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Abstract. OpenACC has been on development for a few years now. The
OpenACC 2.5 specification was recently made public and there are some
initiatives for developing full implementations of the standard to make
use of accelerator capabilities. There is much to be done yet, but cur-
rently, OpenACC for GPUs is reaching a good maturity level in various
implementations of the standard, using CUDA and OpenCL as backends.
Nvidia is investing in this project and they have released an OpenACC
Toolkit, including the PGI Compiler. There are, however, more develop-
ments out there. In this work, we analyze different available OpenACC
compilers that have been developed by companies or universities dur-
ing the last years. We check their performance and maturity, keeping in
mind that OpenACC is designed to be used without extensive knowledge
about parallel programming. Our results show that the compilers are on
their way to a reasonable maturity, presenting different strengths and
weaknesses.

1 Introduction

OpenACC is an open standard which defines a collection of compiler directives
or pragmas for execution of code blocks on accelerators like GPUs or Xeon Phi
coprocessors. OpenACC aims to reduce both the required learning time and the
parallelization of sequential code in a portable way [1]. OpenACC specification
is currently on its 2.5 version [2], which has been released recently.

OpenACC was founded by Nvidia, CRAY, CAPS and PGI, but now there is a
large list of consortium members, both from the industry and academy, including
the Oak Ridge National Laboratory, the University of Houston, AMD, and the
Edinburgh Parallel Computing Centre (EPCC), among others. The Corporate
Officers are, at the time of writing this paper, from Nvidia, Oak Ridge National
Laboratory, CRAY and AMD. Academic memberships are available to interested
institutions.

There are several compilers supporting OpenACC. The PGI Compiler (from
the Portland Group, which is a subsidiary of Nvidia for some time now) is being
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distributed as part of the Nvidia OpenACC Toolkit, under a free 90-day trial
license, a free annual academic license, or a commercial license. The PGI Com-
piler uses CUDA or OpenCL as backend. CAPS enterprise, a provider of software
and services for the High Performance Computing community, also developed
a compiler which supports CUDA and OpenCL. However, the company is no
longer in business and its development is not available anymore. CRAY Inc. has
its own OpenACC compiler, available with their computers. It is reported to
be one of the most mature commercial compilers. However, they have not yet
offered an academic or trial license for the purposes of studies like this one. Path-
scale Inc., a compiler and multicore software developer, also made an OpenACC
implementation on their ENZO compiler. Unfortunately, after private commu-
nications they were reluctant to allow us to use their compiler for this study.

There are also several academic attempts of developing an OpenACC com-
piler. In particular, OpenUH [3] developed at the University of Houston, and
accULL [4] from Universidad de La Laguna (Spain). Both of them are available
for free to anyone interested.

This work presents a study about the level of support of OpenACC in
the available compilers, examining their strengths and weaknesses, and giving
insights on their performance.

We analyze the level of maturity of each compiler, in terms of their com-
pleteness in the support of the standard and robustness, using each compiler’s
documentation to check what parts of the specification have been implemented.
We check the support of OpenACC compiler directives with the help of a bench-
mark suite, developed by the Edinburgh Parallel Computing Centre, which will
be described later.

Another aspect to test is the relative performance of the generated code.
For this, we would want to run more complex applications and measure the
differences between the performance of the executable code generated by each
compiler. The ideal situation would be to test applications as close to real
world problems as possible, avoiding synthetic code fragments. Since the use
of OpenACC is not common yet, we have to rely on existing benchmarks. At
this point, comparing the results from OpenACC code with CUDA or OpenCL
direct implementations might seem appropriate, but porting the different bench-
marks to these languages makes the result dependent on human interference, as
the developer’s ability for CUDA programming impacts on the performance.

