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Abstract. High Energy Physics (HEP) experiments at the LHC collider at CERN
were among the first scientific communities with very high computing require‐
ments. Nowadays, researchers in other scientific domains are in need of similar
computational power and storage capacity. Solution for the HEP experiments was
found in the form of computational grid - distributed computing infrastructure
integrating large number of computing centers based on commodity hardware.
These infrastructures are very well suited for High Throughput applications used
for analysis of large volumes of data with trivial parallelization in multiple inde‐
pendent execution threads. More advanced applications in HEP and other scien‐
tific domains can exploit complex parallelization techniques using multiple inter‐
acting execution threads. A growing number of High Performance Computing
(HPC) centers, or supercomputers, support this mode of operation. One of the
software toolkits developed for building distributed computing systems is the
DIRAC Interware. It allows seamless integration of computing and storage
resources based on different technologies into a single coherent system. This
product was very successful to solve problems of large HEP experiments and was
upgraded in order to offer a general-purpose solution. The DIRAC Interware can
help including also HPC centers into a common federation to achieve similar
goals as for computational grids. However, integration of HPC centers imposes
certain requirements on their internal organization and external connectivity
presenting a complex co-design problem. A distributed infrastructure including
supercomputers is planned for construction. It will be applied for inter-discipli‐
nary large-scale problems of modern science and technology.

Keywords: Distributed computing · High-performance computations · Cloud
services · Grid systems · Workflow management · Big data management

1 Introduction

The number of scientific domains with highly intensive computational applications is
rapidly increasing. The High Energy Physics (HEP) experiments at the LHC collider,
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CERN, have pioneered the new era of highly data intensive studies. However, other
disciplines are quickly increasing their data volume requirements. Applications dealing
with Exabyte-level data volumes are already on the horizon. New scientific communities
need urgently tools to work with large datasets and massively parallel applications
adapted to their specific tasks and suitable to the expertise level of their scientists. The
scientific collaborations nowadays are often international with many groups coming
from different laboratories and universities. As a result, the available computing and
storage resources of a given collaboration are usually distributed as each group is coming
up with its own contribution. Therefore, there is a strong necessity of building computing
systems that cope with large volumes of distributed data and distributed computing
resources that can be used for these data analysis.

The DIRAC Project was started to solve the data intensive analysis problem for one
of the LHC experiments, LHCb, in 2003 [1, 2]. It was started as a Workload Management
System (WMS) in order to operate multiple computing centers in Europe to produce
modeling data for the experiment optimization. However, the need in an efficient Data
Management System coping with many millions of files with distributed replicas and
having a close coupling with the WMS was quickly understood. As a result, the DIRAC
allows performing all the data analysis tasks of LHCb and other HEP experiments [4–6].

After multiple years of successful usage in the HEP domain, the DIRAC software
was generalized to be suitable for other applications requiring large data volumes and
computing power. It provides a development framework and many ready-to-use services
to build distributed computing systems adapted to particular scientific communities.
These tools serve to interconnect technologically heterogeneous computing and storage
resources into a coherent system seen by the users as a single large computer with a
friendly interface and consistent computational and storage subsystems. Therefore, we
speak about DIRAC Interware – technology to aggregate multiple computing resources
and services. This toolkit can be also used to integrate computing centers of the HPC
type supporting massively parallel applications along with the traditional grid sites. This
requires development of several new components and also a model of an HPC center,
which is rich enough for a large number of applications that can run in such HPC feder‐
ations.

In this article we will overview the DIRAC Interware, its base architecture and
implementation. We will describe the base Workload Management and Data Manage‐
ment systems of DIRAC as well as computing and storage resources accessible with
these services. We will discuss specific features of HPC centers and possible ways to
integrate them into a comment distributed infrastructure. We will present also plans for
integration of several HPC centers into a federation dedicated to actual scientific prob‐
lems.

2 DIRAC Overview

DIRAC Project provides all the necessary components to create and maintain distributed
computing systems. It is forming a layer on top of third party computing infrastructures,
which isolates users from the direct access to the computing resources and provides them
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with an abstract interface hiding the complexity of dealing with multiple heterogeneous
services. This pattern is applied to both computing and storage resources. In both cases,
abstract interfaces are defined and implementations for all the common computing
service and storage technologies are provided. Therefore, the users see only logical
computing and storage elements, which simplifies dramatically their usage. In this
section we will describe in more details the DIRAC systems for workload and data
management.

