
I/O-Focused Cost Model for the Exploitation
of Public Cloud Resources
in Data-Intensive Workflows

Francisco Rodrigo Duro(B), Javier Garcia Blas, and Jesus Carretero

Computer Science and Engineering Department, University Carlos III, Leganes, Spain
{frodrigo,fjblas,jcarrete}@inf.uc3m.es

Abstract. Ultrascale computing systems will blur the line between HPC
and cloud platforms, transparently offering to the end-user every possi-
ble available computing resource, independently of their characteristics,
location, and philosophy. However, this horizon is still far from complete.
In this work, we propose a model for calculating the costs related with the
deployment of data-intensive applications in IaaS cloud platforms. The
model will be especially focused on I/O-related costs in data-intensive
applications and on the evaluation of alternative I/O solutions. This
paper also evaluates the differences in costs of a typical cloud storage ser-
vice in contrast with our proposed in-memory I/O accelerator, Hercules,
showing great flexibility potential in the price/performance trade-off. In
Hercules cases, the execution time reductions are up to 25% in the best
case, while costs are similar to Amazon S3.

Keywords: Cloud · Amazon · Data-intensive · Cost model · Workflows

1 Introduction

The popularization of the cloud computing paradigm brought a new scenario to
the scientific computing field. Based on the virtually limitless resources offered
in a pay-per-use approach, research centers have the possibility to use cloud
resources instead of the traditional HPC infrastructures. It could be even possible
to combine the benefits offered by both approaches, owning an HPC cluster
or supercomputer for testing and development, while deploying experiments in
this HPC infrastructure augmented with as much cloud computing resources as
needed or as possible given the budget of the project. This combination will lead
the path to Ultrascale systems [2], large-scale complex systems that join parallel
and distributed computing systems, reaching two to three orders of magnitude
larger than todays systems. The research line for achieving Ultrascale systems
should focus on the simplification of this scenario with mixed infrastructures, by

F. Rodrigo Duro—This work was supported by the project TIN2013-41350-P “Scal-
able Data Management Techniques for High-End Computing Systems” from the
Ministerio de Economı́a y Competitividad, Spain.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 244–257, 2016.
DOI: 10.1007/978-3-319-49956-7 20



I/O-Focused Cost Model for Public Cloud Resources Exploitation 245

transparently taking advantage of every possible computing resources available,
independently of their characteristics, location, or philosophy.

However, the current technology is far from this ideal scenario. Interfaces in
both HPC and cloud platforms differ and difficult its use in a combined way.
The philosophy differences in cloud and HPC infrastructures, especially in the
I/O subsystems, are still an unsolved inconvenience for generic applications.
For tackling with this limitation, in previous works we proposed Hercules [5,9],
an in-memory generic I/O architecture for data-intensive applications, as an
alternative to current infrastructure-specific I/O solutions.

This lack of generic approaches does not only affect to the computing
infrastructures, but also to the scientific applications. Since the introduction
of the MapReduce paradigm, we have seen a change in the trends of scientific
application paradigm, from the classical CPU-intensive applications (large-scale
simulations, complex mathematical problems, etc.) to data-intensive applica-
tions. However, most of the technological breakthroughs emerged from the Big
Data field are not fully applied to data-intensive scientific applications executed
on HPC infrastructures. In the recent years, the use of workflow engines for the
design, implementation, and execution of data-intensive applications in different
infrastructures, is seen as the best generic approach for scientific computing.

Future Ultrascale systems will be in charge, not only of transparently offering
every available resource to the users, but they will also be responsible of schedul-
ing each computing job to the platform with the best fit for the characteristics
of the application. In order to better understand when the pay-per-use cloud
resources are the best option for a specific workload, it is indispensable to fully
understand the incurred costs of executing an application in the cloud. In this
work, we propose a model for calculating potential costs derived from the deploy-
ment of a data-intensive application over an IaaS cloud platform. This model
takes especially into account the costs related with I/O operations, including
the impact of deploying our proposed in-memory I/O accelerator, Hercules, as
an alternative to the default cloud storage service. We have also applied this
model to a study case that involves the execution of a data-intensive applica-
tion, demonstrating that our solution better suits the pay-per-use philosophy
for I/O operations over temporary data, flexibly adapting the performance and
costs to the user requirements.

