
Automated Parallel Simulation of Heart
Electrical Activity Using Finite Element Method

Andrey Sozykin1,2,3(B), Timofei Epanchintsev1,2,3, Vladimir Zverev1,3,
Svyatoslav Khamzin2,3, and Aleksandr Bersenev1,3

1 Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
2 Institute of Immunology and Physiology UrB RAS, Ekaterinburg, Russia

3 Ural Federal University, Ekaterinburg, Russia
Andrey.Sozykin@urfu.ru

Abstract. In this paper we present an approach to the parallel simu-
lation of the heart electrical activity using the finite element method
with the help of the FEniCS automated scientific computing frame-
work. FEniCS allows scientific software development using the near-
mathematical notation and provides automatic parallelization on MPI
clusters. We implemented the ten Tusscher–Panfilov (TP06) cell model
of cardiac electrical activity. The scalability testing of the implementa-
tion was performed using up to 240 CPU cores and the 95 times speedup
was achieved. We evaluated various combinations of the Krylov par-
allel linear solvers and the preconditioners available in FEniCS. The
best performance was provided by the conjugate gradient method and
the biconjugate gradient stabilized method solvers with the successive
over-relaxation preconditioner. Since the FEniCS-based implementation
of TP06 model uses notation close to the mathematical one, it can
be utilized by computational mathematicians, biophysicists, and other
researchers without extensive parallel computing skills.

Keywords: Heart simulation · Finite element method · Scalability ·
Krylov subspace methods · FEniCS · Parallel computing

1 Introduction

The mechanical contraction of a heart, which pumps the blood throughout the
entire body, is caused by its electrical activity. In order to understand how the
heart works, it is important to be able to simulate cardiac electrical processes.
However, heart simulation is a complex multilevel (cell-tissue-organ) modeling
task [9] that is very computationally intensive. Therefore, for a fast and accurate
heart simulation, parallel computing is required.

The work is supported by the RAS Presidium grant I.33P “Fundamental prob-
lems of mathematical modeling,” project no. 0401-2015-0025. Our study was per-
formed using the Uran supercomputer of the Krasovskii Institute of Mathematics
and Mechanics and computational cluster of the Ural Federal University.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 365–372, 2016.
DOI: 10.1007/978-3-319-49956-7 29

366 A. Sozykin et al.

However, the parallel heart simulation is impeded by the two obstacles. First,
it requires a deep knowledge in a number of modern computational architectures
and parallel programming technologies, which most of biophysicists do not pos-
sess. Secondly, sophisticated multilevel models are hard to implement in code,
especially when the complex optimization for modern computational architec-
tures is required. As a result, multilevel simulation software is very hard to
support, while models and computational architectures are changing constantly.

Nowadays, automated scientific computing frameworks that allow software
development using near-mathematical notation are becoming popular. Recently,
the performance of such frameworks was significantly improved by the use of just-
in-time compilers, highly efficient mathematical libraries, parallel computing,
etc.

We propose an approach to simulation of the heart electrical activity using
the scientific computing framework FEniCS [6], which provides the ability to
automatically solve partial differential equations (PDE) using the finite element
method (FEM) on MPI clusters. We use the FEniCS framework to study the
space propagation of the membrane potential alternation over the left ventricle
(LV) of a human heart using the ten Tusscher–Panfilov (TP06) cell model [10].

Due to the fact that FEM produces sparse matrices, computations heavily
depend on the degree of sparsity because it allows to use various optimization
techniques such as the compressed row storage, the sparse matrix-vector multi-
plication, or custom approaches [3]. Various models produce matrices with dif-
ferent degrees of sparsity. Hence, linear solvers and appropriate preconditioners
demonstrate different results on parallel systems for various models. We evalu-
ated which combination of the linear solver and the preconditioner is the most
suitable for the simulation of a cardiac electrical activity using the TP06 model.

2 Model of the Heart Electrical Activity

There are many mathematical models of cardiac electrical activity. However,
all of them contain the description of the action potential (AP), which is the
difference of the potential between the intra- and extracellular space. We adopted
the TP06 model [10,11] for the simulation of the electrical activity in the LV of
a human heart. This model uses the reaction-diffusion equations to describe the
space and time evolution of the action potential (V):

Cm · dV
dt

= ∇ · (D∇V) − Iions, (1)

dS

dt
= g(V, S), (2)

where Cm is the capacitance of a cell membrane, D is the 3×3 diffusion matrix,
Iions is the sum of the ionic currents, S is the vector of the model variables
that govern the ion currents, and g is the vector-valued function that describes
the time evolution of each variable. The boundary conditions provide the LV
electrical isolation.

