
Jesus Carretero et al. (Eds.)

 123

LN
CS

 1
00

49

ICA3PP 2016 Collocated Workshops:
SCDT, TAPEMS, BigTrust, UCER, DLMCS
Granada, Spain, December 14–16, 2016, Proceedings

Algorithms
and Architectures
for Parallel Processing

Lecture Notes in Computer Science 10049

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jesus Carretero et al. (Eds.)

Algorithms
and Architectures
for Parallel Processing
ICA3PP 2016 Collocated Workshops:
SCDT, TAPEMS, BigTrust, UCER, DLMCS
Granada, Spain, December 14–16, 2016
Proceedings

123

Editors

see next page

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-49955-0 ISBN 978-3-319-49956-7 (eBook)
DOI 10.1007/978-3-319-49956-7

Library of Congress Control Number: 2016959169

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Volume Editors

Jesus Carretero
University Carlos III of Madrid
Getafe, Spain

Javier Garcia-Blas
University Carlos III of Madrid
Getafe
Spain

Victor Gergel
Mathematical Support for Computers
N. I. Lobachevsky State University

of Nizhny Novgorod
Nizhny Novgorod
Russia

Vladimir Voevodin
Research Computing Center (RCC)
Moscow State University
Moscow
Russia

Iosif Meyerov
Research Computing Center (RCC)
Moscow State University
Moscow
Russia

Juan A. Rico-Gallego
E.U. Politécnica
Universidad de Extremaddura
Cáceres
Spain

Juan C. Díaz-Martín
Ingenieria de Sistemas Informáticos
Universidad de Extremaddura
Cáceres
Spain

Pedro Alonso
Universitat Politécnica de València
Valencia
Spain

Juan Durillo
Distributed and Parallel Systems Group
Institute for Computer Science
Innsbruck
Austria

José Daniel Garcia Sánchez
Universidad Carlos III de Madrid
Getafe
Spain

Alexey L. Lastovetsky
UCD School of Computer Science
University College Dublin
Dublin
Ireland

Fabrizio Marozzo
University of Calabria
Rende (CS)
Italy

Qin Liu
Information Science and Engineering
Central South University
Changsha, Hunan
China

Zakirul Alam Bhuiyan
Information Science and Engineering
Central South University
Changsha, Hunan
China

Karl Fürlinger
Ludwig Maximilian University of Munich
Munich
Germany

Josef Weidendorfer
Informatik 10 - Rechnertechnik
Technische Universität München
Munich
Germany

José Gracia
High Performance Computing Center
(HLRS)
Stuttgart
Germany

Welcome Message from the ICA3PP 2016 General
and Program Chairs

Welcome to the workshop proceedings of the 16th International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP 2016), which was
organized by the University of Madrid Carlos III and the University of Granada.

It was our great pleasure to organize the ICA3PP 2016 conference in Granada,
Spain, during December 14–16, 2016. On behalf of the Organizing Committee of the
conference, we would like to express our cordial gratitude to all participants who
attended the conference.

ICA3PP 2016 was the 16th event in the series of conferences started in 1995 that is
devoted to algorithms and architectures for parallel processing. ICA3PP is now rec-
ognized as the main regular international event that covers many dimensions of parallel
algorithms and architectures, encompassing fundamental theoretical approaches,
practical experimental projects, and commercial components and systems. The con-
ference provides a forum for academics and practitioners from around the world to
exchange ideas for improving the efficiency, performance, reliability, security, and
interoperability of computing systems and applications. ICA3PP 2016 attracted high-
quality research papers highlighting the foundational work that strives to push beyond
the limits of existing technologies, including experimental efforts, innovative systems,
and investigations that identify weaknesses in existing parallel processing technology.

ICA3PP 2016 consisted of the main conference and five international workshops.
Many individuals contributed to the success of the conference. We would like to
express our special appreciation to Prof. Yang Xiang, Prof. Weijia Jia, Prof. Laurence
T. Yang, Prof. Yi Pan, and Prof. Wanlei Zhou, the Steering Committee chairs, for
giving us the opportunity to host this prestigious conference and for their guidance with
the conference organization. Special thanks to the program chairs, Dr. Peter Muller, Dr.
Ryan K.L. Ko, and Dr. Javier García Blas, for their outstanding work on the technical
program. Thanks also to the workshop chairs, Dr. Atsushi Hori, Dr. Ryan K.L. Ko,
and Dr. Florin Isaila, for their excellent work in organizing attractive symposia and
workshops. Thanks also to the local arrangements chair, Prof. Julio Ortega. We would
like to give our thanks to all the members of the Organizing Committee and Program
Committee as well as the external reviewers for their efforts and support. We would
also like to give our thanks to the keynote speakers, Prof. Vladimir Voevodin, Dr.
Rafael Asenjo, and Prof. Pedro José Marrón, for offering insightful and enlightening
talks. Last but not least, we would like to thank all the authors who submitted their
papers to conference associated workshops.

The five workshops were in the ICA3PP 2016 edition were:

• Supercomputing Co-Design Technology Workshop (SCDT).
• International Workshop in Theoretical Approaches to Performance Evaluation,

Modeling and Simulation (TAPEMS).

• The First International Workshop on Trust, Security and Privacy for Big Data
(BigTrust 2016).

• Ultrascale Computing for Early Researchers (UCER 2016).
• First International Workshop on Data Locality in Modern Computing Systems

(DLMCS 2016).

We would like to thank the workshop organizers for their effort, dedication, and
contribution to the conference success.

Jesus Carretero
Javier Garcia-Blas

VIII Welcome Message from the ICA3PP 2016 General and Program Chairs

Welcome Message from the SCDT 2016 General Chairs

On behalf of the Program Committee we are pleased to present the proceedings of the
First Workshop on Supercomputing Co-Design Technology (SCDT-2016) organized in
conjunction with the 16th International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP 2016). The workshop addresses the urgent need for
theoretical and practical technologies of an accurate and efficient design of high-per-
formance computing systems, highly parallel methods, and extreme-scale applications
to be able to solve large problems using the current and prospective generations of
high-performance computing systems. The most essential concept behind these tech-
nologies is co-design. Supercomputing co-design is a very close partnership or inter-
relationship between all the layers involved in the process of solving these problems on
high-performance computing systems: mathematical methods, algorithms, applications,
programming technologies, runtime systems, layers of system software and hardware.

The Workshop on Supercomputing Co-Design Technology consists of talks from
individuals or teams from academia, industry, and other educational and research
institutes on topics highlighting various aspects of the tight interrelationship between
algorithms and computer architectures, parallel programming technologies and runtime
systems, and between all these layers for a wide spectrum of computer architectures.
The most interesting and important topics for discussion at the workshop are enabling
co-design technologies for high-performance computing, future-generation application-
aware supercomputer architectures, extreme-scale concepts including exascale, parallel
programming models, interfaces, languages, libraries, and tools, supercomputer hard-
ware-aware applications and algorithms, scalable runtime systems, methods and tools
for holistic performance, scalability and efficiency analysis, education and supercom-
puting co-design technology, best education practices, and others.

The workshop covered a wide range of hot topics. Several papers are related to
methods and tools for performance and scalability analysis that is very important for
increasing the efficiency of utilization of modern and future supercomputers. A few
papers consider state-of-the-art problems of computational sciences. The authors
employ co-design technologies for high-performance computing in astrophysics,
plasma physics, and heart simulation on traditional and heterogeneous supercomputers.
The other topics featured at the workshop included parallel pattern processing using
cellular automata, distributed algorithms on large graphs, and educational software for
parallel computing. And of course, we are very grateful to professor Thomas Sterling,
who kindly accepted our invitation to give a keynote talk at the workshop.

December 2016 Victor Gergel
Vladimir Voevodin

Welcome Message from the TAPEMS 2016
Program Chairs

On behalf of the Program Committee of the First International Workshop on Theo-
retical Approaches to Performance Evaluation, Modeling and Simulation (TAPEMS
2016), we would like to welcome you to the proceedings of the event, which was held
in Granada, Spain, during December 14–16, 2016.

The TAPEMS workshop aims at bringing together researchers who are working on
modeling performance issues of parallel computing. The workshop features technical
presentations covering various aspects including performance modeling and evaluation,
modeling energy efficiency of communication runtimes, and heterogeneous computing
systems. Our intention was for this edition of TAPEMS to be the first of a series of
successful workshops on theoretically biased performance analysis of current computer
system. The TAPEMS 2016 workshop collected a bunch of interesting papers from all
around the world. We would like to give our thanks to the researchers who submitted
their manuscripts, and to the Program Committee and the external reviewers, who
contributed their valuable time and expertise to provide professional reviews. We
believe that the TAPEMS meeting will provide a good opportunity for participants to
know themselves, learn from each other, and hopefully design joint strategies.

Juan Antonio Rico Gallego
Juan Carlos Díaz Martín

José Daniel García Sánchez
Alexey L. Lastovetsky

Welcome Messages from the BigTrust 2016
General Chairs

On behalf of the Program Committee of the First International Workshop on Trust,
Security and Privacy for Big Data (BigTrust 2016), we would like to express our
gratitude to all the participants who attended the workshop in Granada, Spain, during
December 14–16, 2016.

BigTrust 2016 aims at bringing together people from both academia and industry to
present their most recent work related to trust, security, and privacy issues in big data,
and exchange ideas and thoughts in order to identify emerging research topics and
define the future of big data.

BigTrust 2016 was the first event in a series of workshops on trust, security and
privacy for big data (BigTrust). This international workshop collected research papers
on the aforementioned research issues from all around the world. Each paper was
reviewed by at least three experts in the field. We feel very proud of the high number of
submissions, and it was difficult to collect the best papers from all those received.

Many individuals contributed to the success of this high-caliber international
workshop. We would like to express our special appreciation to the program chairs,
Prof. Peter Mueller, Prof. Ryan K.L. Ko, and Prof. Javier Garcia-Blas, for giving us the
opportunity to hold this workshop and for their guidance on the symposium organi-
zation. In particular, we would like to thank all researchers and practitioners who
submitted their manuscripts, and the Program Committee members and the additional
reviews for their tremendous efforts and timely reviews.

We hope you enjoy the proceedings of BigTrust 2016.

Qin Liu
Md Zakirul Alam Bhuiyan

Welcome Messages from the UCER 2016
General Chairs

Welcome to the proceedings of the first edition of the workshop on Ultrascale Com-
puting for Early Researchers (UCER 2016), which took place in Granada, Spain, on
December 15, 2016.

The aim of this workshop is to give the opportunity to early-stage researchers (PhD
students or recent PhD graduates) to show their work related to ultrascale computing.
Although a future technology, currently many systems are designed with the goal of
being used in ultrascale systems. Many different subtopics are related in the exploration
of system software and applications for enabling a sustainable development of future
high-scale computing platforms. The tasks involved range from the analysis of the
current state of the art on sustainability in large-scale systems to the proposition of new
tools that aim to improve computations on these systems. The topics addressed are,
among others, HPC, distributed systems, and big data communities in cross-cutting
aspects such as programmability, scalability, resilience, energy efficiency, and data
management.

Six Papers Were Accepted For Presentation At The Workshop After A Peer-Review
Process.

We hope that UCER will become a reference event for early-stage researchers
attending future ICA3PP conferences.

Pedro Alonso
Juan Durillo

Fabrizio Marozzo

Welcome Messages from the DLMCS 2016
General Chairs

On behalf of the Program Committee of the First International Workshop on Data
Locality in Modern Computing Systems (DLMCS 2016), we welcome you to the
proceedings of the workshop, which was held in Granada, Spain, during December
14–16, 2016.

The cost of moving data is becoming a dominant factor for performance and energy
efficiency in high-performance computing systems. To minimize data movement,
applications have to consider initial data placement and to optimize both vertical data
movement in the memory hierarchy and horizontal data transfer between processing
units.

The DLMCS workshop aims to present the most recent works, both from academia
and industry, related to mechanisms to be used in computing systems for increasing
data locality including hardware, software, and co-design approaches. Topics such as
programming abstractions for data locality, multilevel locality, task-based data locality,
hardware mechanisms for exploiting locality, and data locality in large-scale HPC
systems were addressed in this workshop.

This international workshop collected research papers on the aforementioned
research issues from all around the world. Each paper was peer reviewed by at least
three experts in the field, thus ensuring the high quality of the workshop.

Karl Fürlinger
Josef Weidendorfer

José Gracia

Organization

Supercomputing Co-design Technology Workshop (SCDT)

Victor Gergel,
Co-chair

Lobachevsky State University of Nizhni Novgorod,
Russia

Vladimir Voevodin,
Co-chair

Moscow State University, Russia

Arndt Bode Leibniz Supercomputing Centre, Germany
Alexander Boukhanovsky ITMO University, Russia
Yuefan Deng Stony Brook University, USA
Florent de Dinechin INSA Lyon, France
Torsten Hoefler Swiss Federal Institute of Technology, Switzerland
Thomas Ludwig German Climate Computing Center, Germany
Iosif Meyerov, Scientific

secretary
Lobachevsky State University of Nizhni Novgorod,

Russia
Marek Michalewicz A*STAR Computational Resource Centre, Singapore
Bernd Mohr Jülich Supercomputing Centre, Germany
Mikhail Moshkov King Abdullah University of Science and Technology,

Saudi Arabia
Sergey Orlov Transport and Telecommunication Institute, Latvia
Nina Popova Moscow State University, Russia
Arnold Rosenberg Northeastern University, USA
Ahmed Seffah Lappeenranta University of Technology, Finland
Yaroslav Sergeyev University of Calabria, Italy
Andrey Sozykin Ural Federal University, Russia
Roman Wyrzykowski Czestochowa University of Technology, Poland

International Workshop on Theoretical Approaches to Performance
Evaluation, Modeling, and Simulation (TAPEMS)

Marco Aldinucci University of Torino, Italy
Pedro Alonso Jordá Polytechnic University of Valencia, Spain
Damián Álvarez Mallón Jülich Supercomputing Center, Germany
Hrachya Astsatryan National Academy of Sciences, Republic of Armenia
María Barreda Jaume I University, Spain
Silvina Caíno Lores Carlos III University, Spain
Miguel Cárdenas Montes Ciemat, Spain
Sandra Catalán Jaume I University, Spain
Georges Da Costa IRIT/Toulouse, France
Manuel F. Dolz Carlos III University, Spain

Juan L. García-Zapata University of Extremadura, Spain
Ester Martin Garzón University of Almería, Spain
Arturo Gonzalez-Escribano University of Valladolid, Spain
José L. González CenitS Supercomputing Center, Spain
José Gracia HLRS, Germany
Khalid Hasanov IBM, Ireland
Atanas Hristov University of Information Science and Technology,

Macedonia
Cristoph Kessler University of Linköping, Sweden
Algirdas Lancinskas University of Vilnius, Lithuania
Rafael Mayo Gual Jaume I University, Spain
Konstantina Mitropoulou University of Cambridge, UK
Benoit Parrein University of Nantes, France
Abel Paz Gallardo CETA-Ciemat, Spain
Dana Petcu West University of Timisoara, Romania
Félix R. Rodríguez University of Extremadura, Spain
Ravi Reddy University College Dublin, Ireland
Daniel Rubio HLRS, Germany
Luis M. Sánchez Carlos III University, Spain
David E. Singh Carlos III University, Spain
Didem Unat Lawrence Berkeley National Laboratory, USA
Beat Wolf School of Engineering of Fribourg, Switzerland

Ultrascale Computing for Early Researchers (UCER 2016)

Sergio Nesmachnow Universidad de la República, Uruguay
Biagio Cosenza TU Berlin, Germany
Grégoire Danoy University of Luxembourg
Juan Antonio Rico University of Extremadura
Eugenio Cesario ICAR-CNR, Italy
Gábor Kecskeméti MTA SZTAKI, Institute for Computer Science and

Control, Hungarian Academy of Sciences, Hungary
Daniele Lezzi BSC, Spain
Hugo Daniel Meyer BSC, Spain
Manuel F. Dolz University Carlos III of Madrid, Spain
José Ranilla University of Oviedo, Spain
Krzysztof Rojek Czestochowa University of Technology, Poland

First International Workshop on Trust, Security,
and Privacy for Big Data (BigTrust 2016)

Habtamu Abie Norwegian Computing Center/Norsk Regnesentral,
Norway

Yan Bai University of Washington Tacoma, USA
Saad Bani-Mohammad Al al-Bayt University, Jordan

XX Organization

Salima Benbernou Université Paris Descartes, France
Christian Callegari The University of Pisa, Italy
Sudip Chakraborty Valdosta State University, USA
Anupam Chattopadhyay Nanyang Technological University, Singapore
John A. Clark University of York, UK
Alfredo Cuzzocrea University of Trieste and ICAR-CNR, Italy
Sabrina De Capitani

di Vimercati
Università degli Studi di Milano, Italy

Zhihui Du Tsinghua University, China
Yucong Duan Hainan University, China
Saurabh Kumar Garg University of Tasmania, Australia
Dieter Gollmann Hamburg University of Technology, Germany
Sheikh M. Habib Technical University of Darmstadt, Germany
Ching-Hsien Hsu Chung Hua University, Taiwan
Xinyi Huang Fujian Normal University, China
Young-Sik Jeong Dongguk University, Korea
Hai Jiang Arkansas State University, USA
Vana Kalogeraki Athens University of Economics, Greece
Ryan Ko University of Waikato, New Zealand
Yingjiu Li Singapore Management University, Singapore
Xin Liao Hunan University, China
Giovanni Livraga Università degli Studi di Milano, Italy
Rongxing Lu Nanyang Technological University, Singapore
Haibing Lu Santa Clara University, USA
David Naccache École normale supérieure, France
Günther Pernul University of Regensburg, Germany
Roberto Di Pietro Nokia Bell Labs, France
Vincenzo Piuri Università degli Studi di Milano, Italy
Imed Romdhani Edinburgh Napier University, UK
Bimal Roy Indian Statistical Institute, India
Jun Shen University of Wollongong, Australia
Dimitris E. Simos SBA Research, Austria
Chao Song University of Electronic Science and Technology

of China, China
Chunhua Su Advanced Institute of Science and Technology, Japan
Chang-Ai Sun University of Science and Technology Beijing, China
Luis Javier García Villalba Universidad Complutense de Madrid, Spain
Yunsheng Wang Kettering University, USA
Mingzhong Wang University of the Sunshine Coast, Australia
Yongdong Wu Institute for Infocomm Research, Singapore
Hejun Wu Sun Yat-Sen University, China
Muneer Masadeh Bani