The remainder of the paper is organized as follows. Section 2 overviews pre-
vious works related to data-intensive applications in clouds. Section 3 introduces
Hercules. Section 4 proposes a model for calculating the costs of deployment of
an application in an IaaS cloud platform. Section 5 applies our model to the
execution of a data-intensive application, comparing Amazon S3 and Hercules.
Finally, Sect. 6 presents the conclusions of this work.

2 Related Work

Workflow engines, such as DMCF [8], Pegasus [1], and OmpSs [4] are software
systems for designing and executing data analysis workflows. Most workflow



246 F. Rodrigo Duro et al.

engines rely on the default shared storage. This implies that the I/O performance
of tasks is limited by the performance of the default storage and can be greatly
affected by contention. Thus, currently, the costs of working with large datasets
mainly depends on infrastructures, where storage and computation resources are
not completely decoupled as in the case of HDFS.

As a result, data locality-aware techniques and in-memory storage are becom-
ing more and more important, avoiding these problems. Recent solutions like
Tachyon [7] have shown the importance of data locality and in-memory storage
for improving performance in data-intensive applications. Chiu et al. [3] evalu-
ated the effects of reducing the data transfers through the use of a cooperative
cache. In this work, we demonstrate that our in-memory cache solution also
reduces applications production costs compared with the Amazon S3 storage
system.

Yuan et al. [10] presented a novel intermediate data storage strategy for
reducing the cost of the scientific cloud workflows. This strategy is based on the
automatic store of the most appropriate intermediate datasets. In [11], the same
authors proposed a dataset storage cost model for managing the intermediate
data in a scientific cloud-aware workflow systems. Our approach differs from this
one by considering both application and hardware characteristics.

3 Hercules Background

Hercules is a generic I/O architecture based on in-memory key-value stores.
Hercules can be deployed as an I/O subsystem alternative to existing storage
solutions such as parallel shared file system in HPC systems and cloud storage
services in cloud platforms. It is especially designed for the acceleration of I/O
operations over temporary data in data-intensive applications.

The main characteristics offered by Hercules are: easy deployment, flexibility,
portability, scalability, and performance. Based on its easy deployment, Hercules
can be flexibly configured with as many I/O nodes as necessary, depending on
the requirements of the application or even depending on the requirements of
each execution of the same application. A larger number of I/O nodes deployed
is translated to the (several) network interfaces available, implying a greater
aggregated throughput available for the applications.

Additionally, based on the generic characteristics of the architecture, Hercules
can be deployed in a wide range of different infrastructures, including HPC
systems [5] and cloud platforms [9], showing potential performance improvements
while providing portability for existing and legacy applications. Hercules is also
capable of being deployed for sharing resources with the compute nodes, enabling
the possibility of exposing data locality in order to be exploited by locality-aware
schedulers. However, this feature is out of the scope of this work.

4 Costs Model for In-Memory Storage on Clouds

In this section, we present a model with the objective of calculating the costs
associated with the execution of a data-intensive workflow application in a public



I/O-Focused Cost Model for Public Cloud Resources Exploitation 247

cloud platform. We have based this model on the Amazon AWS platform, but
given the similarity in billing concepts of the different existing IaaS providers,
this model should be applicable to other cloud providers (i.e., Microsoft Azure).
Application modeling is focused on workflow applications, represented as a
Directed Acyclic Graph (DAG).

Fig. 1. Workflow model for the cost analysis.

Figure 1 shows how graph nodes (circles) represent the computational cost
of each task (CPU time in seconds) while boxes represent data communication
between tasks. Each box corresponds with one file, representing the file size mea-
sured in MB. Links associating tasks and files represent I/O dependencies, being
write operations the links with task-to-file direction and read operations the file-
to-task links. Any number of workflow instances can be executed depending on
the number of existing input files.

CTOTAL = CCSS + CCCI (1)

The total execution cost of an application (CTOTAL) is denoted as the sum of
the costs of the cloud storage services (CCSS) and the costs of compute instances
(CCCI). Both costs depend on the characteristics of the application, the char-
acteristics of the infrastructure, and the execution time, i.e. the time needed for
executing an application is lower using two computing instances than using one,
but the cost of deploying two virtual machines (VMs) is greater than deploying
one during the same amount of time.