Automated Parallel Simulation of Heart Electrical Activity 367

On the intracellular level, the electrical potential arises from a very compli-
cated interaction among ionic currents and cell organelles (organized structures
in cells). The TP06 model contains the equations that describe how does the
state of ion channels change with time and the kinetics of intracellular concentra-
tions of calcium, sodium and potassium, extracellular potassium, the kinetics of
calcium complexes, and calcium kinetics in the organelles. All of this processes
are described by 18 phase variables. System (1)–(2) is defined at each point
of the heart tissue, and, consequently, we should solve it for each node of the
computational mesh.

Thus, the TP06 model is a nonlinear system of partial and ordinary differ-
ential equations (ODE) that cannot be solved analytically and, hence, must be
solved on a computer using numerical techniques. This task is highly computa-
tionally intensive due to the big number of equations in the 3D domain and the
stiffness of the TP06 model.

3 FEniCS and the Finite Element Method

FEM provides a powerful methodology for discretizing differential equations,
however, it produces algebraic systems the solution of which is also a challenge.
Linear solvers must handle sparsity and possible ill-conditioning of the algebraic
systems. In addition, modern solvers should also be able to use parallel com-
puting systems efficiently. The FEM implementation in FEniCS is intended to
automate a PDE solution. In particular, FEniCS relies on the automation of dis-
cretization, discrete solution, and error control. FEniCS provides two approaches
for a PDE solution: direct and iterative. Iterative solution is more efficient
because it uses less memory and is easier to parallelize [6].

The FEniCS framework is a collection of software components for the for-
mulation of variational forms (UFL [1]), the discretization of variational forms
(FIAT, FFC [4]), and the assembly of the corresponding discrete operators (UFC,
DOLFIN [7]). To solve a problem, FEniCS uses several highly efficient parallel
algebra backends, such as PETSc and Hypre. UFL is a domain-specific language
designed for convenient and understandable formulation of variational forms
using the near-mathematical notation. The discretization of variational forms
is done by generation of arbitrary order instances of the Lagrange elements on
lines, triangles, and tetrahedra (FIAT), and compilation of efficient low-level
C++ code that can be used to assemble the corresponding discrete operator
(FFC). The assembly of the discrete operators (tensors) is crucial for accelera-
tion on parallel computing systems. The idea is to split the mesh among process-
ing units, compute the local matrix, and insert the values back into the global
matrix. The FEniCS team designed the local-to-global mapping algorithm [4] to
map values between the local and global matrices.

The most computationally intensive task is solving the local linear system.
Hence, optimization of this step by selecting appropriate linear solver and pre-
conditioner can provide a significant computation speedup.

368 A. Sozykin et al.

4 Model Implementation in FEniCS

In order to implement the TP06 model in FEniCS, we transformed the nonlinear
system (1)–(2) into a linear one, which let us use iterative solvers. The transfor-
mation was performed with the help of the first order operator splitting scheme
(the Marchuk–Yanenko method) [5]. The scheme of computing V (tn) and S(tn)
can be described as follows. Let us assume that we have already calculated the
values of V (t) and S(t) for t < tn. In order to find the values of V (tn) and S(tn),
we solve Eq. (3),

dV ∗

dt
= D∇V ∗, V ∗(t = tn−1) = V (tn−1), t ∈ [tn−1, tn],

dV ∗∗

dt
= Iions, V

∗∗(t = tn−1) = V ∗(tn),

dS∗∗

dt
= g(V ∗, S∗∗), S∗∗(t = tn−1) = S(tn−1).

(3)

First, we solve the diffusion PDE. After that we have to find the solution of
the ODE system for cell ionic currents. We get the final values of V (tn) and S(tn)
according to the rules V (tn) = V ∗∗(tn) and S(tn) = S∗∗(tn). This method is also
known as the method of splitting into physical processes. The disadvantage of
the approach is the necessity to use a very small integration time step (0.0005 s)
in order to capture the fast electrochemical processes.

The model was implemented in the Python language using UFL. The code
fragment for the diffusion PDE problem formulation is presented in Listing 1.1.
First, a finite element mesh is created and loaded from the file. After that the
discrete function space for AP is defined. FEniCS uses the term trial function
to specify the unknown function that should be approximated (the variable v
contains a trial function and the v0 variable contains the initial values). The
next step is to define the linear variational problem for the diffusion equation.
Lastly, the PDE solver is created.