Yassein
Jordan University of Science and Technology, Jordan

Baoliu Ye Nanjing University, China
Shucheng Yu University of Arkansas at Little Rock, USA

Organization XXI

Hua Yu Huazhong University of Science and Technology,
China

Sherali Zeadally University of Kentucky, USA
Yun-Wei Zhao Tilburg University, Netherlands
Ruggero Donida Labati Università degli Studi di Milano, Italy

First International Workshop on Data Locality in Modern
Computing Systems (DLMCS 2016)

Marco Aldinucci University of Torino, Italy
Michael Bader Technische Universität München, Germany
Rosa Badia Barcelona Supercomputing Center, Spain
Denis Barthou Inria Bordeaux, France
Lars Bauer Karlsruhe Institute of Technology, Germany
Kristof Beyls ARM Ltd., UK
Tobias Fuchs Ludwig-Maximilians-Universität München, Germany
Karl Fürlinger Ludwig-Maximilians-Universität München, Germany
Jose Gracia HLRS Stuttgart, Germany
Armin Größlinger University Passau, Germany
Frank Hannig University of Erlangen, Germany
Costin Iancu Lawrence Berkeley National Laboratory, USA
Paul Kelly Imperial College London, UK
Andreas Knüpfer TU Dresden, Germany
Jakub Kurzak Innovative Computing Laboratory, UTK, USA
Hatem Ltaief KAUST, Saudi Arabia
Peter Luszek Innovative Computing Laboratory, UTK, USA
Sven-Bodo Scholz Heriot-Watt University, Edinburgh, UK
Martin Schulz Lawrence Livermore National Laboratory, USA
John Shalf Lawrence Berkeley National Laboratory, USA
Didem Unat Koc University, Turkey
Josef Weidendorfer TU München, Germany

XXII Organization

Contents

TAPEMS 2016: International Workshop in Theoretical Approaches
to Performance Evaluation, Modeling, and Simulation

OTFX: An In-memory Event Tracing Extension to the Open
Trace Format 2 . 3

Michael Wagner, Andreas Knüpfer, and Wolfgang E. Nagel

Tuning the Blocksize for Dense Linear Algebra Factorization Routines
with the Roofline Model . 18

Peter Benner, Pablo Ezzatti, Enrique S. Quintana-Ortí, Alfredo Remón,
and Juan P. Silva

Network-Aware Optimization of MPDATA on Homogeneous Multi-core
Clusters with Heterogeneous Network . 30

Tania Malik, Lukasz Szustak, Roman Wyrzykowski,
and Alexey Lastovetsky

Formalizing Data Locality in Task Parallel Applications 43
Germán Ceballos, Erik Hagersten, and David Black-Schaffer

Improving the Energy Efficiency of Evolutionary Multi-objective
Algorithms . 62

J.J. Moreno, G. Ortega, E. Filatovas, J.A. Martínez, and E.M. Garzón

A Parallel Model for Heterogeneous Cluster . 76
Thiago Marques Soares, Rodrigo Weber dos Santos,
and Marcelo Lobosco

Comparative Analysis of OpenACC Compilers . 91
Daniel Barba, Arturo Gonzalez-Escribano, and Diego R. Llanos

BigTrust 2016: The 1st International Workshop on Trust, Security
and Privacy for Big Data

The Research of Recommendation System Based on User-Trust Mechanism
and Matrix Decomposition . 107

PanPan Zhang and Bin Jiang

Traffic Sign Recognition Based on Parameter-Free Detector
and Multi-modal Representation . 115

Gu Mingqin, Chen Xiaohua, Zhang Shaoyong, and Ren Xiaoping

http://dx.doi.org/10.1007/978-3-319-49956-7_1
http://dx.doi.org/10.1007/978-3-319-49956-7_1
http://dx.doi.org/10.1007/978-3-319-49956-7_2
http://dx.doi.org/10.1007/978-3-319-49956-7_2
http://dx.doi.org/10.1007/978-3-319-49956-7_3
http://dx.doi.org/10.1007/978-3-319-49956-7_3
http://dx.doi.org/10.1007/978-3-319-49956-7_4
http://dx.doi.org/10.1007/978-3-319-49956-7_5
http://dx.doi.org/10.1007/978-3-319-49956-7_5
http://dx.doi.org/10.1007/978-3-319-49956-7_6
http://dx.doi.org/10.1007/978-3-319-49956-7_7
http://dx.doi.org/10.1007/978-3-319-49956-7_8
http://dx.doi.org/10.1007/978-3-319-49956-7_8
http://dx.doi.org/10.1007/978-3-319-49956-7_9
http://dx.doi.org/10.1007/978-3-319-49956-7_9

Reversible Data Hiding Using Non-local Means Prediction 125
Yingying Fang and Bo Ou

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 136
Antonio F. Díaz, Ilia Blokhin, Julio Ortega, Raúl H. Palacios,
Cristina Rodríguez-Quintana, and Juan Díaz-García

Statistical Analysis of CCM.M-K1 International Comparison Based
on Monte Carlo Method. 146

Chang-qing Cai, Xiao-ping Ren, Guo-dong Hao, Jian Wang,
and Tao Huang

First International Workshop on Data Locality in Modern Computing
Systems (DLMCS 2016)

Redundancy Elimination in the ExaStencils Code Generator 159
Stefan Kronawitter, Sebastian Kuckuk, and Christian Lengauer

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 174
Robert Stewart, Greg Michaelson, Deepayan Bhowmik, Paulo Garcia,
and Andy Wallace

Ultrascale Computing for Early Researchers (UCER 2016)

Exploring a Distributed Iterative Reconstructor Based on Split Bregman
Using PETSc . 191

Estefania Serrano, Tom Vander Aa, Roel Wuyts, Javier Garcia Blas,
Jesus Carretero, and Monica Abella

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 201
Fran J. Alventosa, Pedro Alonso, Gema Piñero, and Antonio M. Vidal

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations
with Distributed Arrays . 212

Eduardo Rodriguez-Gutiez, Francisco Martinez-Gil,
Juan Manuel Orduña, and Arturo Gonzalez-Escribano

Efficiency of GPUs for Relational Database Engine Processing. 226
Samuel Cremer, Michel Bagein, Saïd Mahmoudi, and Pierre Manneback

Geocon: A Middleware for Location-Aware Ubiquitous Applications. 234
Loris Belcastro, Giulio Di Lieto, Marco Lackovic, Fabrizio Marozzo,
and Paolo Trunfio

I/O-Focused Cost Model for the Exploitation of Public Cloud Resources
in Data-Intensive Workflows . 244

Francisco Rodrigo Duro, Javier Garcia Blas, and Jesus Carretero

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-49956-7_10
http://dx.doi.org/10.1007/978-3-319-49956-7_11
http://dx.doi.org/10.1007/978-3-319-49956-7_12
http://dx.doi.org/10.1007/978-3-319-49956-7_12
http://dx.doi.org/10.1007/978-3-319-49956-7_13
http://dx.doi.org/10.1007/978-3-319-49956-7_14
http://dx.doi.org/10.1007/978-3-319-49956-7_15
http://dx.doi.org/10.1007/978-3-319-49956-7_15
http://dx.doi.org/10.1007/978-3-319-49956-7_16
http://dx.doi.org/10.1007/978-3-319-49956-7_17
http://dx.doi.org/10.1007/978-3-319-49956-7_17
http://dx.doi.org/10.1007/978-3-319-49956-7_18
http://dx.doi.org/10.1007/978-3-319-49956-7_19
http://dx.doi.org/10.1007/978-3-319-49956-7_20
http://dx.doi.org/10.1007/978-3-319-49956-7_20

SCDT-2016: Supercomputing Co-Design Technology Workshop

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 261
Arnold L. Rosenberg

Educational and Research Systems for Evaluating the Efficiency of Parallel
Computations . 278

Victor Gergel, Evgeny Kozinov, Alexey Linev, and Anton Shtanyk

Generalized Approach to Scalability Analysis of Parallel Applications 291
Alexander Antonov and Alexey Teplov

System Monitoring-Based Holistic Resource Utilization Analysis
for Every User of a Large HPC Center . 305

Dmitry Nikitenko, Konstantin Stefanov, Sergey Zhumatiy,
Vadim Voevodin, Alexey Teplov, and Pavel Shvets

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi:
A First Look at Knights Landing . 319

Igor Surmin, Sergey Bastrakov, Zakhar Matveev, Evgeny Efimenko,
Arkady Gonoskov, and Iosif Meyerov

Efficient Distributed Computations with DIRAC . 330
Viktor Gergel, Vladimir Korenkov, Andrei Tsaregorodtsev,
and Alexey Svistunov

The Co-design of Astrophysical Code for Massively Parallel
Supercomputers . 342

Boris Glinsky, Igor Kulikov, Igor Chernykh, Dmitry Weins,
Alexey Snytnikov, Vladislav Nenashev, Andrey Andreev,
Vitaly Egunov, and Egor Kharkov

Hardware-Specific Selection the Most Fast-Running Software Components. . . 354
Alexey Sidnev

Automated Parallel Simulation of Heart Electrical Activity Using Finite
Element Method . 365

Andrey Sozykin, Timofei Epanchintsev, Vladimir Zverev,
Svyatoslav Khamzin, and Aleksandr Bersenev

Using hStreams Programming Library for Accelerating a Real-Life
Application on Intel MIC . 373

Lukasz Szustak, Kamil Halbiniak, Adam Kulawik, Roman Wyrzykowski,
Piotr Uminski, and Marcin Sasinowski

Author Index . 383

Contents XXV

http://dx.doi.org/10.1007/978-3-319-49956-7_21
http://dx.doi.org/10.1007/978-3-319-49956-7_22
http://dx.doi.org/10.1007/978-3-319-49956-7_22
http://dx.doi.org/10.1007/978-3-319-49956-7_23
http://dx.doi.org/10.1007/978-3-319-49956-7_24
http://dx.doi.org/10.1007/978-3-319-49956-7_24
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1007/978-3-319-49956-7_25
http://dx.doi.org/10.1007/978-3-319-49956-7_26
http://dx.doi.org/10.1007/978-3-319-49956-7_27
http://dx.doi.org/10.1007/978-3-319-49956-7_27
http://dx.doi.org/10.1007/978-3-319-49956-7_28
http://dx.doi.org/10.1007/978-3-319-49956-7_29
http://dx.doi.org/10.1007/978-3-319-49956-7_29
http://dx.doi.org/10.1007/978-3-319-49956-7_30
http://dx.doi.org/10.1007/978-3-319-49956-7_30

TAPEMS 2016: International Workshop
in Theoretical Approaches to

Performance Evaluation, Modeling
and Simulation

OTFX: An In-memory Event Tracing Extension
to the Open Trace Format 2

Michael Wagner1,2(B), Andreas Knüpfer2, and Wolfgang E. Nagel2

1 Barcelona Supercomputing Center, 08034 Barcelona, Spain
michael.wagner@bsc.es

2 Center for Information Services and HPC (ZIH), 01062 Dresden, Germany

Abstract. In event-based performance analysis the amount of collected
data is one of the most urgent challenges. It can massively slow down
application execution, overwhelm the underlying file system and intro-
duce significant measurement bias due to intermediate memory buffer
flushes. To address these issues we propose an in-memory event tracing
approach that dynamically adapts the volume of application events to an
amount that is guaranteed to fit into a single memory buffer, and there-
fore, avoiding file interaction entirely. These concepts include runtime
filtering, enhanced encoding techniques, and novel strategies for runtime
event reduction. The concepts further include the hierarchical memory
buffer a multi-dimensional, hierarchical data structure allowing to realize
these concepts with minimal overhead. We demonstrate the capabilities
of our concepts with a prototype implementation called OTFX, based on
the Open Trace Format 2, a state-of-the-art open source tracing library
used by the performance analyzers Vampir, Scalasca, and Tau.

Keywords: Performance analysis · Tracing · Tools · OTFX · OTF2

1 Introduction

High performance computing (HPC) systems provide enormous computational
resources. But the increasing performance introduces more and more complexity,
as well. Current leading edge HPC systems consist of millions of heterogeneous
processing elements [17]. They require consideration of parallel execution, net-
work, system topology, and hardware accelerators as well as a variety of differ-
ent parallel programming models such as message passing (MPI), threading and
tasking (OpenMP), one-sided communication (PGAS), and architecture specific
models to incorporate hardware accelerators such as GPUs. As a result, appro-
priate support tools have become inevitable in the development process.

Performance analysis tools assist developers not only in identifying perfor-
mance issues within their applications but also in understanding their complex
parallel behavior. The two main approaches in performance analysis are profiling
and event tracing. While profiling gathers aggregated information about differ-
ent performance metrics, event tracing records runtime events together with a
c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-49956-7 1

4 M. Wagner et al.

precise time stamp and further event specific metrics. Profiling with its nature
of summarization decreases the amount of data that needs to be stored during
runtime. However, profiles may lack essential information and hide dynamically
occurring effects. In contrast, event tracing records each event of an application
in detail. Thus, it allows capturing the dynamic interaction between concurrent
processing elements and enables the identification of outliers from the regular
behavior. Moreover, event tracing records inter-process dependencies thus allow-
ing a detailed communication analysis.

While single events are small, event-based tracing frequently results in huge
data volumes. In fact, the large amount of collected data, in particular, for mas-
sively parallel or long running applications is one of the most urgent challenges
in event-based performance analysis. Large amounts of collected data can mas-
sively slow down application execution and overwhelm the file system. In the
context of a correct analysis of inter-process dependencies, e.g. MPI commu-
nication, there is another critical impact of the large recorded data volumes.
Whenever an event collecting memory buffer is exhausted, data is flushed to the
file system, which leads to a noticeable interrupt of application execution. Since
each process collects different events or at least events with different parameters
(e.g. time stamps), the parallel processes are interrupted at different times. As a
result, they bias the recorded program behavior and potentially create or conceal
critical performance issues [21].

In this paper we focus on the issues arising from recording high data volumes:
application slow down, overwhelming the underlying file system and measure-
ment bias. We propose an in-memory event tracing approach that automatically
adapts the volume of application events to an amount that is guaranteed to fit
into a single memory buffer. This way, file system interaction in the monitoring
tool can even be avoided entirely. Our prototype implementation OTFX realizes
this approach and allows utilizing an in-memory event tracing workflow within
existing tools. It is based on the Open Trace Format 2 (OTF2) [2,18], a state-of-
the-art Open Source event trace library used by the performance analysis tools
Vampir, Scalasca, and Tau [3,6,16].

In the following section we distinguish our work from other approaches. After
that, we detail the concepts for in-memory event tracing in Sect. 3 and the hierar-
chical memory buffer data structure in Sect. 4. Finally, in Sect. 5 we evaluate the
overhead, trace size reduction, and trace analysis capabilities of our prototype
and summarize the presented work.

2 Related Work

The Open Trace Format 2 (OTF2) [2] is an event tracing format and access
library used by the monitoring environment Score-P [8,18] and by the trace
analyzers Vampir [6], Scalasca [3], and Tau [16]. It is the starting point for the
OTFX in-memory extension to OTF2 and, therefore, has many similarities with
our OTFX prototype, e.g., similar interfaces and event definitions.

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 5

Today’s event tracing monitors provide different strategies to reduce the
amount of collected data. Score-P can filter function calls based on their occur-
rence, i.e., the user can specify a value n so that all calls to a function are
filtered after this function is called n times [8]. This approach, however, is less
accurate than the duration filter presented in this paper, since it does not keep
outliers that are particularly interesting for performance analysis. In addition,
if the n is too small in long-running applications even main routines might get
filtered. Score-P also supports a rewind feature that allows to statically filter
complete program phases, e.g., single iteration steps [8]. Scalasca offers a static
code analysis prior to the source code instrumentation to exclude functions with
a short source code length [12]. Paraver’s monitoring tool Extrae uses cluster and
spectral analysis to reduce the number of events in traces and, thus, the traces
sizes during runtime [10]. This approach relies on global synchronization points
to pause the application recording, forward performance data and analyze it on
a front-end. The results are broadcasted back to the monitoring nodes, which
use the information to selectively record further events.

All of the above approaches differ in two ways from our proposed prototype.
First, while all approaches can reduce the resulting trace size, they cannot adapt
the trace size dynamically to fit into a single fixed-size memory buffer. As a
result, for larger traces the internal measurement memory buffers get exhausted
and trace data is stored at the file system, leading to the above described bias
on the recorded behavior. Second, none of the above approaches distinguishes
MPI events for filtering; although, some have the potential to distinguish them.
Consequently, MPI events are filtered just like all other events leading to a
possible failure of the communication analysis [20].