4.1 Cloud Storage Service Costs

The cloud storage service costs (CCSS) refers to the costs related with the I/O
operations (amount of data stored, number of read/write operations, etc.) and
can be calculated as:



248 F. Rodrigo Duro et al.

CCSS =
∑

i∈F

FSizei · Scost · tex +
∑

j∈E

Einj · PUTcost +
∑

j∈E

Eoutj ·GETcost (2)

where F and E are respectively the sets of involved files and the in/out edges
of the application. Every existing link has two different associated input and
output costs. These costs will be considered depending on the nature of the I/O
operation: write operations will have IN = 1, OUT = 0 costs (represented also as
Ein), while read operations will have these values changed (IN = 0, OUT = 1,
represented as Eout). Each of these costs represents one I/O operation over
a specific file. FSize is the file size of one file object in MB and Scost is the
store cost of files. Amazon charges the storage as USD/GB per month, so the
total storage cost will depend on the total execution time (tex), introduced in
Eq. 6. We only take into account the cost of execution, but any data stored
before/after the execution of the workflow in the cloud storage service will be
billed. Based on these parameters, the cost of storing files can be calculated.
Ein and Eout represent the number of input and output operations over each
file, while GETcost and PUTcost represent the cost of every operation (a billing
concept existing in most cloud storage services).

The CCSS cost can be decomposed in more specific costs depending on the
nature of the I/O operations. In our case, it will be especially useful to measure
the cost of operations performed over input and output files (CCSSin

, CCSSout
)

independently from the rest of I/O operations (CCSStmp
), as shown in Eq. 3.

CCSS = CCSSin
+ CCSStmp

+ CCSSout
(3)

where CCSSin
, CCSSout

, and CCSStmp
take into account only storage costs and

I/O operation costs related with input, output, and temporary files, respectively.

4.2 Computing Resources Costs

For the second part of the Eq. 1, the objective is to calculate the costs related
with the use of computing resources. These costs include the VM instances used
for executing the application and depend on the total execution time:

CCCI = tex ·
∑

i∈V

VMcosti (4)

where V is the set of VM instances deployed during the execution of the applica-
tion. In order to better represent the costs associated with the deployment of the
Hercules I/O accelerator, the former equation can be decomposed differentiating
the VM instances executing the application and the VM instances deployed for
the Hercules I/O back-end servers:

CCCI = tex · (
∑

i∈C

VMcosti +
∑

j∈H

VMcostj ) (5)



I/O-Focused Cost Model for Public Cloud Resources Exploitation 249

where C and H are the sets of VM instances deployed during the execution of the
application, for computation and Hercules purposes, respectively. tex is the total
execution time of the application (in seconds) and VMcost is the price of deploy-
ing each VM during one second (in USD/s). This cost calculation introduces the
first simplification of our proposed model. In the Amazon EC2 platform, VM
instances are billed for full hours, independently of being used 1 s or 59 min. In
our model, we consider paying only for the useful time in seconds. This simpli-
fication can be explained by the use of the infrastructure for executing multiple
batch applications. In this simplified scenario, configuration, initialization, and
full hour costs can be discarded. When multiple applications are executed by the
same infrastructure, these costs are diluted between all the executions. Other
cloud platforms, like Microsoft Azure1, allow per minute billing. This advanced
billing model can even better fit our model.

The total execution time depends on two different factors: time spent in
computation (tCPU ) and time spent during I/O operations (tI/O):

tex = tCPU + tI/O (6)

Both CPU and I/O times are affected by the characteristics of the infrastruc-
ture used during the execution of the application. tCPU will be reduced depend-
ing on the number of compute instances used during the execution of the appli-
cation:

tCPU =
∑

i∈T ti

n(C)
(7)

T is the task set of the application, while C is the set of VM instances
deployed during the execution of the application for computation purposes. ti
represents the execution time of each task of the workflow and n(C) is the
number of VM machines deployed. The second simplification of our model con-
sists on considering all the tasks as perfectly scalable and as executable by any
instance (without taking into account dependencies), fully utilizing all the avail-
able resources, resulting in a perfect distribution of the load where the total
execution time is divided by the number of VM instances. Our model suppose
homogeneous VM instances where the CPU load has been previously profiled
in order to measure the CPU time required by each task on this specific VM
instance.