The experiments conducted in this work were carried out using several bench-
marks. First, the EPCC benchmark suite which contains a group of 13 kernels
ported to OpenACC, called “Level 1” benchmarks. This benchmark suite also
contains three real applications called “Himeno”, “27stencil”, and “le core” [5].
We have also used the Pathscale port of the Rodinia benchmark [6]. We also
wanted to use the OpenACC Validation Testsuite [7] developed by the Univer-
sity of Houston, but at this moment that tool is only available for OpenACC
members.
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Our conclusion is that the different compilers are on their way to a reasonable
maturity. However, there is a number of features not fully implemented yet by
some of the compilers.

The rest of this paper is organized as follows. Section 2 describes the selected
compilers. Section 3 shows the characteristics of the benchmark suites chosen,
enumerating some problems encountered when compiling them with the compil-
ers selected. Section 4 contains the result of our analysis, in terms of completeness
of the OpenACC features supported, robustness of compiler implementations,
and relative performance of the generated code. Finally, Sect. 5 concludes our
paper.

2 Available Compilers

In the introduction we mentioned several compilers. In this section we describe
with more detail the compilers we were able to obtain and use for this study, and
we will discuss their installation particularities on our Linux based platform.

2.1 PGI Compiler

The PGI Compiler [8] is being developed by The Portland Group, being owned
by Nvidia. This compiler is widely used in webinars, workshops, and conferences.

The PGI Compiler is, at the time of writing this paper, available for download
as part of the OpenACC Toolkit from Nvidia. This toolkit includes a 90-day free
trial, the possibility of acquiring an academic license for a whole year, or buying
a commercial license.

2.2 accULL

The accULL [4] compiler developed by Universidad of La Laguna (Spain) is an
open source initiative. accULL consists on a structure of two layers contain-
ing YaCF [9] (Yet another Compiler Framework) and Frangollo [10], a runtime
library. YaCF acts as a source-to-source translator while Frangollo works as an
interface providing the most common operations found in accelerators.

2.3 OpenUH

The OpenUH [3] compiler, developed by the University of Houston (USA) is
another open source initiative. It makes use of Open64, a discontinued open-
source optimizing compiler.

3 Benchmark Description

This section describes the different benchmarks used in our work, enumerating
the main characteristics that make them interesting for this study, and any issue
detected during their compilation with the three compilers studied.
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3.1 EPCC OpenACC Benchmarks

This benchmark suite [11] has been developed by the Edinburgh Parallel Com-
puting Centre (EPCC). The benchmarks are divided in three categories: “Level
0”, “Level 1” and “Applications”. The compiled program launches all the bench-
marks in the suite sequentially. By default, the number of repetitions is ten, and
the result is the average for each benchmark. Time is measured in microseconds
in double precision, using the OpenMP function omp get wtime(). We describe
briefly the benchmarks included bellow:

Level 0. Level 0 includes a collection of small benchmarks that execute single
host and accelerator operations, such as memory transfers.

Level 1. Level 1 benchmarks [12] consist on a series of BLAS-type kernels.
They are based on Polybench [13] and Polybench/GPU kernels. They measure
the performance of executing those codes. These benchmarks are run on the
CPU first in order to have results to compare those obtained on the GPU.

A brief description of the different issues found while running this suite for
these compilers follows.

OpenUH: The following benchmarks cannot be compiled due to unsupported
pragmas present in their code:

kernels if: Problems using #pragma kernels if(0).
parallel private: Problems declaring params as private.
parallel firstprivate: Problems declaring params as firstprivate.
le core: Problems with non scalar pointers.
himeno: Problems with non scalar pointers.

accULL: There is a problem related to a function pointer in the host program.
The compiler, during the source to source translation modifies the syntax of the
function pointer. A double (*test)(void) is converted to a double *(test(void)).
This was solved by manually correcting this change in the intermediate C code
generated, re-compiling the object file and copying it to the main directory to
link all the object files again. No warning from any of the pragmas was detected
so we were able to run all the benchmarks.

3.2 Rodinia OpenACC

Rodinia is a benchmark suite for heterogeneous computing [14,15]. It includes
applications and kernels for multicore CPU or GPU applications.