Next to these filter methods, compressed complete call graphs CCCG [7], a
study of reduction techniques [11], and ScalaTrace [13] use pattern recognition
to accumulate recurring patterns to minimize trace data. While these techniques
are capable of reducing the trace data to a nearly constant trace size (depending
on the granularity of the aggregation), they are very time consuming and, thus,
not applicable during runtime. Only CCCG [7] provides overhead results but for
the others similar overheads can be expected.

3 Concepts for In-memory Event Tracing

The OTFX tracing library is designed to support in-memory event tracing by
drastically reducing the amount of tracing data during runtime. To clearly char-
acterize the target and contribution of this paper and to avoid misconceptions,
the term in-memory event tracing, as it is used in the context of this work, is
defined as a method in performance analysis where runtime events are recorded
and stored individually in a trace that remains in main memory (or caches and
registers but not the file system) for the entire measurement workflow.

Consequently, the main challenge for an in-memory event tracing workflow
is to keep events of an entire measurement within a single fixed-sized memory
buffer. Therefore, an in-memory workflow must apply methods to reduce the

6 M. Wagner et al.

amount of data in the memory buffer by reducing the number of events and the
amount of memory per event during the measurement runtime.

Additional constraints are that, first, these methods introduce minimal over-
head to avoid additional measurement perturbation, second, the measurement
can contain an arbitrary but finite amount of events, and, third, the memory
buffer can be of arbitrary but fixed size. In other words, keeping an event trace
of arbitrary size within main memory cannot be achieved by increasing the size
of the memory buffer accordingly. Furthermore, the size of the memory buffer
is usually small (about one to ten percent of main memory) since most of main
memory is left to the observed application to minimize measurement bias. Oth-
erwise, an application that runs out of memory due to a too large memory buffer
would render the measurement useless [24].

3.1 Non-intrusive Runtime Filtering

Today, automatic instrumentation techniques like compiler instrumentation are
the default in most monitoring tools [3,8,16]. However, in most cases automatic
instrumentation includes also short-running functions such as small helper func-
tions or get and set class methods. If they are heavily called they might over-
whelm the capacity of the recording memory buffer while at the same time
contribute very little to the overall application behavior.

Methods to filter functions depending on their number of occurrences, e.g.,
filter all calls after a function is recorded n times, already exist [8]. While this
method is easy to realize, it includes three critical disadvantages. First, there
is no heuristic to determine a general number n of function calls after which
all further calls are filtered. If it is too high, a lot of unimportant function
calls are recorded; if it is too low important function calls might get filtered.
Second, the first n calls to an unimportant highly frequent function are still
stored. Especially, if there are multiple of these high-frequency functions, this
might already exhaust the recording memory buffer. Third and last, with the
method of keeping a maximum of n calls to each function, possible outliers of this
function after n calls that actually have an impact on the application behavior
are not recorded and, thus, cannot be identified.

In contrast, OTFX implements a filter that only relies on the actual duration
of each individual function call. This approach identifies function calls whose
duration is shorter than a predefined threshold and eliminates them. Hence, it
effectively detects and removes all short function calls while keeping outliers
that have an potential impact on the application behavior. Consequently, this
technique overcomes the above mentioned disadvantages of existing filters based
on the number of occurrences [19].

3.2 Enhanced Encoding Techniques

OTFX introduces five enhanced encoding techniques to reduce memory alloca-
tion [22] based on the Open Trace Format 2 [2]. These techniques include, first,
the splitting of timing information and event data to omit the redundant storage

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 7

of timing information of events with identical time stamp. Second, the elimina-
tion of leading zero bytes. Since the memory reserved for each attribute of an
event record is usually determined by the largest value the element theoretically
represents, the majority of values, which are much smaller, contain a number of
leading zero bytes (or trailing zero bytes for Little Endian encoding). Omitting
these zero bytes can reduce the resulting memory allocation for the vast majority
of event records. Third, storing only the difference (delta) to the previous value
leads to much smaller values to store, especially for monotonic increasing values
starting with a high offset like time stamps or hardware performance counters.
In combination with the leading zero elimination this results in less memory
allocation for the stored value. Fourth, small numbers can be encoded directly
into the token byte of each event to further reduced memory allocation. OTFX
provides an encoding where small IDs of function calls are encoded directly into
the token byte resulting in event sizes of only a single byte (plus timing) for the
most frequent functions [22].

3.3 Event Reduction

While filtering and encoding can achieve a remarkable reduction of the stored
data, they lack the capability to reduce the data to a fixed size – the size of the
memory buffer. In other words, they fail the by far most important criterion for
an in-memory workflow: they cannot guarantee that event data of an arbitrary
measurement fits into a single memory buffer of fixed size. Without a guarantee
to keep the event data within a single memory buffer, however, an in-memory
event tracing workflow is impossible.

Consequently, event reduction follows a completely different approach. Event
reduction is triggered only when the memory buffer is exhausted; typically this is
the point where the memory buffer is either flushed to a file or the measurement
is aborted. The crucial point is making memory space available again by reducing
the number of events already stored within the memory buffer while at the same
time introducing minimal overhead.

Each event reduction operation selects events by dynamic criteria and dis-
cards them from the memory buffer. Such a selection follows similar heuristics
as the selection and filter methods in the first step; the main difference is that
events matching a criterion are not filtered in any case but only if a reduction
is inevitable, i.e., the memory buffer is exhausted. In addition, the criteria for
event reduction are not static but adapt to previous event reduction operations,
allowing an incremental reduction of events.

OTFX introduces four strategies for event reduction: a reduction by the order
of occurrence of the events, by their event type, by the current calling depth,
and by the duration of function calls. The main focus of the comparison of these
methods is based on two criteria. First, the quality of the remaining information.
Whether or not it allows to still understand the behavior of the application and
detect occurring performance issues. Second, the granularity of the individual
event reduction operation. In this respect, granularity means the amount of data

8 M. Wagner et al.

that is discarded in a single event reduction operation. If the reduction steps are
too large, information might unnecessarily be discarded.

The first strategy is to reduce events by their order of occurrence. This means
that events are either discarded or kept depending on the time they occurred.
If the memory buffer is capable to store n events, there are three different ways
this method can be applied: First, store the first n events, i.e., recording is
stopped once the memory buffer is exhausted. Second, store the last n events.
This method requires a cyclic buffer that starts overwriting events in the front
of the buffer whenever the end of the buffer is reached. Third, store either the
first or last n events within a specific application phase. This strategy provides
the complete application behavior within the recorded interval; either at the
beginning, at the end, or somewhere in the middle of an application, depending
on which method is chosen. Thus, a performance analysis based on this strategy
allows a good understanding about the recorded interval of the application but
cannot provide any information about the part that was discarded. The same
applies for the ability to detect performance issues. An event reduction by the
order of occurrence is the most basic of the four event reduction strategies. In
particular, the first method with a fixed starting point is not too different from
a measurement abortion but with the difference that all recorded events are
kept for analysis instead of being dismissed. However, due to their very high
granularity and their easy application these methods serve well as a fallback if
all other event reduction operations fail.

The second and third strategy are similar; both sort events in groups and start
event reduction with the least important group. The second strategy, a reduction
by event type, categorizes events into different classes of events, e.g., entering
and leaving a function, point-to-point or collective communication, performance
metrics like hardware performance counters, or I/O operations. Naturally, not all
of these different event classes are of same importance when analyzing an appli-
cation. For instance, for an analysis of the communication behavior, obviously,
communication events are very important while specific hardware performance
counters, like cache misses, are less important. For an analysis of single thread
performance it is the other way around.

The third strategy, a reduction by calling depth, groups events based on their
position in the call stack and starts reduction with the deepest call stack level.
It is based on the assumption that events on the deepest call stack level usually
contribute less to the overall analysis of the application behavior than those on
higher levels. Still, these events may be the source for a performance issue. This
strategy allows a partial performance analysis for the entire application interval
similar to an event reduction by event class. Similar to the second strategy,
the behavior and potential performance issues can only be fully reconstructed
with the events in the remaining call stack levels. However, while the first two
strategies completely discard the information with the events that carry them,
this strategy allows to obtain parts of the information from higher call stack
levels. In particular, when reducing the call stack level that contains the events
that mark a performance issue, the actual cause of the performance issue is lost.

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 9

Yet, a performance analysis might still allow to recognize the impact of this
performance issue in the remaining call stack levels.

The fourth and last strategy uses the duration of function calls as criterion for
event reduction. Having in mind that enter/leave events are the most dominant
event class next to performance metrics if they are recorded, the removal of
less important function calls bears great potential for an event reduction. This
strategy is quite similar to the duration filter mentioned above. Instead of a single
threshold (as with the filter), this strategy groups function calls depending on
their duration and starts event reduction with those function calls that fall in
the group of the shortest calls. However, our experience showed that for many
applications the number of highly frequent function calls is so tremendous, that
this strategy delivers similar results to the aforementioned duration filter. Since
the duration filter operates with less overhead while providing similar results,
OTFX prefers the duration filter over this strategy.

4 The Hierarchical Memory Buffer

This section introduces the hierarchical memory buffer, a novel data structure
that allows to perform the aforementioned event reduction operations with mini-
mal overhead. The presented event reduction strategies require an efficient iden-
tification and elimination of events that are already stored in the memory buffer.
However, currently none of the existing event tracing tools and libraries supports
such an efficient elimination of events. They all use a flat continuous memory
buffer that, although, allowing the elimination of events already stored in the
memory buffer, introduces an enormous overhead when engaged.

A flat continuous memory buffer stores the recorded events in the order they
occurred until the memory buffer is exhausted (see Fig. 1(a)). When the mem-
ory buffer is exhausted the event reduction is triggered. Since all events that
are supposed to be reduced are scattered over the memory buffer, the entire
memory buffer needs to be scanned to find all events that match the criterion
for reduction, e.g., all events of the deepest call stack level for a reduction based
on the calling depth. When all events matching the reduction criteria are found,
they are discarded and the according memory sections are marked as free. Since
events occur at a high frequency and are typically only a few bytes small, there
are plenty of small free sections scattered over the whole memory buffer. This
leaves a highly fragmented memory buffer that cannot be used for writing fur-
ther events. Thus, all non-free memory sections need to be moved to collapse the
fragmented memory buffer to a single continuous memory segment that leaves
a continuous free memory section at the end to store further events. The com-
putational complexity of the reduction operation is in O(n), with n being the
number of stored events. Since a memory buffer, depending on its size, can con-
tain several million events such a reduction operation introduces a remarkable
overhead when using a traditional flat continuous memory representation.

In contrast to a flat continuous memory buffer, the hierarchical memory
buffer is organized as a multi-dimensional array, where each hierarchy dimension

10 M. Wagner et al.

(a) Flat continuous memory buffer. (b) Hierarchical memory buffer

Fig. 1. Comparison of the event representation in a flat continuous memory buffer and
in the hierarchical memory buffer.

represents one possible hierarchical order with a flexible number of different
values within that hierarchical order, called hierarchy levels (see Fig. 1(b)).

In the context of event reduction, for instance, one dimension can represent
the calling depth and another the event class. Instead of one huge memory
chunk, the total memory allocation for the according memory buffer is divided
in plenty of small memory sections, called memory bins. These memory bins can
be dynamically distributed to any hierarchy level in each dimension. Whenever
an event needs to be stored at a certain hierarchy level and there is either no
memory bin assigned or the current memory bin is exhausted, a free memory
bin is distributed to this hierarchy level.

The following paragraph highlights the event reduction with such a hierar-
chical memory buffer. Again, for simplification this example considers at first
only one reduction criterion, e.g., the calling depth. Thus, the according mem-
ory buffer’s layout is an one-dimensional array. When the first event needs to be
stored, usually on call stack level L1, no memory bin has been assigned to this
hierarchy level, so far. Thus, the memory buffer checks if there is a free memory
bin available, which is true in this case, and one memory bin is assigned to the
hierarchy level L1, so, the event can be stored. If an event needs to be stored
on a different hierarchy level, a free memory bin is assigned the same way. The
same applies when on any hierarchy level the current memory bin is exhausted.
After some time, this leads to a situation like in Fig. 1(b): Five of the memory
bins are assigned to the hierarchy levels L1–L3 and four free memory bins are
available. Hence, four additional memory bins can be assigned to the hierarchy
levels. After that, all memory bins are assigned and there are no free memory
bins available anymore. If a further event needs to be stored at a filled hierarchy
level but there are no free memory bins available, the event reduction is triggered
and all events of a certain hierarchy level are discarded, for instance, all events
of the deepest call stack level, in this case, level L3. Since all events are already
sorted by their call stack level the event reduction operation can be done with
minimal costs. The event reduction just revokes all memory bins assigned to
the hierarchy level L3 and adds them again to the pool of free memory bins. In
addition, the hierarchy level L3 is marked as closed, so, all future events on this
hierarchy level are discarded right away. One of the newly freed memory bins
can be assigned to the hierarchy level that triggered the event reduction and the
according event can be stored.

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 11

This way, the computational complexity of the reduction operation is reduced
to be in O(b), with b being the number of memory bins to revoke. Next to
the layout as one-dimensional array as for the example above, the hierarchical
memory buffer event representation can be organized as a multi-dimensional
array, as well. In that case, the event reduction can be applied on a complete row
or column within the multi-dimensional array. This way, a hierarchical memory
representation is able to support all event reduction techniques simultaneously.

The hierarchical memory buffer data structure and its construction, as well
as the application of event reduction with the hierarchical memory buffer and
the adaption of common analysis techniques are discussed in more detail in a
dissertation thesis, Chapters 4.2–4.5 [24].

5 Evaluation

We use the OTFX prototype containing the above described methods to demon-
strate the resulting trace size reduction and to examine the introduced overhead
for the event tracing library. In addition, we evaluate the usefulness of the result-
ing traces for performance analysis.

5.1 Methodology and Target Applications

Event tracing libraries are usually closely coupled with the monitoring tools
who use them. This makes it virtually impossible to distinguish effects caused
by the monitoring tool from those caused by the event tracing library. In addi-
tion, many parameters, e.g., function durations, deviate in each measurement
run. Therefore, we do not use the OTF2 and OTFX libraries directly for the
measurement. Instead, we generate an OTF2 trace with Score-P [8] and use this
trace as a baseline. For the comparison run with OTFX, we replay each appli-
cation from its baseline trace. This method ensures, that both traces (OTF2
and OTFX) use exactly the same input data and, thus, eliminates the effect of
runtime deviations.

We use Taurus a Linux cluster at ZIH for trace generation and an Intel Core i7
system for the overhead measurements. The evaluation is based on traces of the
molecular dynamics package Gromacs [4], the cloud simulation model system
COSMO-SPECS+FD4 [9], the computational fluid dynamics solver Nek5000
(3dbox, pipe) [1], and the molecular dynamics simulator LAMMPS (colloid,
lennard-jones, rigid) [14,15].

5.2 Runtime Overhead

To determine the runtime overhead introduced by our prototype we applied the
trace replay described above for all target applications. For the trace replay both
tracing libraries were modified to use up to 2 GiB of memory to keep the entire
trace data in main memory to eliminate all effects of file interaction in OTF2
and event reduction in OTFX, respectively.

12 M. Wagner et al.

0s

2s

4s

6s

8s

10s

grom
acs

cosm
o-specs

3dbox

pipe
colloid

lennard-jones

rigid

Li
br

ar
y

tim
e

OTF2
OTFX

Fig. 2. Runtime of OTF2 and OTFX.

Figure 2 shows the runtime of OTF2, Score-P’s standard tracing library, in
comparison to our OTFX prototype for the target applications. In comparison
to OTF2, OTFX was in average 5.1 % faster. In total, the library times of OTFX
account for 7.8 % of the overall runtime in average. This demonstrates that our
prototype suffices our requirement to not introduce additional overhead in the
measurement process.

5.3 Trace Size Reduction

To evaluate the trace size reduction of our prototype we again applied the trace
replay but this time with enabled duration filtering. We choose a minimum
duration of 1µs for the duration filter, i.e., all function calls shorter than 1µs
are filtered. This way, all short-running functions are eliminated while important
routines remain in the trace.

Table 1 shows the results for the target applications. It contains the resulting
trace sizes of OTF2, OTFX without any duration filtering or event reduction
(compression), OTFX with duration filtering (comp + filter), and solely for com-
parison the size of a trace keeping only MPI events (MPI-only). From Table 1 can
be inferred, first, the traces of all applications are much larger than a normal-
sized memory buffer of 50 to 200 MiB [5]. As a result, application execution would
be frequently interrupted by intermediate buffer flushes and disturb the original
application behavior. Second, an MPI-only trace would fit into a normal sized
buffer for all applications. These two values, the size of the complete trace and
the size of the MPI-only trace set the boundaries for a trace size reduction with
our prototype. While MPI events can be filtered as well, ideally they are kept
to allow an undisturbed communication analysis. Thus, the MPI-only column
indicates also the limits of OTFX if all MPI events are kept. Third, the mem-
ory allocation of our prototype without duration filtering and event reduction
(OTFX) is already 2.8 to 3.5 times smaller than OTF2. Fourth, the duration
filter eliminates short-running functions and reduces the trace size by additional
82 %, on average, which results in trace sizes of 0.2 to 12.6 % of the original trace

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 13

Table 1. Trace sizes of OTF2, OTFX with and without filter and MPI only.

