it will provide estimates of model evidence (to decide between com-
peting hypotheses) as well as individual parameter estimates (to evaluate specific
effects), derived from fitting the model to empirical data. This combines the benefits
of data driven analysis: the DCM can provide direct empirical measures for, or
against specific hypotheses, as well as being utilised as a generative model of
neuronal dynamics whose parameter space can be explored in detail.

The example presented shows that the approach is uniquely flexible and can be
applied to a wide variety of contexts. All software used here, including model
inversion techniques, canonical microcircuitry models and classical EEG analysis
modules, is freely available as part of the Statistical Parametric Mapping
(SPM) academic freeware (www.fil.ion.ucl.ac.uk/spm).
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Oscillatory Neural Models of the Basal
Ganglia for Action Selection in Healthy
and Parkinsonian Cases

Robert Merrison-Hort, Nada Yousif, Andrea Ferrario
and Roman Borisyuk

Introduction

The Basal Ganglia and Parkinson’s Disease

The neuronal circuits of the Basal Ganglia (BG) play an important role in movement
control and it is known that without correctly functioning BG, the cortex’s ability to
control movements is diminished. Parkinson’s disease (PD), for example, is primarily
a disease of the basal ganglia. One aspect of pathological activity in the parkinsonian
basal ganglia is an increase in synchronous oscillatory firing patterns [1].

The basal ganglia are a group of nuclei found in the subcortical area of the brains
of vertebrates. These nuclei include the putamen and caudate nucleus (together
called the dorsal striatum, neostriatum, or here simply “the striatum”), the globus
pallidus (GP), subthalamic nucleus and the substantia nigra pars compacta (SNc) and
pars reticulata (SNr). In primates, the globus pallidus is divided into two segments: a
medially-located “internal” segment (GPi) and more laterally-located “external”
segment (GPe). In rodents, on the other hand, the globus pallidus is generally
considered a single structure, with connections to other nuclei that make it similar to
that of the GPe in primates. The rodent entopeduncular nucleus (EP), meanwhile, is
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usually considered homologous to the primate GPi. In this paper we will typically
treat the term “GP” as being equivalent to “GPe” and “EP” as being equivalent to
“GPi”, although when discussing experimental results from specific species we will
use the correct terminology for that species. The primary input to the BG is the
cortex, and their main output is the thalamus. Figure 1 shows the main connections
between the nuclei of the basal ganglia, including the so-called “direct”, “indirect”
and “hyper-direct” pathways from cortex to thalamus through the BG.

Parkinson’s disease is the second most common neurological disease after
Alzheimer’s disease, with an estimated 1 % of people in industrialized countries
over the age of 60 suffering from it [2]. The disease encompasses a wide range of
motor and non-motor symptoms which vary from patient to patient, however it is
characterized by three main motor abnormalities that are seen to some degree in
nearly all patients [3]:

• Resting tremor, in which a 4–6 Hz tremor is seen when the patient is at rest,
usually unilaterally.

• Bradykinesia, slowness in initiating or executing movements. Voluntary (i.e.
non-cued) movements are particularly affected. Around 47 % of patients also
experience “freezing”: a temporary inability to move certain limbs that can
occur spontaneously during normal movements, such as walking.

• Rigidity, in which increased muscle tone causes high resistance of limb
movement, postural deformities and instability.

Fig. 1 Schematic overview of the main connections between nuclei of the basal ganglia. Colours
correspond to the predominant neurotransmitter that released by neurons in each module
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The main pathological feature of Parkinson’s disease is the death of the
dopaminergic neurons in the SNc (for review see [4]). Most pharmacological
treatments aim to reverse the reduction in dopamine that results from the loss of
these neurons. This is accomplished either directly, through the dopamine precursor
l-DOPA (levodopa) or indirectly, through dopamine agonists or drugs that prevent
the metabolism of dopamine. The UK National Institute for Health and Clinical
Excellence (NICE) guidelines recognize levodopa as being the most effective drug
for the reduction of the primary motor symptoms of PD [5] and it is therefore often
the first choice for pharmacological treatment of these symptoms. Long-term
levodopa use is, however, associated with a number of adverse side effects
including uncontrollable abnormal movements (a form of dyskinesia) and unpre-
dictable fluctuations in effectiveness (the so-called “on-off” phenomenon [6]. For
patients with more severe symptoms, perhaps with serious side-effects from high
levodopa doses, an increasingly common surgical treatment is deep-brain stimu-
lation (DBS). In DBS, an implanted electrode provides constant high frequency
(∼120 Hz) electrical stimulation to either the STN or GPi [7]. The precise effects of
this stimulation on neuronal activity in the basal ganglia are not fully understood
and are likely to be many and varied (reviewed in [8]).

The “rate model”, originally described by DeLong [9], offers a simple but
persuasive explanation for the hypokinetic symptoms of Parkinson’s disease (e.g.
bradykinesia). This model arose from experimental evidence showing that when a
monkey is rendered Parkinsonian there is a clear increase in the average firing rate
in the GPe and STN, along with a decrease in the GPi [10, 11]. This theory holds
that the basal ganglia are organised into two parallel pathways, a pro-kinetic “di-
rect” pathway (striatum → GPi/SNr) and an anti-kinetic “indirect” pathway
(striatum → GPe → STN → GPi/SNr). The fact that direct pathway MSNs
express D1-type dopamine receptors whereas indirect pathway MSNs express
D2-type receptors suggests that under Parkinsonian conditions the inhibitory output
from the direct pathway becomes stronger, whereas that from the indirect pathway
becomes weaker (since dopamine is excitatory at D1 receptors and inhibitory at D2
receptors). The direct/indirect pathway model of Parkinsonism explains the sur-
prising result that lesioning the STN reverses the effects of MPTP poisoning [12].

The rate model of PD remains popular and is often used to explain the motor
symptoms of the disease in medical textbooks. Despite its popularity, it is clear that
the model has some important limitations. Since it predicts a reduction in motor
activity under Parkinsonian conditions it cannot explain how tremor arises; this
appears to be related to an increase in rhythmic bursting at tremor frequencies in the
STN [13]. More recent discoveries about basal ganglia connectivity suggest that the
simple division into two feed-forward pathways is overly simplistic. For example, it
appears that the majority of GPe neurons project to the GPi and/or SNr in addition
to the STN. If this is the case then it is not clear what the role of the STN is within
the rate model. Similarly, the model also fails to explain the functional significance
of the connection back from STN to GPe, and the “hyper-direct” cortical projection
to the STN, while other recent findings suggest that the inter-striatal connections are
important that the direct and indirect pathways are intertwined [14, 15]. Finally, the
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effectiveness of high frequency electrical deep brain stimulation of the subthalamic
nucleus at ameliorating the motor symptoms of Parkinson’s disease [16–18] is
difficult to explain using the rate model. While DBS was originally envisioned to
act as a “reversible lesion”, more recent evidence has shown that high frequency
stimulation actually increases the rate of spiking in efferent STN axons [19, 20];
according to the rate model this should cause an exacerbation of hypokinetic
symptoms.

One aspect of pathological activity in the parkinsonian basal ganglia is an
increase in synchronous oscillatory firing patterns [1], particularly in the so-called
beta frequency band (12–30 Hz). There are a number of reasons why widespread
pathological oscillations may cause motor deficits, for example they may impair the
ability to relay information [21]. It has also been proposed that, in health, sporadic
beta oscillations act as a global signal for maintenance of the current motor activity
[22]. Also, there are several hypothesis related to synchronization of neural activity.
For example, Hutchison et al. [23] put forward the hypothesis that beta oscillations
are enhanced in PD and prevent generation of voluntary movements. Results
reported in Bar-Gad et al. [24] showed a complex phase-locking between a stimulus
and its response in most neurons in the globus pallidus. Some neurons increased
their firing rate but the majority of neurons displayed partial inhibition during the
stimulus train. The activities of simultaneously recorded neurons display rate cor-
relation but no spike-to-spike correlation. The authors hypothesize that the effect of
DBS on the GP is not complete inhibition but rather a complex reshaping of the
temporal structure of the neuronal activity within that nucleus.

When considering the available experimental data regarding the causes and
treatment of Parkinson’s disease, it is important to remember that much of this
research makes use of animals in which conditions similar to the disease have been
induced (see Betarbet et al. [25] for a review). For example, many of the classical
results in non-human primates attempt to replicate the disease by using the neu-
rotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to selectively kill
the dopaminergic neurons of the SNc. Similarly, rodent studies often use the
chemical 6-hydroxydopamine (6-OHDA) to damage the SNc, either uni- or
bi-laterally. One must keep in mind that these animal preparations only induce
Parkinson’s-like symptoms, and differ from the true disease in some important
ways. Tremor, for example, is absent in 6-OHDA lesioned mice and most species of
MPTP lesioned monkeys [25].

Parkinson’s Disease and Deep Brain Stimulation

Deep brain stimulation (DBS) involves the surgical implantation of electrodes into
disorder-specific target regions, via which the neural tissue is stimulated using
trains of electrical pulses. For Parkinson’s disease, the subthalamic nucleus is the
most common target for DBS, and, interestingly, is the same target for ablative
surgery which preceded DBS treatment. The decision to allow a patient to undergo
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DBS implantation depends on a number of factors, and is usually made only after
trying the non-surgical option of drug treatment to replace the lost dopamine.
Since DBS was pioneered almost 30 years ago [26] there have been over 125,000
implantations worldwide (Medtronic, Minneapolis, US), with 69 % of patients
showing total or significant suppression of tremor (Medtronic DBS Therapy for
Parkinson’s Disease and Essential Tremor Clinical Summary, [27].

However, although DBS is widely used and is successful at achieving thera-
peutic benefits, the precise way in which the injected electrical current affects the
electrical activity of the brain is not fully understood. One difficulty is that although
we can image where the implanted electrode is inside the brain using magnetic
resonance imaging (MRI) or computed tomography (CT), we are limited in our
ability to simultaneously stimulate the brain and record exactly how the current
spreads in the tissue, and how this current interacts with the neural activity.

One approach to addressing this problem is to use mathematical modelling to
better understand how the current influences the brain’s activity and predict how to
use DBS more effectively [28]. For example, such work with theoretical models can
explain the difference in the electric fields created by two commonly used stimu-
lation approaches, and therefore can help clinicians to better reach the targeted brain
region. The final challenge will be to use such models within routine clinical
practice in order to predict the best settings for the current applied to each indi-
vidual patient, as and when they require the intervention.

As the use of this procedure spreads to new ailments such as epilepsy, depres-
sion, and bipolar disorder, the number of patients who may benefit from this
surgical intervention will also increase. In order to understand more about how the
electrical current is achieving the observed effects, theoretical research hand in hand
with clinical research needs to be undertaken.

The Scientific Problem

In this chapter we consider modelling of the basal ganglia, concentrating on
approaches from mathematical and computational neuroscience. These approaches
are grounded in the available neurobiological data about the BG, as well as medical
data regarding Parkinson’s disease and its treatment by deep brain stimulation.
Although significant progress has been made in neuroscience towards under-
standing how neuronal circuits control movement, many questions remain unan-
swered. Specifically, we are far from understanding the critical neuronal
mechanisms which allow these circuits to function. We develop mathematical and
computational models of oscillatory neuronal activity to explain how the neuronal
circuits of the BG can select actions and how they can switch between them.

As discussed in the previous section, oscillatory activity in the basal ganglia is
thought to underlie many of the symptoms of Parkinson’s disease. It is known that
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the dynamics of a neuronal network comprised of excitatory and inhibitory neurons
can be oscillatory. For example, a study of spiking integrate-and-fire type neurons
with random connections demonstrated that an oscillatory regime is stable and
exists for a broad range of parameter values [29]. How can an oscillatory regime
appear in such a system of interactive neurons? Mathematics provides a description
of how low amplitude oscillations can appear from a stable equilibrium under
parameter variation, a scenario known as an Andronov-Hopf bifurcation. Borisyuk
[29] found that this bifurcation can occur in a randomly connected system of
integrate-and-fire neurons. Parameter variation provides a valuable correspondence
between regions in parameter space and the rhythmic activity of some particular
frequency. In fact, in some circumstances the parameter space can even be parti-
tioned into zones of rhythmic activities in a particular band: a region of
alpha-rhythm, a region of beta-rhythm, etc. These results provide the possibility of
controlling both the dynamical mode and the frequency of oscillations, as well as
finding the parameter values that correspond to particular dynamics. Our studies of
neural network models of spiking neurons with random connectivity have shown
that a repertoire of dynamical regimes is possible, including: (1) a regime of sta-
tionary activity (low or high); (2) a regime of regular periodic activity where all
oscillators are highly synchronized and demonstrate coherent pattern of spiking;
(3) a regular bursting regime; (4) a partial synchronization regime where some
patterns of individual neurons are irregular and stochastic but the average activity of
population is periodic; (5) an irregular spiking regime where both individual neuron
firing patterns and average activity are stochastic. Our study shows that the regime
of partial synchronization is of interest for modelling of different brain functions
such as perception, attention, novelty detection and memory [30–32]. In this
chapter we study partial synchronization in the neural circuits of the BG and
demonstrate how these dynamics can be used for action control.

As mentioned above, another part of the scientific problem is to understand the
mechanism by which DBS is able to effectively treat various different neurological
conditions. For example, why do high frequency (>100 Hz) and high amplitude
(several volts) electrical pulses prevent the low frequency oscillations that are
related to Parkinsonism? Theoretical neuroscience plays an important role in
solving this very difficult problem, and can be used, for example, to model and
visualize the spread of current in three dimensional space near the tip of stimulating
electrode [33], to study oscillatory activity in BG circuits in healthy conditions and
PD pathology [34, 35], as well as to identify conditions for pathological synchro-
nization and methods of desynchronization [36]. It was shown that using mathe-
matical and computational methods of nonlinear dynamics is useful for study of
neuronal mechanisms of DBS and suppression of pathological brain rhythms [37,
38]. In general, computational and mathematical modelling can be used to study the
mechanism by which DBS might de-synchronize or “reset” pathological rhythms,
as well as how it might repair connectivity within neuronal circuits that have been
damaged by disease.
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Computational Methods

Mathematical and computational modelling of neuronal activity in the BG is a hot
topic and there are many models considering different aspects of BG activity,
mostly in relation to PD and DBS. Existing neural network models of the BG can
be divided into two classes:

• Spiking models, in which equations represent the activity of individual neurons,
possibly within one or more synaptically coupled populations.

• Models of interactive nuclei, where each nucleus (or population of neurons) is
described by averaged population-level equations [39].

In this section we will briefly review these two approaches to computationally mod-
elling neuronal activity, and describe how each has been applied to the study of the BG.

Spiking Models

Hodgkin-Huxley and Multi-compartment Modelling

In the early 50s Alan Hodgkin and Andrew Huxley derived a set of non-linear
equations that describe the dynamics of the squid giant axon—work for which they
received the Nobel prize. The cell membrane is thought as a circuit with capacitance
C and three ionic fluxes (sodium: Na, potassium: K and non-specific leak: LK) that
act as parallel resistors (channels) and generate currents flowing across the mem-
brane. Each ionic current has intrinsic dynamics and it is regulated by variables that
describe the proportion of activation and inactivation of each channel. The model is
able to reproduce highly non-linear phenomena in the voltage called action
potentials, which are at the basis of neural transmission in the brain. According to
the Hodgkin-Huxley model, the voltage across the membrane varies according to
the following equation:

C
dV
dt

= gLK ELK −Vð Þ+m3hgNa ENa −Vð Þ+ n4gK EK −Vð Þ+ Iext

Here Iext is an external source of current, gNa, gK , gLK and ENa,EK ,ELK are the
maximal conductance and equilibrium potentials of the sodium, potassium and
leakage currents, respectively. The variablesm, h and n are the gating variables of the
sodium and potassium channels and their integer powers represent the number of
molecules involved in the dynamics of each channel. Each of these gating variables
evolves according to an equation of the following form (where X is m, h or n):

dX
dt

= αX Vð Þ 1−Xð Þ− βXðVÞX
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The function αX is the forward rate function (specified in msec− 1) at which the
corresponding gating molecule moves from its configuration where ions are
blocked to its configuration where ions can flow. Conversely βX are backwards rate
functions, which determine how quickly gating molecules move from the
unblocked to the blocked configuration. The functions αX and βX follow the form:

f Vð Þ= A+BV
C+ expðV +D

E Þ

where A,B,C,D and E are parameters determined using experimental voltage
clamp protocols.

The Hodgkin-Huxley equations, which are sometimes classed as a
“conductance-based” model, are biologically realistic and can show a variety of
dynamics seen in experimental recordings, including tonic spiking and bursting.
Although being biologically realistic the four dimensional Hodgkin-Huxley system
usually has computational limitations, especially if extended with multiple ionic
currents. For this reason, several simplified models have been developed. The
Morris-Lecar [40] and FitzHugh-Nagumo [41] models are examples of two
dimensional systems of ordinary differential equations that demonstrate many of the
same basic features of the Hodgkin-Huxley model, but they cannot reproduce
complex behaviors like busting. Existing two-dimensional models are able to
reproduce a different firing patterns (including bursting), but take into account a
reset condition. Examples of the previously mentioned dynamics are Izhikevich
neuron model [42] and the adaptive exponential leaky integrate and fire model [43].

The simplest form of Hodgkin-Huxley model (the so-called “single compart-
ment” approach) considers the voltage across the membrane to be identical
everywhere in the cell, but this is not the case in reality. The electrical activity
spreading from the dendrites to the soma and then on to the axon depends on the
spatial distribution of the neurites (axon and dendrites). Neurons receive inputs
from thousands of synapses at different dendritic locations and the propagation of
the activity is attenuated and delayed until it reaches the soma and axon. To
incorporate this into a model, the neuron can be approximated as multiple con-
nected cylinders in parallel. This more detailed “multi-compartmental” modelling
gives extra an extra level of biological realism, but requires significantly more
computational power and requires that much more experimental data (for example
neuron’s spatial geometry) is available to constrain the model.

Spiking Models of the Basal Ganglia

Probably the most well-known computational model of the basal ganglia is that of
Terman et al. [44]. This is a conductance-based spiking model of the interconnected
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subthalamic nucleus (STN) and globus pallidus (GP), where each neuron is of
single compartment Hodgkin-Huxley type, with a (simplified) set of ion channels
chosen to represent the main electrophysiological features of the neurons in each
nucleus. This model was used to investigate the emergence of different patterns of
spiking behaviour, such as rhythmic bursting, under conditions of simulated
Parkinson’s disease. In a later paper the model was improved with parameter
changes and the addition of thalamo-cortical relay neurons, and this revised model
was used to consider the effects of deep-brain stimulation (DBS) on the activity in
the network [45]. A more advanced single compartment model of 500 neurons
within the basal ganglia network was built by Hahn and McIntyre [46], and was
similarly used to investigate the effects of STN-DBS. These models have many
advantages: since they are built of reasonably biologically-realistic
conductance-based neurons, their outputs can be easily compared with electro-
physiological data, and because they consist of networks of such neurons they can
be used to examine how different patterns of synaptic connectivity produce different
outputs. However, these models do not make use of any anatomical information
about the spatial distribution of their constituent neurons. This limits their utility for
studying the effects of spatially heterogeneous stimulation, such as DBS, and makes
it difficult to compare the results of simulations with spatially averaged experi-
mental recordings, such as local field potentials.

A well-known larger scale spiking model of the basal ganglia is that developed
by Humphries et al. [47]. This model comprises 960 spiking neurons across five
basal ganglia nuclei, where each nucleus is divided into three parallel “channels”.
Each neuron in the model is based on the leaky integrate-and-fire formalism, with
additional currents added to neurons in each sub-population to better reflect their
physiological behaviour. Although the model does not contain any synaptic plas-
ticity mechanisms, and cannot therefore exhibit learning, it is able to demonstrate
robust selection of outputs based on simulated cortical input, in line with the
proposed action selection role of the basal ganglia. Furthermore, this model is able
to reproduce a number of experimental characteristics of the basal ganglia under
both healthy and parkinsonian conditions. Chersi et al. [48] developed a model that
is similar to that of Humphries et al. [47], but with the addition of cortical and
thalamic populations and a much larger number of neurons: 14,600 in total. These
neurons are also of the leaky integrate-and-fire type, and are similarly organized
into distinct channels. The main improvement in this model is the addition of spike
timing dependent plasticity (STDP). Chersi et al. claim that their model may rep-
resent how the basal ganglia are able to facilitate learning of habitual motor
responses to sensory input, and they demonstrate this by showing that a “virtual
primate” is able to learn to perform a simple behavioral task when driven by the
model. While models of the type described in Chersi et al. [48] and Humphries et al.
[47] are valuable for studying the function of networks of spiking elements
arranged in a fashion that is broadly similar to that of the basal ganglia function,
they lack biological realism in several key ways, which limits their utility. Firstly,
the use of integrate-and-fire neurons in both models limits the extent to which
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experimental data from real neurons can be used to tune the model, since the model
parameters and measured variables cannot be directly related to results of biological
experiments. Secondly, the models contain relatively few neurons in comparison to
the real basal ganglia and have equal numbers of neurons in each nucleus, despite
the actual size of these populations differing by orders of magnitude—for example
the primate subthalamic nucleus (STN) and striatum are estimated to contain
approximately 104 and 107 neurons, respectively [49]. Finally, because these
models do not include any spatial information, they cannot be used to model the
effects of spatially heterogeneous electrical stimulation (i.e. DBS), and their results
cannot be compared with experimental recordings that are dependent on the spatial
relationship between neurons and the recording apparatus (e.g. local field potential
or MEG recordings).

Several successful attempts have been made to produce detailed
multi-compartmental models of different types of neurons within the basal ganglia.
Günay et al. [50] used a database-driven methodology to build models of neurons
within the globus pallidus (GP), and several later studies have made use of their
results to study in detail the effects that different distributions of ion channel pro-
teins have on the activity of pallidal neurons (e.g. [51]. Such studies are typically
performed in tandem with in vitro experiments using real neurons, with the
experimental and modelling work closely informing each other—a key advantage
that is made possible by such a detailed modelling approach. Beyond the globus
pallidus, Gillies and Willshaw [52, 53] developed a multi-compartmental model of
a subthalamic neuron, and this model has been particularly popular for examining
the effects of deep-brain stimulation on STN activity. Since multi-compartmental
models include information about the three dimensional morphology of neurons,
several studies have used the Gillies and Willshaw [52, 53] model to demonstrate
how the effects of electrical stimulation differ based on the spatial location and
orientation of neurons [54, 55]—a feature that is not typically captured by simpler
single-compartment models. Other groups have also produced multi-compartment
models of other basal ganglia neuron types, such as the striatal “medium-spiny”
neurons [56]. Unfortunately, due to the complexity of constructing and simulating
models of this nature, they are typically restricted to simulating single neurons or
very small networks within one nucleus, although Miocinovic et al. [54] built a
model which contained 50 multi-compartmental STN neurons alongside 100 sim-
ulated axons from the GPi and cortico-spinal tract.

Mesoscopic Models

Population-Level Modelling

Although reduced spiking models such as the Izhikevich model require less com-
putational power than more realistic models, even relatively small regions in
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relatively small brains contain a huge numbers of neurons and synapses. For this
reason computational and mathematical analysis of large spiking neural networks is
usually computationally infeasible. As an alternative to the relative complexity of
the previously described models, it is possible to use another class of computational
models do not model the detailed spiking activity of individual neurons, but instead
consider only the average activity (e.g. mean spiking rate) in individual neurons or,
more commonly, entire populations of neurons. Each model measures the average
activity of ensembles of interacting cells in different ways: some models measure
the proportions of cells firing in a homogeneous ensemble of excitatory and inhi-
bitory neurons [57], Amari et al. [58], other models measure the average membrane
potential [59], or the average dendritic field [60].

We will describe the model developed by Wilson and Cowan [57], which
describes the proportion of active neurons in a pair of synaptically coupled exci-
tatory and inhibitory subpopulations. Let EðtÞ and IðtÞ be the proportion of exci-
tatory and inhibitory neurons firing at time t. The equations are proportional to the
probability of each cell in each population being sensitive (not refractory) during an
absolute refractory period r multiplied by the probability of each cell being active
when receiving an average level of excitation. A key feature of the model is the idea
of “subpopulation response curve”, ZðxÞ, which determines the activation proba-
bility as a function of synaptic excitation. A frequently used example of ZðxÞ is the
logistic (or sigmoid) curve. It is a nonlinear, monotonically increasing function
assuming values in ð0, 1Þ given by:

Z xð Þ= 1
1+ e− aðx− θÞ −

1
1+ eaθ

Here a is the maximum slope of the sigmoid and θ is its position on the
horizontal axis. Parameter θ represents the common threshold value for all the cells
of a subpopulation type (excitatory or inhibitory). The average level of excitation
arriving to each neural subpopulation is given by the weighted sum of the pro-
portion of active excitatory and inhibitory neurons, where the weights represent the
directed strength of the connections between the two populations. The complete
system is given by:

τE
dE
dt

= −E+ 1− rEEð Þ ⋅ Z1ðw11E+w21I + JEÞ

τI
dI
dt

= − I + 1− rIIð Þ ⋅Z1ðw12E+w22I + JIÞ

where JE, I represents external inputs to each population, τE, I the populations’
average membrane time constants, and rE, I the refractory periods of the subpopu-
lations. The terms wij represent the synaptic strength from population i to
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population j, for i, j=E, I. Wilson and Cowan based their model on the idea that
“all nervous processes of any complexity are dependent upon the interaction of
excitatory and inhibitory cells” [57], and therefore considered the first population to
be an excitatory (w11, 12 > 0) and the second to be an inhibitory (w22, 21 < 0); in fact it
can be shown that oscillations cannot exist unless these conditions are true. Bor-
isyuk and Kirillov [61] used bifurcation analysis in two dimensions in order to
understand the dynamical regimes that are possible for different values of J1 and
w12. This approach elucidated the way in which the different dynamics described by
Wilson and Cowan (steady state, bi-stability and oscillations) arise as the param-
eters are varied and revealed an interesting new regime in which there is bi-stability
between a stable fixed point and a stable limit cycle.

Mesoscopic Models of the Basal Ganglia

The circuit formed by the reciprocally connected subthalamic nucleus and globus
pallidus has been particularly well studied using population-level models [62, 63]
as this circuit has been hypothesized to act as a neuronal pacemaker that generates
pathological rhythms in Parkinson’s disease. The advantage of relatively simple
mathematical models such as these is that they permit detailed mathematical
analysis of the network, which can be used to determine, for example, the condi-
tions under which oscillatory activity can occur. Another advantage of averaged
models is that because they are computationally straightforward to simulate and
typically have only a small number of parameters, they can be used alongside
optimization techniques in order to fit experimental measurements, such as average
spike rates. This allows macroscopic-scale characteristics of the network, for
example the relative overall synaptic connection strengths between populations, to
be determined [39]. However, since these models are averaged over time and often
represent the activity of many neurons as a single equation, they are unable to
address many questions that are likely to be very important for understanding basal
ganglia (dys)function. For example, averaged models cannot be used to study the
information carried by precise spiking patterns, or to unravel the role played by the
circuits formed between neurons of the same nucleus. Similarly, population-level
models cannot be used to investigate the effects of stimulation that has a varying
effect at different points in space within a particular nucleus, such as DBS.

Modelling of DBS

Deep brain stimulation (DBS) is a successful therapy for movement disorders such
as PD [64]. DBS has also been used to treat epilepsy, chronic pain, and, more
recently, psychiatric disorders (e.g. depression) and Alzheimer’s disease. Although
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it is widely accepted that DBS is an effective treatment, there remains a lack of
understanding of the fundamental neuronal mechanisms which underlie it [55].

Why do high frequency (>100 Hz) and high amplitude (several volts) electrical
pulses prevent the low frequency oscillations that are related to Parkinsonism?
Theoretical neuroscience plays an important role in solving this very difficult
problem, and can be used, for example, to model and visualize the spread of current
in three dimensional space near the tip of stimulating electrode [55], to study
oscillatory activity in BG circuits in healthy conditions and PD pathology [34, 35],
as well as to identify conditions for pathological synchronization and methods of
desynchronization [36]. It was shown that using mathematical and computational
methods of nonlinear dynamics is useful for study of neuronal mechanisms of DBS
and suppression of pathological brain rhythms [37, 38]. In general, computational
and mathematical modelling can be used to study the mechanism by which DBS
might de-synchronize or “reset” pathological rhythms, as well as how it might
repair connectivity within neuronal circuits that has been damaged by disease.

We now briefly illustrate the potential for computational approaches to improve
DBS treatment with one example that relates to our own work. The increase in use
and applications of DBS brings the desire to optimize the treatment in order to
maximize the benefit to the individual patient. For example by choosing the best
possible site for stimulation within a target region, or predicting the stimulation
parameters to maximize the beneficial effect and minimize unwanted side effects.
However, such optimization remains difficult as the mechanisms underlying the
clinical improvement induced by DBS remain unclear. It even remains unclear
whether these stimulating pulses are excitatory or inhibitory, and whether they
primarily affect cells or axons [65]. The technical challenges of directly visualizing
the current spread and effect on neurons is one obstacle to this process, and has led
to the alternative approach of using computational models to calculate the spread of
current around the DBS electrode and estimate the impact on the surrounding
neuronal structures [19, 33, 66, 67, 68, 69, 70, 71]. To date, the majority of such
studies focus on quantifying the region of tissue around the electrode in which
models of axons would be induced to fire action potentials with each DBS pulse
applied [72–74]. Such an approach has now been incorporated into the planning
software for DBS surgery offered by the medical device companies [75] (http://
www.vercise.com/vercise-and-guide-dbs-systems/guide-dbs/).

The studies of DBS tissue activation mentioned so far are focused on modelling
axons because they have a lower firing threshold than cell bodies [76]. We have
previously shown however, that DBS can cause changes in spontaneous firing of
model STN neurons which cannot be distinguished using axons [55, 77]. We used a
finite element model (FEM) to calculate the electric field induced by DBS in the
tissue surrounding an implanted electrode and applied this electrical potential dis-
tribution as a stimulus for multi-compartment neuronal models. The FEM approach
consists of defining a geometry, which in our case consisted of the implanted
quadripolar DBS electrode (model 3389, Medtronic, MN, USA) and a cylinder of

Oscillatory Neural Models of the Basal Ganglia … 161

http://www.vercise.com/vercise-and-guide-dbs-systems/guide-dbs/
http://www.vercise.com/vercise-and-guide-dbs-systems/guide-dbs/


surrounding homogenous brain tissue. The modelling package COMSOL Multi-
physics 3.3 (COMSOL AB, Stockholm, Sweden) was used to create, mesh and
solve the Laplace equation within this three-dimensional geometry.

The calculated potential was applied to a previously published compartmental
model of an STN projection neuron [52, 53]. The morphology of this model neuron
consists of a soma and three identical dendritic trees, totalling in 189 compartments.
The cell has both passive properties and a number of Hodgkin-Huxley based ionic
channels. We simulated the model using the software NEURON 7.2 [78] and we
used the set of parameters defined by Gillies and Willshaw [52, 53]. This model cell
is able to fire in two modes, a tonic or single spike mode and a bursting mode.

We found that in the tonic mode, when the cell spontaneously fires at a rate of
38 Hz, therapeutic DBS frequencies (100–150 Hz) drove the cell to fire action
potentials at the DBS frequency, whereas sub-optimal frequency stimulation could
not induce such a shift. In burst mode however, the relationship between DBS
frequency and firing frequency changed. A stimulus which can drive a neuron in
tonic mode to fire at stimulation frequency, can increase the firing frequency of the
bursting cell, but does not cause the same linear relationship. Interestingly, on the
offset of high frequency stimulation we found that the cell exhibited a silent period
where no action potentials were fired, and subsequently resumed spontaneous
bursting as before. We manipulated the ionic properties of the neuron and found
that in the absence of the Ih current the silent period following a period of stim-
ulation was absent.

Finally, we validated the model by estimate the region of tissue influenced by
DBS, i.e. how DBS can influence neurons located at different positions in the
surrounding region. We modelled 50 STN neurons as before in a 2-dimensional
grid. The cells were stimulated extracellularly using the calculated potential con-
volved with a time dependent square wave. For every position in this grid we
plotted the number of action potentials induced by the DBS. Simulating the clinical
parameter settings used for a Parkinsonian patient and plotting the results in a
patient specific anatomical model, we found that the region of tissue in which the
spontaneous neuronal firing was altered by DBS coincides with clinical observa-
tions of the optimal DBS site.

Results: Modelling of Action Selection via Partial
Synchronization in the Basal Ganglia

Population Level Modelling

Our paper [35] describes a population level model of two interactive populations:
one of excitatory STN neurons and one of inhibitory GPe neurons. Population level
modelling does not include detailed spiking activity; instead, only one variable is
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used to describe the average population activity. Thus, in our model we use a two
dimensional dynamical system: the variable xðtÞ represents the average activity in
the STN population and yðtÞ represents the average activity in the GPe population.
In particular, to describe population dynamics we use Wilson-Cowan equations
[79]. Connections between populations include:

• An excitatory connection from STN to GPe, with average connection strength
wsg;

• Self-inhibition of GPe neurons inside the population, with average connection
strength wgg;

• An inhibitory connection from GPe to STN, with average connection strength
wgs;

• Self-excitation of neurons in the STN population, with average connection
strength wss.

Thus, the following equations describe the STN-GPe dynamics:

τsx ̇= − x+ Zsðwssx−wgsy+ IÞ
τgy ̇= − y+ Zgðwsgx−wggyÞ,

ð1Þ

where, Zs, Zg are sigmoid functions for the STN and GPe populations respectively,
τs, τg are time constants for the STN and GPe, I is a constant external input to the
STN population, which we assume represents drive from the cortex to BG via the
hyper-direct pathway. Some parameter values of the model were chosen on the
basis of our previous studies of the Wilson-Cowan model [61] and some from
another population-level model of the BG [63]. Nevado-Holgado et al. [63]
determined two sets of parameter values, corresponding to healthy and Parkinso-
nian conditions, and we also use these two sets of values.

As it was already reported by several modelling studies (see e.g. [62]) there is a
puzzling question about the value of the parameter wss. Experimental data does not
confirm any significant self-excitation in STN population, i.e. it is likely that there is
no self-excitation in the population of STN neurons (wss =0). If we assume this
condition is true then it is possible to prove that no oscillatory regime exists.
However, we have reported above that there are many experimental and clinical
studies which demonstrate oscillations both in healthy and Parkinsonian cases, for
example, oscillations in beta range have been considered in many papers as a
correlate of Parkinsonian conditions. Thus, the puzzle is: how can oscillations
appear in the STN-GPe model if there is no excitatory self-connectivity in the STN?

To solve the puzzle, Holgado et al. suggest including synaptic connection delays
into the model. From mathematical point of view this suggestion means considering
a system of delayed differential equations (DDEs) instead of ordinary differential
equations (ODEs). It is known that systems of DDEs have a wider repertoire of
dynamical modes than systems of ODEs. For example, in a one dimensional ODE
system oscillations are not possible but in a one dimensional DDE system they are.
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A disadvantage of this approach is that experimental data on connectivity delays is
mostly unknown. Therefore we prefer to use a system of ODEs for building our
oscillatory model of the BG.

Another approach was been used in Gillies et al. [62], where it was suggested
that there STN self-connections exist but are rather sparse and therefore difficult to
find in experiments. To clarify this possibility we use the bifurcation analysis of our
ODE model, assuming that all parameters are fixed except the strength of the
external cortical input to the STN population (I) and the strength of STN
self-excitation (wss). We found that there is a minimal threshold value wTHR for the
existence of oscillations: if wss <wTHR then oscillations are not possible (Fig. 2
Bifurcation diagram for the two dimensional model consisting of an STN and GPe
population, under Parkinsonian conditions. Oscillations are possible for parameter
values inside the regions C and D). However, for wss >wTHR there are regions in
parameter space where stable oscillatory activity is possible (regions C and D in
Fig. 2). While our modelling suggests that the oscillatory regime dominates for
Parkinsonian parameters, oscillatory regions do not exist or are very small when the
healthy parameter values were used.

Based on our study of dynamical regimes, we suggest a new solution for the
puzzle of oscillatory activity in STN-GPe. We assume that populations of STN-GPe
neurons are organised in such a way that they can be considered as a collection of
interactive “micro-channels”. This channel hypothesis is popular and it has been

NO OSCILLATIONS IN THIS REGION

Fig. 2 Bifurcation diagram for the two dimensional model consisting of an STN and GPe
population, under Parkinsonian conditions. Oscillations are possible for parameter values inside
the regions C and D
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used to describe movement control in the BG [47, 48, 80, 81]. Thus, we consider
our model of two populations as a model of sub-populations of STN-GPe and call it
as a micro-channel model. We assume that there is no self-connectivity in the STN
(wss =0) and, therefore, a single micro-channel model cannot generate oscillations.

To generalize the BG model, we consider N micro-channels and include local
interaction between them. To introduce local coupling between micro-channels we
assume that all channels are located either on a line (with mirroring conditions for
two ending micro-channels) or a circle (therefore, there are no ends). Also, we
assume that all micro-channels are identical and each channel is coupled with the
right and left neighbors with the same connection strength α. Thus, interactions
between micro-channels is characterized by one parameter α. The following
dynamical system describes the dynamical behavior of the interactive
micro-channels’ activity:

τsxk̇ = − xk + Zsðwssxk −wgsyk + IkÞ
τgyk̇ = − yk + Zgðwsgxk −wggyk + αðyk − 1 + yk+1ÞÞ, k=1, . . .N,

ð2Þ

where α is the local connection strength for the neighboring GPe populations; all
other parameters and functions have the same meaning as in the system (1). For the
case of populations on a line, the two channels at the beginning and the end
(k=1, k=N) receive double coupling from existing neighbors, for the case of
populations on a circle, the index k is considered modulo-N. For parameter values
and sigmoid function specifications see [35].

If α=0 then the channels are independent and there are no oscillations in the
network. If coupling between channels is weak then the oscillation are also absent.
However, if the connection strength between micro-channels increases then oscil-
lations can appear. For α> αcr oscillations appear in the system of coupled channels
and the critical parameter value αcr corresponds to a supercritical Andronov-Hopf
bifurcation in the system with symmetry.

The homogeneous system of coupled micro-channels demonstrates an interest-
ing behavior. Figure 3a–c show the activity in STN populations when 799 channels
arranged in a line with connection strength α=1 are simulated. Due to coupling, the
end points of the system begin to oscillate (Fig. 3a) and oscillations propagate
along the line from both ends (Fig. 3b) resulting in a complex spatio-temporal
pattern of population activities (Fig. 3c).

The parallel channel hypothesis of the BG [80] assumes that a set of particular
channels can be considered as a “code” of some movement and the activation of a
set of channels results in the movement execution. Therefore, a non-homogeneous
system of interactive parallel channels is a good candidate for modelling of action
selection. Of course, the separate channel should be complex enough and should
include an oscillatory mode. Thus, the first step in developing a neural network
model for action selection is to find a model of an “oscillatory channel” which can
be used as an elementary unite for building a network. We suggest that the system
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of two interactive micro-channels is the simplest possibility to compose the oscil-
latory channel: two pairs of STN-GPe populations coupled by inhibitory connection
between the GPe subpopulations (see Fig. 4). This system is able to generate
oscillations; therefore, we call it an oscillatory channel and the following equations
describe the dynamics:

τsxl̇ = − xl +Zsðwssxl −wgsyl + IÞ
τgyl̇ = − yl +Zgðwsgxl −wggyl + α yrÞ
τsxṙ = − xr + Zsðwssxr −wgsyr + IÞ
τgyṙ = − yr +Zgðwsgxr −wggyr + α ylÞ,
x= xl + xr; y= yl + yr ,

Here indexes l, r relate to the left and right populations, respectively; all
parameters and functions are the same as above; xðtÞ, yðtÞ are the output oscillatory
channel activities for the STN and GPe respectively.

Figure 4 shows the oscillatory channel where the excitatory output is the sum-
med activity of two STN populations (red curve) and the inhibitory output is the
summed activity of two GPe populations. Figure 5 shows dynamics of output
activities of the oscillatory channel: the total excitatory activity of STN populations
versus time (xðtÞ in red) and the total inhibitory activity of for and GPe populations
versus time (yðtÞ in blue).

Fig. 3 Activities of 799 STN populations shown at different times. a Time near beginning of
simulation. b Later in the simulation, when activity has almost propagated from the end points to
the centre. c Even later in the simulation, showing complex activity of interactive channels
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Figure 6 shows some additional details on micro-channel activities: STN pop-
ulations of two microchannels oscillate in antiphase as do those in GPe populations.

Partial Synchronization as a Mechanism for Action Selection

Our oscillatory model of action selection employs a mechanism of partial syn-
chronization. It was shown both experimentally and theoretically that partial syn-
chronization between oscillating neural entities can be found in many brain
structures and this mechanism can be considered as an important theoretical concept
for understanding of many cognitive processes [31].

The model design is based on the following hypotheses. (1) We consider a set of
oscillatory channels with different frequencies. Selection of some particular action
corresponds to a partial synchronization of oscillatory channels, i.e. a small set of
oscillatory channels demonstrate synchronous activity (the same frequency of
oscillations) but all other oscillate with different frequencies. (2) The mechanism of
partial synchronization is based on interaction of oscillatory channels with a special

Fig. 4 Graphical
representation of oscillatory
channel: left and right pairs of
mini-channels are coupled by
inhibitory connection between
GPe populations; the output
excitatory activity from the
STN is shown by the red
wave, and the output
inhibitory activity from the
GPe is shown by the blue
wave
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Central Oscillator (CO) which is itself an oscillatory channel. Figure 7 shows a
diagram of the network with a CO which is shown at the top. This CO influence
activities of all other oscillatory channels and they also influence the activity of the
CO. Thus, the CO is coupled by mutual connections with each oscillatory channel.
This type of connectivity is referred to as a star-like neural network (SLNN).
(3) The activity dynamics of the CO depends on the total activity of all oscillatory
channels. Also, the activity dynamics of each oscillatory channel depends on the
activity of the CO. The following equations describe the dynamics of the system:
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τsxĊOl = − xCOl +ZsðwssxCOl −wgsyCOl + I − β1 ∑
N

k=1
yk Þ

τgyĊOl = − yCOl +ZgðwsgxCOl −wggyCOl + β2 ∑
N

k=1
xk − β3 ∑

N

k=1
ykÞ

τsxĊOr = − xCOr + ZsðwssxCOr −wgsyCOr + I − β1 ∑
N

k=1
ykÞ

τgyĊOr = − yCOr +ZgðwsgxCOr −wggyCOr + β2 ∑
N

k=1
xk − β3 ∑

N

k=1
ykÞ

xCO = xCOl + xCOr , yCO = yCOl + yCOr,

τsx ̇kl = − xkl + Zsðwssxkl −wgsykl + I − γ1 yCOÞ
τgy ̇kl = − ykl + Zgðwsgxkl −wggykl + γ2 xCO − γ3 yCOÞ
τsx ̇kr = − xkr + Zsðwssxkr −wgsykr + I − γ1 yCOÞ
τgy ̇kr = − ykr + Zgðwsgxkr −wggykr + γ2 xCO − γ3 yCOÞ
xk = xkl + xkr , y

k = ykl + ykr , k=1, 2, . . . ,N,

where the CO variables xCOl, yCOl, xCOr , yCOr describe activities of STN and GPe
populations for left and right micro-channels of the CO, respectively; variables
xkl , ykl , xkr , ykr describe activity in the STN and GPe populations for left and right
micro-channels of the kth oscillatory channel; parameters β1, β2, β3 describe
connection strengths from the oscillatory channels to the CO; parameters γ1, γ2, γ3
describe connection strengths from the CO to each oscillatory channel; other
parameter have been specified in Eq. (1).

The results of model simulations are shown in Figs. 8 and 9. First we consider a
set of 50 uncoupled oscillatory channels with different values of parameter wgg.
These values are distributed in the range [a, b]. Figure 8 shows the one-to-one
correspondence between the coupling parameter wgg of an oscillatory channel and
its frequency of oscillation. The horizontal axis shows the number of the oscillatory
channel, with the channels ordered such that the coupling parameter wgg increases

Fig. 7 Star-like architecture of interactive oscillatory channels
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with the channel number. The vertical axis shows the frequency of oscillations,
which monotonically decreases.

Figure 9a–d shows results of SLNN simulations. Each panel of this figure
corresponds to some particular frequency of CO and a group of oscillatory channel
is selected to be in synchrony with the CO. The partial synchronization mode means
that a selected group of oscillatory channels has the same frequency as the CO but
all other channels oscillate with different frequencies. Figure 9a–d show the effect
of increasing the natural frequency of the CO, such that a group of oscillatory
channels with frequencies close to the frequency of the CO become synchronous
with it.

Conclusions

Our study of the dynamics of oscillatory neuronal network comprised of excitatory
and inhibitory populations demonstrated that an oscillatory regime is stable and
exists for a broad range of parameter values, particularly under Parkinsonian
conditions. Bifurcation theory allows us to study dynamical modes under parameter
variation and provides a valuable correspondence between regions in parameter
space and the rhythmic activity of some particular frequency. In fact, the parameter
space can be partitioned into zones of rhythmic activities in a particular band: a
region of alpha-rhythm, a region of beta-rhythm, etc. These results provide the
possibility of controlling both the dynamical mode and the frequency of oscilla-
tions, as well as finding the parameter values that correspond to desirable dynamics.
Our study shows that the regime of partial synchronization could be of interest for

Fig. 8 Frequency distribution
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modelling motor control and action selection. Further work should be done on
frequency-phase action coding.

The model presented in this section was based on population-level modelling of
the nuclei within the basal ganglia, where the underlying rhythms relating to action
selection were generated within the BG themselves. In the next section we will
demonstrate another model for action selection via partial synchronization in the
basal ganglia that is instead based on spiking neurons. In this model, the oscillations
that select actions are assumed to arise in the cortex, and act to synchronize neurons
in the basal ganglia to select particular output channels.

Action Selection via Partial Synchronization in a Spiking
Model of the Basal Ganglia

Phase Locking and Arnold Tongues

Much of the present study in physiology focuses on oscillatory activity at different
frequencies that arises in various regions in the brain. According to Smeal et al.
[82], a large body of evidence suggests that such rhythms are generated by syn-
chronized neural activity that results from functional connectivity between neurons.
According to Timmermann et al. [83], “it is widely agreed that excessive syn-
chronizations are linked to the motor symptoms of PD”. Moreover, “partial
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synchrony in cortical networks is believed to generate various brain oscillations,
such as the alpha and gamma rhythms” [84].

From a mathematical point of view we can model a single neuron in the absence
of noise as non-linear oscillator. This assumption may seem unrealistic but there is
experimental evidence to support it [82]. Furthermore, Izhikevich [84] was able to
reproduce a huge variety of different firing patterns from a system of only two
non-linear ordinary differential equations, simply by changing the parameters that
govern the equations.

One of the simplest cases of synchronization in oscillatory regimes can be
observed in a self-sustained oscillator driven by an external force. Such mecha-
nisms can describe many biological phenomena that can be observed in nature, such
as synchronization of clocks that govern the circadian rhythm [85] or simultaneous
flashing of fireflies [86]. Assuming the frequency of forcing is close enough to the
oscillator’s intrinsic frequency, the steady state solution of a periodically-forced
oscillator is synchronous with the periodic input. Under this condition the phase
difference of the two oscillators approaches a constant value—this is a stable fixed
point of the system. In dynamical system theory the oscillator in this state is called
phase-locked, because its frequency is locked to the forcing frequency.

We can extend the concept of phase-locking to two neurons coupled by single or
multiple synapses. It is important to note that phase-locking does not necessarily
mean that the two cells are firing at the same time, but rather they may fire with
some constant delay between spikes. However, when a subset of spiking neurons in
a population have similar phases and are phase-locked to the same periodic force
they will fire in unison. We will call such behavior partial synchronization.

Synchronization in a periodically forced oscillator may also appear at other
frequencies besides the one close to the driving frequency. In fact, we can gener-
alize the concept of phase-locking when the ratio between the period of the force
and the period of the oscillator is a rational number. We will say that a forced
oscillator with period T is p:q—phase-locked to the force with period Tf if
pT ≈ qTf where p and q are positive integers. If the period of forcing (Tf) is kept
constant then two parameters affect the ability of an oscillator to phase-lock: the
strength of the forcing input (k) and the oscillator’s intrinsic period of oscillation
(Ti). For each pair p, q we may thus calculate the region in the ðk, TÞ parameter
space where p:q phase locking occurs; these regions are called Arnold tongues.

Phase locking can appear also in maps that act as non-forced oscillators. Let us
consider a simple example: the circle-map. In dynamical systems a map is defined
as an equation with discrete times, and it can be represented through an evolving
sequence θ= θnf g+∞

n= 1. The circle map is a particular θ that solves:

θn+1 = θn +Ω−
K
2π

⋅ sin 2πθnð Þ mod 1

Starting from a fixed initial value θ0, mod is the standard modulo operator, Ω
and K are system parameters. The sequence θ represents the angle variation over a
circle. We define rotational number:
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r= lim
n→ +∞

∑n
i=1 θi
n

Thus p:q—phase-locked Arnold tongues are defined as a region in the space of
parameters where there the system solution has is locally constant rotational number
r= p q̸. In Fig. 10 the different coloured regions indicate the different rotational
numbers obtained by varying Ω, Kð Þ∈ 0, 1½ �× 0, 2π½ � are shown. Some values of the
rotational number in Fig. 10 are rational, and eventually are surrounded by other
equal values of r, in this case, they will form an Arnold tongue region in the
parameter space.

Cellular Model

The basal ganglia are a group of subcortical brain areas thought to play a role in
action selection. Here we investigate the role of interplay between neurons in the
subthalamic nucleus (STN) and those in the internal segment of the globus pallidus
(GPi). We used a simple Izhikevich model of spiking neurons with class 1
excitability [42] for all neurons. This model is computationally tractable yet still
reproduces two important features of basal ganglia neurons: excitability and spiking
behaviour. We will not discuss in detail the validity of the model in the description
of the neural dynamics (for a deeper insight see [42]).

The model consists of two populations of neurons representing the STN and
GPi, containing Ns =200 and Ng =25 neurons respectively. Each unit is modelled
according to the two dimensional Izhikevich model, where the equations governing
the dynamics of neuron i are:

V
0
i =0.04V2

i +5Vi +140− ui + Ii + Iext + Isyn + ηi

u
0
i = a bVi − uið Þ

Vi >30:Vi←c; ui←ui + d

We used standard values for all the parameters (a=0.02, b=0.2, c=
− 65, d=6), which correspond to neurons that are normally quiescent and have

Fig. 10 Colored plot of the rotational number r for circle map at varying Ω in ½0, 1� (horizontal
axis) and K in ½0, 1 2̸π� (vertical axis). Not every value of r corresponds to a rational number, and
thus to an Arnold tongue
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class 1 excitability according to Izhikevich’s classification. The term Ii corresponds
to a constant external current that is different for each neuron and has the effect of
giving each neuron a different intrinsic spiking frequency. The term Iext, which is
defined more fully below, is the oscillatory forcing input that is identical for each
neuron in a population. Isyn represents the sum of all the synaptic currents flowing in
neuron i. Finally, ηi is a Brownian input of white noise. Initially we set ηi = 0 to
consider the simpler deterministic case as this makes it easier to determine the
different partial synchronization regimes, but we will later add noise to obtain more
realistic results.

In the model, we choose values of Ii for the STN population uniformly from the
range 4–7, so that without external input the STN units all spike independently,
with a linear range of frequencies from 7–18 Hz that is similar to the range of
spiking frequencies seen experimentally in monkeys [13]. In this model we con-
sider the STN neurons as being arranged on a line, with the injected current (and
therefore frequency of spiking) varying monotonically along the line. For GPi
neurons we set Ii = 0, so that the neurons in the GPi do not intrinsically spike.
Figure 11 shows the intrinsic spiking activity of the STN population.

In order to simulate oscillatory cortical input to the STN we apply an identical
external current comprising multiple frequency components to all STN neurons:

Iext = ∑
j
aj sin 2πωjt

� �

where aj and ωj are the amplitude and frequency of oscillatory component j,
respectively. For the GPi neurons we set Iext = 0.

Fig. 11 STN spiking activity without external input. Left Raster plot showing each neuron’s spike
train. Right The intrinsic spiking frequency of each STN neuron
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Synaptic Transmission

Each STN neuron makes an excitatory synapse onto one GPi neuron in a uniform
manner, such that each GPi neuron receives Ns

Ng
=8 synapses. Like in the STN, we

also consider the GPi units to be arranged on a line, with the STN → GPi pro-
jection organised in a topographical fashion, such that each GPi neuron receives
input from a group of STN neurons that are adjacent to each other (and therefore
have similar intrinsic spiking frequencies). Additionally, since there is biological
evidence for inhibitory synaptic connections between nearby neurons in the globus
pallidus [44], model GPi neurons receive inhibitory connections from their Ngg =4
neighbouring neurons on each side (Fig. 12).

For both excitatory and inhibitory connections we used standard exponential
chemical synapses. The total synaptic current flowing at each time t in neuron i is
given by:

IsynðtÞ= IE + II = gEðtÞ Erev − vðtÞð Þ− gIðtÞ Irev − vðtÞð Þ

where Erev =0mV and Irev = − 80mV are the reversal potentials, and determine if
the synapse is inhibitory (I) or excitatory (E). We initially set gE = gI =0. If two
cells are connected through a synapse of type x (where x is E or I), the postsynaptic
response in neuron j in following each presynaptic action potential from neuron i
arises by an increment of the conductance gx ← gx +wx, where wx is a parameter.
The synaptic conductance follows an exponential decay determined by equation:

g
0
E = − gE

τE

g
0
I = − gI

τI

(

Fig. 12 Overview of the
populations in the model and
their connections
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Here τx is the decay time of each synapse. Each STN neuron i can form exci-
tatory synapses onto the output GPi units. We scaled the excitatory impact of STN
units according to their intrinsic frequency using the following procedure: We fixed
the maximal weight w1

x and decay time τ1x for the highest frequency STN unit and
we scaled these values down uniformly with decreasing frequency, reaching min-
imum weight w2

x =w1
x − 0.15 and decay time τ2x = τ1x − 0.015 for the lowest fre-

quency STN unit.
For the moment we do not specify the values of w̄x and τ ̄x because we will

discuss them later in more detail, and show that they play a very important role in
the switching time between selected actions.

Software

Simulations of unconnected periodically forced Izhikevich oscillators were per-
formed in MATLAB (MathWorks, Inc), while simulations of connected neural
networks were developed in NEURON [78] interfaced with Python [87].

Results

We first studied the effects of a cortical input with a single sinusoidal oscillatory
component Iext = a0sinð2πω0tÞ on the STN population under a deterministic regime.
With this forcing input applied to each of the STN neural oscillators, the system
produces regions of partial synchronization with a set of p:q—phase-locked regions
for any fixed input frequency. Each STN neuron remains an oscillator under forcing
but its period of oscillation may be different to its intrinsic period. When the period
of oscillation of an STN neuron is such that it completes p cycles for every q cycles
of the forcing signal, we describe that neuron as being p:q phase-locked. In Fig. 13a
we show three phase-locked regions found with fixed ω=16.5 and a0 = 0.1. Fig-
ure 13b shows plots against time and phase portraits from STN neurons in the
different phase-locked regions.

Arnold tongues illustrate the multiple synchronizations found in STN cells
depending on their intrinsic frequencies. The Arnold tongue diagrams in Fig. 14
helps us to visualize the different areas of partial synchronization obtained for three
different external frequencies in STN neurons at varying external amplitude.

Each colored region in Fig. 14 corresponds to a partial synchronization region,
showing that a single frequency cortical input can synchronize multiple groups of
STN neurons depending on their intrinsic frequencies. Increasing the input oscil-
lation amplitude expands each 1:1 phase-locked region (orange colour), squeezing
together the other p:q locked regions. Changing the forcing frequency shifts the
phase-locked regions up and down, whilst largely preserving the total area of each
region. Arnold tongues provide a useful tool for determining the correct parameters

176 R. Merrison-Hort et al.



to obtain a desired number of synchronized cells. The Arnold tongues suggest that
neurons with intrinsic frequencies above that of the forcing input cannot become
synchronized, and this appears to be a universal property.

Fig. 13 a Activity in STNs using a single sinusoidal input with parameters ω=16.5, A= 0.1.
Three regions of partial synchronization appear, corresponding to different p and q values. b A
member of each locked region is represented with the plot of v, u and Iext. In order to make u and
Iext visible in the plot they were multiplied by values 5 and 120, respectively. A small rectangle
points out the period of q input oscillations and the number of p spikes in such period. The phase
portrait of the two solutions u and v shows the correspondence between the number of p-cycles
and the value p in the phase-locking

Fig. 14 Phase-locked regions of Arnold tongues. Each colour represents a single p:q pair for three
different values of external frequencies: 16.5, 13.75 and 11 Hz. The horizontal axis shows the
strength of external forcing and the vertical axis shows the STN number (arranged in order of
increasing intrinsic frequencies). The biggest colored region (orange) of partial synchronization
corresponds to 1:1 locking. From the plot with external frequency of 11 Hz we notice that no
Arnold tongues are present above the 1:1 locking region. Decreasing the external frequency
doesn’t change the area of the 1:1 region, but shifts the synchronized regions downwards while
slightly squeezing together the other phase locked regions
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For example, Fig. 15 shows a simulation with a large number of neurons that
have intrinsic frequencies above that of the input, yet none of these neurons become
synchronized. As we will show shortly, this feature is no longer true when the
forcing input contains multiple frequency components.

The phenomena of partial synchronization may lead to the selection of different
channels via activation of GPi units. We now add the GPi units into the network, by
defining non-zero weights for the excitatory and inhibitory connections. We chose
maximum weights w1

I = − 2, w1
E = 1.2 and decay times τ1I = τ1E = 0.1. We also added

the white noise component ηi ∼Nð0, σ2Þ to STN cells, where Nð0, σ2Þ represents a
Brownian random variable. We choose the value of σ2 ranging from 0.002 to 0.01,
such that lower-frequency neurons receive weaker noise than higher frequency ones.

Fig. 15 Raster plot of 2000
STN units forced by a
16.5 Hz single-frequency
sinusoidal force with
amplitude of 0.12. The STN
have frequencies ranging
from 0 Hz (bottom) to 40 Hz
(top). No phase locked units
appear in cells with frequency
above 16.5 Hz. This
important property is not
maintained when we have
inputs with multiple
frequency components
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In our model actions are selected via activation of groups of GPi neurons, which
we assume belong to different “channels” of information flow through the basal
ganglia. Figure 16 shows the spiking activity of the same network of STN and GPi
neurons in response to a single-frequency (16.5 Hz) oscillatory input of varying
amplitude. When the amplitude is low (bottom panel), two small groups of partially
synchronized STN neurons appear via 1:1 and 1:2 phase-locking, and their syn-
chronized firing activates two groups of GPi neurons. GPi neurons with
above-average firing rates are considered “activated”, and are indicated by the solid
black bar on the far right of the figure. However, at higher amplitudes a
single-frequency oscillatory input can give rise to other selected channels’ com-
binations, as shown in Fig. 16 (top panel). This follows from the result of the
Arnold tongue diagrams shown in Fig. 14, as these showed that multiple
phase-locked groups of STN neurons can appear for a single oscillatory input if the
input amplitude is big enough.

We now consider external inputs that contain multiple frequency components.
Figure 17 shows how an input containing two, three or four frequency components
can select groups of GPi neurons. The strength of the oscillatory input in Fig. 17
was chosen such that in each case the selected neurons in the GPi are activated by
groups of STN neurons that are in 1:1 phase-locked synchronization. The ability to
select multiple combinations of output channels in response to mixed-frequency
input may be the basis of action selection in the basal ganglia.

Fig. 16 A single-frequency (16.5 Hz in this case) oscillatory input can give raise to multiple
synchronization regions, in agreement with the Arnold tongues. The bars on the far right of the
figure show which GPi neurons are considered selected, which is defined as those that have an
above-average firing rate. An input amplitude of 0.6 selects only two clear output channels despite
the high number of different p:q phase-locked regions in the Arnold tongue diagram (Fig. 14),
while an amplitude of 0.35 selects three channels. Unsurprisingly, the size of the channels (number
of GPi neurons recruited) increases with the amplitude of forcing
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Arnold tongues are determined using a deterministic regime, but they can still
give us an idea of how many different channels may be open in a stochastic
approach and predict the amplitude required for synchronizing a desired amount of
cells. A small amount of white noise preserves the mean number of partially
synchronized cells identified by the tongues. If this number is sufficiently high, the
STN excitatory strength will activate a single channel in the GPi neurons.

As in the single frequency case, regions of partially synchronized STN units in
phase locked regimes other than 1:1 can cause additional channels to be selected. To
investigate this, we calculated Arnold tongue diagrams for the case with multiple
forcing frequency components. Figure 18 shows Arnold tongues for an external
input that has two frequency components: 16.5 and 13.75 Hz. In this figure there are
400 STN units with intrinsic firing rates from 0 to 40 Hz. Arnold tongues were
computed according to the definition of p:q–phase locking, considering the two
input periods separately to produce two diagrams. The shapes of the Arnold tongues
in Fig. 18 are the same for the two frequencies, since each neuron is forced by both
frequency inputs, thus its period is a multiple of both the two-forcing periods.
However, the values of p and q for any given region differ between the two plots. For
example, the biggest region of partial synchronization (green on the left, dark blue on
the right) corresponds to 1:1 phase–locking for the 16.5 Hz component of the input
and to 6:5 phase–locking for the 13.75 Hz component 13.75. The second biggest
region (cyan on the left, sea green on the right) correspond to 1:1 phase–locking for
the 13.75 Hz component and 5:6 phase–locking for the 16.5 Hz component.

Fig. 17 A single forcing input with multiple frequency components having the same amplitude of
0.12 activates multiple GPi “channels” via partial synchronization. This figure shows, from top to
bottom, the activation of two, three or four output channels by an oscillatory input containing two,
three or four frequency components. The number of active channels is in one to one
correspondence with the number of forcing frequencies
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The two main regions of partial synchronization thus correspond to 1:1
phase-locking in the case of two forcing frequencies, which is similar to the results
in Fig. 14. However, these regions have decreased area compared to the
single-frequency case and they squeeze together, forming more tongues in between
them. Also, in contrast to the single-frequency component case, other Arnold
tongues appear for intrinsic frequencies higher than the biggest phase-locked
regions, leading to more complex situations. The input signal coming from the
cortex is likely composed of many frequency components and amplitudes, thus our
consideration of only single and double frequency input is a simplification. Nev-
ertheless we discovered that big regions of 1:1 phase-locking are preserved for each
frequency, and their impact on GPi units is maintained even a noisy regime.

Finally, we consider the time taken to select different channels in the output GPi
population. Physiologically, the switching time between different actions is thought
to be in the order of hundreds of milliseconds [88].

We investigated the effects of synaptic weights and decay time constants on the
time taken to switch between sets of activated channels. Specifically, we varied the
maximal weights and decay times for the excitatory synapses, and looked for
changes in the action selection time. Figure 19 shows four different activated
channel switches and each switch takes approximately 400 ms, here we use the
fixed coupling strength and decay time: w1

E; τ1E
� �

= ð0.5, 0.16Þ.

Fig. 18 Two forcing frequencies Arnold tongues. Values for p and q are computed from the
definition of p:q phase-locked regions using each of the two frequency components. The left figure
shows Arnold tongues calculated in relation to the 16.5 Hz component of the input, and the right
figure shows Arnold tongues for the 13.75. The shapes are equal, but the values of p and q differ
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Figure 20 demonstrates that increasing the maximum excitatory conductance
and decay time of synapses decreases the switching time. The switching time was
calculated as the first firing of the GPi units (having indexes in the set Ω) with
closest intrinsic frequency to the switching forcing frequency in the deterministic
case, so that we avoid sporadic situations caused by noise. Moreover, in order to
obtain a correct comparison we maintained the same noise for different values of
synaptic conductance and decay time. We define the vector of spike timings for

Fig. 19 Changing selected channels by switching the forcing input. Each coloured region
corresponds to a different input frequency, which changes every 6 s. The amplitude is fixed at 0.12
for the entire simulation time. In this simulation w1

E; τ1E
� �

= ð0.5, 0.16Þ

Fig. 20 Decrease in action-selection switching time at varying excitatory strength (top) and decay
time (bottom). The values of conductance w1

E vary in the interval [0.6, 0.75] with fixed maximal
decay time 0.12. The decay times τ1E vary in the interval [0.11, 0.165] with fixed maximal
conductance 0.65. The simulation lasts 12 s. The switch takes longer than a second with low w1

E
and τ1E, but we can achieve realistic results increasing ge and τe. The amplitude of the forcing
oscillator is of 0.12 for the entire simulation, while the frequency switches from 14 to 10 Hz at 6 s.
The set Ω= f3g contains the index of the GPi unit excited by most STN units with intrinsic
frequency closer to 10 Hz used in the calculation of the switching time
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each unit i (i.e. spike train) as spki, so that the formula used to calculate the
switching time has the form:

tswitch = min min
t

spki tð Þ: t≥ tstop
2

n o
: i∈Ω

n o

Discussion

We are interested in oscillations arising in the firing rate neuronal activity of the
basal ganglia, since experimental evidence has shown that excessive oscillatory
synchronization is positively correlated with the symptoms of Parkinson’s disease
[63]. Moreover, oscillations are thought to play a fundamental role in the functional
physiology of the basal ganglia [22].

In the past years several computational models were developed that reproduced
pathological oscillations in the basal ganglia. Different approaches showed how
oscillations can be generated either intrinsically within the basal ganglia circuitry
[44, 89] or extrinsically by an oscillatory input coming from an external source,
such as the cortex. Experiments on rats by [90] suggest that increase low-frequency
oscillations in the STN and GP are due to inappropriate processing of rhythmic
cortical input. Ebert et al. [89] included STN self-excitation in their model, but
experimental evidence [91] shows that STN axonal arborisation is not self-targeted,
but rather it projects into the globus pallidus (either external or internal part), the
substantia nigra pars reticulata and the striatum. Terman et al. [44] focused on the
interplay between STN excitation on the GP units and the back-inhibition on the
STN from the GP combined with STN strong hyperpolarization during
back-inhibition.