There is an effort to port existing Rodinia benchmarks for OpenACC. Path-
scale [6] is working on this. We have tested their Rodinia version committed to
GitHub on April 25, 2014. Most of the suite works with PGI, but OpenUH and
accULL have many problems to compile most of the tests. We have been able to
successfully compile the following benchmarks contained in the suite with two
or more compilers: gaussian, nw, lud, cfd, hotspot, pathfinder, and srad2.
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4 Evaluation

In this section we analyze the OpenACC compilers, using both documentation
and experimentation. We use each compiler’s documentation to check the com-
pleteness of OpenACC features supported. Then we use the EPCC benchmarks
to check both robustness and relative performance. Finally we check thread-block
size sensibility, measuring the impact on performance of different geometries.

4.1 Experimental Setup

We used a Nvidia GTX Titan Black to run the experiments. This GPU contains
2880 CUDA cores with a clock rate of 980 Mhz and 15 SMs. It has 6 GB of RAM,
and Compute Capability 3.5. The host is a Xeon E5-2690v3 with 12 cores at a
clock rate of 1.9 GHz, and 64 GB in four 12 GB modules.

The PGI compiler is the one contained in the Nvidia OpenACC Toolkit, ver-
sion 15.7-0, published in Jul 13, 2015. We used OpenUH version 3.1.0 (published
in November 4, 2015), based on Open64 version 5.0 and using GCC 4.2.0, pre-
built, downloaded from the High Performance Computing Tools group website
[16]. accULL is version 0.4alpha (published in November 28, 2013), downloaded
from Universidad de La Laguna’s research group “Computación de Altas Presta-
ciones” [17].

4.2 Completeness of OpenACC Features Supported

From each compiler documentation we get some insight on the completeness of
the OpenACC features supported. From this information, we can conclude that
the OpenACC standard is not fully implemented yet by any of the available
compilers. There is work to be done, but the three compilers are at a respectable
maturity level.

4.3 Robustness and Pragma Implementation

The EPCC Benchmark suite contains several benchmarks for testing OpenACC
directives. These benchmarks are contained in the “Level 0” group, which has
been described in the previous section. Table 1 contains the results obtained
for the three compilers. In this section we enumerate the problems with each
benchmark and we explain the results obtained, including the overhead of the
different pragma implementations.

Except for Update host, Kernels Invoc., and Parallel Invoc., the time shown
is the difference between executing and not executing each pragma. When the
overhead is zero (or the pragma is not implemented), the times are very similar,
with minimal stochastic variation. These variations may produce a very small
negative result when calculating the difference. When differences in time are
on the order of tens of microseconds (positive or negative), it can be assumed
that there is no difference in time between the different versions tested in that
benchmark.
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Table 1. EPCC level 0: directive’s overhead (in µsec), 1 MB dataset

EPCC L0 PGI OpenUH accULL

Kernels if −37.50 Fail 4.54

Parallel if −30.76 −0.48 1237.02

Parallel private −21.94 Fail 51.09

Parallel 1stpriv Fail Fail −213.83

Kernels comb. −1.67 −108.43 −127.17

Parallel comb. −0.05 −2.74 33.38

Update host 478.63 373.22 548.77

Kernels Invoc. Fail 12.76 2398.20

Parallel Invoc. 31.81 13.47 1377.88

Parallel reduct. −14.85 −164.41 −2168.12

Kernels reduct −8.49 −172.31 −2009.11

PGI. There was a problem with the “Kernels Invocation” benchmark: It
returned an incorrect result. The code was not being parallelized and the prag-
mas were ignored because it wasn’t specifically stated that the iterations were
independent. This could be solved adding the keyword restrict to the pointer or
the clause independent to the pragma.

The “kernels if” and “parallel if” results are very similar, and in both cases
the results indicate that the code with the pragma is slightly faster than the
one without it, even though both are being run on the host. In [5] it was stated
that this could be because of optimizations done by the compiler while or after
processing the pragmas.