Application Trace size (per process)

OTF2 OTFX OTFX MPI-only

Compression Comp + filter

Gromacs 1.7 GB 603 MB 127 MB 9.8 MB

Cosmo-specs 1.5 GB 514 MB 21 MB 80 kB

3dbox 919 MB 297 MB 116 MB 8.8 MB

Pipe 817 MB 267 MB 88 MB 8.5 MB

Colloid 900 MB 266 MB 40 MB 12 MB

Lennard-Jones 1.8 GB 546 MB 4.1 MB 690 kB

Rigid 709 MB 203 MB 23 MB 680 kB

size in OTF2. The duration filter is particularly effective on applications with
highly-frequent short-running function calls, common in C++ applications, e.g.,
COSMO-SPECS+FD4 and the Lennard-Jones example from LAMMPS. Fifth,
for all applications, except Gromacs and both examples from Nek5000, the dura-
tion filter suffices to keep the trace within a single memory buffer of 50 MiB and
avoid intermediate memory buffer flushes. For Graomas and Nek5000, the event
reduction is triggered whenever the internal memory buffer is exhausted. This
leads to a reduction of the recorded calling depth from 14 to 8, 19 to 10, and 19
to 13 for Gromacs, 3dbox, and pipe, respectively. However, all MPI events that
occur up to the original calling depth of 14 and 19 are kept. The resulting trace
size is 30, 42, and 46 MiB for Gromacs, 3dbox, and pipe, respectively.

5.4 Trace Analysis

The previous two sections show that OTFX allows a remarkable reduction of
the trace size without addition overhead. However, it is inevitable to answer the
question about the usefulness of the remaining events and, thus, the usability of
the event reduction in general.

While it is impossible to answer this question for each and any application,
the following example showcases the analysis capabilities for a more extreme
situation. The example includes Gromacs in a more realistic production setting.
In that case, the sheer amount of trace data triggered OTFX’s event reduction
to reduce the trace size to about 0.1 % of the original size. To achieve this, MPI
events had to be reduced as well, since already their volume would have been too
large. It is obvious, that an extreme reduction like this cannot deliver the same
level of detail as an unreduced trace. The question is if the remaining coarse
trace can still contribute to a meaningful performance analysis, help to better
understand the application behavior and identify performance issues.

Figure 3 shows a comparison of the full trace with the reduced OTFX trace
that is 1,000 times smaller. It shows a screen shot of a visual performance analysis

14 M. Wagner et al.

Fig. 3. Event trace visualization with Vampir without (top, white background) and
with event reduction (bottom, blue background) zoomed to three iterations. (Color
figure online)

with Vampir of Gromacs without (top, white background) and with event reduc-
tion (bottom, blue background) zoomed to a small section of approximately three
iterations. The screen shot contains a timeline view of the first twelve processes
with the application behavior over time on the horizontal axis and the processes
on the vertical axis (top, left), a detailed call stack of process zero (bottom, left)
and a function summary showing the inclusive function time (right). The figure
visualizes the prominent functions on calling depth five do force and gmx pme do
in yellow (for better visibility nested functions of do force, except MPI communi-
cation, are marked yellow, too) and blue, respectively, the rest of the application
in green, and MPI communication in red.

It can be seen, that the remaining events of the reduced version equal exactly
the complete version, i.e., the filtering and reduction do not alter the program
behavior. And, while the reduced trace contains considerably lower detail, it
clearly identifies the overall program behavior. It illustrates the function decom-
position within each group of four processes and the iterative blocks of the
application. It also still allows to identify the load imbalance in the function
decomposition between three out of four process that compute the particle-
particle interaction (PP) and the other that computes the Particle Mesh Ewald
method (PME).

Of course, this screen shot provides only limited insight into the analysis
process of this use case; not mentioning the analysis process of applications in
general. Nonetheless, it demonstrates that a reduced trace resulting from the pro-
posed in-memory event tracing workflow still allows a meaningful performance

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 15

analysis even in such an extreme case. This way it becomes possible to record
and analyze an entire production run of real-life applications, such as Gromacs.

6 Conclusion

In this paper we focus on the impact of high data volumes in event trace record-
ing, namely, application slow down, overwhelming the underlying file system and
measurement bias. We propose an in-memory event tracing approach that auto-
matically adapts the remaining application events to an amount that fits into a
single memory buffer. Furthermore, we present the underlying concepts for an in-
memory event tracing workflow: runtime filtering, enhanced encoding techniques,
novel strategies for runtime event reduction, and the hierarchical memory buffer
data structure, which incorporates a multi-dimensional, hierarchical ordering of
events allowing to realize these concepts with minimal overhead. We evaluate
the capabilities of our approach with the OTFX prototype implementation on
the basis of seven application traces from different scientific domains. In compar-
ison to the state-of-the-art tracing library OTF2, OTFX introduces in average
5.1 % less overhead and reduces the trace size up to three orders of magnitude.
Most importantly, with OTFX the bias caused by uncoordinated intermediate
memory buffer flushes is completely eliminated. This way, OTFX reduces the
resulting trace size, measurement slow down, and bias, which allows a feasible
performance analysis of applications that previously had been impossible.

References

1. Argonne National Laboratories. Nek5000 website (2016). http://nek5000.mcs.anl.
gov

2. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open
trace format 2: the next generation of scalable trace formats and support libraries.
In: Applications, Tools and Techniques on the Road to Exascale Computing, vol.
22 of Advances in Parallel Computing, pp. 481–490 (2012)

3. Geimer, M., Wolf, F., Wylie, B.J., Ábrahám, E., Becker, D., Mohr, B.: The scalasca
performance toolset architecture. Concurrency Comput. Pract. Exp. 22(6), 702–
719 (2010)

4. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for
highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor.
Comput. 4(3), 435–447 (2008)

5. Ilsche, T., Schuchart, J., Cope, J., Kimpe, D., Jones, T., Knüpfer, A., Iskra, K.,
Ross, R., Nagel, W.E., Poole, S.: Enabling event tracing at leadership-class scale
through I/O forwarding middleware. In: Proceedings of the 21th International
Symposium on High Performance Distributed Computing (HPDC 2012), pp. 49–
60. ACM, June 2012

6. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting, pp. 139–155. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68564-7 9

http://nek5000.mcs.anl.gov
http://nek5000.mcs.anl.gov
http://dx.doi.org/10.1007/978-3-540-68564-7_9

16 M. Wagner et al.

7. Knüpfer, A., Nagel, W.E.: Compressible memory data structures for event-based
trace analysis. Future Gener. Comput. Syst. 22(3), 359–368 (2006)

8. Knüpfer, A., Rössel, C., Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer,
M., Gerndt, M., Lorenz, D., Malony, A., Nagel, W.E., Oleynik, Y., Philippen, P.,
Saviankou, P., Schmidl, D., Shende, S., Tschüter, R., Wagner, M., Wesarg, B.,
Wolf, F.: Score-P: a joint performance measurement run-time infrastructure for
periscope, scalasca, TAU, and vampir. In: Brunst, H., Müller, M.S., Nagel, W.E.,
Resch,M.M. (eds.)Tools forHighPerformanceComputing 2011, pp. 79–91. Springer,
Heidelberg (2012)

9. Lieber, M., Grützun, V., Wolke, R., Müller, M.S., Nagel, W.E.: Highly scal-
able dynamic load balancing in the atmospheric modeling system COSMO-
SPECS+FD4. In: Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 131–141.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28151-8 13

10. Llort, G., Gonzalez, J., Servat, H., Gimenez, J., Labarta, J.: On-line detection of
large-scale parallel application’s structure. In: 2010 IEEE International Symposium
on Parallel Distributed Processing (IPDPS), pp. 1–10 (2010)

11. Mohror, K., Karavanic, K.L.: Evaluating similarity-based trace reduction tech-
niques for scalable performance analysis. In: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis (SC 2009), pp.
55:1–55:12 (2009)

12. Mußler, J., Lorenz, D., Wolf, F.: Reducing the overhead of direct application instru-
mentation using prior static analysis. In: Jeannot, E., Namyst, R., Roman, J. (eds.)
Euro-Par 2011. LNCS, vol. 6852, pp. 65–76. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-23400-2 7

13. Noeth, M., Ratn, P., Mueller, F., Schulz, M., de Supinski, B.R.: ScalaTrace: scalable
compression and replay of communication traces for high-performance computing.
J. Parallel Distrib. Comput. 69(8), 696–710 (2009)

14. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995)

15. Sandia National Laboratories. Lammps website (2016). http://lammps.sandia.gov
16. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High

Perform. Comput. Appl. 20(2), 287–311 (2006)
17. Top500. Top 500 supercomputer sites (2015). http://www.top500.org
18. Virtual Institute – High Productivity Supercomputing (VI-HPS). Score-P and

OTF2 website and download page (2016). http://www.vi-hps.org/projects/score-p
19. Wagner, M., Doleschal, J., Knüpfer, A., Nagel, W.E., Monitoring, S.R.: Non-

intrusive elimination of high-frequency functions. In: Proceedings of the Interna-
tional Conference on High Performance Computing & Simulation (HPCS), pp.
295–302 (2014)

20. Wagner, M., Doleschal, J., Knüpfer, A., Nagel, W.E.: Runtime message uniquifi-
cation for accurate communication analysis on incomplete MPI event traces. In:
Proceedings of the 20th European MPI Users’ Group Meeting (EuroMPI 2013),
pp. 123–128 (2013)

21. Wagner, M., Doleschal, J., Knüpfer, A.: MPI-focused tracing with OTFX: an MPI-
aware in-memory event tracing extension to the open trace format 2. In: Proceed-
ings of the 22th European MPI Users’ Group Meeting (EuroMPI 2015), pp. 7: 1–7:
8 (2015)

http://dx.doi.org/10.1007/978-3-642-28151-8_13
http://dx.doi.org/10.1007/978-3-642-23400-2_7
http://dx.doi.org/10.1007/978-3-642-23400-2_7
http://lammps.sandia.gov
http://www.top500.org
http://www.vi-hps.org/projects/score-p

OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2 17

22. Wagner, M., Knüpfer, A., Nagel, W.E.: Enhanced encoding techniques for the open
trace format 2. Proc. Comput. Sci. 9, 1979–1987 (2012)

23. Wagner, M., Knüpfer, A., Nagel, W.E.: Hierarchical memory buffering techniques
for an in-memory event tracing extension to the open trace format 2. In: 2013 42nd
International Conference on Parallel Processing (ICPP), pp. 970–976 (2013)

24. Wagner, M.: Concepts for In-memory Event Tracing: Runtime Event Reduction
with Hierarchical Memory Buffers. Doctoral thesis (2015)

Tuning the Blocksize for Dense Linear Algebra
Factorization Routines with the Roofline Model

Peter Benner3, Pablo Ezzatti1, Enrique S. Quintana-Ort́ı2, Alfredo Remón3(B),
and Juan P. Silva1

1 Instituto de Computación, Universidad de la República,
11300 Montevideo, Uruguay

{pezzatti,jpsilva}@fing.edu.uy
2 Dep. de Ingenieŕıa y Ciencia de la Computación, Universidad Jaime I,

12701 Castellón, Spain
quintana@icc.uji.es

3 Max Planck Institute for Dynamics of Complex Technical Systems,
39106 Magdeburg, Germany

{benner,remon}@mpi-magdeburg.mpg.de

Abstract. The optimization of dense linear algebra operations is a fun-
damental task in the solution of many scientific computing applications.
The Roofline Model is a tool that provides an estimation of the perfor-
mance that a computational kernel can attain on a hardware platform.
Therefore, the RM can be used to investigate whether a computational
kernel can be further accelerated. We present an approach, based on
the RM, to optimize the algorithmic parameters of dense linear algebra
kernels. In particular, we perform a basic analysis to identify the opti-
mal values for the kernel parameters. As a proof-of-concept, we apply
this technique to optimize a blocked algorithm for matrix inversion via
Gauss-Jordan elimination. In addition, we extend this technique to multi-
block computational kernels. An experimental evaluation validates the
method and shows its convenience. We remark that the results obtained
can be extended to other computational kernels similar to Gauss-Jordan
elimination such as, e.g., matrix factorizations and the solution of linear
least squares problems.

Keywords: Roofline model · Dense linear algebra · Gauss-Jordan
elimination

1 Introduction

Dense numerical linear algebra operations are crucial for the solution of a vast
number of scientific computing applications. In response to this, highly tuned

All researchers acknowledge the support from the EHFARS project funded by the
German Ministry of Education and Research BMBF.
E.S. Quintana-Ort́ı—Supported by the CICYT project TIN2014-53495-R of the Min-
isterio de Economı́a y Competitividad and FEDER.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 18–29, 2016.
DOI: 10.1007/978-3-319-49956-7 2

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 19

basic numerical linear algebra subroutines (BLAS) [5], as well as more com-
plex routines as those defined in LAPACK [1], have been developed and inte-
grated into high performance libraries. There are several implementations of
BLAS and/or LAPACK, usually specialized and maintained for different types
of architectures by the processor manufacturer, such as IBM ESSL, Intel MKL
or NVIDIA CUBLAS.

The Roofline model (RM) [16] is a graphical tool that can be leveraged to
investigate the performance as well as identify the limiting factors of a compu-
tational kernel, including e.g. those in BLAS and LAPACK, executed in a given
hardware architecture. Concretely, the RM consists of a two-dimensional chart
that displays the (theoretical) peak memory bandwidth and performance of a
platform, and relates these bounds to the arithmetic intensity (AI) of a compu-
tational kernel, defined as the ratio between floating-point arithmetic operations
(flops) and memory accesses (memops) of the implementation.

In this paper we analyze the effect that AI exerts on the practical performance
of blocked algorithms for dense matrix factorizations, such as those in LAPACK,
making the following concrete contributions:

– We introduce a simple theoretical analysis to determine the algorithmic
blocksize that reduces memops, optimizing AI and in general performance,
of a blocked algorithm for matrix inversion via Gauss-Jordan elimination
(GJE) [6].

– We extend this simple model to deal with more complex multi-block variants
that improve AI for the inversion procedure.

– We provide a compact experimental analysis on a quadcore Intel processor to
validate our findings.

– Finally, we remark that our study carries over, among others, to several other
matrix factorization algorithms for the solution of linear systems and linear
least squares problems [6].

The rest of the paper is structured as follows. In Sect. 2, we offer a brief
review of the RM. Next, in Sect. 3 we revisit matrix inversion via GJE; and in
Sect. 4 we introduce the analysis to compute the optimal algorithmic blocksize
from the perspective of AI. Additionally, in that section we extend our study to
a multi-block variant, which is a conventional technique to improve the perfor-
mance of dense linear algebra factorization algorithms. In Sect. 5, we outline the
experimental impact of the blocksizes previously, on a practical implementation.
Finally, in Sect. 6 we summarize the results and emphasize a few concluding
remarks derived from our work.

2 The Roofline Model

The RM separates the memory-bound and compute-bound “spaces” of an archi-
tecture as a function of AI. In particular, the model provides a two-dimensional
easy-to-read chart that illustrates the crossover threshold between the peak

20 P. Benner et al.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

Arithmetic intensity: flops/byte

A
tta

in
ab

le
 G

F
LO

P
S

/s
ec

peak flops
peak memory BW

Fig. 1. The RM for an Intel Core i7-4770. The intersection between the red and blue
lines identify the threshold between memory bandwidth (BW)-bound and compute-
bound areas, as a function of the operation’s AI. (Color figure online)

memory bandwidth and performance (in terms of flops per second) of the hard-
ware platform, showing the relation between the maximum performance attain-
able by the hardware and the AI of the computational kernel.

To create the model, the peak performance and memory bandwidth of the
target system are needed. These figures are typically obtained from the hardware
manufacturer, though it is also possible to use benchmarks to experimentally
replace them with more realistic/practical values, see e.g. [14]. To illustrate this,
Fig. 1 presents the RM for the hardware platform employed in the experimental
evaluation in Sect. 5.

In order to position a computational kernel with respect to the bounds defined
by the RM, it is necessary to determine the kernel’s AI. This can be computed
from (estimations for) the total flops and memory accesses performed by the
kernel. It should be noted that the RM is platform-specific, but can be re-used
for any computational kernel executed in that system.

To summarize, the RM provides a helpful means to understand how the mem-
ory bandwidth constrains the performance, for memory-bounded algorithms,
and/or identify how much an application can be accelerated (as the gap between
the real and the attainable performance reported by the model). More details
on the RM can be found in [8,10,15].

3 Matrix Inversion via GJE

Our general goal for this work is to exploit the principles underlying RM to
improve the performance of dense linear algebra operations. As a proof-of-concept,

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 21

Fig. 2. Blocked algorithm for matrix inversion via GJE without pivoting.

we perform our study on the blocked algorithm for matrix inversion, based on
GJE, described in this section.

GJE is an appealing method for matrix inversion, with a computational cost
and numerical properties analogous to those of the conventional approach based
on the LU factorization [9], but superior performance on a variety of architec-
tures, from clusters [13] to general-purpose multicore processors and GPUs [3].

Figure 2 shows a blocked version of GJE for matrix inversion using the
FLAME notation. There, m(A) stands for the number of rows of the matrix A.
More details on the notation can be found in [4,7]. For a detailed description of
the algorithm and the unblocked version of GJE, invoked from inside the blocked
routine, see [2,13]. For simplicity, we do not include the application of pivoting
during the factorization, but details can be found there as well. Given a square
(nonsingular) matrix of size n = m(A), the cost of matrix inversion using this
algorithm is 2n3 flops. Furthermore, the inversion is carried out in-place so that,
upon completion, the entries of A are overwritten with those of its inverse.