Finally, the I/O time (tI/O) is calculated taking into account both the I/O
characteristics of the application and the infrastructure used. The performance
achieved for read and write operations using the Amazon S3 service greatly vary,
leading to the distinction in the following equation:

tI/O =
∑

i∈W FSizei

n(C) · BWwrite
+

∑
j∈R FSizej

n(C) · BWread
(8)

1 http://azure.microsoft.com/en-us/pricing/.

http://azure.microsoft.com/en-us/pricing/


250 F. Rodrigo Duro et al.

where W and R represent the sets of write operations and read operations in
the application, while FSize represents the size of these operations in MB. n(C)
represents the number of VM instances deployed and affects the total available
bandwidth of I/O operations (BW is the bandwidth perceived by each node for
I/O operations in MB/s). The way of considering the total available bandwidth
introduces the third simplification of our model, which is the perfect scalability
of the I/O operations, without taking into account network congestion and I/O
contention. If one VM instance requires 10 s to write 10 files containing 100 MB
of data each (1 GB total), two virtual instances will ideally perform the same
operations in 5 s. Again, the simplification excludes any kind of data dependen-
cies, dividing the total I/O work between the available compute VM instances,
in a perfectly balanced scenario.

Given the fact that Hercules only affects I/O operations performed over tem-
porary data, it is necessary to decompose the previous I/O time in three different
factors:

tI/O = tI/Oinput
+ tI/Otmp

+ tI/Ooutput
(9)

The time needed for reading the input files of the application from Amazon
S3 (tI/Oinput

) and the time needed to write the results to persistent storage
(tI/Ooutput

), is the same in the S3-only cases and the cases where Hercules is
present. It can be modeled as:

tI/Oinput
=

∑
i∈IN FSizei

n(C) · BWread
(10)

tI/Ooutput
=

∑
i∈OUT FSizei

n(C) · BWwrite
(11)

where IN is the set of read operations performed over input files and OUT is
the set of write operations performed over result files during the execution of
the application. The time needed for executing the I/O operations over tem-
porary files (tI/Otmp

) is modeled differently for S3 (tI/Otmp
(S3)) and Hercules

(tI/Otmp
(HER)), as detailed in the two following equations:

tI/Otmp
(S3) =

∑
i∈TW FSizei

n(C) · BWwriteS3

+

∑
j∈TR FSizej

n(C) · BWreadS3

(12)

tI/Otmp
(HER) =

∑
i∈TW FSizei

MINVM · BWwriteHER

+

∑
j∈TR FSizej

MINVM · BWreadHER

(13)

MINVM = min(n(C), n(H)) (14)

where W and R represent the sets of write operations and read operations per-
formed over temporary files during the execution of the application and n(H)
represents the number of VM instances deployed for the Hercules infrastructure.
The total available bandwidth over files stored in Hercules depends, not only



I/O-Focused Cost Model for Public Cloud Resources Exploitation 251

on the number of compute VM instances, but also on the number of Hercules
I/O nodes available. We have selected the minimum of both values, denoted as
MINVM , because it will be the limiting factor in the maximum available band-
width. As example, in the case of a low number of compute nodes using a large
Hercules infrastructure, the limiting factor will be the bandwidth available at
client side: two compute instances will perform I/O operations in half the time
required by one computing VM. However, this assumption is only true when the
I/O nodes outnumber the computing infrastructure. In case of a lesser number
of I/O nodes, the limiting factor will be the available bandwidth exposed by
the Hercules infrastructure, i.e. four compute instances accessing concurrently
to only one Hercules node, will share the maximum possible bandwidth offered
by this node. This model is consistent with the results shown in the experimental
evaluation of our solution. The rest of variables remain as described for Eq. 8.

As a summary, there are three main differences presented by the use of Ama-
zon S3-only solutions in contrast with a hybrid solution using Amazon S3 for
I/O files and Hercules for any I/O operation performed over temporary files.
First, Hercules requires the deployment of a greater number of VM instances (or
VMs with more RAM when deployed sharing resources with the compute nodes),
incurring in a greater computation costs (pay-per-use of VM instances). Second,
Hercules deployment can result in time reductions due to the acceleration of
I/O operations, obtaining a reduction of the total execution time of the appli-
cation, potentially lowering the costs related to the computing infrastructure
(VM instances). Third, through the use of Hercules instead of Amazon S3 for
I/O operations performed over temporary files, the cost of using the storage ser-
vice can be lowered, which is especially important in the targeted data-intensive
applications.

The next section presents the evaluation of a use case application, consis-
tent with the data intensive target, in order to analyze this balance in different
scenarios.

5 Costs Analysis of a Data-Intensive Application

In order to show the usefulness of our proposed model, we are going to define
a data-intensive application with realistic characteristics. This costs analysis
will show the budget impact of I/O-related operations in the execution of a
data intensive application in a public cloud platform, as well as presenting the
execution costs of the application performing every I/O operation over Amazon
S3 in comparison with performing I/O operations over temporary data stored
in Hercules.