Here we have presented a model in which an oscillatory cortical input partially
synchronizes unconnected STN neurons, and consequently selects different combi-
nations of output channels in the GPi through excitation. Our results support the idea
that the input coming from the cortex could be separated into multiple frequency
components, where the dominant components (higher amplitudes) would influence
the STN by creating regions of partial synchronization, and consequently activating
combinations of different channels on the output GP. We assumed the existence of
inhibitory connections between GPi units, because there is evidence for
self-inhibition in the GPe [49] but similar data for the GPi is lacking. However, this
feature is not a critical part of themodel, and similar results can be achievedwithout it.

Switching time of new actions is strongly dependent on the synaptic strength and
decay time, and we were able to find a proper set of parameters that fit the realistic
switching time [88]. Future development of the model could study how dopamine
input influences the switching time of new actions and compare parkinsonian (lack
of dopamine) conditions to healthy ones. Experimental evidences suggest that
dopamine increases the activity in the inhibitory GPe projection on the STN [92],
and the activity in the STN neurons is consequently reduced [90]. According to
Nevado-Holgado [63], advanced Parkinson’s disease increases specific synaptic
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weights in the basal ganglia, in particular the increase in the STN excitation towards
the GP. According to this predictions our results would demonstrate that switching
time of new actions would much faster during the Parkinsonian state. Drastic
increases of synaptic conductance and decay time lead to almost instantaneous
switching. If we further increase the synaptic strengths (g1E and τ1E) becomes too
high and we do not clearly recognize which channels are selected. Thus Parkin-
sonian conditions may lead to critical values of synaptic strengths in which the
selection of new actions are hardly processed by the brain. This may be related to
the motor symptoms of the disease.

Take Home Message for Neurologists

Although oscillations may play a physiological role in the basal ganglia in terms of
action selection, the oscillatory nature of basal ganglia activity can reveal many
pertinent features of Parkinson’s disease pathology, as shown by electrophysi-
ologcal recordings and discussed in section “The Basal Ganglia and Parkinson’s
Disease”. Using biologically realistic computational models to understand the
dynamics of the pathological activity and to visualise the effects of treatment has the
capacity to directly aid the clinician. Such studies can then allow one to explore
how to minimise the pathological activity and promote healthy activity (sec-
tion “Results: Modelling of Action Selection via Partial Synchronization in the
Basal Ganglia”). In particular, computational modelling can visualise and clarify
the effect of deep brain stimulation on neurons in the basal ganglia and compare
how different stimulation settings change the neuronal firing patterns. Using such
models in the clinic would highlight for clinicians what stimulation paradigms can
maximise therapeutic benefit while minimising side effects, energy use and damage
at the interface (section “Modelling of DBS”). Such work is already underway,
with patient-specific models being built into DBS planning software, and therefore
directly integrated with the hardware. The use of DBS extends to the treatment of
an increasing number of neurological and psychological disorders, for example,
recent work from our group has looked into the thalamocortical cerebellar network
and examined the oscillations of the network in essential tremor. In the future, such
computational models could be used routinely, pre-, intra- and post-operatively to
aid the entire clinical process. Aside from this clearly very practical benefit, the
results presented in section “Results: Modelling of Action Selection via Partial
Synchronization in the Basal Ganglia” show how computational modelling allows
hypotheses how about activity (both physiological and pathological) in the basal
ganglia might arise. In the longer term, the understanding of the basal ganglia and
PD that such models give us might permit even more advanced novel treatments to
be developed.
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Take Home Message for Computationalists

Both experimental and theoretical studies strongly support a concept of oscillatory
neural activity in the basal ganglia. Irregular and regular oscillations of different
frequencies, synchronised, coherent and not synchronised can be observed both in
healthy and pathological cases (section “The Basal Ganglia and Parkinson’s Dis-
ease”). The goal of computational modelling in this respect is to clarify the cor-
respondence between oscillatory dynamics and the functional state, be it healthy or
pathological. These computational studies aim to reveal the neuronal mechanisms
of movement and action selection both in the healthy brain, to try to understand
how these mechanisms go wrong in disease (section “Results: Modelling of Action
Selection via Partial Synchronization in the Basal Ganglia”). Our modelling of
oscillatory dynamics shows that partial synchronization is a powerful theoretical
approach and can be used for formulation of new theories on brain functioning. In
particular, we demonstrate how partial synchronization can be applied to model the
action coding and movement selection in the healthy and parkinsonian basal gan-
glia. Furthermore, we have discussed the important role of patient-specific models,
taking into account individual differences in anatomy, or oscillation frequency or
for DBS in electrode location (section “Modelling of DBS”). These subtle differ-
ences can have an important impact if we are to use such models to optimize
therapy on a patient-to-patient basis.
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Mathematical Models of Neuromodulation
and Implications for Neurology
and Psychiatry

Janet A. Best, H. Frederik Nijhout and Michael C. Reed

Introduction

Mathematical models can test hypotheses of brain function in health and disease and

can be used to investigate how different systems in the brain affect each other. We

are particularly interested in how the electrophysiology affects the pharmacology

and how the pharmacology affects the electrophysiology of the brain. Thus, many of

the questions we address are on the interface between the electrophysiological and

pharmacological views of the brain.

The human brain contains approximately 1011 neurons, each of which makes on

the average several thousand connections to other neurons [66]. It is natural and com-

forting to think of the brain as a computational device, much like the computers that

we build and understand. In this electrophysiological view of the brain, the neurons

are the elementary devices and the way they are connected determines the function-

ing of the brain. But the brain is a much more flexible, adaptive, and complicated

organ than this point of view suggests. The brain is made up of cells and there are

several times as many glial cells as there are neurons. Glial cells protect neurons

from oxidative stress by helping them synthesize glutathione [64], and astrocytes

store glucose as glycogen [9]. Neurons synthesize and release more than 50 differ-

ent kinds of neurotransmitters and myriad different receptor types allow neurons to

influence each other’s electrophysiology by volume transmission in which cells in
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one nucleus change the local biochemistry in a distant nucleus. This is the pharma-

cological view of the brain.

This is just the beginning of the full complexity of the problem. The functioning of

neurons and glial cells is affected by an individual’s genotype and dynamic changes

of gene expression levels, on short and long time scales. These dynamic changes are

influenced by the endocrine system, because the brain is an endocrine organ and is

influenced by other endocrine organs like the gonads and the adrenal glands. And,

although we think of the brain as producing behavior, in fact our behavior influ-

ences the electrophysiology, the pharmacology, and endocrine status of the brain,

and therefore the gene expression levels. This is true both in the short term and in

the long term. Individuals who exercise in their 30 and 40 s are 30 % less likely to get

Parkinson’s disease [3, 29] and the progression of Parkinson’s symptoms is slower

in those who exercise [38]. Thus the functioning of an individual brain depends on

the history of environmental inputs and behavior throughout the individual’s life-

time. And, we haven’t even mentioned the complicated and changing anatomy, by

which we mean the morphology of individual cell types, the connection patterns of

neurons, and the proprioceptive feedback to the brain from the body [31].

Mathematical models are an important tool for understanding complicated bio-

logical systems. A model gives voice to our assumptions about how something

works. Every biological experiment or psychology experiment is designed within

the context of a conceptual model and its results cause us to confirm, reject, or alter

that model. Conceptual models are always incomplete because biological systems

are very complex and incompletely understood. Moreover, and as a purely practical

matter, experiments tend to be guided by small conceptual models of only a very

small part of a system, with the assumption (or hope) that the remaining details and

context do not matter or can be adequately controlled.

Mathematical models are formal statements of conceptual models. Like concep-

tual models, they are typically incomplete and tend to simplify some details of the

system. But what they do have, which experimental systems do not, is that they are

completely explicit about what is in the model, and what is not. Having a completely

defined system has the virtue of allowing one to test whether the assumptions and

structure of the model are sufficient to explain the observed, or desired, results.

The Scientific Problem—Volume Transmission

The Electrophysiological View of the Brain

It is natural for us to think of the brain as a large computational device that processes

information analogously to a computer. In this view, which we like to call the elec-

trophysiological point of view, the basic elements are the neurons that receive inputs

from other neurons and, via action potentials, send information to other neurons.

There are then two fundamental classes of biological (and mathematical) questions.
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How do individual neurons receive and process their inputs and decide when to fire?

How do connected sets of neurons perform information processing functions that

individual neurons cannot do? The electrophysiological point of view is natural for

two reasons. First, we have had great success in building computational machines

and we understand completely how they work. If brains are like our computational

devices then we can use computational algorithms as metaphors and examples of

what must be going on in the brain. Secondly, the electrophysiological point of view

fits well with our modern scientific method of trying to understand complex behavior

in the large as merely the interaction of many fundamental parts (the neurons) whose

behavior we understand very well. The electrophysiological point of view is perfect

for mathematical analysis and computation. One need not deal with the messy details

of cell biology, the existence of more than 50 identified neurotransmitters, changing

gene expression levels, the influence of the endocrine system, or the fact that neu-

rons come in a bewildering variety of morphological and physiological types. All

of these things appear, if they appear at all, as parameters in models of neurons, or

as parameters in local or global network simulations. In particular, the chemistry of

neurotransmitters themselves is not very important, since their only role is to help

the electrophysiological brain transmit information from one neuron to the next.

The Pharmacological View of the Brain

There is a different point of view that we call the pharmacological view of the brain.

It has been known for a long time that not all neurons are engaged in the one-to-

one transfer of information to other neurons [39]. Instead, groups of neurons that

have the same neurotransmitter can project densely to a distant volume (a nucleus

or part of a nucleus) in the brain and when they fire they increase the concentra-

tion of the neurotransmitter in the extracellular space in the distant volume. This

increased concentration modulates neural transmission in the distant region by bind-

ing to receptors on the cells in the target region. This kind of neural activity is called

volume transmission. It is also called neuromodulation because the effect of the

neurotransmitter is not one-to-one neural transmission but instead the modulation

of other transmitters that are involved in one-to-one transmission. Two examples of

volume transmission are the dopaminergic projection to the striatum in the basal gan-

glia from cells of the substantia nigra pars compacta and the serotonergic projection

to the striatum from the dorsal raphe nucleus (DRN); these are discussed in more

detail below. The locus coeruleus projects widely throughout the brain and spinal

cord, with thin varicose norepinephrine (NE) axonal networks of low to moderate

densities [45]. Projections of NE neurons from the locus coeruleus to the cortex play

an important role in initiating and maintaining wakefulness [112].

There are many pieces of evidence that suggest that volume transmission plays

a fundamental role in the functioning of the brain. Dopamine (DA) has been linked

to fundamental brain functions such as motivation, pleasure, cognition, memory,

learning, and fine motor control, as well as social phobia, Tourette’s syndrome,
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Parkinson’s disease, schizophrenia, and attention deficit hyperactivity disorder [39].

In most experiments it is the concentration of dopamine in a particular nucleus that

is important. Similarly, serotonin (5-HT) has been linked to feeding and body weight

regulation, aggression and suicidality, social hierarchies, obsessive compulsive dis-

order, alcoholism, anxiety disorders, and affective disorders such as depression [39].

Many pharmaceutical and recreational drugs have been shown to act by binding to

certain receptors and thus changing the local concentrations of various neurotrans-

mitters in regions of the brain. For example, the immediate effect of selective sero-

tonin reuptake inhibitors (SSRIs) is to inhibit the reuptake of 5-HT after it has been

released thus increasing its concentration in the extracellular space in certain brain

regions. Adenosine is an important neuromodulator that protects the brain from con-

tinuous neuronal activation: adenosine concentrations increase with neuronal activ-

ity and in turn inhibit individual neurons while also facilitating a transition into

sleep, thereby promoting rest at a systemic level [34, 45]. Caffeine binds to adeno-

sine receptors promotes wakefulness. Cocaine blocks the reuptake of DA, 5-HT, and

norepinephrine [39] and has strong psychological effects.

Furthermore, various morphological and physiological features of the brain are

consistent with the idea that the purpose of some neurons is to change the local bio-

chemistry at distant regions of the brain. Often the projections are dense in the target

volume suggesting that the idea is to change the local concentration at all parts of

the target region simultaneously by the same amount. There are more than a dozen

subtypes of receptors for 5-HT in the brain [91], suggesting that this great variety

allows the concentration of 5-HT to modulate neurons in different ways depend-

ing on what receptors they express. As illustrated conceptually in Fig. 1, the 5-HT

neurons in the dorsal raphe nucleus (DRN) have very thin unmyelinated axons and

release 5-HT from many small varicosities rather than synapses [61], suggesting

that their purpose is not one-to-one neural transmission. 5-HT neurons in different

parts of the DRN project to many different brain regions that frequently project back,

suggesting that the DRN is differentially changing the local biochemistry in many

distinct regions [82], in particular the DRN sends a dense projection to the striatum

Fig. 1 Volume transmission

and axonal varicosities
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[106, 111]. The higher the concentration of 5-HT in the striatum, the more DA is

released from the DA neurons projecting from the SNc per action potential [19, 22,

37]. Thus the neurotransmitters affect each other. There are also multiple DA recep-

tor types in the striatum [6] that enrich neurotransmitter interactions with important

functional consequences for the basal ganglia as we describe below.

Notice that what is important in volume transmission is that groups of neurons

project to distant nuclei and change the local biochemistry there. That is, they project

changes in biochemistry over long distances [97]. Of course they do this by firing

action potentials. But the action potentials do not carry information in the usual

sense; their only purpose is to allow the neurons to project biochemistry over long

distances. This is the pharmacological view of the brain. To understand the brain

one must understand both the electrophysiology and the pharmacology, and how

they affect each other. For excellent reviews of volume transmission with a histori-

cal perspective and many examples, see [45, 117].

Volume Transmission and Balance in the Basal Ganglia

Here we discuss in more detail the dopaminergic volume transmission in the basal

ganglia that motivates much of the computational work described in this chapter.

The basal ganglia (BG) are a group of subcortical nuclei including the striatum,

subthalamic nucleus, internal and external globus pallidus, and substantia nigra.

Cortical-BG-thalamic circuits are critically involved in many functions including

sensorimotor, emotion, cognition [51, 75]. Multiple paths and subcircuits within BG

have been identified. In some cases the different circuits perform different functions;

for instance the striatum, the input nucleus of the BG, has anatomic and functional

subdivisions including sensorimotor and associative. In other cases, pathways may

compete, as has been postulated for action selection.

Two of the most studied pathways through the basal ganglia are the direct and indi-

rect pathways through the striatum. The names reflect the fact that the direct pathway

proceeds from the striatum directly to either the internal portion of the globus pal-

lidus (GPi) or the Substantia Nigra pars reticulata (SNr), the two output nuclei of the

BG. The indirect pathway, on the other hand, also involves a subcircuit that includes

the external portion of the globus pallidus (GPe) and the subthalamic nucleus (STN)

before reaching the output nuclei. The two pathways have opposing effects on the

thalamus: the indirect pathway has an inhibitory effect, while the direct pathway has

an excitatory effect [48, 103].

Albin and DeLong [4, 35] proposed that the balance of these opposing pathways

is important for healthy function. Dopaminergic cells in the SNc project to the stria-

tum and inhibit medium spiny neurons (MSNs) in the indirect pathway by binding

to D2 receptors while the same neurons excite MSNs in the direct pathway by bind-

ing to D1 receptors [103]. Albin and DeLong noted that, during PD, as cells in the

SNc die, less DA is released in the striatum; the result is that the direct pathway

is less excited and the indirect pathway is less inhibited, so the thalamus receives
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more inhibition and less excitation. Thus the loss of dopaminergic cells in the SNc

has the effect of shifting the balance in favor of the indirect pathway, and they rea-

soned that the increased inhibitory output from BG to the thalamus might account for

some of the motor symptoms of PD, such as bradykinesia and difficulty in initiating

movement. This view later lost favor in the face of new experimental observations

that appeared to contradict the Albin-DeLong theory. The fact that pallidotomy—

lesioning the GPi—alleviates some PD motor symptoms fit well with the theory,

but, paradoxically, it emerged that high frequency stimulation of GPi was equally

effective therapeutically. The solution to this conundrum seemed to be that the pat-

tern of neuronal firing in the BG was as important for symptoms as the rate of firing,

which led some to dismiss the Albin-DeLong theory. Interestingly, as PD progresses,

firing patterns in the GPi become bursty and cells become more synchronized

[12, 62, 92]. Note that synchronous bursting and pausing result in higher amplitude

variation in the GPi output compared to the uncorrelated, irregular firing observed in

the healthy GPi and thus constitutes an effectively stronger signal. This observation

allows the possibility that the Albin-DeLong theory retains merit but the notion of

balance needs to be interpreted more generally, recognizing that not only firing rate

but also firing patterns and correlation among cells can contribute to the strength of

the signal. With this more general notion of balance, it is again widely hypothesized

that many of the motor symptoms of PD are due to an imbalance between the direct

and indirect pathways [48, 71, 115].

The projection from the SNc to the striatum is very dense and the evidence is

strong that it is the DA concentration in the extracellular space that is important for

keeping the balance between the direct and indirect pathways, not one-to-one neural

transmission. In particular, DA agonists given to Parkinson’s patients are somewhat

successful in restoring function [24]. Thus, DA, projected from the SNc, is acting as

a neuromodulator of the direct and indirect pathways.

Mathematical Modeling of Volume Transmission

It is clear that understanding the interaction between the electrophysiology of the

brain and the pharmacology of the brain is fundamental to brain function in health

and disease. Because of the myriad receptor types and the complicated anatomy of

the brain, it is unlikely that there are simple recipes that specify how the

phamacological-electrophysiological interactions work in different local brain

regions and different functional systems. In this chapter, we review some of our

investigations into those interactions, concentrating on serotonin and dopamine,

especially in the basal ganglia. In section “Computational Methods” we indicate

how we go about constructing our mathematical models by sketching our dopamine

model. In section “A Serotonin Model”, we show three applications of our 5-HT

model. We show how the serotonin autoreceptors stabilize extracellular 5-HT in

the face of genetic polymorphisms. We investigate how substrate inhibition of the

enzymes tyrosine hydroxylase and tryptophan hydroxylase determines how sensitive
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the brain concentrations of DA and 5-HT are to the content of meals. And, in section

“Homeostasis of Dopamine” we propose a new mechanism of action for selective

serotonin reuptake inhibitors. In section “Serotonin and Levodopa” we explain why

levodopa is taken up by 5-HT neurons and is used in those neurons to make DA. A

mathematical model is used to investigate the consequences for levodopa therapy for

Parkinson’s disease. Finally, in section “Homeostasis of Dopamine”, we investigate

various homeostatic mechanisms that stabilize the extracellular concentration of DA

in the striatum.

Computational Methods

In 2009, we constructed a mathematical model of dopamine (DA) terminal [15] so

that we could study synthesis, release, and reuptake and the homeostatic mechanisms

that control the concentration of DA in the extracellular space. We investigated the

substrate inhibition of tyrosine hydroxylase (TH) by tyrosine, the consequences of

the rapid uptake of extracellular dopamine by the dopamine transporters, and the

effects of the autoreceptors on dopaminergic function. The main focus was to under-

stand the regulation and control of synthesis and release and to explicate and interpret

experimental findings. We started with a model of a DA terminal because dopamine

is known to play an important role in many brain functions. Dopamine affects the

sleep-wake cycle, it is critical for goal-directed behaviors and reward learning, and

it modulates the control of movement via the basal ganglia. Cognitive processing,

such as executive function and other prefrontal cortex activities, are known to involve

dopamine. Finally, dopamine contributes to synaptic plasticity in brain regions such

as the striatum and the prefrontal cortex.

Dysfunction in various dopaminergic systems is known to be associated with a

number of disorders. Reduced dopamine in the prefrontal cortex and disinhibited

striatal dopamine release is seen in schizophrenic patients. Loss of dopamine in

the striatum is a cause of the loss of motor control seen in Parkinson’s patients.

Studies have indicated that there is abnormal regulation of dopamine release and

reuptake in Tourette’s syndrome and dopamine appears to be essential in mediat-

ing sexual responses. Furthermore, microdialysis studies have shown that addictive

drugs increase extracellular dopamine and brain imaging has shown a correlation

between euphoria and psycho-stimulant-induced increases in extracellular dopamine.

These consequences of dopamine dysfunction indicate the importance of main-

taining dopamine functionality through homeostatic mechanisms that have been

attributed to the delicate balance between synthesis, storage, release, metabolism,

and reuptake. It is likely that these mechanisms exist both at the level of cell popu-

lations and at the level of individual neurons.

A schematic diagram of the mathematical model is given in the Fig. 2 that

represents a DA terminal or varicosity. The boxes contain the acronyms of sub-

strates and the ellipses the acronyms of enzymes and transporters. For convenience

in the equations below and in the diagram we denote the concnetrations in the
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Fig. 2 Dopamine metabolism

mathematical model by lower case letters and we omit the brackets for concentra-

tion. Thus, cda, vda, and eda represent the concentrations of cytosolic DA, vesic-

ular DA, and extracellular DA, respectively. Each arrow indicates a biochemical

reaction, a transport velocity or an influence. Dopamine is synthesized in the nerve

terminal from tyrosine tyr which is transported across the blood brain barrier. We

include exchange between tyrosine and a tyrosine pool that represents all the other

uses and sources of tyrosine in the terminal. Tyrosine is converted into L-3,4-

dihydroxyphenylalanine, l−dopa, by tyrosine hydroxylase, TH, and l−dopa is con-

verted into cytosolic dopamine, cda, by aromatic amino acid decarboxylase, AADC.

cda inhibits TH and is transported into the vesicular compartment by the monoamine

transporter, MAT , and vesicular dopamine, vda, is released from the vesicular com-

partment into the extracellular space at a rate proportional to the firing rate of the

neuron. In the extracellular space, extracellular dopamine, eda, affects the autorecep-

tors, is taken up into the terminal by the dopamine transporters, DAT , and is removed

from the system by uptake into glial cells and the blood and by diffusion. Dopamine

is also catabolized in the terminal by monoamine oxidase, MAO.

The variables in the mathematical model are the concentrations of the 10 boxed

substrates. Each differential equation simply reflects mass balance: the rate of change

of the concentration of the substrate is the sum of the rates by which it is being
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made minus the sum of the rates by which it is lost. So, for example, the differential

equation for cda is

dcda
dt

= V
AADC

(l − dopa) + V
DAT

(eda) − V
MAO

(cda) − V
MAT

(cda, vda).

Each V is a velocity (a rate) and the subscript indicates which rate. These velocities

depend on the current concentrations of one or more of the variables, as indicated.

So, for example, V
MAT

depends on both cda and vda because there is leakage out of

the vesicles back into the cytosol. Similarly the differential equation for eda is

deda
dt

= auto(eda)fire(t)(vda) − VDAT (eda) − k(eda).

The first term on the right is release of dopamine into the extracellular space, which

depends on the current state of the autoreceptors, auto(eda), the current firing rate,

fire(t), and the vesicular concentration, vda. The second term is the uptake back into

the terminal cytosol and the third term is removal in the extracellular space by uptake

into glial cells and blood vessels.

Determination of the functional forms of the velocities. Each of the velocities,

such as V
TH

, V
AADC

, or V
DAT

depends on the current state of one or more of the

variables. How do we determine the functional form of the dependence? If we can,

we assume simple Michaelis-Menten kinetics. For example,

V
DAT

(eda) =
Vmax(eda)
(Km + eda)

.

In other cases the formula might be much more complicated depending on what is

known about about how enzymes or transporters are activated or inhibited by mole-

cules that are or are not its substrates. For example the formula for VTH is:

VTH(tyr, bh4, cda, eda) =

⎛
⎜
⎜
⎝

Vmax(tyr)(bh4)
(tyr)(bh4) + Ktyr(bh4) + KtyrKbh4(1 +

(cda)
Ki(cda)

)

⎞
⎟
⎟
⎠
⋅
⎛
⎜
⎜
⎝

.56
1 + (tyr)

Ki(tyr)

⎞
⎟
⎟
⎠
⋅

(
4.5

8( eda
.002024

)4 + 1
+ .5

)

The velocity V
TH

depends on the current concentrations of its substrates, tyr and

bh4, and on cda because cda inhibits the enzyme TH. The first term on the right

is standard Michaelis-Menten kinetics with the additional inhibition by cda. The

second term expresses the fact that TH is inhibited by its own substrate, tyr. The last

term on the right is the effect of the autoreceptors and that depends on eda. Not so

much is known about the mechanism of this effect, so we took a functional form that

was consistent with in vitro experiments in the literature.
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How are the parameters determined? The answer is, alas, with difficulty. There are

measurements of Km values in the literature. Sometimes they vary over two orders of

magnitude, which is not surprising because often they are measured in test tubes or

in vitro or measured in different cell types under different conditions. There are few

Vmax values in the literature because fluxes are hard to measure, especially in vivo.

Typically we adjust the Vmax values so that the concentrations at steady state in the

model are in the ranges measured experimentally. We take the choice of parameters

seriously, and we do the best we can.

But if we don’t know the exact, correct values of the parameters, is the model

right? This question (that we frequently get) is based on two misunderstandings.

First, there are no exact, correct values of the parameters. In each of us, the parame-

ters are somewhat different, because of genotype, because of environmental inputs,

and because of changing gene expression levels. If we do our job well, we can hope

to have a dopamine terminal system for an “average” person, and it is of course very

relevant to ask how the behavior of the system depends on the parameters. Secondly,

there’s no “right” model. Every model is a simplification of a very complicated bio-

logical situation. We don’t regard our models as fixed objects, or “right” or “wrong”,

but as growing and changing as we learn more from experiments and from our com-

putations. The purpose of the model is to have a platform for in silico experiments

that will increase our understanding of the biology.

Results

A Serotonin Model

We created a similar model for a serotonin (5-HT) terminal or varicosity [16] and

have used the DA and 5-HT models to study various questions in brain physiology

including depression and Parkinson’s disease. In this section we provide three exam-

ples.

Homeostatic Effects of 5-HT Autoreceptors

The 5-HT1B autoreceptors on terminals and varicosities provide a kind of end product

inhibition for the extracellular 5-HT concentration. When the extracellular concen-

tration rises, the autoreceptors inhibit synthesis (a long term effect) by inhibiting

the enzyme TPH (the first step in the 5-HT synthesis pathway) and they also inhibit

release of 5-HT from vesicles (a short term effect). Figure 3 shows some of the con-

sequences autoreceptor regulation. In Panel A the firing rate is varied, in Panel B

the activity of the serotonin transporter (SERT) is varied, and in Panel C the activity

of tryptophan hydroxylase (TPH) is varied. TPH is the rate-limiting enzyme for the

synthesis of 5-HT. In Panels B and C, common polymorphisms in the population are
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Fig. 3 Homeostatic effects of the 5-HT autoreceptors

shown on the x axis. In each panel, the y axis shows the concentration of 5-HT in the

extracellular space at steady state in the model. The black curves show the steady

state values in the model with the autoreceptors present and the dashed grey curves

show the steady state values when the autoreceptors are turned off. In each case, the

variation in extracellular 5-HT is much less in the presence of the autoreceptors. This

shows how the autoreceptors buffer the extracellular concentration of 5-HT against

changes in firing rate and genetic polymorphisms in two key proteins.

The Effect of Substrate Inhibition of TH and TPH

It is interesting that TH, the key enzyme for creating DA, and TPH, the key enzyme

for creating 5-HT both show substrate inhibition. One can see this in the velocity

curves in Fig. 4. That is, the substrate of the enzyme inhibits the enzyme itself. Sub-

strate inhibition was emphasized by Haldane in the 1930s [55], but has been regarded

as a curiousity although many enzymes exhibit this property. In all the cases that

we have examined, substrate inhibition has a biological purpose [94]. In substrate

inhibition, instead of the normal Michaelis-Menten shape where the velocity curve

Fig. 4 Substrate inhibition

of tyrosine and tryptophan

hydroxylase
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Fig. 5 5-HT and DA

changes due to meals

saturates as the concentration of substrate gets large, the curves reach a maximum

and then begin to descend as one can see in Fig. 4. The effect is much stronger for

TH than for TPH. Does this matter? Well, that is something one can try out using

the models. Panel A in Fig. 5 shows (assumed) amino acid curves in the blood for

tyrosine and tryptophan due to three daily meals. Panel B shows the tyrosine and

tryptophan concentrations in the cytosols of the terminals. Panel C shows the veloc-

ities of the TH and TPH reactions. Notice that the TH velocity varies little but the

TPH velocity varies a lot. Why is that? The normal fasting concentration of tyrosine

in the DA cells is 100–125 µM which puts it in the flat part of the TH velocity curve

in Fig. 4, so changes in tyrosine in the cell don’t change the synthesis rate of DA

very much. In contrast, the synthesis rate of 5-HT varies quite a bit with the changes

in blood and cytosolic tryptophan because the fasting concentration of tryptophan

in 5-HT cells is on the sharply rising part of the velocity curve. As a consequence,

the concentration of 5-HT in the vesicles (Panel 4) and the extracellular space (not

shown) varies modestly while the concentration of DA varies very little. In fact, it is

known that brain DA is quite insensitive to the protein content of meals [40, 41], but
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that the brain content of 5-HT does vary with meals [39] and these simulations show

why. For more information on substrate inhibition, see [94]. These simulations show

that sometimes the details of the biochemistry, in this case the Michaelis-Menten

constants of TH and TPH and the normal concentrations of tyrosine and tryptophan

in cells, really do matter.

How Do SSRIs Work?

Depression, which is characterized by feelings of worthlessness and lack of motiva-

tion, is a major health problem and has important economic consequences (treatment

and lost productivity) as well [21, 49]. The antidepressants used to treat depression

are among the most widely prescribed drugs, but unfortunately most have unwanted

side effects and limited therapeutic effects for most patients [47, 104]. In fact, none

of the drugs are efficacious for a majority of the patients for whom it is prescribed

[32, 80, 110]. Most of the commonly used antidepressants are selective serotonin

reuptake inhibitors (SSRIs). It is not known what their mechanism of action is, or

why they work on some patients and not on others. In this section we discuss these

issues in the context of volume transmission.

Early evidence indicated that low 5-HT levels in the brain are linked to depression

[39, 101]. 5-HT is synthesized in terminals and varicosities from the amino acid

tryptophan and there is evidence that acute tryptophan depletion causes depression

in humans [10, 114] and a decrease in 5-HT release in the rat hippocampus [107].

Thus it was natural to use SSRIs as antidepressants. Since SSRIs block the reuptake

of 5-HT into the cytosol by the serotonin transporters (SERTs), it was expected that

the SSRIs would raise the level of 5-HT in the extracellular space. Figure 6 shows

a 5-HT neuron in the DRN sending its axon to a projection region where 5-HT is

Fig. 6 SSRIs block the serotonin transporters
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released from varicosities when the action potential arrives. Since the SSRIs block

some of the SERTs, the effects of the SSRIs should be to raise the 5-HT level in the

extracellular space in projection region. However, there is a complication. When a

DRN neuron fires an action potential, 5-HT is also released from the cell body in

the DRN [46]. The released 5-HT binds to 5-HT1A autoreceptors on the cell bodies

and the autoreceptors decrease cell firing when stimulated. Thus, when one gives an

SSRI one blocks some SERTs in the projection region which should tend to make 5-

HT go up there. However, the SSRIs also block SERTs in the DRN and the resulting

increase of 5-HT in the extracellular space there will decrease firing and this will

tend to lower extracellular 5-HT in the projection region. So, what will happen?

The answer is that it depends on the balance between these two effects, and so it

is not surprising that experimentalists found that 5-HT goes up in some projection

regions and down in others and the magnitudes of the changes are dose dependent

[1, 8, 57, 77]. Even at the beginning, it was clear that other effects besides the 5-

HT concentration in the extracellular space must be important, because changes in

concentration will happen in minutes and hours after an SSRI dose, but patients

usually feel beneficial effects only after 3–6 weeks of treatment [39].

Attention focused next on the 5-HT1A autoreceptors on the raphe nucleus cell

bodies. It was shown in numerous studies (for example, [28]) that giving 5-HT1A
antagonists potentiates the SSRI-induced increase of 5-HT in projection regions.

Similarly, 5-HT1A knockout mice show increased release in projection regions [70].

Both types of studies confirm the role of the 5-HT1A autoreceptors in decreas-

ing tonic firing of 5-HT neurons in raphe in the presence of SSRIs. Furthermore,

a number of studies showed that chronic treatment with SSRIs desensitizes the

5-HT1A autoreceptors [20, 28, 58, 63]. And, thus, one could explain the improve-

ments of patients on the time scale of 3–6 weeks by the slow desensitization of

autoreceptors. Consistent with this hypothesis were several studies that showed that

5-HT levels in projection regions are higher after chronic treatment as compared to

acute treatment [72, 100, 109]. These studies did not measure e5-HT in projections

regions during the full course of chronic SSRI treatment. Unfortunately, when this

was done, Smith et al. [105] found that extracellular 5-HT concentrations in neocor-

tex, caudate, and hippocampus of awake monkeys went up initially and then declined

somewhat over the course of treatment. Similar findings were found by Anderson et

al. [5] who saw an initial quick rise in 5-HT in the cerebral spinal fluid of rhesus

monkeys but then a plateau during chronic treatment. Thus, the autoreceptor desen-

sitization hypothesis seems unlikely to explain the delay of beneficial effects of SSRI

treatments.

In fact, the mechanisms of action of SSRIs are not understood, nor is it understood

why some patients are helped and others not and why different SSRIs have different

efficacies. The problem is extremely difficult because one has to understand mecha-

nism and function on 4 different levels, genomic, biochemical, electrophysiological,

and behavioral, but changes on each level affect function on the other 3 levels, and

this makes the interpretation of experimental and clinical results very difficult. As we

indicated above, the release of 5-HT affects dopamine signaling. 5-HT may activate

the hypothalamic-pituitary-adrenal axis by stimulating production of corticotropin-
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releasing hormone [56] and the endocrine system affects the 5-HT system [18, 105].

This may be the basis of gender differences in depression and response to SSRIs.

And, finally, both gene expression and neuronal morphology are changing in time.

In this circumstance, it is not surprising that many variables on all 4 levels are cor-

related with depression or to the efficacy of the SSRIs. All such correlations are

candidates for causal mechanisms, so sorting out which mechanisms are causal is

extremely difficult.

We used our mathematical model of serotonin varicosities and terminals to pro-

pose and investigate a new hypothesis about the action of SSRIs. The serotonin neu-

rons in the DRN fire tonically at about 1 Hz but some of the individual spikes are

replaced by short bursts. In a series of pioneering studies [42, 59, 65, 109], Jacobs,

Fornal and coworkers studied the relationship between the electrophysiology of the

5-HT system and various behaviors in nonanaesthetized cats. They showed that the

firing rate and pattern of some DRN 5-HT neurons differ in active waking, quiet

waking, slow-wave sleep, and REM sleep [65]. And Hajos showed that some DRN

neurons have bursts and others do not [53, 54]. Thus, it is plausible that the purpose

of tonic firing is to maintain a basal 5-HT concentration in projection regions, but

that it is bursts that contain incoming sensory input and stimulate specific behavioral

responses.

If depression is caused by low tissue levels of 5-HT then vesicular 5-HT must be

low in depressed patients since the normal concentrations in the cytosol and extra-

cellular space are extremely low. So we assumed that our model depressed patient

had low vesicular 5-HT, about 20–25 % of normal. For example, this could be caused

by low tryptophan input. As a result, the model depressed patient had low extracellu-

lar 5-HT in projection regions. We modeled chronic treatment by SSRIs by assum-

ing that the SSRIs block 2/3 of the SERTs. As we expected, this does not change

extracellular 5-HT in projection regions very much because of the two competing

effects discussed above. We then included the result of Benmansour et al. [11] that

the expression level of SERTs declines considerably in rats during a 21 day treat-

ment by SSRIs. Here are the results of our modeling. After 21 days, the average

levels of 5-HT in projection regions of the model depressed patient did not return to

normal. However, the response to bursts did return to normal. The intuitive reason

behind this is that as the available SERTs decline considerably, reuptake of 5-HT

becomes must slower. This has a much greater effect on bursts than on tonic firing

because during bursts the extracellular 5-HT in projection regions is still high when

the next action potential arrives. Thus, our proposed hypothesis is that it is burst

firing that is connected to behavior and that, in depressed patients, the response to

burst firing is brought back to normal by SSRIs because after 21 days the number of

available SERTs is further depressed. It is interesting that Zoli et al. [116] empha-

sized that neurons that communicate via one-to-one neural transmission during tonic

firing may contribute to volume transmission during burst firing. During bursts, the

large amount of neurotransmitter in the extracellular space cannot be taken up in the

synapse but spills out into the rest of the extracellular space.
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Serotonin and Levodopa

Parkinson’s disease has been traditionally thought of as a dopaminergic disease due

to the death of dopaminergic cells in the substantia nigra pars compacta (SNc). These

dopaminergic cells project to the striatum where low levels of DA cause dysfunction

in the motor system. DA does not cross the blood-brain barrier because it doesn’t

have a carboxyl group and is not recognized as an amino acid. However, its precur-

sor, L-DOPA, still has the carboxyl group and does cross the blood-brain barrier.

Thus, the idea of levodopa therapy is to fill the remaining DA terminals in the stria-

tum with L-DOPA so that these terminals will release more DA into the extracellular

space when action potentials arrive, compensating for the DA terminal loss caused

by cell death in the SNc. However, accumulating evidence implies an important role

for the serotonergic system in Parkinson’s disease in general and in physiological

responses to levodopa therapy. We used a mathematical model [95] to investigate

the consequences of levodopa therapy on the serotonergic system and on the pul-

satile release of dopamine (DA) from dopaminergic and serotonergic terminals in

the striatum.

Levodopa Makes DA in 5-HT Neurons

The key idea is the recognition of the similarities in the synthesis pathways of 5-HT

in 5-HT neurons and DA in DA neurons. DA is synthesized from the amino acid

tyrosine (tyr) that crosses the blood-brain barrier and is taken up into DA nerve ter-

minals by the L-transporter. In the DA terminal, the enzyme tyrosine hydroxylase

(TH) adds an OH group to tyr making levodopa (L-DOPA). We will abbreviate lev-

odopa by L-DOPA and by LD. The amino acid decarboxylase (AADC) cuts off the

carboxyl group to make cytosolic DA. The monoamine transporter (MAT) packages

DA into vesicles. When the action potential arrives a sequence of events, includ-

ing Ca
++

influx, causes some vesicles to move to the boundary of the terminal and

release their contents into the extracellular space. The extracellular DA is taken back

up into the cytosol by the dopamine transporter (DAT). Extracellular DA also binds

to DA autoreceptors (A-DA) that inhibit synthesis and release. This control mech-

anism stabilizes the concentration of DA. Of course, the actual situation is more

complicated, for example, cytosolic DA itself inhibits TH and extracellular DA can

be taken up by glial cells.

The situation for 5-HT is remarkably similar. 5-HT is synthesized from the amino

acid tryptophan (tryp) that crosses the blood-brain barrier and is taken up into 5-HT

nerve terminals by the L-transporter. In the 5-HT terminal, the enzyme tryptophan

hydroxylase (TPH) adds an OH group to tryp making 5-HTP. The enzyme amino

acid decarboxylase (AADC) cuts off the carboxyl group to make cytosolic 5-HT.

The monoamine transporter (MAT) packages 5-HT into vesicles. When the action

potential arrives, some vesicles to move to the boundary of the terminal and release

their contents into the extracellular space. The extracellular 5-HT is taken back up
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into the cytosol by the serotonin transporter (SERT). Extracellular 5-HT also binds

to 5-HT autoreceptors (A-5HT) that inhibit synthesis and release.

The main difference between DA neurons and 5-HT neurons is that DA neurons

express the enzyme TH and thus make DA, and 5-HT neurons express TPH and thus

make 5-HT. As we will explain, this distinction is eliminated in 5-HT neurons when

one gives a dose of levodopa.

L-DOPA is taken up into all cells by the L-transporter, just like tyr and tryp.

When L-DOPA is taken up into 5-HT terminals, the enzyme AADC cuts off the

carboxyl group to make DA, which is then packaged into vesicles by MAT. Thus

vesicles in the 5-HT neurons are filled with both 5-HT and DA, and when the action

potential arrives, both are released into the extracellular space. There is a large dense

projection of 5-HT neurons from the dorsal raphe nucleus (DRN) to the striatum.

So, during a dose of levodopa, the 5-HT neurons release a large pulse of DA into the

striatum.

All the aspects of this story have been verified experimentally in the last 15 years.

Experiments have verified that 5-HT neurons can store and release DA in vivo and

in vitro [88]. In levodopa treatment of a hemiparkinsonian rat, striatal extracellular

DA decreased substantially when the serotonergic system was lesioned [108]. Glial

cells also express AADC and so could contribute to the conversion of LD to DA, but

experiments using reserpine to block vesicular packaging showed a great reduction

of extracellular DA, suggesting that most of the levodopa-derived DA is released

by exocytosis of vesicles rather than by glia, at least at physiological levels of lev-

odopa administration [67]. It has also been shown that 5-HT1A autoreceptor agonists

(that decrease DRN firing) and 5-HT1B autoreceptor agonists (that decrease release

at 5-HT terminals) both lower extracellular DA in the striatum in a dose-dependent

manner after an LD dose [76].

The new understanding of 5-HT neurons in levodopa therapy has helped to

explain a serious side effect of levodopa therapy. Within 5 years of chronic LD treat-

ment, many patients experience a variety of complications [84, 85]. For instance,

the length of the therapeutic time window in which a given LD dose relieves PD

symptoms gradually shortens and approaches the plasma half-life of LD (wearing-

off). Rapid variations in efficacy may occur (on-off fluctuations). Another, partic-

ularly troubling, complication of chronic LD therapy is the appearance of involun-

tary movements (levodopa-induced dyskinesia, LID). These complications increase

patients disability substantially, pose a therapeutic dilemma, and limit the use of LD.

There is good evidence that large pulses of DA in the striatum are the proximal

cause of LID that are seen in long-term dosing [44]. And there is conclusive evidence

that these large pulses result from DA release from 5-HT neurons in the striatum.

Lesioning the 5-HT system or giving selective serotonin autoreceptor (5-HT1A and

5-HT1B) agonists results in a nearly complete elimination of LID [26].
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Fig. 7 Levodopa makes DA in 5-HT neurons

Mathematical Modeling

In order to investigate these phenomena, we created a mathematical model that cor-

responds to Fig. 7 [95]. What we discovered was that the size of these large pulses of

DA coming from 5-HT neurons depends critically on the fraction, f, of SNc cells left

alive, which is why there are more and more dyskinesias as Parkinson’s disease pro-

gresses. Here is the intuitive explanation. As long as there are lots of SNc cells alive,

there will be lots of DA terminals in the striatum with DATs and DA autoreceptors.

The DATs take up a lot of the excess DA that comes from the 5-HT neurons and

it is stored in DA terminals, and the DA autoreceptors restrict DA release from the

DA terminals when the extracellular DA concentration is high. These effects keep

the DA concentration in the extracellular space from going too high. However, as the

fraction of SNc cells left alive gets smaller and smaller these two control mechanisms

have less and less effect. The DA released from 5-HT neurons causes high pulses of

DA in the striatum because it is not taken up quickly by the remaining DATs and it

cannot be taken up into 5-HT terminals by the SERTs. It is these high pulses of DA

in the striatum that lead to the aforementioned dyskinesias. In addition, the extra DA

created by the levodopa dose and the 5-HT neurons is used up much faster because

it cannot be stored in the small number of remaining DA terminals. It diffuses away

or is taken up by glial cells, thus shortening the period of efficacy of the LD dose.

Figure 8, Panel A, shows model calculations of the time course of extracellular

DA in the striatum for different values of f, the fraction of SNc cells left alive. Each

curve is labeled with the corresponding value of f. As f declines from 1 (normal) to

0.2 and then 0.1, the level of extracellular DA gets higher because there are fewer

DATs to take up the DA released by 5-HT neurons. However, when f is very small

(f = 0.05 or 0.01), the peaks decline because removal mechanisms such as catabolism,

diffusion, and uptake into glial cells become more important. The dashed black hor-

izontal line in (A) represents the level of extracellular DA needed in the striatum for

anti-Parkinsonian effects. In Panel B, the two solid curves reproduce the simulations
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Fig. 8 5-HT effects as SNc cells die

from A for f = 1 and f = 0.1. The corresponding dashed curves in show the amount

of extracellular DA in the striatum that comes from the DA neurons. For a normal

individual (f = 1) the DA neurons contribute approximately 60 %, but as SNc cells

die (f = 0.1) most of the DA comes from the 5-HT neurons.

Panel C shows that the amount of time that extracellular DA stays above the ther-

apeutic level (the dashed black line in (A)) declines as PD progresses and f gets

smaller until the therapeutic window becomes approximately 2 h.

How does an LD dose affect the 5-HT system? We will describe verbally what we

saw in our modeling; details and figures can be found in [95]. First of all, LD com-

petes with tyrosine and tryptophan for the L-transporter at the blood-brain barrier, so

during an LD dose there is less tryptophan in the extracellular space in the brain. The

tryptophan and LD compete again to be transported into 5-HT neurons, resulting in

lowered tryptophan in 5-HT neurons. TPH turns some tryptophan into 5-HTP, but

5-HTP then has to compete with LD for the enzyme AADC that cuts off carboxyl

groups and makes DA and 5-HT. Then, DA and 5-HT compete for the monoamine

transporter, MAT, that packages them into vesicles. Thus it is not surprising that

the concentration of 5-HT in the vesicles and in the extracellular space goes down

approximately 50 % during an LD dose; Fig. 9 shows the extracellular 5-HT curve

computed by the model. This drop in extracellular 5-HT is consistent with exper-
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Fig. 9 LD dosing lowers

5-HT in the striatum

imental findings in animals. Extracellular 5-HT was found to decrease 50–90 % in

different brain regions [23]. Carta et al. [26] found that tissue 5-HT decreased 48 % in

the striatum during an LD dose, and Navailles et al. [86] showed that 5-HT decreases

30 % in the striatum and 53 % in motor cortex after chronic LD dosing. All this can

be summed up by saying that dosing with LD turns 5-HT neurons partially into DA

neurons, which is good for relieving the symptoms of Parkinson’s disease but has

the side effect of compromising the 5-HT system in the brain.

This raises the interesting question of whether levodopa doses could be one of the

reasons for depression in Parkinson’s patients. Decreased serotonergic signaling has

been linked to depression [78]. As we pointed out above, acute tryptophan depletion

is known to lower 5-HT brain levels in various animals [83], and results in lowered

mood in humans [114]. While depression is frequently described as the most com-

mon psychiatric complication in PD [74], reported rates vary widely, from 2.7 %

to greater than 90 % [98], due to factors including whether both major and minor

depression are included and how subjects are selected for inclusion in the study.

Moreover, many complicating factors make it difficult to draw conclusions about the

possible connections between LD therapy and depression [43, 90, 95]. Neverthe-

less, the case of LD therapy and its effect of the 5-HT system is a cautionary tale.

We create drugs and prescribe them because we expect them to have a specific effect

in a specific brain location (in this case more DA in the striatum). However, the drug

may have many other effects throughout the brain (in this case by lowering serotonin

in all brain nuclei to which the raphe nuclei project).

Homeostasis of Dopamine

Neurotransmitters provide the mechanism by which electrical signals are communi-

cated from one neuron to the next. However, as we discussed above, there is strong

evidence that in many cases it is the concentration of a neurotransmitter in the extra-
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cellular space of a nucleus that affects electrophysiological neurotransmission by

other neurotransmitters. This volume transmission raises several natural questions.

What are the mechanisms by which the extracellular concentrations of neurotrans-

mitters are controlled? How do neurotransmitters in the extracellular space affect

synaptic transmission by other neurotransmitters? How robust are these mechanisms

in the face of polymorphisms in the enzymes affecting synthesis, release, and reup-

take of neurotransmitters? How are dysfunctions in these control mechanisms related

to neurological and neuropsychiatric diseases? In this section we briefly describe our

work on several of these questions.

Passive Stabilization of DA in the Striatum

As discussed above, progressive cell loss from the substantia nigra pars compacta

(SNc) is the proximal cause of the symptoms of Parkinson’s disease [39]. The

dopaminergic cells of the SNc send projections to the striatum where the loss of

dopaminergic tone is thought to be the main cause of tremor and other motor symp-

toms of parkinsonism [25, 33]. An interesting and important feature of the disease

is that symptoms do not appear until a very large percentage (75–90 %) of SNc cells

have died and therefore this feature has been the focus of much experimental and

clinical investigation [2, 118]. Experiments with animal models [13, 17, 36] have

shown that although striatal tissue content of dopamine declines more or less pro-

portionally to cell death in the SNc, the extracellular concentration of dopamine in

the striatum remains near normal until more than 85 % of SNc neurons have died.

This is widely believed to be the reason that symptoms do not appear until very late

in the degeneration of the SNc.

What is the basis of this remarkable homeostasis of striatal extracellular DA in the

face of progressive cell death in the SNc? Some researchers proposed that the nigros-

triatal system adapts to cell death to maintain extracellular DA level by increasing

DA synthesis in the living terminals or by sprouting more terminals. But in 2003,

Bergstrom and Garris proposed a very simple explanation that they called “passive

stabilization” and provided experimental evidence for it [13]. The extracellular con-

centration of DA depends on the balance between release of DA and reuptake of

DA by the dopamine transporters (DATs). If half of the SNc cells die, there will be

only half as much release, but there will also be only half as much reuptake, so the

concentration of DA in the extracellular space should remain the same.

We used our mathematical model of a DA terminal to investigate the proposal

of Bergstrom and Garris [13]. Notice that their hypothesis does not explain why

passive stabilization breaks down when f, the fraction of SNc cells left alive, gets

small. We believe that passive stabilization breaks down at small f because there is

always some removal of DA from the system in the extracellular space by uptake

into glial cells and blood vessels or simply diffusion out of the tissue. As the number

of DA terminals in the striatum gets smaller, these removal effects get proportionally

larger because the reuptake DATs become sparser and sparser. This hypothesis was

confirmed and explained by our mathematical modeling. Figure 10 shows the con-
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Fig. 10 DA concentration

in the striatum as the fraction

of SNc cells alive changes

centration of DA in the striatum in the model as a function of f, the fraction of SNc

cells left alive. One can see that the passive stabilization effect of Bergstrom and

Garris keeps the extracellular DA concentration quite constant until approximately

80 % of the SNc cells have died. As even more cells die the concentration drops to

zero because the removal effects dominate more and more. The dashed curves show

that the passive stabilization depends on the dopamine transporters.

Homeostasis of DA and Cryptic Genetic Variation

In our 2009 DA model [15] that included synthesis, packaging into vesicles, release,

and reuptake via the DATs, we also included the effects of the DA autoreceptors that

sense the DA concentration in the extracellular space. When extracellular DA gets

higher than normal, the autoreceptors inhibit synthesis and release of DA, and when

extracellular DA gets lower than normal this inhibition is withdrawn stimulating syn-

thesis and release. Thus the autoreceptors act to modulate extracellular DA against

both long term and short term perturbations such as changes in the supply of tyrosine

or changes in firing rate. The mechanisms by which extracellular DA affects synthe-

sis and release via the autoreceptors are mostly unknown and an important topic of

current research that involves difficult questions in cell biology. The control of DA

in the extracellular space is also affected by other neurotransmitters. For example,

there is a dense serotonergic projection to the striatum from the dorsal raphe nucleus

(DRN). The released 5-HT binds to 5-HT receptors on DA terminals and increases

DA release when the SNc cells fire.

An important field of study in the past 15 years has been to quantify the effects of

gene polymorphisms on the proteins that are important for the dopaminergic system,

for example, tyrosine hydroxylase (TH) or the dopamine transporter (DAT). Typi-

cally, these experiments are done in test tubes or in vitro and the polymorphisms

often have large quantitative effects on the function of the proteins. And, it is very

tempting to conclude that the polymorphisms are therefore the causes of various
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Table 1 Polymorphisms in TH and DAT

Gene Mutation Relative activity (%) Citation

TH T245P 150 [99]

TH T283M 24 [99]

TH T463M 116 [99]

TH Q381K 15 [69]

DAT V382A 48 [79]

DAT VNTR10 75 [79]

DAT hNET 65 [52]

neurological or neuropsychiatric diseases. Some of these polymorphisms that have

large in vitro effects are shown in Table 1.

However, in vivo there are many control mechanisms (we’ve discussed two above)

that buffer the DA concentration in the extracellular space against perturbations in

the DA system. We pointed this out already in our 2009 paper [15], but the point

is made dramatically by the two dimensional surface taken from [89]. The surface

shows the extracellular DA concentration (z-axis) at steady state compared to nor-

mal, as a function of the activity of tyrosine hydroxylase and the efficacy of the

dopamine transporter computed from our model. In both cases, 1 indicates normal

activity for TH and DAT. The large white dot on the surface is wild type, the con-

centration of extracellular DA when TH and DAT have their normal activities. The

smaller white dots on the surface indicate points that correspond to common poly-

morphisms (homozygotes and heterozygotes) in the human population taken from

the table. Notice that all the white dots lie on the flat part of the surface where the

polymorphisms cause only very modest changes in extracellular DA despite the fact

that they cause large changes in protein activity. This is the effect of the autore-

ceptors. It is quite amazing that these polymorphisms all lie on the flat part of the

surface. Presumably, if they didn’t, they would have been selected against and would

not be common in the human population. This example shows why one has to be

very careful about jumping to physiological conclusions from in vitro experiments.

The polymorphisms in Table 1 have large effects on the activity of the proteins but

homeostatic mechanisms ensure that the effect on the phenotype (the extracellular

DA concentration) is very small.

The surface in Fig. 11 is a perfect example of cryptic genetic variation in which

large variation in genes (gene products), that is, TH and DAT, produce very little vari-

ation in a phenotypic variable, the extracellular DA concentration. It should be kept

in mind that the actual situation is much more complicated than this two-dimensional

surface in three-dimensional space would lead one to believe. There are many other

variables, both genetic variables (for example a polymorphism in the monoamine

transporter) or phenotypic variables (for example the 5-HT concentration, see below)

that could affect the shape of this surface. The “real” surface is a high dimensional

surface in a high dimensional space. Nevertheless this surface does tell us a lot, and



214 J.A. Best et al.

Fig. 11 DA homeostasis in the striatium. On each axis, 1 corresponds to normal

it is interesting to think about the people who have the 15 % mutation in TH. They are

the ones to the right sitting at the edge of the cliff where DA drops to zero. Interest-

ingly, these genotypes sometimes show a dystonia, involuntary muscle contractions

that affect posture, brought about by low levels of extracellular DA that can be alle-

viated by levodopa [69]. So, one could say that their position at the edge of the cliff

(that is, having the 15 % TH polymorphism) predisposes them to the dystonia. Some

of them are pushed over the cliff by other variables not pictured and thus show the

dystonia. The job of a precision medicine provider would be to advise a patient with

the 15 % TH polymorphism how to flatten the region around where they lie on the

surface and thus to avoid being pushed over the cliff by other variables. In our simu-

lations, the region around these individuals gets flatter if one increases the strength

of the autoreceptor effect.

Escape from Homeostasis and Neurological and Neuropsychiatric
Diseases

In Parkinson’s disease, many motor symptoms are caused by very low DA in the stria-

tum of the basal ganglia, which, in turn, is caused by cell death of the dopaminergic

neurons in the substantia nigra pars compacta (SNc) [39]. By contrast, the dyski-

nesias that may result from levodopa therapy are known to be caused by unusually

high concentrations of extracellular DA in the striatum [44]. The chorea of Hunting-

ton’s disease is also associated with high concentrations of extracellular DA in the

striatum, that in turn may be caused by degeneration of inhibitory projections from
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the striatum to the SNc [30]. There is a hypothesis that hyperactivity of dopamine

transmission underlies many of the symptoms of schizophrenia [68]. The fact that

amphetamines, cocaine, and other drugs that increase levels of extracellular DA

cause similar symptoms to schizophrenia supports this hypothesis. These three dis-

eases illustrate the idea that when one departs from the homeostatic region, either

above or below, disease processes may occur.

Homeostasis does not mean that a system is rigid. In means that an important

biological variable (in this case the extracellular DA concentration in the striatum)

is kept within a narrow range by a host of homeostatic mechanisms. Note that not all

variables are homeostatic; on the contrary, some variables change dramatically so

that other variables can remain homeostatic [89]. Each of the homeostatic mech-

anisms works well only over a certain range of biological variation. If inputs or

other biological parameters leave this range then the biological variable is no longer

homeostatic and departs from its normal range and neurological and neuropsychi-

atric symptoms appear.

Does 5-HT Stabilize DA in the Striatum?

The 5-HT neurons in the dorsal raphe nucleus (DRN) send a dense projection to the

basal ganglia, in particular to the striatum and the substantia nigra pars compacta

[111]. We have discussed above that the projection to the striatum plays an impor-

tant role in levodopa therapy for Parkinson’s disease because much of the newly

created DA during a dose comes from 5-HT terminals (see section “Serotonin and

Levodopa”). The 5-HT projection to the striatum is an example of volume transmis-

sion. The released 5-HT binds to receptors on DA terminals, such as the ones from

the SNc, and increases the release of DA in the striatum when the DA neurons fire

[19, 22, 37]. Thus, increased firing in the DRN causes increased release of 5-HT

in the striatum, which in turn causes inhibition of the indirect pathway and excita-

tion of the direct pathway from the cortex through the striatum to the thalamus; see

Fig. 12. This circuitry is even more complicated because there are excitatory projec-

tions from the thalamus to the cortex [102]. And the DRN sends projections to many

regions in the brain and most of those regions project back to the DRN [82]. One

of those returning projections is an inhibitory projection from the medial prefrontal

cortex [27] pictured in Fig. 12.

Here is a plausible mechanism by which 5-HT release from DRN neurons could

partially compensate for cell loss in the SNc. When SNc cells die, then some inhibi-

tion of the indirect pathway is withdrawn and some excitation of the direct pathway

is withdrawn. Since the indirect pathway inhibits the thalamus and the direct path-

way excites the thalamus, the effect of cell loss in the SNc is greater net inhibition

of the thalamus. Since projections from the thalamus excite cortical neurons there

will be less stimulation of the cortex. But the inhibitory projections from the medial

prefrontal cortex will fire less, removing inhibition from the DRN. Thus the DRN

will fire more, which will increase the release of DA from DA terminals in the stria-

tum partially compensating for cell loss in the SNc. Thus the “purpose” of the 5-HT
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Fig. 12 A 5-HT circuit that

could stabilize DA in the

striatum

projection from the DRN to the striatum might be to stabilize the balance between

the direct and indirect pathways against cell loss in the SNc. That this idea would

work is supported by a simple mathematical model [96], but not enough is known

about the details of projections from the thalamus to the cortex and from the cortex

to the DRN to be sure of the anatomy.

“Take Home” Message for Neurologists, Psychiatrists

The complicated electrophysiological, pharmacological, and anatomical structure of

the brain makes the design and delivery of drugs to achieve specific ends a very

daunting challenge. There are several difficulties that are implicit in the examples

that we’ve given in this chapter, but it is useful to make them explicit.

1. The brain contains many homeostatic mechanisms (in the electrophysiology,

the pharmacology, the endocrinology, etc.) that tend to act to counter the

intent of specific interventions. For example, as discussed in section

“How Do SSRIs Work?”, the original idea of SSRI development was to block

the reuptake of 5-HT in projection regions and thus raise the 5-HT concentra-

tion in the extracellular space of the projection region. However, the SSRI will

also block reuptake of the 5-HT released in the DRN when 5-HT cells fire. The

released 5-HT stimulates the 5-HT1A autoreceptors on DRN cell bodies lower-

ing the firing rate of the DRN 5-HT neurons, and this would tend to lower the

5-HT concentrations in projection regions.
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2. A drug will not only affect the cells that you want it to affect, but, may also

affect many other cells in the brain. A perfect example is the use of levodopa for

Parkinson’s patients where the intent is to increase the production of DA in the

remaining SNc neurons. But levodopa is taken up by all cells of the body and in

5-HT varicosities and cell bodies it is used to manufacture and store DA in 5-HT

neurons. This not only causes the large pulses of DA in the striatum that have

been implicated in the development of dyskinesias, but also severely impairs the

5-HT system during the dose.

3. As emphasized by Fuxe et al. [45], brain cells express a myriad of different

receptors. Often receptor populations are at locations distant from the endoge-

nous sources of neurotransmitter and in fact may never be reached by endoge-

nous transmitter [116]. When one gives an exogenous drug, one may stimulate

receptors that are not normally stimulated under physiological conditions, and

therefore the consequences are difficult to predict.

4. The brain is not homogeneous, receptors are not spread out evenly, and local

consequences in one nucleus can differentially project to other brain regions.

For example, suppose that one designs an antagonist for the 5-HT1A receptors

on the cell bodies of 5-HT neurons with the intent of raising DRN cell firing and

the release of 5-HT in the striatum. Then, depending on the strength of projec-

tions, the 5-HT concentration will likely change differentially in all regions to

which the DRN projects. Moreover, a number of studies have identified roles for

5-HT1A receptors in processes such as thermoregulation, immune function, and

memory [91], where side effects might be anticipated.

The examples that we have given all involve volume transmission. Mathematical

modeling of volume transmission can help us to understand the differential effects

of drugs in local brain regions as well as side effects caused by projections to other

regions. And, thus, mathematical modeling is an important tool for a better and more

rational design of drug interventions.

There is another way in which the study of volume transmission can help us under-

stand the brain. There are biophysical models of individual neurons and models of

small and large networks of neurons. On the other hand, there are top-down models

of behavior created by cognitive scientists in which different brain regions or nuclei

are treated as black boxes and one studies how the regions influence each other and

cause behavior. Connecting the models at these two very different levels is a diffi-

cult but important problem in brain science. Here the study of volume transmission

can help because volume transmission operates at intermediate levels between these

two types of models [50, 81, 87]. For example, studies of cholinergic modulation

of neural circuits (volume transmission) have helped bridge understanding from the

cellular effects of acetylcholine to its role in cognitive performance [87].
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“Take Home” Message for Computationalists

Most of the mathematical modeling that has been done in computational and mathe-

matical neuroscience addresses the electrophysiological view of the brain. All math-

ematical models are simplifications of the real biology, of course, and a natural sim-

plification is that the brain consists of its electrical circuitry. If so, one should study

the fundamental unit of the circuitry, the individual neuron, how neurons influence

each other, and the behavior of small, medium, and large networks of interacting neu-

rons. Because of the sheer size of the circuitry and the biological variation in indi-

vidual neurons and connection patterns, these problems have been a fertile source

of interesting biological and mathematical questions since the time of Hodgkin and

Huxley [60]. All along it was understood that neurons are cells and that they are influ-

enced by glia, local biochemistry, diet, the endocrine system, behavior, and changing

gene expression levels, but it was hoped that those other details could be ignored

because function arises mainly from the electrical circuitry. If function arises from

the coordination of all those systems, then understanding function in the brain is a

daunting challenge, indeed.

We believe, and we have been making the case in this chapter, that volume trans-

mission is an important new area for computational and mathematical modelers who

study the brain. By volume transmission, a local nucleus, for example the DRN or the

SNc, can change the local biochemistry in the extracellular space in a distant nucleus.

And, as we have indicated, there are 5-HT receptors on DA neurons that change the

amount of DA released in the striatum, when the concentration of 5-HT goes up. So

the different volume transmission systems are not independent, but affect each other.

Unraveling these long distance biochemical networks and their interactions will be

fundamental to understanding the brain in health and disease. In addition, the study

of volume transmission raises interesting mathematical questions. We mention three

such questions here.

If the purpose of a projection is to keep the neurotransmitter in the extracellular

space within close upper and lower bounds, how precise does the placement of vari-

cosities or terminals have to be to accomplish the goal? This is an interesting math-

ematical question because the neurons are firing stochastically, and the varicosities

and terminals are both the sources of the neurotransmitter and the sinks into which

it is absorbed. What is the spatial dependence in the extracellular space of the long

term (average) neurotransmitter concentration? A natural first assumption would be

to assume that the glial cells do not take up neurotransmitter, so in this case it is

just a question of release, diffusion, and reuptake in the tortuous extracellular space.

However, glial cells do take up neurotransmitters, and this means that the boundaries

of the extracellular space are weakly absorbing. We have some preliminary results

on these questions [73].

Secondly, though it has been known for years that autoreceptors play an impor-

tant role in controlling the extracellular concentrations of neurotransmitters, not so

much is known about the intracellular mechanisms involved in inhibiting synthe-

sis and release or in the strengths of the inhibitions or the ranges over which they
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operate. In most of our models, we suppose that the inhibition of synthesis and

release depends on the current extracellular concentration of the neurotransmitter.

However, recent experimental and computational evidence [113] shows that autore-

ceptor effects are long-lived. The autoreceptor effect can last 30–60 s after the con-

centration in the extracellular space has returned to normal. Thus models will have

to take into account the dynamics of autoreceptor effects inside of cells.

How should volume transmission and pharmacology appear in electrophysiolog-

ical network models? For firing rate models, the firing rate of a neural population

might depend on the concentration of a neurotransmitter released from a presynap-

tic population. Behn and Booth [7] used such an approach in modeling the rat sleep-

wake regulatory network. Thus they were able to simulate experiments in which neu-

rotransmitter agonists and antagonists were microinjected into the locus coeruleus

to see the effects on the structure of the sleep-wake cycle. In conductance-based

models, such as those based on the Hodgkin-Huxley formalism, modulation can

be accounted for through effects on model parameters [50]. Researchers often have

found bifurcations in synaptic conductance parameters that dramatically change the

dynamics of the system. On inspection, these conductance strengths would depend

on local neurotransmitter concentrations through volume transmission. For exam-

ple, in [14], the transition from normal to pathological (parkinsonian) neural activity

may be due in part to an increased level of inhibition from the striatum; as discussed

above, this is expected to result from decreased volume transmission of DA from

the SNc. This is just one example of a neural circuit that would exhibit very differ-

ent dynamics at different concentration levels of a neurotransmitter. This possibility

shows that there will be very interesting dynamical systems questions in the interac-

tions between the volume transmission network and local electrophysiological sys-

tems.
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Attachment Modelling: From Observations
to Scenarios to Designs

Dean Petters and Luc Beaudoin

Introduction

Computational psychiatry is an emerging field of study at the intersection of research

on psychiatric illness and computational modelling. Using a biological approach to

understanding psychiatric disorders has enabled researchers to make great progress

in understanding the causes of disorders like schizophrenia and depression. A com-

putational approach helps bridge an explanatory gap from biological details to

observable behaviours and reportable symptoms at the psychological level [60]. Con-

nectionist modelling, and the use of reinforcement learning algorithms have been

applied to computational psychiatry [60]. For example, connectionist models have

been used to simulate schizophrenia [22] and reinforcement learning algorithms have

been used to model anxiety and mood disorders [25, 26].