At this point, we emphasize that the blocked algorithm in Fig. 2 casts most
of its operations in terms of matrix-matrix products and other BLAS (inside
the unblocked routine for GJE). Therefore, the conclusions from our intensity-
performance analysis via RM in the next section can be also extended to several
other dense linear algebra operations, such as the solution of linear systems via

22 P. Benner et al.

the LU and Cholesky factorizations, as well as least-squares computations using
the QR decomposition, among others [6].

4 Optimizing the Algorithmic Blocksize

4.1 General Discussion of High Performance for Dense Linear
Algebra Routines

The usual approach to attain high performance for the execution of a dense linear
algebra operation in a current architecture formulates the computation in the
form of a blocked algorithm, where the bulk of the flops are computed via BLAS-
3 operations such as, e.g., matrix-matrix products. This is motivated by the high
performance offered by the BLAS-3 operations, due to their intrinsic parallelism
and their convenient flops-to-memops ratio. Compared with this, the BLAS-1
and BLAS-2 kernels perform a number of flops of the same order as the volume
of memory accesses, in general achieving a small fraction of the theoretical peak
performance of a current general-purpose architecture. The performance attained
by blocked algorithms strongly depends on the value of the algorithmic blocksize,
b. This parameter determines how operations are distributed among the different
kernels. Identify the best value for b is a complex task since it depends on the
underlying hardware as well as on the computational kernel [11,12].

4.2 Blocked Algorithm for GJE

In the particular case of the GJE, the use of a large algorithmic blocksize b con-
centrates most of the flops inside subroutine GJE unb, which is rich in BLAS-1
and BLAS-2 kernels. Consequently, the performance provided by the unblocked
stages in GJE unb will dictate the performance of the whole algorithm. At the
opposite extreme, the selection of a very small value for b transforms the BLAS-3
operations in GJE blk into quasi-BLAS-2 kernels (due to the reduced number
of columns in the blocks of the form Ax1). Our aim is therefore to identify the
value of b that maximizes the use of BLAS-3 operations, and thus minimizes
the volume of memory accesses. Given an algorithm with a fixed computational
cost, reducing the memops factor improves its AI (as the ratio between flops and
memops), and generally the attained performance.

The main loop of GJE blk requires a total of n/b iterations (see Fig. 2),
with each step requiring the computation of BLAS-3, BLAS-1/BLAS-2 kernels.
Note that in general, BLAS-3 are compute-bound while BLAS-1/BLAS-2 are
memory-bound. Concretely, the flops of each iteration are distributed as follows:

– BLAS-1 and BLAS-2: 2n b2 flops to factorize the panel, i.e. [A01;A11;A21].
– BLAS-3: 2n (n − b) b flops to update the rest of the matrix.

Now, assuming that BLAS-1 and BLAS-2 kernels perform O(1) flops per
memop while BLAS-3 kernels perform O(b) flops per memop, the total number
of memory accesses needed by GJE is approximately:

n/b (2n (n − b) + 2n b2), (1)

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 23

which can be simplified into:

2n2 (n/b − 1 + b) memops. (2)

If we consider communication (memops) as overhead, finding the optimal
blocksize bopt is then equivalent to minimizing the number of memops given
by (2). Therefore, we just need to find the root(s) of the derivative function
of (2) with respect to b in order to obtain bopt =

√
n.

Moreover, the arithmetic intensity of the GJE blk is then given by

2n3

2n2 (n/bopt − 1 + bopt)
flops-per-memop (3)

and, as bopt =
√
n, the “best” arithmetic intensity we can attain with our blocked

algorithm for matrix inversion via GJE blk is

n

2
√
n − 1

≈
√
n

2
flops-per-memop. (4)

4.3 Multi-block Variant of GJE

In this section we describe a multi-block strategy to accelerate GJE, and how
to extend the analysis based on the RM/AI in order to identify the optimal
blocksizes for this variant.

The Multi-block GJE partly casts the operations involved by the panel fac-
torization in terms of BLAS-3 kernels, in order to further increase the number
of flops performed using this type of kernels in the algorithm. For this purpose,
in the multi-block version of the algorithm, subroutine GJE unb is replaced
by a slightly modified version of GJE blk that can operate with rectangular
matrices. As a result, the multi-block variant of GJE is parametrized by two
blocksizes: the outer blocksize b, applied during the execution of the blocked
algorithm, and the inner blocksize c, employed during the factorization of the
panel. For simplicity, hereafter we will assume that b is an integer multiple of c.

Leveraging RM to Select the Optimal Blocksizes. Using a similar strategy
to that presented in Sect. 4.1, we can infer the optimal values for both blocksizes
and use them to establish the best arithmetic intensity attainable by the multi-
block variant of the GJE algorithm.

In this case, the flops performed during an iteration of the main loop can be
decomposed into the following three terms:

– BLAS-1 and BLAS-2: 2n c2 flops to factorize the panel (note that this fac-
torization itself requires b/c steps).

– BLAS-3: 2n (b − c) c flops to update the elements within the panel.
– BLAS-3: 2n (n − b) b flops to update the rest of the matrix.

24 P. Benner et al.

Let us assume that c offers a rough measure of the relation between the flops
and memory accesses for the BLAS-3 operations executed inside the panel, and
let b be its counterpart for the BLAS-3 operations to update the elements placed
out of the panel. Consider again that the BLAS-1 and BLAS-2 kernels perform
O(1) flops per memory access, while the ratio for the BLAS-3 is O(b). Then,
the outer loop is executed n/b times, while the inner loop b/c times per step of
the outer loop; and the total number of memops of the multi-block variant is

n/b (b/c (2n c + 2n (b − c)) + 2n (n − b)), (5)

which can be simplified to

2n2 (c + b/c + n/b − 2) memops. (6)

Differentiating the previous expression with respect to c, and finding the roots
of the result, we obtain that the value of the inner blocksize that minimizes the
number of memory accesses is copt =

√
b. This is natural as the computation

performed by the inner loop is analogous to the application of a “rectangular”
version of the blocked algorithm for GJE to a matrix of dimension n × b.

Replacing c by its optimal value copt, in Eq. (6), we then obtain:

2n2 (n/b − 2 + 2
√
b) memops. (7)

Similarly, if we derive Eq. (7) with respect to b, and equate the result to zero,
we obtain the value of b that minimizes the number of memory accesses as
bopt = (3

√
n)2.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

Blocksize b

A
rit

hm
et

ic
 in

te
si

ty
 fl

op
s/

by
te

n=9,216
n=6,144
n=4,096
n=2,048

Fig. 3. Effect of the external blocksize b on AI. Lines with marks “×” and “+” represent
the AI for the blocked and the multi-block algorithm respectively. For the multi-block
algorithm, c = copt =

√
b.

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 25

Finally, the arithmetic intensity of the multi-block variant of GJE is given by

2n3

2n2 (n/b − 2 + b/c + c)
flops-per-memop, (8)

and, in the case of bopt and copt,

n

n/b − 2 + 2
√
b

=
n

3 3
√
n − 2

≈ (3
√
n)2

3
flops-per-memop. (9)

To close this section, Fig. 3 illustrates the effect of the (external) blocksize b
on the AI of the blocked GJE-algorithm for matrix inversion and its multi-block
version, clearly identifying the existence of optimal values for both algorithms,
and the much higher AI of the multi-level variant.

5 Experimental Evaluation

The experiments in this section were performed on an Intel-based server equipped
with an Intel Core i7-4770 processor (4 cores operating at 3.40 GHz) using double
precision (DP) floating-point arithmetic. The (theoretical) peak floating-point
rate of this hardware platform is 108.8 DP GFLOPS (billions of flops/sec) and
the (theoretical) peak bandwidth is 25.5 GB/s (i.e., 3.18 millions of DP numbers
per second). All the implementations rely on the multi-threaded implementation
of BLAS provided by Intel MKL 11.1, and the experiments are configured to
exploit all 4 cores in the platform by spawning 4 threads during the execution
of the BLAS.

We first carry out an experiment that aims to empirically assess the impact
of the blocksize on the performance of the blocked implementation of the GJE
method to invert matrices of four dimensions. To avoid variations due to cache
dimensions and associativity, we select n= 2,048, 4,096, 6,144 and 9,216. For
brevity, and to better exploit the processor’s vector units, we only experiment
with “spaced” values of b that are integer multiples of s= 32 (except for the 2,048
case, where we use integer multiples of s= 16). For each matrix dimension, the
theoretical optimal blocksize bopt is computed as described in Sect. 4.1. We then
test three different values for b, corresponding to the two integer multiples of s
closer to bopt above it (i.e., (�bopt/s� + 1)s and (�bopt/s� + 2)s) as well as the
closest integer multiple below this value (�bopt/s�s).

Table 1 displays the results obtained for this initial study, showing the value
of bopt for each matrix dimension and the performance (in GFLOPS) attained
using the three values selected for b. The best performance is always observed
for the value of b closest to bopt, validating our formula to determine the optimal
blocksize setting.

In addition, the performance observed for the implementation of GJE blk
grows with the dimension of the matrix, a result that is also aligned with the
theoretical study, as the computational intensity is proportional to b and larger
matrices demand larger blocksizes.

26 P. Benner et al.

Table 1. Performance (in GFLOPS) of GJE blk to invert matrices of different dimen-
sions using several blocksizes b.

Matrix dimension bopt b GFLOPS

2,048 45 32 38

48 40

64 40

4,096 64 32 45

64 52

96 51

6,144 78 64 62

96 76

128 75

9,216 96 64 78

96 102

128 98

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Arithmetic intensity: flops/byte

A
tta

in
ab

le
 G

F
LO

P
S

/s
ec

Fig. 4. RM applied to the inversion of matrices via GJE on an Intel Core i7-4770.
(Color figure online)

Figure 4 relates performance/AI of the GJE kernel with the parameters of
RM for the target architecture. The position in the x-axis is calculated using
Eq. (3), and the black dots show the performance attained with the optimal
value of b for each problem dimension.

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 27

Table 2. Performance (in GFLOPS) reported by the multi–block GJE variant.

Matrix dimension n bopt − copt b − c GFLOPS Arithmetic intensity

2,048 161–12 160–16 62 56

4,096 256–16 256–16 69 89

6,144 335–18 320–16 82 115

9,216 406–20 384–16 94 149

Considering the results in the figure, we point out that the increment in AI is
accompanied with improvements in the actual performance. However, the values
calculated for AI seem to be overestimated, as the line connecting the black dots
shows a gradient similar to that of the bandwidth limit (red line), but shifted in
the x-axis.

We next evaluate the multi-block version of GJE, described in Sect. 4.3, to
identify the optimal value for the two blocksizes: b and c. Table 2 presents the the-
oretical optimal values for these parameters, the actual values tested for the block-
sizes, the performance attained (in GFLOPS), and the AI according to Eq. (8).

An inspection of the results in the table reveals that the use of a multi-
block technique is especially effective for the inversion of matrices of moderate
dimension. Concretely, the multi-block algorithm increases the performance by
50% for the smallest problem but it is slightly slower for the largest problem.
This is because this technique aims to reduce the impact of the memory-bound
operations, a hazard that has a stronger effect for small- to moderate-size prob-
lems. In particular, when n= 9,216, the computation is not memory-bound and,
therefore, the multi-block technique does not yield any gain. Additionally, the
blocked algorithm employs the optimal blocksize while suboptimal blocksizes are
employed by the multi-block algorithm (due to the multiple of 32 restriction).

In practice, even though the AI factors show that the performance should be
limited by the peak performance of the system, in practice it is limited by the
memory bandwidth. This is a sign that the theoretical model overestimates the
actual AI.

6 Concluding Remarks and Future Work

The Roofline model offers a measure of the optimization potential of a com-
putational routine, relating its AI to the theoretical peak memory bandwidth
and peak performance of the target architecture. For dense linear algebra fac-
torization methods, blocked algorithms aim to improve performance by casting
a significant fraction of its computations in terms of efficient, compute-bound
BLAS-3 kernels that are only constrained by the processor’s peak GFLOPS rate.
A key parameter to optimize these algorithms is the blocksize, which determines
the fraction of the flops that are computed as BLAS-3 vs. BLAS-1/2 kernels
and, therefore, governs the performance of the global algorithm.

28 P. Benner et al.

In this paper we have presented simple yet accurate models to determine
the blocksize that optimizes AI for a blocked matrix inversion algorithm based
on GJE. Furthermore, we have extended the formulation to a multi-level vari-
ant that delivers even higher rates of AI. Our experimental results in an Intel
processor with four cores validates the approach, showing that the increases in
AI actually result in a performance improvement for both the original blocked
algorithm and its multi-level counterpart.

In the future we plan to apply the same techniques to other dense linear
algebra algorithms and platforms. We also intend to obtain more precise formulas
for the arithmetic intensity.

References

1. Anderson, E., Bai, Z., Demmel, J., Dongarra, J.E., DuCroz, J., Greenbaum, A.,
Hammarling, S., McKenney, A.E., Ostrouchov, S., Sorensen, D.: LAPACK Users’
Guide. SIAM, Philadelphia (1992)

2. Benner, P., Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A.: Unleashing CPU-GPU
acceleration for control theory applications. In: Caragiannis, I., et al. (eds.) Euro-
Par 2012. LNCS, vol. 7640, pp. 102–111. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36949-0 13

3. Benner, P., Ezzatti, P., Quintana-Ort́ı, E.S., Remón, A.: Matrix inversion on CPU-
GPU platforms with applications in control theory. Concurrency Comput. Pract.
Exp. 25(8), 1170–1182 (2013)

4. Bientinesi, P., Gunnels, J.A., Myers, M.E., Quintana-Ort́ı, E.S., van de Geijn, R.A.:
The science of deriving dense linear algebra algorithms. ACM Trans. Math. Softw.
31(1), 1–26 (2005)

5. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Softw. 16(1), 1–17 (1990)

6. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins
University Press, Baltimore (1996)

7. Gunnels, J.A., Gustavson, F.G., Henry, G.M., van de Geijn, R.A.: FLAME: formal
linear algebra methods environment. ACM Trans. Math. Softw. 27(4), 422–455
(2001)

8. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach. Elsevier, London (2011)

9. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (2002)

10. Lo, Y.J., Williams, S., Straalen, B., Ligocki, T.J., Cordery, M.J., Wright, N.J.,
Hall, M.W., Oliker, L.: Roofline model toolkit: a practical tool for architectural
and program analysis. In: Jarvis, S.A., Wright, S.A., Hammond, S.D. (eds.) PMBS
2014. LNCS, vol. 8966, pp. 129–148. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-17248-4 7

11. Mehta, S., Garg, R., Trivedi, N., Yew, P.: TurboTiling: leveraging prefetching to
boost performance of tiled codes. In: Proceedings of the 2016 International Con-
ference on Supercomputing, ICS 2016, New York, NY, USA, pp. 38:1–38:12. ACM
(2016)

12. The ELAPS framework: http://hpac.rwth-aachen.de/∼peise/elaps. High Perfor-
mance and Automatic Computing group at RWTH-Aachen University

http://dx.doi.org/10.1007/978-3-642-36949-0_13
http://dx.doi.org/10.1007/978-3-642-36949-0_13
http://dx.doi.org/10.1007/978-3-319-17248-4_7
http://dx.doi.org/10.1007/978-3-319-17248-4_7
http://hpac.rwth-aachen.de/~peise/elaps

Tuning the Blocksize for Dense Linear Algebra Factorization Routines 29

13. Quintana-Ort́ı, E.S., Quintana-Ort́ı, G., Sun, X., van de Geijn, R.A.: A note on
parallel matrix inversion. SIAM J. Sci. Comput. 22, 1762–1771 (2001)

14. Talagala, N., Arpaci-Dusseau, R.H., Patterson, D.A.: Micro-benchmark based
extraction of local and global disk characteristics. Citeseer (1999)

15. Unat, D., Chan, C., Zhang, W., Williams, S., Bachan, J., Bell, J., Shalf, J.:
ExaSAT: an exascale co-design tool for performance modeling. Int. J. High Per-
form. Comput. Appl. 29(2), 209–232 (2015)

16. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

Network-Aware Optimization of MPDATA
on Homogeneous Multi-core Clusters

with Heterogeneous Network

Tania Malik1(B), Lukasz Szustak2(B), Roman Wyrzykowski2,
and Alexey Lastovetsky1

1 School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
tania.malik@ucdconnect.ie, Alexey.Lastovetsky@ucd.ie

2 Czestochowa University of Technology,
Dabrowskiego 69, 42-201 Czestochowa, Poland

{lszustak,roman}@icis.pcz.pl

Abstract. The communication layer of modern HPC platforms is get-
ting increasingly heterogeneous and hierarchical. As a result, even on
platforms with homogeneous processors, the communication cost of many
parallel applications will significantly vary depending on the mapping
of their processes to the processors of the platform. The optimal map-
ping, minimizing the communication cost of the application, will strongly
depend on the network structure and performance as well as the log-
ical communication flow of the application. In our previous work, we
proposed a general approach and two approximate heuristic algorithms
aimed at minimization of the communication cost of data parallel appli-
cations which have two-dimensional symmetric communication pattern
on heterogeneous hierarchical networks, and tested these algorithms in
the context of the parallel matrix multiplication application. In this
paper, we develop a new algorithm that is built on top of one of these
heuristic approaches in the context of a real-life application, MPDATA,
which is one of the major parts of the EULAG geophysical model. We
carefully study the communication flow of MPDATA and discover that
even under the assumption of a perfectly homogeneous communication
network, the logical communication links of this application will have dif-
ferent bandwidths, which makes the optimization of its communication
cost particularly challenging. We propose a new algorithm that is based
on cost functions of one of our general heuristic algorithms and apply it to
optimization of the communication cost of MPDATA, which has asym-
metric heterogeneous communication pattern. We also present experi-
mental results demonstrating performance gains due to this optimization.