The “parallel private” benchmark shows that the creation of private variables
for each thread running the loop is slightly faster than the allocation of device
memory.

“Kernels combined” shows a very small difference of time between writing
two pragmas instead of a combined one, the former being slightly faster than
the latter although the difference is almost negligible. The same occurs for the
“parallel combined” benchmark, the difference being smaller in this case.

Finally “Parallel reduction” and “Kernels reduction” show that PGI has very
little overhead for the reduction clause. In [5] it is stated that the PGI compiler
does the reduction even if it is not annotated. This could explain the very small
difference in both benchmarks.

OpenUH. We got some errors during compilation of the “Kernels if”, “Par-
allel private” and “Parallel 1stprivate” benchmarks so they are ignored in this
analysis. However, the “Parallel if” directive is supported and the difference
between using the pragma to run code on the host or running it directly is
almost negligible.
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“Kernels combined” shows an overhead of the combined pragma versus the
separated version. However, this is not the case for the “Parallel combined”
benchmark, where the difference is much smaller. The invocation of kernels and
parallel directives are very similar. And for both of them, the reduction adds
a similar overhead. This might be related to OpenUH assuming loops to be
independent inside kernels regions.

accULL. No errors were shown while compiling or running the benchmarks
with accULL. There is a big difference between the two versions contained in
the “Kernels if” and the “Parallel if” benchmarks, where the kernels directive
version has a very small overhead compared to the non-annotated code. This
overhead is very large in the parallel directive version. This is explained by the
accULL developers in [5] where they say that the absence of a loop clause in the
parallel directive is causing the loop to be executed sequentially in each thread.
Therefore, this clause is not correctly supported, as we understand from the
OpenACC Specification that the loop should be executed only on the host.

Robustness Summary. The overall results indicate that some of the clauses
are not implemented yet, but the three compilers are in their way to a reasonable
maturity level and, since the most used directives are working, they can actually
be used for code parallelization using OpenACC.

4.4 Relative Performance of Generated Code

In this section we analyze the performance of the generated code describing the
impact of pragmas overhead in accULL. Performance measurement is divided
into data movement, where we analyze the results of the data movement bench-
marks in Level 0 of EPCC OpenACC Benchmark Suite, and execution perfor-
mance, using Level 1 and Application Level of EPCC OpenACC Benchmark
Suite, and selected benchmarks from Rodinia.

Effect of Pragmas Overhead in accULL. Some results from the Level 0
of the EPCC Benchmark Suite show a performance impact introduced by some
clauses and directives in the accULL generated code.

Kernels and Parallel invocations in accULL have a higher overhead than
other compilers. This is due to the runtime calls and it is specially noticeable in
the reduction clause. These overheads accumulation does not have a significant
impact for complex kernels, or launching the same kernel over and over again.
However, this could be a problem when running simple kernels or many different
small kernels. This is the main reason behind the overall results showing a worse
performance of the accULL compiler in this analysis.

Data Movement. Data movement performance can be measured in four bench-
marks from the Level 0 of the EPCC OpenACC benchmark suite. We have
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Table 2. EPCC data movement results (in µsec), 1 kB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1kB time norm. time norm. time norm.
ContigH2D 30.827 1.0 322.699 10.47 338.218 10.97
ContigD2H 14.686 1.0 323.319 22.01 343.919 23.42
SlicedH2D 12.087 1.0 310.897 25.72 315.914 26.13
SlicedD2H 14.948 1.0 324.010 21.67 327.714 21.92

GeoMean 18.93 GeoMean 19.58

Table 3. EPCC data movement results (in µsec), 1 MB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1MB time norm. time norm. time norm.
ContigH2D 484.347 1.0 950.789 1.96 727.839 1.50
ContigD2H 461.936 1.0 632.691 1.37 792.761 1.72
SlicedH2D 17.094 1.0 267.982 15.68 274.462 16.06
SlicedD2H 36.335 1.0 254.702 7.01 285.685 7.86