This paper describes an agent-based modelling approach to attachment relation-

ships, and attachment disorders. Agent-based models can incorporate connection-

ist and reinforcement learning components within complete cognitive architectures

[68]. In addition, they may also include other representations and algorithms that

exist within complex cognitive architectures that are ‘deep’ in the sense of provid-

ing detailed implementations of particular subsystems, such as planning, reasoning

or learning [5, 46, 67]. A key benefit of an agent-based approach in computational

psychiatry is that it allows multiple agents to represent multiple people interacting

in an ‘online’ dynamic fashion [76]. Agent-based attachment models are therefore

complementary to attachment models based upon neural networks that do not exist

in dynamically changing ‘online’ virtual environments [20, 29, 32].
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Attachment Theory describes how our closest relationships develop and function

across the life span [19]. Attachment bonds are formed early in infancy and can

reform and develop through the life-span [13]. Attachment relationships are realised

in different ways in different contexts and different developmental stages. From early

in infancy, humans demonstrate a strong innate predisposition to emotionally attach

to familiar people around them who provide physical or emotional security. Then in

developing towards adulthood, humans also show attachment responses to romantic

partners and act as caregivers [30, 97].

Attachment Theory also provides biological, comparative, evolutionary, cogni-

tive, cross-cultural and psychopathological perspectives [9, 13, 27, 31, 67, 77, 94].

It does not merely explain moment to moment interactions between infants and car-

ers. Attachment interactions can also be observed longitudinally through human

lifespan development from infancy to old age, and in adult romantic relationships.

Because Attachment Theory explains phenomena over a range of timescales from

moment to moment interactions to ontogenetic and phylogenetic development a com-

plete modelling approach to attachment phenomena needs to be capable of simulat-

ing temporally nested scenarios. Sometimes the modeller will just want to explain

a few minutes of interaction, but on other occasions modelling attachment develop-

ment over a lifespan or over evolutionary trajectories may be desired [73].

The early sensori-motor/behavioural core of the relationship (support for explo-

ration and independence and haven of safety when needed) continues for the duration

of the relationship. Then with development of language and representational skills,

mental representations of relationship history and expectations about availability and

responsiveness in relationships become a significant factors in attachment related

influences on psychological problems.

Attachment Theory provides detailed descriptions of many phenomena of inter-

est to a computational modeller that range from: normative attachment development

through the lifespan [13, 67]; classifications of secure, insecure-avoidant, insecure-

ambivalent and insecure-disorganised behaviour patterns in infancy [1, 52, 54, 68];

to measurement of analogous categories in adolescents [3], adult caregivers [37] and

adults in romantic relationships [30]. Given that infant classifications are made in

response to mostly non-verbal behaviour, infant attachment behaviour patterns can

sometimes be compared to phenomena described in comparative psychology and

ethology [13, 39]. In disorganised attachment classification, infants neither approach

nor avoid their caregivers in a consistent and organised way, resolving apparent con-

flict by producing behaviours that seem out of place. These disorganised responses

in human infants have been compared to ethological displacement behaviour. For

example, in studies of birds [39], where birds in confrontations neither fight or flee

but instead preen.

In the Adult Attachment Interview (AAI), classification typically occurs through

interpretation of verbal behaviour. It is the quality of discourse in terms of appro-

priate quantity, relevance and coherence, rather than its content, that allows patterns

in verbal behaviour to be interpreted as autonomous, dismissing, preoccupied, or

unresolved/disorganised [37]. Whilst avoidance in infancy has been described as an

organised response that involves managed disengagement from a caregiver, avoid-
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ance in dismissing adults, as observed in the AAI, may be better presented as a form

of psychodynamic defense, with dismissing adults producing verbal responses that

minimise discussion or description of emotionally uncomfortable content.

One of the challenges of modelling and one of the ways in which modelling can

be helpful is in making explicit the parallels between the behavioural and represen-

tational facets of attachment relationships. How parallel are they? Can we develop

testable hypotheses? And can we develop ideas about how early experience and prob-

lems in the interactive domain are related to the representational realm? It is a sig-

nificant shortcoming that, so far, attachment theorists have not managed to be very

explicit about these issues or proposed realistic mechanisms.

The same cognitive architecture may simulate normal attachment interactions and

pathological attachment relationships and internal states, depending on the environ-

ment and experiences included in the model [67]. In addition, a simulation of patho-

logical processing should be able to engage with therapeutic interventions, such as

interventions to change behavioural patterns, or modelling a response to talking ther-

apies. Taken together these benefits reinforce each other so that whilst it is not prac-

tical to model the whole brain or whole mind, designing relatively broad complete

architectures for attachment suggests a promising approach for computational psy-

chiatry.

The Scientific Problem

The scientific problem focused upon in this paper involves updating the informa-

tion processing framework for attachment theory, originally set out by John Bowlby

between 1958 and 1982 [12–16]. As reviewed in the next section, Bowlby’s theoret-

ical approach to explaining attachment phenomena evolved from psychoanalytic, to

ethological, control systems and finally to including Artificial Intelligence structures

and mechanisms. However, he did not develop a systematic Artificial Intelligence

perspective, and never became aware of the kinds of developments that are routinely

used in contemporary research in cognitive architectures, machine learning or agent

based modelling. So the purpose of the research programme detailed in this paper is

to update the attachment control system framework that Bowlby set out by reconcep-

tualising it as a cognitive architecture that can operate within multi-agent simulations

[67].

The scientific contributions made by this paper are two-fold. Firstly, it frames

descriptions of attachment behaviour patterns as directing and evaluating computa-

tional modelling efforts. Secondly, it demonstrates the progress that has been made in

producing running simulations of the behaviour patterns of interest. To fulfil the first

scientific contribution, behavioural patterns will be expressed in scenarios (specifi-

cation of requirements for the modelling effort), to guide the modelling effort and

to allow models to be validated when the simulations are constructed and ‘run’.

The important characteristics of the behaviours that we want to capture may involve

numerical quantities, such as the frequencies of occurrence of particular behaviours.
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However there may be aspects that cannot be quantified, such as capturing rule based

patterns of behaviour. In this case structural descriptions may provide an effective

method of assessment of what has and has not been achieved. This paper will there-

fore use a scenario-based method of specifying and evaluating requirements that can

provide precise metrics for elements of the behaviours we want to capture that are

not easily represented in quantitative ways [65, 67]. Scenarios can capture abstract

patterns of behaviour and allow researchers to recast them at a level of concreteness

and appropriate detail. For example, attachment measures involve taking detailed

observations and coming up with generalisations such as discourse patterns being

more or less coherent. These generalisations can then be modelled in simulations

with precise metrics. The second part of the scientific problem is therefore creating

agent-based simulations that can match the requirements set out by the scenarios. But

the process is iterative with scenarios and simulations both deepening over design

cycles [65, 67].

The particular attachment behaviour patterns this paper will consider have been

organised into four specific scenarios. These are the patterns in empirical observa-

tions ranging from secure base behaviour of infants to the discourse patterns pro-

duced by adults, and ultimately, simulating causal links between adult states of mind,

caregiving patterns and infant attachment patterns:

∙ after describing secure-base behaviour in infancy the scientific problem is posed as

explaining infant exploration and proximity seeking behaviour patterns that might

be demonstrated when an infant explores a park. In terms of the modelling tech-

niques used, this is similar to an artificial life foraging scenario (using simple

‘animat’ autonomous agents) [49, 67], but with two types of agent: those to be

protected and those that do the protecting [17, 62, 63].

∙ after describing how attachment studies using the Strange Situation procedure

involve year long intensive observations of home behaviour, and then short obser-

vations of behaviour in controlled laboratory conditions, the scientific problem for

attachment modelling is posed as analogous to a machine learning study. In this

scenario, different infant home experiences result in different attachment classifi-

cations in the laboratory. Thus an overall simulation (the infant and carer agents

interacting within the virtual environment) has a training stage and a test stage.

The scientific problem is therefore to show how ‘test stage’ behaviour can be pro-

duced by learning from the experiences in the training stage. This second scenario

develops the first scenario by including infant agent learning about responsiveness

and sensitivity over a simulated year, and by describing behaviour at one year of

age in minute by minute detail.

Two scenarios are presented which have not until now been implemented in sim-

ulations:

∙ after analysing the Strange Situation in more detail, the scientific problem in this

scenario focuses more on the least frequently found individual differences cate-

gory, the ‘D’ disorganised/disoriented classification. So the scenario is posed as
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how the observable ‘displacement’ behaviour of ‘D’ infants is caused. The devel-

opment of ‘D’ pattern behaviour in infants is linked in high risk populations to

maltreatment, and in low risk samples to their caregiver experiencing unresolved

loss. It develops the first two scenarios because it focuses on the scheduling of

behaviour units and how behaviour units might be constructed ‘on the fly’.

∙ after describing response patterns in the Adult Attachment Interview (AAI), the

scientific problem is posed as how coherent discourse about attachment by care-

givers, and different types of failure to produce coherent discourse, might be mod-

elled. The AAI involves questions and answers about the same broad subject over

the course of an hour. So the agent will therefore be able to engage in language

processing with a simple grammar and attachment-focused lexicon. The agent will

possess an ability to make moment to moment working memory retrievals about

what was previously communicated in the interview, and about its previous expe-

riences in the virtual world [47]. The agent will also produce sentences that do not

need to be as complex as those produced by real humans in the actual AAI, Just

complex enough to allow variations between agents that present balanced recol-

lections of their attachment history, and those that present either responses that

lack key details or that include redundant information. The agent will therefore

possess control processes that subserve both language comprehension and pro-

duction. In addition to how the agents engage in language, this scenario will also

specify how agents will engage in caregiving, in terms of responsiveness, sensitiv-

ity, and effectiveness. So the structures and mechanisms that support conversation

need to be integrated with a broader architecture that supports selection of actions

that manipulate the world, deliberation about the consequences of such actions,

self-reflection, and failures in self-reflection. The challenge is therefore that the

same agent will be required to act in a simulated environment as a caregiver in

a particular manner and then converse about its actions and experiences in that

environment in an associated communicational manner. Since attachment studies

also describe longitudinal data on trajectories from infant to adult classifications,

this scenario might also be extended to a single ‘lifespan’ scenario where agents

experience attachment interactions from infancy to adulthood, and at each point in

their ‘lifespan’ possess an attachment classification that reflects their experiences.

Bowlby’s Development of Attachment Theory

For thirty years after the Second World War, Attachment Theory [1, 12–15] was

formulated and developed by John Bowlby and co-workers. Briefly reviewing how

Attachment Theory developed in this long time period will help show that this the-

ory is made of behavioural and cognitive components [66]. The behavioural com-

ponent in Attachment Theory is comprised of many different systematic ways to

measure and observe attachment-related phenomena. Attachment models need to

produce these systematically observed behaviour patterns in simulations. There are

also many cognitive components in Attachment Theory explaining different ways in
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which individuals process information relevant to attachment phenomena. Cognitive

components in Attachment Theory are useful for attachment modellers as a starting

point for designing the internal information processing structures and mechanisms

that will produce the required behaviour patterns when incorporated in simulated

agents. In each stage in its theoretical development new layers of theoretical cog-

nitive constructs and empirical measurement tools have been added to what is now

a rich and broad approach to social and emotional development. So a recounting

of this theoretical development will be used to structure the development of attach-

ment modelling scenarios and attachment models which have been implemented as

running simulations.

While a medical student, Bowlby became interested in personality development

and the key role played by an individual’s early caregiving environment [43]. He

trained as a psychoanalyst and used psychoanalytic ideas to explain how infants

and their mothers emotionally bond [2, p. 333]. During the early 1950s he brought

together and integrated a significant amount of empirical data regarding the effects of

separation and loss on emotional development and attachment in a landmark report

to the World Health Organization [11]. However, during this period he increasingly

found psychoanalytic theory inadequate as an explanation for phenomena related

to social and emotional attachment, separation, and loss [12, 13]. For Bowlby, this

approach to motivation required revision because it was rooted in a drive theory

which suggested infants were primarily focused on their inner drives and drive rep-

resentations, and little interested in the social or physical environment per se. This

focus inwards was in part driven by the psychoanalytic retrospective case study

method which Bowlby had rejected. Critiques from psychology and philosophy of

science also made clear that the drive theory of motivation was not tenable [90]. It

was not well supported by their own evidence, which itself was problematic, and

seemed inaccessible to ordinary standards of empirical analysis and falsification

[95].

Although Bowlby rejected drive theory, psychoanalysis did possess a number

of key insights into early experiences and relationships which Bowlby valued and

wanted to maintain in his own approach [95]. Bowlby wanted to reform psychoan-

alytic theory rather than replace it, to conserve theoretical insights related to the

importance of the inner-life [95], such as:

∙ human infants lead a complex emotional and cognitive early life

∙ the strength of attachment between mother and infant is not related to overt behav-

iours like separation protest

∙ early close relationship attachments form prototypes for relationships through the

lifespan

Through contact with Robert Hinde, Bowlby became aware that Ethology offered

an alternative motivational model upon which to base his explanations for attachment

phenomena. Ethology was a more scientifically respectable approach than psycho-

analysis, with instincts and fixed action patterns that were observable in behaviour,

as opposed to the empirically inaccessible sexually based mental energy hypothe-
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sized by psychoanalysts. This led to his 1958 presentation of Ethological and Evolu-

tionary Attachment Theory [12]. In this theory, the attachment behaviour of human

infants was explained in terms of ethological behaviour systems. Within the attach-

ment control system, the goals related to attachment were organized according to

four behaviour systems, the attachment, fear, sociability and exploration systems [13,

19]. According to Bowlby, what defines the attachment control system is not a set

behaviour repertoire but the outcomes that predictably follow from these behaviours.

Similar behaviours may be produced by different behaviour systems. The three main

ethological claims [12, p. 366] incorporated in this version of his theory were that:

∙ attachment behaviours are species-specific behaviour patterns—following a simi-

lar and predictable pattern in nearly all members of a species. This is theorised

as occurring because each behavioural system was evolutionarily designed to

increase the likelihood of survival and adaptation to environmental demands, in

the environment of evolutionary adaptedness (EEA) [13].

∙ these behaviour patterns are activated and terminated by various external and inter-

nal stimuli. Each behavioural system involves a set of contextual activating trig-

gers; a set of interchangeable, functionally equivalent behaviours that constitute

the primary strategy of the system for attaining its particular goal state; and a spe-

cific set-goal (a state of the person-environment relationship that terminates the

systems activation).

∙ the actions of a behaviour system are not always a simple response to a single

stimulus but can be a behavioural sequence with a predictable course. Simple

sequences of behaviour can be integrated into more complex behavioural patterns.

Although Bowlby’s use of Ethology provided a rigorous observational methodol-

ogy and a rich comparative/evolutionary framework, it did so at the cost of some of

the descriptive richness of the inner life that the previous psychoanalytic approach

provided [43]. So in the 1960s Bowlby again searched for a motivational frame-

work, that was scientifically rigorous but also rich and complex enough to explain

attachment phenomena. He introduced a much broader and richer set of constructs to

Attachment Theory as he formulated the concept of the Attachment Control System.

This explanatory framework integrated ideas from Piagetian developmental psychol-

ogy, Cybernetics, Systems Theory, and Artificial Intelligence, as well as retaining

ideas from Ethology.

Where Bowlby’s 1958 version of a behaviour system was representationally and

mechanistically simple, in the 1969 version of the behaviour system this construct

had become an organising component in the representationally and algorithmically

richer attachment control system. In this new framing, a behaviour system might be

supported by different information processing mechanisms and structures at different

stages of development. So extra claims incorporated by Bowlby into how behaviour

systems operate in this updated control system approach to attachment included that:

∙ behaviour systems are a product of the interaction of genetic endowment with

environment, and so moulded by social encounters so that the person’s behavioural
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capacities fit better with important relationship partners and other relational con-

straints. So each behaviour system has its own ontogenetic development, initially

producing reflex actions and later in infancy producing fixed action patterns which

increase in the complexity of their organisation in sequences and chains.

∙ each behavioural system also includes cognitive-behavioural mechanisms, such as

monitoring and appraising the effectiveness of behaviours enacted in a particular

context, which allow flexible, goal-corrected adjustment of the primary strategy

whenever necessary to get back on the track of goal attainment.

∙ representations guide behaviour, operating partly unconsciously but also partly at

the level of conscious thoughts and intentions,

∙ later in development, the operation of behaviour systems is increasingly mediated

through high level representations, such as consciously accessible internal work-

ing models and natural language

Up till this point in this historical review, we have strongly emphasised the organ-

ising focus provided by Bowlby’s conceptualisation of behaviour systems. This theo-

retical framework has a central place in the cognitive component of Attachment The-

ory. This is of great value for computational psychiatrists taking their first steps to

modelling in this domain. However, there are several reasons for an attachment mod-

eller to look beyond modelling of attachment behaviours like secure-base and safe-

haven responses. These include finding modelling approaches that capture the com-

plexities of ontogenetic development, and capture the complexities of adult attach-

ment behaviour.

Regarding ontogenetic development, the continuity of exploration, fear, attach-

ment, and socialisation behavioural systems through lifespan development is linked

to continuity of the goals that are held by these systems through developmental

stages. In the field of Situated Cognition, Clark has introduced the concept of ‘soft

assembly’ to explain the flexible manner in which systems can be constructed when

they are focused on achieving particular set goals rather than using particular means

or actions [21, p. 44]. Part of the scientific problem set out in this paper is how

to computationally model the soft assembly of attachment behaviour systems that

use reflexes and goal corrected mechanisms early in infancy but use more advanced

chaining of actions, simple plans, hierarchical plans, internal working models, and

mediate actions using natural language, at increasing mature stages in development.

Individuals plan future actions with particular outcomes in mind, and can discuss

these plans using natural language. In terms of ‘soft assembly’ it is the organism’s

progress to achieving whole-organism goals that helps shape the components of its

cognitive architecture as they develop. To understand ontogenetic development and

the complexities of adult attachment behaviour, we need to explain the ability to

revise, extend, and check models of self and other in attachment relationships [13,

p. 82].

Bowlby formulated the attachment control system as relying on internal working

models that allowed predictions to be made about the results of possible actions,

as well as including planning representations and processes, and feedback mecha-

nisms such as homeostatic control [13]. Internal working models of self and others
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are mental representations which store the residues of person-environment transac-

tions. They organise memories of behavioural-system functioning and guide future

attempts to attain the overall set goal of the system. Bowlby invokes internal work-

ing models at early stages in development and later on, when linguistic skills and

conscious reflection can enable models to become more adequate [13, p. 84]. Inter-

nal working models transmit, store and manipulate information and allow the indi-

vidual to conduct small scale experiments within the head [13, p. 81]. For Bowlby,

their function was to replace the internal worlds of traditional psychoanalytic theory.

Bowlby emphasises the requirements for internal working models to be updated. For

a computational psychiatrist, a particularly important aspect of Bowlby’s internal

working model construct is that pathological sequelae of separation and bereave-

ment can be understood as outdated or insufficiently updated models that may con-

tain inconsistencies and confusions [13, p. 82]. So internal working models are very

germane to psychopathology in the attachment domain.

Bowlby had observed that people often fail to bring to conscious awareness some

aspects of their previous attachment experiences. Psychoanalytic theory suggested

that this occurs to minimise an individual’s psychic pain and distress. Freud viewed

the mind as involving conflict between conscious thoughts and unconscious emo-

tions ‘trying’ to become conscious and be discharged, like a “boil or abscess which,
being unable to find a path to the surface of the body, cannot discharge the toxic
matter it contains” [90, p. 13]. Freud theorised that unconscious psychically toxic

thoughts were held below consciousness by an active process of defensive control-

repression:

How had it come about that the patients had forgotten so many of the facts of their external

and internal lives but could nevertheless recollect them if a particular technique was applied?

Observation supplied an exhaustive answer to these questions. Everything that had been

forgotten had in some way or other been distressing; it had been either alarming or painful

or shameful by the standards of the subject’s personality. It was impossible not to conclude

that was precisely why it had been forgotten - that is, why it had not remained conscious.

In order to make it conscious again in spite of this, it was necessary to overcome something

that fought against one in the patient; it was necessary to make efforts on one’s own part

so as to urge and compel him to remember. The amount of effort required of the physician

varied in different cases; it increased in direct proportion to the difficulty of what had to be

remembered. The expenditure of force on the part of the physician was evidently the measure

of a resistance on the part of the patient. It was only necessary to translate into words what

I myself had observed, and I was in possession of the theory of repression. [33, p. 18]

Bowlby accepted that there was a phenomenon to be explained regarding differ-

ential awareness of past aversive events. However, he rejected the psychoanalytic

account for how such a failure in awareness might arise. When comparing psycho-

analytic defense processes to his own conceptualisation, Bowlby emphasised that

inaccessible memories and desires were “due to certain information of significance
to the individual being systematically excluded from further processing” [15, p. 65].

He therefore proposed inaccessibility occurring due to a person cognitively redefin-

ing or re-categorising previous experiences to exclude them [28]. So the concept of

defensive exclusion in the attachment domain [15] captured important clinical phe-

nomena that psychoanalysts had previously noted but which Bowlby realized were
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not dependent on their theory of libidinal (sexually based) drives. Therefore imple-

mentations of internal working models in computational psychiatry should allow for

differences in accessibility of memories of past events and biases in the information

provided about the consequences of possible future actions.

Bowlby used the term ‘defensive exclusion’ to describe an informational process

with an affective dimension, in which internal and external inputs are excluded

“together with the thoughts and feelings to which such inflows give rise” [15, p. 65].

He suggested that individuals can selectively exclude available information relevant

to attachment interactions and focus instead on salient but less distressing thoughts.

Defensive processes may be necessary and adaptive if they stop disorganising nega-

tive affects. Or they might lack the subtlety and flexibility necessary to serve adaptive

ends and result in restricted, overgeneralized, or distorted versions of reality that are

inconsistent with good adjustment. Defensive exclusion is an important phenomena

for computational psychiatry because it is concerned with limits on the updating of

internal working models of the self and other, and how these limitations can consol-

idate over time to result in major differences in self-image and personality [28]. For

example, Bowlby suggested multiple internal working models can be formed with

incompatible information. Some primitive models may be formed early and become

dominant and exert influence either consciously or unconsciously over later forming

radically incompatible subordinate models that the individuals is actually aware of

[14, p. 238]

Without using such terminology, he also portrays kinds of self-reflective meta-

processing on mental life which occurs in therapy in explicitly computational terms:

The psychological state may then be likened to that of a computer that, once programmed,

produces its results automatically when activated. Provided the programme is the one

required, all is well. [When] representational models and programmes are well adapted,

the fact that they are drawn on automatically and without awareness is a great advantage.

When however, they are not well adapted, for whatever reason, the disadvantages of the

arrangement become serious.

For the task of changing an over-learned programme of action and/or of appraisal is enor-

mously exacerbated when rules long implemented by the evaluative system forbid its being

reviewed.[...] A psychological state of this kind in which a ban on reviewing models and

action systems is effected outside awareness is one encountered frequently during psy-

chotherapy. It indicates the existence of another stage of processing at which defensive exclu-

sion can also take place, different to the stage at which perceptual defence takes place. [15,

pp. 55–56]

Work has been undertaken in Artificial Intelligence on computational systems

which can undertake limited forms of self-examination [7, 45], though this remains

an under-explored area of AI.

In conclusion, Bowlby has provided the computational psychiatrist with a rich

description of information processing structures and mechanisms, but these are not

set out in enough detail to be readily incorporated using contemporary modelling

techniques. A process of interpretation and ‘re-imagining’ is required to translate

Bowlby’s attachment control system and its components into a design for a con-

temporary cognitive architecture [65, 67, 69, 71–73]. This section has shown that
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scenarios for attachment modelling need to include behavioural descriptions ranging

from infant exploration and security seeking to adult caregiver behaviour patterns,

including complex adult thought and verbal action patterns.

A Scenario for Secure-Base Behaviour

Bowlby’s descriptions of infant and childhood attachment responses highlight sev-

eral hallmarks of attachment [74], and of these, using the carer as a secure-base and

haven of safety are central behavioural characteristics of an attached child. Secure-

base behaviour is typically observed in infant-carer attachment relationships from

infancy to middle childhood. This involves infants using their carers as secure-bases

from which to explore, and havens of safety to return to when tired or anxious. Infants

will use a flexible repertoire of behaviours when pursuing currently active attachment

goals. The outcomes that reliably follow from activating these behaviours define the

attachment control system. For example, if an infant is anxious and its current goal

is to increase its proximity to a carer the infant may cry (which predictably brings

the carer closer), or crawl towards the carer.

A secure-base scenario at one year would require that when in an open area like

a park, infants move away from their carers to explore, but stay within a line of sight

to the caregiver, and periodically ‘check-in’ by gaining the attention of their carers

or by moving back to closer proximity [4, 13], switching between approach to the

caregiver and exploratory behaviour [67, pp. 51–78].

The secure-base scenario needs to capture the temporal contingencies of the real

infants and carers whose behaviours we want to explain, thus capturing interactions

that in reality occur within a continuing stream of time and affect. Moreover, people

involved in social interactions will often control the nature of the sensations they

receive from their external and internal environments. In a secure-based scenario,

if an infant turns the direction of their head, they can then see a completely dif-

ferent view from before that may activate different desires, goals or intentions. So,

for example, when an infant turns their face away from the person they are inter-

acting with because they are concerned about that person’s response, this may have

the result of provoking that person less, so containing the situation. In a simulation

focused on adults in conversation about attachment the same types of contingencies

through time exist—an agent will respond at any point in time to the previous state-

ments made to it, and the previous responses it has already made back. So to capture

the nature of the rich contingencies and dependencies that exist over short and long

term timescales a modelling methodology requires the following capabilities:

∙ a simulated environment that can support dynamic interactions that unfold over

time and are contingent on the immediately previous context (a world with entities

that respond in an appropriate timely fashion to events).

∙ agents which exist within the simulated environment that can engage in extended

exchanges or ‘dialogs’ with their environments, including other agents, where each

new step in the dialog can be influenced by all the preceding steps (agents within
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the world that have an encoded memory or adaptive structure that ‘records’ previ-

ous experiences).

∙ a way of populating and running simulations that allows for inclusion of a wide

variety of different types of agent cognitive architectures.

∙ being able to combine data from experimental studies (that treat data points as an

independent sequence of discrete training exemplars) with data from naturalistic

studies (that see each data point as part of a linked series of events) [76].

In summary, what is needed to model social interactions ranging from secure-

base behaviour to linguistically mediated dialogues are agents which exist in a virtual

environment over multiple time-slices, and scenarios with goals so that the effective-

ness of the attachment system can be evaluated as an aid or impediment to achiev-

ing the goals. To validate such models the running simulations need to be matched

against scenarios based upon results from standardised empirical procedures carried

out with many participants. Fortunately, such studies were completed by colleagues

of Bowlby, most importantly, Mary Ainsworth and colleagues’ development of the

Strange Situation procedure [1]; and Mary Main and colleagues’ development of the

AAI [37, 53].

An Individual Differences Approach to Attachment
in Infancy—The Strange Situation

Whilst Bowlby was setting out the information processing underpinnings for Attach-

ment Theory, Mary Ainsworth and co-workers [1] studied how differences in infant-

care interactions can affect the course of emotional and social development. The

focus on individual differences in attachment status and development led to an empir-

ically productive new direction for attachment research. Much of the contemporary

attachment research on mental health issues and psychopathology is linked to attach-

ment categories derived from the Strange Situation procedure [1]. This is not an

experiment where infant-carer dyads are randomly assigned to different conditions

in the laboratory. Rather it is a standardised laboratory procedure where all infants

are presented with the same controlled and replicable set of experiences.

To capture infant responses to changes in context, the Strange Situation procedure

consists of 8 three minute episodes which are designed to activate, intensify or relax

the one-year-olds attachment behaviour in a moderate and controlled manner. The

infant and carer enter the laboratory setting together, but then undergo a separation.

The carer leaves the room, before a reunion in a subsequent episode. As the first

reunion episode ends the infant meets an unfamiliar stranger in the laboratory, before

a further separation. In each episode infant behaviour is recorded behind a two-way

mirror. In the final episode the mother is reunited with her one-year-old infant after

the infant has been left alone for three minutes in the unfamiliar setting.

In the Strange Situation infants show normative trends in how they respond to con-

text changes that occur in the transitions between the eight episodes. For example,
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infants, irrespective of home environment, typically exhibit increased distress when

their carer leaves the room. When the infant is left with a stranger (in episode four)

or completely alone (in episode six) they typically gain some support from interac-

tion with the ‘stranger’. Even though the stranger is an unfamiliar, interacting with

a warm and friendly adult is typically preferable to being alone. Nested within the

normative trends are several patterns of response reflecting the infants confidence in

the caregivers response patterns. The infant’s response in the reunion episodes cor-

relates strongly with patterns of maternal behaviour and infant responses intensively

observed throughout the previous year. Therefore a key finding of the Strange Sit-

uation, and which makes it such a valuable research tool, is that infant behavioural

patterns observed when the carer returns to the infant after a separation (infant-carer

reunions occur in episodes five and eight) provide the best short-hand classification

for the attachment behavioural patterns of infant and carer observed at length in the

home environment.

Individual differences in the Strange Situation cluster into four patterns:

∙ Secure (type B) infants form the largest proportion in non-clinical populations and

secure behaviour is the reference pattern against which the other classifications are

evaluated. Infant responses in reunion episodes in the Strange Situation include

approaching their mothers in a positive manner and then returning to play and

exploration in the room quickly. They receive care at home which is consistently

sensitive, more emotionally expressive and provides less contact of an unpleasant

nature; at home these infants are less angry and they cry less.

∙ Avoidant (type A) infants typically make up the second largest proportion of non-

clinical populations. Infants responses in reunion episodes in the Strange Situation

include not seeking contact or avoiding their carer’s gaze or avoiding physical

contact with her. These children return quickly to play and exploration but do so

with less concentration than secure children. Whilst playing they stay close to and

keep an eye on their carer. It may seem that they are not distressed or anxious in

the Strange Situation. However, research employing telemetered autonomic data

and salivary hormone assays has demonstrated that, despite their relative lack of

crying, avoidant infants are at least as stressed by the procedure as secure and

resistant infants. Their care at home is consistently less sensitive to infant signals

and less skilled in holding the baby during routine care and interaction. At home

these infants are more angry and cry more than secure infants.

∙ Ambivalent (type C) infants typically make up a small but measurable proportion

of non-clinical populations. Infants responses in reunion episodes in the Strange

Situation include not being comforted and being overly passive or showing anger

towards their carers. These infants do not return quickly to exploration and play.

Their care at home is less sensitive and particularly inconsistent. In comparison

with average levels across all groups, C type carers are observed at home being

more emotionally expressive; they provide physical contact which is unpleasant

at a level intermediate between A and B carers and leave infants crying for longer

durations. At home these infants are more angry and cry more than secure infants.
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∙ Disorganised (type D). This last attachment pattern has been more recently cate-

gorised, is the not as well characterised or understood, and forms a very small pro-

portion of infants in the general population [34, p. 26]. Disorganised attachment

is typically conceptualised as a lack of a coherent, organised attachment strategy,

and is linked to frightened or frightening behaviour on the part of the caregiver

(we detail disorganised attachment more fully in the next section).

∙ Cannot classify—another recently defined category is comprised of the small

number of infants who do not fit into any of the other four classifications.

The major impact of the Strange Situation is in part because numerous additional

attachment measures have been developed which show that the individual difference

categories exist at one year of age are found later in childhood [56, 97] and in adult-

hood [36]. Attachment Theory describes how our closest relationships develop and

function across the life span. In a risk factors approach to psychopathology, secure

status has been suggested as a protective factor whereas the three insecure attachment

patterns have been suggested as risk factors for various subsequent psychopatholo-

gies [27]. Whilst the evidence linking secure attachment to improved social compe-

tence is relatively clear, the relationship of insecure attachment to mental health is

not so straightforward. There are several possibilities for simple causal relationships

between insecure attachment status and psychopathology which can be discounted.

Firstly, insecure avoidant (type A) and ambivalent/resistant (type C) attachments are

not a form of psychopathology warranting clinical attention, and are often adap-

tive responses to particular caregiving environments [34]. Secondly, empirical data

show that these two insecure attachment patterns do not have a direct causal role

in the later development of psychological disturbance. The effort to find the ’Holy

Grail’ of main effects of infant attachment on later psychopathology has so far been

characterised as a “fruitless search” [27, p. 638]. Sroufe et al. [89] and Mikulin-

cer and Shaver [59] both note that statistical relationships found linking attachment

insecurity and psychopathology may in part be caused by insecurity arising or being

increased in a context of pre-existing psychological problems. Thirdly, the two main

insecure attachment patterns are not even strongly linked to specific threats to men-

tal well-being. Rather, there are multiple pathways to any given disorder. A single

disorder might be reached from a combination of other risk factors. So in addition

to early attachment relationships, other risk factors are: child characteristics such as

temperament; parental socialisation and management strategies; and family ecology

(family life stress and trauma, family resources and social support). Also, insecure

attachment may contribute, along with these other risk factors, to multiple disorders

[27].

A commonly accepted view is that early attachment is just one factor among

many that either add protection or increase vulnerabilities to subsequent disor-

ders. Attachment relationship dysfunction can give rise to serious psychopathol-

ogy. For example, ‘reactive attachment disorder’ is one of a small number of psy-

chopathological disorders diagnosable in young children [27, 34]. However, such

psychopathologies are linked to significant abuse and negligence by carergivers.

Whilst avoidant and ambivalent/resistant attachment have a complex and indirect
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relationship with psychopathology, the less frequent D disorganised pattern shows a

different relationship—elaborated in section “More Detail on Disorganised/Disoriented

Attachment in Infancy”.

A Scenario Based Upon the Original Strange Situation Studies

From the perspective of computational psychiatry the original Strange Situation

study (that defined the A, B and C categories of infant attachment) is extremely

valuable because it provides a year long ‘training’ phase for a simulation, where

identical infant agents can be placed with a mother-agent that act towards them with

caregiving patterns that are abstractions of the codings and rating actually observed

by Ainsworth et al. [1] in year long home observations. The infant agents can then

be placed in an abstraction of the 24 min Strange Situation procedure to ‘test’ if their

agent architectures have adapted to their experiences and respond in the same way

as real infants do. Training and test phases therefore support the same kinds of qual-

itative and quantitative evaluation that can occur in machine learning [66, 75]. A

key justification for this approach is that A, B and C infant attachment patterns are

learned, in the sense of a response to experience, and not innate temperamental traits

[67, 93]. More details of the Strange Situation scenario for A, B and C behaviour

patterns is found in Petters [67, 68]. In brief, the Strange Situation scenario needs

to include a description of how infant and carer agents interact with each other to

reproduce the different home and laboratory behaviour patterns observed in the year

long home experiences and short test experiences of the Strange Situation procedure

[1]. This includes a task that carer agents engage with and have to break off from

(an abstraction of all the non-childcare tasks a childcarer does), thus allowing the

programmer to create carer agents which are more or less responsive to caregiving.

In addition, the scenario needs to include objects that the infant agent can explore

(‘toys’). So the infant agent is carrying out an exploration activity from which it can

break off to seek proximity. Mini-scenarios for the Strange Situation component of

the simulation need to set out requirements for how separation and reunion behav-

iours should result from learning about past experiences over ontogeny.

More Detail on Disorganised/Disoriented Attachment
in Infancy

The A, B and C classification criteria were gained from a relatively small sample,

24 infant-carer dyads in the first study, and 105 infant-carer dyads overall in the four

studies combined in the 1978 “Patterns of Attachment” book [1]. Main and Solomon

[54] recount that after the Strange Situation was developed researchers studying

middle-class populations typically classified every infant participant to whichever

of the A, B, or C attachment classification fitted them best. Most infants fitted well
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into one of these three categories. But some infants needed to be ‘forced’ into a

classification they did not fit well. This raised the question of whether some new

categories might be found. Perhaps a more fine grained analysis would add extra

categories—D, E, F and G—to the already existing A, B and C attachment patterns.

Main and Solomon [54] review a number of studies where infants whose separation

and reunion responses failed to make a good fit within A, B or C classifications. How-

ever, they did not find any clear new categories because these ‘non-fitting’ infants

did not resemble each other in coherent or organised ways. What they shared in com-

mon was “bouts or sequences of behavior which seemed to lack a readily observable
goal, intention, or explanation.” [54, p. 122]. The term selected to describe these

diverse behaviour patterns was ‘disorganized/disoriented’ but such infants were dis-

organised in different ways. Some were disorganised with respect to temporal behav-

iour patterns, and acted in an unusual and unpredictable manner given the context.

For others, disorganisation went beyond merely seeming to behave out of context.

These infants showed more obvious odd behaviours, such as “approaching with head
averted, stilling or freezing of movements for thirty seconds with a dazed expression”

[54, p. 122].

In discussing the D behaviour pattern in the Strange Situation, Main and Hesse

[52] emphasise several issues: the contradiction of action as it is carried out, often

at the moment it is initiated, and specifically related to attachment and to fear of

the caregiver. For example, they describe one infant: “immediately upon the parent’s
appearance in the doorway, the infant orients, then places hand to mouth; or rises,
then falls prone, or cries, calls, and eagerly approaches the parent, then turns about
and avoids the parent with a dazed expression. Later, in the same episode, the infant
may approach the parent obliquely or with head averted; cling to the parent while
averting gaze; cry while moving away from the parent, make hesitant, stop-start
movements on approach to the parent, or undertake movements of approach which
have a slow, limp, “underwater” quality as though being simultaneously inhibited or
contradicted” [52, p. 173]. A classification scheme for both forms of disorganisation

includes the following criteria:

∙ disordering of expected temporal sequences

∙ simultaneous displays of contradictory behaviour

∙ incomplete, undirected, misdirected or interrupted movements and expressions

(including stereotypes, mistimed movements and anomalous postures)

∙ behavioural and expressive slowing, stilling, and freezing

∙ direct indices of confusion and apprehension towards parents

∙ direct indices of disorganisation and disorientation

Context is key for a disorganised classification. It would not be uncommon for

an infant to show many of these behaviours in particularly stressful situations—for

example, when the parent is absent in the separation episodes of the Strange Sit-

uation. It is when such behaviours are seen in reunion episodes that they indicate

disorganisation [54, p. 164]. A key characteristic of disorganised and disoriented

behaviour patterns is that actions are contradicted or inhibited as they are actually

being undertaken. So actions can be undermined almost as soon as they are initiated.
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The inadequacy of the original classification scheme without the D category is

shown by the fact that in this scheme many infants showing disorganised or disori-

ented behaviour patterns would be classified as B—the secure pattern. Despite their

behaviour being unusual, they would not be showing pronounced positive instances

of avoidance or ambivalence, as these are both organised strategies and D category

infants seemed to lack a readily observable goal, intention or other explanation. For

example, they might follow full proximity seeking by then turning away sharply and

showing odd responses in their motion or expression [54]. In addition, some best fit

‘A’s were avoidant on reunions but also very distressed by each separation, and so

seemed to not maintain a fully avoidant strategy of minimising the public exhibition

of attachment behaviour whilst diverting attention to exploration. Some best fit C

infants would show strong distress, but also strong avoidance. All these behaviour

patterns are badly fitting to an A, B, C classification system but are readily classifi-

able with the addition of the D category [54, p. 130].

Studies that have specifically investigated the nature of parenting for D category

infants show a difference between high and low risk samples that included ‘D’ cate-

gory infants. In high risk samples a large majority of the infants of maltreating par-

ents have been judged disorganised/disoriented in Strange Situation studies. How-

ever, the mere presence of a ‘D’ infant classification does not indicate an infant has

been maltreated as this pattern is also found in ‘low risk’ groups, with carers who

have been found to have unresolved loss of an attachment figure. In medically nor-

mal samples it is likely to reflect aspects of the child’s interaction or experience

of the parents’ displays of anxiety, distress, conflicting signals, including tone of

voice, facial expressions, visual attention, and bodily postures [52]. The mediating

factor for high and low risk samples is hypothesised as being frightened/frightening

behaviour. This hypothesis explains Strange Situation behaviour patterns where an

observer cannot determine what is causing things—like screaming for the carer in

a separation episode and then moving silently away on reunion, or crying loudly to

gain proximity at the start of a reunion episode, but then freezing in an odd pos-

ture for several seconds. Main and Hesse [52, p. 178] suggest that infants produce D

behaviour because they are experiencing anxiety and distress that is so intense that

it cannot be deactivated by a shift in attention (the avoidant strategy) or approach to

the carer (B and C strategy). They emphasize the ‘dilemma’ faced by infants with

frightening or frightened caregivers. Normally, in stressful situations, a caregiver is

the ‘solution’ and helps reduce anxiety and alarm. Infants with frightening or fright-

ened caregivers may view their carer as such a solution, but they are paradoxically

also the source of anxiety. The D pattern indicates a momentary state where the infant

experiences an irresolvable conflict. So according to Main and Hesse [52], fear is the

likely cause of inhibition or contradictory movements, and more direct markers of

fear such as fearful expressions, extremely tentative approaches, and tense, vigilant

body postures [52, p. 173].
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Disorganised/Disoriented Behaviour Patterns as Displacement Behaviour

Main and Solomon [54] infer from the observed contradiction in movement patterns

in ‘D’ type behaviour a contradiction in intention or plan, and go onto explain the

phenomena in terms of the ethological displacement concept. Ethologists studying

animal behaviour have found that a range of different behaviour selection strategies

are used by animals in situations where different possible behaviours might be acti-

vated so are in conflict with each other. Behaviour conflicts occur when an animal

is in a situation where either of two types of behaviour might be activated and it is

impossible to produce both behaviours in a complete form. Conflict resolution can

occur by: alternating the two competing behaviours; redirection activities (the same

action with a different target); and the combination of the two behaviours in ambiva-

lent or ‘compromise’ actions showing intention movement contributions from both

[38]. Sometimes conflict resolution behaviours produced by an animal give a hint

of a behaviour that is being inhibited, for example, showing intention movements of

one before switching to the other. Alternatively, displacement behaviours can occur

where two contextually obvious competing behaviours can be entirely replaced by

a seemingly out of place behaviour. A classic example of behavioural conflict reso-

lution through displacement behaviour is where a bird is in an approach/avoidance

conflict with a conspecific. If the conspecific is much larger and likely to win a con-

flict, the best strategy is flight. But if the other bird is smaller and will likely withdraw

the best strategy is to fight and force the flight of the other bird. But what to do if the

opponent is in between the limit which trigger unambiguous decisions, leaving the

bird without a clear decision to either fight or flee? In this case, the bird may produce

a preening behaviour which appears to be irrelevant to the tendencies in conflict [38,

p. 406].

Displacement behaviours involve irrelevant behaviour substitutes, in the sense

of occurring through motivational factors other than those which normally activate

them. However ‘irrelevance’ is a relative term, and the main issue is that they occur

at a point of balance between two other behavioural tendencies which would domi-

nate the scene if they did not counter-balance each other [38, p. 414]. Examples from

comparative behavioural biology range from organised to disorganised. Preening in

passerine birds is organised in that it is frequently observed and whilst not directly

related to the aggressive or sexual behaviour it displaces, may have some function

as a way of not committing to another behaviour and therefore maintaining prox-

imity and engagement, keeping options open [38]. Disorganised examples involve

broken or piecemeal behaviour patterns, for example, with just intention movements

observable. So the comparative literature on displacement show examples ranging

from more to less relevant and from more to less organised. These dimensions are

pertinent to theories of infant attachment. For example Main and Weston [55] sug-

gest displacement is the ethological mechanism for A type avoidant behaviour. In

this view, infants are not really exploring when avoiding their caregivers but are

displacement-exploring as an alternative to showing distress and proximity seeking.

But this is an organised displacement that is either an evolved predisposition or a

learned adaptive response [67, pp. 122–123]. D type displacement seems to be a dif-
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ferent phenomenon, which may not be an evolved predisposition or learned behav-

ioural pattern. The displacement behaviours seem less relevant and occur when no

organised strategy fits.

A Scenario that Refines the Scientific Problem in Light of the ‘D’ Strange
Situation Category

The discovery of the ‘D’ category makes things more complicated for computa-

tional models of the Strange Situation in several important ways. Firstly, we have to

rethink how we interpret the ‘C’ category of infant attachment. Main and Weston

[54] note that the Strange Situation behaviour of C infants seems less well organised

than A and B infants, and when studies classified just in terms of A, B and C were

reclassified with A, B, C and D alternatives more C infants were ultimately judged D

than the A and B infants. Secondly, computational experiments run with simulations

of the Strange Situation A, B, and C categories are simple in the sense of starting

with identical infant agents. As these simulations will show how A, B and C dif-

ferences emerge in the same agent architecture from experience. The ‘D’ category

is less well studied and it may be that many infants who demonstrate disorganised

or disoriented behaviour are temperamentally (innately) predisposed to insecurity

in a way that A and C infants are not. Lastly, there are implications for how com-

putational modellers implement behaviour systems. If all infants produce organised

action sequences directed towards clear goals, then the modeller does not have to

show how actions emerge from behaviour systems—these elements of the simula-

tion can be ‘hand-coded’ at a basic level of behaviour, with sequences of behaviour

emerging from such ‘hand-coded’ behaviour units. If the simulation needs to show

how and why the units of action production fail then a greater level of granular-

ity needs to be incorporated in the simulation. Perhaps emergence of both units of

behaviour, and behaviour sequences needs to be explained.

The observation that there exist two kinds of disorganisation suggests two lev-

els of behaviour construction. One level of behaviour construction is where units of

behaviour that are put together as blocks—the organisation of behaviour sequences.

A, B, and C behaviour patterns arise from organised predictable patterns for units

of behaviour; so in disorganised behaviour patterns actions units may be scheduled

in an odd order or in a way that fails to reach an appropriate goal. If we view the

Strange Situation procedure as a ‘stress test’ then for A, B and C infants the height-

ened anxiety is evidence for the nature of their internal working models but still

leaves them free to organise behaviour in pursuit of their goals in light of these inter-

nal working models. In the ‘stress test’ context of the Strange Situation, a disor-

ganised/disoriented infant finds their action scheduler does not work effectively. A

second level of behaviour construction is that multi-element behavioural schema also

need to be constructed, and when not constructed the result is stereotypies or stilling.

What is failing in these cases is the basic organisation of motor movements.

Regarding setting out an abstract description of ‘home’ behaviour for the ‘train-

ing’ phase of a ‘D’ category scenario: Infant agents will be required to not only be
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able to differentiate more and less responsive and sensitive care, but also respond

to acts that model maltreatment—such as aversive communication and holding, and

extreme neglect in responsiveness. Sensory and motor systems will also be required

to simulate synchrony of micro-behaviours between a carer agent and infant agent,

with some scenarios requiring that these synchronous interactions are not supported.

The Adult Attachment Interview (AAI)

The introduction of the Strange Situation procedure into attachment research had a

major effect on direction and nature of attachment research. The Strange Situation

relies on observation of overt behaviour. In attachment measures looking to map

the individual difference patterns found in the Strange Situation to older individu-

als, alternative assessments strategies have been developed. For example, the ratio-

nale for the Adult Attachment Interview (AAI) is that language is a better indicator

of adult attachment assessment. The AAI is a pre-specified interview format of 20

questions in a fixed order, but with additional specific follow up probes to these main

set questions. The questioning and following arrangement must only highlight but

not alter the participant’s natural response tendencies. This is because the AAI is

designed to elucidate structural variations in how life history is presented that allow

reliable inferences about the participants internal state with regard to attachment

[37]. It opens with a question asking for a general description of family relationships

in the speaker’s childhood. Further questions are asked about separations and expe-

riences of rejection; and the effects of these experiences on adult personality. A key

section probes experiences of bereavement. Experience of abuse is also asked about.

The AAI ends with the speaker being invited to express wishes for his or her real or

imagined child in the future [37].

Comparing the Strange Situation and the AAI, both procedures uncover ‘inner

workings’ related to attachment which might otherwise not be so readily observable.

Hesse [37] emphasises another aspect of the AAI that it has in common with the

Strange Situation, namely, that the procedure acts as a mild ‘stress test’—though

neither procedure is presented as such in the attachment literature:

The central task the interview presents to participant is that of (1) producing and reflecting

on memories related to attachment, while simultaneously (2) maintaining coherent, collab-

orative discourse with the interviewer (Hesse 1996). This is not a easy as it might appear,

and George and colleagues (1985, 1996) have remarked upon the potential of the protocol to

“surprise the unconscious”. As indicated above, the interview requires the speaker to reflect

on and answer a multitude of complex questions regarding his or her life history, the great

majority of which the speaker will never have been asked before. In contrast to ordinary con-

versations, where the interviewee has time for planning, the AAI moves at a relatively rapid

pace, and usually all questions and probes have been presented within an hour’s time. Ample

opportunities are thereby provided for speakers to contradict themselves, to find themselves

unable to answer clearly, and/or to be drawn into excessively lengthy or digressive discus-

sions of particular topics [37, p. 555]
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One of the earliest studies that used the AAI was carried out by Main et al. [53],

who found a predictive relationship between a parent’s hour long discussion of his

or her own attachment history and his or her child’s Strange Situation behaviour that

was observed five years previously. Interviewees could be placed into three classifi-

cation categories:

∙ secure autonomous adults value attachment relationships and experiences, and

give apparently objective responses when asked about any particular relationship

experience. When reporting specific experiences they provide confirming detailed

memories and ability to reflect on those experiences with an understanding of why

they, and others, behaved the way they did—and this is the case for happy and

troubled experiences. So a secure autonomous adult might describe episodes of

rejection but recognise the limitations of attachment figures in a balanced way,

as well as including positive aspects of inadequate attachment figures [34]. This

adult response pattern is associated with the infant Strange Situation secure behav-

iour pattern. However, there is also evidence that individuals who were insecure

in childhood have gained ‘earned secure’ status as adults [37].

∙ dismissing adults devalue, or are emotionally cut off from attachment relationships

and experiences. These individuals provide very short transcripts, with little to

say about specific incidents and attachment experiences from their childhood in

general. Responses are not only short but minimise the importance of relationships

in general. They may idealize relationships as ‘loving’ but not provide detailed

examples to justify such positive summary statements. This adult response pattern

is associated with the infant Strange Situation insecure-avoidant behaviour pattern

[37].

∙ preoccupied/enmeshed adults are preoccupied with (enmeshed by) early attach-

ments or attachment related experiences. When reporting experiences these adults

give plenty of detail and long transcripts but fail to provide a good overview

because they become so entangled in the details. They may seem to be still engaged

in emotional struggles related to attachment relationships [34]. Priming exper-

iments that vary primes between attachment related primes, such as ‘mother’,

and non attachment related primes, such as ‘basket’, showed that adults with

this behaviour pattern, but not dismissing or secure adults, took much longer

in a lexical decision task, thus demonstrating an example of specific attachment

related interference to cognitive processing (Blount-Matthews cited in [37]). This

adult response pattern is associated with the infant Strange Situation insecure-

resistant/ambivalent behaviour pattern [37].

That the AAI produces a single classification when adults may have had different

attachment relationships with either parent, and significant other carers, is based

on the assumption that different attachment patterns found with each parent will

have coalesced in adulthood [37]. Over the last 25 years, methods of analysing AAI

transcripts have become more sophisticated. In addition, to the three classifications

found in early AAI studies, two further classifications have been found in more recent

studies [37]:
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∙ unresolved/disorganised adults speak in unusual ways about loss experiences,

demonstrating either chronic or failed mourning [37]. Unresolved/disorganised

parents are more frightened or frightening and dissociative [37]. Such ‘unre-

solved’ caregivers exhibit a range of behavioural attributes characteristic of loss

and bereavement, including: interruptions to cognitive processes, particularly in

contexts associated with the lost person; disbelief that loss has occurred or is per-

manent; unfounded fear of death. So the AAI is an interview based method that

can assess unresolved trauma which relies upon apparent lapses in metacognitive

monitoring of reasoning and discourse [52].

∙ cannot classify adults produce responses that do not fit easily into any of the

other categories. This pattern emerged in the early 1990s as a result of Main and

Hesse noticing that a very small number of transcripts showed contradictions that

stopped them fitting well into any of the other four classifications, for example,

responses that showed both idealisation (suggestive of avoidant status) and highly

preoccupied angry speech (suggestive of preoccupied/enmeshed status) [37].

Hesse [37] reviews the strong evidence of associations between AAI classification

of an adult and the current Strange Situation categorisation of an infant who is cared

for by that adult. As noted in the AAI descriptions above, secure infants are associ-

ated with secure-autonomous caregivers; insecure-avoidant infants with dismissing

caregivers; insecure-resistant/ambivalent infants with preoccupied caregivers; and

disorganised/disoriented infants with unresolved/disorganised caregivers. An early

finding by Main and Goldwyn [51] showed a correspondence between infant A, B

and C Strange Situation and classifications and AAI classifications. This finding

has subsequently been replicated by a number of studies. For example, van Ijzen-

doorn [92] carried out a meta-analysis of 18 AAI studies comprising 854 parent-

infant pairs from six countries and found that 82 % of secure-autonomous mothers

had secure offspring; 64 % dismissing mothers had insecure-avoidant offspring; but

just 35 % preoccupied mothers has insecure resistant/ambivalent offspring. In more

recent studies evidence for the association between disorganised/disoriented infants

with unresolved/disorganised caregivers has also been demonstrated. Hughes et al.

[44] found that mothers who had previously experienced a stillbirth with their first

child were more likely to be subsequently classified unresolved in the AAI, and for

their later second-born infant to be classified disorganised in the Strange Situation.

Studies have also investigated the relation between an adult’s AAI classification and

current caregiving behaviour—showing strong correlations [98]. Longitudinal stud-

ies have looked at the relation between current AAI classification for adults and their

previous Strange Situation categorisation of 20 years previously, when that adult was

an infant, showing that 72 % had the same secure or insecure classification in infancy

and adulthood [96]. For the computational psychiatrist, these associations between

individual difference categories provide valuable constraints to evaluate and validate

attachment models. The modelling effort can start by re-producing response patterns
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from the AAI, designing architectures to produce these linguistically mediated inter-

view responses. Modelling can then go on to show how the same architectures can

produce different caregiving response patterns, and hence demonstrate empirically

observed patterns of intergenerational transfer.

Explanation in Terms of Attentional Flexibility in the AAI

The three organised responses in the AAI can be related to the three organised

responses in the Strange Situation [37]. Main [50] highlighted how Strange Situ-

ation patterns show differences in attentional flexibility/inflexibility of the infant’s

responses to their carer and the environment. Secure babies showed greatest atten-

tional flexibility—switching between proximity seeking and exploration quite eas-

ily. Insecure avoidant infants can be seen as attentionally inflexible with attention

focused away from the carer. Insecure resistant/ambivalent infants can be seen as

attentionally inflexible with attention focused strongly and singularly towards the

carer [37]. The same attentional flexibility patterns were later related to the three

organised responses in the AAI in terms of their discourse strategy. Adults in the

AAI avoid thoughts or are unable to avoid thoughts the way that infants avoid behav-

iours or cannot avoid behaviours. Secure autonomous adults fluidly and flexibly shift

between describing attachment related experiences and then responding to requests

to evaluate those experiences. Dismissing adults show an inflexible attentional focus

away from both description and evaluation. Preoccupied adults focus so strongly

on describing attachment experiences that they do not break away to appropriately

respond to requests for evaluation [37]. Parents of disorganised infants have limits

and lapses to metacognitive monitoring of their own reasoning and shared discourse

when discussing experiences which would be expected to involve trauma.

Explanation in Terms of Grice’s Maxims of Discourse in the AAI

Coherence in the AAI has been related to the idea of linguistic coherence as defined

by the linguistic philosopher Grice 1975 cited in [37], who proposed that coherent

discourse is co-operative, and identified as adhering to four maxims: being true and

accurate (maxim of quality); being succinct without being terse (maxim of quantity);

being relevant (maxim of relationship); and being clear and well-ordered (maxim of

manner) [34].

The AAI uses adherence to (or violation of) these maxims as a proxy for how

an individual thinks and feels about their attachment experience. Transcripts with

a lack of overall coherence end up being categorised as such due to major contra-

dictions or inconsistencies, passages that are exceptionally short, long, irrelevant or

difficult to understand and follow. It is not what actually happened to an individ-

ual in their past that is important for predicting an adult’s attachment approach, but

the coherence of the attachment narrative that the adult produces in the constrained

AAI. So adults of all AAI classifications may publicly state the same kinds of val-

ues. The adult’s internal ‘state of mind’ as indicated by coherence with respect to

past attachment relationships is the best predictor of how they will conduct future

attachment interactions, not the actual nature of their previous attachment interac-



250 D. Petters and L. Beaudoin

tions or their explicitly professed values [34]. So the coding for the AAI considers

the use of language rather than making retrospective inferences about the person’s

actual attachment history [37].

A Scenario Based on Modelling Adult Coherent Discourse; and Failures
in Coherence

This scenario involves refining the scientific problem to modelling adult meta-

processing and executive control in four AAI classifications: secure autonomous;

dismissing; preoccupied/enmeshed; and unresolved disorganised. A computational

model that can simulate all variants of adult attachment as measured by the AAI

would include adult conversation that was: (1) coherent; (2) partial or incomplete in

how it described past events or current mental status with regard to attachment; (3)

uncontrolled in how it was too long and repeated itself; and (4) showed significant

disorganisation.

Simulating AAI behaviour patterns is significantly more challenging than sim-

ulating infant behaviour patterns observed in Strange Situation studies. Firstly, the

AAI involved natural language mediated comprehension and production, whereas

infant behaviour patterns in Strange Situation studies can be abstracted to changes

of location and orientation and non-linguistic communications. Secondly, in con-

trast with infant cognition, much richer internal processes need to be included. Once

a question is comprehended, this question refers to some memory or value. So mem-

ory retrieval is required. Then planning a response needs to occur before an utterance

is produced. Lastly, an adult scenario needs to take account of a richer social-cultural

mileu than for infants. So the scenario needs to set out how social-cultural values and

standards should moderate adult responses. However, a scenario based upon the AAI

can make helpful abstractions. Whilst the AAI is a face-to-face interview its analysis

is completed on transcripts—which do give timing information but do not give infor-

mation about details of bodily movements and facial expressions. So these embodied

details can be omitted from the scenario.

Whilst an implemented simulation of the AAI is highly likely to include rich

internal states a scenario that acts as a specification of requirements for the simulation

only needs to set-out the externally observable behaviour of agents. So details of the

linguistic interchanges are required but details of internal processing of language,

values and standards are not required in the scenario. These details are required in the

design. Multiple designs might be constructed to simulate one scenario. Linguistic

interaction can also be constrained to be a subset of natural language.

Since a scenario for language mediated attachment phenomena will focus on pub-

lic linguistic utterances it will need to specify an attachment related lexicon and

grammar that is rich enough to capture the range of response patterns in the AAI—

but no more rich than this. The intention of modelling the AAI is not to simulate the

full sophistication of language processing. Rather it is to provide a medium in which

agents can explain, and fail to explain, past attachment related events.
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AAI response patterns have been explained in terms of attentional flexibility and

discourse properties. The secure, dismissing and preoccupied enmeshed patterns can

be explained as organised responses. Only secure autonomous agents will be able to

access all memories and respond to queries about those memories in a controlled and

appropriate manner. Dismissing agents will show attenuated accessibility to memo-

ries, bias in the memories that are provided, and an avoidance of the conversational

subject of attachment. Preoccupied/enmeshed agents will have access to past memo-

ries, but will show bias in the memories that are reported, and show a lack of control

in how these memories are reported. To simulate the unresolved/disorganised AAI

response will involve modelling adaptive and pathological responses to bereavement.

Healthy mourning involves accepting change, some mental reorganisation and re-

orientation. The unresolved category of the AAI includes adults with incomplete

mental and behavioural search processes, disorientation in contexts linked to the

lost person, vulnerability to disbelief that actual loss has really occurred or is perma-

nent, and an enhanced and unfounded fear of death. So at an information processing

level this will involve lapses in metacognitive monitoring of reasoning and discourse

processes.

The secure-autonomous, dismissing, preoccupied/enmeshed and unresolved/ dis-

organised AAI classifications predict the attachment status of their children, their

responsiveness to those children, and their emotional/clinical status [37]. For exam-

ple, the status of mind with respect to attachment as measured in the AAI has

been found to moderate the relation between maternal postnatal depression and

infant security as classified in the Strange Situation [57]. In particular, unresolved/

disorganised AAI classification for a person has been used to predict D infant attach-

ment status for that person’s infant offspring [37, 52]. So whilst this scenario starts

by requiring simulation of AAI linguistic behaviour patterns, it will be extended to

include behaviour typical of AAI classifications in naturalistic contexts, including

caregiving.

Whilst starting by narrowly simulating AAI question and responses, this scenario

may develop by extending the adult agents requirements include undertaking care-

giving. The link is that both simulated interview and simulated caregiving responses

will be guided by the same ‘state of mind’ with regard to attachment, and the scenar-

ios for both kinds of interaction are constrained by empirical evidence. An extension

to this scenario might also consider lifespan development. Infants around one year of

age maintaining physical proximity to their carer and exploring their environments

using their caregiver as a secure-base. Older children may be satisfied by more indi-

rect distant contact. Furthermore, children of four or five years of age will represent

their attachment status pictorially, as well as linguistically [53]. As an individual

develops, attachment changes from a sensorimotor to higher-order representational

phenomenon. And longitudinal studies have shown significant associations between

infant and 20-year later AAI classifications for that individual—suggestive of more

complex scenarios [96].
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The Design-Based Approach to Studying Minds

In this section, we describe the design-based research methodology followed by The

Cognition and Affect project, led by Aaron Sloman and co-workers [84]. The imple-

mented attachment models which are described in section “Architectural Designs

Which Have Been Implemented as Simulations” were created as part of the Cogni-

tion and Affect Project, and greatly benefited from the prior conceptual and technical

work in this project. The Cognition and Affect project is a broad project, possessing

many elements that are beyond the specifics of attachment modelling but that are

very relevant to computational psychiatry. The Cognition and Affect project uses

two contrasting research methods: a broad designed-based approach to exploring

information processing architectures that may be implemented in running software

or hardware simulations [88]; and a philosophical technique of conceptual analy-

sis [78]. Both research approaches consider what cognitive and affective phenomena

might be produced by what kind of architecture. The design-based approach involves

exploring the space of possible requirements, designs, and simulation implemen-

tations for the cognitive or affective states being studied. For example, within this

paper, requirements for attachment modelling are expounded in the scenarios related

to empirical observations from Strange Situation and AAI studies. The design-based

approach and conceptual analysis methods are broad explorations of their respective

domains (designs and possible meanings).

Detailed findings of the Cognition and Affect project include that the mind is an

information processing virtual machine, which contrasts with the brain, which is a

physical machine. Both mind and brain have been produced by evolution. The mind

is a virtual machine which is implemented (realised) by the brain. Some mental dis-

orders arise because of physical damage or disease in the brain. Other disorders are

akin to a computer software ‘bug’ in a running program. So some therapies for psy-

chological disorders are analogous to run-time de-bugging of a virtual machine [85].

Therefore, in order to understand pathological mental states and processes and under-

stand how to treat them we need to understand the information processing architec-

tures that support normal and healthy cognitive, volitional, motivational, emotional

and other affective states and processes.

Evolution, in designing humans, has created a hybrid computational architecture

containing a highly reactive layer whose mechanisms are tightly coupled with the

environment (in monitoring and or acting upon them), a higher level deliberative

(management) layer, and self-reflective (meta-management) processes. The reactive

layer of control and cognition was produced earlier in phylogenetic development and

emerges earlier in ontogenetic development, but remains active throughout the lifes-

pan. The deliberative and meta-management layers both develop later in individual

development and emerged later in evolution. These proposed divisions, however,

are not simple. Layers may share mental resources [64], are tightly interwoven and

all their mechanisms are to some extent reactive [83]. Figure 1 shows the CogAff

schema and the H-CogAff architecture. The CogAff schema (Fig. 1a) is a system-

atic architectural framework which is a useful conceptual tool because it makes high
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(a) The CogAff schema (b) The HCogAff architecture

Fig. 1 Diagrammatic representations of the Cognition and Affect approach to understanding mind:

the CogAff schema sets out the kinds of processes which can occur in different kinds of architec-

ture so highlighting distinctions between different possible architectures in a broader architectural

design-space; and the HCogAff architecture is a high level description of structures and processes

which exist in the human mind. So this is one architecture from the broader design-space illustrated

by the CogAff schema (thanks to Aaron Sloman for permission to use these graphics)

level distinctions that are helpful in situating attachment models within a shared inte-

grative framework [67, 70, 81]. The CogAff schema organises information process-

ing by overlaying three layers (reactive; deliberative; and meta-management) and

three columns (perception, central processing and action). The HCogAff architec-

ture (Fig. 1b) is a special case (or subclass) of CogAff which has not been imple-

mented in its entirety though the production of some subsets have been accomplished

[67, 99].

When designing cognitive models to simulate a broad range of affective processes

the models are better thought of as control systems rather than computational or

symbol processing systems (though they may carry out computations and symbol

processing). Within control systems affective states can be cascading control states,

which can involve dispositions to produce evaluations, which tend to produce or

activate motives, which tend to drive behaviour [80]. They can vary in duration,

malleability and information processing features. Neural and physical events will be

very short term control states. Intermediate duration control states include intentions,

plans and desires, as well as emotions such as joy or fear and moods and preferences.

Longer term control states include personality types, temperament and attachment

patterns, as well as skills and attitudes and emotions such as love or grief [67, p.

86]. All affective states may engender further affective states. When one focuses on

the stability and relative longevity of a state, one tends to refer to it as a trait; but the

distinction is contextual [79]. We can view attachment classifications as arising from

longer term control states which engender shorter term affective states in temporary

episodes of emotions like happiness or anxiety [100].