A. Lastovetsky—This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) under Grant Number
14/IA/2474. This research was conducted with the financial support of NCN under
grants no. UMO-2015/17/D/ST6/04059. This work is partially supported by EU
under the COST Program Action IC1305: Network for Sustainable Ultrascale Com-
puting (NESUS). Experiments were carried out on Grid’5000 developed under the
INRIA ALADDIN development action with support from CNRS, RENATER and
several Universities as well as other funding bodies (see https://www.grid5000.fr).

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 30–42, 2016.
DOI: 10.1007/978-3-319-49956-7 3

https://www.grid5000.fr

Network-Aware Optimization of MPDATA 31

Keywords: Heterogeneous computing · Communication optimization ·
Topology-aware optimization · Performance-aware optimization · Data
partitioning · MPDATA

1 Introduction

Modern high performance computing (HPC) platforms are becoming increas-
ingly complex, heterogeneous and hierarchical. Heterogeneity appears not only
in the computing devices but also in networks. Even with homogeneous proces-
sors, efficient execution of data-parallel applications is a big challenge due to
ever increasing heterogeneity and complexity of the underlying networks. Opti-
mization of data-parallel applications on such platforms is typically achieved by
minimizing the cost of data movement between the processors. In this work,
we consider the network heterogeneity rather than the processor heterogeneity.
Thus, the target platform comprises homogeneous processors connected with
a heterogeneous network. Assuming that the workload is balanced among the
processors, we propose a mapping approach that optimizes the overall communi-
cation performance of a parallel computational fluid dynamics (CFD) application
on such a platform.

We target HPC platforms with heterogeneous networks having two levels of
hierarchy, such as interconnected compute nodes and clusters. These networks
are very common in the computing world. Popular examples include Grid and
Cloud infrastructures. Even supercomputers with thousand of nodes are also
examples of heterogeneous network where the communication cost is different
on different hierarchical levels e.g. intra-node vs inter-node communication. In
data-intensive parallel applications, data transfer between different hierarchi-
cal levels is a primary cause of the execution delay. Application scalability has
been highly hampered from this data transfer communication overhead. Com-
munication cost can significantly vary depending on mapping of the application
processes to the processors of the platform, and the optimal solution minimizing
the communication cost strongly depends both on the structure and perfor-
mance characteristics of the network and on the logical communication flow of
the application. In our previous work [1], we proposed a general approach and
two heuristic algorithms aimed at minimization of the communication cost of
data parallel applications which have symmetrical two-dimensional communica-
tion pattern on heterogeneous hierarchical networks, and tested these algorithms
in the context of the parallel matrix multiplication application. In this work, we
propose a new algorithm that is built on top of cost functions and heuristics of
one of our previously proposed algorithms. This algorithm reduces overall mes-
sage hops and increases data throughput for a wider range of applications, and
we apply it to a real-life CFD application.

The CFD application we consider in this work is the multidimensional pos-
itive definite advection transport algorithm (MPDATA), which is one of the
major parts of the dynamic core of the EULAG geophysical model [2,3]. This
geophysical model can be used for simulating thermo-fluid flows across a wide

32 T. Malik et al.

range of scales and physical scenarios, including the numerical weather pre-
diction. The MPDATA belongs to the group of non-oscillatory forward-in-time
algorithms, and performs a sequence of stencil computations. The original ver-
sion of MPDATA has been implemented in FORTRAN 77 and parallelized using
MPI library. In our previous work [4] we proposed to rewrite the MPDATA code
and replace conventional HPC systems with modern homogeneous and heteroge-
neous multi- and many-core based platforms. In particular, we have successfully
developed a new version of MPDATA that allowed us to much better exploit
the available computational features of novel processors and Intel Xeon Phi
coprocessors.

However, the communication cost of MPDATA on modern HPC clusters has
not been properly optimized. The current approach to mapping of the parti-
tions of the MPDATA computational domain onto computing resources take
into account neither the actual properties of the MPDATA communication flow
nor the heterogeneity, hierarchy and performance of the communication network.

In this work, we first study and analyse the communication pattern of the
MPDATA application. The analysis reveals that MPDATA is very sensitive to
the choice of logical topology of processes as the cost per byte of horizontal com-
munications is higher than that of vertical communications even for homoge-
neous communication networks. This property of MPDATA further complicates
the task of partitioning of the MPDATA computational domain and mapping of
the sub-domains to the processors in a way that minimizes the cost of commu-
nications between different levels of the network hierarchy. In general, finding
the optimal arrangement of processors in a 2-D grid is an NP-complete combi-
natorial optimization problem [5] but it can be approximately solved by using
heuristics [6]. For MPDATA, we propose a new heuristic algorithm based on
one of our general heuristic approach presented in [1] and apply it to optimiza-
tion of the communication cost of MPDATA. This algorithm is non-intrusive
to the source code of the application and, compared to [1], is not application
specific. Our previous algorithms deal with two-dimensional symmetric commu-
nication patterns that is why we tested these algorithms in the context of the
parallel matrix multiplication application. With this new algorithm, any data-
parallel application with two-dimensional homogeneous computational domain
and asymmetric heterogeneous communication pattern can benefit. We demon-
strate the accuracy and efficiency of the proposed solution using experiments on
two-level hierarchical networks, namely, interconnected nodes (intra- and inter-
node communication levels) and interconnected clusters (intra- and inter-cluster
communication levels).

The rest of the paper is organized as follows. In Sect. 2, we introduce
MPDATA and overview existing approaches to topology-aware optimization of
communications for MPI applications. In Sect. 3, we analyze the communication
pattern of MPDATA and describe its implementation in a cluster environment.
In Sect. 4, we present the proposed approach to finding the optimal configuration
of MPDATA. In Sect. 5, we give experimental results demonstrating performance
gains due to this optimization.

Network-Aware Optimization of MPDATA 33

2 Related Work

In this section, we describe MPDATA and its modifications over time. We also
overview related work on topology-aware optimization of communications.

2.1 MPDATA

The MPDATA application is used to solve the advection equation on a mov-
ing grid according to the subsequent time steps [7]. This real-life application
offers several advanced options that allow for modeling a wide range of complex
geophysical flows. Depending on the type of modeled phenomena, this appli-
cation can demand a high computing performance of HPC clusters. Therefore,
the configurable code of MPDATA was developed and delivered over the years
[2,7,8]. This code was implemented in FORTRAN 77 and parallelized using MPI
library, however, without taking into account of the features of todays computing
architectures.

The MPI parallelization of the MPDATA computations on x86-based clus-
ters as a part of the EULAG model was thoroughly studied in [8], using tens
of thousands of cores, or even more than 100 K cores in the case of IBM Blue
Gene/Q. The parallelization strategy of this implementation is based on 3D
domain decomposition, and executes computations according to the distributed
memory model where each core is assigned to a single MPI rank. This approach
ignores the advantages of shared memory systems available in modern multi-
core platforms. Moreover, it also does not take into account the network-aware
partitioning of communications across computing resources.

The MPDATA code has been recently re-written and optimized for execu-
tion on modern CPU and Intel co-processors based high-performance computing
platforms. The new C++ implementation proposed in [4] allows for more effi-
cient distribution of computational tasks on the available resources. It makes
use of the (3+1)D decomposition strategy for the stencils computation, that
transfers the data traffic from the main memory to cache hierarchy by proper
reusing of the cache memory. Additionally, to improve the computational effi-
ciency the algorithm groups the cores (threads) into independent work teams in
order to reduce inter-cache communication overheads due to the communications
between neighbouring threads/cores, and synchronizations.

2.2 Communication Optimization for Parallel Applications

Communication optimization is a very broad field that comprises a number of
different approaches. The goal of all such optimization approaches is to reduce
the overall runtime of the communication operations. Communication optimiza-
tion on heterogeneous HPC platform is comprehensively covered in [9], where
all the existing approaches were classified as performance or topology-aware.
The increasing complexity of HPC platforms has made topology awareness a
critical component of HPC application optimization. A number of topology-
aware approaches have been proposed in [10,11]. The main idea behind the

34 T. Malik et al.

topology-aware optimizations is to reduce communication traffic and contention
by taking into account the network topology so that most of the communi-
cation occurs between nearby processors. Whereas, in performance-aware opti-
mizations, network properties are reconstructed with performance measurements
by using communication benchmarks. This approach is used in the absence of
topology information.

Topology information has been used in developing a number of topology-
aware implementations of MPI collectives for optimal scheduling of messages on
heterogeneous HPC platforms [12–15]. In [12], the optimization of the MPICH
broadcast algorithm was proposed for efficient execution of broadcast on inter-
connected clusters. Interconnected clusters are presented as two-level communi-
cation graphs, inter- and intra-cluster ones. Clusters communicate via selected
nodes, coordinators, which form the inter-cluster communicator. Within a clus-
ter all nodes communicate with the cluster coordinator, forming the intra-cluster
communicator. This topology-aware implementation of broadcast algorithm aims
to minimize the amount of data sent over the slow wide-area links and results
in significant improvement.

Further performance improvement is realized in [13] and [16], where collec-
tive operations were optimized by adopting multilevel hierarchical heterogeneous
networks and Grid. Pipelining and offloading techniques were used to overlap
the inter- and intra-node communications in multi-core clusters. [11] has shown
that topology-aware collectives can be used to reduce the communication cost
on homogeneous supercomputers which have complex network topologies, like
BlueGene and Cray.

Many existing MPI applications can be executed efficiently on hierarchical
heterogeneous HPC platforms by using topology-aware collectives and does not
require to modify application source code. However, it is applicable to collective
operations only and does not affect the applications that are based on point-to-
point exchanges. In this case, the communication cost can be reduced by placing
frequently communicating tasks on physically nearby processors. This closeness
is application-specific and depends on the logical communication flow of the
application.

In [10,17], the problem of topology-aware optimization of point-to-point com-
munications is solved by introducing a graph, which represents the logical com-
munication flow of the application and is mapped onto the network topology.
[17] applied this approach to the mesh and graph virtual MPI topologies and
SMP clusters. In [10], it was applied to the mesh topology on BlueGene/L.

3 MPDATA on Clusters

One of the common methods for exploiting the multicore clusters is to employ
the hybrid programming model, that allows for efficient usage of the distributed
and shared memory hierarchies of these systems. This implies to combine dif-
ferent programming paradigms, such as MPI and OpenMP. Such a mixture is
successfully utilized for the MPDATA computation, where a single MPI rank is

Network-Aware Optimization of MPDATA 35

Fig. 1. Data flow between nodes for the MPDATA application: (a) 2D domain decom-
position between computing nodes: nij , nij+1, ..., (b) the communication pattern for
the horizontal direction, (c) the communication pattern for the vertical direction

assigned to every multicore node while OpenMP threads are employed to utilize
the multicore computational resources.

The 3D n×m× l MPDATA domain is firstly partitioned in two dimensions n
and m into equal sub-domains that are further one-to-one mapped to adequate
nodes of the homogeneous clusters. Every sub-domain of size nB × mB × l is
decomposed according to the (3+1)D decomposition proposed in our previous
works [4]. This strategy contributes to ease the main-memory and communica-
tions bounds, that characterize MPDATA, and to better exploit modern com-
putational resources such as cores and vector units.

Since the (3+1)D strategy allows for independent calculation of every sub-
domain for a single time step, the inter-node communications and synchroniza-
tion points have to take place only between subsequent time steps in order to
exchange the required partial outcomes. The exchanged data corresponds to
the halo regions determined by data dependencies of MPDATA computations.
These regions take place on the border of the MPDATA domain partitioning.
As a result, the data traffic is generated only between nodes that are mapped
onto adjacent sub-domains in both directions: vertical and horizontal. Figure 1
illustrates the data flow between nodes of MPDATA application.

After every time step each node has to send/receive in horizontal direction
the adequate halo regions to/from adjacent nodes placed on the left and right
sides (Fig. 1b). Since the necessary halo regions for this direction are periodically
placed in the main memory, each node exchanges nB data bar of size 1×jhalo×
l to the left node, and to the right one. Then, the same node is responsible
for sending/receiving in vertical direction the adequate halo regions to/from
adjacent nodes placed on the top and bottom sides (Fig. 1c). Transferred data
in this communication path is placed in the contiguous memory areas, thus this
node moves the data slices of size ihalo× (jhalo+mB + jhalo) × l to/from the
top and bottom nodes.

36 T. Malik et al.

4 Communication-Optimal Mapping Arrangement
for MPDATA

In this section, we first propose an extension of the network-bandwidth-based
cost function [1] to accurately measure the communication cost of the MPDATA
application. Then we formulate the heuristic solution that efficiently constructs
a near-optimal arrangement for MPDATA based on the extended cost func-
tion by using information about network topology and the application commu-
nication flow. This heuristic solution reduces the search space of sub-domain
arrangements and finds the one that minimizes the communication cost of the
MPDATA.

4.1 Cost Function Based on Asymmetric Bandwidth

In our previous work [1], we defined the cost function based on network band-
width. The main idea was to estimate the communication cost accurately by
using information about the network topology and the application communi-
cation flow. That cost function proved to work well with applications having
symmetric communication patterns. However, MPDATA has asymmetric com-
munication behavior, namely, even in the case of a homogeneous communication
layer the effective bandwidth of horizontal communications is higher than that of
the vertical ones. One of the reasons behind this phenomenon is that data com-
municated vertically is stored in a contiguous region of memory while the data
communicated horizontally is not. As a result, this cost function fails to accu-
rately characterize the communication cost of MPDATA. Therefore, we propose
to extend this bandwidth-based cost function to account for applications with
asymmetric communication patterns. The proposed extension characterizes the
communication time, using the asymmetric bandwidths properties. We call it a
cost function based on asymmetric bandwidth in the rest of the paper. The func-
tion takes into account two bandwidth values, one for horizontal communication
and the other is for vertical one. The problem of finding the communication-
optimal arrangement can be formulated as minimization of the sum of the hori-
zontal and vertical communication costs.

Assuming that the data is equally partitioned among the processors, so that
the size of each sub-domain is same, we define the asymmetric cost function for
horizontal communication as follows:

costH =
r∑

i=1

⎛

⎝h ×
c∑

j=1

1
bH(Qij , Qi,(j+1)%c)

⎞

⎠ , (1)

where i iterates over the rows and j iterates over the partitioned sub-domains in
each row. h is the height of a row (in bytes) that is same for each row because data
is equally partitioned. Function bH(X,Y) returns the horizontal bandwidth (in
bytes per second) between processors X and Y , and Qij designates the processor
holding the j-th sub-domain in row i. Thus, this cost function estimates the

Network-Aware Optimization of MPDATA 37

communication time in seconds. The inner sum represents sending a part of
the pivot column in a row. The outer sum represents the upper bound on the
communication time required to send the whole pivot column to all rows. We use
the upper bound because the bandwidth of some links may be divided between
multiple communications corresponding to different rows.

We define the asymmetric cost function for vertical communication in a sim-
ilar way:

costV =
c∑

j=1

(
w ×

r∑

i=1

1
bV (Qij , Qi,(j+1)%r

)
, (2)

Here j iterates over the columns, and i iterates over the partitioned sub-domains
in each column. w is the width of a column (in bytes) that is same for each col-
umn because data is equally partitioned. Function bV (X,Y) returns the vertical
bandwidth (in bytes per second) between processors X and Y .

The communication cost associated with arrangement A is represented by
two values (costH(A), costV (A)). The problem of finding the communication-
optimal arrangement can be formulated as minimization of their sum:

costH(A) + costV (A) → min . (3)

4.2 Heuristic Based on Asymmetric Bandwidth Cost Function

The heuristic algorithm using the asymmetric bandwidth cost function for esti-
mating the volume of communications is built on top of the bandwidth-based
heuristic presented in [1]. It assumes that the target platform consists of p
interconnected homogeneous processors. The processors are naturally parti-
tioned into a number of groups based on their communication proximity, which
reflects the two-level hierarchy of the communication layer. If processors x0,
x1, y0 and y1 belong to the same group then bH(x0, y0) = bH(x1, y1) and
bV (x0, y0) = bV (x1, y1).

The algorithm starts with any initial arrangement P1, P2, . . . , Pp of the
processors such that processors from the same group will follow one other in
this linear arrangement. Note, the orders naturally determined by application
configuration files typically satisfy this assumption. Alternatively, a simple clus-
tering algorithm guided by functions bH(x, y) and bV (x, y) can be applied to
re-order the original arrangement if it does not satisfy this assumption.

The algorithm then repeatedly executes the following two steps. The first
step finds the optimal two-dimensional arrangement of the processors, m × n,
which preserves their linear order as follows. For each factor pair r × c = p,
the processors are arranged column-wise and row-wise into r rows and c
columns forming arrangement A. The cost of these arrangements are esti-
mated as cost(P1, . . . , Pp, r, c) = costH(A) + costV (A), and the optimal pair
m × n is found as the one that minimizes this cost, cost(P1, . . . , Pp,m, n) =
min
r,c

cost(P1, . . . , Pp, r, c).