2.1 Workload Management

The DIRAC Workload Management System is based on the concept of pilot jobs [3].
In this scheduling architecture (Fig. 1), the user tasks are submitted to the central Task
Queue service. At the same time the so-called pilot jobs are submitted to the computing
resources by specialized components called Directors. Directors use the job scheduling
mechanism suitable for their respective computing infrastructure: grid resource brokers
or computing elements, batch system schedulers, cloud managers, etc. The pilot jobs
start execution on the worker nodes, check the execution environment, collect the worker
node characteristics and present them to the Matcher service. The Matcher service
chooses the most appropriate user job waiting in the Task Queue and hands it over to
the pilot for execution. Once the user task is executed and its outputs are delivered to
the DIRAC central services, the pilot job can take another user task if the remaining
time of the worker node reservation is sufficient.

Fig. 1. WMS with pilot jobs
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There are many advantages of the pilot job concept. The pilots are not only increasing
the visible efficiency of the user jobs but also help managing heterogeneous computing
resources presenting them to the central services in a uniform coherent way. Large user
communities can benefit also from the ability of applying the community policies that
are not easy, if at all possible, with the standard grid middleware. Furthermore executing
several user tasks in the same pilot largely reduces the stress on the batch systems no
matter if they are accessed directly or via grid mechanisms, especially if users subdivide
their payload in many short tasks trying to reduce the response time.

The pilot job based scheduling system allows easy aggregation of computing
resources of different technologies. Currently the following resources are available for
DIRAC users:

• Computing grid infrastructures based on the gLite/EMI grid middleware. The
submission is possible both through the gLite Workload Management System and
directly to the computing element services exposing the CREAM interface. Examples
of such grid infrastructures are WLCG and EGI grids.

• Open Science Grid (OSG) infrastructure based on the VDT (Virtual Data Toolkit)
suite of middleware [7].

• Grids based on the ARC middleware which was developed in the framework of the
Nordugrid project [8].

• Standalone computing clusters with common batch system schedulers, for example,
PBS/Torque, Grid Engine, Condor, SLURM, OAR, and others. Those clusters can
be accessed by configuring an SSH tunnel that will be used by DIRAC directors to
submit pilot jobs to the local batch systems.

• Sites providing resources via most widely used cloud managers, for example Open‐
Stack, OpenNebula, Amazon and others. Both commercial and public clouds can be
accessed through DIRAC.

• Volunteer resources provided with the help of BOINC software. There are several
realizations of access to this kind of resources all based on the same pilot job frame‐
work.

As it was explained above, a new kind of computing resource can be integrated into
the DIRAC Workload Management System by providing a corresponding Director using
an appropriate job submission protocol. This is the plugin mechanism that allows
connecting easily new computing facilities as needed by the DIRAC users.

2.2 Data Management

The DIRAC Data Management System (DMS) is based on similar design principles as
the WMS [9]. An abstract interface is defined to describe access to a storage system and
there are multiple implementations for various storage access protocols. Similarly, there
is a concept of a FileCatalog service, which provides information about the physical
locations of file copies. As for storage services there are several implementations for
different catalog service technologies all following the same abstract interface.

A storage system can be accessible via different interfaces with different access proto‐
cols. But for the users this stays logically a single service providing access to the same
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physical storage space. Similar situation can happen also for the file catalog services. To
simplify access to this kind of services, DIRAC defines aggregators that allow working
with multiple services as if with a single one from the client perspective. All the plug-ins
and aggregators are hidden behind the DataManager API which have methods to perform
all the basic operations needing access to both storage and catalog services.

DIRAC is also providing a number of auxiliary and higher level services to support
higher-level operations as well as to help administrators to run the system:

• Support for bulk asynchronous operations is provided by the Request Management
System (RMS);

• Transformation System (TS) provides means to automate recurrent massive data
operations driven by the data registration or file status change events;

• Staging service to manage bringing data on-line into a disk cache in the SEs with
tertiary storage architecture. These operations are usually triggered automatically by
the WMS before the jobs using these data as input can be submitted for execution to
the worker nodes.

• FTS Manager service to submit and manage data transfer requests to an external File
Transfer Service.

• Data Logging service to log all the operations on a predefined subset of data mostly
for debugging purposes.

• Data Integrity service to record failures of the data management operations in order
to spot malfunctioning components and resolve issues.

• The general DIRAC Accounting service is used to store the historical data of all the
data transfers, success rates of the transfer operations, etc.