The Cognition and Affect proposes a rich set of structures, mechanisms and

processes that are very germane to modelling attachment. Architectures that support
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complex phenomena like attachment will have many motivators, and motivator gen-

eractivators (which are mechanisms that can generate new or activate existing moti-

vators). These mechanisms are suffused throughout the reactive, deliberative and

meta-management layers. Goals are motivators that specify states of affairs towards

which agents have a motivational attitude, such as to cause, prevent, accelerate or oth-

erwise influence them [7]. They are the information processing substrate of wishes,

wants, desires, and so forth. Various assessments of a goal can be created according

to the perceived costs and benefits of satisfying or failing to satisfy the goal, and its

urgency. An agent often explores and elaborates plans that specify how a goal can

be achieved, and schedules, that specify when a goal will be achieved. In the attach-

ment domain, Bowlby emphasised the importance of the set-goal of proximity for

infants. Adults have more complex goals related to attachment, taking into account

their self-image, attitudes to interpersonal interactions, and epistemically complex

motivators like social standards (with normative values representing what goals and

other motives they ought to have) [8].

A very important distinction in the HCogAff architecture is between non-attentive

reactive or perceptual processes and the attentive processes which occur within the

variable attention filter in Fig. 1b. Many reactive processes can operate in paral-

lel whilst deliberative management and reflective meta-management processes are

attention-requiring and serial. Since deliberative management and reflective meta-

management processes are resource-bound there is a possible cost to even consider-

ing a goal. For instance, this might interrupt more important processes. So reactive

motive generactivators can operate in parallel in the non-attentive reactive compo-

nent of HCogAff and act to generate and activate motives. They are triggered by inter-

nal and external events. They can be thought of as ‘scouring’ the world for their firing

conditions [100]. When these conditions are met a motivator is constructed which

may ‘surface’ above the attentional filter. This filter prevents many motivators from

disrupting attention and being operated upon by processes in the resource/attention

bound deliberative or meta-management levels. Amongst the information processes

generated by motivators are: evaluations, prioritisation, selection, expansion into

plans, plan execution, plan suspension, prediction, and conflict detection. Manage-

ment processes can form and then operate upon explicit representations of options

before selecting options for further deliberation [100]. Representations in the delib-

erative layer can be formed with compositional semantics that allow a first order

ontology to be formed which includes future possible actions. The meta-level can

operate using meta-semantics which allows a second order ontology to be formed

which refers to the first order ontology used within the deliberative level [86].

The Cognition and Affect approach also sets out how different classes of emo-

tions can be distinguished in architectural terms. Emotions can be distinguished by

whether they are interrupts to reactive or deliberative processes—so the fear of a

child when their parent has unexpectedly left a room is different from the fear of

a child in close proximity from their carer who they think may leave them in the

future. Being startled, terrified or delighted, involves global interrupts in reactive

processes. Interruptions in deliberative processes give rise to attachment emotions

like being anxious, apprehensive or relieved [82]. A particularly important class of
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emotions, termed perturbance, emerge as a result of the interplay between several

components of the architecture when meta-management processes fail to control

management processes. This can be due to insistent motivators and also because

meta-management processes are quite limited. So effective meta-management, such

as demonstrated through coherent dialogues in the AAI, is a skilled process that

takes practice to perfect. Perturbant emotions involve uncontrolled affective con-

tent, negative or positive, tending to interrupt and capture management processing,

making it difficult for other concerns to gather or maintain attention [100]. Pertur-

bance is likely to be important in explaining attachment phenomena like AAI preoc-

cupied/enmeshed, dismissing and disorganised classifications. Modelling emotions

like infatuated love and grief, that involve a loss of control requires first showing

how information processing architectures maintain control by the meta-management

layer in typical unemotional circumstances.

The design-based modelling approach taken by the Cognition and Affect project

is facilitated by using the SIM-AGENT toolkit [87, 88]. This is open source soft-

ware which facilitates simulating very different kinds of architectures. Allowing a

modeller to compare and contrast examples from across a wide design space of

information processing architectures. These examples might or might not include

various combinations of a reactive layer, a deliberative layer, self-reflective (meta-

management) abilities, different kinds of short term and long-term memory, and

different kinds of motive generators. The toolkit can therefore be used to simulate

different models of various branches in phylogenetic and ontogenetic development,

and the development of different kinds of psychopathology. The SIM-AGENT toolkit

helps developers overcome common technical challenges in implementing, simulat-

ing and debugging broad models of cognition and affect. It also enables the use of

a wide variety of programming paradigms and facilities helpful to agent program-

mers, such as rule-based systems, neural nets, reflective systems, automatic memory

management, incremental compilation, and extendable syntax and semantics. An

advantage of the SIM-AGENT toolkit for capturing different kinds of self-reflection,

compared with other architectures [5, 46, 58] is that it is more general than a single

architecture, and so might easily incorporate diverse structures, mechanisms and sub-

systems. The SIM-AGENT toolkit can provide a coherent and systematic approach

to comparing very different architectures that might otherwise reduce to a disordered

and unprogrammatic mix of simulations created with different tools that cannot be

easily compared.

Architectural Designs Which Have Been Implemented
as Simulations

This section describes architectural design intended to fulfil the scenarios

previously described in sections “A Scenario for Secure-Base Behaviour” and
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“A Scenario Based Upon the Original Strange Situation Studies” which have been

implemented as running autonomous agent simulations.

A Reactive Architectural Model of Basic Secure Base
Behaviour

The secure-base scenario described in section “A Scenario for Secure-Base Behav-

iour” has been simulated with multiple software agents in a 2D virtual environment

implemented using the sim-agent toolkit. Figure 2 shows a screenshot of the simu-

lation in graphical mode. It has been implemented in autonomous agents using the

sim-agent toolkit. In this simulation, infant, caregiver and stranger agents interact

with objects representing food, furniture and toys. The infant’s actions can include

changing its physical location and signalling with an affective tone from positive

(like smiling) through neutral to negative (like crying) to very negative (like ‘hard

crying’). Figure 3a illustrates the four Behaviour Systems the architecture possesses:

attachment-security, exploration, wariness, and socialisation; interaction of these

behaviour systems produces behaviour patterns that match the requirements set out

in the scenarios. In the infant control architecture the highest activated behaviour

system controls the actions that are carried out by the agent. A pattern of alternating

behaviours occur because, when goals are satisfied, activation levels in behaviour

systems with this goal are reset. Consequently over-time activation levels for safety,

exploration, social interaction, and physical contact, rise and fall as they are each

satisfied and reset. The activation levels vary because inputs to component behav-

iour systems vary according to the current context—for example, placing a novel

toy right in front of an infant agent leads to higher activation of the exploration

behaviour system irrespective of other activation levels. If several behaviours are

activated, only the one with the highest activation level generates a goal. So this is a

‘winner-take-all’ action selection mechanism. Secure-base behaviour is produced by

this architecture because when the infant is close to the caregiver security producing

behaviours have low activation and exploration behaviours are higher—leading the

infant to move towards exploration goals (toys). However, the further the infant agent

moves from the caregivers the security producing goals are increasingly activated. At

some point, as the infant explores away from the caregiver, the winner-take-all goal

switches from exploration to security, and the infant signals to the caregivers and

starts moving towards the caregiver. When it gets closer, and receives signals from

the caregiver, the activation of security goals decreases, and the cycle of exploration

and proximity seeking starts again.

A number of other computational models simulate movement patterns similar

to secure-base behaviour patterns in human infants and other species that possess

attachment or imprinting processes [6, 10, 18, 40, 48]. Multi-generational evo-

lutionary simulations explore the evolutionary pressures linked to care-giving and

feeding [62, 63] and lifetime learning and protection [17]. However, these models
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A control panel that manages
a large number of different
types of tracing and allows 
access to view or change
agent attributes

The infant, moving 
towards an object 
to explore

Objects for the 
infant to explore

The carer, 
remaining
stationary

The infant’s
Safe-range
which changes
during the 
simulation

The infant’s
Visual-range
which remains
the same during
the simulation

A window that 
allows a view 
of the internal
state of the infant. 

The larger red box 
signifies the current 
active goal, at this 
time it is the explore 
goal, with a goal 
strength of 8

The smaller blue box 
signifies a currently 
inactive goal, at this 
time it is the security 
goal, with a goal 
strength of 0

An output
window 
for trace
printing

Fig. 2 A screenshot of the simulation of secure-base behaviour in graphical mode. The large win-

dow down the right hand side of the screen is the main window, and shows the positions of all

the agents and objects present in the 2D virtual world in this experiment. These are a BABY, a

CARER and six objects named b1 through to b6 which represent objects that the BABY agent can

explore. The activity in the main window shows the BABY moving away from the CARER towards

an object. Of the three windows on the left hand of the screen the top window is a control panel,

which allows different types of trace printing to be sent to the output window. The output window is

below and partially hidden by the control panel. The window at the bottom of the left hand side of

the screen represent elements of the internal state of the BABY agent. In this particular experiment

only the security and exploration goals are represented. The security goal is relatively low because

the carer agent is within the baby agents secure-range limit. The exploration goal is active and the

baby is moving towards a toy and away from its carer
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(a) A reactive attachment architecture (b) A  hybrid  attachment  architecture  with
reactive, deliberative and meta-management
subsystems

Fig. 3 A reactive and a hybrid architecture that both simulate secure-base behaviour. In both

architectures safety, exploration, socialisation and physical need ‘behaviour systems’ gain activa-

tion levels as a result of internal and external factors and compete to control actions for move-

ment and signalling in a ‘winner-take-all’ selection mechanism. In the hybrid architecture only, the

resource-constrained deliberative subsystem takes input from the reactive-subsystem, carries out

‘look ahead’ reasoning, and can inhibit the reactive subsystem and execute alternative actions. The

green dashed line represents the fact that in the human attachment system deliberative and meta-

management processes require attention and so are resource bound, which limits the number that

can be concurrently active

are not closely constrained by the details of actual psychological data like the Strange

Situation procedure studies.

A Hybrid Architectural Model of Basic Secure Base Behaviour

Even when modelling just infant behaviour there will be a range of possible answers

to how to model particular actions. In the study of cognitive development there

is a dispute which Munakata et al. [61] describes as between “Rich interpreta-
tion vs. deflationary accounts” of infant behavioural phenomena. Rich interpreta-

tion involves “casting simple responses in terms of overly complex abilities and
cognitive processes”, whereas deflationary accounts involve “underestimating the
abilities of preverbal and non-verbal populations ... mistakenly casting thoughtful
behaviours in terms of simplistic processes” p. B43, [61]. Bowlby’s (1969) account

of how the information processing related to attachment behaviour develops pre-

dates this dispute and therefore does not take a position in it. However, contem-

porary computational modellers need to construct modelling frameworks that can

support both rich and deflationary accounts. Figure 3b illustrates a hybrid architec-

ture that is a ‘rich interpretation’ in contrast to the reactive architectural ‘deflationary

account’ presented in Fig. 3a. The hybrid architecture situates reactive subsystems
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alongside a deliberative planning subsystem (that allows ‘look-ahead’ reasoning) and

a simple meta-management subsystem (where cognitive meta-processes operate on

other cognitive processes) [67, pp. 103–151]. In this hybrid architecture, the attentive

processes that occur are those not stopped by a resource limited variable attention fil-

ter. These resource bound serial deliberative processes take input from non-attentive

reactive or perceptual processes which operate in parallel. Reactive motive gener-

activators are triggered and activated by any possibly relevant internal and external

events. In the attachment domain there will be possible threats but also possible

exploratory and social opportunities. When these conditions are met a motivator is

constructed which may ‘surface’ through the attentional filter and be operated upon

by processes in the deliberative or meta-management levels. Amongst the deliber-

ative attachment processes generated by motivators are the creation, selection, and

execution of action plans. Deliberative processes that evaluate other processes occur

in the meta-management layer. This hybrid architecture can produce the same exter-

nal behaviour patterns as the reactive architecture which it extends. What it adds is

a reconceptualisation of the attachment control system in light of insights from dual

process theories in psychology and artificial intelligence [71], including the findings

of the Cognition and Affect project described above in section “The Design-Based

Approach to Studying Minds”.

Both architectures in Fig. 3a, b possess reactive learning mechanisms so that toy

objects and ‘strangers’ become familiar. But neither architecture possesses learn-

ing mechanisms than change the long term relative tendencies for particular behav-

iours to become activated. That is, neither architecture changes its predisposition to

explore or seek security according to evidence from the level of responsiveness or

sensitivity of the caregiving it receives. This deficiency is remedied by the architec-

ture described in the next section “A Reactive Architectural Model of the Develop-

ment of Individual Differences in Infant-Carer Attachment Dyads”.

A Reactive Architectural Model of the Development of
Individual Differences in Infant-Carer Attachment Dyads

The infant agent architecture created to fulfil the requirements of the Strange Situ-

ation scenario experiences very many episodes where the infant agent signals for a

response from the carer agent [67, pp. 79–102], [66, 68]. The architecture includes

reactive level learning mechanisms that allow the infant agents to infer a measure

of implicit trust from the responsiveness and sensitivity of their carer agents from

the results of these episodes. In long run simulations that model the first year of life

there are repeated instances where the carer agent goes beyond the infant’s Safe-

range limit, and is called back by the infant agent. In episodes of infant attachment

distress, the carer agent responses vary from very prompt to tardy. If an infant expe-

riences a series of very prompt responses it will learn to have a level of trust in

the carer agent’s responsiveness. This is implemented as a large safe-range distance.
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Fig. 4 An illustration of the difference that having a high or low value for the safe-range variable

has on the behaviour of an infant agent. On the left, a secure infant agent with a high safe-range

value moves towards a toy as its carer moves away towards food. On the right, an insecure infant

agent with a low safe-range value experiences the same external event (carer agent and toy objects

in the same positions) but it behaves differently, signalling to, and moving towards, its carer agent.

This is because its behaviour system for safety is highly activated because its carer agent is outside

its safe range

When the carer is within this distance the infant’s security goal is not activated. If

an infant agent experiences tardy responses the learned secure-range is small, and

when the carer is outside this small range the security goal gains activation, until

it becomes the active goal and controls behaviour and results in the infant moving

towards the carer and signalling to the carer to come closer.

Figure 4 shows an illustration of how infant agent behaviour differs when con-

trasting levels of trust are held by two infant agents. The infant on the left is trusting

in the responsiveness of its carer agent and has secure status. Whilst the infant on

the right shows the large safe-range of a infant that does not trust its carer agent.

Figure 5a illustrates how a reactive level reinforcement learning subsystem is con-

nected to a more basic reactive level non-learning architecture, and allows infant

agent trust in the carer agent to adapt to the carer agent’s responsiveness. Figure 5b

illustrates the results of a computational experiment where ten identical infant agents

(all initialised with the same level of trust) paired with carer agents with identical

responsiveness and sensitivity. The figure shows that over time these averagely trust-

ing infants with their averagely responsive carers diverge into two classes of infant-

carer dyads (one group of five dyads with high trust and one group with low trust).

This occurs because of positive feedback that operates on small differences in the ini-

tial conditions in the randomly located agents and toy and food objects. The positive

feedback arises because when infants receive a timely response their trust increases,

allowing the carer to move farther away before calling them back. That makes sub-

sequent responses more likely to be rated timely. Conversely, tardy responses make

the infant agent request a response sooner in any episode where the carer is moving

away. Since the carer agent’s policy does not change, it then seems less responsive to
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(a) A reactive attachment architecture. (b) A  graph  showing  computational  experi-
ments carried out using that architecture

Fig. 5 A reactive architecture that includes ‘winner-take-all’ selection mechanism and reinforce-

ment learning mechanism for learning a trust level from repeated carer responses to infant requests

for proximity and communication (empty deliberative and meta-management mechanisms layers

have been omitted from the diagram) which learns about trust. The graph shows evidence that pos-

itive feedback can drive taxon formation in infant security classification. Small random differences

in locations were acted upon by positive feedback so that 10 initially identical infant-carer dyads

developed into 5 secure relationships, and 5 insecure relationships

this infant agent. This positive feedback mechanism, operating over a long training

period, may be what drives the infant-carer pairs into the Secure/Insecure clustering

seen in the Strange Situation studies, and so makes a novel contribution to the tax-

onicity debate in attachment categorisation [67, p. 97]. A carer whose performance

is initially intermediate between Secure and Insecure may come to be perceived as at

either extreme of caregiving responsiveness. Figure 5b shows an asymmetry between

the shape of the positive and negative updates to the Safe-range limit because two

different novel discount rules for positive and negative immediate rewards are imple-

mented [73].

Future Work

This section describes architectural design intended to fulfil the scenarios previously

described in sections “A Scenario that Refines the Scientific Problem in Light of

the ‘D’ Strange Situation Category”, and “A Scenario Based on Modelling Adult

Coherent Discourse; and Failures in Coherence” which have not yet been specified

in enough detail to be implemented in running programs.
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Towards a Simulation of Action Formation in the Strange
Situation; and Its Failure Demonstrated by ‘D’ Category
Behaviour Patterns

A simulation of the Strange Situation ‘D’ response pattern has not yet been con-

structed. This simulation needs to be able to produce not only the ‘D’ response pat-

tern in the short ‘test’ environment of the Strange Situation, but be able to show how

all four Strange Situation infant patterns arise from year long experience and how

all four patterns arise in the Strange Situation. What sets this simulation apart from

models of A, B and C patterns is that it also needs to show how previous experi-

ence of a frightened or frightening caregiver can result in failures in action forma-

tion and scheduling in a Strange Situation reunion episode. A number of attachment

models have been simulated with Artificial Neural Networks [29, 32]. Robotic mod-

els inspired by Attachment Theory have used neural network controllers to produce

exploratory behaviour and arousal regulation [41, 42]. Future work might combine

online agent-based models with offline neural network models by incorporating the

latter within the former, or adapt existing robot models to more closely simulate

detailed empirical observations.

Towards a Simulation of Language Using Agents that
Demonstrate Executive Function and Its Failure in the AAI

A simulation of the language mediated response patterns that arise in the AAI has

not yet been constructed. One of the psychological phenomena that a simulation of

the AAI will have to reproduce is defensive exclusion. This concept is a reframing of

psychoanalytic repression in contemporary scientific terms. The opposite of defen-

sive exclusion will also need to be simulated, as the AAI includes response patterns

where individuals do the opposite of holding back or avoiding emotionality. Instead

they seem to excessively dwell on previous negative events. This section will first

present two computational models of psychodynamic defense produced very early

on in the development of cognitive modelling by Colby [23, 24]. Listing the lim-

itations of Colby’s model of neurosis will show the design elements that need to

be included in a contemporary cognitive architecture that can simulate the response

patterns that are seen in the AAI.

Corby’s first model was a simulation of the defensive processes that occur in

neurosis [23]. Slightly later he produced a cognitive model of paranoia based upon

similar defensive processes [24]. These simulations were advanced for their day,

but compared to contemporary agent based simulations they are rather simplistic.

Colby’s model of neurosis substitutes ‘active cognitions’ which are ‘unacceptable

and painful’ with other more acceptable cognitions through defensive processes such

as: deflection, substitution, reversal and projection. An example of such an ‘unac-

ceptable cognition’ might be that ‘I am defective’, or ‘mother is helpless’. Colby’s
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simulation searches for beliefs that conflict with these cognitions, and when conflict-

ing beliefs are found that have high emotional charge the unacceptable and painful

cognition is transformed. ‘I am defective’ may be transformed by deflection, shifting

the object of the belief to view someone else as defective. However, Colby’s model

has a number of limitations:

∙ it is not grounded in a model of a virtual microworld in which it interacts;

∙ the defensive mechanisms are all ‘programmed in’ rather than emerging from the

operation of a psychologically plausible model of language processing, memory

operation, and motivation (with appropriate processing, performance and resource

constraints);

∙ there is no learning or emergence of behaviour patterns over time in interaction

with an interactive environment;

∙ there is no opportunity for meta-processing in the model that might lead to recog-

nition of its own neurotic and defended behaviour patterns.

The hybrid model of secure-base behaviour described in section “A Hybrid Archi-

tectural Model of Basic Secure Base Behaviour” and the reactive learning model

described in section “A Reactive Architectural Model of the Development of Indi-

vidual Differences in Infant-Carer Attachment Dyads” rectify some of the omissions

of Colby’s models. They are grounded in a model of a virtual microworld where

an infant and carer agent interact over multiple timeslices. The hybrid architecture

demonstrates how an agent can remember past events and plan ahead to future events

representing attachment episodes using symbolic propositions. This model interprets

events and stores memories of events in symbolic chunks which can vary in com-

plexity but are all able to be retrieved as single items into working memory. All

cognitive processing in the model is carried out using production rules. From their

internal model the agents can then create plans which consider about the possible

effects of the actions they are able to take. However, this attachment model as cur-

rently implemented is too simple to address questions about these memories and

models—it has no linguistic ability for agent to agent communication.

Since the attachment domain is helpfully circumscribed, the capability to discuss

attachment memories, attitudes and predictions would require only a limited lexi-

con and grammar–just complex enough to express questions and responses about

objects and events and processes relevant to attachment interaction. In addition to a

simplified lexicon and grammar a conversational attachment agent would also need

a processing model of language use that is constrained in its processing as normal

human conversation is. A key issue is that even with a simple language, parsing

and understanding messages is a subtle and tricky business where much may go

wrong, resulting in lapses in coherence. So a challenge for the attachment modeller

is to produce systems that possess coherence through appropriate cognitive control.

Then failures of coherence may be modelled through different biases: in memory

processes (with defensively excluded memories failing to be encoded or retrieved

and enmeshed memories being more strongly encoded, rehearsed, and retrieved); in

processes of language comprehension, deliberation, and language production; and in
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the activation of motivators responding to attitudes and standards. The structures and

mechanisms used by a wide variety of contemporary cognitive architectures might

be integrated in agents to produce the required linguistic competences [5, 46, 58,

91].

In the same way that Bowlby borrowed from the currently popular cybernetic and

A.I. concepts of the 1960s to 1980s, the hybrid model can be augmented by incor-

porating current modelling techniques and approaches from diverse areas. Because

a model of attachment will require many capabilities that are general rather than

specific to the attachment domain an attachment modeller can look to integrate a

broad range of computational techniques from diverse aspects of cognition includ-

ing language and memory processing, problem solving, and reasoning. As we have

noted above, a model of AAI discourse can be presented at a high level of abstrac-

tion and so not need to include low level language details of syntax and parsing. To

give an example for a starting point in modelling AAI discourse, Lewis and Vasishth

[47] present one element for a language processing extension to the hybrid attach-

ment model. Lewis and Vasishth [47] used the ACT-R architecture to model sentence

comprehension using general cognitive principles to model moment to moment pars-

ing rather than language specific mechanisms. In particular, the key principles that

underly their model of long ‘garden path’ sentences include similar declarative mem-

ory, procedural production rule processing and working memory mechanisms that

already exist in the hybrid model. These features act alongside a memory retrieval

activation function that fluctuates according to frequency of usage and decay, and is

subject to interference. These latter features are not possessed in the hybrid model but

if added could provide an explanation for both dismissing and preoccupied behaviour

patterns. This is because when memory retrieval relies upon frequency and decay, if

you do not frequently retrieve memories, they will become less accessible. So in an

extreme, memories may seem defensively excluded as with dismissing adults in the

AAI. In contrast, preoccupied adults may be stuck in an opposite cycle of frequent

retrievals driving a predisposition for ever more retrievals and enmeshed attention-

ally inflexible deliberation. These general cognitive mechanisms might be further

augmented with affective interference, capturing the psychoanalytic idea that mem-

ories that are painful may be less easily accessed. In addition, as Eagle [28] notes,

psychodynamic defense is not just concerned with memories, but also a range of cog-

nitive and affective contents, including desires, plans, evaluative schemes, and pre-

dispositions that in part constitute one’s overall personality. Simulating discourse

in the AAI can therefore be based on contemporary cognitive science rather than

psychoanalytic theory. With skilled activation and retrieval of control processes and

appropriate memories giving rise to coherent discourse. Dismissing, preoccupied or

disorganised discourse will arise from a breakdown of cognitive control and inac-

cessibility of memories and other control processes.

Clearly simulating the AAI is more complex than simulating the comprehension

or production of a single sentence. Instead of relating single pieces of information

into a serial message over seconds, the AAI is relating pieces of information to an

internal working model of attachment over minutes and dozens of minutes. However,

a simulation of the AAI only needs to include a simple lexicon and grammar, not the
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richer linguistic constructs Lawis and Vasishth [47] simulate. A lexicon and grammar

for the AAI merely needs to be complex enough to support the types of frequency of

usage, decay over time and interference that Lawis and Vasishth [47] implement. At

the longer timescale of the AAI self-reflection and failures of self-reflection will also

come into play. Architectures to simulate the AAI need to show failures in executive

function of just the right type. And failures of the right type will only arise from

control of the right type. Gray [35] reviews the different type of control of production

selection:

The architectural approaches, the mechanisms imputed to the central controller vary greatly.

Both ACT-R and Soar postulate a number of special mechanisms to handle the selection and

firing of production rules. In contrast EPIC’s central controller plays a very minor role in

selecting which productions to fire and when to fire them. Instead, EPIC (executive process-

ing interactive control)[uses] production rules to program explicitly different control strate-

gies for different tasks [35, p. 5]

So there are different extant cognitive architectures providing alternative inspi-

rations for meta-cognitive processing. Lastly, from the CLARION cognitive archi-

tecture we can borrow a symbolic-subsymbolic interface [91]. As we saw in the

discussion of ‘D’ category behaviour, we may need to consider how individuals acts

are scheduled and formed at a lower level of granularity than productions. To val-

idate the AAI simulation the computational psychiatrist should also be able to run

the simulation in a slower, less demanding interview than the AAI. This could show

that dismissing, preoccupied and disorganised agents can demonstrate a greater level

of control and coherence in a different context removed from the ‘stress test’ envi-

ronment of the AAI. Scaffolding for meta-processes leading to self-awareness and

self-control might be provided by giving the agent more time, and repeated questions

that may involve revisiting prior responses.

Conclusion

The major ‘take home’ message from this paper is that computational psychiatry

can be directed at a high cognitive level. This paper has demonstrated that mod-

els of individual people can be simulated as autonomous agents in simulated vir-

tual microworld where they can interact together with other agents over multiple

moments in time. Perhaps capturing minutes of interaction. Or sometimes even sim-

ulating many years of interaction. Agents in these microworlds can learn from their

experiences. In future simulations they may be designed to reflect upon their expe-

riences, show failures in their reflections, and even come to recognise those failures

in their reflection. Interaction between agents can occur by acting on virtual objects,

but also through linguistically mediated communication. Agents would communi-

cate with microworld languages that are simpler than natural language but expres-

sive enough to capture the external and internal events and processes and inter-

agent communication that occur in the microworld. Computational experiments can

be run where agents experience events which lead to maladaptive control states
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forming. Or systems may be designed so that human users can carry out ‘ther-

apy’ with autonomous agents, acting upon agents or engaging them in discourse to

brings about change in maladaptive states. The simulations that have until now been

implemented only show a subset of the phenomena described in scenarios. Using

attachment phenomena as a candidate domain to illustrate computational psychia-

try provides several benefits. Attachment phenomena are broad in scope and range

from healthy everyday interactions to psychopathology. They are also very help-

fully circumscribed for the computational modeller because attachment relations are

just one aspect of a person’s social relations and broader experience. So attachment

models can represent attachment interactions at a level of abstraction above much

of the details of a person’s day to day experiences. This is because the essence of

attachment interactions revolve around expectations of responsiveness, sensitivity

and effectiveness, not the concrete details of perceptions, actions, or low level details

of plans and learning. Developmental trajectories from infancy to adulthood define

the boundaries of the attachment domain. In addition, through lifespan attachment

development, goal structures are comparable because there is continuity of moti-

vational systems. Also, behavioural and cognitive manifestations are analogous. At

later stages in development, we represent what we enacted in sensorimotor interac-

tions at earlier stages in development.

Bowlby presented his theory of defensive exclusion as an updating of Freudian

repression. As with repression, defensive exclusion can be seen as a theory of per-

sonality [28]. This is because what we have conscious access to is used by us to make

up our conscious sense of self or identity. Other unconscious aspects of our cogni-

tive processes, may direct or influence our behaviour. However, such unconscious

aspects may not seem to derive from ‘ourselves’ when they do drive or influence

behaviour—seeming ‘ego-alien’ rather than ‘ego-syntonic’ [28]. So the AAI sce-

nario presented in this paper show that models that are based on how behaviour arises

from the differential accessibility of memories can also act as the basis for models

of other personality constructs beyond attachment phenomena that are relevant and

of interest to psychiatry. This is because they are exploring how a person’s self-

image is composed from the balance of the parts of their outer and inner experiences

that are excluded from, and included in, access and awareness. This approach might

be extended to modelling therapy as different processes of self and other relation.

For example, therapy in these models could be conceived as opening inaccessible

ego-alien processes to awareness and accepting them. Or therapy may be learning

to reject ego-alien processes as not part of the self, despite rising from within the

agent’s broader information processing architecture. In other words, perceptual or

memory mechanisms can exclude information from awareness and what is excluded

from awareness defines what remains as accessible to an agent’s self-created self-

image [28]. Although autonomous agent architectures are not conscious they can be

a natural tool to use to examine the interactions of accessible thought processes with

inaccessible, processes that still influence behaviour. A computational model of AAI

behaviour patterns that demonstrates a systematic exclusion of some types of mem-

ories, attributions, desires, or intentions is therefore a model of personality, in this

sense of personality as deriving from consciously accessible ego-syntonic structures
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and processes. These types of interactions also occur beyond the attachment domain

and so are of broader interest in computational psychiatry [71].

In conclusion, whilst the research presented in this paper is clearly in progress it

demonstrates how a class of emotions and other psychological and psychiatric phe-

nomena may be computationally modelled. This is important for theoretical devel-

opments but also for translational research into designing technology for diagnosis

and intervention.

References

1. Ainsworth, M., Blehar, M., Waters, E., Wall, S., 1978. Patterns of Attachment: A psycholog-

ical study of the strange situation. Erlbaum, Hillsdale, NJ.

2. Ainsworth, M., Bowlby, J., 1991. An Ethological Approach to Personality Development.

American Psychologist 46, 333–341.

3. Allen, J., 2008. The attachment system in adolescence. In: Handbook of Attachment, (Second

edition, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 419–435.

4. Anderson, J., 1972. Attachment behaviour out of doors. In: Blurton-Jones, N. (Ed.), Etholog-

ical Studies of Child Behaviour. Cambridge University Press, Cambridge, UK, pp. 199–215.

5. Anderson, J., 2009. How Can the Human Mind Occur in the Physical Universe? OUP, New

York.

6. Arkin, R., 2005. Moving up the food chain: Motivation and emotion in behaviour base robots.

In: Fellous, J., Arbib, M. (Eds.), Who Needs Emotions? The brain meets the Robot. Oxford

University Press, Oxford, UK, pp. 245–279.

7. Beaudoin, L., 1994. Goal processing in autonomous agents. Ph.D. thesis, School of Computer

Science, The University of Birmingham, (Available at http://www.cs.bham.ac.uk/research/

cogaff/)

8. Beaudoin, L., Sloman, A., 1993. A study of motive processing and attention. In: Sloman, A.,

Hogg, D., Humphreys, G., Partridge, D., Ramsay, A. (Eds.), Prospects for Artificial Intelli-

gence. IOS Press, Amsterdam, pp. 229–238.

9. Belsky, J., 1999. Modern evolutionary theory and patterns of attachment. In: Handbook of

Attachment, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 141–162.

10. Bischof, N., 1977. A systems approach toward the functional connections of attachment and

fear. Child Development 48 (4), 1167–1183.

11. Bowlby, J., 1952. Maternal care and mental health. World Health Organization, Geneva.

12. Bowlby, J., 1958. The nature of a child’s tie to his mother. International Journal of Psycho-

analysis 39, 350–373.

13. Bowlby, J., 1969. Attachment and loss, Volume 1: Attachment. Basic books, New York.

14. Bowlby, J., 1973. Attachment and loss, Volume 2: Separation, anxiety and anger. Basic books,

New York.

15. Bowlby, J., 1980. Attachment and loss, volume 3: Loss, sadness and depression. Basic books,

New York.

16. Bowlby, J., 1982. Attachment and loss, Volume 2: Attachment. Basic books, New York, (Sec-

ond edition 1982).

17. Bullinaria, J., 2009. Lifetime learning as a factor in life history evolution. Artificial Life 15,

389–409.

18. Canamero, L., Blanchard, A., Nadel, J., 2006. Attachment bonds for human-like robots. Inter-

national Journal of Humanoid Robotics 3, 301–320, 3.

19. Cassidy, J., 1999. The nature of the child’s ties. In: Handbook of Attachment, eds. J. Cassidy

& P.R. Shaver. Guilford Press, London, pp. 3–20.

http://www.cs.bham.ac.uk/research/cogaff/
http://www.cs.bham.ac.uk/research/cogaff/


268 D. Petters and L. Beaudoin

20. Cittern, D., Edalat, A., 2015. Towards a neural model of bonding in self-attachment. In: Pro-

ceedings of International Joint Conference on Neural Networks, 2015. IJCNN, Killarney, pp.

1–8.

21. Clark, A., 1998. Being There: Putting Brain, Body and World Together Again. MIT Press,

Boston.

22. Cohen, J., Servan-Schreiber, D., 1992. Context, cortex and dopamine: a connectionist

approach to behavior and biology in schizophrenia. Psychological Review 99, 45–77.

23. Colby, K., 1963. Computer simulation of a neurotic process. In: Computer Simulation of

Personality: Frontiers of psychological research’, eds. S.S. Tomkins and S. Messick. Wiley,

New York, pp. 165–179.

24. Colby, K., 1981. Modeling a paranoid mind. Behavioural and Brain Sciences 4, 515–560.

25. Daw, N., Niv, Y., Dayan, P., 2005. Uncertainty-based competition between prefrontal and

dorsolateral striatal systems for behavioral control. Nature Neuroscience 8, 1704–1711.

26. Dayan, P., Seymour, B., 2008. Values and actions in aversion’., In: ‘Neuroeconomics: Deci-

sion making and the brain’, eds. P. Glimcher and C. Camerer and R. Poldrack and E. Fehr.

Academic Press, New York, pp. 175–191.

27. Deklyen, M., Greenberg, M., 2008. Attachment and psychopathology in childhood. In: Hand-

book of Attachment: : Theory, research, and clinical applications, 2nd Edition, eds. J. Cassidy

& P.R. Shaver. Guilford Press, London, pp. 637–665.

28. Eagle, M., 1987. The Psychoanalytic and the Cognitive Unconscious. In: Stern, R. (Ed.),

Theories of the Unconscious and Theories of the Self. The Analytic Press, Hillsdale, N, pp.

155–189.

29. Edalat, A., Mancinelli, F., 2013. Strong attractors of Hopfield neural networks to model

attachment types and behavioural patterns. In: Proceedings of IJCNN 2013. IEEE. http://

dx.doi.org/10.1109/IJCNN.2013.6706924

30. Feeney, J., 2008. Adult romantic attachment: Developments in the study of couple relation-

ships. In: Handbook of Attachment, (Second edition, eds. J. Cassidy & P.R. Shaver. Guilford

Press, London, pp. 456–481.

31. Fox, N. A., Card, J., 1999. Psychophysiological measures in the study of attachment. In:

Handbook of Attachment, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 226–

248.

32. Fraley, R., 2007. A connectionist approach to the organization and continuity of working

models of attachment. Personality and Social Psychology Review 6, 1157–80.

33. Freud, S., 1925|1995. An autobiographical study. In: Gay, P. (Ed.), The Freud Reader. Vintage,

London.

34. Goldberg, S., 2000. Attachment and Development. Arnold, London.

35. Gray, W., 2007. Composition and control of integrated cognitive systems. In: Integrated Mod-

els of Cognitive Systems, ed. W. Gray. Oxford University Press, New York, pp. 3–12.

36. Hesse, E., 1999. The adult attachment interview, historical and current perspectives. In: Hand-

book of Attachment, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 395–433.

37. Hesse, E., 2008. The adult attachment interview, protocol, method, of analysis, and empirical

studies. In: Handbook of Attachment, (Second edition, eds. J. Cassidy & P.R. Shaver. Guilford

Press, London, pp. 552–598.

38. Hinde, R., 1970. Animal Behaviour: A Synthesis of Ethology and Comparative Psychology.

McGraw-Hill, London, 2nd Edition.

39. Hinde, R., 1983. Ethology and child development. In: Hand book of child psychology, eds.

P.H. Mussen. J. Wiley and Sons, New York, pp. 27–93.

40. Hiolle, A., Canamero, L., 2007. Developing sensorimotor associations through attachment

bonds. In: Proc. 7th International Conference on Epigenetic Robotics (EpiRob 2007), eds.

C. Prince, C. Balkenius, L. Berthouze, H. Kozima, M. Littman. Lund University Cognitive

Studies, Lund, pp. 45–52.

41. Hiolle, A., Canamero, L., Davila-Ross, M., Bard, K., 2012. Eliciting caregiving behavior in

dyadic human-robot attachment-like interactions. ACM Trans. Interact. Intell. Syst 2, 3.

http://dx.doi.org/10.1109/IJCNN.2013.6706924
http://dx.doi.org/10.1109/IJCNN.2013.6706924


Attachment Modelling: From Observations to Scenarios to Designs 269

42. Hiolle, A., Lewis, M., Canamero, L., 2014. Arousal regulation and affective adaptation to

human responsiveness by a robot that explores a novel environment. Frontiers in neurorobot-

ics 8, 17.

43. Holmes, J., 1993. John Bowlby and Attachment Theory. Routledge, (revised edition).

44. Hughes, P., Turton, P., Hopper, E., McGauley, G., Fonagy, P., 2001. Disorganised attachment

behaviour among infants born subsequent to stillbirth. Journal of Child Psychology and Psy-

chiatry 42, 791–801.

45. Kennedy, C., Sloman, A., 2003. Autonomous recovery from hostile code insertion using dis-

tributed reflection. Cognitive Systems research 4, 89–117.

46. Laird, J., 2012. The SOAR Cognitive Architecture. MIT Press, Cambridge, Mass.

47. Lewis, R., Vasishth, S., 2005. An activation-based model of sentence processing and skilled

memory retrieval. Cognitive Science 29, 375–419.

48. Likhachev, M., Arkin, R., 2000. Robotic comfort zones. In: Proceedings of SPIE: Sensor

Fusion and Decentralized Control in Robotic Systems. pp. 27–41.

49. Maes, P., 1994. Modeling adaptive autonomous agents. Artificial Life 1 (1), 135–162.

50. Main, M., 1990. Cross cultural studies of attachment organisation; recent studies, changing

methodologies, and the concept of conditional strategies. Human Development 33, 48–61.

51. Main, M., Goldwyn, R., 1984. Predicting rejection of her infant from mother’s representation

of her own experience: Implications for the abused-abusing intergenerational cycle. Interna-

tional Journal of Child Abuse and Neglect 8, 203–217.

52. Main, M., Hesse, E., 1990. Parents’ unresolved traumatic experiences are related to infant dis-

organized attachment: Is frightened and/or frightening parental behavior the linking mecha-

nism? In: Attachment in the Preschool Years, eds. M.T. Greenberg and D. Cicchetti and E.M.

Cummings. The University of Chicago Press, Chicago, pp. 161–184.

53. Main, M., Kaplan, N., Cassidy, J., 1985. Security in infancy, childhood and adulthood: A

move to the level if representation. In: Growing points of attachment theory and research,

eds. I. Bretherton and E. Waters. Monographs of the society for research in child development,

50(1–2 serial no 209), London, pp. 66–107.

54. Main, M., Solomon, J., 1990. Procedures for identifying infants as disorganized/disoriented

during the ainsworth strange situation. In: Attachment in the Preschool Years, eds. M.T.

Greenberg and D. Cicchetti and E.M. Cummings. The University of Chicago Press, Chicago,

pp. 121–160.

55. Main, M., Weston, D., 1982. Avoidance of the attachment figure in infancy. In: The place

of attachment in human behavior, eds. M. Parkes & J. Stevenson-Hinde. Basic Books, New

York, pp. 31–59.

56. Marvin, R., Britner, P., 1999. Normative development: The ontogeny of attachment. In: Hand-

book of Attachment, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 44–67.

57. McMahon, C., Barnett, B., Kowalenko, N., Tennant, C., 2006. Maternal attachment state of

mind moderates the impact of post-natal depression on infant attachment. Journal of Child

Psychiatry and Psychology 147, 660–669.

58. Meyer, D. E., Kieras, D. E., 1997. A computational theory of executive control processes and

human multiple-task performance: Part 1. Basic Mechanisms. Psychological Review 104, (1),

3–65.

59. Mikulincer, M., Shaver, P., 2012. An attachment perspective on psychopathology. World Psy-

chiatry 11, 11–15.

60. Montague, M., Dolan, R., Friston, K., Dayan, P., January 2012. Computational Psychiatry.

Trends in cognitive sciences 16, 72–81.

61. Munakata, Y., Bauer, D., Stackhouse, T., Landgraf, L., Huddleston, J., 2002. Rich interpre-

tation vs. deflationary accounts in cognitive development: the case of means-end skills in

7-month-old infants. Cognition 83, B43–B53.

62. Parisi, D., Cecconi, F., Cerini, A., 1995. Kin-directed altruism and attachment behaviour in an

evolving population of neural networks. In: Gilbert, N., Conte, R. (Eds.), Artificial societies.

The computer simulation of social life. UCL Press, London, pp. 238–251.



270 D. Petters and L. Beaudoin

63. Parisi, D., Nolfi, S., 2006. Sociality in embodied neural agents. In: Sun, R. (Ed.), Cognition

and multi-agent interaction: from cognitive modelling to social simulation. Cambridge Uni-

versity Press, Cambridge, pp. 328–354.

64. Pessoa, L., 2015. Prcis on the cognitive-emotional brain. Behavioral and Brain Sciences 38,

71–97.

65. Petters, D., 2004. Simulating infant-carer relationship dynamics. In: Proc AAAI Spring Sym-

posium 2004: Architectures for Modeling Emotion - Cross-Disciplinary Foundations. No.

SS-04-02 in AAAI Technical reports. Menlo Park, CA, pp. 114–122.

66. Petters, D., 2005. Building agents to understand infant attachment behaviour. In: Bryson, J.,

Prescott, T., Seth, A. (Eds.), Proceedings of Modelling Natural Action Selection. AISB Press,

School of Science and Technology, University of Sussex, Brighton, pp. 158–165.

67. Petters, D., 2006a. Designing agents to understand infants. Ph.D. thesis, School of Com-

puter Science, The University of Birmingham, (Available online at http://www.cs.bham.ac.

uk/research/cogaff/)

68. Petters, D., 2006b. Implementing a theory of attachment: A simulation of the strange situ-

ation with autonomous agents. In: Proceedings of the Seventh International Conference on

Cognitive Modelling. Edizioni Golardiche, Trieste, pp. 226–231.

69. Petters, D., 2014a. Towards an Enactivist Approach to Social and Emotional Attachment. In:

ABSTRACTS. AISB50. The 50th annual convention of the AISB. Goldsmiths University of

London. AISB, Goldsmiths College, London, pp. 70–71.

70. Petters, D., 2014b. Losing control within the HCogaff architecture. In: From Animals to

Robots and Back: reflections on hard problems in the study of cognition, eds. J. Wyatt &

D. Petters & D. Hogg. Springer, London, pp. 31–50.

71. Petters, D., Waters, E., 2010. A.I., Attachment Theory, and simulating secure base behaviour:

Dr. Bowlby meet the Reverend Bayes. In: Proceedings of the International Symposium on ’AI-

Inspired Biology’, AISB Convention 2010. AISB Press, University of Sussex, Brighton, pp.

51–58.

72. Petters, D., Waters, E., 2014. From internal working models to embodied working models.

In: Proceedings of ’Re-conceptualizing Mental Illness: Enactivist Philosophy and Cognitive

Science - An Ongoing Debate’, AISB Convention 2014. AISB, Goldsmiths College, London.

73. Petters, D., Waters, E., 2015. Modelling emotional attachment: an integrative framework for

architectures and scenarios. In: Proceedings of International Joint Conference on Neural Net-

works, 2015. IJCNN, Killarney, pp. 1006–1013.

74. Petters, D., Waters, E., Schönbrodt, F., 2010. Strange carers: Robots as attachment figures and

aids to parenting. Interaction Studies: Social Behaviour and Communication in Biological and

Artificial Systems 11 (2), 246–252.

75. Russell, S., Norvig, P., 2013. Artificial Intelligence, A Modern Approach. Prentice Hall,

(Third edn.).

76. Schlesinger, M., Parisi, D., 2001. The agent-based approach: A new direction for computa-

tional models of development. Developmental Review 21, 121–146.

77. Simpson, J., 1999. Attachment theory in modern evolutionary perspective. In: Handbook of

Attachment, eds. J. Cassidy & P.R. Shaver. Guilford Press, London, pp. 115–141.

78. Sloman, A., 1982. Towards a grammar of emotions. New Universities Quarterly 36 (3), 230–

238.

79. Sloman, A., 1992. Prolegomena to a theory of communication and affect. In: Ortony, A.,

Slack, J., Stock, O. (Eds.), Communication from an Artificial Intelligence Perspective: The-

oretical and Applied Issues. Springer, Heidelberg, Germany, pp. 229–260.

80. Sloman, A., 1993. The mind as a control system. In: Hookway, C., Peterson, D. (Eds.), Philos-

ophy and the Cognitive Sciences. Cambridge University Press, Cambridge, UK, pp. 69–110.

81. Sloman, A., 2000. Architectural requirements for human-like agents both natural and artifi-

cial. (what sorts of machines can love?). In: Dautenhahn, K. (Ed.), Human Cognition And

Social Agent Technology. Advances in Consciousness Research. John Benjamins, Amster-

dam, pp. 163–195.

http://www.cs.bham.ac.uk/research/cogaff/
http://www.cs.bham.ac.uk/research/cogaff/


Attachment Modelling: From Observations to Scenarios to Designs 271

82. Sloman, A., 2001. Beyond Shallow Models of Emotion. Cognitive Processing: International

Quarterly of Cognitive Science 2 (1), 177–198.

83. Sloman, A., 2002. How many separately evolved emotional beasties live within us? In: Trappl,

R., Petta, P., Payr, S. (Eds.), Emotions in Humans and Artifacts. MIT Press, Cambridge, MA,

pp. 29–96.

84. Sloman, A., 2008. The cognition and affect project: Architectures, architecture-schemas, and

the new science of mind. Tech. rep., University of Birmingham, (Available at http://www.cs.

bham.ac.uk/research/cogaff/)

85. Sloman, A., 2009. Machines in the Ghost. In: Dietrich, D., Fodor, G., Zucker, G., Bruck-

ner, D. (Eds.), Simulating the Mind: A Technical Neuropsychoanalytical Approach. Springer,

Vienna, pp. 124–177.

86. Sloman, A., Chrisley, R. L., June 2005. More things than are dreamt of in your biology:

Information-processing in biologically-inspired robots. Cognitive Systems Research 6 (2),

145–174.

87. Sloman, A., Logan, B., March 1999. Building cognitively rich agents using the Sim_agent

toolkit. Communications of the Association for Computing Machinery 42 (3), 71–77.

88. Sloman, A., Poli, R., 1996. Sim_agent: A toolkit for exploring agent designs. In: Wooldridge,

M., Mueller, J., Tambe, M. (Eds.), Intelligent Agents Vol II (ATAL-95). Springer-Verlag, pp.

392–407.

89. Sroufe, L., Carlson, E., Levy, A., Egeland, B., 1999. Implications of attachment theory for

developmental psychopathology. Development and Psychopathology 11, 1–13.

90. Storr, A., 1989. Freud. OUP, Oxford.

91. Sun, R., 2007. The motivational and metacognitive control in clarion. In: Integrated Models

of Cognitive Systems, ed. W. Gray. Oxford University Press, New York, pp. 63–76.

92. van Ijzendoorn, M., 1995. Adult Attachment representations, parental responsiveness, and

infant attachment: A meta-analysis of the predictive validity of the Adult Attachment Inter-

view. Psychological Bulletin 117, 387–403.

93. van Ijzendoorn, M., Bakermans-Kranenburg, M., 2004. Maternal sensitivity and infant tem-

perament. In: Theories of Infant Development, eds. G. Bremner & A. Slater. Blackwell Press,

Oxford, pp. 233–257.

94. van Ijzendoorn, M., Sagi, A., 1999. Cross-cultural patterns of attachment: Universal and con-

textual dimensions. In: Handbook of Attachment, eds. J. Cassidy & P.R. Shaver. Guilford

Press, London, pp. 713–734.

95. Waters, E., Kondo-Ikemura, K., Posada, G., Richters, J., 1991. Learning to love: Mechanisms

and milestones. In: Minnesota Symposium on Child Psychology (Vol. 23: Self Processes and

Development), eds. M. Gunner & Alan Sroufe. Psychology Press, Florence, KY, pp. 217–255.

96. Waters, E., Merrick, S., Treboux, D., Crowell, J., Albersheim, L., 2000. Attachment stability

in infancy and early adulthood: A 20-year longitudinal study. Child Development 71, 684–

689.

97. Weinfield, N., Sroufe, L., Egeland, B., Carlson, E., 1999. The nature of individual differences

in infant-caregiver attachment. In: Handbook of Attachment, eds. J. Cassidy & P.R. Shaver.

Guilford Press, London, pp. 68–88.

98. Wolff, M. D., van IJzendoorn, M., 1997. Sensitivity and attachment: A meta-analysis on

parental antecedents of infant attachment. Child Development 68, 571–591, 2.

99. Wright, I., 1997. Emotional agents. Ph.D. thesis, School of Computer Science, The University

of Birmingham.

100. Wright, I., Sloman, A., Beaudoin, L., 1996. Towards a design-based analysis of emotional

episodes. Philosophy Psychiatry and Psychology 3 (2), 101–126.

http://www.cs.bham.ac.uk/research/cogaff/
http://www.cs.bham.ac.uk/research/cogaff/


Self-attachment: A Holistic Approach
to Computational Psychiatry

Abbas Edalat

Introduction

In the past few years, Computational Psychiatry has grown as an emergent subject

following remarkable advances in Computational Neuroscience in general and in

Reinforcement Learning in particular. Work in Computational Psychiatry so far has

focused on computational models to explicate cognitive impairment and deficits,

including sub-optimal decision making, that are ubiquitous in all varieties of mental

disorder. This has led to a number of interesting results which use Reinforcement

Learning or Game Theory to model depression, borderline personality disorder and

other psychiatric illnesses [1, 2]. The underlying approach is reductionist and con-

sists of constructing models that describe a given form of normal or healthy deci-

sion making or behaviour which are then modified to understand the abnormal or

impaired form of the same process in mental illness. It is hoped that these models

can help us better understand mental illness and can aid us in developing treatments

and in particular pharmacological interventions for psychiatric diseases.

In this article, we propose a holistic approach to Computational Psychiatry, called

Self-attachment that was first introduced in [3, 4], and focuses on early attachment

insecurities in childhood. There has been increasing evidence over the past decades

to show that early attachment experiences of infants with their primary care-givers

play a crucial role in the development of their capacity for affect regulation, which

is vital for enhancing resilience in the face of stress in life and averting mental ill-

ness. It is now believed that early negative attachment interactions have an adverse

impact on the development of this capacity in children, making them vulnerable to

psychological disorders later in life [5, 6]. This view has been supported by Attach-

ment Theory, a scientific paradigm in developmental psychology introduced by John
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Bowlby in 1960’s [7], which has also had an impact on psychotherapy in the past few

decades [8]. This will be described in detail in the next section.

Whereas attachment insecurities create vulnerability to mental illness, a number

of experiments–using a technique called “security priming”–have been able to arti-

ficially activate mental representations of supportive attachment figures and thereby

improve the mental health of individuals suffering from various mental disorders [5].

Individuals are also capable of using a constructive marriage or a therapeutic frame-

work to “earn their secure attachment” [5]. In particular, in schema therapy “limited

reparenting” is used to redress early maladaptive schemas in the parent-child inter-

actions, help the individual find experiences missed in childhood, and establish a

secure attachment through the therapist [9].

Many studies in the past two decades have provided compelling evidence that for

thousands of years human beings have used religion to mirror a caring parent as an

“attachment object” to redress their attachment insecurities and regulate their emo-

tions, what has been called the “compensatory pathway” to religious practice [10].

Attachment objects were originally studied in the context of children’s development

by Donald Winnicott under the name transitional objects [11] and were later used as

cloth-covered surrogate dummy mothers by Harry Harlow in his experiments with

infant monkeys [12]. Bowlby referred to them as “substitute objects” or “attachment

figures” that acted as a substitute for the mother [7]. It has also been argued that reli-

gious practice in human beings resembles the use of transitional objects in children’s

development as described by Winnicott [13].

In addition, functional Magnetic Resonance Imaging (fMRI) studies since 2000

have confirmed that the activation of the dopaminergic reward systems of the brain

is a common feature of romantic love, maternal love and religious praying, all of

which create an affectional bond. From these findings, we infer that creating an affec-

tional bond, be it in the context of parental love, romantic love or religious practice,

provides a basis for attachment interactions that in turn are aimed at emotion self-

regulation [14–16].

Self-attachment therapy, as described in [4], proposes that early attachment inse-

curities of adults who have become victims of psychiatric disorders can be addressed

and tackled with self-administered protocols that emulate secure child-parent attach-

ment interactions by mental representation. The individual pro-actively takes up the

role of a nurturing parent for reparenting a mental representation of the “inner child”,

the emotionally damaged child that the individual was in early life. For this purpose,

an internal affectional bond is created by the “adult self” with the inner child. The

next stage is based on two fundamental paradigms in neuroscience: (i) neuroplastic-

ity, i.e., our brain’s capacity to reorganise its neural circuits by forming new neural

connections throughout life, and (ii) long term potentiation, i.e., a persistent strength-

ening of synapses based on recent and repeated patterns of activity [17, Chap. 24].

The goal of Self-attachment is to produce in a systematic and repeated way virtual

secure attachment experiences in the individual that by neuroplasticity and long term

potentiation would create neural circuits that provide a sense of secure attachment

in the individual. With this sense of secure attachment the individual then revisits

traumatic experiences in connection with the mental image of the inner child in order
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to reprocess these episodes with a supporting parent represented by the adult self of

the individual. The goal of the exercise is to help the individuals to create their own

secure attachment objects that can support them in self-regulating their emotions.

In [4], a number of promising case studies of practicing Self-attachment were

reported. In these case studies, individuals with chronic depression and anxiety,

resistant to various forms of previous psychotherapy, had significant clinical improve-

ment in their symptoms following the practice of Self-attachment. We previously

proposed the use of virtual reality as an alternative to imagery techniques for simu-

lating the interaction of the “inner child” with the “adult self” [3]. In the two related

virtual reality experiments reported in [18, 19], individuals with either excess self-

criticism or with depression embodied a virtual child and then a virtual adult to

receive self-compassion, which is one of the first interventions in Self-attachment.

In both experiments, the embodied interactions between the virtual child and the

virtual adult resulted in an improvement in their self-criticising or depressive symp-

toms. These compassionate interactions can be regarded as interactions between the

“inner child” and the “adult self”, even though the individuals had not made a con-

scious effort to perceive the interactions in this way. We therefore submit that the

above virtual reality experiments have provided additional proof of concept for Self-

attachment.

The rest of this article is organised as follows. In section “Attachment

Theory”, we briefly review the basic tenets of attachment theory, the neurobiol-

ogy of secure and insecure attachment, the vulnerability to mental illness caused

by insecure attachment and the impact of attachment theory on psychotherapy.

In section “Attachment Objects”, we describe the role of attachment objects for

emotion self-regulation in ethology, in children’s development and in religious prac-

tice. In section “fMRI Studies on Bond Making”, we explain how fMRI experi-

ments on romantic love, maternal love and religious prayers since 2000 indicate

a common overarching paradigm for rewarding affectional bonds in these differ-

ent contexts. In section “Self-attachment”, first the nature of Self-attachment inter-

vention is explained and then the Self-attachment protocol is outlined. In sections

“A Game-Theoretic Model” and “Self-attachment and Strong Patterns”, a game-

theoretic model for Self-attachment and a model based on strong patterns that are

learned deeply in an associative artificial neural network are presented. Finally, in

section “Neural Models of Self-attachment”, we describe several neural models of

the human brain for Self-attachment.

Attachment Theory

Attachment Theory was first formulated by Bowlby [7], based on his studies of sep-

aration anxiety of infants from their mothers, and was later developed along with

Mary Ainsworth. In the past decades, it has been regarded as a main scientific par-

adigm in developmental psychology [20]. According to Bowlby, human beings, as

well as higher primates, are born with an innate tendency to seek proximity to their
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primary care-givers to feel secure and safe in particular in times of need and stress.

He argued that if the infant’s needs for attachment are met by a sensitive parent capa-

ble of quick and appropriate response when the infant is in distress, then a stable and

secure sense of self is developed in the infant which leads to positive association

with the self and others in life. However, when the primary care-giver is unreliable,

insensitive and thus unable to respond quickly and appropriately to the needs of the

infant, an insecure sense of self and negative models of self and others are developed

in the infant which would be the source of later emotional problems.

Bowlby [8] proposed that the type of emotional attachment children develop

with their primary caregivers will become the foundation of their “internal working

model”, a cognitive framework with which the child and later the adult interprets

the social world and predicts the outcome of her/his behaviour in view of past mem-

ory. Thus, through the internal working model, the early attachment types of children

have a great impact on their future emotional and personality developments as adults

engaging in social and intimate relationships.

In its present form, Attachment Theory classifies the quality and dynamics of

the relationship of a child with his/her parent into four types of attachment: secure

attachment and three kinds of insecure attachments (avoidant, anxious/ambivalent,

and disorganised) [21]. It is proposed and vindicated by longitudinal studies that

attachment types strongly impact on the emotional, cognitive and social develop-

ment of the child into adulthood by determining the individuals working model of

relationships [22].

The theory has been corroborated by the Strange Situation experiment [23] devel-

oped in the 1970s by Mary Ainsworth who was inspired by Harry Harlow’s exper-

iments with monkeys. The Strange Situation experiment has become the standard

measure of eliciting attachment in infants [21]. This procedure, involving a mother,

her one year old toddler, and a stranger in an unfamiliar room, has been repeated

across many different cultures, with results indicating similarities but also differ-

ences in the distribution of attachment types among the toddlers in different societies

[24, 25].

It is hypothesised that the particular type of attachment developed in a child

depends crucially on the kind of response by the parent to the child’s emotional

needs, which is repeated over and over again during the formative stage of the infants

development. The primary care-giver of a securely attached child responds quickly

and appropriately to the distress signals of the child and in due course the child learns

to use the primary care-giver both as a safe haven and as a secure base in order to

explore the world, while feeling assured that whenever a stress situation arises the

primary care-giver is available to provide support and reassurance. The primary care-

givers of the insecurely attached children, however, often respond to the emotional

needs of the child by rejection, in the case of avoidant insecure child, or by incon-

sistent behaviour, in the case of anxious insecure child, or by frightening the child,

in the case of a disorganised insecure child [26, pp. 19–24].
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Regulation Theory: Neurobiology of Secure Attachment

John Bowlby’s Attachment theory was influenced by a number of disciplines includ-

ing control theory and cybernetics. In fact, Attachment theory has been considered

as a regulation theory in particular in the work of Allan Schore in the past two

decades [27]. His work explains how secure attachment leads to the capacity for

self-regulation of emotions and how this is mapped in the infant’s developing brain.

We will briefly explain the essential components of Schore’s regulation theory.

Schore quotes the following assertion from developmental psychoanalysis by

Emde [28]:

It is the emotional availability of the caregiver in intimacy which seems to be the most central

growth-promoting feature of the early rearing experience.

Visual experience is thought to play an important role in the emotional develop-

ment of the infant and its emotional attachment to the parent in the first, so-called

practicing, year. Through intense mutual gaze, the infant-parent dyad is established,

creating a framework for transmission of mutual influence and inter-communication.

The parent is attuned to and resonates with the internal state of the infant at rest and

is able to contingently fine tune her affective stimulation with the infant’s dynami-

cally activated, deactivated or hyperactivated state. The infant’s right hemisphere is

intensely involved in the visual interactions with the mother and is used as a template

for imprinting what it receives from the mother’s emotion-regulatory right cortex.

This leads to entrenched circuits in the infant’s right brain that reflect the mother’s

right brain activities and will be used in turn to regulate the infant’s emotions. The

mutual and intense gaze, facial expressions, mirroring and resonance between the

infant and the mother release endogenous opiates inducing pleasure and release of

dopamine from the ventral tegmental area resulting in dopaminergic-driven arousal

and dopamine-mediated elation. High levels of dopamine secretion results in a rapid

growth rate of the infant’s brain by accelerating the transcription of genes and DNA

synthesis and by regulating dendritic growth [6, p. 14].

The affective homeostasis in the child-parent dyad is used by the primary care-

giver to minimise the child’s negative affects, maximise its positive affects and mod-

erate its arousal level. This drive for attunement and homeostasis with the child is

particularly paramount in the first year of life.

It is proposed, based on a large volume of research in neuroscience, that the result-

ing emotional regulation in the child is rooted in the development of several brain

regions, in particular the Orbital Frontal Cortex (OFC) which as part of the prefrontal

cortex is densely connected to the limbic system and thus acts as its “executive direc-

tor”. The orbitofrontal cortex develops on the basis of the type of interaction infants

have with their primary care-givers and is critically involved in attachment processes

that occur during the first two years of life [6, p. 14]. The optimal growth of the OFC

in the securely attached toddler allows delayed response based on stored represen-

tation rather than immediate information in the environment. The child develops a

mental image or a schema of the parent and a primitive capacity for self-reflection
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which allow the child to withstand short and temporary absence of the parent. The

infant thus acquires a learning brain able to explore the world.

Schore summarises the significance of these early infant-mother interactions [6,

p. 12]:

This mutual regulatory system is adaptive in that it allows for the arousal level of the child’s

developing nervous system to be rapidly recalibrated against the reference standard of the

mother’s.

In the second, so-called socialising year of life, the child is able to walk and run,

and so a key role of the primary care-giver is to restrain the child from dangerous or

anti-social behaviour. This for the first time results in a break-up in the homeostasis

between the child and the primary care-giver and thereby to the painful experience

of shame by the child. By being sensitive, responsive, emotionally approachable and

staying with the child, the parent of a securely attached child is able to re-enter into

synchrony and mutual gaze with the child. It is in the repeated process of misattune-

ment and reattunement with the primary care-giver that the child gradually learns

that the break-up of homoeostasis with the parent can always be restored. The child

and the parent then develop the capacity to move from positive to negative and back

to positive affect and the child learns that negative affects can be endured. By staying

in with the child the “good enough” parent [29], a notion popularised by the British

psychologist and paediatrician Donald Winnicott, allows the repair of the misattune-

ment in the child-parent dyad.

Schore evaluates the maturation of the infant’s brain as a result of these disruption-

repair transactions between the infant and the mother as follows [6, p. 21]:

These experiences trigger specific psychobiological patterns of hormones and neurotrans-

mitters, and the resultant biochemical alterations of the brain chemistry influence the

experience-dependent final maturation of the orbitofrontal cortex.

In this way, the child’s brain becomes focused on exploring the world: in the words

of Julian Ford, a “learning brain” develops [30], a concept that fits with the idea of

“knowledge instinct” [31]. The OFC is also involved in internal regulation of states

by its connections to the hypothalamus, which allows cortical containment of the

autonomic sympathetic and parasympathetic somatic reactions induced by emotions

[6].

Neurobiology of Insecure Attachment

The development of a securely attached child should be compared with that of inse-

cure attached children. Here, we will briefly explain the situation for the avoidant

insecure attachment, which can show the discrepancy in acquiring a capacity for

emotional regulation [6, pp. 27–28]. In contrast to the parent of a securely attached

child, the parent of an avoidant insecure child expresses low levels of affection

and warmth, is averse to physical intimacy and actively blocks proximity seeking
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approaches of the child. In reaction to a long history of dealing with such a pri-

mary care-giver, the avoidant insecure child shows no interest in engaging with an

adult who tries to interact with him/her and exhibits little interest to get close to

the adult. The normal process of attachment bonding is severely disrupted, which

leads to failure of the regulatory mechanism and disturbance in the limbic activity

and hypothalamic dysfunction. It is suggested that this negative attitude reflects sup-

pressed anger in the infant because of past frustration in attempts to seek proximity

with the primary care-giver. A psychobiological disequilibrium based on dysregu-

lated brain chemistry is developed when the primary care-giver does not regularly

engage in repairing misattunement to establish homoeostasis. Negative social inter-

actions in the critical early years of development lead to permanent change in opiate,

dopamine, noradrenaline and serotonin receptors. The primary caregiver’s failure to

engage quickly and appropriately in repairing the homoeostasis disruption trauma-

tises the infant and results in defects in the development of the OFC and in biochemi-

cal dysregulation and toxic brain chemistry of the infant. In this way, the child’s main

focus will be how to avoid further trauma: in the words of Julian Ford, a “survival

brain” develops [30].

It is thought that in avoidant insecure attachment the sympathetic nervous system,

in anxious insecure attachment the parasympathetic nervous system, and in disorgan-

ised attachment both the sympathetic and the parasympathetic nervous system are

impaired and dysregulated. See [32] for an overview of the subject.

Here, we highlight the results in [33], where the authors examined amygdala

activation, feelings of irritation, and the use of excessive force as indicated by grip

strength during exposure to infant crying and scrambled control sounds in 21 women

without children. Individuals with insecure attachment representations, based on

Berkeley Adult Attachment Interview [34], showed heightened amygdala activation

when exposed to infant crying compared to individuals with secure attachment repre-

sentations. In addition, insecure individuals experienced more irritation during infant

crying and used more excessive force than individuals with a secure representation.

We can view attachment schemas as a type of implicit memory that has been

sculpted in the brain by repeated experience of broadly similar interactions with a

primary care giver [32, p. 139]:

[A]ttachment schemas are a category of implicit social memory that reflects our early expe-

rience with care takers. Our best guess is that these schemas reflect the learning histories that

shape experience-dependent networks connecting the orbital frontal cortex, the amygdala,

and their many connections that regulate arousal, affect and emotion. It is within these neural

networks that interactions with caretakers are paired with feelings of safety and warmth or

anxiety and fear.

Attachment Insecurity and Vulnerability to Mental Disorder

Since the early attachment schemas are deeply embedded in the brain, their impact

on the child’s and later the adult’s internal working model with which the social
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environment is processed, interpreted and responded to throughout life can hardly be

overestimated. In this section, we will see that insecure attachments and the resulting

incapacity to regulate strong emotions will have lasting influence on the psycholog-

ical conditions of the individual. In the past few decades, there has been increasing

evidence to suggest that the root cause of much mental illness lies in a sub-optimal

capacity for affect regulation [27]. The adverse impact of early attachment insecu-

rity on the capacity to regulate strong emotions and thus to fend off psychological

disorders and mental illness goes very wide.