38 T. Malik et al.

The second step applies the bandwidth-based algorithm from [1] slightly
modified by the use of the asymmetric cost function to this 2D arrangement.
This step may changes the linear order of the processors within the arrangement
in order to reduce its communication cost while preserving the shape of the
arrangement, m × n. The reordering is guided by the 2D partitioning of the
computational domain induced by the 2D processor arrangement and uses the
fact that within each column of the domain, sub-domains held by processors
from the same group will also make a group of adjacent sub-domains. In brief,
we first try permutations of the groups in the first column and pick the one
that minimizes the vertical communication cost for this column. Then, for each
following column k = 2, . . . , n, we try permutations of the groups in this column
and pick the one that minimizes the sum of vertical and horizontal costs for first
k columns. This guarantees that while improving communications horizontally,
we will not deteriorate the vertical routes. Permutation of groups rather than
individual processors in a column will significantly reduce the solution space that
otherwise would be p!. Finally, we try all permutations of whole columns and
pick the one that minimizes the sum of horizontal and vertical communication
costs for the whole domain.

This step can change our original linear arrangement of the processors. If this
is the case, we will feed the new arrangement to the first step of next iteration
of our heuristic algorithm that will find the optimal m× n arrangement for this
new order. Then, this 2D arrangement will be re-arranged by the second step
of this iteration. This procedure continues until we find a fixed point of the
transformation performed by one iteration of the algorithm.

The presented iterative algorithm does not require to run the application
or any benchmarks to compare the communication cost of the application for
different arrangements. Instead, it uses information about the network topology
and the application communication flow. This heuristic is efficient for applica-
tions having 2D communication pattern on heterogeneous networks. Not only it
reduces unnecessary exchanges between the sub-networks but also employs the
fastest routes between them.

5 Experimental Results

In this section, we demonstrate that the communication performance of
MPDATA can be significantly improved due to optimization proposed by the
asymmetric bandwidth heuristic not only for heterogeneous but also for a per-
fectly homogeneous communication network.

We perform experiments on the Grid’5000 infrastructure, which is a large
scale distributed platform. It consists of a number of clusters distributed between
10 sites in France and connected via the Renater network. Each site hosts several
clusters of identical nodes. For our experiments, we choose two clusters, Grisou
and Grimoire, from the Nancy site and the other two, Paravance and Parasilo,
from the Rennes site. All clusters have identical Intel Xeon E5-2630 v3 processors
with 8 cores per node. To demonstrate performance gains, we first perform two

Network-Aware Optimization of MPDATA 39

types of experiments on interconnected clusters. These interconnected clusters
form a two-level hierarchy, with very heterogeneous inter-cluster links. Then, we
conduct experiments on a single fully homogeneous cluster, with homogeneous
processors and a homogeneous communication network. We have a priori infor-
mation about the network topology and asymmetric bandwidths of MPDATA.
We have tried ten different initial mappings as an input and our experiment
shows that all of these mappings converges to the optimal solutions have same
communication cost after applying asymmetric bandwidth heuristic. It has been
noted that there is more than one optimal solutions exist. However, the com-
munication cost and execution time of all optimal solutions are same. To make
sure the experimental results are reliable, the application is repeatedly executed
until the sample mean lies in the 95% confidence interval and a precision of 0.025
(2.5%) has been achieved and results follows the normal distribution. We also
make sure the nodes are fully reserved and dedicated to our experiments.

5.1 Inter-cluster Experiments

In these experiments, we use four clusters with 12 nodes in total: Grimoire(3),
Parasilo(4), Grisou(2), Paravance(3). We spawn one MPI process per node.
Because logical communication links of MPDATA has different bandwidths, we
have two bandwidth values for each link. Horizontal and vertical bandwidths are
shown in Table 1. MPDATA is configured with problem size 512 × 512 × 64.

Table 1. Horizontal/Vertical bandwidths of communicating links(GB/sec)

Grimoire Parasilo Grisou Paravance

Grimoire 0.03963/0.48068 0.00007/0.00056 0.03889/0.49341 0.00007/0.00056

Parasilo 0.00007/0.00056 0.03876/0.48858 0.00007/0.00056 0.03732/0.45943

Grisou 0.03889/0.49341 0.00007/0.00056 0.03834/0.48916 0.00007/0.00056

Paravance 0.00007/0.00056 0.03732/0.45943 0.00007/0.00056 0.03920/0.46808

0 100 200 300 400 500
0

100

200

300

400

500

Non-optimal Mapping

0 100 200 300 400 500
0

100

200

300

400

500

Mapping found by Asymmetric Bandwidth Heuristic

Grimoire
Parasilo
Grisou
Paravance

Fig. 2. One of the non-optimal mappings and the mapping returned by the asymmetric
bandwidth heuristic for the heterogeneous platform.

40 T. Malik et al.

Table 2. Inter-cluster experimental results

Nodes Cost Ratio Exec. time (sec) Ratio

Non-optimal Heuristic Non-optimal Heuristic

12 22424946 2143978 10.46 994.02 154.20 6.44

Figure 2 shows one of the considered default initial mappings and the opti-
mal mapping found by the asymmetric bandwidth heuristic. Table 2 shows the
communication cost of these mappings, calculated using the cost function, and
the measured total execution time of MPDATA. To find the optimal mapping,
the asymmetric bandwidth heuristic took 1.130000e-03 s. The mapping found
by the asymmetric bandwidth heuristic is more then 6 times faster then the
non-optimal case mapping.

5.2 Intra-cluster Experiments

We also perform experiments on a homogeneous multi-core cluster to check the
effect of asymmetric bandwidth of MPDATA on the communication performance
with a perfectly homogeneous network. We use 12 nodes from the Grisou cluster.
MPDATA is configured with problem size 512 × 512 × 64.

Figure 3 shows one of the non-optimal mappings and the mapping returned by
the asymmetric bandwidth heuristic. Table 3 shows the calculated communica-
tion cost of both mappings and the measured total execution time of MPDATA.
The mapping found by the asymmetric bandwidth heuristic is 3 times faster then
the non-optimal mapping. Asymmetric bandwidth heuristic took 3.730000e-04 s
to find this optimal mapping.

Non-optimal Mapping

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Mapping found by Asymmetric bandwidth Heuristic

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

Fig. 3. One of the non-optimal mappings and the mapping returned by the asymmetric
bandwidth heuristic for the fully homogeneous platform.

Network-Aware Optimization of MPDATA 41

Table 3. Intra-cluster experimental results

Nodes Cost Ratio Exec. time (sec) Ratio

Non-optimal Heuristic Non-optimal Heuristic

12 65658 18535 3.5 3.86 1.32 3.0

6 Conclusions

In this paper, we have applied an approach aimed to minimize the commu-
nication cost of a parallel CFD application using information about the net-
work topology/performance and application communication flow. We have also
demonstrated that the proposed solution provides significant performance gains.

References

1. Malik, T., Rychkov, V., Lastovetsky, A.: Network-aware optimization of commu-
nications for parallel matrix multiplication on hierarchical hpc platforms. Concur-
rency Comput. Pract. Experience 28, 02–821 (2016). cpe.3609

2. Wyrzykowski, R., Szustak, L., Rojek, K.: Parallelization of 2D MPDATA EULAG
algorithm on hybrid architectures with GPU accelerators. parallel Comput. 40,
425–447 (2014)

3. Wyrzykowski, R., Szustak, L., Rojek, K., Tomas, A.: Towards efficient decompo-
sition and parallelization of MPDATA on hybrid CPU-GPU cluster. In: Lirkov,
I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 457–464.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43880-0 52

4. Szustak, L., Rojek, K., Wyrzykowski, R., Gepner, P.: Toward efficient distribution
of mpdata stencil computation on intel mic architecture. In: Proceedings of the
1st International Workshop on High-Performance Stencil Computations, pp. 51–
56 (2014)

5. Beaumont, O., Boudet, V., Legrand, A., Rastello, F., Robert, Y.: Heteroge-
neous matrix-matrix multiplication or partitioning a square into rectangles: Np-
completeness and approximation algorithms. In: Proceedings of the Ninth Euromi-
cro Workshop on Parallel and Distributed Processing, pp. 298–305 (2001)

6. Lastovetsky, A., Dongarra, J.: High Performance Heterogeneous Computing. Wiley
(2009)

7. Smolarkiewicz, P.: Multidimensional positive definite advection transport algo-
rithm: an overview. Int. J. Numer. Meth. Fluids 50, 1123–1144 (2006)

8. Piotrowski, Z., Wyszogrodzki, A., Smolarkiewicz, P.: Towards petascale simulation
of atmospheric circulations with soundproof equations. Acta Geophys. 59, 1294–
1311 (2011)

9. Dichev, K., Lastovetsky, A.: Optimization of collective communication for hetero-
geneous hpc platforms. Wiley-Interscience (2013)

10. Agarwal, T., Sharma, A., Laxmikant, A., Kale, L.: Topology-aware task mapping
for reducing communication contention on large parallel machines. In: IPDPS 2006,
p. 10 (2006)

11. Solomonik, E., Bhatele, A., Demmel, J.: Improving communication performance
in dense linear algebra via topology aware collectives. In: SC 2011, pp. 77: 1–77:
11. ACM, New York (2011)

http://dx.doi.org/10.1007/978-3-662-43880-0_52

42 T. Malik et al.

12. Kielmann, T., Hofman, R.F., Bal, H.E., Plaat, A., Bhoedjang, R.A.: MagPIe: MPI’s
collective communication operations for clustered wide area systems. In: ACM
Sigplan Notices, vol. 34, pp. 131–140. ACM (1999)

13. Karonis, N., De Supinski, B., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.:
Exploiting hierarchy in parallel computer networks to optimize collective operation
performance. IPDPS 2000, 377–384 (2000)

14. Ma, T., Bosilca, G., Bouteiller, A., Dongarra, J.: HierKNEM: an adaptive frame-
work for kernel-assisted and topology-aware collective communications on many-
core clusters. In: IPDPS 2012, pp. 970–982 (2012)

15. Kandalla, K., Subramoni, H., Vishnu, A., Panda, D.K.: Designing topology-aware
collective communication algorithms for large scale infiniband clusters: case stud-
ies with scatter and gather. In: 2010 IEEE International Symposium on Parallel
Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1–8(2010)

16. Coti, C., Herault, T., Cappello, F.: MPI applications on grids: a topology aware
approach. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol.
5704, pp. 466–477. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3 45

17. Traff, J.: Implementing the MPI process topology mechanism. In: Supercomputing
2002, pp. 1–23 (2002)

http://dx.doi.org/10.1007/978-3-642-03869-3_45

Formalizing Data Locality in Task Parallel
Applications

Germán Ceballos(B), Erik Hagersten(B), and David Black-Schaffer(B)

Department of Information Technology, Uppsala University, Uppsala, Sweden
{german.ceballos,erik.hagersten,david.black-schaffer}@it.uu.se

Abstract. Task-based programming provides programmers with an
intuitive abstraction to express parallelism, and runtimes with the
flexibility to adapt the schedule and load-balancing to the hardware.
Although many profiling tools have been developed to understand these
characteristics, the interplay between task scheduling and data reuse in
the cache hierarchy has not been explored. These interactions are par-
ticularly intriguing due to the flexibility task-based runtimes have in
scheduling tasks, which may allow them to improve cache behavior.

This work presents StatTask, a novel statistical cache model that can
predict cache behavior for arbitrary task schedules and cache sizes from
a single execution, without programmer annotations. StatTask enables
fast and accurate modeling of data locality in task-based applications
for the first time. We demonstrate the potential of this new analysis
to scheduling by examining applications from the BOTS benchmarks
suite, and identifying several important opportunities for reuse-aware
scheduling.

Keywords: Task-based · Cache modeling · Performance model

1 Introduction

Multicore architectures bring new levels of performance, but at the cost of more
complex development and performance analysis, particularly with regards to
shared memory system resources, such as caches. Multicores have traditionally
been used with multi-program or thread-based workloads, and many tools exist
for analyzing their performance.

Recently, task-based programming has become popular as tasks are simple to
program and move the complexity of parallel scheduling and load balancing to a
runtime, instead of requiring explicit user-directed threading. As a result, task-
based programs can more easily take advantage of available resources. These
strengths have led to the development of many production-quality frameworks,
including OpenMP tasks [18], Intel’s TBB and StarPU [3].

This work was supported by the Swedish Foundation for Strategic Research project
FFL12-0051, the Swedish Research Council Linnaeus UPMARC centre of excellence.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 43–61, 2016.
DOI: 10.1007/978-3-319-49956-7 4

44 G. Ceballos et al.

Fig. 1. StatTask allows us to re-order profiled reuse pairs to obtain the profile for an
arbitrary schedule without having to execute and profile the schedule explicitly.

However, understanding performance of these systems has become harder due
to shared resources, demanding new analyses. Existing tools analyze scheduling
and load-balancing [10,16,19], but have largely ignored shared data reuse between
tasks. This is a substantial omission as data locality (through caches) is one of
the key factors for performance on today’s multicore processors. Understanding
the reuse of shared data between tasks is critical for optimizing cache locality
and memory behavior.

For serial or thread-based applications, there has been an extensive work on
characterizing data reuse, including instrumentation [20] and statistical modeling
[4,13]. However, these methods only provide insight into the memory behavior of
the observed execution of the program. Yet a key strength of task-based programs
is that they have great flexibility in how they schedule work (tasks), as they can
do better load balancing and parallelism exploitation. However, this affects the
actual data reuse.

This paper presents a novel statistical cache model (StatTask) that enables
analysis of cache behavior. The model captures the interaction of shared data
between (and within) tasks and is capable of estimating how data reuse and
locality is affected by scheduling. With this, it can predict cache behavior for
different execution schedules from the analysis of a single run.

Figure 1 illustrates the potential of having such a model. While typical statis-
tical cache modeling approaches would require one profiling phase per applica-
tion schedule, StatTask allows us to model any arbitrary schedule from a single
profiling run.

To understand the potential of task-based data reuse analysis, we first analyze
the overall data reuse in the BOTS task benchmark suite (Sect. 2). We then look
at sparseLU in detail, by connecting its reuse profile and schedule. With that
background, we introduce a detailed formal description of the underlying data
representation for statistical cache frameworks (Sect. 3), and our contributions
to handle tasks and schedules (Sect. 4). Finally we describe the details of our
implementation and analyze the results obtained when applying it to multiple
benchmarks of the BOTS suite with different input data sets and schedules
(Sect. 5). In addition, we discuss this work in relation to existing profiling tools
(Sect. 6), addressing future work and limitations.

Formalizing Data Locality in Task Parallel Applications 45

2 Motivation: Task Data Reuse

Optimizing a program for data reuse through the cache is essential for perfor-
mance on modern systems: cache latency is between 4 to 30 cycles, while main
memory can easily have a latency over 100 cycles. However, caches are much
smaller, so data placement has to be done carefully. For task-based programs,
data is initially brought into the cache by a task, and, if it is reused, it can either
be from the same task (private reuse) or by a later task (shared reuse). Tasks
that execute between tasks with shared reuses also bring data into the cache,
which may evict the shared data, thereby turning cache hits into misses, and
hurting performance.

Following this intuition, we classify accesses in task-based applications into
three types, depending on who originates the access, and whether they are in
the cache:

– DRAM Accesses: accesses that miss in the cache and must be brought in from
DRAM, such as the first accesses to data.

– Private Reuses: accesses to data previously loaded by the same task. These
will hit in the cache if it is large enough to hold the task’s entire data set.

– Shared Reuses: accesses to data previously loaded by another task. These will
hit in the cache if it is large enough to hold the data sets of both sharing tasks,
and the data is not evicted between the two tasks that share the reuse.

A scheduler that understands how its decisions affect the amount of shared
reuses that hit in the cache can intelligently make a trade-off between cache
behavior and other metrics. The potential for such optimizations varies across
applications (depending on the amount of shared reuses and the scheduling
flexibility) and architectures (depending on the sizes and configurations of the
caches). To illustrate this, we analyzed a range of task-based applications from
the BOTS benchmarks suite [11].

Fig. 2. Shared vs Private Reuses in the BOTS benchmarks. Shared reuses can help
performance if the tasks can be scheduled to ensure the data remains in the cache.

46 G. Ceballos et al.

Fig. 3. SparseLU Reuse Graph, showing inter- and intra-task accesses. (Color figure
online)

Figure 2 shows the breakdown of the accesses types. This data is schedule-
agnostic, and shows the maximum potential shared reuse across all tasks. The
benchmarks demonstrate significant diversity, with sort, fft, sparseLU and
nqueens exhibiting over 30% shared reuses on average, and floorplan reaching
nearly 80%. As the portion of shared reuses increases, the potential benefits of
scheduling to ensure that those reuses are present in the cache increases as well.

If we look more closely at the sparseLU benchmark, we can see that it has
a complex internal task structure, generating over 40.000 tasks when running
with default settings. A subset of the tasks are shown in Fig. 3. Each node is
a task instance with color indicating the type and its unique id inside. Edges
between tasks show the amount of shared data between them and self-edges the
amount of self reuses. Importantly, this reuse graph is a property inherent to the
application, and is independent of the execution.

Different execution orders will only affect how many of the shared reuses
become cache hits. The effect of this is shown in Fig. 4 which illustrates how
execution schedules can impact cache behavior.

The schedules SGOOD1 and SBAD1 are for single-core execution, while SGOOD2

and SBAD2 are for dual-core parallel execution. The black arrows show the shared
reuses that hit in the cache and the red arrows show cache misses when data
comes from main memory (DRAM).

Some DRAM accesses that could have been cache accesses with better sched-
ules are indicated with the red circles (A) and (B).