DIRAC provides plug-ins for a number of storage access protocols most commonly
used in the distributed storage services:

• SRM, XRootd, RFIO, etc.;
• gfal2 library based access protocols (DCAP, HTTP-based protocols, S3, WebDAV,

etc.) [10].

If some DIRAC user community would need access to a storage system not yet
supported by the DIRAC Interware, it will be easy to incorporate it by providing a new
plug-in to the system.

In addition DIRAC provides its own implementation of a Storage Element service
and the corresponding plug-in using the custom DIPS protocol. This is the protocol used
to exchange data between the DIRAC components. The DIRAC StorageElement service
allows exposing data stored on file servers with POSIX compliant file systems, for
example NFS or Lustre. This service helps to quickly incorporate data accumulated by
scientific communities in any ad hoc way into any distributed system under the DIRAC
Interware control.

2.3 DIRAC Development Framework

All the DIRAC components are written in a well-defined software framework with a
clear architecture and development conventions. A large part of the functionality is
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implemented as plugins implementing predefined abstract interfaces. There are several
core services to orchestrate the work of the whole DIRAC distributed system, the most
important ones are the following:

• Configuration service used for discovery of the DIRAC components and providing
a single source of configuration information;

• Monitoring service to follow the system load and activities;
• Accounting service to keep track of the resources consumption by different commun‐

ities, groups and individual users;
• System Logging service to accumulate error reports in one place to be able to quickly

react to problems.

Modular architecture and the use of core services allow developers to easily write
new extensions concentrating on their specific functionality and avoiding recurrent
tasks.

All the communications between distributed DIRAC components are secure
following the standards introduced by computational grids, which is extremely impor‐
tant in the distributed computing environment.

Users are provided with a number of different interfaces to interact with the system.
This includes a rich set of command-line tools for Unix environment, Python language
API to write one’s own scripts and applications. DIRAC functionality is available also
through a flexible and secure Web Portal which follows the user interface paradigm of
a desktop computer.

3 DIRAC Usage Examples

DIRAC based infrastructures are used by multiple scientific communities having to
integrate heterogeneous resources at their disposal. Many of the common requirements
are already satisfied by the core DIRAC components. However, each community can
have its own specific workflows and data models. Therefore it is quite usual that large
experiments are introducing new services implementing their particular management
logic.

3.1 Physics Applications

DIRAC was originally developed for the LHCb experiments at the LHC collider at
CERN, Geneva. Among the High Energy Physics experiments, LHCb stays the most
intensive user of the DIRAC Interware using it as the basis for its data production system
[12]. Figure 2 illustrates the scale of the computing resources usage by LHCb.

The plot is produced by the DIRAC Accounting system and shows that on average
the LHCb data production system is controlling about 50 thousands of simultaneous
jobs running at more than 100 distributed computing centers. This is equivalent to
running a virtual distributed computing center of up to 100 thousands CPU cores. The
LHCb data volume reaches about 40 PBytes spread over more than 20 data centers in
Europe and Russia. LHCb is using mostly resources provided by the WLCG computing
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grid infrastructure [13]. However, it also incorporates several large non-grid centers,
such as Ohio Supercomputing Center in USA or Yandex computing farm in Russia.
Those centers are incorporated seamlessly using the DIRAC Interware. LHCb is using
all the DIRAC core services for managing workflows and data but it has also developed
several specific ones, like for example, Bookkeeping service for storing all the data
provenance information, or Production service for managing large numbers of tasks and
files in am automated way. All the LHCb specific services are developed within the
DIRAC Framework as extensions and thus reuse multiple core APIs.

Another example is the Belle II experiment at KEK, Tsukuba, Japan. This was the
first experiment to start using DIRAC outside LHCb [5]. The initial requirement of the
Belle Collaboration was the possibility to incorporate commercial cloud resources
provided by the Amazon Company. The VMDIRAC subsystem was initiated as a
DIRAC extension to manage computing resources coming from various cloud providers.
Now it is making part of the DIRAC core services and other user communities can
benefit from it.

The BES III experiment at IHEP, Beijing, China is one more HEP experiment using
DIRAC for its production system [14]. In particular, IHEP developers contributed
several modules to the DIRAC File Catalog service, for example, Dataset modules for
managing large collections of files as a single entity. The DIRAC service installation
for the BES III experiment in IHEP was recently upgraded to support multiple user
communities, like the Juno experiment or the CEPC project [15].