GeoMean 4.14 GeoMean 4.24

Table 4. EPCC data movement results (in µsec), 10 MB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 10MB time norm. time norm. time norm.
ContigH2D 4141.402 1.0 6887.984 1.66 3354.666 0.81
ContigD2H 5876.088 1.0 2043.747 0.35 4396.052 0.74
SlicedH2D 27.322 1.0 404.214 14.79 427.203 15.64
SlicedD2H 48.017 1.0 269.818 5.62 280.203 5.84

GeoMean 2.64 GeoMean 2.72

Table 5. EPCC data movement results (in µsec), 1 GB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1GB time norm. time norm. time norm.
ContigH2D 32310.009 1.0 788945.913 24.42 296340.991 9.17
ContigD2H 55179.119 1.0 553282.976 10.03 347280.359 6.29
SlicedH2D 400.066 1.0 535.011 1.34 533.943 1.34
SlicedD2H 158.071 1.0 2818.100 17.83 4294.407 27.17

GeoMean 8.75 GeoMean 6.76

launched 10 repetitions of those benchmarks with datasizes of 1 kB, 1 MB,
10 MB, and 1 GB. The results can be seen in Tables 2, 3, 4, and 5.

In [5] it was stated that PGI used pinned memory and that it was causing
issues in smaller datasets. It seems that PGI has solved this issue since then and,
looking at the documentation, it is now possible to specify the type of memory
access we want with a compilation flag. When using large datasets, OpenUH and
accULL do not show the expected results according to the evolution shown in
Tables 2, 3, and 4. We guess that this is related to the usage of pinned memory
by the PGI Compiler, allowing it to obtain better results when datasets are big
enough.
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Table 6. EPCC execution results (in µsec), 1 kB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 1kB time norm. time norm. time norm.

2MM 99.087 1.0 522.304 5.27 2799.229 28.25
3MM 80.204 1.0 380.683 4.75 3799.048 47.37

ATAX 58.103 1.0 327.110 5.63 2564.702 44.14
BICG 72.408 1.0 350.380 4.84 2628.499 36.30
MVT 80.037 1.0 354.743 4.43 2665.299 33.30

SYRK 68.426 1.0 289.512 4.23 2394.803 35.00
COV 87.261 1.0 314.617 3.61 3795.372 43.49
COR 104.976 1.0 337.362 3.21 5208.668 49.62

SYR2K 73.290 1.0 317.574 4.33 2469.765 33.70
GESUMMV 65.613 1.0 312.996 4.77 1500.021 22.86

GEMM 49.710 1.0 323.725 6.51 1237.473 24.89
2DCONV 46.444 1.0 286.174 6.16 1207.528 26.00
3DCONV 45.514 1.0 285.792 6.28 1202.494 26.42

27S 335.884 1.0 432.801 1.29 3273.728 9.75
LE2D 6842374 1.0 * * * *

HIMENO 547939 1.0 * * * *

GeoMean 4.39 GeoMean 24.38

Execution Performance, EPCC Benchmarks. In this section we will ana-
lyze the performance of the code generated by the PGI, OpenUH, and accULL
compilers with the benchmarks contained in the EPCC Level 1 and Application
level. We use three different datasets: 1 kB, 1 MB, and 10 MB. This choice is
based on the fact that bigger datasets result in an out of memory error due to
how the benchmarks try to allocate memory on the device. We suspect the mem-
ory allocation is being done in each thread inside the generated kernels, using
more memory than expected. In summary, PGI code obtains better results in
almost every benchmark. However, the differences shorten when using bigger
datasets.

For datasets of 1kB the results can be seen in Table 6. Benchmarks that fail
to execute with a specific compiler are shown with an asterisk in the table. PGI
code shows a very good performance, followed by the OpenUH code, which also
behaves quite good. accULL is showing slightly worse results because it is paying
a high price in overhead for loading kernels in memory for the first time while
this operation is not required for subsequent kernel calls, or it is less noticeable
on complex kernels where computation is more time consuming. This situation
makes it very hard to compete with other compilers for such small and simple
problems. This issue is less noticeable with bigger datasets.