Bowlby himself emphasised the relationship between attachment problems and

many psychiatric disorders [8, p. 152]:

Advocates of attachment theory argue that many forms of psychiatric disturbance can be

attributed either to deviations in the development of attachment behaviour or, more rarely,

to failure of its development; and also that the theory casts light on both the origin and the

treatment of these conditions.

We now highlight the main findings of Mikulinceri and Shaver in their 2012

review article in World Psychiatry [5], which provides a recent update on Attach-

ment Theory. First and foremost, the authors report that

attachment insecurity is a major contributor to mental disorders.

Early interactions with inconsistent, unreliable, or insensitive primary care-givers

disrupt the development of a secure, self-regulated psychological foundation, which

undermines building an increasing capacity to cope with stress and thus predisposes

an individual to mental breakdown in crisis situations in adult life. The authors argue

that attachment insecurity in childhood therefore creates an overall vulnerability to

psychological and mental disorders, with the particular symptomatology depending

on genetic, developmental, and environmental factors. It is, however, the combined

impact of attachment insecurity with childhood trauma, neglect or abuse that is a

predictor of psychological and mental disorders in later life. In their earlier work [35],

these authors reviewed hundreds of cross-sectional, longitudinal, and prospective

studies of both clinical and non-clinical samples and concluded:

[A]ttachment insecurity was common among people with a wide variety of mental disorders,

ranging from mild distress to severe personality disorders and even schizophrenia.

They have also reported in their review article more recent findings to show that

[attachment insecurities are] associated with depression....., clinically significant anxiety....,

obsessive-compulsive disorder....., post-traumatic stress disorder (PTSD)....., suicidal ten-

dencies......, and eating disorders.......

Attachment insecurity, it is asserted, also plays a key role in various personality dis-

orders with specific attachment insecurity correlating and corresponding to different

disorders [5]:

Anxious attachment is associated with dependent, histrionic, and borderline disorders,

whereas avoidant attachment is associated with schizoid and avoidant disorders.
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In addition, according to the review article, apart from the problem of emotion

regulation, two other basic pathways, mediate between attachment insecurity and

psychopathology, namely those involved in (i) problems of self-representation, such

as

lack of self-cohesion, doubts about one’s internal coherence and continuity over time, unsta-

ble self-esteem, and over-dependence on other peoples approval,...

and (ii) interpersonal problems, so that:

...avoidant people generally had problems with nurturance (being cold, introverted, or com-

petitive), and anxious people had problems with emotionality (e.g., being overly expres-

sive). These problems seem to underlie insecure individuals self-reported loneliness and

social isolation.... and their relatively low relationship satisfaction, more frequent relation-

ship breakups, and more frequent conflicts and violence....

Impact on Psychotherapy

Attachment Theory has influenced nearly all forms of psychotherapy including psy-

choanalysis and psycho-dynamic therapy [36], and its impact on Cognitive Behav-

ioural Therapy, as the most widely used type of therapy today, has led to Schema

Therapy [9]. In general, clinicians have used the concepts and findings of Attachment

Theory to understand, address and resolve the attachment issues that their clients

bring into therapy. The therapeutic framework, according to Attachment Theory,

should be perceived by the client as a safe environment in which early attachment

insecurities could in principle be dealt with and replaced with a secure attachment

based on the working relationship with the therapist [37, 38]. In [26], after an exten-

sive review of Attachment Theory, a model of treatment based on this theory is pro-

posed in which the therapist’s interventions are tailored to the attachment needs of

the client. The aim is to help the client to use the verbal and non-verbal relationship

with the therapist to internalise a sense of secure base that was not created as a result

of early child-parent interactions.

The Adult Attachment Interview (AAI) scoring system was developed by George

et al. [34] and is designed to retrospectively classify the childhood attachment type

of adults. It consists of a number of questions to assess the person’s understanding of

their early childhood relationships with parents. The pioneering work of Pierson et

al. [39] examined the notion of earned security using the Adult Attachment Interview

scoring system. Earned-security classifies adults who in the AAI describe difficult,

early relationships with parents, but who have been able to reflect into their experi-

ence through psychotherapy or a constructive marriage and as a result have devel-

oped secure working models in their adulthood as shown by their high coherency

scores. Mikulinceri and Shaver [5] also provide evidence that a sense of security pro-

vided by a psychotherapist improves a client’s mental health and can lead to earned

secure attachment. According to the study of a group of adults by Pearsona1 et al.
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in [39], however, earned securers have comparable depressive symptomatology as

insecurers.

Another main focus of the review article [5] is what they call the healing effects of

attachment security, which is directly related to Self-attachment protocols. Whereas

attachment insecurities create vulnerability to mental illness, the review argues that

the creation, maintenance, or restoration of a sense of attachment security should increase

resilience and improve mental health.

The authors then report on studies of experiments published in 2001 and 2007 on

so-called “security priming”, which artificially activate mental representations of

supportive attachment figures, for example, by

subliminal pictures suggesting attachment-figure availability, subliminal names of people

designated by participants as security-enhancing attachment figures, guided imagery high-

lighting the availability and supportiveness of an attachment figure, and visualization of the

faces of security-enhancing attachment figures.

The authors indicate that security priming improves participants’ moods even in

threatening contexts and eliminates the detrimental effects of threats on positive

moods, and found that subliminal priming with security-related words mitigated

cognitive symptoms of PTSD (heightened accessibility of trauma-related words in a

Stroop-colour naming task) in a non-clinical sample.

Attachment Objects

When secure attachments are not available in normal relationships, attachment fig-

ures or attachment objects have been used by human beings to regulate their emo-

tions and create a sense of felt security for themselves. Such attachment substitutes

are often used by securely attached individuals to cope with extreme forms of dis-

tress such as loss of a loved one, war atrocities, human inflicted traumas, and hor-

rific accidents [10]. While these attachment substitutes are often external objects,

the meaning individuals attribute to such an object and the relationship, interactions

and contract agreements they establish with it are highly personal, subjective and

are created often meticulously by the individuals themselves who may nevertheless

use and copy ideas from others. These attachment objects are employed by individ-

uals with the aim of attaining the kind of inner-felt security that can be observed in

securely attached children or adults in dyadic relationships. In fact, experiments with

monkeys show that higher primates are able to use such attachment objects, which

we will describe next.



Self-attachment: A Holistic Approach to Computational Psychiatry 283

Evidence in Ethology

By late 1950’s, Bowlby had for several years studied separation anxiety in children

who were separated from their mothers but he could not explain his clinical findings

using his psychoanalytic training. A number of experiments with monkeys by the

leading ethologist Harry Harlow however attracted Bowlby’s attention and had a

profound impact on his ideas. Bowlby wrote at the time [40]:

The longer I contemplated the diverse clinical evidence the more dissatisfied I became with

the views current in psychoanalytical and psychological literature and the more I found

myself turning to the ethologists for help. The extent to which I have drawn on concepts

of ethology will be apparent.

Motivated by Bowlby’s work on separation anxiety, Harlow experimented on

infant rhesus monkeys with surrogate dummy mothers that were either bare-wired or

cloth-covered. He found that the infant monkeys had an overwhelming preference for

cloth-covered mothers and would spend their time clinging to the cloth mother [12].

These experimental studies provided further support for attachment theory [41].

A series of later experiments by Harlow in the 1960’s [42, p. 487], regarded as

unethical today, showed that clinging to the cloth-covered surrogate mother served

as a way of regulating anxiety. Two groups of infant rhesus monkeys were removed

by Harlow from their mothers, and given a choice between either a cloth-covered or

a bare-wired surrogate mother. In the first group, the cloth-covered mother provided

no food, while the wire mother did. In the second group, the cloth-covered mother

provided food while the bare-wired mother did not. As expected the infant mon-

keys would cling to the cloth-covered mother whether it provided food or not and

the infant monkeys went to the wire surrogate only when it provided food. When-

ever frightened, the infant monkeys would run to the cloth mother for protection and

comfort, notwithstanding which mother provided them with food. Placed in an unfa-

miliar room with their cloth-covered surrogates, the monkeys would cling to them

until they felt secure enough to explore and then would occasionally return to the

cloth mother for comfort. Monkeys who were placed in an unfamiliar room with-

out their cloth mothers, however, would freeze in fear and cry, crouch down, or suck

their thumbs. Some of the monkeys would even run from object to object, apparently

searching for the cloth mother as they cried and screamed. Monkeys placed in this

situation with their wire mothers exhibited the same behavior as the monkeys with

no mother.

The cloth-covered surrogate mother thus provided for the infant monkeys an

attachment object for affect regulation. Bowlby in fact described this kind of attach-

ment object both for the infant monkeys and the human child as we will see next.

Children’s Attachment Objects

While the word attachment has a broad meaning in every day life, Attachment

Theory as conceived by John Bowlby has a narrow domain of discourse which is
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focused on the relationship between two individuals of the same species, in particu-

lar the child-parent and the adult-adult relationships. However, according to Bowlby,

when normal attachment relations are unavailable an inanimate object can play an

important role as an “attachment figure”. In his first seminal work on Attachment

Theory, after providing an example of such an inanimate attachment object for an

infant chimpanzee, who had been cared for by a human foster-mother, he writes

[7, p. 313]:

Many other examples of such behaviour in primate infants brought up in atypical surround-

ings could be given.

Thus it seems clear that, whether in human infants or monkey infants, whenever the “natural”

object of attachment behaviour is unavailable, the behaviour can become directed towards

some substitute object. Even though it is inanimate, such an object frequently appears capa-

ble of filling the role of an important, though subsidiary, attachment-“figure”. Like a princi-

pal attachment-figure, the inanimate substitute is sought especially when a child is tired, ill

or distressed.

Bowlby’s “attachment figure” or “substitute object” described above had been

previously studied by Winnicott [29], the renown British paediatrician and child-

psychoanalyst, who had coined the term “transitional objects” for it. The concept

of transitional object was introduced by him in 1953 to describe “comfort objects”

such as pillows, blankets and soft toys that a child becomes intensely and passion-

ately attached to. According to Winnicott, for toddlers with good enough mothers,

these attachments to transitional objects play a key role in ego development: the child

projects the comforting properties of a good enough mother to the inanimate object

which, unlike the mother who can temporarily disappear, is always under the con-

trol of the child whether the mother is present or not. By practicing and interacting

with the transitional object, a mother substitute, the child then acquires the capac-

ity for self-soothing by internalising the good enough mother and is able to with-

stand increasingly longer absences of the mother. Later researchers have formulated

a number of key functions of transitional objects, including separation-individuation,

libidinal object constancy, capacity for object relation and empathy and symbolisa-

tion and creativity [43].

In 1958, Winnicott also introduced another concept, namely the “capacity to be

alone” [44]. His article starts by asserting that

I wish to make an examination of the capacity of the individual to be alone, acting on the

assumption that this capacity is one of the most important signs of maturity in emotional

development.

He theorised that this capacity can be developed in children who have good enough

mothers and have thus, in psychoanalytical terminology, introjected or internalised

a good object in their inner psychic world. In Winnicott’s view this capacity can

however only take shape by the experience of

being alone, as an infant and a small child, in the presence of the mother.

According to Winnicott, only by acquiring the capacity to be alone the child can dis-

cover its “true self” in contrast to “a false life based on reactions to external stimuli.
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It is based on this self-discovery that the child’s capacity to be alone has been pro-

posed as the foundation of independence and creativity later in life, and is regarded

as “an aspect of emotional maturity” [45, p. 18].

The notion of a “self-object” in Heinz Kohut’s self-psychology, an established

school of object-relation psychoanalysis, also has many parallels with an attachment

object. Self-objects are, according to Kohut, external persons (including parents and

therapists), objects or activities that [46, p. 220]

support the cohesion, vigor, and harmony of the adult self... ranging from cultural self-

objects (the writers, artists, and political leaders of the group - the nation, for example - to

which a person feels he belongs.....) to the mutual self-object functions that the partners in

a good marriage provide for each other.

According to Kohut, it is through empathic responsiveness that self-objects sup-

port the individual’s developmental needs of mirroring, which leads to regulation of

a cohesive sense of self and is the most vital part of cure [46, pp. 65–66]:

[H]ow does self psychology perceive the process of cure? The answer is: as a three-step

movement, the first two steps of which may be described as defense analysis and unfolding

of the transferences, while the third step–the essential one because it defines the aim and

the result of the cure–is the opening of a path of empathy between self and self-objects,

specifically, the establishment of empathic in-tunes between self and self-object on mature

adult levels.

Religion as Attachment Object

John Bowlby believed that attachment continues in one way or another later in adult-

hood [47, p. 588]:

Probably in all normal people [attachment] continues in one form or another throughout

life and, although in many ways transformed, underlies many of our attachments to country,

sovereign, or church.

Attachment theorists have in later years objected to the use of the term “attachment”,

as meant in the context of attachment theory, for any type of bond that human beings

create [48, p. 846]. In particular the use of the term “attachment” for patriotism, as

in the above quotation, has been received with scepticism [49, p. 803]. However,

there is now a consensus among attachment theorists for the notion of “religion as

an attachment object”, which we will elaborate in this section.

In his book “Theological Imagination: Constructing the Concept of God”, Gor-

don Kaufman adopts the tenets of Attachment Theory and quotes John Bowlby to

argue that human beings are at their happiest when they feel secure in some trusted

relationships and then provides this quotation by him [50, p. 59]:

Since in the lives of all of us our most trusted companions are our attachment figures, it

follows that the degree to which each of us is susceptible to fear turns in great part on whether

our attachment figures are present or absent.
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Later Kaufman goes on to argue that in the Christian tradition God is above all a

loving and caring father and therefore concludes [50, p. 67]:

The idea of God is the idea of an absolutely adequate attachment-figure.

While Freud had regarded the notion of God as projection of father and considered

it as a delusion [51], attachment theorists began to study the different aspects of the

relationship individuals perceive to have with God in the context of attachment. The

idea that God, or any deity or religion, can be considered as an attachment object

has been investigated since 1990s by a group of social psychologists and there is

now a considerable amount of studies which provide evidence for this hypothesis in

both Christian and Jewish religions; see the comprehensive review [10] by Granvist,

Mikuliner and Shaver [10], which we will summarise below.

The review [10] provides a systematic summary of the work of the authors and

that of other researchers on the notion of “Religion as Attachment”. First, there is the

phenotypic resemblance between parental attachment and believers’ relationships

with God. Asked which of the following best describes their view of faith–(i) a set

of beliefs; (ii) membership in a church or synagogue; (iii) finding meaning in life;

or (iv) a relationship with God– most Americans by far chose the last description.

Central in the perceived relationship of the believer with God is the experience of

“love”, which is closely akin to the relationship of a child with an adult attachment

figure. In addition, the images of God in religious texts and in believers’ description

of God’s traits are also similar to attributes of parenting, and the main underlying

factors are “availability” and “benevolence”. Second, there are similarities between

the criteria of attachment relationships such as proximity seeking and the believers’

perceived relationship with God such as his perceived omnipresence, which is felt

by the believer when they visit a place of worship and particularly when they pray.

Third, one of the main functions of secure attachment, i.e., to provide a safe haven

when there is danger or distress has its direct parallel in the notion of God as a safe

haven. In times of extreme stress and trauma, believers resort to praying to God to

alleviate their fear and anxiety. Several studies have confirmed that after loss of a

loved one, religious practice and prayer increases among believers and these cor-

relate with successful coping at these critical times [52]. Interestingly, in regard to

separation anxiety, one study suggests that even subliminal perception of threat can

activate the attachment system of a believer to increased access to the concept of

God and supports correspondence between internal working models of parents and

God [53].

Fourth, the other main function of secure attachment, i.e., to furnish a secure base

for exploring the world and taking up challenges in life, has its parallel in the notion

of “God as a wiser and stronger secure base”, which is in line with Bowlby’s assertion

that children consider their parents as stronger and wiser than themselves [7]. In an

extensive work on empirical research on religious practice [54, pp. 158–164], it is

shown that having an intrinsic orientation in religious practice, i.e., considering it as

“ an end in itself–a final, not instrumental, good”, is correlated with two forms of

mental health, namely “freedom from worry and guilt” and “a sense of competence

and control”. Studies on the psychological effect of religious conversion shows that
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there is generally a significant decrease in negative affects and a notable increase

in well-being in individuals who go through religious conversion; see [54, 55, pp.

101–106]. The review [10] also summarises several studies to confirm that particular

aspects of religious beliefs that correlate more strongly with psychological well-

being, i.e., “divine relationships” and “praying”, are precisely those that are in line

with the model of religion as an attachment object. In addition, Kirkpatrick et al.

in [56] concluded in their study on the effect of religious practice and loneliness

that having a personal relationship with God predicted reduced loneliness despite

controlling other factors of interpersonal support.

Furthermore, the review describes two hypotheses that describe two different

pathways to God as an attachment object for individuals, which are related to the

individual differences in the output of the attachment system. The first is the “com-

pensatory pathway” to reduce distress generally chosen by individuals who have

had insensitive primary care-givers resulting in attachment insecurities. In particu-

lar, sudden religious conversions are correlated with insensitive parenting [57] and

a number of studies have indicated that increase in religiousness among individu-

als with insensitive parenting is precipitated with severe emotional upheavals [58].

This is consistent with the findings of William James in his classic book “Varieties

of Religious Experience” who called these individuals “second born” after having

a sick soul with a great amount of anguish and pain [59]. The second hypothesis is

the “correspondence pathway”, generally chosen by individuals who have had caring

and religious parents. This pathway expresses a continuity in secure attachment with

religious parents in children who grow up to hold the religious orientation of their

parents. In his book, William James called these people “once born”, i.e., individuals

who have a rectilinear life with a happy mind.

Finally, the authors point out the limitations of the concept of religion-as-

attachment model and suggest a more inclusive framework for spiritual attachment

objects that includes notions such as mindfulness from non-theistic religions like

Buddhism and New Age spirituality.

In more recent years, a similar study on Islamic scripture and spirituality has

been undertaken to examine Allah as an attachment figure in the Islamic faith. In

[60], the authors investigate whether Muslims seek proximity with a loving God as

a safe haven in times of distress and a secure base for living in a challenging world.

They consider five different types of Islamic texts, namely, (i) the divine names

or attributes of Allah, (ii) stories in the Qur’an that represent attachment relations

between Allah, His prophets and people, (iii) verses of the Qur’an with an empha-

sis on the caring and supportive relationship between Allah and His people, (iv)

divine sayings and prophetic inspirations that project Allah as a caring and support-

ive attachment figure, and (v) supplications which describe the believers’ relation-

ship with Allah. On all these themes, the relationship of a Muslim believer with Allah

is consistent with the relationship with an attachment figure and the paper comes to

similar conclusions as in the Christian and Jewish faiths.

Closely related to the concept of God as an attachment object is the notion of God

as a transitional object in a sense used by Winnicott. According to him, a transitional
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object for the child has an illusory aspect and he postulates a general transitional

space which has some illusory aspect [11, p. 3]:

I am staking a claim for an intermediate state between a baby’s inability and his growing

ability to recognise and accept reality. I am therefore studying the substance of illusion that

which is allowed to the infant, and which in adult life is inherent in art and religion....

William Meissner, a Jesuit and a psychoanalyst, has used the notion of a transi-

tional object to explain the psychology of religion and, in particular, the psychology

of praying. After elaborating on Winnicott’s view of transitional objects with their

illusory aspect, he writes [13, p. 177]:

Illusion, therefore, becomes in Winnicott’s view a developmental form of transition to reality,

in the sense that without the capacity to utilize transitional objects and to generate transi-

tional forms of experience the child’s attempt to gain a foothold in reality will inevitably be

frustrated. Illusion in this view is not an obstruction to experiencing reality but a vehicle for

gaining access to it.

In fact, Winnicott had claimed that the area of illusory experience is a vital potential

space for psychological development [11, p. 110]:

It is useful, then, to think of a third area of human living, one neither inside the individual

nor outside in the world of shared reality. This intermediate living can be thought of as

occupying a potential space, negating the idea of space and separation between the baby

and the mother, and all developments derived from this phenomenon. This potential space

varies greatly from individual to individual, and its foundation is the baby’s trust in the

mother experienced over a long-enough period at the critical stage of the separation of the

not-me from me, when the establishment of an autonomous self is at the initial stage.

Meissner then asserts [13, p. 183]:

Within this potential space, then, man must revive the roots of his capacity for creative living

and for faith experience.

In this relation, Erik Erikson, a renown developmental psychologist and psycho-

analyst, writes the following on religious experience with an implicit reference to

Freud’s view of religion as regression to childhood [61, p. 176]:

But must we call it regression if man thus seeks again the earliest encounters of his trustful

past in his efforts to reach a hoped-for and eternal future? Or do religions partake of man’s

ability, even as he regresses, to recover creatively? At their creative best, religions retrace

our earliest inner experiences, giving tangible form to vague evils and reaching back to the

earliest individual sources of trust; at the same time they keep alive the common symbols of

integrity distilled by the generations. If this is partial regression, it is a regression which, in

retracing firmly established pathways, returns to the present amplified and clarified.

Later in his book, Meissner writes the following about the individual believer’s

praying [13, p. 182]:

It is here that the qualities of the God-representation and their relationship to the believer’s

representation become immediate. The God he prays to is not ultimately the God of the the-

ologians or of the philosophers, nor is this God likely to be in any sense directly reconcilable

with the God of Scripture. Rather, the individual believer prays to a God who is represented

by the highly personalised transitional object representation in his inner, private personally

idiosyncratic belief system.
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He then goes on to write:

One might say that in prayer the individual figuratively enters the transitional space where

he meets his God-representation. Prayer thus becomes a channel for expressing what is most

unique, profound, and personal in individual psychology.

We note that in the three cases of attachment objects considered in this section,

i.e., surrogate cloth-covered monkeys used by infant monkeys in Harlow’s experi-

ments, comfort objects used universally by human children and deities used widely

in religious practice by adults, the attachment object actually is or is perceived to

be an external object. We will see how an internal object is used in Self-attachment

later in the article. Next, however, we see how the neural activation in the brain cor-

responding to a relationship with an external attachment object like God overlaps

with that of adult love and maternal love.

fMRI Studies on Bond Making

Since 2000, there have been three different types of fMRI studies on bond-making

with respect to adult love, maternal love and religious praying which show that these

three different forms of bonding in human beings share a common denominator in

terms of activation of the neural pathways in the reward system of the human brain.

Bartles and Zeki in [14] reported on fMRI studies of passionate/romantic adult

love. In their experiment, six men and eleven women, who were passionately in love

with their partners, stared at photos of their partners or at photos of their friends for

about 17 s. The conclusion was that looking staringly at the photo of a beloved part-

ner increased activation of the dopaminergic- related brain areas such as the caudate

nucleus and putamen. These findings were reinforced by fMRI experiments reported

in [62] by Aron et al. on partners in the early stage of passionate love, which showed

increased activity in dopamine- rich subcortical brain areas, the ventral tegmental

area and caudate nucleus.

In [15], Bartles and Zeki conducted an fMRI experiment, similar to that in [14],

on twenty mothers when each stared at the photos of their own child, compared to

another child of the same age with whom they were acquainted with, their best friend,

and photographs of another person they were acquainted with. There was increased

activity in the dopaminergic-rich sub- cortical brain areas (caudate nucleus, puta-

men, subthalamic nucleus, periaqueductal gray, substantia nigra, and lateral thala-

mus). There were specific differences in activation patterns in romantic love and

maternal love, in particular the activation of the periaqueductal (central) gray matter

(PAG) was observed in maternal but not passionate love. However, the conclusion

was that there are neural correlates common to both maternal and romantic love,

which are based on increased activation of the dopaminergic rich subcortical regions

of caudate nucleus and putamen.

The above fMRI studies were related to bond making between human beings. In

a completely new type of experiment, Schjoedt et al. in [16] investigated how per-
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forming religious prayers changed the neural activity in a group of Danish Christians.

The devout believer had five tasks to perform that included two prayers, the Lords

Prayer, as a highly formalized prayer, and a personal prayer as an improvised prayer.

The participants all reported that they were strong believers in God’s existence and

regularly prayed. The result was the activation of the caudate nucleus in the partic-

ipants when praying, which supports the hypothesis that religious prayer is capable

of stimulating the dopaminergic system of the dorsal striatum in practicing individ-

uals. This conclusion is consistent with research on the human striatum indicating

that repeated behaviours which are expected to elicit future rewards evoke activity

in the dorsal striatum. Furthermore, regarding a related study, the authors say:

we found no significant caudate activation of self-reported religious persons, who did not

pray regularly. While one can argue that prayer involves interaction with an abstract idea of

some deity in one form or the other, as far as the brain activity is concerned, it is no different

than normal interpersonal interaction.

On this subject, Uffe Schjoedt, the lead author of the article, writes [63]:

Importantly and somewhat contrary to the widespread assumption that communicating with

God constitutes a unique experience reserved for believers, our findings suggest that praying

to God is comparable to normal interpersonal interaction, at least in terms of brain function.

Praying, it seems, is subserved by the basic processing of our biologically evolved dispo-

sitions like other complex cultural phenomena, in this case the evolved human capacity for

social cognition.

These findings give further support to the concept of God as an attachment object

for believers as described in the previous section. The devotional personal relation-

ships believers have with their God have neural correlates with the passionate rela-

tionships in adult love and maternal love. Being in love, whether with your child,

your partner or a deity, has a common denominator in that in all these cases the

reward system of the brain is activated in the anticipation of some reward which

gives incentive, energy and hope to the individual to maintain and strengthen their

relationship with the beloved object by carrying out an appropriate set of tasks.

Self-attachment

As we have seen in section “Attachment Insecurity and Vulnerability to Mental

Disorder”, insecure attachment in childhood in general, and disorganised insecure

attachment in particular, makes us vulnerable as adults to psychological disorders

and mental illness. From this, it follows that a holistic approach to Computational

Psychiatry would seek to examine how individuals might be enabled to earn secure

attachment in adult life. We have seen in previous sections how psychotherapy, con-

structive marriages and the compensatory pathway in religious practice can help

individuals earning secure attachment. It was also shown how attachment objects

are used in very different contexts by infant monkeys, human children and believers
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to create a bond with an inanimate or abstract object and use it for emotion self-

regulation.

The question now arises as to whether it is possible to develop a self-administrable

protocol, based on developmental psychology and neuroscience (as described in

section “Attachment Theory”) that can help individuals use neuroplasticity and long

term potentiation to create their own attachment objects in order to earn secure

attachment.

It is proposed in [4] that this is a feasible task. The dyadic child-parent interactions

of a good enough parent and a child can be self-administered by an individual who is

considered to consist of an inner child and an adult self. The inner child, representing

the emotional self, rooted mostly in the right brain and the limbic system, becomes

dominant under stress, whereas the adult self corresponding to the logical self, rooted

mostly in the left brain and the prefrontal cortex, is dominant in the absence of stress.

The adult self connects to and imaginatively creates an affectional bond with the

inner child taking up the role of a new primary carer who retrains the inner child to

acquire the capacity for emotion self-regulation. In the process of these interactions,

the aim is for the inner child to be raised to emotional maturity while the adult self

is transformed to a secure attachment object for the inner child.

The creation of the internal affectional bond with the inner child is proposed to

activate the dopaminergic pathways of the reward system in the brain. This activa-

tion, we argue, provides the energy, incentive and hope to persevere with the pro-

tocol and plays the same role that the primary care-giver’s love for the child has in

the healthy emotional growth of the child. This bond-making is the distinguishing

feature of Self-attachment and is in line with fMRI studies on romantic and mater-

nal love as well as religious practice described in section “Religion as Attachment

Object”. It is also consistent with Bowlby’s description of how bonds are created and

maintained [8, p. 155]:

Thus, many of the most intense emotions arise during the formation, the maintenance, the

disruption, and the renewal of attachment relationships. The formation of a bond is described

as falling in love, maintaining a bond as loving someone, and losing a partner as grieving over

someone. Similarly, the threat of loss arouses anxiety and actual loss gives rise to sorrow;

whilst each of these situations is likely to arouse anger. The unchallenged maintenance of a

bond is experienced as a source of joy.

Self-attachment aims to create an unchallenged maintenance of the bond between

the adult self and the inner child so that it becomes a source of joy for the indi-

vidual. Subsequent to the formation of the Self-attachment bond, the training prac-

tices that are at the basis of the adult self and inner child interactions emulate those

of “good enough” primary care givers, as described in section “Regulation theory:

Neurobiology of Secure Attachment”, to minimise negative and maximise positive

affects and modulate the inner child’s arousal level. It is hypothesised that based

on neuroplasticity and long term potentiation, these practices lead to neural circuits

corresponding to secure attachment that will increasingly challenge the sub-optimal

circuits produced as a result of insecure attachment in childhood as described in

section “Neurobiology of InSecure Attachment”. While the sub-optimal circuits can-

not be wiped off and under high stress can become dominant again for a while, the
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new optical circuits will gradually counter them effectively and reduce the severity

and the duration of the resulting symptoms.

It is on this basis that the notion of Self-attachment has been proposed in [4],

which, in a broad sense of the term, can be regarded as a type of self-directed

behaviour and interaction that employs a real or imaginative object of devotion and

affection and is practiced regularly in order to regulate emotions and harmonise

social interactions. We submit that the use of attachment objects as described in

section “Attachment Objects”, whether by infant monkeys, human children or by

adults in religious practice, has many parallels with the notion of Self-attachment.

In these cases, the attachment object is external or is perceived to be external and the

emotion regulation by the individual is therefore mediated by an externally perceived

object.

Self-attachment is essentially a self-help technique which, depending on the indi-

vidual, may initially need the support of a psychotherapist for a few sessions. It aims

to use neuroplasticity and long term potentiation to help individuals to create their

own secure attachment objects by the direct intervention of their “adult self’, rep-

resenting their rational self, in order to reparent the “inner child”, representing the

emotional self. The attachment object to be created can be regarded as a comfort

object (cf. Bowlby), transitional object (cf. Winnicott) or empathetic self-object (cf.

Kohut). Self-attachment intervention seeks to closely emulate the dyadic interactions

of a “good enough” primary care giver and a child by first taking a compassion-

ate attitude to the inner child and then developing an internal affectional bond with

the “inner child”. This internal bonding, it is hypothesised, activates the dopaminer-

gic reward system of the brain inducing hormones and neurotransmitters including

dopamine, serotonin, oxytocin and vasopressin that provide the incentive, energy,

hope, tranquillity and caring attitude required for persevering with the reparenting

protocol to achieve emotion self-regulation as in secure attachment of children [6, p.

14].

Self-attachment can be regarded as an extension of attachment theory but it is also

related to and incorporates ideas from a range of psychotherapeutic methods. This

includes the notion of “inner child” from transactional analysis [64], Mentalisation

[65]—defined as the capacity to understand the emotions and mental states of the

other people as well as those of oneself—exposure as in behavioural therapy [66],

compassionate focused psychotherapy [67], schema therapy and reparenting [9] and

object-relation psychodynamic therapy in a wider sense of the term in which objects

can be impersonal as well as personal [45, p. 150–152]. Self attachment integrates

these techniques into its main focus of intervention, which is the creation of an inter-

nal affectional bond to emulate what occurs naturally between an infant and a parent.

Self-attachment also employs protocols such as singing, dancing and massage that

are known to increase dopamine, serotonin, oxytocin and reduce cortisol levels [68–

71]. It can also be combined with any well-established therapeutic technique.
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Playing and Role Playing

The internal interactions in Self-attachment resemble role playing, in which the indi-

vidual plays simultaneously both the role of the child within and that of the adult self.

This shows that, while these interactions aim to create new types of cognition and

behaviour corresponding to secure attachment, Self-attachment is in a sense a form

of playing. It is therefore useful here to highlight the significance of play in general

in psychotherapy.

As explained in the previous section, Winnicott considers a potential illusory

sphere of play between the inner reality of an individual and the external reality. He

also presents the hypothesis that psychotherapy can only be successful when both

the therapist and the patient play [11, p. 54]:

The general principle seems to me to be valid that psychotherapy is done in the overlap of
the two play areas, that of the patient and that of the therapist. If the therapist cannot play,

then he is not suitable for the work. If the patient cannot play, then something needs to be

done to enable the patient to become able to play, after which psychotherapy can begin. The

reason why playing is essential is that it is in playing that the patient is being creative.

As far as child development is concerned, play has been recognised as vital for the

cognitive, physical, social, and emotional well-being of children and for maintaining

strong parent-child bonds [72]. There has been a growing body of evidence in chil-

dren supporting the many connections between cognitive and social competence as

well as abstract thinking on the one hand and high-quality pretend play on the other

hand. In particular, role playing in children has been linked to cognitive functioning

and impulse control. Pretense starts in children age between one and two and plays

a vital role in young children’s lives through the primary school years [73].

In addition, role playing is an established method in psychotherapy and is defined

by Corsini [74, p. 6] as follows:

Essentially, role playing is a “make believe” process. In therapy, the patient (and if it is to be

an interactional situation, the others involved) will act for a limited time “as if the acted-out

situation were real”.

Asserting that role playing can even be used in self-therapy, Corsini then postulates

that role playing has the following basic features [74, pp. 5 and 9]:

∙ Is a close representation of real life behaviour.

∙ Involves the individual holistically.

∙ Presents observers with a picture of how the patient operates in real life situations.

∙ Because it is dramatic, focuses attention on the problem.

∙ Permits the individual to see himself while in action in a neutral situation.

The dyadic interactions in Self-attachment between the adult self and the inner

child differ in two ways from the usual role playing as in the first item listed above: (i)

the behaviour of the inner child is not just a close representation of real life behaviour

but rather the real life behaviour itself, and (ii) the behaviour of the adult self, who

follows the Self-attachment protocol, is the optimal behaviour of a “good enough”
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parent in relation to a child. In the next section, we turn to a more detailed outline

of the various stages of Self-attachment.

Self-attachment Protocol

There are four stages in the Self-attachment protocol which are briefly described here

[4]:

(1) Introduction to secure Self-attachment therapy. The Self-attachment protocol

is challenging and demanding for any volunteer as it requires a great deal of dedica-

tion and motivation. For this reason, it is essential to understand why so much time

and effort should be invested in this method before it can have an impact. Therefore,

in the preliminary stage, the individuals become familiar with the scientific basis and

the underlying hypothesis of the proposed Self-attachment therapy. This includes a

basic introduction to attachment theory, regulation theory and their neural correlates,

fMRI studies on being in love in the case of maternal and romantic love as well as

that of bonding with abstract and imaginative objects as in prayer, neuroplasticity

and long term potentiation.

(2) Connecting with the “inner child”. In this first stage of the protocol, the vol-

unteers start to have a relationship with their inner child with a view to establish

empathy and ultimately compassion with the child. While looking at photos of their

childhood, they think introspectively and recall their basic childhood environment

including their relationships with parents and other care-givers. The aim is to have

a feeling for the inner child as a result of these exercises. Since the early attachment

type of a child is formed in the pre-verbal years, when visualisation is the main tool

for observation and sensing, there is much focus on imagery in this stage. A happy

or positive looking photo of childhood that has always been favoured is selected by

the volunteer as well as a sad or gloomy looking photo that has been avoided, dis-

liked or less fond of. Several novel exercises are designed to connect to the inner

child in various emotional states while the eyes are kept closed: trying to visualise

the two chosen childhood photos, to imagine that the child that they were is present

and is close to them and that they can touch and hold this child. The objective of the

this stage is to conceptualise the inner child as concretely as possible and develop

empathy and then compassion toward it.

(3) Making an affectional bond with the inner child. In this stage an imagina-

tive but passionate affectional bond is made with the inner child that is subjectively

experienced as falling in love. This resembles passionate devotion to a deity that

has neural correlates with maternal and romantic love. It is hypothesised that this

step can in principle be taken by all individuals based on their primary narcissism, a

notion of “self-love” in children originally introduced by Freud as a defense mech-

anism that is to protect the child from psychic damage during the formation of the

individual self [51]. Bowlby has himself argued that separation anxiety in children

from their mothers, which is the root cause of insecure attachment, is a form of injury

to primary narcissism [7, p. 11].
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The inner child is subsequently adopted imaginative by the volunteers who vow

to consistently support and love the inner child to reprocess past traumatic episodes

and reparent the child to emotion self-regulation. The imaginative bond making is in

practice attained by passionately and repeatedly reciting a favourite happy love song

while staring at the positive looking childhood photo trying to rekindle happy memo-

ries. The aim here is to bring the inner child into life, excitement and joy again, induc-

ing dopamine release and providing energy and hope for the volunteer who requires

constant motivation to keep up the momentum and resolve to persevere with carry-

ing out the protocol. This is in line with latest findings in neuroscience on singing.

The study in [69] found increased activation in nucleus accumbens for singing as

opposed to speaking words of a familiar song and [70] reported increased activa-

tion in regions including caudate nucleus and putamen when professional classical

singers imagined singing an aria (love song). In addition, [75] revealed dopamine

release in caudate nucleus and nucleus accumbens during anticipation and experi-

ence of peak emotional response to passive listening to self-reported pleasurable

music.

(4) Developmental retraining and re-parenting the inner child. The last and main

stage consists of several types of interactions between the adult self and the inner

child that emulate the function of a good enough parent in interacting with a securely

attached child in order to minimise the negative emotions, named the Sad-Child pro-

tocol, and to maximise the positive affects, named the Happy-Child protocol. We

provide one example here on how to reprocess painful and traumatic past events: the

volunteers with their eyes closed recall some traumatic episode in their childhood,

remembering in as much detail as possible the associated emotions of fear, help-

lessness, humiliation and rage. Then, they imagine that their inner adult responds

quickly to the child in distress by embracing, cuddling, and loudly reassuring the

child. Cuddling the inner child is simulated by giving oneself a head, face or neck

massage, which is known to reduce cortisol levels and increase oxytocin and endor-

phin release; see [32, 68, p. 103]. By revisiting the neural circuits of past traumas,

these sessions thus induce dopamine, serotonin, oxytocin and vasopressin secretion

and are designed to build new optimal neural circuits in relation to the old patholog-

ical ones.

A basic undertaking by the volunteers throughout the treatment period is to grad-

ually construct, using their own imagination, a visually potent picture of the protocol

that depicts a secure attachment object, for example as a new bright and solid house

erected and built in the place of a dark and derelict shelter, which depicts insecure

attachment. This visual construction, which either remains completely in the mind

or is drawn on paper, symbolises the secure attachment the volunteers would earn

themselves in contrast to their past insecure attachment anxieties.
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Distinguishing Characteristic and Proof of Concept

The distinguishing characteristic of Self-attachment therapy is the internal affec-

tional bond that is self-administered to emulate the loving relationship of a primary

caregiver and a child. The imaginative but passionate relationship between the adult

self and the inner child mimics the real interactions of a parent-child dyad that lead to

secure attachment in the first years of the child’s development. These interactions aim

to maximise the positive affects and strengthen the bond and homeostasis between

the adult self and inner child, similar to the real interactions of loving parents and

their children as described in section “Regulation Theory: Neurobiology of Secure

Attachment”. They have the combined result of creating more positive affects and

establishing an intimate, internal dialogue of adult self with the inner child. This

combination is unique to Self-attachment and, in particular, provides a more effec-

tive tool to tackle and contain negative affects and the corresponding psychological

disorders.

There have been a number of case studies of Self-attachment undertaken by vol-

unteers since 2010 and by clients of professional psychotherapists trained in the pro-

tocol since 2014, which were first reported in [4] as mentioned in the Introduction.

A detailed report of a number of case studies is now under preparation.

As pointed out in the Introduction, the central idea in the virtual reality exper-

iments reported in [18, 19] is similar to the basic intervention in the first stage of

Self-attachment described in (2) above. The difference is that in Self-attachment the

child is displayed, imagined and perceived as the “inner child” of the individual,

representing the emotionally unregulated childhood of the individual with its own

history of attachment insecurities. While this is a crucial distinction that can lead to

a much more effective intervention, the results reported in these two papers provide

a proof of concept of Self-attachment.

It may be argued here that Self-attachment, as described in section

“Self-attachment Protocol”, is not a natural undertaking. There are three basic points

to be made to counter this argument.

First, looking after yourself or taking care of yourself is a main principle of mental

health in all cultures and there are many organisations and manuals dedicated to this

principle for the general public. Self-attachment takes this principle further for those

who have had traumatic childhood background and are thus vulnerable to mental

disorders.

Second, one can argue with the same reasoning that the use of religions or deities

as attachment objects for individuals is not natural. Yet, such use of religions and

deities have existed for thousands of years and continue to play a significant role in

the mental health of human beings.

Third, there seems to be in fact a natural role for Self-attachment in higher pri-

mates: There is some evidence for a direct but rudimentary form of Self-attachment

in ethology. Experiments, on rhesus monkeys, isolated at birth, show that after six

months in isolation they exhibit a type of self-directed behaviour, such as self-orality,

clasping a limb or rocking, which are considered soothing and comforting since they
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are precisely described in ethology as the kind of actions that would have been car-

ried out on the monkey infant by the monkey’s mother if she had been present [76].

These self-directed soothing behaviours must have biological underpinnings as they

are not learnt and therefore give more evidence that Self-attachment is a particular

component of the attachment system discovered by Bowlby.

A Game-Theoretic Model

We have argued that Self-attachment has many parallels with role playing in psy-

chotherapy and that it can be regarded as a type of interactive play between the

adult self and the inner child. In this section, a game-theoretic model for the Self-

attachment protocol is presented. We first briefly review the notion of a game [77].

A strategic game is a model of decision making by a number of agents called players

in which each player has a set of possible actions and in each round of the game,

the players simultaneously choose their individual actions independently. A strategy

profile is a particular choice of action by each player and a game is fully defined by

providing the utility of each player for each strategy profile. The concept of stability

in strategic games is captured by the notion of a Nash equilibrium. A strategy profile

is said to be a Nash equilibrium for a given game if no player can increase its utility

by deviating from its action in the strategy profile when all other players keep their

actions intact. A repeated game (or iterated game) is an extensive form game which

consists in some number of repetitions of some base game (called a stage game), for

example a 2-person game. It captures the idea that a player will have to take into

account the impact of its current action on the future actions of other players. Game

theory has been applied to various areas in applied mathematics when different deci-

sions are made by competing players; see [77].

In [78], the dynamics of interaction of a child-parent dyad for different attachment

types has been modelled using two player and two action games. The two actions of

the child are “Go”, meaning “go to seek support from the parent” or “Don’t Go”,

whereas the actions of the parent are given by “Attend”, meaning respond appropri-

ately to the child’s distress, or “Ignore”, meaning “ignore the child’s distress signal”.

For example, the game on the left in Fig. 1, which has a Nash equilibrium for the

strategy profile (Go, Attend), is proposed for the dynamics of secure attachment,

whereas the game on the right in Fig. 1, which has a Nash equilibrium for the strat-

egy profile (Don’t Go, Ignore) gives a model of avoidant attachment.

In [79], a framework is introduced which, given a game with an undesirable Nash

equilibrium, will generate using reinforcement learning a dynamics which changes

Fig. 1 Left: A game with a

secure NE. Right: A game

with an insecure NE

Parent
Attend Ignore

Child
Go 4,4 3,3

Don’t Go 2,1 2,2

Parent
Attend Ignore

Child
Go 4,2 2,3

Don’t Go 3,1 3,4
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the utility matrix by providing additional reward for more desirable actions until

a new Nash equilibrium at some predetermined desirable strategy profile is estab-

lished. The change in the utility matrix is brought about by reinforcement learn-

ing and additional reward provided to one or both players for taking more desirable

actions. Reinforcement learning algorithms model dopamine release (corresponding

to a reward-prediction error) [80], which gives the incentive to a player to deviate

from its action in the Nash equilibrium in the anticipation of future reward.

Specifically, the framework in [79], employs Q-learning, a particular type of rein-

forcement learning [81], which is suitable to model dopamine release [82]. As an

example, a process of psychotherapeutic intervention to induce change in the behav-

iour of a parent with an avoidantly attached child has been modelled using attachment

games, which offers internal rewards to the parent whenever the action “Attend” is

selected and eventually leads to a secure attachment game.

The above framework can be adapted to provide a model of Self-attachment. We

assume the individual undertaking the Self-attachment protocol has had an avoidant

attachment in childhood and has thus internalised an adult self in the mirror image of

his or her primary care-giver. Therefore, we assume that initially the inner child of the

individual is avoidantly attached with the individual’s adult self and their interactions

can be modelled at the start by an avoidant attachment game as on the right in Fig. 1.

The two actions of the Inner Child, namely “Go” and “Don’t Go” signify whether

the individual seeks help from himself/herself or not, whereas the two actions of the

Adult Self, namely “Attend” and “Ignore”, represent the two cases when the indi-

vidual takes action to comfort himself/herself or not. The four strategy profiles then

describe the four possible alternatives when the Inner Child is distressed, e.g., when

the individual is suffering from some anxiety or depressive symptom. The effect

of Self-attachment practice is modelled by the reinforcement learning framework

in [83] applied to the avoidant game so as to change it dynamically to the secure

attachment game in Fig. 2, which has a Nash equilibrium (Go, Attend) correspond-

ing to secure attachment as well as one (Don’t Go, Ignore) corresponding to avoidant

attachment.

In reinforcement learning one learns what action to take in order to maximise

a reward signal: agents incrementally adapt their estimates of reward associated

with state-action pairs based on observed outcomes following each action choice

[81]. We give an overview of the adapted reinforcement learning framework for

Self-attachment here. A state of the learning procedure is given by a pair of what

we call an M-state and its associated Q-state. An M-state is given by a utility

matrix M ∈ ℝ2×2
+ of the Adult Self with its associated Q-state given by the ordi-

Adult self
Attend Ignore

Inner Child
Go 4,4 2,2

Don’t Go 3,1 3,3

Fig. 2 A game with a secure and an insecure NE
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nal representation [M] = M∕ ≡, where the equivalence relation ≡ on the set ℝ2×2
+ is

defined by M ≡ N iff for all i, j, i′, j′ ∈ {1, 2} we have: Mij < Mi′j′ ⟺ Nij < Ni′j′
and Mij = Mi′j′ ⟺ Nij = Ni′j′ . Thus, the Q-state can be represented as a matrix in

{1, 2, 3, 4}2×2 with at least one entry equal to 1. The actions in the Q-learning are the

four possible strategy profiles (Go, Attend), (Go, Ignore), (Don’t Go, Attend) and

(Don’t Go, Ignore).

We assume that the utility matrix of the Inner Child is static and does not change

throughout the course of Q-learning. The state transitions are defined as follows. If

the strategy profile (Go, Attend) is played then M11 → rM11 where r > 1 is a fixed

multiplicative reward factor. Similarly, if the strategy profile (Don’t Go, Attend) is

played then M21 → rM21. Otherwise, when the Adult Self plays Ignore, its utility

matrix does not change. We note that when the utility matrix does change from M
to M′

its associated Q-state may or may not change, i.e., we can have [M] = [M′]
or [M] ≠ [M′]. We assume the Inner Child plays reactively: if the Adult Self plays

“Attend” at time t then the Inner Child plays “Go” at time t + 1, whereas if the

Adult Self plays “Ignore” at time t then the Inner Child Plays “Don’t Go” at times

t + 1. The Q-value Q([M], 𝛽) for the pair of Q-state and action ([M], 𝛽) where

𝛽 ∈ {Attend, Ignore} is updated when M → M′
according to the standard Q-learning

rule:

Q([M], 𝛽) ← Q([M], 𝛽) + 𝓁
(

R(M, 𝛽) + 𝛿 max
𝛽
′∈S

Q([M′], 𝛽′) − Q([M], 𝛽)
)

where S = {Attend, Ignore}, 𝓁 > 0 is the learning rate, 𝛿 is the discount factor with

values 0 ≤ 𝛿 ≤ 1 and the reward R for a pair of M-state and action given by:

R(M,Attend) =
{

rM11 if (Attend, Go) is played

rM12 if (Attend, Don’t Go) is played

and

R(M, Ignore) =
{

M11 if (Ignore, Go) is played

M12 if (Ignore, Don’t Go) is played

The learning rate has been chosen as 𝓁 = 𝓁([M], 𝛽) = (n([M], 𝛽))−1, where

n([M], 𝛽) equals the number of times action 𝛽 has been selected in Q-state [M]. This

means that initially 𝓁([M], 𝛽) = 1 and subsequently 𝓁([M], 𝛽) decreases with each

new selection of action 𝛽 in Q-state [M]. A softmax action selection rule [81], also

called the Boltzmann probabilistic rule, is used to choose the action taken by the

Adult Self according to the following probability distribution:

Pr (𝛽|[M]) = kQ([M],𝛽) ∕
∑

𝛽∈S
kQ([M],𝛽)
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with exploration parameter k > 1. The greater the exploration parameter the more

it is likely that, in a given Q-state, actions with higher Q-values would be selected.

Thus, the reinforced Adult Self chooses actions according to a path-dependent, non-

stationary stochastic process. The initial M-state M0 is set to be the utility matrix of

the Adult Self on the right in Fig. 1. The initial Q-values of a Q-state and action pair

is set as follows

Q([M], Attend) = [M]21, Q([M], Ignore) = [M]22

i.e., it is set to the ordinal value of the Q-state [M] assuming that the Inner Child

plays “Don’t Go”.

The additional reward that reinforces the action “Attend” provides the incentive

for the Adult Self to deviate with some probability from the undesirable “Ignore”

action in the undesirable Nash equilibrium and to choose “Attend”. It is proved math-

ematically in [83] that in this setting the utility matrix almost surely, i.e., with prob-

ability one, converges to the game in Fig. 2 to provide a secure attachment as a Nash

equilibrium. The question is how fast is the rate of convergence.

A simulation of this framework in [83] for r ∈ {1.1, 1.3, 1.5} produces Fig. 3

when k = 1.5 and Fig. 4 when k = 2 for the average number of iterations of the Q-

learning algorithm for a range of values of the discount factor 𝛿 so that the utility

matrix converges to give a secure attachment Nash equilibrium. As the reinforce-

ment parameter r > 1 increases, the average number of iterations to yield secure

attachment decreases, which can be interpreted by asserting that individuals who

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100
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200

250

r=1.1
r=1.3
r=1.5

Fig. 3 Average no. of rounds to reach secure attachment for various values of the multiplicative

reward factor when k = 1.5
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Fig. 4 Average no. of rounds to reach secure attachment for various values of the multiplicative

reward factor when k = 2

value the Self-attachment protocol at a higher level obtain the desired result quicker.

Furthermore, the lower the discount factor 𝛿, the quicker the convergence to secure

attachment, which implies that those focused on the present and more immediate

reward would see a faster path to the desired result. Finally, as the exploration para-

meter k increases, the speed of convergence to secure attachment decreases. In fact,

for a larger value of k, the choice of “Ignore” dominates the initial rounds of the rein-

forcement learning because the initial Q-values of the pairs of Q-states and actions

are determined by the action “Don’t Go” of the Inner Child in the initial Nash equilib-

rium (Don′tGo, Ignore). Therefore, larger values of k capture individuals who show

resistance to therapy and are more entrenched in their original behaviour.

Self-attachment and Strong Patterns

In this section, we first review neural models of psychotherapy in the literature. A

neural model for personality is constructed in [84], which is based on Cloninger’s

three-dimensional character cube [85]. It aims to model psychotherapy for individ-

uals who are already functioning quite well but seek to improve their effectiveness.

Cloninger’s character cube is also used in [86] to develop a neural model for how

human beings suppress or enhance certain types of behaviour. Galatzer-Levy [87]

presents an outline of how non-linear dynamical systems and attractors can be used

qualitatively to model the psychoanalytical process, and includes other related refer-
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ences in this subject. The concept of “working through” in psychoanalysis has been

modelled in [88] using a Hopfield network with two weakly connected layers.

The first neural model for Self-attachment we describe here uses the notion of

strong patterns in artificial neural networks, in particular Hopfield networks, an early

model of energy based associative networks introduced by Hopfield [89]. The pat-

terns stored in such a network under the right conditions, become, with high prob-

ability, the minima of the network energy and the fixed points of the network; see

below.

Attachment types and cognitive and behavioural prototypes are entrenched in the

neural pathways of the brain as a result of some key repeated and strong interac-

tions that an individual undertakes or is exposed to, which become stored patterns

in the brain. In [90, pp. 132–144], Lewis, Amini and Lannon emphasise that our

attachment types and key emotional attitudes in relation to others are sculpted by

limbic attractors as a result of repeated exposure to similar patterns of interactions

in childhood, which will then profoundly impact our emotional world for the rest of

our lives. They employ artificial neural networks to describe how such patterns of

attitude and behaviour are developed.

Similarly, Smith et al. in [91, p. 222] proposed the Hopfield network to model

cognitive and behavioural patterns considered as:

prototypes-deeply learned patterns of thought and social activity. In the sense developed by

cognitive psychologists, prototypes are cognitive structures that preserve in memory com-

mon or typical features of a person’s experience. By matching perceptions and thoughts in

prototypes stored in memory, persons categorize and identify objects, form inferences and

expectations, and construct predictions about the future. Prototypes thus serve an orient-

ing function, since persons use them to guide their behaviour. In general, a person seeks

the closest possible match between ongoing experience and these prototype patterns. When

confronted with the unfamiliar, a person will search for the closest match to a learned pro-

totype.

The question how to model repeatedly or strongly stored patterns in a Hopfield

network has been addressed in [92, 93]. Assume we have a Hopfield network with

N neurons i = 1,… ,N each taking values ±1. A configuration of the network is

given by X ∈ {−1, 1}N
with components Xi = ±1 for 1 ≤ i ≤ N. Assume we have

the deterministic asynchronous updating rule (i.e., with temperature T = 0) and zero

bias in the local field at each node i.
The updating rule is:

If hi ≥ 0 then 1 ← Xi otherwise − 1 ← Xi

where hi =
∑N

j=1 wijXj is the local field of configuration X at i. The energy of the

network (assuming zero biases at the nodes) for configuration X is given in terms of

the synaptic couplings wij by

E(X) = −1
2

N∑

i,j=1
wijXiXj.
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It is easy to check that if the updating rule is applied asynchronously then the energy

of the network will not increase. Since there are only a finite number, in fact 2N
,

configurations possible for a fixed N, it follows that with the asynchronous updating

rule the network will always settle down to one of the minima of its energy landscape,

which will be a fixed point of the network.

Assume we have p patterns Xk ∈ {−1, 1}N
, with 1 ≤ k ≤ p, each given by its com-

ponents Xk
i for i = 1,… ,N, which are to be stored in the memory. The generalized

Hebbian rule for the synaptic couplings to store these patterns is defined as follows

[92, 93]:

wij =
1
N

p∑

k=1
dkXk

i Xk
j , (1)

for i ≠ j with wii = 0 for 1 ≤ i, j ≤ N. where dk is the multiplicity or degree, also

called the strength, of the pattern Xk
. In a standard Hopfield network we have dk = 1,

i.e., all patterns are simple. In this case, if all patterns are random and p∕N ≤ 0.138
then the network behaves like an associative network with a good memory: the p
patterns become with high probability fixed points or attractors of the network. If

the network is initialised with a configuration X, then by asynchronous updating the

network converges with a high probability to one of the patterns Xk
for 1 ≤ k ≤ p.

The number 0.138 is the retrieval capacity of the network which can be determined

both experimentally and theoretically.

If dk > 1, then Xk
is a strong pattern indicating either that the pattern has been

multiply stored with the integer dk as its multiplicity or that the pattern has been

deeply stored with a high level of dopamine secretion that has reinforced the learn-

ing [94]. The corresponding attractor produced by a strong pattern in the network

is called a strong attractor. Strong attractors are more stable than those of simple

patterns and have a larger basin of attraction and lower energy level [93]. In [92],

a square law has been obtained for the retrieval capacity of a single strong pattern

in the presence of simple patterns in the Hopfield network. The square law for the

stability of a single neuron is deduced by a theorem of Lyapunov which generalises

the Central Limit theorem in the case we have independent but non-identically dis-

tributed random variables. Assuming that there is only a single strong pattern and

all patterns are independent, one obtains for the probability that a single node of the

strong pattern with degree d ≪ p becomes unstable:

Prerror ≈
1
2

(
1 − erf(

√
Nd2∕2p

)

where erf is the error function. This formula reduces to the corresponding error for

the standard Hopfield network for d = 1 and thus we can see that for d > 1, the

stability is increased by a factor d2
.

To establish the square law for the retrieval capacity of a whole strong pattern

much more work is required. In [92], this is done by moving to the stochastic Hopfield

network for a pseudo temperature T > 0 in which the updating rule is probabilistic.

In this setting, one derives the conditions for the strong pattern to be retrievable
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with a non-zero probability and then one takes the limit T → 0 which recovers the

deterministic network. Assuming that the strong pattern has multiplicity d > 1 with

d ≪ p, it is shown analytically that provided p satisfies p∕N ≤ 0.138d2
, the strong

pattern can still be retrieved with high probability, showing that the retrieval capacity

of a strong pattern grows proportional to the square of its degree.

This square law provides us with a technique to model cognitive and behavioural

proto-types as strong patterns that remain stable compared with simple patterns.

In fact, it enables us to model the gist of the Self-attachment protocol, which we

now describe using a simple example. Assume we store 30 copies of a generic sad

face and 100,000 random images in a Hopfield network with N = 48 × 48 = 2304
providing a screen of neurons regarded as pixels with values ±1. Note that in this

case we have 0.138Nd2 = 0.138 × 2304 × 302 ≈ 286, 156. Since we have a total of

100, 030 < 286, 156 stored patterns, it follows by the square law that the sad face is

retrievable. In fact, a simple experiment shows that with high probability any ini-

tial image will be repeatedly updated using the asynchronous rule to converge and

retrieve the sad face as a fixed point. This shows that the Hopfield network is now

an associative model of a sad brain which with high probability interprets any image

as a sad face. We now store additionally 40 copies of a generic happy face in the

same Hopfield network. In the resulting network, we have two strong patterns, the

old generic sad face with degree 30 and the new generic happy face with degree 40.

In the competition between these two strong pattern, the stronger one i.e., the generic

happy face, wins [93]. Therefore, after initialising the network with a random pat-

tern, with high probability, one eventually retrieves the happy face. This shows that

the associated memory network which had modelled a sad brain–was biased toward

retrieving the sad face– is now modelling a happy face– is biased toward retrieving

the happy face.

Therefore, the process of Self-attachment therapy works according to this model

by constructing, using neuroplasticity and long term potentiation, a strong optimal

cognitive and behavioural pattern corresponding to each suboptimal pattern that had

previously been learned. Psychotherapy is successful once the strength of the new

pattern exceeds that of the old one.

Neural Models of Self-attachment

In this section, we will describe three neural models of the human brain for Self-

attachment.

An Energy Based Neural Model with Reinforcement Learning

The first neural model of the human brain for Self-attachment we describe here uses

Levine’s pathways for emotional-cognitive decision making [95]. Levine’s model
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contains two networks: (i) An energy based competitive needs network, which will

be modelled here by a Hopfield network whose attractors represent the individual’s

competing needs that include physiological as well as higher cognitive and emotional

needs, motivated by Maslow’s hierarchy of needs. (ii) A network of brain regions

that make either deliberate or heuristic decisions and is comprised of four connected

areas: the amygdala, the OFC, ACC and DLPFC, which account for various decision

rules on specific tasks as will be explained below. These four regions comprise a

three-layer network, in which the vigilance threshold of the individual, represented

by the ACC, determines the status of activation of each layer. The lower the vigilance

threshold the quicker the alertness of the individual will be activated. The state of the

needs network influences the vigilance threshold so that the winning needs become

dominant to implement the corresponding decision rules.

In [4], the above framework is employed to construct a model of Self-attachment

by using reinforcement learning in the form of Q-learning. This extends the results

in [96] that models psychotherapy based on Mentalisation only. The needs network

is represented by strong patterns in a competitive Hopfield network consisting of

the two categories of (a) need for cognitive closure, which includes the six basic

emotions, and (b) need for cognition, which contains Mentalisation and two sub-

protocols of Self-attachment named Happy-Child, aimed at increasing inner joy, and

Sad-Child, aimed at reducing the negative affects of the inner child. Strong pat-

terns with different degrees model the six basic emotions, and the three cognitive

states Mentalisation, Happy-Child and Sad-Child. These patterns are represented by

generic (smiley) faces in the needs network which also contains a large number of

random patterns. Three identical Restricted Boltzmann Machines (RBM) [97, 98]

with 17 hidden units are pre-trained to recognise the six emotions, the Mentalisation,

Happy-Child and Sad-Child patterns. An RBM is a stochastic generative neural net-

work which learns a probability distribution over the inputs it sees. They are used

here to model the amygdala, the OFC and the DLPFC. These three regions together

with the needs network in the brain account for various decision rules on specific

tasks and comprise a three-layer decider network, in which the vigilance threshold

of the individual determines the status of activation of each layer. See Fig. 5.

Suppose the Hopfield network receives a random input, modelling a random stim-

ulus to the brain. Then, with high probability one of the strong patterns is retrieved.

If the Mentalisation pattern, the Happy-Child or the Sad-Child is recalled, then the

Hopfield network will send a low level vigilance threshold to the error detector

(ACC), and the DLPFC-OFC circuit is chosen to generate complex decision rules.

This includes practicing the protocols for Happy-Child or Sad-Child. As the sec-

ondary sensory device, the RBM in the DLPFC receives a Mentalisation signal from

the Hopfield network, and categorises it into a 17-unit vector of the hidden layer. In

addition, the RBM in the OFC, the primary sensory device, accounts for categorising

the input pattern into another 17-unit vector. If the Hamming distance of these two

generated vectors (i.e., the number of nodes they differ in) is greater than the vig-

ilance threshold, then a mismatch occurs and the network generates a deliberative

rule. Otherwise, a heuristic decision is made. However, because of the low vigilance
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threshold, the DLPFC- OFC circuit would most likely not make heuristic decisions

in this case.

If, on the other hand, the retrieved pattern is one of the six emotion patterns,

the Hopfield network will send a high-level vigilance threshold to ACC, and the

OFC-amygdala circuit is selected for making decisions. Again, as the secondary sen-

sory device, the RBM representing the OFC classifies the emotion pattern from the

Hopfield network, and amygdala classifies the input pattern. The Hamming distance

between the two 17 unit output vectors is compared to the high-level vigilance thresh-

old. A heuristic decision is made if the Hamming distance is lower than the vigilance

threshold; otherwise, a deliberative decision is taken. Since the vigilance threshold

is high, the OFC-amygdala circuit would most likely not make deliberate decisions

in this case.

Self-attachment therapy is modelled by a Q-learning process that targets the needs

network in the above framework. For simplicity, it is assumed that only six patterns

are involved in the learning, namely: the three basic emotions for Angry, Sad, Happy

and the three cognitive states for Mentalisation, Happy-Child and Sad-Child. The M-

state of the Q-learning is given by the set of degrees or strengths of these patterns

at any point in time, whereas the Q-state is given by the ordinal representation of

these M-states, i.e., a list of six positive numbers between 1 and 6 that includes 1 as

the lowest rank. In addition, it is assumed that there are six actions corresponding to

these states. The reward table for Q-leaning is as follows:

Angry ∶ 0 Happy ∶ 0.3 Sad ∶ 0

Mentalisation ∶ 0.4 Happy-Child ∶ 1 Sad-Child ∶ 0.6
This means that whenever any of the six actions Angry, Happy, Sad, Mentalisa-

Fig. 5 The decider network

consists of the DLPFC-OFC

circuit for deliberate

decisions on the left and the

OFC-amygdala circuit which

makes heuristic decisions on

the right
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tion, Happy-Child, Sad-Child is selected the degree or strength of the corresponding

state is increased respectively by 0, 0.3, 0, 0.4, 1.0, 6. As can be seen in the table,

the highest rewards are received for carrying out the sub-protocols for Happy-Child

and Sad-Child. It is hypothesised that these sub-protocols activate the reward sys-

tem of the brain, inducing dopamine, serotonin, oxytocin and vasopressin: thus these

actions are more deeply learned corresponding to a relatively higher increase in their

strengths in the M-state compared to Mentalisation or Happy actions.

Initially, we start with an M-state in which the pattern Angry (and/or Sad) are

dominant in the needs network. As in the case of the game-theoretic model in

section “A Game-Theoretic Model”, the Boltzmann probabilistic rule is used for

choosing an action in a given Q-state. At each iteration of the algorithm, a random

pattern, regarded as input, stimulates the Hopfield network and the two RBM’s repre-

senting the Amygdala and OFC. The Hamming distance between the hidden layers of

these two RBM’s provides the measure of discrepancy and either a heuristic or delib-

erate decision is made. Initially, most decisions will be heuristic as a negative emo-

tion is dominant in the needs network. As the algorithm iteratively progresses, the

Q-learning process will gradually increase the strength of the more optimal patterns,

i.e., Happy-Child, Sad-Child, Mentalisation and Happy. Eventually, the Happy-Child

pattern becomes dominant in the needs network and as a result most decisions will

be deliberate. We consider this process as modelling a successful course of Self-

attachment.

In Fig. 6, the blue curve shows the average number of iterations required for a suc-

cessful course of Self-attachment starting with different degrees of the initial Angry

pattern. The red curve shows the average number of iterations required for the Men-

talisation pattern to become dominant as a result of psychotherapy based on Mental-

isation (i.e. without the sub-protocols for Happy-Child and Sad-Child). We see, as

expected, that the average number of iterations required when the sub-protocols for

Happy-Child and Sad-Child are also used is significantly lower than when they are

not included in the algorithm.

A Neural Model of Bonding

In [99], we built on a previous model by Levine [100] concerning how emotional

appraisals in the OFC can mediate between activity in neural circuits that drive stress

and facilitative responses to social stimuli. Activity in stress circuitry (focused on the

central nucleus of the amygdala (CeA), locus coeruleus, and the parvocellular part

of the paraventricular nucleus of the hypothalamus (PVN)) results in the release of

norepinephrine and corticotropin-releasing hormone (CRH, the precursor to corti-

sol), while stimulation of facilitative networks (involving the magnocellular part of

the PVN along with reward circuitry) leads to the release of dopamine and oxytocin.

Based on this, we hypothesised that a main effect of the Self-attachment bonding

protocols is to associate broad classes of social stimuli that have previously been

conditioned as being fearful or threatening in nature with new representations of
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naturally-induced reward in the OFC. These new, additional reward representations

are proposed to emerge as a result of the application of various activities such as

directed singing with inner-child imagery.