5.1 Application Description

As a study case, we have used an I/O intensive workflow application where both
computation and I/O times are balanced. Figure 2 depicts the workflow phases,
where an image file is read by the filter task, creating three new image files. The



252 F. Rodrigo Duro et al.

filtering task can be any kind of lightweight image-processing computation, such
as applying three different filters and decomposing the image in RGB colors.
These new image files are afterwards read by the combine task, combining the
images or selecting one of the images (this combination/selection can be based
on any criteria: quality, randomness, patterns, etc.) writing a final image file as
a result of the workflow. Every image in the workflow has roughly the same size
and any number of images can be used as input files.

Fig. 2. Image processing data-intensive workflow used as study case for analyzing the
costs derived of the deployment of Hercules over a cloud infrastructure. (Color figure
online)

When Hercules is deployed and temporary files are stored in Hercules I/O
nodes. In our study case, the images created by the filter task and read by the
combine task (depicted in orange) are temporary files. Input and resulting files
are stored in the Amazon S3 storage service in every evaluated case for dura-
bility reasons. The selected Hercules deployment consists of sharing resources
with compute nodes, while deploying VM instances with a greater amount of
RAM for the in-memory storage of data. Based on that logic, in the Amazon
S3-only case we have deployed m4.xlarge VM instances (4 cores, 16 GB RAM,
0.264 USD/hour) and r3.xlarge memory optimized VM instances for the Her-
cules case, which are equivalent VM instances with more RAM (4 cores, 31.5 GB
RAM, 0.371 USD/hour). In the table, the cost of VM instances for the Hercules
infrastructure appears as +0.107 USD/hour, showing the price difference of the
additional main memory required. Additionally, r3.xlarge come with 80 GB SSD
space, which can be utilized for data.

Tables 1, 2, and 3 present the specific configuration of every configurable vari-
able of our model, describing the characteristics of the application in Table 1, the
characteristics of the architecture in Table 2, and the billing concepts and prices
applied based on Amazon AWS costs in Table 3. Every variable representing
costs is presented as provided by the cloud operator (Amazon) and normalized
to our model when necessary. Amazon S3 and Hercules bandwidths are based
on previous works [6].



I/O-Focused Cost Model for Public Cloud Resources Exploitation 253

Table 1. Input parameters for the costs analysis of the study case: Characteristics of
the application.

Parameter Value

Total input files 8,192

Size of input files 128 MB

Total size of input files 1 TB (8,192 * 128 MB)

Generated temporary files 24,576 (3 * 8,192)

File size of temporary files 128 MB

Total size of temporary files 3 TB (128 MB * 24,576)

Generated result files 8,192

File size of result files 128 MB

Total file size of result files 1 TB (128 MB * 8,192)

No. GET operations 32,768 (4 * 8,192)

No. PUT operations 32,768 (4 * 8,192)

Filter task CPU time 20 s

Combine task CPU time 10 s

Table 2. Input parameters for the costs analysis of the study case: Characteristics of
the infrastructure running the application.

Parameter Value

No. compute VM instances (C) 32

No. Hercules I/O nodes (H) 4 to 32

BWreadS3 90 MB/sa

BWwriteS3 20 MB/sa

BWreadHER 90 MB/sa

BWwriteHER 90 MB/sa

aBased on our previous work [6].

We have selected 30 s of computation time for balancing the I/O-to-
computation ratio. Based on an image file size of 128 MB, reading the image
from Amazon S3 at around 90 MB/s implies ∼1.4 s while writing the same image
at around 20 MB/s is translated in ∼6.4 s. The workflow consists of a total of five
image files, with one read and one write operation per file (with the exception of
input and output files which are only read or written, not both), up to a total of
4 read operations and 4 write operations, resulting in ∼31.2 s. CPU time can be
distributed as 20 s for the filter task and 10 s for the combine task. Figure 3 shows
the details of this data intensive application following the workflow model pre-
sented in Fig. 1. As can be seen in Table 1, in this configuration the application
processes 8,192 images, leading to 8,192 executions of the workflow that can be
carried out in parallel in different computing resources with a proper scheduler.



254 F. Rodrigo Duro et al.

Table 3. Input parameters for the costs analysis of the study case: billing concepts
and prices in the Amazon AWS platform.