Fig. 2. Simultaneously running distributed LHCb jobs
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3.2 Multi-domain DIRAC Services

The success of DIRAC for supporting large scientific user communities suggested the
idea that DIRAC services can be also offered to smaller research groups without the
need to install and maintain complicated software and hardware systems. Indeed many
small groups, often without deep knowledge of the distributed computing matters, still
need access to large computing infrastructures for their application. Therefore, DIRAC
services were offered as part of several distributed computing infrastructure projects
[16]. The first such service was provided by the France-Grilles National Grid Infra‐
structure (NGI) project in 2012. Now it serves about 20 different grid Virtual Organi‐
zations. For example, users from the international biomed Virtual Organization submit
more than a half of their payloads through the FG-DIRAC service in France.

Since 2014, the DIRAC4EGI service is offered by the European Grid Infrastructure
(EGI) Project. Several communities representing various scientific domains like life
sciences, climatology and others use this service. The service is also intensively used
for dissemination purposes, for example for tutorials on using distributed grid and cloud
computing resources.

4 Federation of HPC Centers

Several examples of successful incorporation of HPC centers dedicated to massively
parallel applications into a common distributed infrastructure including grid, cloud and
stand-alone centers showed that it is possible to create a dedicated system to federate
multiple HPC sites based on the DIRAC Interware technology. This will offer a full
potential of these centers to large scientific communities that require more and more this
kind of resources for their applications.

It is important to mention that combining grid computing centers together with the
HPC centers can be very useful for communities with very complex workflows where
some steps can be executed on a cheaper grid computing elements and others on HPC
ones. Such optimization can reduce the time and the cost of the overall workflow execu‐
tion.

4.1 Open Distributed Supercomputer Infrastructure Project

A project for construction of an Open Distributed Supercomputer Infrastructure (ODSI)
will have to carry out several tasks. First of all, the concept of the ODSI must be formu‐
lated, which includes several aspects:

• Develop a model of an HPC center that will be as much in common for all the involved
sites as possible. For each site, this model will be described in the system configu‐
ration with the site-specific parameters. As a result this will allow to present all the
HPC centers as logical resources for the users that can be used in a transparent inter‐
changeable manner;
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• Develop efficient algorithms for managing large numbers of tasks executed in heter‐
ogeneous computing environment including HPC centers, which optimize the usage
of computing and storage resources and minimize the overall execution time;

• Develop the necessary new DIRAC components to support the HPC specific work‐
flows and reuse as much as possible the already existing tools. This will allow seam‐
less migration for the DIRAC users to the new type of resources;

• Formulate common policies of usage of the HPC centers by large distributed user
communities and implement tools to support those policies.

Building the ODSI infrastructure will need going through a number of prototypes
involving an increasing number of HPC centers first on the national and then on the
international levels. Several research laboratories and universities in Russia (JINR,
Dubna, University of Nizhni Novgorod, and others) are planning to undertake such
project. As a result it will create the infrastructure for solving a number of inter-disci‐
plinary large-scale problems of the modern science and technology, which are already
selected as the project pilot applications [17–19].

4.2 Co-design of a Federated HPC Supercomputer

In order to be included into the ODSI infrastructure an HPC center must follow several
design requirements to ensure homogeneous access and security rules. Integration of
traditional computing centers is relatively simple, especially those that participate in
grid infrastructures. The HPC centers are in most cases designed and deployed without
plans for eventual participation in any federation project. Therefore, their organization
has little in common, which makes their integration difficult. The pilot job based WMS
offers opportunities that can be very helpful in such projects because it does not require
running complicated services on sites.

Interaction with the DIRAC Central Services. WMS with pilot jobs assumes
outbound connectivity from the worker nodes. This is necessary to let pilots interact
with the central services to report their status and request user payloads. If a computing
center allows worker node outbound connectivity, then its connection to a DIRAC
infrastructure is similar to traditional centers and requires minimal effort from the site
administrators. However, a majority of HPC centers forbid such outbound connectivity
for various reasons. In this case, DIRAC proposes a special service – Gateway – that
can run on a HPC site gatekeeper host and serve as a proxy to pass messages from pilot
jobs to the central services. Using this service requires a minor change in the pilot
configuration on such sites while fully preserving the overall architecture and logic. The
HPC center in this case must provide the gatekeeper host with appropriate dual external/
local network connectivity. The host throughput capacity should be sufficient to support
the possibly rather intensive traffic of data being produced or analyzed in the center. The
security requirements to this host are very strict, as its certificate will be trusted by the
DIRAC services as representing users whose jobs are running in the center.