We simulated our model computationally, using a deep belief net to model bi-

directional connectivity between the OFC and basolateral amygdala (BLA) and feed-

forward networks for the other pathways in the model. The pathway from the BLA to

the CeA was assumed to be proportionally strengthened by the magnitude of unex-

pected punishments, while the pathway from ventral parts of the medial prefrontal

cortex (vmPFC) to the CeA (via the intercalated cells) was proportionally strength-

ened by the magnitude of unexpected rewards.

Using this model we showed how, as the bonding protocols progress, OFC-

dorsomedial hypothalamic pathways could increasingly facilitate natural oxytocin

release from the magnocellular part of the PVN, and inhibit the release of CRH

from the parvocellular part of the PVN. We additionally hypothesised that the bond-

ing protocols would result in dopaminergic reward-prediction errors which would

drive a further reduction in activity of stress circuitry via the strengthening of the

inhibitory pathway from the vmPFC to the CeA.

Fig. 6 Blue curve: The average number of iterations required so that, starting with the angry dom-

inant pattern with different degrees, the Happy-Child strong pattern becomes dominant. Red curve:

The average number required when only Mentalisation is used, i.e., without the self attachment

protocols
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Empathically-Motivated Bonding

The current focus of our work [101] is concerned with how the individual under-

going therapy might further increase motivation to apply these bonding protocols,

by taking the perspective of the adult-self and attempting to enter into an empathic

state with an inner-child who is conceptualised as being in distress. We build on a

model by Numan [102, p. 278] which considers how empathy circuitry (involving

the anterior insular, anterior midcingulate cortex and medial prefrontal cortex) might

stimulate a mesolimbic-ventral pallidum pathway involved in caregiving behaviour.

We additionally consider circuits involved in the perception of pain in self and others,

and how sufficient self-other distinction might drive such caregiving behaviour while

insufficient distinction might instead result in a distress state within the individual.

Conclusion

After reviewing basic attachment theory and the neural basis of various attachment

types, we provided compelling evidence from the literature that insecure attach-

ment is a significant risk factor in the development of mental illness, whereas secure

attachment nurtures self-regulation of emotions, vastly reducing the risk for psycho-

logical disorders. The wide ranging impact of attachment theory on psychotherapy

was also looked at. We then reviewed the work on attachment objects in higher pri-

mates, children and in two different ways, namely the corresponding and compen-

satory pathways, among religious believers. The objective in all these cases is to use

the attachment object to earn or retain secure attachment and thereby regulate strong

emotions. We showed that fMRI studies indicate an overarching common denomi-

nator for bond-making, which activates the reward system in the brain, whether in

romantic or maternal love or in praying. Hence, bonding with an abstract attachment

object or between two individuals have neural correlates.

Based on these background results and findings, we proposed a holistic approach

to Computational Psychiatry by considering an individual as an adult-self, represent-

ing the more cognitive aspects, and an inner child, representing the more affective

aspects of the individual. Self-attachment uses a self-administrable protocol to create

a secure attachment object, represented as the adult-self, for the inner child within

an individual. The adult-self is to become a “good enough” parent for the inner child

who is to be freed from attachment insecurities and grow emotionally.

We presented several computational models for Self-attachment: (i) a game-

theoretic model based on reinforcement learning, (ii) an energy based competitive

neural network of needs, which is reinforced for optimal decision making using the

Amygdala, OFC and DLPFC represented by RBM’s, (iii) a neural model for bond-

making in Self-attachment which uses a model for how emotional appraisals in the

OFC can mediate between activity in neural circuits that drive stress and facilitative

responses to social stimuli, and, (iv) a model for empathically-motivated bonding.
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What general result can be deduced from this work for psychiatrists? In a few

words, we need to consider attachment theory and early development as a cen-

tral/starting point in psychiatry and psychotherapy. Self-attachment therapy is an

attempt to provide a holistic and attachment-centric approach to psychotherapy.

As for computationalists, we can conclude that computational modelling of Self-

attachment (and indeed attachment in general) is fertile ground. Such work can help

us to understand and develop more fully the therapy going forwards.
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A Comparison of Mathematical Models
of Mood in Bipolar Disorder

Amy L. Cochran, André Schultz, Melvin G. McInnis and Daniel B. Forger

Introduction

Bipolar disorder (BP) is a chronic condition characterized by severe and pathological

periods, or episodes, of mania and depression. Over 2.4 % of the worldwide popula-

tion are diagnosed with BP [1], yet little is known about its causes and/or pathology

[2]. Studies have provided new qualitative insights as well as vast amounts of data

on mood previously unavailable. These serve as an appeal for new modeling frame-

works in BP. Mathematical models can provide insight into the longitudinal course

of mood in BP and may suggest underlying biophysical processes or mechanisms not

previously known. The challenge is determining the right model for a given applica-

tion.

The Scientific Problem

Mathematical models are commonly used in medicine to explain how a certain bio-

logical system is involved in a certain disease’s pathology. However, bipolar disorder

(like many psychiatric disorders) has a complicated pathology, spanning multiple
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spatial levels from genetics to cognition [2]. For example, BP is a highly heritable

disorder at over 85 % heritability [3], but BP has shared susceptibility with other

affective disorders, such as schizophrenia [4]. Moreover, a number of genes have

been implicated, but are involved in different molecular pathways [5]. BP also affects

most neural systems, including monoamine systems (e.g. dopamine and serotonin),

suprachiasmatic nucleus, and hypothalamic-pituitary-adrenal axis [2]. Even the most

prescribed drug in BP, Lithium, has multiple molecular targets [6]. Thus, there is no

obvious candidate biological system to model.

The most common approach is to model mood, the defining feature of BP. Mood

has many features of note. It varies dramatically over time, often unpredictably, and

can sustain at extreme levels. It also ranges in severity, duration, and polarity. While

these features are helpful starting points for modeling mood, they are not sufficiently

specific, so additional assumptions must first be made. Existing models of mood,

however, use assumptions that differ widely. Some assume that mood swings peri-

odically between mania and depression [7–11]. Others use multistability, arguing

that mood in BP tends to distinct mood states, such as mania and depression, and

that it is this tendency that sustains mood in BP at extreme levels [10, 12, 13].

Further complicating the modeling dilemma is that mood is erratic and impre-

cisely defined (Fig. 1). Consequently, most assumptions can only be supported anec-

dotally. Biomarkers that pervade a large body of mathematical modeling in medicine

do not exist in BP and are replaced by subjective evaluation of a patient. Moreover,

current classification systems place a patient’s mood into disjunctive categories, such

as mania and depression, based on duration and type of symptoms; symptoms relate

not only to mood, but also to energy, cognition, and sleep, among others. These

categories reflect a common understanding among clinicians, but do not have an

empirical basis or any underpinning in a biophysical process. In fact, symptoms

insufficient to constitute an episode of mania or depression are associated with dis-

ability in BP [14]. Mood can also be measured with specific, longitudinal scores
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Fig. 1 Bi-monthly samples of mood scores from a bipolar patient in the Prechter Longitudinal

Study of Bipolar at the University of Michigan. Manic symptoms are measured using the Altman

Self-Rating Mania (ASRM) scale; depressive symptoms are measured using the Patient Health

Questionnaire for Depression (PHQ9). Scores were scaled to lie between zero and one
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from clinical surveys. Although subjective, clinical surveys quantify mood over a

larger range than current classification methods.

Here, we compare recent approaches to modeling mood in BP and discuss how

to distinguish between modeling assumptions using only time courses of mood. In

what follows, we provide a selective overview of existing models of mood, with

an emphasis on random models and/or differential equation models (c.f. [15] for

an alternative approach based on iterative maps). For each model we describe, we

simulate mood and examine the results from the simulation.

Computational Methods

In this section, we discuss different models of mood in BP and describe their rele-

vance to BP. In addition to existing models, we present two new models and motivate

their introduction. For each model we consider, we add random noise to the model

formulation (if not already included) in order to capture mood’s erratic behavior.

Biological Rhythms Models

BPs characteristic mood swings are often described as cyclic or periodic.
1

A peri-

odic assumption ensures that mood episodes recur and change in polarity between

depression and mania. Some modelers assume mood is periodic only during periods

of rapid-cycling (defined as a certain number of mood episodes in a year).

A periodic assumption hints at an internal timekeeping mechanism for mood,

hypothesized to arise from mitochondrial fluctuations [16] or interactions with cir-

cadian rhythms [17]. Certainly, there is a strong connection between circadian and

sleep rhythms and mood, although the direction of influence is unclear. BP patients

experience diurnal variation in mood and sleep disturbances that depend on the mood

state; changes in sleep habits can be therapeutic; and clock genes are associated with

BP and with animal models of BP [2, 17]. Even Lithium, the standard treatment

for BP, influences circadian pathways by delaying the circadian phase via glycogen

synthase kinase 3 (GSK3) [18]. Thus, periodicity is a reasonable assumption given

these observations.

For a biological rhythms model, a natural starting point is a van der Pol oscillator.

It was first proposed for mood in untreated BP patients by Daugherty et al. in [8]

and later extended in [7, 11]. In this model, mood Xt at time t is governed by a

1
Cyclicity/periodicity should not be confused with “cycling” or “rapid-cycling”. These latter terms

are used in BP to define events in which a patient experiences a certain number of episodes within

a certain period of time. Cycling in BP does not require that mood is periodic.
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second-order differential equation, which upon applying a suitable transformation

(and adding noise to the original formulation) can be written as:

dXt =
(
Yt + 𝛼Xt +

𝛽

3
X3
t

)
dt + 𝜎dW (1a)

dYt = −𝜔2Xtdt (1b)

where W is a Wiener process. When 𝜎 = 0, 𝛼 > 0 and 𝛽 < 0, the system has a unique

stable limit cycle [8] leading to periodic oscillations in mood. We refer the reader to

[8, 11] for extensions of Eq. (1), but do not consider them here.

Understanding that multiple oscillators may be driving mood in BP, [7] built upon

the work in [8] by assuming two oscillators contribute to mood Xt:

dXt = c0dt + c1dY
(1)
d + c2dY

(2)
t , (2)

where Y (i)
t (i = 1, 2) are the two oscillators. The dynamics of Y (i)

t are based on sim-

ilar equations to (1) with 𝛼 = 1 and 𝛽 = −1 and allowing for coupling between the

oscillators:

dY (i)
t =

(
Z(i)
i +

(
Y (i) − (Y (i))3

3

)
+

𝜂i

1 + exp(𝜃iY (3−i))

)
dt + 𝜈(Y (i))dV (i)

t (3a)

dZ(i)
t = −𝜔2

i (yi + 𝜁i)dt + 𝜈(zi)dW
(i)
t (3b)

where V (i)
t ,W (i)

t are independent Wiener processes (i = 1, 2). Ignoring noise and cou-

pling, each oscillator can exhibit a stable limit cycle when |𝜁i| < 1 [7]. We will

assume 𝜈(x) = 𝜎 for simplicity.

In each model above, mood is a one-dimensional variable. Goldbeter in [10] pro-

poses another biological rhythms model describing mood as two-dimensional and

without van der Pol oscillators. This model uses one variable M to represent manic

symptoms and another variable D to represent depressive symptoms. He begins by

first formulating a model to capture bistability, where mood is either manic (high M,

low D) or depressive (low M, high D) depending on initial conditions and parame-

ters. Bistability is modeled by assuming the variable M is driven by interaction with

D and negative self feedback, and similarly, the variable D is driven by interaction

with M and negative self feedback. The model is then modified to allow for cycling

between mania and depression. This is accomplished by introducing two variables

Fm and Fd that delay the interaction between M and D. The result is a system of four

differential equations:

dM
dt

= Vm
K2
i1

K2
i1 + D2

Fd

K1 + Fd
− km

M
K2 +M

(4a)
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dD
dt

= Vd
K2
i2

K2
i2 +M2

Fm

K3 + Fm
− km

D
K4 + D

(4b)

dFm

dt
= kc1M − kc2Fm (4c)

dFd

dt
= kc3D − kc4Fd (4d)

Their system leads to oscillations in M and D. Another biological rhythms model in

BP can be found in [9], focusing on biochemical pathways for mood.

Behavioral Activation System Model

One theory is that BP is caused by dysregulation of the behavioral activation sys-

tem [19]. The behavioral activation system regulates how goal-relevant cues impact

positive affect and approach behavior [20]. Examples of goal-relevant cues include

the presence of a goal and its expectations, as well as frustration in not meeting

a goal. This theory hypothesizes that the behavior activation system is more sen-

sitive to goal-directed cues in BP patients and that these cues may even trigger a

mood episode through activation or inhibition of the behavioral activation system.

It explains why BP is associated with certain symptoms ranging from neurobiolog-

ical, e.g. why the dopamine system (a reward processing system) is dysregulated, to

behavioral, e.g. why BP patients are often goal-driven.

The behavioral activation system and its connection to BP were described with

a mathematical model in [13]. The model uses one variable Xt to represent mood

(i.e. the level of behavioral activation) and another variable Rt to represent goal-

directed cues. Behavioral activation Xt is described as a stochastic process with pos-

itive and negative feedback loops, linear drift, and goal-directed cues, along with

random noise. The goal-directed cues are driven by random events and a drift back

to zero. This is all captured with a jump-diffusion model of the form:

dXt =
(
Fp(Xt) + Fn(Xt) +

(
b − k2Xt

)
+ k3Rt

)
dt + 𝜎dWt (5a)

dRt = −k3Rtdt + 𝜎dVt + dJt (5b)

where Wt,Vt are Wiener processes; Jt is a jump stochastic process; and

Fp(x) =
k1xn

Kn + xn
and Fn(x) = mh

(
1
2
− 1

1 + exp(s(xh − x))

)

are the positive and negative feedback terms respectively.

Unlike biological rhythms models, the behavioral activation system model does

not suppose mood swings are periodic. Rather, swings towards mania or depres-

sion are captured with a system that has multi-stability in the absence of noise and
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goal-directed cues. In dynamical systems, stability describes equilibrium solutions or

periodic orbits to which nearby solutions stay close indefinitely. Multistability refers

to the existence of multiple stable equilibrium solutions and/or periodic orbits. It has

been argued that mania and depression are stable states in the absence of external

influences and that these stable states emerge in BP patients due to a parameter bifur-

cation [10, 12, 13]. For example, the behavioral activation model (ignoring noise and

goal-directed cues) can have one, two, or three stable points depending on the expo-

nent n. Their model could capture healthy controls with one stable state for euthymia;

recurrent depression with two stable states for depression and euthymia; and BP with

three stable points for depression, euthymia, and hypomania/mania [13].

Discrete-Time Random Models

Discrete-time random models describe mood as a stochastic process that changes

at discrete time points. They benefit from simple analysis when compared to their

continuous-time counterparts and are also sufficient for describing most data, because

measurements of mood tend to be scores on clinical mood surveys captured at reg-

ular time intervals. Their goal is to model the data directly as opposed to trying to

model some biophysical processes that underpins mood.

Discrete-time random models can be categorized based on whether mood is also

discrete or continuous. The former type of models are discrete-time Markov chains

(DTMC) with finite states. A DTMC formulation has been used in two theses [21,

22], where mood at time step t, which we denote by Xt, takes one of n values in

{1,… , n}. The finite values represent n mood states, e.g. depression, hypomania,

and mania. Mood Xt has a certain probability of transitioning to another state. A

probability transition n × n matrix P is specified such that Pij defines the probability

that Xt+1 = j conditional on Xt = i. The probability distribution of states 𝜋t at time

step t is a 1 × n vector of probabilities then satisfies the recurrence relation

𝜋t+1 = 𝜋tP, t = 0, 1, 2,… (6)

These models are Markovian: the future state depends on past states only through

the current state.

Models where mood is continuous are based on autoregressive models, standard

models for time-series analysis. They were introduced for mood in [23], where mood

at time step t, which again we denote by Xt, satisfies the recurrence relation

Xt+1 = f (Xt,Xt−1,… ,Xt−d+1) + 𝜀t, t = d − 1, d, d + 1,… (7)

for some function f , random variable 𝜀t, and an integer d that specifies the time

lag in mood states that influence a future mood state. In most applications, 𝜀t is

Gaussian. However, a patient’s mood scores is better described as a Gamma random

variable, since the scores are non-negative and have a distribution that is positively-
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skewed. Thus, [23] define 𝜀t such that Xt+1 is a Gamma-distributed variable with

mean 𝜇t ∶= f (Xt,Xt−1,… ,Xt−d+1) and variance 𝜇t∕𝛼 for some parameter 𝛼. That is,

the probability density function of Xt+1 is

ctx𝛼−1 exp
(
−𝛼Xt∕𝜇t

)
(8)

where ct is a normalizing constant that depends only on 𝛼 and 𝜇t. Comparing choices

for f and d, [7] conclude that assuming a model with both d = 1 and linear f provides

a good fit to a patient’s time series among the models they considered. This contrasts

the original choice of a nonlinear model in [23], but agrees with [24] which finds that

nonlinear models for f do not significantly improve forecasting over linear models.

Thus, we will examine the linear model

f (Xt,Xt−1,… ,Xt−d+1) ∶= aXt + b. (9)

Two-Dimensional Models

Mania and depression are often considered to be the two “poles” (as in bi-polar) of

mood. For this reason, mood is often modeled as one-dimensional with high val-

ues for mania and low values for depression. Indeed, most models discussed here

describe mood as one-dimensional, with exceptions being the biological rhythms

model of Goldbeter [10] and DTMCs, where mood is categorical. However, a one-

dimensional model cannot capture known features of BP: mixed states (states in

which manic and depressive symptoms are present) and direct transitions between

mania and depression without going through euthymia. Therefore, it may be neces-

sary to model mood as two-dimensional.

We introduce two new models that model mood with two variables, a manic vari-

ableMt and a depressive variableDt. Our first model has multistability in the absence

of noise. Each variable (marginalizing the other variable out) satisfies an stochastic

differential equation known as a “double-well” model, which has been used to model

particles that randomly fluctuate between two energy wells. To this end, we assume

that each variable satisfies

dMt = −aMMt(Mt − lM)(Mt − hM)dt + 𝜎MdWt (10a)

dDt = −aDDt(Dt − lD)(Dt − hD)dt + 𝜎DdVt (10b)

where Wt,Vt are Wiener processes with correlation 𝜌. Constants aM , aD, hM , hD, 𝜎M ,
𝜎D are positive, and lM and lD are negative. In the absence of noise and provided

Mt,Dt ≠ 0, the manic variable Mt and the depressive variable Dt would each tend to

either a low value (respectively, lM and lD) or a high value (hM and hD). Together,

the patient would be inclined towards one of four stable states representing euthymia

(Mt = lM;Dt = lD), mania (Mt = hM;Dt = lD), depression (Mt = lM;Dt = hD), or a
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mixed state (Mt = hM;Dt = hD). Correlated Wiener processes are used so that manic

and depressive symptoms can either fluctuate together or in opposite directions.

Finally, we consider a two-dimensional model without multistability. The idea

that severe symptoms can arise without multistability or biological rhythms was

put forth in [25] for major depression. They describe depressive symptoms as the

absolute value of an Ornstein-Uhlenbeck process and suppose that depression arises

when depressive symptoms are above a certain threshold. To extend this model to

BP, we suppose that mood is described by two variables Mt and Dt and suppose

that Mt ∶= |Xt| and Dt ∶= |Yt|, where (Xt,Yt) describe a two-dimensional Ornstein-

Uhlenbeck process:

dXt = −aMXtdt + 𝜎MdWt (11a)

dYt = −aDYtdt + 𝜎DdVt (11b)

where Wt,Vt are Wiener processes with correlation 𝜌 and aM , aD, 𝜎M , 𝜎D are positive

constants.

Simulation

Each model was simulated in Matlab. All code has been made publicly available

on https://sites.google.com/site/amylouisecochran/code. Parameters were chosen to

agree with the associated reference when available. Parameter choices are docu-

mented in the companion Matlab code. Models were simulated for a total of 400

“simulated” years, and the first 200 years were removed, using the guideline for sto-

chastic simulations of having a warm-up period equal to the period used for analysis.

With the exception of the DTMC model where mood is categorical, daily samples

of mood were normalized to have a mean of zero and sample variance of one, and

the daily normalized mood scores were used for analysis. For these models, mania

and depression were based on the quantiles of mood to be consistent across models.

When mood was one-dimensional, we defined mania as values greater than 82nd

quantile, depression as values less than 18th quantile, and euthymia as the remain-

ing 64% of the mood scores. For comparison, [26] found that BP patients spend

a median of 62% of their time asymptomatic. When mood was two-dimensional,

we defined mania as a manic variable greater than its 0.8 quantile and depressive

variable less than its 0.8 quantile, depression as a depressive variable greater than

its 0.8 quantile and manic variable less than its 0.8 quantile, mixed state as manic

and depressive variables greater than their respective 0.8 quantiles, and euthymia

as manic and depressive variables less than their 0.8 quantiles. The value of 0.8 was

chosen so that if mania and depression were independent, euthymia would constitute

64% of the mood scores to agree with the one-dimensional models.

https://sites.google.com/site/amylouisecochran/code
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Results

The models of mood in BP discussed in section “Computational Methods” differ

widely in their assumptions and equations (Table 1). So naturally, there is a question

of what assumptions are supported by data. For each individual with BP, the only

data available on mood is usually a set of mood scores from clinical surveys. Clinical

surveys measure mood by scoring the presence and duration of specific symptoms

(e.g. irritability, feeling of loss) which are associated with mania and depression.

Symptoms may include other symptoms, such as poor sleep quality, that are present

during episodes of mania and depression. In most observation studies of BP, clinical

surveys are usually administered on a regular interval (daily, weekly, bi-monthly,

or yearly) over an observation period that can last anywhere from several weeks to

several years. Thus, it is reasonable to assume that each patient may have completed

at most 100 surveys. The challenge is validating assumptions given such limited data.

Time Courses of Mood

For an example of limited data, we sampled the simulated mood data at weekly inter-

vals and plotted these samples over a period of two years in Fig. 2. It is difficult to

validate modeling assumptions by visually inspecting the time course of this simu-

lated data alone. Consider, for instance, the assumption that mood is periodic. Mood

is periodic in the biological rhythms model of Daugherty [8], but the oscillation

period (over one year) is too long to clearly identify periodicity in the figure. Mood

is also periodic in the biological rhythms model of Bonsall [7], but in this case the

oscillation period (around eight weeks) is too short and noise is too strong to iden-

tify periodicity. At the same time, mood in this model appears similar to mood in the

autoregressive model, which has no inherent periodicity. Thus, mood may even be

mistaken as periodic in the autoregressive model, since it too constantly fluctuates

between high and low values. Periodicity can be identified visually in the biological

Table 1 Models of mood in BP

Models Features Eq. Ref.

Biological rhythms (Daugherty) 1D, continuous-time, periodic (1) [8]

Biological rhythms (Bonsall) 1D, continuous-time, periodic (2, 3a and 3b) [7]

Biological rhythms (Goldbeter) 2D, continuous-time, periodic (4) [10]

Behavioral activation 1D, continuous-time, multistable (5a, 5b and 6) [13]

Discrete-time Markov chain Categorical, discrete-time (6) [22]

Autoregressive 1D, discrete-time (7–9) [23]

2D Well 2D, continuous-time, multistable (10) n/a

Modified 2D Ornstein-Uhlenbeck 2D, continuous-time (11) n/a
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Fig. 2 Weekly samples of mood over 2 years from simulations of various models
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rhythms model of Goldbeter [10], but here oscillation period is adequate (around 18

weeks) and noise is sufficiently weak to observe periodicity. In sum, it is very easy

to mistake periodicity for random noise (and vice versa) when visually inspecting

time courses of limited data.

Similar to periodicity, it is also difficult to surmise whether mood has multiple sta-

ble points from its time course. Both the 2D double well model and the behavioral

activation model have multiple stable points in the absence of noise. In the 2D double

well model, the sudden shift towards high values of a depressive variable (Mt) sug-

gests the possibility of multistability. However, the 2D Ornstein-Uhlenbeck model

appears to also have sudden shifts toward higher values of the depressive variable

(Dt), and so, multistability remains ambiguous from the time courses.

Last, we mention that when measurements of mood are not sufficiently frequent,

discrete-time models can recover similar patterns of mood as continuous-time mod-

els. As illustrated in Fig. 2, the discrete-time autoregressive models looks similar to

the biological rhythms model of Bonsall [7] and the behavioral activation model.

Chronicity

If the time course of mood cannot verify modeling assumptions, then the data has to

be examined in another way. One option would be use the data to evaluate symptom

chronicity, that is, the relative amount of time that a patient spends with symptoms

at a particular level. Clinicians and researchers already use chronicity to describe

individuals with BP.

When mood is continuous, one way to measure chronicity is to estimate a proba-

bility density function (pdf) from the samples of mood. This approach ignores when

mood is sampled and hence, correlation among samples; rather, it assumes (incor-

rectly) that the samples of mood are identically and independently distributed. The

pdf approximates the relative probability that a sample of mood will be at a certain

level, which in turn estimates the relative amount of time that mood is at a given

level, i.e. symptom chronicity. Daily samples of mood were recovered from simula-

tion of each model to estimate a pdf for mood (Fig. 3). The pdfs were estimated in

Matlab using the ksdensity function, which uses a kernel-based approach.

For the one model where mood is categorical (i.e. the discrete-time Markov chain

mood), mood has a probability mass function rather than a pdf. We calculated the

probability mass function, which is shown in Fig. 3. However, parameters can always

be adjusted to recover any probability mass function defined for the four states, and

so, we cannot evaluate this model further based on chronicity alone.

For the remaining models, we can use qualitative differences in pdfs to start to

distinguish between models, as Fig. 3 illustrates. For example, the pdfs for the bio-

logical rhythms models of Daugherty [8] and Bonsall [23] are less peaked and more

symmetric than the others. These two biological rhythms models actually have sim-

ilar shapes, even though mood oscillates more rapidly in the model of Bonsall [23],

so symptom chronicity cannot differentiate between all models. Their symmetric pdf
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Fig. 3 Estimated probability density functions of mood for various models

suggests that an individual with BP spends relatively more time around their average

mood level than any other mood level.

The remaining pdfs are positively skewed. A positively-skewed distribution would

suggest that an individual with BP spends relatively more time around mood val-

ues that are lower than its average mood level. Bonsall et al. [23] find that this fea-

ture accurately reflects distribution of mood scores on a particular depressive survey

known as the quick inventory for depressive symptoms (QIDS) [27]. Specifically,

they found these mood scores are approximately Gamma-distributed, a positively-
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skewed distribution. Consequently, they proposed a Gamma transition density func-

tion for their autoregressive model. The modified 2D Ornstein-Uhlenbeck model also

has a known pdf which is positively-skewed: the pdf of the absolute value of a bivari-

ate Gaussian random variable. We note that positive random variables frequently

have skewed distributions and both the autoregressive model and the modified 2D

Ornstein-Uhlenbeck model mood as a non-negative variable.

The probability density functions also vary in their number of modes or peaks, a

feature that is useful for detecting multistability. A mode is a value that is relatively

more likely than nearby values. We expect that asymptotically stable points in the

absence of noise would become modes once noise was added. This can be clearly

seen in the behavioral activation model which has three modes in its respective pdf.

Parameters were chosen so that the model had three asymptotically stable points in

the absence of noise. Of the three stable points, the middle stable point has a much

smaller region of mood values that would limit towards the stable point in the absence

of noise. Similarly, the middle mode is the smallest of the three peaks of the density

function.

Comparably, the 2D double well model also has stable points in the absence of

noise and provided neither the manic or depressive variable is zero. Specifically, it

has four stable points that occur exactly when the manic variable is one of two values

(lM and hM) and the depressive variable is one of two values (lD and hD). There are

two modes in the pdf for the manic variable Mt and two modes in the pdf for the

depressive variable Dt. In each pdf, the mode with a smaller value corresponds to

a higher peak. Model parameters were chosen to reflect this asymmetry, |lD| > |hD|
and |lM| > |hM|, so that patients spend more time in euthymia than in any other mood

state.

Although both models with multistability have modes in their pdf that correspond

with each stable point, modes are not sufficient for multistability. The biological

rhythms model of Goldbeter [10], for instance, has two modes in the pdf for the

manic variable and two modes in the pdf the depressive variable. Like a sinusoidal

wave, mood oscillates in this model such that the rate of change in mood is slower

near its two turning points than at other values. Hence, mood spends more time near

its turning points relative to other values.

There are simple statistics to quantify differences between pdfs. One such statis-

tic is skewness, which measures asymmetry. Another is kurtosis, which measures

peakedness in a probability density function (Table 2). Skewness and kurtosis are

the third and fourth moments, respectively, of a normalized random variable. For

a baseline, a standard normal distribution has a skewness of zero and a kurtosis of

three. Hartigan’s dip test statistic provides yet another statistic; it measures devia-

tion from unimodality [28]. Calculating skewness, we find that the density functions

of the biological rhythms models of Daugherty [8] and Bonsall [23] have values of

skewness closest to zero, whereas the density functions of the other models have

a more positive skewness value. This agrees with our earlier observations. Also in

agreement, the density functions of the biological rhythms models of Daugherty [8]

and Bonsall [23] have a kurtosis less than three, so their pdfs are less peaked than a
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Table 2 Statistics of probability density functions of mood for various models

Model Skewness
a

Kurtosis
a

Dip value
a

Biological rhythms

(Daugherty)

0.015 2.25 0.0008

Biological rhythms

(Bonsall)

0.045 2.48 0.0008

Biological rhythms

(Goldbeter)

1.82, 0.86 5.54, 3.22 0.0012, 0.0032

Behavioral activation 1.38 3.60 0.0245

Autoregressive 23.94 1024.92 0.0006

2D double well 1.19, 1.87 3.64, 6.35 0.0023, 0.0034

Modified 2D

Ornstein-Uhlenbeck

0.98, 0.94 3.82, 3.65 0.0008, 0.0007

a
For the 2D models, values are listed for the manic variable and then the depressive variable

normal distribution. The remaining pdfs have a kurtosis larger than three and hence,

are more peaked than a normal distribution.

Using the statistics, we also find that the behavioral activation model has the great-

est deviation from unimodality with the largest dip value (Table 2), followed by the

2D Double well and the biological rhythms model of Goldbeter [10]. This result con-

firms the observation that the pdf for these models deviate more from unimodality

than the others. Hartigan’s dip test statistic is accompanied by a test for significance,

from which a P-value can be calculated. The null distribution for the test statistic is

generated by performing Hartigan’s dip test on samples of a uniform distribution. To

demonstrate this approach, we calculated the P-value for the dip test statistic calcu-

lated from a year of weekly samples of mood simulated with the biological rhythms

model of Bonsall [7]. With a P-value of 0.35, unimodality cannot be rejected for this

model’s pdf at a significant level of 0.05.

Lastly, it is important to test whether mood scores are generated from a specific

pdf whenever possible. To illustrate, consider the modified 2D Ornstein-Uhlenbeck

model, which has a known pdf. One could test the null hypothesis that the data

came from this pdf, which can help justify whether this model is appropriate for

describing the data. In general, nonparametric tests in [29] can be performed to deter-

mine whether to reject a model based on goodness-of-fit tests between given distri-

butions and modified survey scores. This approach consists of fitting a parametric

density/distribution to the data using maximum likelihood estimation and then cal-

culating a test statistic that measures the difference between a non-parametric and

the parametric approximation to the relevant density/distribution. Non-parametric

approximations can be based on kernel approximations which can be computed using

Matlab’s ksdensity function. After these two steps are completed, a P-value is cal-

culated for the test statistic by approximating the null distribution via Monte Carlo

simulation. For comparison, we tested whether we could reject the hypothesis that a

year of weekly mood data from the biological rhythms models of Daugherty [8] or

the autoregressive model [23] came from a normal distribution. With a P-value less
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than 0.0001, we can reject the assumption that the mood samples from the autore-

gressive model are normally-distributed. With a P-value of 0.52, we cannot reject

the assumption that the mood samples from the biological rhythms model of Daugh-

erty [8] are normally-distributed, which agrees with our earlier observation that this

model yields a pdf that appear to be similar to a normal distribution.

Survival Functions

In addition to examining symptom chronicity, model differences can also be evalu-

ated using survival functions. If T is the (random) time to a specific event, then the

survival function for T is the function that maps each time t to the probability that

the time-to-event T occurs after time t, which we denote by

S(t) = P(T > t). (12)

In the context of BP, survival functions are calculated for the time until a patient

in euthymia enters a mood episode, as well as the time until a patient in a mood

episode switches to a new mood state. Survival functions are estimated from lon-

gitudinal measurements of mood and are frequently studied for BP. Examples of

survival curves estimated for a population of BP patients can be found in [30]. Since

population survival curves can be distinctly different than patient-specific survival

curves and we are interested in knowing whether mood at the patient-level has a

certain survival curve, we do not discuss the population survival curves further.

We calculated survival functions of mood states from daily samples of mood.

In the discrete-time Markov chain model, mood states are the four mood cate-

gories: euthymia, depression, mania, and mixed. When mood is one-dimensional,

three mood states were defined: euthymia, depression, and mania (see

section “Computational Methods” for details). When mood is two-dimensional, four

mood states were defined: euthymia, depression, mania, and mixed. Survival curves

were estimated using Matlab’s ksdensity function for each mood state after condi-

tioning on the mood state lasting at least seven days. We conditioned this way since

current criteria for diagnosing a mood episodes often requires that symptoms have

lasted a week.

Survival curves were concave up for most of the models, with the exception of

certain survival curves for the biological rhythms models of [10, 23] (Fig. 4). In

fact, the survival curves of euthymia and mania in the biological rhythms model

of [10] are sufficiently concave down that they are relatively flat in regions. Hence,

this model predicts that it is unlikely that patients would leave euthymia or mania

in a week given that symptoms have already lasted for a week. We also note that

the survival curves of the biological rhythms models of [10, 23] cross one another.

These types of qualitative observations can be used to distinguish between models.

With the survival functions, models can be differentiated based on whether one

mood state lasts longer on average relative to another mood state. Longitudinal stud-
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Fig. 4 Estimated survival functions for mood states after the mood episode has lasted 7 days

ies suggest that on average and for most BP patients, depression lasts longer than

mania [30]. This is the case for the discrete-time Markov chain model where we see

that the survival curve for euthymia is always above the other curves. This implies

that the probability that euthymia lasts a given time is greater than the probability

that a particular mood episode lasts the same time.

For the discrete-time Markov chain model, parameters for the discrete-time

Markov chain can be specified to capture any ordering on the average duration of
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mood states. The survival function of this type of model also has a similar shape

to survival curves of other models. Therefore, discrete-time Markov chains may be

desirable when the main goal is to model duration of mood states. For other models,

it may prove challenging to alter parameters to capture the relative duration of one

state compared to other mood states. Consider, for instance, the behavioral activa-

tion model. Here, the probability that mania lasts a certain amount of time is always

greater than the probability that another mood state lasts that same amount of time. It

is not immediately clear how a parameter change could lead to (on average) euthymia

lasting longer than depression and mania. In contrast, parameters lM and lD in the

2D double-well could be decreased to increase the time spent in euthymia. There-

fore, while the behavioral activation model may describe the underlying biophysical

process more accurately, the 2D double-well model may more useful when capturing

duration of mood states.

In addition to survival functions, we can also examine the cumulative hazard func-

tion C(t) which relates to the survival function:

C(t) = − log(S(t)). (13)

Unlike the survival function, the cumulative hazard function is less intuitive. When

the cumulative hazard function is continuous, its derivative, called the hazard rate,

measures the rate of an event conditioned on surviving up to a certain time. The

cumulative hazard function also has a simple expression for exponential and Weibull

distributions, which are common models for survival analysis. It is linear

C(t) = −𝛼t when the time-to-event has an exponential distribution with rate 𝛼 and a

power function C(t) = (t∕𝛼)𝛽 when the time-to-event has a Weibull distribution with

scale parameter 𝛼 and shape parameter 𝛽. Therefore, it is easier to observe deviations

from an exponential or a Weibull distribution by looking at the cumulative hazard

function (Fig. 5).

As a final note on the survival functions, we point out that two-dimensional mod-

els may not lead to any mixed states. We have already noted that one-dimensional

models do not allow for mixed states. The biological rhythms model of Goldbeter

[10], for instance, is a two-dimensional model, but did not have mixed states that

lasted over seven days throughout the simulation of this model. Accordingly, in

Fig. 4, we observe that the biological rhythms model of Goldbeter [10] does not

have a survival curve corresponding to mixed states.

Spectral Density

When examining time courses, we found that periodicity can be mistaken for ran-

dom noise (and vice versa). This issue can be overcome using the power spectral

density (assuming mood is stationary). Specifically, a periodic signal has a peak in

its power spectral density, where the peak corresponds to the frequency of its cycles.

For mood, the spectral density can be estimated from its time course. The simplest
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Fig. 5 Estimated cumulative hazard functions for mood states after the mood episode has lasted 7

days
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way to estimate the spectral density is the periodogram (i.e. scaling the square of the

discrete Fourier transform), but there are advantages to other techniques. One such

technique is the multitaper method introduced by Thomson [31]. Thomson’s multi-

taper method benefits from reduced bias and variance in the estimation of spectral

density. It is also accompanied by a statistic test (Thomson’s harmonic F test) to

determine whether a particular frequency is statistically significant. This test is not

available in Matlab, but is available in the multitaper package for R.

We applied Thomson’s multitaper method to estimate spectral density functions

for the simulated time courses for each model, with the exception of the discrete-

time Markov chain model, since in that case, mood is categorical. The multitaper

method was applied using Matlab’s pmtm function. Figure 6 displays the spectral

density functions for the various models.

The estimated spectral density functions can be used to distinguish between mod-

els with periodicity from models without periodicity. That is, each of the biological

rhythms models has large peaks corresponding to frequencies at which they oscil-

late, whereas the other models do not have large peaks. The biological rhythms model

of Daugherty [8] has the longest period with a sharp peak at 1 cycle per 489 days

(0.75 cycles per year). The biological rhythms model of Bonsall [7] has the short-

est period with two peaks, one at 1 cycle per 56 days (1 cycle per 7.9 weeks) and

one at 1 cycle per 29 days (1 cycle per 4.2 weeks). Each peak captures periodicity

of one of two (non-identical) oscillators that additively contributed to mood for this

particular model. Lastly, the biological rhythms model of Goldbeter [10] has a peak

at 1 cycle per 128 days (1 cycle per 18.3 weeks) for both the manic and depressive

variable. The manic variable has a second peak around at 1 cycle per 67 days (1 cycle

per 9.6 weeks). Except for initial conditions, parameters for the manic variable were

identical to parameters for the depressive variable.

Manic and Depressive Variables

Of the models considered, only three (two of which were introduced here) model

mood in BP as two-dimensional. The popularity of a one-dimensional model could

stem from the common belief that mania and depression are the two “poles” in bipo-

lar such that mania or depression can arise only in the absence of the other. Another

possibility is that mood, an ambiguous term, refers to a narrow set of symptoms for

which mood is one-dimensional by definition. In either case, the one-dimensional

models are unable to describe mixed episodes, as well as direct transitions between

mania and depression. The question is whether it is reasonable to ignore these events.

When the goal is to capture a broader set of symptoms relevant to BP, then two

different surveys could be administered, one to measure severity of manic symp-

toms and another to measure the severity of depressive symptoms. Concurrent scores

could be plotted together to determine whether a one-dimensional model describes

the data. If a one-dimensional model is appropriate, we would expect that concurrent
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Fig. 6 Spectral density functions estimated using Thomson’s multitaper method from the simu-

lated time courses
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Fig. 7 Density plot of concurrent values of normalized manic (Mt) and depressive (Dt) variables

scores lie close to a one-dimensional line that is non-decreasing, so that an increase

in a manic score is accompanied by a decrease in the depressive score.

In Fig. 7, we plot the density of concurrent values of mania and depressive vari-

ables for the two-dimensional models. These plots could be compared to a plot of

concurrent manic and depressive survey scores. Mood from each model ranges in the

prevalence of mixed states, i.e. how often manic and depressive variables are both at

high levels. In the biological rhythms model of [10], for instance, mixed states never

occur. Indeed, its plot appears similar to a plot needed to justify a one-dimensional

model, where points lie close to a one-dimensional curve for which increases to the

manic variable are accompanied by decreases in the depressive value. The biolog-

ical rhythms model of Goldbeter [10] was designed so that mania and depression

mutually-inhibit each other. Mixed states are more prevalent in the 2D double well,

compared to the model of Goldbeter [10], and even more prevalent in the modified

2D Ornstein-Uhlenbeck model. For the latter, mania and depression appear to be

entirely independent.

We can measure the degree to which mania and depression inhibit each other

or cooperate using rank correlation. Correlation is more commonly measured using
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Table 3 Measures of association between manic and depressive variables for two-dimensional

models

Model Pearson’s 𝜌 Kendall’s 𝜏 Spearman’s 𝜌

Biological Rhythms (Goldbeter) −0.59 −0.54 −0.74

2D Double Well −0.11 −0.11 −0.16

Modified 2D Ornstein-Uhlenbeck 0.06 0.02 0.04

Pearson’s correlation coefficient, but this measure can only determine the degree to

which two variables linearly correlated. As illustrated in Fig. 7, mania and depression

may not be linearly-related, but still strongly inhibit each other. Rank correlations

are alternative measures that depend only on the ranking of each variable; it has

the advantage that it is invariant under nonlinear scaling. For the two-dimensional

models, we measured rank correlation using two metrics, Spearman 𝜌 and Kendall

𝜏. Their values have been compared to Pearson correlation coefficient in Table 3.

All three types of metrics were calculated in Matlab using the corr function. With

a negative rank correlation, mania and depression inhibit each other more in the

biological rhythms model of Goldbeter [10] than the other two models. Mania and

depression are positively associated in the modified 2D Ornstein-Uhlenbeck.

Combining Inferences Across Individuals

So far, we have discussed how to determine whether a model is appropriate for an

individual with BP. Data on an individual patient, however, may be too limited (in

number of samples and/or frequency of samples) to provide enough statistical power

to reject any particular model. To address this issue, we can combine statistical infer-

ences across many patients to examine the collective evidence to support or oppose

a hypothesis. The idea is to recover a P-value for each patient from each statistical

test of interest and then aggregate the P-values into a single statistic. As described in

[32], P-values can be combined across K patients into a single statistic of the form:

𝜙 =
K∑

k=1
𝛹

−1(Pk) (14)

where Pk is the P-value for the kth patient and 𝛹 is a certain cumulative distribution

function (e.g. a normal or uniform distribution).

The null distribution for the resulting statistic 𝜙 can be estimated through Monte

Carlo simulation. The procedure consists of repeatedly sampling K independent ran-

dom variables with distribution 𝛹 and calculating their sum 𝜙
(k)

. Then, the samples

𝜙
(1)
, ..., 𝜙

(k)
are then used to estimate the null distribution non-parametrically (which

can be done with Matlab’s ksdensity function). The cumulative distribution func-
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tion 𝛹 can be chosen to place different emphasis between low, medium, and high

P-values [32]. For example, a uniform distribution places more emphasis on high

P-values than a normal distribution function.

Discussion

In this chapter, we evaluated existing models of mood in BP (Eqs. 1–9) and two new

models we proposed here (Eqs. 10 and 11). Each model makes different assumptions

about mood dynamics. Our objective was to differentiate between models using only

time courses of mood. This addresses the question of how to identify an appropri-

ate model of mood in BP when only longitudinal scores from clinical assessments

are available. We focus on clinical assessments, because there are no validated alter-

natives to measuring mood. Albeit subjective, clinical assessments are ubiquitous

to psychiatry, have been extensively studied, and can be administered by an expe-

rienced clinician. They also provide clinical standards for describing mood and for

defining BP: through the presence, duration, and severity of a list of common symp-

toms associated with mania and depression.

Our results strongly encourage that models be compared using more than visual

inspection of the time courses. Time courses for the models were sufficiently diverse

and erratic to support any modeling assumption. Even a periodic assumption can be

mistaken for a random model that has no inherent periodicity. This ambiguity calls

into question whether previous assumptions about mood could have been proposed

from visual inspection of time courses. These issues further stresses the need for

empirical validation of models.

To address ambiguity in the time courses, we proposed different ways to analyze

the time series. Below we highlight our conclusions:

Detecting Periodicity. Mood in BP is often believed to cycle, that is, to oscil-

late periodically [7–11]. Periodicity was best detected in a model using the spec-

tral density function. Spectral density was estimated nonparametrically from the

time courses of the simulated mood with a method known as Thomson’s multitaper

approach, which reduces estimation bias and variance over other popular methods,

e.g. periodograms. From the estimated spectral density, we could clearly identify

periodic models, as these models had sharp peaks in their spectral density. The sharp

peak corresponded with the frequency or frequencies at which they oscillate. For

example, we found two peaks in a model based on two oscillations.

A limitation of a spectral density approach is that it can only detect periodicities

in a certain range. As such, we cannot determine if a period of oscillation lies out-

side this range. The frequencies that can be detected lie between half the sampling

frequency and the fundamental frequency (i.e. one over the observation period). For

example, if two years of mood were sampled weekly, then we could only detect if

mood cycles at a frequency between one cycle every two years and one cycle every

two weeks. Additionally, noise in the signal renders it difficult to determine whether

a peak is significant. In this case, a Thomson’s harmonic F test can be used to test
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whether a specific frequency is significant. Thomson’s multitaper method assumes

that the spectral density does not depend on time or varies slowly in time; extensions

are discussed in [33] when these assumptions do not hold.

Detecting Multistability. Rather than a periodic assumption, it has been pro-

posed that mania, depression, and euthymia can be considered stable states when

ignoring external influences, such as random noise [10, 12, 13]. Our analysis indi-

cates that models with multistability are best detected using the probability density

function (pdf) of mood. The pdf of mood was estimated from the samples of mood

using a non-parametric kernel approach. For the models with multistability, we found

that each mode in the pdf corresponded with a point in the model that was stable in

the absence of noise. Consequently, the pdf for these models was multimodal. We

quantified deviation from unimodality (i.e. the degree to which a pdf is multimodal)

using Hartigan’s dip test statistic, which confirmed our observations.

In general, there are caveats to using modes to detect multistability. First, we note

that our models with multistability had points that were not just stable, but asymptot-

ically stable when ignoring noise, so our observations may not generalize for stable

points that are not asymptotically stable. Second, the presence of multiple modes

was not sufficient to conclude multistability. For one reason, we found that a model

without multistability (a model with periodicity) can also have multiple modes. For

another reason, a pdf estimated from samples of mood can be multimodal even when

the samples are drawn from a unimodal distribution. To address this latter concern,

Hartigan’s dip test statistic is accompanied with test for significance, from which a

P-value can be calculated. The null distribution for the test statistic is generated from

samples of a uniform distribution. Intuitively, the null distribution would reflect the

fact that an estimated pdf can be multimodal even when the actual pdf from which

samples are drawn is not.

Deciding between a two-dimensional or one-dimensional model of mood.

Even a simple question of whether to model mood as one-dimensional or two-

dimensional remains unanswered. The answer may depend on what set of symptoms

are used to defined mood, e.g. whether we are interested in a broad set of symptoms

related to mania and depression or a narrow set of symptoms related to mood only.

For BP, a one-dimensional model would not be able to capture mixed states or direct

transitions between mania and depression.

If the model aims to capture mania and depression broadly, then survey scores can

be gathered for both mania and depression separately and concurrent scores graphed

in a 2D density plot. A one-dimensional model could be excluded on the basis that

concurrent scores are not plotted closely to a one-dimensional curve where high

values on the manic survey correspond with low values on the depressive survey

and conversely, low values on the manic survey correspond with high values on the

depressive survey. A one-dimensional model could also be excluded if mixed states

are sufficiently prevalent.

For the two-dimensional models, we plotted concurrent values of the manic and

depressive variable. We found that the prevalence of mixed states varies from model

to model. On one extreme, one model had no mixed states and had plotted points that

were relatively close to a one-dimensional curve. On the other, one model had many
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cases of mixed states, where the manic and depressive variables were simultaneously

high. We proposed that rank correlation could measure the degree to which manic

and depressive variables either cooperate or inhibit each other.

Qualitative differences in pdfs, survival functions, and cumulative hazard
functions. We also found that the models could be differentiated based on qualitative

differences in their pdfs, survival functions, and cumulative hazard functions, each of

which can be estimated from times courses of mood. For example, certain pdfs were

relatively more symmetric or more peaked than other distributions, observations that

could be confirmed quantitatively by measuring kurtosis and skewness, respectively.

We also found that certain models had survival functions for mood states that were

concave down and crossed each other, whereas other models did not.

We recognize that changing parameters in a model will change the resulting

pdfs, survival functions, and cumulative hazard functions. When available, parame-

ters were matched to parameters in the original reference for each model. A thor-

ough parametric study is needed to determine whether qualitative differences would

remain under parameter changes. This type of analysis was beyond the scope of this

chapter. However, we did find that certain models with the fixed set of parameters had

more realistic properties, e.g. euthymia that lasts longer on average than depression,

which lasts longer on average than mania.

Clinical implications. From a clinical standpoint, an accurate model of mood in

BP at the patient-level may help to alleviate disease’s burden through forecasting

outcomes and subsequent clinical needs. Mood episodes, alone, are already debili-

tating. However, mood is often so erratic and unpredictable that uncertainty in one’s

future only adds to patient anxiety and stress [2]. The current classification system

based in the Diagnostic and Statistical Manual 5 (reference for DSM 5 is: Ameri-

can Psychiatric Association, 2013) uses only a small portion of a patient’s history of

mood and typically transforms dimensional qualities into categories, thereby remov-

ing information. A proper modeling framework could be used to tailor models to an

individual’s historical illness course, thereby capturing more nuance to their illness

description. Clinicians could then use this information to help manage the disease

and provide personalized expectations for their future illness course.

At the same time, an accurate model of mood in BP may also help better under-

stand the mechanisms that cause both BP and the occurrence of mood episodes. For

example, knowledge that a periodic model is appropriate, and of its frequency of

oscillation, would help to narrow a search for possible biological oscillations that

could trigger mood changes. An accurate model also provides a theoretical model

for clinicians to integrate their understanding of causal pathways in BP that span

multiple levels (e.g. genes, molecular pathways, and neural systems).

Here, we examined direct (also referred to as, minimal or phenomenological)

models of mood. As researchers narrow their focus on specific biophysical systems in

BP, mathematicians can build models for these biophysical systems to help under-

stand their connection to BP. Such a bottom-up approach was taken in [9], where

they consider specific protein kinases and its possible role in producing periodic

oscillation of mood in BP. Future research will create many more opportunities for

modeling specific biophysical processes in BP.
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Introduction

Cerebellum is attributed to contain 50 % of brain’s neurons although occupying
only 10 % of its volume [1, 2]. Clinical implication of cerebellar functions were
elucidated by Luciani in 1891 [3, 4] with his experimental and clinical observations
that cerebellum excision in dogs and monkeys forming a triad of symptoms Atonia,
Asthenia, Astasia. However, his work was related to acute results of cerebellar
hemi-spherectomy in animals and hence missed many of the functions of the
cerebellum including perception, action and cognition. During the first world war,
Holmes [5] observed voluntary tremors and dyskinesia now categorized as ataxia.
Camillo Golgi and Ramon y Cajal’s histological analysis of brain tissues added on
to the observations of cerebellum in motor function. Cerebellar roles in visceral
functions, coordinating emotions has been proposed [6, 7]. Several studies have led
to newer insights of cerebellar roles in perception, action and cognition based on
studies on patients with cerebellar agenesis [8]. Although complete absence of the
cerebellum are known to cause mild to moderate motor deficiency, dysarthria and
ataxia, primary cerebellar agenesis has been shown to affect patients with mild
mental retardation and cerebellar ataxia [9].

Neuronal networks in the cerebellum include feedforward and feedback con-
nections contributing to specific functional roles related to timing [10, 11] and
movement control [12–15] in addition to what was originally hypothesized due to
orthogonal projections of parallel fibers on Purkinje neurons [16, 17]. Starting with
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Camillo Golgi and Ramon y Cajal’s studies on the organization and structure of the
cerebellum [18] and the study of Eccles [19] on inhibitory synapses in the circuit,
cerebellar information processing had gained interest. Structure of the cerebellum is
known to have three different distinct layers i.e. granular, Purkinje and molecular
layers. Optimal weight distributions of connections determine pattern recognition
properties of neural networks [20]. Cerebellum granule neuron- Golgi neuron
connections play a role as a feedback network that has been known to synchronize
network activity exhibiting rhythmic behaviour [21–23].

Cerebellar networks have been known to play a crucial role in timing of motor
actions more than planning/initiating movements [15, 24, 25]. Computationally
feedback networks as well as feedforward circuits have been studied in the cerebellar
microcircuits, where the latter results in faster information processing while the
former would synchronize the circuit inhibiting the amount of information to be
processed. Cerebellar network primarily receives input via pontine nuclei (PN) where
several major tracts of information including those from upper cortical areas,
brainstem, thalamus converge. Sub-thalamic nucleus (STN) of basal ganglia circuit
known to form connection with PN supporting the role of cerebellum in parkinsonian
disease condition (PD). Output of the cerebellar cortex was directed to the cortical
areas via relay through thalamus where the basal ganglia has inhibitory connections
to thalamus. Striatum in basal ganglia circuit known to be influenced by the disy-
naptic connection from deep cerebellar nuclei (DCN) of cerebellum via thalamus.
Several hypotheses such as vestibulo-ocular reflex (VOR) where gain modulation
and classical eye-blink conditioning reflexes were tested in cerebellar networks.

Additionally, modular architecture allowed cerebellar microzones have been
known to perform common computational operations. Timing phenomena observed
in cerebellar granular layer play a very important role in passage of time repre-
sentation (POT), learning or adaptation to movements, modulation of information
transfer to Purkinje cells (activation of granule cell subsets with respect to time).
Some of the knockout [26, 27] and lesion studies showed that granular layer dis-
ruption leads to abnormal functioning of the cerebellar mossy fiber-granule cell
relay, affects the learning-dependent timing of conditioning eyelid responses, loss
of rapid spike processing in the cerebellum (Ataxia) which indirectly has effect on
plasticity of parallel fiber (pf)-Purkinje cell (PC) synapses.

Cerebellum has also been known to act as a pattern classifier which resembles a
perceptron [16] (see Fig. 1). Granular layer, the input stage of cerebellum is
hypothesized in sparse signal encoding [28, 29] based on patterns and specialized in
generalization and learning interference. Inspired from cerebellum’s sparseness and
pattern abstraction properties, computational models have been developed [12, 30]
to classify real world data based on its architecture. Real-time control via spiking
neural networks [31] and look-up methods allow kinematic design of robotic
articulators [32]. Several encoding schemes (Gaussian convolution, filter based and
look-up table) were proposed [33] to translate the real world data such as robotic
arm datasets (motor angles or 3D coordinates) into known spike trains. Spike trains
matching granule cell firing in vivo and in vitro allowed better encoding [34, 35]
and pattern separation using standard machine learning methods.
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Cerebellum was referred to as “head ganglion of the proprioceptive system” by
Charles Sherrington depending on its anatomical position above the spinal cord
[36]. Several studies [14, 24, 25, 37–40] have shown that cerebellum implicates
both forward and inverse models to complete the learning of motor tasks. Forward
model helps predict the next state from the present situation while inverse model
uses mapping of environment to perform motor movement to reach target desti-
nation [15, 41, 42]. These kind of models help fine tune the motor movements so as
to achieve desired target destination. Learning in these models performed via
supervised or through error feedback mechanism which facilitates learning.

In this chapter, we focus on reconstructing cerebellar neuronal and circuit
properties and an inference model for abstracting cerebellum pattern abstractions
based on detailed and simple spiking models. It has been assumed that the ran-
domization of connectivity and release probability of the synapses are the main
sources of response variability in the granule neuron. The contribution of mossy
fiber excitatory and Golgi cell inhibitory inputs on granule neuron firing was
analyzed. We investigated the contribution of spike frequency and spike correla-
tions in the information transmitted by the neurons. Applying communication
analogs from electrical communication systems, we observed that the increase in
spike frequency increased the information transmitted by the neurons while spike
correlations had a negative impact on the declarative aspects of information. The
behavior persisted during the induced plasticity states of the neurons meaning that
spike correlations are not contributing much to enhance the learning and memory
capabilities of neurons. We also employed an abstraction of the model for spike
encoding of real world data and for pattern recognition in neurorobotics.

Fig. 1 Perceptron like spiking network with input spikes and output response. Many pattern
capturing circuits like the cerebellum Purkinje layer act as spatial pattern capturing abstractions
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Background—On Cerebellum Granule Layer
and Network Activity

The cerebellum receives and processes signals from various sensory modalities
[43–45]. Sensory information fan into the cerebellum through mossy fibers. Spike
trains patterns were processed at granular layer then passes to Purkinje neurons then
to deep cerebellar nuclei for consolidation of motor memory [46]. Cerebellum
granular layer activity during somatosensory function can be studied by recording
the population activity during experimental conditions [47–49]. Granular layer local
field potentials (LFP) and population activity have been estimated to be majorly
contributed by the ionic currents generated in the densely packed granule neurons
[50–52]. A direct assessment of population activity and underlying neuronal
mechanism requires both single neuron based studies and correlation of neural
dynamics [53–55]. Detailed network reconstruction as in [56, 57] from experi-
mental data and computational modeling of population activity aids to understand
how single neuronal activity [53] are represented in population code.

Granular layer population activity during network function have been studied by
recording the LFP from Crus II circuits [49, 58, 59]. LFPs are population signals,
recorded as low frequency components (<300 Hz) generated from complex
spatio-temporal interaction of current sources during the network activity [60]. In
this chapter, we employed models of granular layer circuit based on the functional
and anatomical details [56] and the population behavior or ensemble activity was
studied by modeling information.

A toolbox called LFPsim was developed to mathematically reconstruct local
field potentials and a detailed mechanistic reconstruction from ionic currents are
described elsewhere [61].

Methods

Spiking Models

Spiking models replicate neurophysiological firing properties with reliable accuracy
in spike timing [57, 62, 63]. Several spiking models have been proposed to explain
the complex neuronal firing behaviours observed in different cortical neurons.
Using such models large-scale network dynamics employ a relatively lower com-
putational overhead [64]. Spiking neuron models are chosen as a trade-off between
the computational load and the complexity of the model, but with a (±4 ms) tol-
erance window for their firing properties. These kind of models were known to
maintain biological plausibility of Hodgkin-Huxley type dynamics while main-
taining lower computational cost.

Spiking models include Hodgkin and Huxley (HH), leaky integrate and fire
(LIF), quadratic integrate and fire (QIF) and Izhikevich, adaptive exponential
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integrate and fire (AdEx) [65]. Izhikevich models were widely used to study several
neural networks which has the capability to reproduce known cortical firing
behaviours [66]. Model complexity was decreased and also the computational load
was reduced in our simulations as we moved from HH-type models to simple
spiking models—employing two differential equations, one governing the mem-
brane potential and the other governing the adaptation dynamics of the model.
AdEx models have been shown to have reasonable accuracy with respect to spike
timing when compared to conductance-based HH model as well as to real pyra-
midal neurons [67]. AdEx known to have coupled differential equations regulating
membrane potential (V) and adaptation current (w).

C
dV
dt

= − gL V −ELð Þ+ gL*ΔT*e
V −VT
ΔT

� �
+ I −w ð1Þ

τw
dw
dt

= a V −ELð Þ−w ð2Þ

In the model, C is the membrane capacitance, gL represents leak conductance, EL

denotes resting potential, ΔT represents slope factor and VT denotes threshold
potential and ‘a’ represents the relevance of sub-threshold adaptation. Different
neuronal firing patterns were reproduced by changing the values of the parameters
[67].

Cerebellar firing patterns were reproduced and spiking network with validated
population behaviour was reconstructed using AdEx model [68]. Primarily, there
are 5 neuron types in cerebellar network: granule, Golgi, Purkinje, deep cerebellar
nuclei (DCN) and inferior olive (IO). Stellate and basket cells function as inhibitory
interneurons inhibiting Purkinje cell dendritic tree. Most of the cells are
GABAergic (inhibitory) in nature while granule and deep cerebellar nuclei
(DCN) are glutamatergic (excitatory) in nature. Spiking neurons are known to
reproduce spike timing as well as spiking properties without reproducing ion
channel dynamics and spatial geometry. In vitro and in vivo dynamics as well as
electroresponsiveness properties of biophysical models were reproduced using
AdEx models (see Fig. 2). To fit firing behaviour, we used particle swarm opti-
mization (PSO) algorithm (Eq. 3) for comparing number of spikes and spike timing
in each time window. Ncoin is the number of coincidences, Nexp and Nmodel refer to
number of spikes in experimental and model spike trains respectively and rexp refer
to average firing rate in experimental train [69].

Γ =
2

1− 2δrexp

� �
Ncoin − 2δNexprexp
Nexp +Nmodel

� �
ð3Þ

This similarity measure compared the spike trains from the experimental data or
biophysical models with the model data with a tolerance window of ±4 ms.
Synaptic dynamics in the model was reproduced for α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-D-aspartate
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(NMDA) receptor and gamma aminobutyric acid (GABA) receptors. Synaptic
equations were used to model the in vitro and in vivo behaviour of granule neurons
in response to mossy fiber inputs. AMPA dynamics relate to fast spiking while
NMDA relates to summing up of EPSPs and contributing to post synaptic potential
(PSP) which is a slow current. GABA contributes negative polarization to the total
PSP and reduces the excitatory effect. ‘Mg’ block in NMDA equation explains the
gating dynamics of this channel. In our network, excitatory synapses (AMPA,
NMDA) included mossy fiber (MF) connections to granule and MF to Golgi cells
and granule to Purkinje cells and climbing fiber inputs to Purkinje cells. The other
connections were inhibitory. Equations 4−10 show synaptic models for our simpler
spiking network models.

gNMDA = bMg vvð Þ * Ron +Roff
� �

* gmax * fNMDA ð4Þ

iNMDA = gNMDA * vv − 0ð Þ ð5Þ

Fig. 2 Firing behaviours reproduced by AdEx model. Simulations were carried by injecting
current and the parametric values taken from [67]
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bMg =
1

1+ e 0.062*− vvð Þ* CMg

3.57

� � ð6Þ

gGABA =B−A ð7Þ

B= −
B
τ2

ð8Þ

A= −
A
τ1

ð9Þ

iGABA = gGABA * ðvv +70Þ ð10Þ

Representing synaptic dynamics, Ron refers to receptor on state and Roff refers to
receptor off state. The variable gmax refers to maximal conductance and fNMDA refers
to scaling factor. For modulating magnesium block dynamics, bMg was used, which
regulates gating of NMDA channels. Here, vv refers to membrane potential of the
spiking neuron model. Time constants τB and τA are used for modulating GABA
dynamics by changing the behaviour of A and B variables over time. Conductance
of different receptors (NMDA, GABA) was represented with gNMDA and gGABA.
Synaptic currents for the computed conductance was represented with iNMDA and
iGABA.

Cerebellar Network

Cerebellum granular layer forms the input stage which receives primary afferents
from mossy fibers (MF). MF also provides excitatory input to Golgi cells and the
inhibition from Golgi cells to granule cells arrives with a time delay of 4 ms (see
Fig. 3). The granule cell axon extends into parallel fibers which provide excitatory
input to Purkinje cells. The Purkinje cell (PC) also receives excitatory input from
inferior olivary (IO) which carries proprioception information. PC serves as sole
output of cerebellar cortex which inhibits deep cerebellar nuclei (DCN). Bio-
physical and simple spiking cerebellum networks were built as an attempt to
understand the information processing, where the former was used to validate
hypotheses such as coincidence detection, time-window and center-surround
organization while the latter was used to test the reliability of spiking models to
emulate similar behaviour as that of biophysical models so as to reduce compu-
tational load.

Using such network models, a previous study [57] had assessed the role of
feed-forward inhibition as well as burst-burst transmission in the granule cells [70,
71]. The input was modelled as single spike for in vitro simulations while in vivo
simulations modelled burst like input (see Fig. 4). For simulating intrinsic
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excitability in biophysical networks, sodium channel on-off gating characteristics
were modified to simulate similar behaviour. A limitation with simple spiking
models was inability to intrinsically model plasticity and selective pharmacological
effects in population code unlike with detailed biophysical models. Golgi cells play
a critical role in modulating the information flow of granule cells through
feed-forward and feed-back loops [72–74].

Modeling Cerebellar Granular Layer Evoked LFP

Modeling somatosensory pathway which activate Crus-IIa of cerebellum is crucial
for understanding granule neuron computation in motor learning and other function.
Cerebellar granular layer evoked local field potential (LFP) is characterized by
trigeminal (T) and Cortical (C) waves; T wave corresponds to trigeminal afferents
and C wave from cerebral cortex and pontine nuclei [49]. Extracellular electrodes

Fig. 3 Cartoon representation of cerebellum network architecture. 5 types of neurons are
illustrated with their connectivity dynamics
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record field potential as an average response from the neurons within the visibility
of the electrode (Figs. 5 and 6).

Cerebellar evoked LFP was modelled using point source approximation and line
source approximation techniques to understand circuit function. Detailed bio-
physical model of rat Crus-IIa cerebellar granular layer was built to study central
cerebellar function and dysfunction. The network model consisted of 730
multi-compartmental granule cells [75], 2 Golgi cell [76], 40 Mossy fibers
(MF) and ∼8,500 synapses to occupy 35 μm cubic slice of cerebellar cortex. The
convergence and divergence ratios used to build the network model was adapted
from earlier studies [77]. The LFP electrode was modeled based on point source
approximation techniques to read signals from a population of neurons in the
vicinity of the electrode see (Fig. 7a).

Fig. 4 Cerebellum Network Firing Properties (adapted from [57]). a Raster plot of the mossy
fibers input to the cerebellum granular layer. b Raster plot of granule and Golgi cells firing for MF
inputs. c Selective disabling of NMDA receptors reconstructing diseased (ataxia-like) condition
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Fig. 5 Modeling information transmitted between two neurons via information theoretic approach

Fig. 6 Reconstructed extracellular potential of single cerebellar granule cell and circuit
LFP. a Circuit model of intracellular and extracellular potentials. b Screenshot of LFPsim, a
tool for reconstructing extracellular filed potential [61] and simulated cerebellar granular layer
in vitro LFP, characterized by N2a and N2b wave [48]. c Single granule neuron LFP and
compartmental contribution. d Compartmental individual ionic current contribution to single
neuron LFP
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Modeling Extracellular Field Potential

Extracellular field potential was calculated from individual ionic currents using
forward modeling schema. Point source approximation technique was used to
compute LFP of cerebellar granular layer population. The electric field in extra-
cellular space can be calculated by the Laplace equation, where Ø is the extracel-
lular potential at the boundary condition (1/ σ)Ø = Jm. Jm is the transmembrane
current density and σ, the extracellular resistivity.