Parameter Value

Storage cost 0.0300 USD per GBa

Normalized storage cost 1.13e−11 USD per MB per sec

Total CPU time 245,760 s (30 * 8,192 s)

Compute VM instances cost 0.239 USD/hour per nodeb

Normalized comp. VM instances cost 0.000066 USD/sec per node

Hercules I/O nodes cost +0.107 USD/hour per nodeb

Normalized Hercules I/O nodes cost 0.000029 USD/sec per node

GET operations cost 0.004 USD per 10,000 op.a

Normalized GET operations cost 0.0000004 USD

PUT operations cost 0.005 USD per 1,000 op.a

Normalized PUT operations cost 0.000005 USD
aBased on Amazon S3 prices https://aws.amazon.com/s3/pricing/.
bBased on Amazon AWS prices for Amazon EC2 m4.xlarge and r3.xlarge
instances https://aws.amazon.com/ec2/pricing/.

Fig. 3. Model of the image processing data-intensive workflow used as study case,
including tasks, CPU cost (CPU time), I/O operations, and I/O cost (file size).

5.2 Costs Analysis

Figure 4 plots the breakdown of the total execution time of the experiment over
different I/O infrastructures. S3 case represents executions where every I/O
operation is performed over the Amazon S3 storage service, while every other
case rely on different Hercules deployments for temporary data accesses (using 4,
8, 16 and 32 I/O nodes deployed sharing resources with the compute nodes). The
black line represents the total cost of the execution of this workflow, based on
the previously presented costs model. Figure 4 clearly shows how the flexibility
of Hercules can be used for finding a trade-off between cost and execution time.
Using 4 I/O nodes, Hercules presents a poor execution time compared with the
S3 case. However, as the number of I/O nodes increases, the total execution
time is reduced. This behavior is produced by the increased performance of I/O
operations performed over temporary data, using Hercules as I/O accelerator.
Every other phase of the workflow execution time remains constant for every

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ec2/pricing/


I/O-Focused Cost Model for Public Cloud Resources Exploitation 255

Fig. 4. Breakdown of the total execution time comparing the use of the cloud stor-
age service (S3) for every I/O operation with the deployment of different Hercules
configurations for temporary data. The black line represents the total execution cost
(secondary Y axis). Computing infrastructure is 32 VM instances for every case.

experiment (including the S3 case): reading the input files, writing the results,
and computation time.

The trend shown by the costs line seems counter-intuitive for two main rea-
sons. First, total execution costs are similar in some Hercules and S3-only cases,
which seems incorrect given the additional resources needed for the Hercules I/O
infrastructure. Second, Hercules costs are reduced at the same pace as more Her-
cules I/O nodes are deployed, which again seems unrealistic given the fact that
costlier VMs are necessary. Figure 5 presents a breakdown of the execution costs,
detailing the cost related with three different billing concepts: S3-related costs
(storage and PUT/GET operations), the costs of the VM instances deployed as
computing resources. and the cost of VM instances running as Hercules back-
ends. The combination of Figs. 4 and 5 shows how the usage of Hercules for
temporary data both reduces the total execution time and reduces the amount
of data stored over Amazon S3. On the one hand, the reduction of the total
execution time affects the amount of time where VM instances are deployed,
reducing the costs related with computation and I/O instances. On the other
hand, the reduction of data stored over S3 minimizes the costs related with the
use of the S3 API, both in persistent data storage and PUT/GET operations
costs.

It is also interesting to highlight how the performance scales as the price is
reduced in Hercules. The flexibility in the deployment of the Hercules infrastruc-
ture offers to the users the ability of trading-off execution time and cost efficiency,
depending on their necessities. The specific characteristics of the application or
the cloud provider used may vary these results, but we consider the study case
presented as a fair example of data-intensive application (balanced CPU and



256 F. Rodrigo Duro et al.

Fig. 5. Breakdown of the total execution cost comparing the use of Amazon S3 for every
I/O operation with the deployment of different Hercules configurations for temporary
data. Computing infrastructure is 32 VM instances for every case.

I/O time, large amount of temporary data produced) and cloud provider (being
Amazon AWS one of the most used IaaS cloud providers).