Listing 1.1. Formulation of the diffusion PDE variational problem

mesh = Mesh ()
Code fo r l oad ing mesh from the f i l e
Bui ld ing func t i on space f o r ac t i on p o t e n t i a l
Space AP = FunctionSpace (mesh , ”Lagrange” , l a g r ange o rde r)
Define the PDE Problem
v = Tria lFunct ion (Space AP)
v0 = Function (Space AP)
PdePart = (1 . 0/ dt)∗ i nne r (v − v0 , q1)∗dx \

− (− i nne r (D∗grad (v) , grad (q1)))∗ dx
PDEproblem = LinearVar iat iona lProb lem (lh s (PdePart) ,

rhs (PdePart) , v , bcs=bcs)
Creat ing the PDE so l v e r
PDEsolver = L inea rVar i a t i ona lSo l v e r (PDEproblem)

Automated Parallel Simulation of Heart Electrical Activity 369

Listing 1.2 demonstrates the code fragment for solving differential equations.
The first step in the for loop solves the diffusion PDE using the PDEsolver.
After that, the values of the state variables and AP, which was computed on
the previous step, are stored. Next, the ODE system describing the cell ion
currents is solved using the ODEsolver. There is no need for explicit, manual
parallelization because the parallelization is provided by FEniCS. In addition to
parallel computation, FEniCS provides the parallel output, during which each
process writes its part of the data to a single file.

Listing 1.2. Solving the differential equation systems

for t in t ime range [1 :] :
So l v ing d i f f u s i o n equat ion
a s s i gn (v0 , v)
PDEsolver . s o l v e ()
So lv ing c e l l e qua t i ons
a s s i gn (ode vars0 , ode vars)
a s s i gn (ode vars0 . sub (0) , v)
ODEsolver . s o l v e ()
Stor ing data i f necessary
i f s t ep s

v f i l e << (v , t)
s t ep s += 1

5 Performance Evaluation

During the experiments, we simulated the electrical activity of the human heart
LV using the asymmetric anatomical model that was previously developed in
our group [8] (an example of LV 3D mesh is presented in Fig. 1). We used the
tetrahedral mesh with the length of the tetrahedrons from 2 to 4 mm; the mesh
contained 7178 points and 26156 tetrahedrons. The GMSH software [2] was used
for the initial mesh generation. Next, the mesh was converted by the DOLFIN
module to the HDF5 format in order to enable parallel I/O operations.

The initial simulation conditions were the activation of a small part of LV
near the apex (the potential is greater than 40 millivolt). The simulation duration
was 0.3 s of physical time, because after this period the electrical activity tends
to the equilibrium state in absence of an external stimulus.

The experiments were carried out on the Uran supercomputer of the
Krasovskii Institute of Mathematics and Mechanics with the following compu-
tational nodes configuration: 2 x Intel Xeon CPU X5675 CPU, 192 GB RAM,
Infiniband DDR interconnect, CentOS 7 operating system. The FEniCS version
1.6.0 was used.

The TP06 model implementation was executed on the Uran supercomputer
in parallel using various numbers of CPU cores, from 1 to 240. We used Krylov
parallel linear solvers and preconditioners available in FEniCS (Table 1). The

370 A. Sozykin et al.

Table 1. Parallel Krylov solvers and preconditioners available in FEniCS

Solver Preconditioner

Biconjugate Gradient Stabilized Algebraic Multigrid (amg)

Method (bicgstab) Default preconditioner (Block Jacobi)

Conjugate Gradient method (cg) Hypre Algebraic Multigrid (hypre amg)

Successive Over-relaxation (sor)

Fig. 1. An example of 3D mesh of the left ventricle (asymmetric model)

Table 2. The simulation time (minutes) using for various numbers of CPU cores

Solver and Preconditioner Number of CPU cores

1 12 36 60 96 120 156 180 216 240

bicgstab + amg 1937 275 109 74 50 44 36 33 29 28

cg + amg 1930 242 96 65 44 39 35 32 29 27

bicgstab + default 1915 214 82 53 38 34 28 25 22 20

cg + default 1896 224 86 53 35 30 27 24 21 20

bicgstab + hypre amg 1947 248 98 67 45 39 35 33 29 28

cg + hypre amg 1925 268 106 71 49 43 35 32 29 27

bicgstab + none 2021 263 92 61 40 34 30 27 23 22

cg + none 1963 247 95 63 42 37 29 26 23 21

bicgstab + sor 1845 208 79 53 34 30 26 24 20 19

cg + sor 1839 220 85 55 36 32 26 23 20 19

simulation time with various combinations of solvers and preconditioners is pre-
sented in Table 2, the achieved speedup is demonstrated in Fig. 2.