∇2∅=0

Extracellular potential generated from a neuronal compartment/segment can be
approximated to a point source (see Fig. 6a). For a point source in the extracellular
space, I represented current generated from the source, ρ denotes the conductivity of
the medium and r denotes the distance from source to the point of measurement.
Extracellular potential (φ) at a point r expressed as

∅= ρI 4̸πr

Single neuron LFP can be reconstructed by linear summation of extracellular
voltages from individual compartments [51]. The extracellular potential for each

Fig. 7 Simulating in vivo LFP with center-surround excitation. Cerebellar network model was
simulated with center-surround “spot” activation described in [51]. Colored dots in the figure (red,
blue, green, orange) represent the soma of granule cells in the network (e). Type-1 cells receive 4
MF excitation which were located in the center of the network (red), Type-2 cells receive 3 MF
excitation (blue), Type-3 cells receive 2 MF excitation (green) and Type-4 cells receive 1 MF
excitation (orange). a doublet was observed from the cells which receive 4 MF inputs. b, c cells
receive 3 and 2 excitation showed single spike. Cells with 1 MF input reproduced an EPSP (d).
fActivation pattern applied to cells in the network g Simulating induced plasticity conditions in vivo
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compartment was computed. Single neuron LFP (S_LFP) for a ‘n’ compartmental
neuron was given by

SLFPðx, y, zÞ= ∑
n− 1

i=0

ρI
4πri

where, I represented the transmembrane current generated from neuronal com-
partments, ρ denotes the resistivity and ri denotes the distance from calculating
point to center of the neuronal compartment.

Population LFP can be computed as a linear summation of electric potential
generated by single neurons in the network [53, 78]. In this technique, each active
ionic dynamics of the neuronal compartment was modeled as individual current
sources. Population LFP (PLFP) generated from a network of ‘k’ neurons was
calculated by

PLFPðx, y, zÞ= ∑
k− 1

i=0
SLFP, ri

where SLFP, ri denotes the single neuron LFP of neuron i, ri denotes the distance of
individual current sources from point of calculation of population LFP. The models
were implemented in NEURON Simulation environment. All simulations were
performed on a workstation with 6-core Intel Xeon CPU running at 3.20 GHz
processor with 8 GB of RAM.

LFPsim, an open-source software NEURON-based tool we had developed for
mathematically modeling local field potentials using line source, point source
approximations and passive resistance-conductance methods on multicompartmen-
tal models is freely available now on ModelDb with accession number = 190140
[79]. The study describes modeling local field potentials in cerebellum granular layer
and extracellular action potentials in cortical neurons [61].

Neural Information Theory

An estimate of information processed could help quantify neural spiking activity
and correlate local field potential responses with underlying neural circuit function.
Through information theoretic methods, such methods allow to assess the role of
integrative excitatory and inhibitory synaptic processes at level of neural population
activity and possibly look into correlates with geometric symmetries observed in
evoked local field potential. Since correlated local field potentials are representative
to external world, stimuli-response estimates help decipher coding of firing infor-
mation in terms of Crus II sensory-motor input-output fluctuations. We used neural
information theory to estimate individual neuron roles in assessing network activity.
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It has been observed that neurons elicit a variety of responses for the same input.
This neuronal response variability inherent in the biological mechanisms of action
potential generation limits the actual information that can be produced by the
neuron. Noise introduces super-threshold and sub-threshold variations in the firing
of neurons. With Shannon’s information theory [80], declarative aspect of infor-
mation transmitted between neurons have been proposed. Estimations of mutual
information assume symbolic representation or codes for action potentials between
communicating neurons. The average surprise contained in such symbols produced
by neurons can be estimated efficiently with Shannon’s Entropy,

H Rð Þ= − ∑
R
Prlog2 Prð Þ

where R is the set of symbols and Pr is the probability of each such symbol in the
entire response space. With an estimate of response space from recorded experi-
ments, information capacity of the neuron, was maximum when occurrence prob-
ability of all the symbols are equally likely.

While calculating the maximum information capacity of a neuron, noise was
considered to be involved in neuronal processing [53]. Noise increases the number
of possible response symbols and the maximum information capacity of the neuron
but information capacity was estimated by neuron’s capability in selecting specific
response patterns [81, 82]. Via information theory, estimates suggested responses of
a diseased neuron regulated less or more information compared to control condition
and inhibitory inputs or plasticity conditions affected the information carrying
capacity of neurons.

Although entropy represents the information known to the system (neuron), it
also represents lack of information the observer (receiver) neuron has before
receiving the response. Information in neural communication was always measured
as the decreased uncertainty of the receptor neuron after receiving the response. The
statistical measure Mutual Information (MI) quantifies the average information the
receiver neuron has about the source neuron after message reception (See Fig. 5).

As in other models, the mutual information between the set of stimulus S = {s1,
s2,…} and set of response R = {r1, r2,….} was estimated as,

I S,Rð Þ=H Rð Þ−HðRjSÞ

where H(R) quantifies the response variability and HðRjSÞ quantifies the noise in
the response which was calculated as,

H RjSð Þ= − ∑
S
PðsÞ∑

R
Prjslog2 Prjs

� �

where Psð Þ is the probability of the stimulus s from the stimulus set S and Prjs is the
probability of observing a response r when the stimulus s is known. A variant of the
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MI, called Stimulus specific information (SSI) is alternatively used and quantifies
the input discrimination reliability of the neuron for each stimulus (input).

SSI sð Þ=H Rð Þ−H Rjsð Þ= − ∑
R
Prlog2 Prð Þ+ ∑

R
Prjslog2ðPrjsÞ

Results

In this section, we will address the roles of biophysically detailed models and
mathematical reconstructions of population responses, the information estimates of
granular layer activity, the impact of spiking models in representing relevant circuit
models and abstractions of sensory motor responses and behavior for modeling
robotic articulation.

Reconstructed Extracellular Potential of Single Cerebellar
Granule Cell and Circuit LFP

Single granular neuron LFP was simulated from detailed biophysical model of
granule neuron (Fig. 6a) to study single neuron contributions to population code.
Detailed granule neuron model was simulated with 3 mossy fiber excitatory
synapses that generated a single intracellular action potential (Fig. 6c). Axon hil-
lock compartments showed pronounced extracellular activity compared to other
compartments, attributed to high density of sodium and potassium channels were
concentrated in axon-hillock. The resultant linear summation of individual ionic
currents yielded single neuron contribution of field potential to population activity
(Fig. 6c). Total ionic current contribution of single granule neuron was estimated
and inward sodium currents contributed a major part of negative potential (Fig. 6d).
Granular layer in vitro LFP consisted of N2a and N2b wave, generated due to post
synaptic activity [48]. The network reproduced in vitro behavior reported in the
experiments [48].

Simulating STDP on Cerebellar Granular Layer LFP
with Center-Surround Excitation

From the network model, LFP was successfully reproduced using point source
approximation technique (see Fig. 7). Evoked cerebellum granular layer LFP
during in vitro and in vivo conditions were modeled. Simulated in vivo LFP
waveforms consisted of Trigeminal (T) and Cortical (C) wave attributed to
trigeminal and cortical pathways [49]. Control condition (black), LTP (red) and
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LTD (green) for in vivo like behavior were reproduced (Fig. 7g). While LTP
caused increase in amplitude and width of evoked LFP responses, LTD showed
reduced amplitude and width compare to control [53].

Spatial Attenuation of Single Granule Neuron Extracellular
Field Potential

Ensemble responses replicate the spatio-temporal organization of underlying neural
circuitry [83]. As observed in electrophysiological recordings [28, 49], the ampli-
tude and width of the extracellular waveform exponentially decreased when the
recording electrode point was moved away from the soma (see Fig. 8a).

To model the behavior of extracellular space, we varied the distance from which
LFP was estimated and compared reconstructed LFP. Simulating the electrode
recording point closest to soma of a granule neuron showed increased amplitude
and width of the wave. It was observed that when the recording electrode was
moved away from the soma, the extracellular wave amplitude decreased expo-
nentially at an average rate of −0.011 mV (Fig. 8b).

Information Capacity of Cerebellar Granule Neurons
for Sensory Inputs

The input layer of the cerebellum, the granular layer receives sensory information
via mossy fibers through corticopontine, spinocerebellar and vestibulocerebellar
tracks [84]. Computational models of Wistar rat granule neurons [75] were used to

Fig. 8 Spatial attenuation of single granule neuron extracellular field potential. a Reconstructed
extracellular potential around the granule neuron. b Attenuation of single neuron LFP over
distance
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quantify the information capacity of granule neurons for in vitro and in vivo like
inputs coming through mossy fibers. Even though input to output mapping in the
granule neurons for physiologically relevant conditions is not known, the tactile
stimulation of the Crus IIa region of the rat via air puffs onto the whisker pad was
reported to elicit short burst of spikes in the mossy- fiber [85].

Information capacity of granule neurons receiving electrical in vitro and tactile
in vivo stimulations [49] were quantified [86] using information theoretic methods
(Fig. 9a−d). It has been assumed that the neurons use different coding schemes to
encode the information. Whether the neurons use the firing frequency, spike tim-
ings, inter-spike intervals or a combination of the above to encode information is
still an area of research and debate [87]. Experimental evidence suggests neurons
could be using selective strategies. Information capacity was estimated relative to

Fig. 9 Information capacity of granule neurons. a Tactile stimulation of the Crus IIa region of the
rat by delivering air puffs to the whisker pad elicit short burst of spikes in the mossy- fiber.
b Raster plot of spike responses recorded from 1000 neurons. c, d Histogram of spike count and
spike patterns. e Entropy estimated for different release probabilities of the MF synapses for both
in vitro like and in vivo like inputs: Entropy increased with the increase in release probability.
f Spike count elicited from single neurons for each inhibitory—excitatory combination: Increase in
excitatory inputs increased the spike frequency while increase in Inhibitory inputs reduced the
spike frequency. g Entropy estimated from spike frequency code. h Entropy estimated from spike
time code. The increase in entropy was in positive correlation with spike count both in the case of
rate code and time code
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the coding schemes used, like rate code and temporal code/pattern code. Absolute
value of the capacity was found to be different under different coding schemes. In
the temporal coding analysis of spike trains, we assumed that the time of occur-
rences of the spikes convey information while in rate code, the information was
estimated from the firing frequency. Also for each type of inputs there was a
theoretic maximum and minimum capacity different from the other type of input.

To maximize the information that a neuron can communicate about the inputs, it
should maximize the entropy of the outputs. The codebook of the granule neurons
under different release probabilities of the mossy fiber—granule cell synapses and
under different synaptic combinations was measured (Fig. 9e−h). This code book
was then used to estimate the theoretical maximum information that can be trans-
mitted and the actual information that was transmitted through the neuron for the
given input.

Stimulus Discrimination Capacity of Cerebellar Granule
Neurons

Estimating the role of geometric organization through spiking information would
help correlate local field potentials and information capacity in networks. However,
to correlate spatio-temporal properties of individual neurons in network, input
specific information signaled by granule neurons were estimated using the infor-
mation theoretic quantities Mutual Information (MI) and Stimulus specific infor-
mation (SSI). MI was used as an average measure to quantify the information
content of a set of stimuli while SSI represented the information content of each
stimulus. The change in mutual information while changing the connection
geometry of the MF and Golgi cell synapses were estimated and it has been
observed that the average stimulus discrimination capacity of the granule neurons
was increased with the increase in MF excitatory inputs while increase in inhibition
from the Golgi cells reduced this discrimination power (Fig. 10a−b).

NMDA receptor-dependent synaptic plasticity in the mossy-fiber granule cell
relay was found to be depended on the excitatory-inhibitory balance of the mossy
fiber excitatory and Golgi cell inhibitory connections to the granule neuron [48].
The effect of plasticity on the information capacity of the neuron was quantified
using the entropic estimates reported in the previous section. It has been observed
that plasticity changed the information content of the receptor neurons.
Induced LTP (Long Term Potentiation) increased the input classification power of
granule neurons while LTD (Long Term Depression) decreased the input classifi-
cation power (Fig. 10c).

Stimulus Specific Information (SSI) estimated how each stimulus in the stimulus
set was encoded by the granule neuron. A larger value of SSI signified the higher
predictability of the response given the stimulus. Histogram plot of the stimulus
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specific information revealed that some subsets Si of the stimulus set S were dis-
criminated by the neurons in a similar way (Fig. 10d−f). This suggested that
similarity in the stimulus features are encoded by different neurons in a similar way
revealing the possibility of redundant information encoded by the granule neurons.

Since information change was observed both in rate coding and time coding
schemes, it seems indicative that plasticity not only changes the rate of responses but
also changes the correlation between responses. The role of correlation on the
information capacity of the neurons was reconstructed and information capacity was
noted to be reduced whenever the spike correlations were high (see Fig. 10g−i).

Fig. 10 Stimulus discrimination power and spike correlations. a MI was increased with the
increase in MF excitatory inputs. I-Inhibition, E-Excitation. b MI was decreased with the increase
in GoC inhibitory inputs. c MI increased during LTP from control, while MI decreased during
LTD from control. d−f. Histogram of the SSI values for I0E2, I0E4 and I4E4 synaptic
combinations respectively. Different stimuli are encoded in a similar way revealing the redundancy
in neural code. g−i. Correlation on information transmission. Entropy was decreased in two cases
—whenever overall neural activity was suppressed (which correlated with the increase in
inhibition) and whenever the correlation between spike patterns was increased (with the increase in
excitation)
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Robotics and Applications

Abstracting Models for Neuro-Robotics—Training Spiking
Networks and Storage Capacity

We used the biophysics of the cerebellum (Fig. 3) to model training in neuro-
robotics (see Fig. 1). For training the spiking neural networks, different learning
algorithms have been proposed (see Multi-SpikeProp [88] and RProp [89]). In
previous studies, high-threshold projection (HTP) and fast precision (FP) algo-
rithms were used to train leaky integrate and fire (LIF) neurons [31]. In our study, a
spiking network constructed used granule cells (600) and single Purkinje cell to
train the synaptic weights which were assigned randomly resembling a simple
perceptron model. One to one connection was used for the connectivity between
mossy fibers and granule cells where the dynamics of mossy fiber was modeled as
homogenous Poisson process with firing rate (rin) and has a duration of Tinput.

In the abstraction, granule cell and mossy fiber spike timings were almost similar
as input from mossy fiber was multiplied with the respective assigned random
weight. The output of all granule cells were integrated by a Purkinje cell using
general Perceptron equation [90].

P = ∑
i
wiXi

where wi is the synaptic weight assigned to ith afferent, i varies from 1 to N and Xi is
1, if there was a spike or 0 otherwise. The firing properties of granule and Purkinje
cells were modeled using adaptive exponential integrate and fire structures and the
parameters were same as in [68]. Purkinje cell with its auto rhythmic behavior has
been reported to have a firing frequency of 30 Hz. The input current which was
used to simulate the activity of granule cells is,

I = g * ðV−V0Þ

where g refers to conductance (4) and V,V0 represent the membrane potential and
reversal potential. The resultant spike trains were trained to obtain precisely timed
spikes using FP algorithm [31]. Within each time window of [td − μ

2 , td +
μ
2], the

synaptic weights were updated to obtained desired spike times. The weights were
updated using the following equation.

Δwi =∓γXi terrð Þ

An adapted version of the High Threshold Projection (HTP) algorithm [31] was
developed as a learning rule to update weights for robotic control of a low-cost arm
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[91] based on the large-scale spiking models. The algorithmic implementation of
HTP in our encoding includes 3 conditions in order to have an output spike:

(1) U tdð Þ=Uthr, where Uthr was the threshold potential (linear equality constraint)
(2) dU

dtðtdÞ > 0 for all td (linear inequality constraint)

(3) U tð Þ<Uthr for all t except td (linear inequality constraint)

Feed forward Spiking Algorithm (adaptation of HTP Algorithm [31]):
Begin

1. Initialize the weight ω with random numbers
2. For every pattern in the training set

a. Present the pattern to the network and calculate the PSP using (9)
b. For output neuron

i. Create a set of error times, {terr} and find the error
ii. Stop if no error found i.e. all equality and inequality constraints are

satisfied.
iii. Construct a set of input labeled patterns, {(x, y)}, where x = x(terr),

y = −1 if terr is above the suprathreshold, else x = diff(x(terr), y = +1
if terr = td.

iv. Add the constructed set to x.

c. End

3. End

Storage Capacity Computation as a Pattern Recognition
Circuit for Robotics

In our abstractions towards a bioinspired pattern separator, we used the large-scale
model to assess storage capacity. Purkinje cell (PC) received a large number of
parallel fiber (pf) inputs as patterns to produce an output [92]. At each of these
synapses, some random input-output associations were stored. The capacity
(input-output associations) of a Purkinje neuron per synapse was referred to as the
maximal storage capacity (αc).

Storage Capacity was defined as the number of desired spikes that a PF-PC
synapse implemented. Several methods described in [20, 93] have estimated
maximal storage capacity. We estimated storage capacity using methods described
in [94], where stability constant K, total duration of spike train T and the mean rate
of desired output spike times within the correlated time of post synaptic potential
(PSP) routτ [31] were used. Stability constant K referred to as threshold stability
constant [20] helped increasing the reliability of input patterns which lead to a
spike, thereby acting as a resistance to noise. The constant ensured robustness of
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storage by avoiding erroneous threshold crossings [20]. Using this parameter taken
from [94], we estimated the stability constant.

K =
Tffiffiffiffiffiffiffiffiffi
τsτm

p

αpc ðbÞ=
1

b ∫ ∞
x Dtðt− xÞ2 + ð1− bÞ ∫ ∞

− x Dtðt+ xÞ2

We were able to reproduce a spiking neural network and model the adaptive
dynamics of Purkinje neuron (PC) and its pattern separation properties (Fig. 11).
The network was simulated with auto rhythmic PC firing and the variations in the
PC firing rate were shown when granule neuron (GrC) inputs were given as PF with
the presence of parallel fiber and climbing fiber inputs (Figs. 11 and 12). To model
storage unreliability at the PF-PC synapse, stability constant K, was employed.

In our network, storage capacity was estimated to be <1. Based on estimated
values, we inferred ≥ 5 PF-PC synapse were required for the implementation of a
desired spike in a pattern [35] (Fig. 13).

Fig. 11 PC learning after using FP algorithm. a Purkinje Cell (PC) response, after learning
frequency of firing gets reduced. b PC response (red) and blue line indicates desired output
sequence
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Abstraction of Real-World Data into Spike Trains Using
Granular Layer Encoding

We compared a look-up based technique developed based on pattern classification
of granular layer encoding of real-world data and compared it with other encoding
schemes. Bens spike algorithm (BSA) used rate encoding for converting the real
world data input into spike trains and contains a finite impulse response (FIR) filter
with fixed threshold value of 0.86 [35].

Employing patterns based on large-scale granular layer encoding, a look-up table
based encoding was proposed with the inputs mapped to known physiological

Fig. 12 Mossy fiber, GrC
and PC Spike Patterns.
a Spike times generated from
Poisson distribution. b Firing
pattern of a single granule cell
when input as in A. c PC
spontaneous firing behavior
without synaptic inputs
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conditions of granule neurons. In vitro and in vivo granule neuron firing properties
[68] were matched using a look-up of firing behaviors mapped to a particular input.
Machine learning based on such spiking datasets were performed to evaluate the
usability as novel encoders.

In its role for spike-encoded classifiers, we found granular layer based encoding
provided a higher classification accuracy [34].

Fig. 13 Data encoding using BSA and granule layer encoding. Generation of spike trains as
potential (y-axis) with time (x-axis). a Spike patterns using BSA encoding for two different input
patterns. b Encoded spike patterns using granule layer encoding for the same two input patterns
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Discussion

In this chapter, we have looked into how cerebellum networks may be involved in
timing [57, 78], sparse recoding [53] and pattern abstraction [35, 68]. Using
mathematical modelling, we focus on reconstruction of large-scale neuronal
dynamics [57, 78], role of inhibition in modulating the intrinsic behaviour of
neurons [53], translations of such behaviour as algorithms [35] as well as the study
of network activity during diseased conditions [57]. Using AdEx spiking models,
cerebellum granular layer and Purkinje layer was reconstructed. While spiking
network models were significantly reliable for reconstructing spiking patterns [68]
and passage of time [57], detailed biophysical models were crucial to reconstruct
local field response [53] and to intrinsically model role of induced plasticity [78].

Via modeling, estimations of mutual information while changing the connection
geometry of the MF and Golgi cell synapses were obtained and an increase in
average stimulus discrimination capacity of the granule neurons was observed with
the increase in MF excitatory inputs while increase in inhibition (I) from the Golgi
cells reduced this discriminatory capacity. Increase in excitatory (E) connections
alone did not necessarily guarantee the increase in information transfer capacity of
the neuron at fixed release probability. Information capacity was maximized in
certain cases for intermediate E-I balance. Estimated entropy was decreased when
the overall neural activity was suppressed via increase in inhibition. E-I activity
correlations may be used by neural populations to modulate the information flow.

Increased release probability of the MF synapses increased the information
capacity of granule neurons. Also the capacity of the granule neuron to encode
mossy fiber information was found to be higher with strong excitation from mossy
fibers and low with strong inhibition from the Golgi neurons both in temporal
coding and in rate coding schemes. There was no information transfer through the
neuron for single synapse inputs. Presence of two or more excitatory synapses was
a necessary condition for the information transfer through the synapses under all
conditions suggesting combinatorial properties of granule neurons [95].

Assessments with MI and SSI information theoretic measures indicated that the
geometry of synaptic connections and plasticity changed response characteristics of
granule neurons. This was also quantified and reported in local field potential
reconstructions although that LFP emphasized on spiking components in terms of
lag and amplitude of generated waves. Spike frequency and spike correlations on
information capacity and stimulus discrimination reliability suggest multiplexed
information streams in LFPs have individual neural mechanisms. It was also
observed that increase in frequency increased the information transfer while spike
correlations negatively affected the information transmitted. The same behavior was
found to be persisted in the plasticity states of the neurons as seen in model-based
LFP reconstructions.

Oscillatory activity in awake and anesthetized rats in the granular layer have
been reported in the same frequency ranges [54, 58]. Since rhythmic activity has
been determined to be dependent on multi-unitary granule cell activity, through
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mathematically reconstructed LFP, we were able to look into plasticity roles in
population response. The mathematical modeling also suggests the extended
somatosensory processing circuitry in associating the role of clusters and inde-
pendent activation patterns that may generate in vivo trigeminal and cortical waves
in cerebellum granular layer evoked post-synaptic LFPs. This may suggest the
spatio-temporal organization of granule layer oscillations and source reconstruc-
tions related to evoked LFPs in the range of 4−25 Hz. Although spike-time
dependent plasticity did not affect spike amplitude or delay, population LFP
showed induced LTP caused increased wave amplitude and decreased lag while
LTD did the counter-effect [53]. The modulatory roles of generated local field
potentials suggest a network role in optimized neural response in the context of
sensorimotor-related stimuli. The attribution of changes reflected due to plasticity at
the mechanism level and its upstream modifications in evoked LFPs has been
shown crucial to link molecular mechanisms to their circuit functions and dys-
function especially in diseased condition. Ataxia like conditions where NR2A
subunit cause NMDA receptor dysfunction in cerebellar granule cells were pre-
dicted by mathematical simulations to show decreased LFP waves although some of
their spiking behavior remained unchanged [57].

Using large-scale spiking models, we also attempted to scale this problem to
neurorobotics. With two algorithms [35], it was shown optimal encoding may use
cerebellum granule cell firing representation and storage capacity of such networks
rely on less than five neurons to capture unique patterns [34, 35]. Spike propagation
and burst-burst transmission in granular layer may aid scaling responses for tem-
poral signal encoders. A new study on robotic control where kinematic patterns are
encoded as spikes in being explored (manuscript in preparation).

Conclusion

A preliminary study of a crucial cerebellar microcircuit and its applications in
robotics have been initiated in this study. The circuits have important roles in neural
dysfunctions and several neurological conditions. Understanding the functional role
of such circuits also add to neuroinspired computing methods. Spiking networks for
pattern abstraction, if extended with large number of clusters of cerebellum granule
cells may help explore sparse recoding hypothesis. Although a precursor, this study
could help understand movement-related pattern recognition and improve models
for motor articulation control.
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A Computational Model of Neural
Synchronization in Striatum

Rahmi Elibol and Neslihan Serap Şengör

Introduction

Behavior is the output of the brain, and now is the first time in the history of

humankind when science has the tools to understand how behavior emerges from

the brain. Science is still at the very first step of modeling the brain, and the brain is

conceptualized almost as a black box, creating feelings and thoughts from sensory

stimuli, that is, creating all that makes us human. Thus, from systems point of view,

the input of the black-box is the sensory stimuli and the output is the behavior as in

Fig. 1. Tools to measure these outputs are either images obtained by different tech-

niques like functional magnetic resonance imaging (fMRI) or waveforms obtained

by field potential recordings, such as electroencephalogram (EEG), and scores of

neuropsychological tests, such as the Iowa gambling task (IGT). Looking at these

outputs along with the physiological tests, clinicians are trying to diagnose behav-

ioral and neurological disorders and psychiatric problems. The subsequent models

are usually black box models, since scientists are still trying to link molecular with

phenomenological levels [1].

Even though a lot is known about what is happening at the cell level, understand-

ing how these processes at the micro level give rise to behavior is far away from

the knowledge of today’s neuroscientists. Many treatment methods, e.g., deep brain

stimulation (DBS), have been developed, and various drugs work well in many cases,

but a clear explanation of why these help so many people with neurological disor-

ders is missing. Once the gap between the molecular and phenomenological levels is

better elucidated, then how the behavior emerges from the brain will be understood.

This will enable the development of better diagnoses and treatment methods.
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Fig. 1 Tools such as fMRI,

EEG, and

neuropsychological tests

provide us data and

information which can be

interpreted as the outputs of

a black-box model of the

brain. With computational

models based on rigorous

mathematical representations

of the neural activity, we can

build more descriptive

models
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As pointed out in the paper of P.R. Montague and his colleagues [2], computa-

tional psychiatry aims to fulfill this gap for psychiatric conditions, since decision-

making is the major cognitive process underlying many psychiatric problems. Here,

we will consider the input structure of basal ganglia, the striatum, which has an

important role in decision-making. The computational models are expected to con-

stitute a means to understand the ongoing complex processes in the brain. As stated in

[3], when based on carefully chosen assumptions, simulations obtained with com-

putational models are not susceptible to statistical errors and deepen our systems-

level understanding of complex processes. Thus, computational models would help

to build gray boxes rather than black ones (Fig. 1). We will propose a mathematical

model for striatum based on the biophysical properties of the striatum, especially

focusing on the modulatory effect of dopamine. While concepts such as entropy and

mutual information from information theory are considered to define measures for

the complexity of whole-brain modeling [4, 5], temporal synchrony is considered a

hallmark of activity within and between local neuronal groups, either for execution

of behavioral tasks [6] or for malfunctioning of neural structures [7]. Thus, the syn-

chronous behavior of the neuron populations can be considered as the computational

basis of neural and cognitive processes. To relate model outputs to brain oscillations

observed in EEG and local field potential (LFP) recordings [8–10], the simulation

results are discussed focusing on spectrograms obtained with the proposed compu-

tational model and synchrony measure. Raster plots are also considered while eval-

uating the simulation results.
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The role of basal ganglia in voluntary motor movements has been long stud-

ied [11], but their role in cognitive processes only began recently with the work of

Alexander and his colleagues [12, 13]. Of particular interest is the relation between

limbic and prefrontal basal ganglia circuits when considering reward related learn-

ing [14, 15] and decision-making [16, 17]. Impairment of basal ganglia circuits does

not only manifest as deficits in motor actions observed in neurodegenerative diseases

such as Parkinson’s and Huntington’s disease, but also as behavioral deficits observed

in attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder

(OCD) and addiction [18–23]. These behavioral disorders, like motor movement dis-

orders, are also treated by deep brain stimulation (DBS), a well-known treatment of

Parkinson’s disease [24, 25]. The role of basal ganglia in psychiatric disorders is

considered more recently [1, 26], and their treatment by DBS makes basal ganglia a

target for functional and restorative neurosurgery [27, 28].

Computational models of basal ganglia circuits mostly focus on action selection.

While the work of Doya focused more on the computational aspects of cerebellum,

basal ganglia and cortex [29], Taylor and his colleague focused on deriving a nonlin-

ear dynamical system model of basal ganglia circuit for action selection. Their work

gives an explanation of how action selection can be related to a nonlinear dynamical

system behavior around stable equilibrium points [30]. With a series of publica-

tions, Gurney and his colleagues give a model of basal ganglia circuit based on a

integrate and fire neuron model and show with simulations that the model is capa-

ble of producing functional properties of basal ganglia circuit for action selection

[31–33]. Though all these models also consider the role of dopamine and mention

the effect of dopamine on neurodegenerative diseases, the model proposed in [34]

focuses on explaining cognitive deficits observed in Parkinson’s disease by consid-

ering the striatum. In [35], the idea is to propose a computational model based on

a realistic biophysical neuron model to investigate the role of different pathways of

basal ganglia on action selection. In [36], the proposed action selection model of

basal ganglia circuit is shown to be able to model the Stroop effect; the effect of

dopamine on action selection is also discussed considering the time delays during

the Stroop task.

All these models consider only the role of dorsal striatum during voluntary move-

ment and action selection. There are also computational models where the effect of

ventral tegmental area is considered for reward based learning. In particular, the well-

known work of Schultz et al. [37], where reinforcement learning is considered as the

computational basis of reward based learning, is a pioneer in modeling basal ganglia

circuits. This paper declared a breakthrough idea about the computational aspects

of basal ganglia circuits and a series of papers followed it [38–43]. In these papers,

mostly actor-critic models developed in [44] are utilized. The relation between the

ventral and dorsal parts of striatum had been anticipated in [45, 46] by considering

a biologically realistic model of basal ganglia-thalamo-cortical pathways rather than

actor-critic models of machine learning.

Based on the computational models of reward based learning, models of addic-

tion have been proposed, where the role of dopamine from ventral tegmental area

are considered to be important for the malfunctioning of the striatum and thus basal
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ganglia circuit [47–49]. These works, along with the computational models for DBS

in basal ganglia circuits [50, 51], can be considered as a step towards computational

psychiatry. The first three of these publications consider modeling neural structures

and try to explain the phenomena behind a behavioral disorder through a computa-

tional model, while the last two focus on explaining why DBS works as a treatment

procedure.

Neuropsychological tests and tasks are the means of measuring cognitive tasks

and are also used as one of the measures to diagnose cognitive deficits. Working

memory is considered to be a temporal storage unit of the brain, which is an impor-

tant part of many cognitive tasks [52], and basal ganglia performs dynamic gating for

working memory processes by the modulatory mechanism of disinhibition. There are

papers focusing on modeling the basal ganglia circuits during working memory tasks

[53–56]. In [54], it is discussed that the role of dopamine in modulating cognitive

processes depends on basal ganglia. The relation of this modulatory effect to psy-

chopharmacological studies is investigated with the proposed computational model.

So, the computational model in [54] gives clues about the drug effects and shows

that with computational psychiatry, it is possible to have a better understanding of

drug effects.

EEG and LFP recordings provide information regarding synchronous activity of

neuronal population and is thought as one way of coding/encoding the computa-

tional property of the brain [57]. Understanding the mechanism giving rise to the

synchronous activity observed in EEG and LFP recordings has been considered in

computational models [58]. Because the synchronous activity observed in EEG and

LFP recordings are connected to cognitive tasks [8, 10] and also thought to be hall-

marks of disorders [7, 59, 60], then if the outcomes of the computational model are

related to oscillations, the model would be informative and provide an understanding

of ongoing activity. The computational models of basal ganglia and striatum also

considered these oscillations [33, 50, 51, 55, 61, 62] and showed that the model

outcomes agree with the frequency bands observed in the experimental studies [22,

63].

One aspect of modeling is to understand the phenomenon of interest, but modeling

also should boost the development of new tools. A model always gives a reductionist

approach and its simplicity should help to develop computational tools that improve

quality of life. So, the models of cognitive tasks and neuronal structures are also used

to develop tools to ease the life of elderly and disabled, providing intelligent systems

to help daily lifes [64]. The role of basal ganglia circuits in decision-making helps

develop neuro-robots [65–68], providing an approach different than the rule based

methods used in artificial intelligence.

Here, we will introduce a simple spiking neuron model of striatum with which the

role of dopamine on synchronous activity can be captured and discuss the computa-

tional outcomes of the model with the spectrograms obtained from raster plots of the

spiking neurons. The model is simple enough to be implemented for hardware appli-

cations [68], but still is informative and helps our understanding of decision-making

which is thought to be key to psychiatric conditions.
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The Scientific Problem: Modeling Striatum

All models lead to abstraction of the phenomenon considered. They give a partial

explanation from the point of view of what is thought to be the most important aspect

of the problem under investigation. Here, we will focus on investigating the role of

dopamine on synchronous activity in striatum and show that even with a simple

model, it is possible to build a connection between the observed data, such as LFP,

and the physiological quantity, such as the neurotransmitter dopamine. There are

a number of works showing the relation between neural oscillations in striatum and

cognitive tasks and disorders [59, 69–74]. In order to show the oscillations of striatal

neurons, we considered the properties of the medium spiny and interneurons and

the connection properties within the striatum and to the striatum, but make some

assumptions to keep the model simple while modeling all these properties.

Striatal Medium Spiny Neurons and Interneurons

Functionally, striatum coordinates simple body movements, voluntary motor actions

and information processing in complex cognitive tasks [11, 13, 14, 75]. Even though

dorsal and ventral striatum are similiar to each other in most respects, dorsal stria-

tum (neostriatum—caudate and putamen) determines the actions in performing goal

directed behaviors [18], whereas ventral striatum (nucleus accumbens) calculates

the reward value of tasks and the error in expectation [15, 76, 77]. Striatum together

with Subthalamic nucleus, Globus pallidus (internal, external and ventral pallidum)

and substantia nigra (pars nigra and pars reticulata) [78] form the direct and indirect

basal ganglia pathways. The cortical projections are processed in striatum and pass

through direct and indirect pathways to the output nuclei of basal ganglia [13, 18].

Other afferents of striatum like the cortex are mostly excitatory and do not distinguish

between dorsal and ventral striatum [76]. Striatum is mostly composed of GABAer-

gic inhibitory medium spiny neurons (MSNs) which comprise 90–95 % [78] of stria-

tum and spike rarely; the remainder of the striatum is mostly interneurons. Striatal

interneurons are GABAergic and fast spiking and they form the main inhibitory input

to MSNs and provide a winner-take-all mechanism [79].

Even though MSNs are structurally homogenous, they have different chemical

properties and are classified according to their response to dopamine neurotrans-

mitter [78]. The two most effective groups are MSNs with D1 type and D2 type

receptors. While D1 type MSNs inhibit Globus Pallidus internal neurons and form

a direct pathway, D2 type MSNs inhibit Globus Pallidus external neurons and form

an indirect pathway. The direct pathway promotes the action initiation and selection;

the indirect pathway prevents actions [13, 14]. MSNs with D1 type receptors form

synaptic connections only with other D1 type while MSNs with D2 type receptors

form synaptic connections with D2 and D1 types, where D2 types receive higher

release probability for the excitatory synapses [75].
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The role of dopamine on striatum behavior is vital: many neurological diseases

and disorders are due to malfunctioning of dopamine neurons in striatum [34, 50,

51]. Also, striatal plasticity especially in reward based learning is due to dopamine

modulation [18, 37, 80]. The role of striatal dopamine in schizophrenia has been

known for long [81]. Thus modeling the role of dopamine on synchronization in

striatum is important in understanding motor deficits, such as Parkinson’s disease

[7, 71] and neuropsychiatric disorders as ADHD [60]. Even though the neurode-

generation is not obvious, as in Parkinson’s disease, it is proposed that psychiatric

diseases, such as obsessive compulsive disorder [1], major depressive disorder [73],

schizophrenia [82], can be related to a cortico-basal ganglia circuit disorder.

Striatal Oscillations

The oscillations of basal ganglia structures have been studied for over a decade [7,

83]. While earlier recordings are mostly from rodents and primates, human data can

now be collected using recordings from the implanted deep brain stimulation elec-

trodes in human patients [71]. Though abnormally synchronized beta oscillations in

basal ganglia are a hallmark of Parkinson’s disease [8, 83, 84], beta oscillations in

striatum are related to action selection network [69], whereas theta and gamma oscil-

lations in striatum are observed for motor control [70]. Thus, even MSNs rarely spike

and striatal local field potential displays oscillations at low frequencies (delta band),

still a rhythmic activity at a relatively high frequency is observed [51, 63, 71]. The

difference between dorsal and ventral striatal oscillations are also considered [85],

and the role of striatal oscillations in neuropsychiatric disorders are discussed [60,

73, 81]. In [84], the role of dopamine on striatal oscillations is discussed, where it is

stated that the increases and decreases of dopamine level in basal ganglia push the

dynamic state toward or away from beta oscillations.

Computational Methods: Point Neurons and Synaptic
Connections

Since the aim is to propose a simple model that would help the investigation of

dopamine on synchronous activity in striatum, the model will be composed of Izhike-

vich point neurons and dynamic synaptic connections. The structure given in Fig. 2 is

built to model the striatum as the input structure of basal ganglia circuits for cortical

stimulations. This model consists of three groups of neuron populations: D1 type

medium spiny neurons (MSND1), D2 type medium spiny neurons (MSND2) and

interneurons (IN). MSND1 and MSND2 neuron populations consist of 100 neurons

and IN group has 20 neurons.
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MSND1 MSND2

IN

Poisson
Background
projection

Poisson
Background
projection

Poisson
Background projection

Poisson
Cortex projection

Poisson
Cortex projection

Fig. 2 A model of striatum which includes MSND1, MSND2 and IN. ⊣ is used for inhibitory and

→ for excitatory connections. Projections from the cortex and the background activity are modeled

by poisson distributions

All three populations receive mostly excitatory afferents from different corti-

cal and subcortical areas [76]. These are denoted as background oscillations in the

model, but still some excitatory interconnections are implemented in the striatum,

not only to model the effect of excitatory afferents further, but also the excitatory

effect of neurotransmitters on MSNs. In order to represent background oscillations,

these three different neuron groups are stimulated using Poisson distributions. The

frequency of Poisson distributions is 20 spike/s for MSN groups, while this fre-

quency is doubled for the IN group. These are denoted by arrows labeled Poisson

in Fig. 2.

During the simulations, the sensory stimuli that cause activation in striatum from

cortical excitation is modeled as a Poisson distribution with frequency 50 spike/s. As

the sensory input will activate the basal ganglia circuit for a specific time interval,

this sensory input is applied to the network for 1000 ms while the activation of the

network is considered for 3000 ms.

To form the network of neurons, point neurons are considered and Izhikevich

neuron model [86] is used. The equations governing the membrane potential and

recovery variable are given in Eq. 1 and the reset condition is given in Eq. 2.

v′ = 0.04v2 + 5v + 140 − u + ge − gi

u′ = a(bv − u) (1)

if v > 30mV, then v ← c and u ← u + d (2)

MSNs are modeled as regular spiking and IN neurons are modeled as fast spiking

neurons. The parameters for the neuron models are given in Table 1.
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Table 1 Connection weights and Izhikevich model parameters. ⊣ is used for inhibitory and → for

excitatory connections

Neuron parameters MSN IN

a 0.02/ms 0.1/ms

b 0.2/ms 0.2/ms

c –65 * mV –65 * mV

d 8 * mV/ms 2 * mV/ms

Connections Weights Probabilities

IN ⊣ MSND1 5 * mV/s 0.2

IN ⊣ MSND2 5 * mV/s 0.2

MSND1 → MSND1 𝛼 * 200 * mV/s 0.15

MSND1 ⊣ MSND1 10 * mV/s 0.25

MSND2 → MSND2 𝛼 * 200 * mV/s 0.15

MSND2 ⊣ MSND2 10 * mV/s 0.25

Poisson (Cortex projection) → MSND1 𝛼 * 10 * mV/s One-to-one

Poisson (Cortex projection) → MSND2 𝛼 * 10 * mV/s 0.2

Poisson (Background activity) → MSND1 300 * mV/s One-to-one

Poisson (Background activity) → MSND2 300 * mV/s One-to-one

Poisson (Background activity) → IN 700 * mV/s 0.2

In all the Poisson groups that denote background activity in Fig. 2, it is assumed

that there are 100 independent units and that the connections from Poisson units are

one-to-one in the case of MSNs and all-to-all in the case of INs with probability of

20 %. All-to-all connections for a certain probability means that the connections are

determined randomly and that only the specified percentage of possible connections

exist. Thus, while each MSN gets one Poisson input, each IN gets approximately 20

Poisson inputs as background activation. The connections from cortex, represent-

ing the projection of cortical activity to striatum, are excitatory and assumed to have

one-to-one connections for MSND1 population and all-to-all connections with prob-

ability of 20 % for the MSND2 population. The difference in connections between

MSND1 and MSND2 populations is to model the higher release probability of the

excitatory synapses in the indirect pathway.

Though these above mentioned connections are excitatory, there are also

inhibitory connections in the network. The IN group has inhibitory connections to

MSND1 and MSND2 populations, and these are assumed to be all-to-all connections

with probability of 20 %. The connections within the MSND1 and MSND2 groups

are all-to-all and excitatory with probability of 15 % and all-to-all and inhibitory with

probability of 25 %. Though MSNs connect with each other through GABAergic

synapses, we added excitatory connections to model the excitatory effect of neuro-

transmitters. This strategy of modeling helps to build the intrinsic oscillatory prop-

erties of MSNs, even with such a simple model. Otherwise the oscillations of MSNs
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in the model would just follow the oscillations of Poisson groups. All the changes in

conductances (weights) and probabilities are given in Table 1.

All the connections to MSN groups and the IN group, from the IN group to MSN

groups, and within groups are taken to be dynamical. Each MSND1 and MSND2

population has excitatory and inhibitory connections within its own group Fig. 2.

The inhibitory connections within the MSN groups and from INs to MSN groups

and the excitatory connections corresponding to background activity (the last three

rows in the connections part of the Table 1) are modeled as in Eqs. 3 and 4. Synaptic

activity occurs when presynaptic neurons fire; in this case, the conductance between

pre- and post-synaptic neurons increases as given in Eq. 4.

ġx = −
gx

𝜏syn
x ∈ {e, i}, (3)

Here index e corresponds to excitatory, and i corresponds to inhibitory connections.

v(j) > Vthr then g(k)x → g(k)x + wx,j−k (4)

As the overall effect of dopamine is to promote activation, this effect is modeled

using excitatory connections. That is why excitatory connections are added to the

intraconnections of the striatum in the model. These excitatory connections and the

connections for cortical projections are rendered to be modulatory due to the Spike

Time Dependent Plasticity (STDP) rule [18, 78]. Modeling the effect of dopamine

with STDP would also reveal its role in reward systems. In STDP, the weight of the

synaptic connection between a presynaptic and postsynaptic neuron is modulated

according to spike times. Whenever, presynaptic neuron fires before a post synap-

tic neuron, the connection weight is increased exponentially in proportion to how

close together the spikes are. If the post synaptic neuron fires first, then the weight is

decreased [87]. Synaptic time constants are also modulated to model the difference

in how quickly dopamine affects D1 type versus D2 type MSNs, which is contrary

due to the difference in the amount [78]. So, the connection dynamics are modeled to

incorporate this difference as in Eqs. 5, 6 and 7, where 𝛼 = DA for MSND1 neurons

and 𝛼 = 1∕DA for MSND2 neurons. Here, DA denotes the amount of dopamine, and

three different levels are considered throughout the simulations explained in section

“Simulation Results”. All parameters related to connections are given in Tables 1

and 2.

ġx = −
gx

𝛼 ⋅ 𝜏syn
x ∈ {e}, (5)

v(j) > Vthr then g(k)x → g(k)x + wSTDP,j−k (6)

wSTDP,j−k = { Apree−𝜏∕𝜏pre if 𝜏 > 0
Aposte+𝜏∕𝜏post if 𝜏 < 0 (7)
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Table 2 Synaptic time constant and STDP parameters

Synaptic

and STDP

parameters

𝜏syn 𝜏pre 𝜏post gmax Apre Apost

Values 10 ms 10 ms 10 ms 2 0.01 0.01

𝜏 = tpost
k − tpre

j (8)

The network given in Fig. 2 and explained above is a simple model of striatum,

when compared to other computational models using spiking neurons [88, 89]. The

simulation results in the next section shows that still, this simple model is capable of

providing necessary information about the oscillatory activity in the striatum.

Results: Simulations and Takehome Messages

The model of striatum introduced in the previous section is simulated in BRIAN

environment [90] and the frequency analysis is done using [91] with three different

DA levels to investigate the role of dopamine on synchronization of MSND1 and

MSND2 groups. These three different levels correspond to normal dopamine level

(DA = 1), depletion of dopamine (DA = 0.9) and excess of dopamine (DA = 1.1).

Thus, the simulation results are given for the MSND1 and MSND2 populations. We

especially considered the activity of two groups separately to investigate further the

different role of two types of dopamine receptors on the overall activity of the basal

ganglia circuits.

While running all simulations, initial values of point neurons are chosen to be

randomly distributed around the resting values. Initial values for connection dynam-

ics are all zero. The simulations are done 20 times for all the different cases, and

spectrograms and histograms are obtained considering the mean of the spike rates

for 20 trials. The synchronization measures are also obtained, considering 20 trials.

For each case and for each population, the behaviour of a randomly choosen single

neuron and synaptic connection is given, to give an idea about how a single neuron

is behaving in a population. To show the activity of neuronal population also raster

plots with spike rates are given.

Before begining to investigate the effect of dopamine on the activity of striatal

medium spiny neurons, we first concentrated on the intrinsic activity of MSND1 and

MSND2 population due to background stimulation. So, results for both MSN groups

are first obtained without sensory stimuli for DA = 1 case. We considered this case

as a resting state activity of MSNs and will benefit from these results to observe the

effect of the sensory stimuli on striatum due to the cortical excitation. In order to

show the activity of a single neuron for each population, membrane potential of one

randomly chosen MSN from MSND1 group and MSND2 group are given in Fig. 3
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Fig. 3 Membrane potential and synaptic dynamics of a neuron, randomly selected in MSND1 and

MSND2 groups, when DA = 1.0 and projections from cortex are removed. The red lines indicate

the synaptic dynamics of the inhibitory connections

on the first and the third rows, respectively. The change in the synaptic behavior

is also shown for a randomly chosen connection from each group in Fig. 3, on the

second and the forth rows, respectively.

In order to follow the activity of the whole population for both groups, raster plots

and spike rates are given in Fig. 4. As illustrated in these figures, there is almost no

activity in both groups, which is expected as the MSNs spike rarely. Together, Figs. 3

and 4 show that the randomly choosen neuron in the MSND2 group spikes, but the

neuron chosen from the MSND1 population does not. As these are just randomly

choosen neurons, Fig. 4 gives a better view of overall activity and shows that the two

groups behave almost similiar. The difference between MSND1 and MSND2 popu-

lations can be followed better from the synaptic dynamics in Fig. 3 and from spectro-

grams in Figs. 5 and 6. The difference between the synaptic dynamics of randomly

choosen MSND1 and MSND2 indicates that MSND2 is fired more than MSND1.

Even though this difference is not significant to effect the raster plots, the intrinsic

behavior of MSND1 and MSND2 shows differences [92].
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Fig. 4 Raster plot and spike rates of MSND1 and MSND2 groups when DA = 1.0 and projections

from cortex are removed. The red lines indicate the spike rates

Fig. 5 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND1 group when DA = 1.0 and projections from cortex are removed
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Fig. 6 The above figure is the time-frequency spectogram and the bottom figure is the frequency

spectrum of spike rates of MSND2 group when DA = 1.0 and projections from cortex are removed

For this case, the frequency analysis for MSND1 and MSND2 are given in

Figs. 5 and 6, respectively. The spectrograms obtained from the spike rates of each

group, shows that there is delta band activity in resting as expected [51, 63]. This

result verifies the validity of the model, as the oscillatory behavior of striatal neu-

rons is observed rather than frequencies of the Poisson distributions applied for

background oscillations. This is due to the modeling strategy explained in section

“Computational Methods: Point Neurons and Synaptic Connections”, where the

behavioral properties are considered along with structural properties to obtain a sim-

ple but descriptive model.

The frequency range is cut at 10 Hz for both MSN groups, as the frequency his-

togram given in the inner figure in Fig. 21 denotes that there is no significant activity

for higher frequencies.

Simulation Results

Now, we will proceed to obtain results for different DA levels, with the effect of the

sensory stimuli causing activation in striatum due to cortical excitation. This effect is

modeled is modeled as Poisson distribution with frequency 50 spike/s applied from

1000 to 2000 ms. Thus in the following figures in the first and last 1000 ms, there is

no excitatory stimuli effecting the neuronal population in both MSN groups.
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Fig. 7 Membrane potential and synaptic dynamics of a neuron, randomly selected in MSND1 and

MSND2 groups, when DA = 0.9. The red lines indicate the synaptic dynamics of the inhibitory

connections

First, we will look at the dopamine depletion case. Because the indirect pathway is

active in the case of dopamine depletion, we expect to see activation in the MSND2

group, while the MSND1 group is quiescent [92, 93]. Looking at the membrane

potential of a randomly chosen neurons from MSND1 and MSND2 groups in Fig. 7

on the first and the third rows, this case is very clearly obtained with the model.

As it can be followed from Fig. 7 on the second and fourth rows, the activity in the

D2 group renders active synaptic dynamics, while there is almost no change in the

synaptic activity of the synaptic connection from the D1 group.

This activity of D2 group and quiescence of D1 group is also observed in raster

plots of the populations as given in Fig. 8.

As it is followed from Figs. 5 and 6, only delta frequency band is observed in

the resting case, but now in this case the delta band is the dominant frequency band

for the MSND1 group (Fig. 9), whereas the beta band is also dominant for MSND2

group (Fig. 10). So, the simulation results obtained with the model gives a difference

between D1 and D2 type dopamine receptors, while the over all activity of frequency

bands are in agreement with the literature [8, 83, 84].
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Fig. 8 Raster plot and spike rates of MSND1 and MSND2 groups when DA = 0.9. The red lines
indicate the spike rates

Fig. 9 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND1 group when DA = 0.9
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Fig. 10 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND2 group when DA = 0.9

In case there is an excess in the dopamine level (DA = 1.1), we are expecting the

reverse situation of what is observed in the DA = 0.9 case. The membrane potential

and synaptic activity of randomly chosen single neuron are given in Fig. 11 and raster

plots for both groups along with spike rates are given in Fig. 12.

As it can be followed from Figs. 11 and 12, the D1 population is more active

than the D2 population, but when we look at the frequency analysis given in Figs. 13

and 14, the difference between delta and beta band activity is not great as in the D2

population for DA = 0.9 case. This is due to the connection difference between the

two populations.

To see better the role of dopamine level on rhythmic activity, we will also look

at the normal dopamine level, which is obtained by DA = 1 in the simulations. In

this case, there is not much difference between activity of the MSND1 and MSND2

groups as it can be followed from single neuron behavior in Fig. 15 and neuronal

populations in Fig. 16.

When the spectrograms of these populations are considered as given in Figs. 17

and 18 which correspond to MSND1 and MSND2 groups, respectively, then the

difference in the frequency bands can be recognized. D2 population have more high

frequency components, due to the dense connections between this population and

cortex.

To have an overall understanding of the role of dopamine on different MSN

groups, we will look at the power spectrograms and frequency histograms of the

spike rates with different dopamine levels. In Fig. 19, it is clearly seen that as the

dopamine level increases the activity of the MSND1 population increases. Mean-
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Fig. 11 Membrane potential and synaptic dynamics of a neuron, randomly selected in MSND1

and MSND2 groups, when DA = 1.1. The red lines indicate the synaptic dynamics of the inhibitory

connections

while, only weak low frequency band delta are observed in the DA = 0.9 and DA = 1

cases, whereas delta oscillation is strengthened and beta oscillation emerges with the

excess of dopamine.

In Fig. 20, the opposite of what is happening in the D1 population is occurring,

but there is a difference, since the activity in the D2 population is greater when

compared to the D1 population overall. Also, the strength of beta oscillations in the

low dopamine case is more than the strength of delta oscillations, showing the role

of D2 receptors in Parkinson’s disease as mentioned in [51, 94].

Looking at the histograms for MSND1 and MSND2 groups with different

dopamine levels (Fig. 21 gives a better understanding of high beta activity in MSND2

population).

To see the general effect of dopamine on the synchronization of MSND1 and

MSND2 groups, the synchronization measure given by Eq. 9 [95] is used to obtain

Fig. 22. The synchronization measure depends on the variance of neural activities of

neurons in the considered time interval.



390 R. Elibol and N.S. Şengör

Fig. 12 Raster plot and spike rates of MSND1 and MSND2 groups when DA = 1.1. The red lines
indicate the spike rates

Fig. 13 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND1 group when DA = 1.1
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Fig. 14 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND2 group when DA = 1.1

Fig. 15 Membrane potential and synaptic dynamics of a neuron, randomly selected in MSND1

and MSND2 groups, when DA = 1.0. The red lines indicate the synaptic dynamics of the inhibitory

connections
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Fig. 16 Raster plot and spike rates of MSND1 and MSND2 groups when DA = 1.0. The red lines
indicate the spike rates

Fig. 17 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND1 group when DA = 1.0
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Fig. 18 The above figure is the time-frequency spectrogram and the bottom figure is the frequency

spectrum of spike rates of MSND2 group when DA = 1.0

Fig. 19 Power spectrum of MSND1 groups for DA level is 0.9 (a), 1.0 (b) and 1.1 (c), respectively



394 R. Elibol and N.S. Şengör

Fig. 20 Power spectrum of MSND2 groups for DA level is 0.9 (a), 1.0 (b) and 1.1 (c), respectively

𝜌 =
⟨ 1

N

N∑

j=1
vj(t)2⟩t − ⟨ 1

N

N∑

j=1
vj(t)⟩2t

1
N

N∑

j=1
(⟨vj(t)2⟩t − ⟨vj(t)⟩2t )

(9)

In the synchronization measure equation, N is the number of neurons and vj(t) is

the membrane potential of the jth neuron. ⟨.⟩t denotes the mean over the time vari-

able. Nominator corresponds to variance of V(t) which is the mean over the neuron

index variable and the denominator corresponds to the variance in membrane poten-

tials.

In Fig. 22, the synchronization measures calculated for MSND1 and MSND2

groups are plotted with changing dopamine levels between 0.9 and 1.1 for 21 dis-

crete values. For each value of dopamine level, 20 different simulations are carried

out, and results of each are shown in Fig. 22 with stars and diamonds corresponding

to MSND1 and MSND2, respectively. While the synchrony in MSND1 population

increases as dopamine level increases, the reverse is true for the MSND2 popula-

tion. This contrary effect of dopamine on synchrony is not symmetric for MSND1

and MSND2: D2 population are more sychronous in general.
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Fig. 21 Frequency histograms of spike rates of MSND1 and MSND2 groups when DA = 0.9, 1.0

and 1.1
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Fig. 22 DA versus synchronization measure. Stars show synchronization measure values for

MSND1 and diamonds show synchronization measure values for MSND2 at DA levels which are

changed from low DA level (0.9) to high DA level (1.1). Black and blue lines are obtained by 4th

degree regression using the data for stars and diamonds, respectively

We also looked at the role of STDP on synchronization which can be can be

followed from the raster plots for three different dopamine levels given in Fig. 23.

The maximum value for the synaptic conductance and the amplitude of change in the

conductance for postsynaptic neuron are increased here, compared to values given

in Table 2. When the raster plots given in Fig. 23 is compared to Figs. 8, 12 and 16,

it is obvious that STDP enhances synchronization in both MSN groups. It can be

seen from Fig. 23 that the synchrony is preserved even after the stimuli is removed

for MSND2 while DA = 0.9 and DA = 1 and for MSND1 when DA = 1.1. Though

there are papers on STDP and DA’s role in striatum, it is still not clear how STDP

effects the coherent behavior of MSN [92, 96]. This result gives a clue that STDP’s

role could be to enhance the effect of dopamine on synchronization.

Take Home Messages

A simple neurocomputational model of striatal medium spiny neurons focusing on

the role of dopamine is introduced and its simulation is carried out in the BRIAN

environment. While the effect of dopamine on the synchronization is investigated,
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Fig. 23 Raster plot and spike rates of MSND1 and MSND2 groups when STDP weights are

increased (gmax = 5, Apre = 0.1 and Apost = 0.1) and DA = 0.9 (a), DA = 1.0 (b) and DA = 1.1 (c)
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D1 and D2 types are considered separately and simulation results obtained show that

dopamine level affects D1 and D2 type MSN differently. As the effect of dopamine is

modeled similar to [88] where the role of STDP is considered, we also looked at the

role of STDP on the synchronization for different levels of dopamine, which was not

considered in [88]. It is observed that STDP enhances the synchronization of MSNs.

The effect of STDP on striatal medium spiny neurons behavior has been mentioned

in [92, 96] too.

The model employs Izhikevich point neurons and the synaptic connections are

modeled with the simplest dynamic model. Even with such a simple model of neu-

rons and synaptic connections, the intrinsic properties of striatal MSNs are captured.

The role of dopamine is investigated at a single neuron level and also at population

level and simulation results are displayed with membrane potential and synaptic con-

nection dynamics, raster plots and frequency analysis. Also, a comprehensive analy-

sis of synchronization is done using the synchronization measure given in [95].

The results show that even a simple computational model is capable of building

a relation between data obtained by LFP and spiking neural network models. With

further improvement of computational models in neuroscience based on rigorous

mathematics, the community of neurologists and psychiatrists will benefit more from

them when investigating their hypotheses [2, 3]. Even the simple model proposed

here shows that computational models could be used as a step in building a more

comprehensive understanding of cognitive processes and fulfill the gap between

molecular and phenomenological levels. It can also provide tools to diagnose and

treat psychiatric disorders besides neurodegenerative diseases.

While proposing computational models, it should be kept in mind that all models

are abstractions and they give a partial explanation from the point of view of what

is thought to be the most important aspect of the problem under investigation. So,

the complexity level of the computational model should be determined based on the

phenomenon to be modeled. In neuroscience, the computational model should be

based on the functional and structural properties of the neuronal processes consid-

ered and if possible, the model results should be consistent with data observed at

different levels, such as single neuron recordings, EEG/LFP and even fMRI.
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A Neural Mass Computational Framework
to Study Synaptic Mechanisms Underlying
Alpha and Theta Rhythms

Basabdatta Sen Bhattacharya and Simon J. Durrant

Introduction

Building biologically-inspired computational tools is gaining in popularity for

advancing neuroscience research towards understanding and predicting neurological

and psychiatric disorders [6, 16]. However, computational time and resources have

been a major challenge towards such endeavours. Population-level representations

(as opposed to networks of single neuronal models) that can simulate higher-level

brain dynamics observed in Electroencephalogram (EEG) and Local Field Poten-

tials (LFP) can address the computational constraints to a fair extent, for example

neural mass models [21, 53, 54]. The term ‘neural mass’ was coined by Walter J.

Freeman [32] to define the collective behaviour of a mesoscopic scale neuronal pop-

ulation (≈104–107 neurons) that are packed densely in a spatial area of 0.3–3 mm

and may be assumed as a single entity [48]; Freeman’s work comprised neuronal

behaviour and dynamics in the olfactory pathway. Around the same time, Wilson

and Cowan proposed the mathematical framework for modelling feed-forward and

-back connections between excitatory and inhibitory ‘point-neurons’ (an ensemble

representation of a neuronal population, along the lines of neural mass) that could

mimic brain dynamics such as seen in EEG and LFP [75]. This mathematical frame-

work forms the basis of a seminal work by daSilva [19] and Zetterberg et al. [76],

where they introduced a block-diagram-like approach (from Control Engineering)

to model a simple thalamocortical circuitry of the visual pathway for simulating

alpha rhythms—oscillatory activity within 8–13 Hz seen in LFP and EEG record-
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ings. The interaction between thalamic and cortical networks are now well known

to underlie brain oscillatory patterns, referred to commonly as ‘brain rhythms’ [14],

corresponding to cognition, perception and sleep-wake transitions [45, 65]. Sub-

sequently, Lopes da Silva’s thalamocortical neural mass model mimicking alpha

rhythm was further extended in [43, 66, 74]; these works set a ‘trend’ of adopting

neural mass models of thalamocortical circuitry in clinical neuroscience research

towards mimicking brain rhythms of both health and disease conditions [13, 37, 55,

63, 67, 70] (see [22] for a review).

Alpha rhythms are traditionally believed to represent an idling state of the brain

and is most prominent in EEG from occipital scalp (the seat of visual cortex) when a

subject is awake and resting with eyes closed; the rhythms subside when the eyes are

opened. However, in current times and with advancing research, it has emerged that

the alpha rhythms also play an integral role in various awake cognitive states [50].

Furthermore, alpha to theta (4–7 Hz) shift is an EEG marker of brain state transition

from quiet wakefulness (preceding sleep) to a state of drowsiness (sleep stage-I).

At the same time, anomalies of alpha rhythmic oscillations are indicators of sev-

eral disease conditions, for example ‘slowing’ (reduced frequency of peak power)

of the alpha rhythm is a hallmark of EEG in Alzheimer’s disease [8, 44]. Similarly,

thalamocortical dysrhythmia (TCD), a shift of peak frequency from alpha to theta,

is an EEG marker of several disorders such as Tinnitus, Neurogenic Pain, Depres-

sion [41, 49, 60]. We have proposed a modification to the alpha rhythm model in [19]

to show a significant effect of reduced synaptic connectivity from inhibitory cell

populations in simulating AD related conditions in the model [8]. This is consis-

tent with autopsy studies in AD showing impaired inhibitory pathways [31]. How-

ever, a major constraint in the classic neural mass computational models is the use

of Ralls alpha function [56]; although the alpha function is a fair estimation of the

synaptic transmission process [4], it falls short when investigating disease condi-

tions, where attributes such as transmitter concentration and ion-channel states might

play a significant role. More recent research have used parameters from an experi-

mental study [36] on a thalamic slice from mammal to model receptor dynamics

during synaptic transfer in a neural mass model [67]. Along these lines, another bio-

logically plausible alternative for modelling ligand-gated and secondary-messenger-

gated synaptic transmission is to implement kinetic models [24, 25], which takes

into account the transmitter concentration in the synaptic cleft and subsequent state

of channels involved in generating the post-synaptic potential. Discussing the future

benefits of kinetic modelling of synaptic processes, the authors in [23] reflect thus:

“A considerable amount of experimental data is available from measurements of

the average activity of populations of brain cells: recordings of electroencephalo-

gram, local field potentials, magnetoencephalograms, optical recordings, magnetic

resonance images, etc. It would be interesting to attempt to establish a relationship

between such global measurements and dynamics at the molecular level”. Indeed,

such an approach was already adopted by Aradi and Erdi [2] and Erdi et al. [30] in

network models of hippocampal neurons to investigate neuropharmacological solu-

tions to neuro-psychiatric disorders.
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In prior works, a novel approach is adopted for classic neural mass models where

Rall’s alpha function is replaced by kinetic models of Glutamatergic and 𝛾-amino-

butyric-acid (GABA)-ergic synapses mediated by 𝛼-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic-acid (AMPA) and GABAA,B neuroreceptors respectively [5, 10].

The motivation for these works have been to take a step forward in building com-

putational tools that can complement experimental research in understanding the

underlying cellular mechanisms of anomalous EEG signals in neurological and psy-

chiatric disorders. In addition, this novel approach reduces the computational time by

an order of 10 compared to the classic neural mass model for similar thalamocorti-

cal structures. Implementing this approach for a thalamocortical model have demon-

strated model sensitivity to neurotransmitter concentration, forward and reverse rates

of reaction and leak conductance in the model in effecting change in time-series pat-

terns as well as shifting the power spectrum [5].

In this work, we present a thalamocortical model representing the three neu-

ronal population of the Lateral Geniculate Nucleus (LGN) viz. the thalamocortical

relay (TCR) neurons that are the main carriers of sensory information to the cortex;

the thalamic interneurons (IN); the thalamic reticular nucleus (TRN) that receive a

‘copy’ of all information transfer between the TCR and the cortex [61]. The synap-

tic layout of the model is based on data obtained from LGNd (dorsal) slices of cat

and rat thalamus [40, 45, 62]. Each parameter corresponding to synaptic attributes

in the model is a representation of the population average of the parameter value

in the respective neural mass. The AMPA and GABAA synapses in the model are

simulated by two-state kinetic models. In the visual pathway, simultaneous LFP and

EEG recordings from the TCR cells (thalamus) and the cortex respectively show a

high degree of correlation [17, 20]. Thus, the output from the TCR population in

the model is assumed to be a simulation of LFP recordings from LGN. We assume a

de-corticated LGN (thalamus), similar to an approach adopted in early experimental

works [3, 46, 51, 52, 64] looking into independent thalamic cell behaviour, which

allowed an in-depth understanding of the thalamus as a key player in generating and

sustaining brain oscillations. These pioneering works on LGN slices in vitro showed

that the thalamus is capable of displaying oscillations even in a de-corticated state,

and that similar thalamic mechanisms underlie alpha and theta rhythms of EEG and

LFP [42]. The results from our model conform to these experimental observations

and identify the neurotransmitter concentration in the synaptic cleft as a crucial para-

meter that impact transition between alpha and theta oscillatory dynamics. In addi-

tion, our results indicate distinct inhibitory roles for the IN and the TRN population,

the former acting as a ‘balancing’ element in the circuit, the latter taking a dominant

role in effecting (spindle-like) ‘waxing-and-waning’ and limit cycle oscillations.