When using the default dataset size of 1 MB, we can see in Table 7 that the
differences between PGI and the rest are smaller than when a dataset of 1 kB
was used. The increment of time due to the increment of dataset size for these
benchmarks is more noticeable for the PGI compiler and, to a lesser extent, for
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Table 7. EPCC execution results (in µsec), 1 MB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 1MB time norm. time norm. time norm.

2MM 2305.698 1.0 3467.703 1.50 4002.412 1.74
3MM 705.409 1.0 1453.137 2.06 5265.778 7.46

ATAX 484.204 1.0 1222.420 2.52 4212.914 8.70
BICG 502.849 1.0 1256.871 2.50 4229.466 8.41
MVT 538.135 1.0 * * 4355.322 8.09

SYRK 1374.769 1.0 2543.616 1.85 4000.674 2.91
COV 3681.660 1.0 4251.957 1.15 23969.443 6.51
COR 3863.096 1.0 4318.953 1.12 25732.814 6.66

SYR2K 1968.789 1.0 2532.029 1.29 4586.741 2.37
GESUMMV 406.623 1.0 1195.669 2.94 2709.591 6.66

GEMM 1041.651 1.0 23642.850 22.70 3595.218 3.45
2DCONV 1637.363 1.0 1912.236 1.17 2991.542 1.83
3DCONV 9388.137 1.0 9670.520 1.03 10058.497 1.07

27S 2179.599 1.0 2224.064 1.02 8342.865 3.83
LE2D 6861089 1.0 * * * *

HIMENO 540513 1.0 * * * *

GeoMean 1.92 GeoMean 4.11

OpenUH. accULL results are very similar to the results obtained with the first
dataset of 1 kB. Notice the results obtained for the GEMM benchmark with
OpenUH, which is probably being executed sequentially.

For datasets of 10 MB, the results can be seen in Table 8. Some benchmarks,
for example “2MM” and “GEMM”, need unexpected amounts of time. Running
the accULL generated code for 2MM requires one third of the time required by
PGI and OpenUH codes. The GEMM benchmark shows a huge execution time,
probably for the reason described in the previous paragraph.

The 27 stencil application is the only benchmark in the application level that
compiles and runs successfully with all the compilers. It is a representative appli-
cation of stencil codes that uses a three-dimensional neighbour synchronization
pattern. Thus, it is a good representative of a well-known class of applications.
In Fig. 1a we show the execution times obtained for this application in the cho-
sen platform. The results show that one of the compilers cannot produce an
efficient implementation. However, as it is shown in Fig. 1b, all compilers can
derive similar solutions for simpler 3-dimensional stencil codes, as the 3DCONV
benchmark of level one.

Execution Performance, Rodinia. Regarding Rodinia, We should remark
that the compilation presented some problems and there was a very limited
amount of compiled benchmarks to choose from. The performance results can
be seen in Tables 9 and 10. Only the Gaussian benchmark reports results for
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Table 8. EPCC execution results (in msec), 10 MB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 10MB time norm. time norm. time norm.

2MM 64.407 1.0 64.336 0.99 20.476 0.32
3MM 11.610 1.0 21.113 1.82 30.009 2.58

ATAX 4.345 1.0 7.415 1.71 7.659 1.76
BICG 4.385 1.0 7.397 1.69 7.689 1.75
MVT 4.406 1.0 * * 7.945 1.80
SYRK 26.537 1.0 57.242 2.16 42.834 1.61
COV 117.757 1.0 134.047 1.14 230.241 1.96
COR 120.612 1.0 122.814 1.02 223.836 1.86

SYR2K 23.450 1.0 27.939 1.16 30.062 1.28
GESUMMV 3.567 1.0 7.191 2.02 6.297 1.77

GEMM 17.788 1.0 239.713 13.48 48.567 2.73
2DCONV 7.848 1.0 7.725 0.98 8.687 1.11
3DCONV 40.551 1.0 40.235 0.99 43.729 1.08

27S 9.243 1.0 9.254 1.00 42.389 4.59
LE2D 6863 1.0 * * * *

HIMENO 528 1.0 * * * *
GeoMean 1.59 GeoMean 1.63

Fig. 1. Execution results (in msec).

execution time including and not including memory transfers. Benchmarks that
fail to compile with specific compilers are shown with an asterisk in the table.