Automated Parallel Simulation of Heart Electrical Activity 371

0

10

20

30

40

50

60

70

80

90

100

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240

Sp
ee

du
p,

 ti
m

es

Number of CPU cores

bicgstab + amg

cg + amg

bicgstab + default

cg + default

bicgstab + hypre_amg

cg + hypre_amg

bicgstab + none

cg + none

bicgstab + sor

cg + sor

Fig. 2. Simulation speedup depending on the number of CPU cores

6 Discussion

The experiments demonstrated that the FEniCS-based TP06 model implemen-
tation provides acceptable performance and good scalability. The best result was
achieved using the conjugate gradient method and the biconjugate gradient sta-
bilized method solvers with the successive over-relaxation preconditioner: 19 min
of the simulation time, 95 times speedup using the 240 CPU cores.

Choosing the appropriate combination of the solver and the preconditioner
is an important task. The best combination from our experiments (Table 1)
provided 30% more performance on 240 CPU cores than the worst one (the
biconjugate gradient stabilized method solver with the algebraic multigrid pre-
conditioner). To save space, we presented in the paper only the best experiment
results. FEniCS includes other solvers and preconditioners not listed in Table 1.
Hence, in practice, the difference in performance of the best combination and
other solvers and preconditioners available in FEniCS could be more than 30%.

As the number of CPU cores increases, the preconditioner’s influence on per-
formance becomes greater than the solver’s. When we conducted the simulation
on 132 CPU cores or more, there was no tangible difference in performance
between different solvers working with the same preconditioner (Table 2).

7 Conclusion

The created implementation of the TP06 model uses the near-mathematical
notation provided by the FEniCS framework. As a result, computational mathe-
maticians and biophysicists can use this implementation for experimenting with

372 A. Sozykin et al.

the model. They can easily modify the model parameters, the initial activation
conditions, and even change the model itself. Despite the usage of the near-
mathematical notation, our implementation provides an acceptable performance
and scales well. The possible direction of the future work is to use the TP06
model implementation for simulation of complicated processes in LV that can
cause heart diseases, such as scroll wave dynamics. Another important task is
to implement the model of mechanical heart activity using FEniCS and provide
the ability to simulate electro-mechanical function of the heart.

References

1. Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form
language. ACM Trans. Math. Softw. 40(2), 1–37 (2014)

2. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh gener-
ator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng.
79(11), 1309–1331 (2009)

3. Jansson, N.: Optimizing sparse matrix assembly in finite element solvers with one-
sided communication. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR
2012. LNCS, vol. 7851, pp. 128–139. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38718-0 15

4. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw.
32(3), 417–444 (2006)

5. Li, Y., Chen, C.: An efficient split-operator scheme for 2-D advection-diffusion
simulations using finite elements and characteristics. Appl. Math. Model. 13(4),
248–253 (1989)

6. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations
by the Finite Element Method: The FEniCS Book. Springer Science & Business
Media, Heidelberg (2012)

7. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans.
Math. Softw. (TOMS) 37(2), 1–28 (2010)

8. Pravdin, S.F., Berdyshev, V.I., Panfilov, A.V., Katsnelson, L.B., Solovyova, O.,
Markhasin, V.S.: Mathematical model of the anatomy and fibre orientation field
of the left ventricle of the heart. Biomed. Eng. Online 54(12), 21 (2013)

9. Kerckhos, R.C.P., Healy, S.N., Usyk, T.P., McCulloch, A.D.: Computational meth-
ods for cardiac electromechanics. Proc. IEEE 94, 769–783 (2006)

10. Ten Tusscher, K.H., Panfilov, A.V.: Alternans and spiral breakup in a human ven-
tricular tissue model. Am. J. Physiol. Heart Circulatory Physiol. 291(3), H1088–
H1100 (2006)

11. Ten Tusscher, K.H., Panfilov, A.V., et al.: Organization of ventricular fibrillation
in the human heart. Circulation Res. 100(12), e87–e101 (2007)

http://dx.doi.org/10.1007/978-3-642-38718-0_15
http://dx.doi.org/10.1007/978-3-642-38718-0_15

	Automated Parallel Simulation of Heart Electrical Activity Using Finite Element Method
	1 Introduction
	2 Model of the Heart Electrical Activity
	3 FEniCS and the Finite Element Method
	4 Model Implementation in FEniCS
	5 Performance Evaluation
	6 Discussion
	7 Conclusion
	References