In section “A Kinetic Model Based Framework for Neural Mass Modelling of

the Thalamic Circuit”, we present an overview of kinetic modelling of AMPA and

GABAA based neuroreceptors in context to their embedding in the neural mass mod-

els. This is followed by a description of the neural mass model of LGN presented in

this work. The results of model simulation are demonstrated in section “Results and

Discussion” and their implications are discussed. We conclude in section
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“Conclusion” with a recapitulation of the salient observations made in section

“Results and Discussion” and a discussion of ongoing and future work.

A Kinetic Model Based Framework for Neural Mass
Modelling of the Thalamic Circuit

A simple mathematical model defining the chemical kinetics of ion-channel is pro-

posed in [24] as a computationally efficient means of studying detailed synaptic

attributes in neuronal models. The dynamics of each ion channel is represented by

Fig. 1 a The state transition diagrams for AMPA and GABAA neuroreceptor dynamics defined

in Eq. (1); 𝛼 and 𝛽 are rate of transitions between the two states; The desensitised state of the ion-

channels are ignored in this work for brevity (see [25] for a detailed comparison of kinetic models

simulating more than two-states). b The response function [T] corresponding to an impulse train

of magnitude 2 mV and a base voltage of −65 mV applied at an arbitrarily selected rate of 4 Hz

is shown in panel (i). (The readers may note that for the purposes of this work, all parameters in

Eq. (2) are same for both AMPA and GABAA mediated synapses. Thus, any change in the equation

parameters result in a change in [T] in all synaptic junctions of the model). Panel (ii) shows the

corresponding change in proportion of open ion channels (r). Panels (iii) and (v) show the nega-

tive post synaptic membrane current (PSC) and the positive (excitatory) post synaptic membrane

potential (PSP) corresponding to the AMPA neuroreceptor mediated synapses. Conversely, a pos-

itive PSC and a negative (inhibitory) PSP is shown for GABAA mediated synapses in panels (iv)

and (vi) respectively
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two states as shown in Fig. 1a: an unbound state referred to as ‘C’ denoting the closed

state of the ion channels; a bound state referred to as ‘O’ denoting open states of

the same. While the ‘two-state’ model is an abstracted representation of complex

ion-channel dynamics, it is reported to be a fair approximation of the higher state

models [25]. In the following sections, we present the two-state kinetic model of ion

channels in the post-synaptic neuronal membrane responding to AMPA and GABAA
neuroreceptor based signal transmission, which are then implemented in a neural

mass model of the LGN to simulate LFP dynamics.

AMPA and GABAA Based Neurotransmission

The proportion of open ion channels on the post-synaptic cell membrane (𝛶 ) cor-

responding to the synapse mediated by the neurotransmitter receptor �̄� ∈ {AMPA,
GABAA} is represented by r�̄�

𝛶
, and the two state dynamics are defined in Eq. (1):

dr�̄�
𝛶
(t)

dt
= 𝛼

�̄�[T]
𝜒
(1 − r�̄�

𝛶
(t)) − 𝛽

�̄�r�̄�
𝛶
(t) (1)

where 𝛼
�̄�

and 𝛽
�̄�

are the rate transitions from the open to the closed state and vice-

versa respectively and corresponding to the synapses mediated by �̄�. Furthermore,

r�̄�
𝛶

is a function of the concentration of neurotransmitters in the synaptic cleft ([T]
𝜒

),

which in turn is a function of the pre-synaptic cell (𝜒) membrane potential (V
𝜒

) and

is approximated as a sigmoid function shown in Eq. (2).

[T]
𝜒
(V

𝜒
(t)) =

Tmax
1 + exp (−V

𝜒
(t)−Vthr

𝜎

)
(2)

Tmax is the maximum neurotransmitter concentration and is well approximated by

1 mM (milliMole) [23]. The parameter Vthr represent the threshold at which [T]
𝜒
=

0.5Tmax while 𝜎 affects the steepness of the sigmoid. The resulting post-synaptic

current (PSC) is defined in Eq. (3):

I �̄�
𝛶
(t) = g�̄�r�̄�

𝛶
(t)(V �̄�

𝛶
(t) − E�̄�) (3)

where g�̄� and E�̄�
are the maximum conductance and membrane reversal potential

respectively of the post-synaptic cell corresponding to the �̄� mediated synapse; V �̄�

𝛶

is the post synaptic membrane potential (PSP) corresponding to the �̄�-mediated

synapse, and is defined in Eq. (4):

V �̄�

𝛶
(t) = 1

𝜅m ∫

I �̄�
𝛶
(t) dt, (4)
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Table 1 The range of parameter values are referred from [9, 24, 36, 67, 71]. The exact parameter

values in the model are set by trial simulations such that the model output time-series has a dominant

frequency within the alpha band (8–13 Hz). (A) Data for the forward (𝛼) and reverse (𝛽) rates of

synaptic transmission is according to the range mentioned in [24, 36]. Note that the units used in

our model is at a different time scale (sec
−1

), and thus absolute figures are different from these

references. The data for maximal synaptic conductance g�̄� is in the range mentioned in [36, 71];

note that the unit for this parameter in our model is 𝜇S/cm
2
. Data for E�̄�

is as in [36, 71]. Specific

data relating to the thalamic IN synapses are not mentioned in any of these sources, and are set as

similar to those of TRN in this work. The ‘RET’ in the parameter superscripts refer to the retina

as the source of input to the model. (B) The leakage current in the model cell populations are

assumed to be due to Potassium (K) mainly. Thus, the leakage conductance and reverse potentials

parameters in the model are in the range mentioned in [36, 71]. The resting state membrane potential

for TCR and TRN are as in [71]; the resting state membrane potential for IN is set arbitrarily at a

hyperpolarised value with respect to that of the TCR. The resting membrane potential for RET is set

at −65 mV, and is simulated by a random white noise with mean −65 mV and standard deviation 2
mV

2
. This signal represents the mean membrane voltage of the retina as an afferent to the TCR cell

populations. Thus, there is no ODE corresponding to the RET in the model, and its leak conductance

and leak reversal potentials are indicated with ‘X’

(A) Neurotransmission parameters

Parameters Value Synaptic pathway

𝛼

(
(mM)

−1⋅
(s)

−1)
1000 AMPA, GABAA

𝛽 (s
−1

) 50 AMPA

40 GABAA

g�̄� (µS/cm
2
) 300 AMPA (RET to TCR)

100 AMPA (RET to IN) (TCR to TRN)

100 GABAA

E�̄�
(mV) 0 AMPA

−85 GABAA (TRN/IN to TCR)

−75 GABAA (TRN (IN) to TRN (IN))

(B) Cell membrane parameters
RET TCR IN TRN

g
leak

(µS/cm
2
) X 10 10 10

E
leak

(mV) X −55 −72.5 −72.5

Vrest (mV) −65 −65 −75 −85

where 𝜅m is the post-synaptic membrane capacitance. The input V
𝜒

is an impulse

train of amplitude 2 mV at a base value of −65 mV and at an arbitrarily selected rate

of 4 Hz. The resulting neurotransmitter concentration [T]
𝜒

, probability of opening

of ion channel r�̄�
𝛶

, PSC (I �̄�
𝛶

) and PSP (V �̄�

𝛶
) are shown in Fig. 1b; all parameters used

for generating Fig. 1b are as mentioned in Table 1(A).

In the following section, we present a neural mass model of the thalamic cir-

cuitry where the excitatory and inhibitory alpha functions are replaced with two-state

kinetic models of AMPA and GABAA mediated synapses respectively as defined in

Eqs. (1)–(4).
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A Neural Mass Model of the Lateral Geniculate Nucleus
Implementing Synaptic Kinetics

Experimental research on the Lateral Geniculate Nucleus (LGN) of mammals and

rodents suggest two basic cell types: the thalamocortical relay (TCR) cells and the

interneurons (IN). In addition, the thalamus is surrounded by a thin sheet of cells that

receive copies of both afferent and efferent communication between thalamus and the

cortex; this group of cells is considered as a part of the thalamus and is called the

thalamic reticular nucleus (TRN). The neural mass model presented in this work is

based on the synaptic layout of the LGN and is shown in Fig. 2. In addition to the fast

excitatory (AMPA) and inhibitory (GABAA) synapses in the LGN cell populations,

the TRN also makes a slow inhibitory synapse on the TCR cells mediated by GABAB
neuroreceptors [38]. However, in a previous study, the kinetic model of the GABAB
synapse did not show any significant effect on the thalamocortical model output.

Thus, this pathway is ignored in the current work (and is being investigated as a part

of an ongoing work on the model). Also, while a feedback from the TCR to the IN cell

Fig. 2 The synaptic layout of the model is based on experimental data obtained from the dorsal

Lateral Geniculate Nucleus (LGNd) of mammals and rodents. Both TCR and IN cell populations

of the LGN receive excitatory Glutamatergic inputs from the retinal spiking neurons (RET) that

are mediated by AMPA neuroreceptors. The IN cell populations make a GABAA receptor mediated

inhibitory synapse on themselves as well as on the TCR population. Information on the synaptic

pathway from the TCR to IN is ambiguous in literature and is ignored in the current work. The TCR

population make AMPA mediated excitatory synapses on the TRN population, while the TRN pop-

ulation make GABAA mediated inhibitory synapses on the TCR population as well as on itself. All

synaptic connectivity parameter values in the model are derived from experimental data presented

in [40, 45] and are mentioned in Table 2
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population is suggested based on extrapolations from EEG-based studies [18, 77],

the biological plausibility of this pathway is yet to be confirmed from experimental

studies to the best of our knowledge. Thus, this pathway is ignored in the current

model (as in our previous works [9, 11, 16]).

The underlying mathematical framework for the neural mass model implement-

ing synaptic kinetics (Fig. 1a) is defined in Eqs. (5)–(9). The input to the model is

assumed to be the ensemble membrane potential of pre-synaptic retinal cell popula-

tions (Vret) in a resting state with no sensory input and is simulated using a Gaussian

white noise [20] with a biologically plausible mean value of −65 mV. The standard

deviation of the noise is set by trial and error to 2 mV
2

to reduce stiffness of the

differential equations. All variables and parameters defined in the equations below

are assumed to be the ‘ensemble representation’ corresponding to a neural mass; this

is similar to the concept of a ‘point neuron’ representation of a localised neuronal

population acting in synchrony. The output of the TCR population, hereafter referred

to as the ‘model output’, is considered as the simulation of LFP dynamics recorded

from LGN in mammals and rodents (for example from dogs in [19]).

[T]
�̄�
(V

�̄�
(t)) =

Tmax
1 + exp(−V

�̄�
(t)−Vthr

𝜎

)
(5)

dr�̄�
̄
𝛶

(t)
dt

= 𝛼
�̄� ⋅ [T]

�̄�
(V

�̄�
(t)) ⋅ (1 − r�̄�

̄
𝛶

(t)) − 𝛽
�̄� ⋅ r�̄�

̄
𝛶

(t) (6)

I �̄�
̄
𝛶

(t) = g�̄� ⋅ r�̄�
̄
𝛶

(t) ⋅ (V ̄
𝛶
(t) − E�̄�) ⋅ Cconn (7)

𝜅m
dV ̄

𝛶
(t)

dt
= −

∑

̄
𝛶∈{TCR,IN,TRN}

(I �̄�
̄
𝛶

(t) + Ileak
̄
𝛶

(t)), (8)

Ileak
̄
𝛶

(t) = gleak
̄
𝛶

(V ̄
𝛶
(t) − Eleak), (9)

where �̄� ∈ {RET ,TCR, IN,TRN} represent the pre-synaptic cell populations; ̄
𝛶 ∈

{TCR, IN,TRN} represent the post-synaptic cell populations. The variables and

parameters in Eqs. (5)–(8) are similar to those defined in Eqs. (1)–(4) and mentioned

in Table 1(A). The normalised synaptic connectivity parameter Cconn in Eq. (7) rep-

resent the collective ‘fan-in’ of synapses from a pre-synaptic population on to the

post-synaptic population dendrites. Specific connectivity parameters in each synap-

tic pathway of the model shown in Fig. 2 is denoted as Cūv̄w̄; see the legend of Table 2

for further details. All synaptic connectivity parameter values are obtained from liter-

ature on experimental data, for example in the TCR population, experimental studies

on a sample population of cells indicate that approximately 7.1 % of the total num-

ber of incoming synapses are from the retinal ganglion cells, while 30.9 % of the

synapses are from inhibitory cell populations. However, to the best of our knowl-

edge, a quantitative distinction between the inhibitory inputs from the TRN and IN

populations on to the TCR is not yet available. Thus, we have set the inhibitory con-

nectivity parameter values for TCR afferents to an arbitrarily selected proportion of
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Table 2 Base values of the synaptic connectivity parameters Cconn in Eq. (7) and derived from

experimental data on LGNd of mammals and rodents [40, 45, 62] (as in our previous works [9,

16]). The nomenclature for the specific connectivity parameter in each synaptic pathway is Cūv̄w̄:

each parameter value in the table is a normalised figure that represents the percentage of the synap-

tic contacts made on the post-synaptic cell population u by the pre-synaptic cell population v, and

w represents the nature of the synapse i.e. excitatory (e) or inhibitory (i). The model neuronal pop-

ulations are represented by the letters t for TCR, n for TRN, i for IN and r for retina. For synaptic

contacts by a cell population on itself, v is represented by s, which stands for a connection from

‘self’. All ‘X’ indicate a lack of biological evidence for any synaptic connectivity in the specific

pathway

Efferents →
Afferents ↓

TCR IN TRN Retinal

TCR X Ctii
5
8

of 30.9

C
a
tni

3
8

of 30.9

Ctre
7.1

IN X Cisi
23.6

X Cire
47.4

TRN Cnte
35

X Cnsi
20

X

62.5(IN) ∶ 37.5(TRN) in the model.
1

A similar abstraction is followed for parameter-

ising the synaptic connectivity in the remaining model pathways and are mentioned

in Table 2. While there is variation in reported data for the connectivity in literature

on experimental studies, we follow the data specified in [40, 45]. The parameter I
leak
̄
𝛶

in Eq. (8) is the ensemble leak current of the post-synaptic population membrane

defined in Eq. (9), where gleak
̄
𝛶

and Eleak
are the maximum leak conductance and leak

reversal potential respectively of the post-synaptic cell population ̄
𝛶 . The leak para-

meters as well as the resting membrane potentials for the model cell populations are

mentioned in Table 1(B).

Empirical Methods

The ODEs in Eqs. (5)–(9) are solved using the 4th∕5th order Runge-Kutta-Fehlberg

method (RKF45) in Matlab for a total duration of 40 s at a resolution of 1 ms. The

output voltage time-series is averaged over 20 simulations, where each simulation

1
In previous works with GABAB pathway from the TRN to the TCR, we have maintained an equal

proportion of fan-in on the TCR from the IN and TRN. Thus, total synaptic contact from TRN to

TCR has been
1
2

of 30.9 %. Now, TRN makes both GABAA and GABAB contact on the TCR; thus

the proportionality of GABAA: GABAB was maintained at 3 ∶ 1, as the GABAB pathway showed

minimal effect on the model. Here, we have ignored the GABAB pathway and diverted the propor-

tion of connectivities in this pathway i.e.
1
8

of 30.9 % to the GABAA pathway from the IN to the

TCR. A combinatorial study on the possible proportionates in the GABAA pathway in the model

remains to be explored in ongoing and future works.
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runs with a different seed for the noisy input. For frequency analysis, a 30 s epoch

(from 9–39 s) of the output signal from each of the 20 simulations is bandpass fil-

tered between 1–100 Hz with a Butterworth filter of order 10. A 4-point Fast Fourier

Transform (FFT) at a sampling frequency of 1000 Hz is applied to each of these

filtered signals. The power spectral density (psd) is derived using the Welch peri-

odogram with a Hamming window of segment length spanning 500 data points (half

the size as that of the sampling frequency) and with overlap of 50 %. All of the 20

psd thus obtained are then averaged for further analysis. The bar plots show the mean

power within the frequency bands theta (4–7 Hz) and alpha (8–13 Hz).

Results and Discussion

The objective is to mimic the EEG corresponding to the state of ‘quiet wakeful-

ness’ (i.e. when a subject is in an awake resting state with eyes closed, for example

just before transition to a state of sleep) in the model output with a dominant fre-

quency within the alpha band. The model input is simulated with a random white

noise, representing the pre-synaptic mean membrane potential V
�̄�

producing low-

level background firing in the retinal spiking neurons in a state of quiet wakefulness

and no sensory input. This state of the model is taken as the ‘base’ state, and the

corresponding set of model parameter values are referred to as ‘base values’. All

parameter variations in the model are carried out with respect to these base values

to study the synaptic correlates of EEG band power alterations in both healthy (e.g.

sleep-wake transition) and disease states. The results are presented in the following

sections along with discussion on their implications in context to alpha and theta

rhythms in the LGN.

The Causality of Neurotransmitter Concentration

Presynaptic membranes are rich in a diverse range of potassium channels that are

likely relevant to the fine-tuning and regulation of neurotransmitter release [28].

While membrane-derived lipids such as arachidonic acid can act to inhibit pre-

synaptic potassium channels [15], it is reported that Na+/K+-ATPase is involved in

the maintenance of the synaptic vesicles filled with transmitters to be released [68].

On the other hand, release of neurotransmitters is well known to be mediated by cal-

cium ion-channel dynamics in the pre-synaptic membrane [17, 39]. However, and to

the best of our knowledge, there is a lack of experimental data establishing a corre-

lation between brain states and neurotransmitter concentration and/or rate of release

in the synaptic cleft. Here, we use the neural mass computational framework to look

into this aspect.

We speculate that the exact amount of neurotransmitter released in clefts is bound

to be varying in time corresponding to varying brain states. We simulate this in the
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model by varying specific parameters, at the same time identifying a set of base

parameter values defining the neurotransmitter concentration levels such that the

dominant power in the model output is within the alpha frequency band.

Selecting Base Parameter Values

In Eq. (5), an increase in the steepness parameter 𝜎 leads to a decrease in gradient of

the sigmoid representing the amount of transmitter released for a given change in the

pre-synaptic population mean membrane potential V
𝜒

. On the other hand, a decrease

in the threshold voltage Vthr effect an increase in the release of neurotransmitter into

the synaptic cleft. A simultaneous variation of Vthr and 𝜎 is done to observe the

correlation between neurotransmitter concentration [T] and the region of alpha band

dominance in the power spectra of the post-synaptic population average membrane

potential V ̄
𝛶

.

The readers may note that in the model, the parameters Vthr and 𝜎 are set as equal

for both AMPA or GABAA mediated synapses. Thus, any variation of these para-

meters will result in a variation of neurotransmitter concentration in all the synaptic

clefts in the model. This may be thought to be analogous to an ‘overall system slow

down’ during reduced cognitive states such as falling asleep. A separate study on

neurotransmitter concentration levels for AMPA and GABA mediated synapses will

be carried out in future versions of the model. The results are shown in Fig. 3a–d.

Figure 3a and b show the inverse relation between [T] and the model output VTCR,

indicating a dominant GABA-ergic influence on the TCR from both IN and TRN cell

populations. The corresponding peak power plot in Fig. 3d shows a higher power

content for depolarised output values in Fig. 3b and is mainly due to the increasing

power of the dc component corresponding to progressive depolarisation in the TCR

population. However, Fig. 3d show that the dominant alpha rhythmic region corre-

spond to a mean output voltage of ≈−70 mV. The contour plots showing a distinct

alpha peak in the region where −32 ⩾ Vthr ⩾ −33 and 3.7 ⩽ 𝜎 ⩽ 3.8 (indicated by

an arrow in Fig. 3c). Based on this observation, we set the base values for Vthr and 𝜎

to −32 mV and 3.7 mV respectively and study the alpha and theta rhythmic content

in the model output.

Alpha and Theta Band Power Variations

Figure 4 shows that the maximum power content with lower values of neurotrans-

mitter concentration and higher mean membrane potential is primarily due to a high

corresponding theta band power. Furthermore, the bar-plots show a left skew in the

theta band power for progressively increasing values of 𝜎, in contrast to a right-skew

for the corresponding alpha band power. With progressively decreasing values of

Vthr, the alpha band power shifts until for −35 ⩾ Vthr ⩾ −38, the maximum powers

in both alpha and theta bands decrease exponentially with increasing values of 𝜎. For

Vthr ⩽ −39, the power in theta band falls significantly, and there is minimal effect on

both bands for varying values of 𝜎.
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Fig. 3 a The neurotransmitter concentration [T] with simultaneous variation of Vthr (from −30 to

−40 in steps of −1) and 𝜎 (from 3 to 4 in steps of 0.1), and b the corresponding effect on the average

population post-synaptic membrane potential VTCR. The corresponding c dominant frequency of

oscillation show specific regions of alpha and theta band dominance, while d the power in the

frequency spectra indicate a high power within the theta band for lower values of the steepness

parameter 𝜎. It is worth reminding the readers at this point (see Fig. 1 legend) that the parameters

Vthr and 𝜎 are set as equal for both AMPA or GABAA mediated synapses. Thus, any variation of

these parameters will result in a variation of neurotransmitter concentration in all the synaptic clefts

in the model, thus simulating conditions of an overall reduction in synaptic activity in the model

Role of the Thalamic Interneurons

Neural mass models of the thalamocortical circuitry has been simulated tradition-

ally with two neural populations viz. the TCR and the TRN [12, 57]. These models

were intended to simulate brain rhythm alterations and abnormal oscillations corre-

sponding to disease conditions. Several of these studies have demonstrated that the

feed-forward and -back connections between the TCR and the TRN can well mimic

the dynamics of several disease conditions for example bifurcation of EEG time-

series seen in epilepsy [13, 35, 58, 67, 69, 72, 73], EEG anomalies in Alzheimer’s
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Fig. 4 (Top) Bar plots showing the relative distribution of alpha and theta band power in the model

output with varying values of Vthr and 𝜎. (Bottom) A 2-d representation to demonstrate the com-

plementary pattern of dominance between the alpha and theta bands

disease [7, 16, 27], sleep-wake transition [1]. However, experimental studies indi-

cate the presence of the IN cells in the LGN across mammals and rodents, com-

prising 20–25 % of the total cell population in the LGN and receive around 47 % of

their total synaptic inputs from the retinal spiking neurons. Along these lines, fur-

ther experimental investigation into the specific role of IN cells in the LGN may be

suggested [17].

In section “The Causality of Neurotransmitter Concentration”, we have tuned the

neurotransmitter concentration parameters so that the model output oscillates with

a dominant frequency within the alpha band. The time-series and power spectral

density of all three cell populations are shown in Fig. 5 panels (a) and (c) respectively.

The TCR and IN peak-to-peak oscillation is ≈1 mV; the same for TRN, however, is

suppressed and is in the range of a few 𝜇V . The mean membrane potential of both the

inhibitory populations viz. IN and TRN are greater than that of the TCR population.

The power spectra indicates dominant power within the alpha band for both IN and

TCR cell populations, while the dominant frequency of oscillation for the TRN is

within the theta band.

Next, we remove the IN from the circuit to observe the output behaviour when

all parameters are maintained at their respective base values. The time-series and

power spectral density are shown in Fig. 5 panels (b) and (d) respectively. The TCR

and TRN outputs show synchronised spindle oscillations with a dominant frequency

at ≈11 Hz and within the alpha band. The amplitude of peak-to-peak oscillations is

also increased in both TCR and TRN at ≈1.5 mV.

These observations may indicate a vital role of the IN in waking state EEG dynam-

ics. Alpha rhythmic waxing-and-waning high amplitude oscillations are EEG mark-

ers of quiet wakefulness with eyes closed i.e. absence of sensory inputs, while alpha
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Fig. 5 a Time-series output of the thalamic cell populations in the model when all parameters

are set at their base values as indicated in Tables 1 and 2. The corresponding power spectra in (c)

indicate a dominant alpha rhythmic oscillation in the TCR and IN population output, while the TRN

oscillates with a dominant frequency within the theta band. b The time-series output of TCR and

TRN when the IN is disconnected from the circuit by setting the synaptic connectivity parameter

Ctii = 0 (refer to Table 2). High amplitude synchronised oscillations is observed in both TCR and

TRN populations. The corresponding power spectra in (d) indicate a sharp alpha peak at around

11.5 Hz for both TCR and TRN

rhythmic noisy oscillations are now known to be important indicators of several cog-

nitive brain states. Thus, the model predicts specific role for each inhibitory cell pop-

ulation in the thalamic circuitry: the TRN assumes prominence during wake to sleep

transition and in sleep states, while the IN dominates the inhibitory influence on TCR

during the waking state. In the context of neurological disorders, the IN may play a

role in maintaining homeostasis, while any anomaly in this circuitry may trigger an

onset of abnormal high amplitude synchronous oscillations in the TCR and TRN.
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Effects of the Leak Conductance

Anaesthetics are known to decrease excitability in muscles by increasing mem-

brane leakage conductance. Furthermore, literature review of both experimental and

modelling studies show evidence of the role of potassium leak channels in

depolarisation/hyperpolarisation of population membrane potentials [34]. In addi-

tion, acetylcholine is known to cause hyperpolarisation in IN cells by increasing

membrane potassium conductance. These results motivated us to investigate the

effects of membrane leakage conductance in the model on its output.

To test the effect of increased leak conductance in our model, gleak for any one

cell population is increased to 100 progressively, while the values of the same for

the other two cell populations remain at their base values of 10.

When gleak = 100 for the TCR population, both TCR and TRN population are

depolarised, and removing the IN did not show any drastic change in the output

characteristics.

When gleak = 100 for the IN population, their mean membrane potential is hyper-

polarised, causing a reduced effect on TCR and TRN populations, both of which

show a depolarisation. This is similar to the case in section “Role of the Thalamic

Interneurons” when the IN population is removed from the circuit.

When gleak = 100 for the TRN population, their mean membrane potential is

hyperpolarised and the TCR population is depolarised as shown in Fig. 6b (compare

with Fig. 6a corresponding to base parameter values). However, if the IN is removed

Fig. 6 The model output time-series corresponding to a base parameter values of gleak for all

cell populations in the model; b gleak = 100 for TRN population and gleak = 10 for TCR and IN;

c gleak = 100 for TRN and IN is removed from the circuit, while gleak = 10 for TCR. d The power

spectral density of the output obtained in (c) show a peak frequency within the alpha with harmonics

(violet). A comparison is made with the power spectra for when gleak = 10 (blue)
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from the circuit, increasing gleak for the TRN population cause a depolarisation in

both TRN and TCR populations. The time-series of both cell populations show a

bifurcation to high amplitude oscillations shown in Fig. 6c, while the power spectral

plot in Fig. 6d shows harmonics of the dominant frequencies within the alpha band.

A comparison with the power spectra when all parameters are at base values, i.e.

gleak = 10 for all populations, and IN is removed from the circuit, is also shown for

the convenience of readers.

In summary, these results show that for a model of the LGN tuned to oscillate

within the alpha band, an increase of leak conductance in the inhibitory cell popula-

tions, IN or TRN, will lead to a depolarisation of the excitatory TCR cell population

for normal neurotransmitter concentration levels, thus conforming to experimental

evidence [34]. However, if the influence of IN is reduced while leak conductance of

TRN is increased, both TCR and TRN are depolarised leading to bifurcation of the

time-series to a high amplitude limit cycle oscillations with harmonics in the power

spectra. Once again, the results imply a role of the IN in maintaining an overall sys-

tem stability.

In the following section, we summarise the results and outline future research

directions.

Conclusion

We have presented a novel neural mass modelling approach to link the attributes of

neuronal chemical synapses to higher level brain dynamics observed in Electroen-

cephalogram (EEG) and Local Field Potential (LFP); this is done by replacing the

traditional ‘alpha function’, which are used to model neuronal synaptic information

transfer, with kinetic models of AMPA (excitatory) and GABAA (inhibitory) neu-

roreceptor mediated synapses. The paradigm was introduced to neuro-computational

modelling in [26]. Subsequently, kinetic model of GABAA-ergic synapse has been

implemented in a single neuronal network model of the hippocampal circuit towards

novel neuro-pharmacological paradigms and possible application in drug discov-

ery [30]. In prior works, we have used neural mass models embedded with ‘two-

state’ (open and closed states of ion channels; the desensitised state is ignored for

brevity) kinetic models of synaptic transmission to study brain state transitions and

the underlying cellular mechanisms [5]. Our study showed that replacing the alpha

function with kinetic models of synapses improved the computational time of model

simulation by a factor of 10 in comparison to the ‘classic’ neural mass modelling

framework. In this chapter, we have built on these prior works and investigated the

underlying neuronal correlates of alpha (8–13 Hz) and theta (4–7 Hz) EEG rhythms

that are useful biomarkers in several neurological and psychiatric disorders.

Experimental evidence suggest that similar thalamic mechanisms underline alpha

and theta rhythms, and that the thalamus is a key player in thalamocortical gen-

eration of these rhythms. This is not surprising as thalamocortical dysrhythmia

(TCD) is a known feature in neurological disorders such as Depressive disorders,
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Neurogenic Pain, Parkinson’s disease, Tinnitus, Alzheimer’s disease. On the other

hand, transition from alpha to theta rhythm in a healthy, adult brain corresponds

to brain state transition from quiet wakefulness (dominant alpha rhythm) to that of

drowsiness (dominant theta rhythm). Thus, a computational model-based study to

underpin the synaptic correlates of alpha and theta rhythms seems appropriate and

useful in current times.

The model in this work emulates the neuronal populations of the Lateral Genicu-

late Nucleus (LGN), the thalamic nucleus in the visual pathway of mammals and

rodents, and the intra-population synaptic connectivity mediated by AMPA and

GABAA neuroreceptors. Please refer to Fig. 2 in the text for a schematic of the model

consisting of the thalamocortical relay (TCR) cells that are the main carriers of sen-

sory information from the retina to the visual cortex, the inhibitory interneurons (IN)

that constitute around 20–25 % of the cells in the LGN, and the thalamic reticular

nucleus (TRN), which is a thin sheet of inhibitory cell populations that are consid-

ered a part of the thalamus and receives ‘copies’ of all efferent and afferent commu-

nications between the thalamus and the cortex. The model input is a random noise

with a white power spectrum, and may be thought to emulate the background fir-

ing activity of retinal ganglion cells under conditions of eyes closed i.e. no sensory

input, and when the subject is in an awake but resting state, often referred to as a

state of ‘quiet wakefulness’. Both EEG and LFP recordings in quiet wakefulness,

for example in the stage preceding sleep, indicate a strong alpha rhythmic content.

Furthermore, simultaneous EEG recordings from the occipital scalp electrode (the

seat of visual cortex) and LFP recordings from the TCR cells show a high coher-

ence in their time-series. Thus, the output of the TCR cell population in the model

is considered as the ‘model output’.

Traditionally, neural mass models of the thalamocortical circuitry have explored

the rich dynamics of the feed-forward and -back loop between the TCR and TRN that

can emulate time-series and frequency domain behaviour of several neurological and

psychiatric disorders. Thus, the IN cells have largely been ignored, in spite receiv-

ing around 47 % of their afferents from the retinal spiking neurons. This may be due

to lack of experimental data on the IN characteristics, which in turn is attributed to

insufficient technological advances. In this scenario, a computational model seems

to be an apt tool to make investigations into the IN and its role in the thalamocortical

dynamics. Towards this, a simple test is adopted by disconnecting the IN population

from the circuitry. Indeed the time-series of both TRN and TCR are synchronised

with a high magnitude of oscillation. Furthermore, waxing-and-waning patterns are

observed and the power spectra indicates the dominant alpha rhythmic content with a

peak at around 11.5 Hz. This result is consistent with several other prior work on the

classic neural mass model of the thalamocortical circuitry consisting of just the TCR

and TRN cell populations. Next, the IN is re-connected to the circuitry. The time-

series output of the TCR changes significantly with a noisy pattern and low average

amplitude reflecting the noisy input to the model, and a peak frequency within the

alpha band; the time-series of the IN has a similar characteristic, albeit with a broader

power spectral density peak within the alpha frequency band. The TRN output under-

goes a remarkable change and appears to be suppressed by the dominant inhibitory
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influence of the IN on the TCR, and its peak frequency of oscillation is ≈6 Hz within

the theta frequency band. Thus, the model predicts a significant influence of the IN

on the TRN in spite an absence of direct synaptic contact between the two popu-

lations. The results raise the speculation that in a healthy adult brain, the IN plays

a dominant role in modulating TCR response in awake cognitive states; the dimin-

ished activity of IN in a quiet resting brain state establishes the dominant inhibitory

influence of TRN on the TCR, leading to high amplitude synchronous oscillations.

These observations call for further experimental research correlating the role of IN

in higher level brain dynamics.

Another attribute that has received relatively reduced attention in computational

modelling of neurological disorders, albeit with a few exceptions e.g. [29, 30], is

the neurotransmitter concentration in synaptic clefts. Once again, the model pre-

sented here facilitates such a research direction. The neurotransmitter concentration

in the synaptic cleft (refer to Eq. 2 in section “AMPA and GABAA Based Neurotrans

mission”) is simulated with a sigmoid function that is sensitive to (a) the threshold

voltage at which the neurotransmitter concentration is half the maximum value, as

well as to (b) the steepness parameter of the sigmoid that indicates the proportion-

ality of the amount of transmitter released to the pre-synaptic membrane potential.

Our results show that an increase in the neurotransmitter concentration in the synap-

tic cleft is effected by a decrease in the threshold pre-synaptic membrane voltage,

which agrees to an intuitive understanding of the phenomenon. However, the neu-

rotransmitter concentration is also increased by a decrease in the steepness of the

sigmoid. From a systems perspective, the phenomenon can be explained thus: for a

steep sigmoid, the neurotransmitter concentration reaches saturation (≈Tmax) or ‘cut

off’ (≈0) for low-range fluctuation of the pre-synaptic voltage about the threshold

voltage. Thus, the neurotransmitter concentration follows a spike train-like all-or-

none pattern, which effectively reduces the average value of the parameter. On the

other hand, with lesser steepness, the ‘operating region’ of the sigmoid is much larger

prior to the concentration reaching either saturation or cut-off, thus effecting higher

average concentration levels in the synaptic cleft.

In terms of frequency domain response with varying neurotransmitter concentra-

tions, we note an interesting complementary behaviour in the alpha and theta band

power content. With lower neurotransmitter concentration levels in the circuit, the

theta band dominates and with an overall higher magnitude of power in the spec-

tra. Peak alpha band power is observed when neurotransmitter concentration is at

a mid-range value. This may also be interpreted as a shift from alpha to theta band

power for raised threshold pre-synaptic membrane potential and steepness values for

the neurotransmitter release/concentration, and may reflect abnormalities of chem-

ical synaptic attributes corresponding to TCD. It may be noted that in the current

work, we have considered simultaneous changes in the neurotransmitter concentra-

tion in all synaptic clefts in the model; the objective has been to study a more holistic

effect of fluctuations in synaptic activity in the system. For example during transition

from wakefulness to sleep, it may be speculated, intuitively, that there is a change

in overall system behaviour leading to high-amplitude low-frequency synchronous

oscillations across larger brain areas. However, this needs further investigation with
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distinct neurotransmitter concentration for each synaptic cleft in the model. Further-

more, a dynamic adaptability in this attribute may be desirable when investigating

specific disease conditions; these directions are planned as future work on the model.

A preliminary observation on the effects of leakage conductance in the model

re-iterates the prominent role of IN over TCR in normal brain states, maintaining

an overall homeostasis in the circuit. Recent research proposes a possible role of

potassium leakage currents in epileptic seizures [33], while potassium leak currents

are known to affect cell response by causing de-(hyper-)polarisation in cell mem-

brane potentials. Also, the effects of anaesthetics in decreasing muscle excitability is

facilitated by increasing population leakage conductance. In the model, increasing

the leakage conductance of both IN and TRN populations cause a depolarisation of

the TCR cells. However, when the IN is disconnected from the circuit, an increase in

leakage conductance in the TRN cells causes a bifurcation in the TCR output leading

to high amplitude limit-cycle like oscillations with slight waxing and waning enve-

lope modulation. Frequency analysis shows alpha band dominance. It may be noted

that theta band limit cycles are seen with decreased neurotransmitter concentrations

under these conditions. Once again, the results indicate an overall homeostatic role of

the IN in the LGN circuitry and conforming to a healthy, awake and cognitive brain

state. Disruption in factors affecting homeostasis in the brain is implicated in several

disease conditions. The model-based observations in this work implicates disruption

of the IN circuitry as a possible underlying factor for certain disease related home-

ostatic abnormalities that reflect in higher level brain dynamics recorded via EEG

and LFP.

It is worth mentioning here that in a similar work on the classic neural mass mod-

els, we have looked into synaptic connectivity parameters that effect a ‘slowing’

(left-shift of peak frequency of oscillation) of the alpha rhythm, a definite biomarker

of Alzheimer’s disease [8]. However, investigation into further synaptic attributes

has not been possible due to model limitations on detailed synaptic attributes; in

comparison, the modified neural mass modelling approach presented in this work

have alleviated this constraint to a fair extent. However, several levels of abstraction

are adopted in the model for brevity—first, the GABAB pathway from the TRN to

the TCR is ignored; second, the kinetic models of the synapses are two-state models

i.e. the desensitised state is not considered here; third, feedback from the TCR to

the IN is ambiguous in literature, and thus are not explored in this work; fourth, the

neurotransmitter concentration in synaptic clefts has similar parameters for all cell

populations (afore-mentioned in this section); fifth, while the present model aims to

underpin the rhythmic behaviour of the LGN when de-corticated, i.e. disconnected

from the visual cortex, however, cortico-thalamic feedback is an integral factor in the

generation and sustenance of brain rhythms observed in EEG. All of these abstrac-

tions will be looked into in a future work.

Ongoing research is looking into implementing a neural mass cortical circuitry

that will then be linked to the LGN model presented in this work. While such a

model has already been explored in a prior work, the novelty will be the intro-

duction of synaptic kinetics in such a thalamo-cortico-thalamic neural mass frame-

work. Furthermore, a recent research has used the classic alpha rhythm neural mass
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model to emulate EEG signals corresponding to trains of flickering visual stimuli,

commonly termed as steady-state-visually-evoked-potentials; the model results were

validated with experimental data [47]. Using computational models to emulate

steady-state-visually-evoked-potentials was initiated in [59]; the potential of the

neural mass framework presented herewith will be tested along these lines.

Overall, the study presented herewith have contributed in justifying the ongoing

endeavours to build biologically-inspired computational paradigms that are compu-

tationally efficient and can contribute to progressing the diagnosis, prognosis and

prediction of neurological and psychiatric disorders. The observations made in this

work call for further experimental data for the purposes of model validation and con-

tinued advancement of research in computational neurology and neuropsychiatry.
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The Role of Simulations
in Neuropharmacology

Jean-Marie C. Bouteiller and Theodore W. Berger

Introduction

Experimental techniques have improved remarkably in the past decades, allowing a
deeper understanding of the processes that take place in the central nervous system
at different spatial (spanning from biomolecular mechanisms and synapses, to
neurons and networks), and temporal scales.

These notable improvements have led to an exponential increase in the amount
of data acquired. They have yielded a more quantitative view of the mechanisms
underlying the central nervous systems’ functions and dysfunctions, and the effects
of drugs. Availability of such data enables the development of computational
models that simulate the brain and its changes in response to the application of
exogenous compounds. This chapter gathers examples of biosimulation efforts
aimed at facilitating the generation of new working hypotheses in a structured and
efficient manner, and translating the gained quantitative understanding of the brain,
its normal and pathological hallmarks into the discovery of more efficient therapies.

J.-M.C. Bouteiller (✉) ⋅ T.W. Berger
University of Southern California, 1042 Downey Way,
Los Angeles, CA 90089, USA
e-mail: jbouteil@usc.edu

T.W. Berger
e-mail: berger@usc.edu

© Springer International Publishing AG 2017
P. Érdi et al. (eds.), Computational Neurology and Psychiatry,
Springer Series in Bio-/Neuroinformatics 6,
DOI 10.1007/978-3-319-49959-8_15

429



Scientific Problem

The Nervous System and Its Complexity

The nervous system is arguably one of the most complex organs of the body.
Despite decades of relentless efforts, much remains to be learnt on how it performs
its wide range of tasks and to this day, many questions remain unanswered. Our
fascination for this complex organ feeds the headlines of health and science jour-
nals, drawing the attention of the neuroscientific community but also society at
large.

The nervous system is afflicted by a variety of dysfunctions, with pathologies that
may appear from a young age (e.g. Tourette syndrome, autism) to aged adulthood
(Alzheimer’s disease, Parkinson’s disease). Understanding these dysfunctions have
proven to be challenging for many reasons, especially due to the nervous system’s
highly multi-temporal and multi-hierarchical nature. An additional complexity stems
from the multifactorial nature of the disease process. Indeed, even for diseases such
as Huntington’s disease in which the well-characterized mutation affects a single
gene (which in the case of Huntington’s disease consists of a trinucleotide repeat
disorder caused by the length of a repeated section of a gene that exceeds normal
range), this single mutation causes a variety of changes that result in the disease’s
pathological hallmarks (Fig. 1).

Fig. 1 Illustration of the different biological scales that comprise the nervous system, the
corresponding experimental paradigms used to characterize their functions and dysfunctions, and
the different phases in the drug discovery and development pipeline
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Therapeutics Development

Drug discovery and development (DD&D) for disorders of the central nervous
system (CNS) have been plagued with a high and continuously rising attrition rate.
DD&D is a risky business, especially for the nervous system where the probability
that an agent entering clinical development reaches the marketplace is below 7 %.
This number is much lower than the industry average of 15 % across other thera-
peutic areas [1, 2]. Similarly, Development and regulatory approval for cardio-
vascular and gastrointestinal indications took an average of 6.3 and 7.5 years,
versus 12 years for CNS indications [3]—and was reported to reach 18 years from
laboratory bench to market in 2011 [4].

These difficulties result in higher costs for CNS DD&D and undoubtedly explain
why since 2011, GSK, AstraZeneca, Novartis, Pfizer, Sanofi, Janssen and Merck
have initiated a significant downsize in their CNS operations.

The poor success rates outline the prevalent dichotomy often observed in the
DD&D process: drugs that have a potent effect in experimental protocols (e.g.
strong affinity to the desired target, resulting in significant changes in synaptic and
neuronal function or metabolism, etc.) end up having a modest or nonexistent
effect, or prohibitive side effects at the macroscopic level. This is due to several
factors including the CNS drugs’ propensity to cause CNS-mediated side effects
(e.g. nausea, dizziness and seizures), and the additional pharmacokinetic hurdle of
the brain-blood barrier that therapeutic agents must face. Contrary to the devel-
opment of a new antibiotic where the outcome is relatively simple (the bacterium is
killed—or not—in a given and oftentimes relatively short treatment window), CNS
compounds lead to a wide range of effects at different time scales. Recent examples
of failure include suspicions of suicidal thoughts induced by anti-obesity or
smoking cessation drugs. This led the Food and Drug Administration (FDA) to
announce a change in policy in 2008 to mandate drug manufacturers to study the
potential for suicidal tendencies during clinical trials. Compounds may even gen-
erate adverse effects. An example of adverse effect was reported by some patients
taking antidepressants consisting of selective serotonin reuptake inhibitors (SSRIs)
such as Prozac (fluoxetine), Paxil (paroxetine) or Zoloft (sertraline): they experi-
enced suicidal thoughts during the initial phase of the treatment.

Necessity for a Quantitative Understanding of Mechanisms
Underlying Pathology

These problems outline our lack of quantitative understanding of CNS dynamics.
Unlike antibiotics, a CNS molecule may have a very small therapeutic window to
induce a positive outcome without generating an army of harmful or undesired side
effects. They also underscore our limited understanding of the mechanisms
underlying pathologies. Finally, the DD&D pipeline is fragmented in multiple
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phases. From compound identification, to preclinical to clinical, preparations are
inherently different and yield readouts that are arguably disconnected from the
biological system, whose behavior we ultimately try to alter. Additionally, the use
of animal models may contribute to a poor translatability of the observed effects of
drug candidates to human patients population [5].

These compounded factors inherently result in a limited success rate, plaguing
both the pharmaceutical industry and academic laboratories. They lead to
increasingly higher costs, slow down the discovery process and delay the avail-
ability of potent drugs for patients.

A FDA report published in 2004 [6] outlined the need for innovative solutions to
the healthcare challenges. It outlined how critical it has become to (i) integrate the
data obtained in a uniform and standardized manner, while (ii) taking into account
the dynamical properties inherent to biological systems. Together, these two
measures will facilitate the generation of new working hypotheses in a structured
and efficient manner, and translate our deepened understanding into more effica-
cious therapies. To this end, computational models constitute an innovative
approach that may integrate up-to-date knowledge on the biological system; they
may span multiple biological and temporal levels, encompassing mechanisms at the
microscopic level as well as the resulting observations at the macroscopic level in a
dynamic and integrated manner. They can replicate observables of function and
dysfunctions, the effects of drugs on their respective target(s), and their subsequent
effects on neuronal function, network function and ultimately on macroscopic
observables, such as those obtained with functional neuroimaging.

Computational Methods

Unifying Computational Neuroscience

Computational neuroscience has witnessed tremendous growth in the past decade.
However, given the complexity of the system studied, no unified methodology or
tool exists that is able to span all hierarchical biological scales. Indeed, modeling
methodologies are numerous, and differ quite significantly depending on the scale
of the system under investigation. We refer the reader to other readings that provide
an overview of the different modeling techniques as a function of the system
investigated (see [7], Chap. 9). One notable point lays in the conceptual difference
that separates computational neuroscience to computational neurology. Bridging
this gap will deepen our understanding of CNS function and pave the path to
individualized medicine.
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Computational Neurology: Linking Observed Dysfunctions,
Underlying Mechanisms and Individualized Treatments

In the context of pathologies, the computational methods described above often
focus on modeling the mechanisms that underlie functions and dysfunctions.
Whether at the biomolecular level (e.g. downstream effects of amyloid beta accu-
mulation observed in Alzheimer’s disease patients), neuron or network level
(changes in spiking frequency and/or network-level activity), or systems level
(models of brain function and its biophysics [8]), each of these computational
models focuses on the pathology, and more precisely the mechanisms underlying
the pathology and the consequences on the system (and its scale) of interest.

On the other hand, computational neurology and psychiatry focus primarily on
the patient and its diagnosis to suggest efficacious therapies. Consequently, com-
putational neurology has historically involved primarily a top-down approach that
is oftentimes disconnected from the actual mechanisms underlying the pathology.
Instead, it often relies on inference modeling (through database analysis, mathe-
matical modeling, clinical algorithms) and statistical intelligence (Fig. 2a bottom).

From a methodological standpoint, the constraints of computational neurology
imply unifying top-down and bottom-up approaches to link macroscopic observ-
ables with nanoscopic mechanisms. The necessary steps are summarized in Fig. 2b:
(i) Starting from the patient, generate measurements; (ii) these measurements pro-
vide insights on the amplitude of dysfunctions observed at the macroscopic level,
and allow calibration of the parameters of a simulation platform (i.e. virtual in silico
patient), enabling quantification of biomolecular and neuron/network levels chan-
ges and characterization of the pathogenic features; (iii) the parameters of the
computational platform are calibrated to replicate the measurements from (ii) (-
generation in silico of the same ‘virtual’ observables), leading to (iv) a precise
diagnosis; (v) different therapies may be tested on the virtual model—leading to the
identification of the optimal treatment.

Computational neuropharmacology may greatly benefit from such centralized
and integrated approach, removing gaps in the different phases of drug discovery
and development. This will reduce error-prone interpolations and increase success
rates.

The computational methods used in the results presented here use open tools and
software. They comprise NEURON [9], EONS [10–12] and Libroadrunner [13].
Systems Biology Markup Language [14] is the preferred format in which all models
are implemented and stored.
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Results

NMDA Receptor Antagonism: Friend or Foe

We herein present results we obtained through Modeling and Simulation that
yielded a better comprehension of the effects of compounds on the NMDA receptor
and its associated channel, with direct significance on neuropharmacology of the
excitatory synaptic transmission. The N-methyl-D-aspartate receptor (also known

Fig. 2 a Illustration of the
current states of
computational neuroscience
and computational neurology.
b The future of computational
neurology: a patient-centered
discipline that is a superset of
computational neuroscience
and includes observables of
mechanistic (micro) and
behavioral (macro) nature
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as NMDA receptor or NMDAR), is a glutamate receptor and ion channel found on
excitatory postsynaptic spines. Its activation requires the binding of glutamate and
glycine (or D-serine), and leads to the opening of its ion channel that is nonselective
to cations with a reversal potential close to 0 mV. While the opening and closing of
the ion channel is primarily gated by ligand binding, the flow of ions through the
channel is voltage-dependent, due to the blockade of the channel by extracellular
magnesium and zinc ions. Blockade removal allows the flow of sodium Na+ and
small amounts of calcium Ca2+ ions into the cell, and potassium K+ out of the
cell.

NMDA receptors are thought to play a critical role in the central nervous
system. Interestingly, while competitive antagonists such as D-2-amino-5-
phosphopentanoic acid (AP5) impair learning and memory, memantine, a
non-competitive receptor antagonist has been reported to be paradoxically benefi-
cial to patients with mild to moderate Alzheimer’s disease (AD). In this study, we
use a Markov kinetic model and look at the differences in the receptor dynamics and
its associated channel current in response to changes in the presence of either
molecule.

The kinetic schema used was proposed by Schorge [15] and presented in Fig. 3.
The receptor model takes into account the two binding sites for glutamate, the two
binding sites for the co-agonist glycine, and two open states O1 and O2; the
non-linear voltage dependency is taken into account and depends on surrounding
concentration of magnesium. Additional details and parameter values of the model
may be found in [16]. Modifications of the kinetic model allow analysis of the
effects of AP5 on receptor-channel current as it binds to the NMDAR in a com-
petitive manner to the glutamate binding site. Association and dissociation rate
constants (kon and koff) for AP5 were set at 0.38 mM−1 ms−1 and 0.02 ms−1

Fig. 3 The 15 states kinetic model of the NMDA receptor
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respectively, based on published experimental results [17]. On the other hand,
memantine has been shown to bind to the NMDA receptor in a voltage-dependent
manner [18] (Fig. 4).

Learning and memory is associated on a cellular basis with changes in synaptic
strengths due to repetitive stimulation of the synaptic connection. We therefore
proposed to study the inhibitive effects of AP5 on the response of the NMDA
receptor to trains of pulses of neurotransmitters at different frequencies; we quan-
tified the cumulated inhibition on a 5 s window, and compared the response in the
presence of AP5 with the one elicited when the receptor is in the presence of
memantine. Simulations take place in voltage-clamp mode, meaning that the
postsynaptic voltage is held constant. This removes the non-linear voltage depen-
dency of the NMDA receptor associated channel.

Results outlined in Fig. 5 show that for both AP5 and memantine, the
dose-responses are shifted to the right, indicating that more antagonist is needed to
obtain the same level of inhibition when stimulation frequency increases.

In voltage-clamp mode, we then varied the postsynaptic voltage from −120 to
+20 mV in low and high stimulation frequencies (10 and 100 Hz for AP5, and 10
and 200 Hz for MEM). The results indicate that AP5-induced inhibition decreases
with frequency, but increases with voltage (when magnesium is present). In
contrary, memantine-induced inhibition decreases with both frequency and voltage.
This result is more clearly outlined in Fig. 6 which plots variations of the IC50

Fig. 4 NMDA receptor model modified to account for AP5 (competitive) and memantine
(non-competitive) binding
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(concentration at which the amplitude of the output reaches 50 % of its maximum
value) as a function of voltage at different frequencies (Fig. 7).

Our results indicate clear differences in the effects produced by AP5 and
memantine on their target receptor and the resulting dynamics of its associated
channel. AP5-induced inhibition is characterized by a weak voltage dependence,
and an increase in IC50 values with heightened glutamate stimulation frequencies,
indicating reduced inhibition. This suggests that in the presence of a large quantity
of glutamate, AP5 loses its competitive advantage on the receptor’s binding site,
rendering it less potent. This may account for the failure of competitive antagonists
reported in clinical trials, especially with respect to stroke. Indeed, stroke may be

Fig. 5 Cumulative inhibition of the NMDA receptor current in the presence of AP5 (a) and
memantine (b), in response to glutamate pulses applied at different frequencies (postsynaptic
voltage is held constant at −60 mV). The inhibitory effect of both the competitive and
non-competitive antagonists decreases as the stimulation frequency increases indicated by a shift
to the right of the IC50 as pulses frequency increases [16]

Fig. 6 Variations of cumulative inhibition of AP5 and memantine as a function of voltage at
different glutamate application frequencies [16]
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characterized by an increase in neuronal firing frequency in the affected area due to
excess glutamate. Maintaining AP5-induced inhibition would require several fold
increases in AP5 concentration, which would then lead to serious and potentially
toxic side effects.

On the contrary, our results indicate that memantine has a strong dependence on
both voltage and stimulation frequency, which supports the notion that memantine
provides a tonic blockade of the receptor in basal conditions. This could account for
its neuroprotective attribute. However, this inhibition is lifted when stimulation
frequency increases and postsynaptic membrane depolarizes (conditions presum-
ably associated with learning new information), which would explain why
memantine does not negatively impact learning.

Neuropharmacology of Combinations: Modeling
from Biomolecular Mechanisms to Neuronal Spiking

One of the fundamental characteristics of the brain is its hierarchical and temporal
organization; both space and time must be considered to fully grasp the impact of the
system’s underlying mechanisms on brain function. Complex interactions taking
place at the molecular level regulate neuronal activity, which further modifies the
function and structure of millions of neurons connected by trillions of synapses. This
ultimately gives rise to phenotypic function and behavior at the system level. This

Fig. 7 Evolution of memantine IC50 as a function of voltage for 10 and 200 Hz glutamate pulse
frequencies
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spatial complexity is also accompanied by a complex temporal integration of events
taking place at the microsecond scale, leading to slower changes occurring at the
second, minute and hour scales. Simulation of mechanisms spanning multiple scales
makes modeling a challenging task both from an implementation and numerical
standpoint. Yet, these integrations are necessary for studying the effects of combi-
nations of therapeutic agents that target very distinct systems and determining how
these drugs interact to shape function at more integrated levels of complexity.

To illustrate proposed solutions to this challenge, we combine the NMDA-R
competitive antagonist AP5 described earlier with a molecule known to act on the
GABA A receptor. The GABA A receptor is an ionotropic receptor and ligand-
gated ion channel that is found in inhibitory synapses; its endogenous ligand is
GABA (γ aminobutyric acid), the major inhibitory neurotransmitter in the brain.
Activation of this receptor leads to opening of its associated channel pore which
selectively conducts chlorine ions inside the cell, resulting in hyperpolarization of
the postsynaptic neuron. We propose to study the effect of bicuculline, a compet-
itive antagonist of GABA A receptors, not only on the target’s function, but also on
the resulting spiking pattern when these receptors are placed on a CA1 pyramidal
neuron [19].

The modeling framework consists of a co-simulation comprising multiple
instances of the EONS simulator linked to NEURON through the message-passing
interface MPJ Express [20] distributed on a high-performance computer cluster.
The stimulation protocol consists in presenting a train of action potentials with
random inter-pulse intervals at a mean frequency of 10 Hz (within the range of
physiological frequencies reported in the hippocampus) as presynaptic inputs to
both excitatory (i.e. glutamatergic) and inhibitory (i.e. GABAergic) synapses of a
CA1 pyramidal neuron. The neuron model used is the pyramidal cell described in
[21], which uses digitally reconstructed dendritic morphology described in [22] in
which synaptic currents are integrated along dendritic branches (112 excitatory
glutamatergic synapses located in the stratum radiatum area and 14 inhibitory
synapses located close to the soma). The kinetic model for the GABA A receptor is
the one presented in [23] (Fig. 8).

The model allows for readouts of molecular, synaptic (postsynaptic current and
voltage) and neuronal nature (somatic potential, and spiking activity). Four con-
ditions were simulated: a control condition (i.e. no modulator), with IC50
concentration of AP5 (established at 100 μM in the section “NMDA Receptor
Antagonism: Friend or Foe”), with IC50 concentration of bicuculline, and with both
antagonists combined at IC50 concentrations. The somatic potentials resulting from
the 10 Hz random interval train is presented in Fig. 9 for all four conditions.

The somatic potentials obtained in the four conditions outline the high levels of
non-linearity that arise at different levels of neuronal integration. Decreases in
NMDA receptor current (50 % of the peak amplitude) at the molecular level result
in a dramatic reduction in somatic spiking (77 % reduction) once placed in synapses
and integrated along the dendritic tree of the pyramidal cell. Adversely, antago-
nizing the GABA A receptor results in over 50 % increase in the number of action
potentials generated. When both modulators are applied, the number of spikes
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returns to a value close to the control condition (8 versus 9 action potentials), but
with a very different (regularized) spiking pattern—likely to result in a very dif-
ferent outcome at the network level.

From Mechanistic to Non-mechanistic Modeling

The previous section outlined the notion that phenomena taking place at a specific
scale in the nervous system may often interact in a non-linear manner and thereby
yield emerging properties at other (often overlooked) scales. Indeed, exogenous
compounds, modulators of excitatory and inhibitory synaptic receptors function
were shown to interact and modulate the spike-timing patterns of a CA1 pyramidal
neuron. The previous example, computed on several nodes of a high performance
computer cluster, also outlines that integrating multiple levels of complexity
(whether temporal or hierarchical) may result in a prohibitively large computational
burden. Each synapse may de facto represent thousands of differential equations,

Fig. 8 Right Illustration of excitatory (green) and inhibitory (red) synapses distributed on a CA1
pyramidal neuron. Left Diagram illustrating the distribution of processes and communication flow
on the high performance computer cluster

440 J.-M.C. Bouteiller and T.W. Berger



yet neurons can comprise thousands of synapses, and brain structures are composed
of different neurons populations, each potentially containing millions of cells.
Simulating such computational load requires (i) increased computational muscle
(e.g. IBM BlueGene) and/or (ii) better management of the complexity of the models
simulated. This section proposes to focus on the latter—suggesting the use of
non-mechanistic modeling methodologies capable of capturing the non-linear
dynamics of the system of interest, while significantly reducing the computational
load.

The biochemical mechanisms underlying synaptic function have been shown to
display a high level of non-linearities—both on the presynaptic and postsynaptic
sides [24–27]. These non-linearities are critical and most likely play a significant
role in shaping the functions of synapses and neurons, giving them the ability to
learn and generate long term changes used to encode memories. Yet these mech-
anisms, if they are to be modeled in their mechanistic dynamical complexity yield a
large number of differential equations, thereby resulting in substantial (and poten-
tially prohibitively large) computational complexity.

An alternative approach is to consider the system of interest as a black box,
focusing the computational complexity on replicating the functional dynamics, i.e.
the outputs the system generates in response to a series of inputs, rather than the
internal mechanisms comprised in the system. This approach was reported to be

Fig. 9 From [19]. a Presynaptic input stimulation applied (random inter-pulse interval train with a
Poisson distribution and a 10 Hz mean firing frequency). b−e CA1 hippocampal neuron somatic
potential in response to stimulation a. b with no modulation. c Response with 100 μM AP5 (IC50
concentration). d Response with a 50 % decrease in GABA A current. e Response with both
glutamatergic and gabaergic modulations combined
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successfully applied with the use of Volterra kernels [28] on the dynamics of
neuronal populations [29, 30], yielding highly predictive models with minimal
computational complexity. We proposed to adapt this methodology to model
electrical properties of glutamatergic synapses [31] and evaluate it both in terms of
predictability and computational complexity (Figs. 10 and 11).

The properties modeled are the changes in conductance values of AMPA and
NMDA receptors elicited by the response to presynaptic release of neurotransmitter.
Estimation of parameters values in non-mechanistic models (interchangeably
labeled input-output models in this context) is a crucial step that requires training
the model with respect to reference input-output sequences obtained with the
mechanistic model. Using long sequences captures a large number of nonlinear
behavior thereby minimizing prediction errors by improving parameters estimation.
The model structure comprises two sets of kernels with a slow and a fast time
constant for each receptor model; we estimated the parameters of the model using a
train of 1000 pulses at a 2 Hz random interval train (i.e. using a 500 s long
simulation) (Fig. 12).

Having established that the response of the input-output model is very close to
the response obtained with the mechanistic synapse model in the dynamical range
of behaviors, we can now focus our attention on determining the computational
speed gain obtained by replacing the mechanistic synapse model with an IO model.

Fig. 10 Conceptual representation of different models of synapses in a realism—computational
complexity plane. Exponential synapses are a good example of a relatively simple model of
synapse that is often used in large scale simulations to save computational complexity. However,
they lack in representing the non-linear dynamics of synaptic function (e.g. facilitation/depression,
short term plasticity, etc.). Mechanistic models of synapses on the contrary may comprise a large
number of mechanisms, thereby providing a high level of realism—but consequently impose more
computationally heavy calculations which may become prohibitive in large scale neuronal network
models. Examples of synaptic models spanning different levels of complexity may be found in
[32]; example of very complex models are also described in [11, 33–35]
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To benchmark the models, multiple instances of the IO synapse model were inte-
grated in a neuron model and simulation duration was compared to the one obtained
with the original mechanistic models.

We chose the hippocampal pyramidal neuron model proposed by Jarsky [36]. To
minimize the computational load necessary to perform neuron-related calculations,
we assigned the weight of each synapse with a zero value—thereby ensuring that

Fig. 11 The non-mechanistic model replaces the kinetic models of AMPA and NMDA receptors,
corresponding to 16 and 15-states kinetic Markov models respectively. gAMPA is the conductance
of the AMPA receptor channel; g* NMDA corresponds to the voltage-independent conductance
value of the receptor

Fig. 12 5 s sample of dynamic response of the mechanistic model (used to calibrate the
parameters values of the non-mechanistic model) and the non-mechanistic (IO) model. Visual
inspection yields virtually identical response; the total root mean square (RMS) error calculated on
a 500 s simulation with novel presynaptic events yield a 3.3 % error
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(i) the time needed to calculate the neuron model remains constant independently of
the number of synapses, and (ii) the largest extent of computational time is spent
calculating synapses outputs. The number of synapses was varied and we recorded
the simulation times. Results are presented in Fig. 13.

The results in Fig. 13 indicate that the IO model consistently yields faster
computation times even as the number of synapses modeled increases. The speedup
decreases and seems to reach a plateau at around 50 × (this value was verified with
higher number of synapses—up to 10,000—not represented in the figure to focus
on the non-asymptotic range).

Appropriately trained non-mechanistic models constitute a viable replacement
for detailed mechanistic models in large scale models, yielding a significant gain in
computational speed, while maintaining high predictability levels—thereby
allowing larger scale models to be simulated while preserving biologically relevant
subtleties in dynamics and non-linearities.

The non-mechanistic modeling methodology presented is generalizable and fully
applicable, not only to other types of synapses (i.e. inhibitory or modulatory), but

Fig. 13 Adapted from [31]. Simulation Time (represented in logarithmic scale) varies as a
function of the number of synapse instances. Computation time required for the kinetic synapse
model is within the range of 10–20 min, while the computation time required for the IO synapse
model is consistently at least an order of magnitude lower, ranging between 3 and 30 s. Dashed
green line represents the speedup obtained with the IO synapse model compared to the mechanistic
model as a function of the number of synapses modeled. The insert on the top right corner
illustrates the process of having glutamatergic synapses added onto a pyramidal neuron model. At
low number of synapses, the speedup of the IO synapse model is highest (around 150× faster than
the computation time required for the kinetic synapse model). The speedup decreases, but
stabilizes at around 50 × speedup for larger number of synapses
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also other processes with identified inputs-outputs—yielding a natural solution for
hierarchical large scale multiscale modeling challenges.

Messages for Neurologists and Computer Scientists

Experimental techniques have grown tremendously in the past decades, leading to a
deeper understanding of the mechanisms that take place in the nervous system at
multiple levels—ranging from genes and biomolecular mechanisms to brain level
activity obtained through imaging methodologies. These notable improvements
lead to an exponential increase in the amount of data acquired. They also lead to a
more quantitative understanding of the roles of the mechanisms underlying the
central nervous system’s functions and dysfunctions. Finally, they yield a better
understanding of the effects of perturbations that can occur within these processes,
as well as those of exogenous compounds. This deepened understanding enables
the construction of predictive computational models capable of simulating the
nervous system (in its control and pathological states), and the changes that can take
place in response to exogenous compounds.

One of the advantages of multiscale computational models is their inherent
ability to integrate, within the same model, experimental observations obtained
using different (often incompatible) experimental modalities (or experimental
paradigms as defined in Fig. 1), leading to the creation of a single modeled entity
which characteristics reproduce all (or at least most) observations. This inherent
ability can lead to the creation of virtual patients—patients with normal neuronal
function, or with pathological dysfunctions. These virtual patients comprise within
the same simulation framework the biomolecular mechanisms that have been
demonstrated to take place in the normal and pathological cases, along with the
consequences at higher levels of hierarchical (i.e. neuronal, structural and behav-
ioral) and temporal (e.g. neurodegeneration) aggregated scales. The creation of this
integrated model will constitute a major accomplishment of the emerging field of
computational neurology, the patient-centered successor of computational
neuroscience.

This also constitutes a tremendous opportunity for the pharmaceutical industry—
leading to an integrated model on which multiple steps of the drug pipeline may be
performed in silico in a unified manner—encompassing a large number of processes
from target identification to efficacy, side effects and toxicity evaluations. This can
lead to much needed defragmentation of the drug discovery process, consequently
reducing the attrition rate that plagues drug discovery and development.

The ‘dream’ described above, and more broadly discussed in this book is met by
several roadblocks, amongst which are computational power: despite our computers
seemingly ever increasing processing power, creating large integrated models
spanning several hierarchical and temporal levels constitutes a real challenge. This
challenge may be faced using hybrid models that consist of a combination of
mechanistic and non-mechanistic models interacting in a seamless manner—
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leading to efficient simulation of complex non-linear dynamics with a high level of
functional realism. Another roadblock is constituted by our limited knowledge of
many of the intricate mechanisms that underlie the complex biology of the nervous
system. This challenge will ultimately be tackled as the field matures: using open
standards and good computational modeling practices will ensure reproducible,
iterative and collaborative modeling, consequently allowing iterative incorporation
of additional findings while tuning and optimizing the rest of the model. This
maturation will also see the development of frameworks compatible with the large
number of methodologies and standards currently in use for modeling the multiple
spatial and temporal scales of the nervous system.

Finally, a major shift will place the patient at the center. This shift has already
started with the emergence of personalized medicine. It will expand to computa-
tional neurology to generate in silico models with personalized parameters values
for utmost personalized medical prognosis and diagnosis.
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