Another problem of running jobs in the HPC centers with limited worker node
connectivity is exporting the resulting data. If the data cannot be sent out directly from
the worker nodes, this can be achieved by means of the Storage Element Proxy service.
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This service allows access to any Storage Element from the machines not having the
necessary software for corresponding plug-ins or other limitations. In this case, the client
is accessing the Storage Element Proxy service with the DIRAC native DIPS protocol
and the service transmits the access request to the destination SE with the suitable
protocol. The client credentials are checked and used to access the destination service
by delegation. In the case of running user jobs in computing centers where worker nodes
do not have access to the WAN and therefore can not upload the resulting data directly,
running the Storage Element Proxy service in the Gateway host of the computing center
can help to export data from the worker nodes without a need to use some intermediate
buffer storage and transfer data asynchronously by some additional agent or a cron job.
Putting this all together, Fig. 3 illustrates the general scheme of connecting an HPC
center to a DIRAC-based infrastructure.

Fig. 3. Pilot job interaction with DIRAC central services in case of no outbound connectivity in
the worker nodes

Multiple CPU Slot Reservation. Applications running at HPC centers usually use
multiple processors or even multiple worker nodes together. The reservation of multi-
host computing slots is a complicates task and can be done by means of the local batch
system scheduler, for example SLURM, OAR, or others. The pilot based WMS can
exploit the tools offered by the target batch system but it can also offer other interesting
opportunities here.

Computing slots reserved by the pilots can be orchestrated by a central DIRAC MPI
service [11]. This service keeps track of all the groups of pilots that can work together
to run parallel applications. These groups are combining pilots that are running on
worker nodes on the same high performance local network, which allows exchanges
using some variation of the MPI protocol. Accumulation of such pilot groups that can
eventually constitute an MPI ring is a rather complicated and time-consuming process.
The computing slots that are freed by previously running jobs are blocked by the work‐
load management system in order to satisfy requirements of the jobs in its waiting queue
and accumulate the necessary capacity. While the multi-processor slot is being accu‐
mulated, the constituent processors stay idle decreasing the overall efficiency. Therefore,
the accumulated group of slots is a very valuable asset that should be used as much
efficiently as possible. With the pilot jobs coordinated by the DIRAC MPI service such
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multi-worker reservations can be reused for multiple user payloads without the need to
redo the multi-slot reservations. As a result, this can increase dramatically the efficiency
of the usage of the HPC resources.

In a batch system, the computing slot is reserved for a limited amount of time in
order to ensure a fair sharing of resources among different tasks and users. However,
worker nodes reserved by the DIRAC WMS can execute multiple jobs coming from
different users and ensuring fair sharing on the meta-scheduler level. This mode of
operation has many advantages. It puts less load on the local batch system scheduler and
increases the efficiency of resources usage. However, administration of the batch system
may require stopping the worker nodes from time to time to perform maintenance tasks,
e.g. software or hardware upgrades. In this case, the DIRAC pilots occupying the worker
nodes should receive signals from the batch system ordering the node liberation. The
signals should be well specified and the corresponding handlers should be included into
the DIRAC pilots. The handlers will then ensure graceful finalization of the running user
applications avoiding losses of the job results that can happen in case of abrupt killing
of the batch jobs. The design of the batch system signals and of the pilot signal handlers
requires a close cooperation between the HPC centers administrators and developers of
the DIRAC software.

5 Conclusions

The DIRAC Interware provides a framework and a rich set of services to build distrib‐
uted computing systems. Such systems are successfully used for a number of High
Energy Physics and AstroPhysics experiments, but also for other applications in different
scientific domains. The Workload Management System with pilot jobs proved to be very
efficient to control user tasks in a High Throughput environment. However, it can be
also applied for aggregation of the HPC computing resources. The pilot job scheduling
paradigm can increase significantly the scheduling efficiency for parallel applications
requiring multi-processor computing slots. Combining traditional, cloud and HPC
computing centers in a single distributed infrastructure can allow execution of complex
workflows needing different types of resources on different subsequent steps. As a result,
this can increase the overall efficiency of the usage of otherwise heterogeneous
computing resources.

Building an Open Distributed Supercomputer Infrastructure aggregating multiple
HPC centers in Russia and abroad can bring the support for massively parallel applica‐
tions to a new level. This will make the supercomputer resources elastic from the user
perspective, which means that much more power can be provided momentarily for a
given application when it is actually needed. On the other hand it will dramatically
increase the usage efficiency of multiple HPC centers.
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