Here we can see how the code produced by PGI is not behaving as we would
expect from the results obtained from the EPCC benchmark suite. PGI code
is taking a lot of time in data transfer operations, while OpenUH code is not
expending so much time in those operations. We discovered that the EPCC
Benchmark Suite runs a function which contains an OpenACC pragma in order
to make sure that the accelerator device is awake when the real benchmarks are
run. This does not happen in Rodinia where the first OpenACC section is the
data movement pragma. PGI generated code needs more than two seconds to set
up the accelerator device, whereas OpenUH and accULL don’t need that time.
Beside this, accULL code is having some trouble running Gaussian as the time
is not being spent in data transfer operations, but inside the generated kernels.
We suspect that they might be executing sequential code in the host, due to a
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Table 9. Rodinia execution time results including memory transfers. Total time (in
msec). White cells highlight the best results.

Exec. time
3 reps

PGI OpenUH accULL

gaussian 2440.206 52.491 15422.944
nw 2640.497 652.180 322.101
lud 3803.756 1723.576 *
cfd 2677.387 0.846 *

hotspot 2386.325 53.219 *
pathfinder 5137.865 34.738 *

srad2 2488.895 692.063 *

Table 10. Rodinia execution results. Kernel time (in msec) not including memory
transfers. White cells highlight the best results.

Kernel time
3 reps

PGI OpenUH accULL

Gaussian 57.345 36.092 15415.992

fail of the compiler or execution run-time to properly use the GPU. However,
accULL obtains the best results in Needle-Wunsch.

Relative Performance Summary. Results indicate a better performance for
the code generated by PGI for the simple codes in the EPCC benchmarks, but
not for the Rodinia applications. OpenUH generated code is not affected by any
noticeable overhead and its performance is very close to PGI code. In order to
analyze accULL code results it is important to take into account the overhead
produced by kernel loading operations. If a bigger input set was used, results
could be much better, but due to limitations on benchmark implementation this
was not possible at this time.

5 Conclusions

During this work, we have realized that both the OpenACC standard and
its compiler implementations are in their way to a reasonable maturity level.
Although many details are still not completely developed, the efforts to arrive
at a solid implementation are promising. Nvidia and PGI are devoting many
resources to this project, and this results in a very competitive and solid com-
piler. However, open-source alternatives are also on a good position. OpenUH
and accULL, being academic implementations, are also very interesting and show
a huge amount of work done by their creators.

Regarding completeness of OpenACC features, according to each compiler’s
documentation, we find that none of them fully support the standard. This was
expected as all of them are still not totally mature.
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Speaking about robustness and pragma implementation, PGI shows the best
behaviour, as the errors detected were related to implementation issues of the
benchmark codes instead of a compiler problem. Compared to the others, the
overhead of the implementation is smaller and it even includes some optimiza-
tions when processing pragmas that are going to be executed in the host.

Finally, the performance comparison we have made shows better results for
PGI, but the other alternatives have also shown their strengths. It would also
be interesting to run this performance analysis on several machines and different
GPUs in order to also observe the differences of the execution of the generated
code in different hardware, and this is part of our future work. The lack of
OpenACC benchmark suites makes it very difficult to try different problems
or datasizes. Our work shows that there is a need for real application codes
annotated with OpenACC pragmas to test the actual potential of the current
compiler implementation, as many articles before [5,18,19] have stated. This is
part of our current and future work.
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