Our cost analysis shows how data-intensive applications can be benefited
by the deployment of Hercules, resulting in reductions in total execution time
with a comparable cost. Depending on the execution time reductions achieved
by applying Hercules for temporary I/O operations, it could be possible to even
obtain cost reductions in applications with a great amount of temporary data
in comparison with Amazon S3. Total execution time is reduced due to the
increased I/O performance offered by our proposed I/O accelerator. In the costs
reduction side, on the one hand, the additional costs related with the deployment
of additional or costlier VM instances for the Hercules I/O infrastructure can
be compensated with a reduction in total execution time (less total execution
time is translated in less time using the deployed VM instances). On the other
hand, the costs of storing and accessing temporary data in a persistence-oriented
service like Amazon S3 can be avoided by using Hercules I/O nodes.

6 Conclusions

This work has presented a model for calculating potential costs derived from the
deployment of data-intensive applications over IaaS cloud platforms. This model
takes especially into account the costs related with I/O operations, including the
impact of deploying our proposed in-memory I/O accelerator (Hercules) as an
alternative to default cloud storage services. Additionally, we have applied the
proposed model to a data-intensive image processing application, comparing the
costs of execution performing every I/O operation over the default cloud storage
service in contrast with deploying Hercules for temporary data.



I/O-Focused Cost Model for Public Cloud Resources Exploitation 257

We can conclude that the performance of data-intensive applications with a
large amount of temporary data can be improved while maintaining the execu-
tion costs. The main benefit offered by our solution for future Ultrascale systems
is the flexibility in configuration, targeting different objectives depending on the
requirements of the application and the available budget. The user choose to
save money or save time in comparison with the default cloud storage service,
even beating both price and performance in balanced configurations.

In the future we should focus on the extension of the costs model for taking
into account data locality issues, which should expose even better performance
and costs in Hercules cases. Additionally, the model can be applied to other IaaS
public cloud providers like Microsoft Azure.

References

1. Deelman, E.: Pegasus, a workflow management system for science automation.
Future Gen. Comp. Syst. 46, 17–35 (2015)

2. Carretero, J., et al.: Memorandum of understanding. In: Network for Sustainable
Ultrascale Computing (NESUS), p. 30 (2014). http://www.nesus.eu

3. Chiu, D., Agrawal, G.: Evaluating caching and storage options on the Amazon Web
Services Cloud. In: 11th IEEE/ACM International Conference on Grid Computing,
pp. 17–24 (2010)

4. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.:
OmpSs: a proposal for programming heterogeneous multi-core architectures. Par-
allel Process. Lett. 21(02), 173–193 (2011)

5. Duro, F.R., Blas, J.G., Isaila, F., Wozniak, J.M., Carretero, J., Ross, R.: Flexible
data-aware scheduling for workflows over an in-memory object store. In: CCGRID
2016, pp. 321–324, May 2016

6. Duro, F.R., Garcia-Blas, J., Isaila, F., Carretero, J.: Experimental evaluation of a
flexible I/O architecture for accelerating workflow engines in cloud environments.
In: DISCS 2015, pp. 6:1–6:8 (2015)

7. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: Reliable, mem-
ory speed storage for cluster computing frameworks. In: Proceedings of the ACM
Symposium on Cloud Computing, pp. 1–15. ACM (2014)

8. Marozzo, F., Talia, D., Trunfio, P.: JS4Cloud: script-based workflow programming
for scalable data analysis on cloud platforms. Concurrency Comput. Pract. Expe-
rience 27(17), 5214–5237 (2015)

9. Rodrigo Duro, F., Marozzo, F., Garcia Blas, J., Talia, D., Trunfio, P.: Exploit-
ing in-memory storage for improving workflow executions in cloud platforms. J.
Supercomputing 72(11), 4069–4088 (2016)

10. Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate
data storage in scientific cloud workflow systems. In: IPDPS 2010, pp. 1–12 (2010)

11. Yuan, D., Yang, Y., Liu, X., Chen, J.: On-demand minimum cost benchmarking
for intermediate dataset storage in scientific cloud workflow systems. J. Parallel
Distrib. Comput. 71(2), 316–332 (2011)

http://www.nesus.eu

	I/O-Focused Cost Model for the Exploitation of Public Cloud Resources in Data-Intensive Workflows
	1 Introduction
	2 Related Work
	3 Hercules Background
	4 Costs Model for In-Memory Storage on Clouds
	4.1 Cloud Storage Service Costs
	4.2 Computing Resources Costs

	5 Costs Analysis of a Data-Intensive Application
	5.1 Application Description
	5.2 Costs Analysis

	6 Conclusions
	References