To analyze how schedules interact with the cache, we must specify the cache
size to know how much data it can hold. For this examples, we assume a 1MB

Formalizing Data Locality in Task Parallel Applications 47

Fig. 4. Different schedules for sparseLU: reuses that successfully hit in the cache are
shown as black arrows indicating the source of the reused data. Reuses that are not in
the cache due to poor scheduling are shown in red. (Color figure online)

private cache for each core. Note that in Fig. 3 the green tasks (2 through 36)
and the blue tasks (37 to 52) share data, but the red and green datasets are
independent from each other.

If we look at the bad single core schedule (SBAD1), task 1 will bring 1MB of
data from DRAM and store it in the cache. When it finishes, task 2 will reuse
all of task 1’s data from the cache and generate 1MB of output data that will
be stored in the cache. However, when task 37 is executed next according to the
schedule, it will bring 1MB of its own data into the cache, evicting all of task
2’s output data. When task 3 executes after task 37, it will not find task 2’s
output data in the cache, and will instead be forced to reload it from DRAM,
thereby evicting all of task 37’s data. This schedule is far from optimal as task
it evicts task 1’s output data from the cache that otherwise could have been
reused by task 3. SGOOD1 avoids these unnecessary cache evictions by executing
first tasks 2 through 36 and then 37 through 52, thereby maximizing the shared
reuses between tasks through the cache.

These two schedules have significantly different cache miss ratios due to the
execution order of the tasks. SBAD1 will miss approximately 1 K times between
tasks 1 and 52, while each task has around 12 K self reuses that will hit in
the cache, giving a miss ratio around 8.0%. SGOOD1 ’s better schedule, however,
results in a cache miss ratio of only 0.3%.

The optimization potential is even clearer for multicore execution. SBAD2

shows the analogous scenario for parallel execution across multiple cores with
private caches. SBAD2 executes the first schedulable task as soon as a core is
ready. While this approach helps load balance across cores, it provides poor
data locality, causing constant evictions and misses. SGOOD2 demonstrates a
better schedule that preserves locality by executing tasks locally to the core
that spawned them, and thereby reducing cache misses by 200x from 8% to
0.04%.

48 G. Ceballos et al.

This work presents a framework to understand these types of inter-task mem-
ory behavior formally for the first time. To do so, we leverage a range of low-
overhead statistical cache modeling techniques (StatCache [4] and StatStack [13])
to provide statistical cache inference with sparsely-sampled memory access pro-
files for predicting cache miss ratios. While these existing models provide insight
into memory reuse, they assume that the application execution order does not
change from how it was sampled, which makes them too inflexible for task-based
application analysis. Our new StatTask model addresses these shortcomings to
enable fast, accurate analysis of task-based applications.

3 Theoretical Background

Existing statistical cache models [4,5] model the execution of an application as a
sequence of memory accesses. Although this is a widely-used formalization, it is
not expressive enough to identify the tasks executing those memory accesses. To
address this, we present an extended representation, which models the execution
of an application as a sequence of tasks. This enables us to model different
schedules from one particular set of profiled data. To explain this representation,
we present the first formal description of existing statistical cache modeling and
extend it to support parallel tasks.

3.1 Sequential Memory Access Execution Model

For statistical cache models, the execution of an application P is captured as a
sequence of n memory accesses E = x1x2 . . . xn (the access trace of P). Formally,
a memory access x is an m-tuple x = (a, p1, . . . , pm−1) with a the memory
address accessed, and each pj a different property of the access. Many previous
works have used a 4-tuple x = (a, t, p, o) with t the time of the access, p the
instruction pointer and o the type of operation (read, write, read-write). We will
denote the address of an access xi with ai.

The set of accesses of an execution E will be given by AE =
⋃n

i=1{xi}. We
will assume that the applications are deterministic for the inputs, making this
set an inherent property (i.e. schedule and cache hierarchy independent). Note
that we evaluate this assumption’s effects for different inputs in Sect. 5.

3.2 Distances and Reuses

The access distance between two accesses xj and xk is given by δ(xj , xk) = |j−k|.
Intuitively, a memory address accessed throughout an execution is reused when
it is accessed several times. An address is reused within the cache only if there
are few enough unique accesses in between the reuse such that is not evicted
from the cache before it can be reused. The set of reuses for an execution E of
an application P will be denoted R̃E

P . If a reuse is consecutive, it implies that

Formalizing Data Locality in Task Parallel Applications 49

all addresses accessed in-between are different from the one being reused. The
subset of consecutive reuses is formally defined as

RE
P = {(xj , xk) ∈ R̃E

P | ∀xs ∈ E, k < s < j, as �= ak},

and it is the basic information used by existing statistical cache models to under-
stand locality properties of an application2. In this context, the reuse distance
will be the distance δRE of the consecutive reuses.

The global set of reuses of an application (R̃E) is almost execution-
independent: for any execution, the global set of reuses will be the same, except
for the order of the pairs (tuples). This property is expressed formally and proven
in the Appendix.

3.3 Task Execution Model

In task-based programming, applications are structured as small functional units
of code called task. Each of these units will define a different task type, and
during execution, many instances of each type may be spawned to operate on
different pieces of the data and submitted to a runtime system for scheduling.
Thus, from the runtime system’s point of view, an execution of a task-based
application P can be seen as a task-schedule (or a set of task-schedule, one per
core), which is a sequence of m task instances S = T1T2 . . . Tm.

Each task instance Ti has a type associated given by t(Ti). The set of all tasks
instances that appear when executing P will be denoted by TP . The number of
task types of P is commonly known as the task diversity of the application.

3.4 Equivalence Between Schedules and Memory Accesses

It is possible to show that both models (execution of an application as a sequence
memory accesses vs as a sequence of tasks) presented in Sects. 3.1 and 3.3 are
equivalent for the same schedule. That is, whether we track memory reuses via
tasks or as part of the application, the results are the same.

The equivalence becomes a key property for this work, as it enables the fol-
lowing feature: If we have the sequence of memory accesses E of a task-based
application, we can infer the schedule S, and therefore the respective execution
sequence for each task T in S, ET . Conversely, if we know the task-schedule
of an application and their execution sequences ET , we can infer the execution
sequence of the entire application. This enables us to compute the sequential
memory accesses for an arbitrary schedule, which allows us to use statistical
modeling to analyze cache behavior for arbitrary schedules from a single profil-
ing run.

To show this equivalence, we first show how to get a mapping from the
execution of a task Ti in a schedule S3 to a sequence of memory accesses

2 Note that these properties have never been formally described.
3 For a particular input data set.

50 G. Ceballos et al.

Fig. 5. Reuse Pairs: The same reuse pairs are shown for traditional sequential access
models and our new task-based model. Note how the reuses change as the tasks are
rescheduled between 5b and c.

ETi
= xTi

1 . . . xTi

li
with li the last memory access index of task i, ∀i. This is

done by defining the linear operator M which gives the sequence of memory
accesses per task by

M(Ti) = ETi
= xTi

1 . . . xTi

li
= [xTi

1 , xTi

li
] ∀i.

Then, we use this operator to obtain the memory access sequence of an applica-
tion P with schedule S = T1 . . . Tm by observing that

ES = M(S) = M(T1)M(T2) . . . M(Tm)

= ET1ET2 . . . ETm
= xT1

1 . . . xT1
l1

xT2
1 . . . xT2

l2
. . . xTm

1 . . . xTm

lm

By doing this, we have used the operator M to reconstruct the execution trace E
from the task-schedule S, which shows that if we have an arbitrary task schedule,
we can now reconstruct the sequential execution trace.

To complete the equivalence between both models, it is necessary to show the
counterpart, where from a memory access trace, the task schedule is inferred.
For this, it is necessary to know which task is executing each memory accesses.
To do so, the task information is saved along with each memory access. This
new definition allow us to prove the equivalence as shown in the Appendix.

Formalizing Data Locality in Task Parallel Applications 51

4 Statistical Cache Modeling with Task Support

4.1 Existing Statistical Cache Models

In this section we present the main contribution of this paper: a formal model
to predict cache behavior for different schedules from a single execution profile.
This model is a solid source of insight and analysis for data-locality related
bottlenecks that can leverage the performance of task-parallel applications. We
will do so by first introducing the theory behind existing statistical cache models
and its limitations for the task based applications, and then extend it to support
task-based programs.

Figure 5a shows how existing statistical cache models represent the mem-
ory accesses (execution) of a serial application, displaying reuses between mem-
ory accesses as arcs. For instance, (x1, xk+1) is a reuse with reuse distance
δR(x1, xk+1) = k.

To estimate an application’s miss ratio for different cache configurations,
cache models such as StatCache (more details in [4]) first looks at the reuse dis-
tance distribution by defining a reuse distance histogram with bins H(i) mapped
to the number of reuse pairs with distance i. Then a linear equation is solved for
the bins in H and a probability function which estimates the cache misses for
a fixed size cache with random replacement policy. The result is an estimation
for the application’s global miss ratio for a given cache size. The probability
function is tied to the replacement policy of the cache, its size and associativity.

Implementations of these techniques are fast and have a low-overhead for
data collection. Their performance is largely due to sparse data sampling and a
very fast modeling step that allows the miss ratio to be calculated for any cache
size quickly. Their input information is a (sampled) subset of the reuse pairs
in RE

P . Since time (instruction order) is also kept for each access, the distances
between accesses are straightforward to calculate, which makes it easy to build
the histogram H.

However, existing models assume that the order of the memory accesses is
the same for different sequential executions. In Fig. 4, it is shown that a change
in task scheduling can affect an application’s cache miss ratio. Figure 5b and c
show the effect on the reused data from a change in schedule, because different
task schedules lead to a different sequence of memory accesses.

The same memory access sequence from Fig. 5a is depicted in Fig. 5b, but
for a task-based program. Each box represents a task (A, B, C). In this case,
the distances between the pairs from A to B, (xA

1 , xB
1), are increased by C’s

accesses, which may evict some of task A’s thereby causing task B to miss in
the cache if it is not large enough. This displacement is shown as |M(C)|, which
is the length of the sequence of accesses of task C.

Formally, each task-schedule S generates a particular memory access
sequence ES , and therefore a different set of consecutive reuses RES . These
define a particular schedule-dependent reuse distance operator δRES . Reuse dis-
tances, and consequently their distributions H, are now dependent on the sched-
ule chosen.

52 G. Ceballos et al.

Existing statistical cache models do not take this into account: two differ-
ent schedules will be considered as two different applications giving misleading
information about the application’s data locality and preventing the analysis of
schedules that have not been profiled.

4.2 The StatTask Model

Figure 1 compares traditional statistical cache modeling and the StatTask model.
It shows how the StatTask model can use a single profiling run to re-order the
reuse pairs, generating the memory access stream that would have been seen in
the execution of another schedule. From these new reuse pairs, existing statistical
cache models can be used without having to re-profile the actual execution.

To estimate the miss ratio under an arbitrary schedule S for a task-based
program P , existing statistical cache models require a profiling execution such
that RES is captured. If we are interested in modeling a different schedule,
S′, the same process needs to be repeated increasing the overhead significantly.
StatTask allows us to evaluate arbitrary schedules S′ from a profile of schedule
S by:

1. Profiling the execution of any particular task-schedule S, and saving the
information about consecutive reuses.

2. Calculating the reuse distances for each reuse pair.
3. Rebuilding the set of reuses that would have appeared if another schedule S′

would have been executed, based on the already profiled reuse pairs.
4. Calculating the reuses distances of the new reuse pairs for S′, which can

then be used with existing statistical cache models to estimate miss ratio of
different schedules and cache sizes

4.3 Methodology of the StatTask Model

To show how the model works, we first analyze how different types of reuses
change as we change the task schedule. As mentioned in Sect. 2 reuses can be
private or shared. When the schedule changes, the distances of private reuses
are offset relatively to the start of the task. This means that the reuse distance
of private reuses is the same across all execution schedules, as the task schedule
does not change the sequence of accesses within the task. An example of this is
shown in Figs. 5b and c with (xC

1 , xC
l3

). On the other hand, shared reuse distances
may change with the schedule, as happens in the same figures with (xA

1 , xB
1).

In order to classify reuses as private or shared, we will use the task property
(T) of the memory accesses. These identifiers enable the characterization of the
reuse pairs (xj , xk). If a reuse is private, then both accesses xj and xk will be
generated by the same task, thus making T (xj) = T (xk). Otherwise it is a shared
reuse. This classification is used to calculate the set of reuses of a new schedule
without executing it.

Formalizing Data Locality in Task Parallel Applications 53

Calculating the Reuse Pairs. This section shows how the reuse pairs are
generated for a new schedule S′ = T1 . . . Tm1 . From the information we already
have from profiling schedule S, we can make the following observations about
what we expect under the schedule S′:

1. The private reuses of each task in S will appear unmodified in S′, since they
are relatively offset and not affected.

2. Some shared reuses between different tasks T and T ′ that appear in schedule
S, can also appear when executing S′.

3. Some shared reuses between different tasks T and T ′ may appear in S′, but
were not captured in the profile of S. These need to be created from the global
set of reuses of the application.

Formally, StatTask defines a particular set Q, and it is proven that this set
is actually the set of reuses that will be observed if the new schedule is executed
(i.e. Q = RES′ , proof in the Appendix).

The definition of Q is based on several smaller sets, as follows, where for each
T, T ′ ∈ TP we have:

QT,T = (T → T)S
QT,T ′ = {(xk, xj) ∈ CS(T, T ′) | ∀Tq ∈ S′ : T (xk) < Tq < T (xj) ⇒ aj /∈ a(Tq)}

Q =
⋃

∀T,T ′∈S′
QT,T ′ .

(T → T)S denotes the set of private reuse pairs of task T in schedule S and C
denotes the transitive closure operator.

Calculating the Reuse Distances. Finally, we show how to predict the reuse
distances of schedule S′ from the distances profiled from schedule S. We expect
the following from the distances of the reuses in S′: In a private reuse, its distance
is the same in any schedule. However, shared reuses can either carry over to the
new schedule S′ (kept from the profiled execution) or appear/disappear due to
the new schedule via StatTask’s analysis.

If the reuse pair is carried over, computing the reuse distance in the new
schedule must account (add or subtract) for the number of independent memory
access corresponding to each task in-between the new schedule. On the other
hand, if the reuse pair is generated transitively by StatTask, its reuse distance
is computed in terms of all the distances for the pairs used to obtain the reuse.

Formally, StatTask defines a function γ over the reuses for the new schedule
S′, and we prove that this function is in fact the reuse distance function that
would be observed if S′ is executed (i.e. γ = δRE

S′ , proof in the Appendix).
The function γ is given by

(xj , xk) ∈ (T → T)S′ ⇒ γ(xj , xk) = δRES (xj , xk).
(xj , xk) ∈ (T → T ′)S′ ⇒ γ(xj , xk) = δR̃ES (xj , xk) − νS(T, T ′) + νS′(T, T ′).

The operator νS , when applied to two tasks, will give the number of accesses of
the tasks exactly between T and T ′ in schedule S (δR̃ over a pair (xj , xk) gives
the distance within the set of global reuses).

54 G. Ceballos et al.

StatTask opens the door to a new category of tools and predictive analyses,
as metrics such as cache miss ratios for arbitrary cache sizes can be obtained for
arbitrary task schedules, without additional profiling and execution.

5 Evaluation

To evaluate StatTask, we implemented it using the Pin [17] binary instrumen-
tation tool to profile applications, and compared StatTask’s ability to predict
cache miss ratios for different schedules across the BOTS benchmark suite. Our
tool generates a profile by sampling 1/1000 of the memory accesses (randomly
selected, exponentially distributed) and collecting the corresponding address,
reuse distance, task id, program counter, and instruction count. Our sampling
approach follows the one described in [4], yielding a 20% sampling overhead. By
using Pin for dynamic binary instrumentation we avoid the need to modify the
applications’ source code, being transparent to the programmer and runtime,
and enabling the same methodology to be applied in other task-based frame-
works such as StarPU, Intel’s Cilk, Intel’s TBB and OmpSs. Despite the data
collection is done in a single threaded execution, StatTask allows to model multi-
core executions based on the per-task reuses. The resulting profile is consistent
with both formalisms presented in Sects. 3.1 and 3.3.

After profiling, the StatTask model is run with the desired schedule and cache
size as inputs. StatTask rebuilds the reuse pairs and their reuse distances accord-
ing to the desired schedule, and uses this information to calculate the cache miss
ratio for the given cache size with the StatStack [13] statistical model. Reference
results are obtained by measuring the L3 miss ratio via hardware performance
counters for a single-threaded execution of the specific schedule on a machine
with the modeled cache size. To avoid calculating expensive transitive closures
(Sect. 4.3), we implemented reuse unfolding, wherein the reuses are annotated
with starting and ending accesses in a time-ordered table for rapid analysis.

Figure 6 shows StatTask’s accuracy across the BOTS benchmarks for different
schedules and input sizes. Each benchmark was sampled when run with multiple
different schedules (S1, S2, S3) and we present results for StatTask’s prediction
for the same schedules compared to measured results for each schedule.

StatTask’s modeled cache miss ratios (dark green bars) show an 8,7% average
error (max 19%) with respect to the measured cache miss ratios (light green
bars). The inaccuracies are a result of our 1-in-1000 memory access sampling
rate, and can be reduced by increasing the sampling rate at a cost of increased
overhead. These results demonstrate that StatTask is able to accurately predict
the cache miss ratio for a variety of schedules.

To evaluate StatTask’s ability to model arbitrary schedules from a single
input, we gathered profile data for schedules S1 and S2 and used StatTask to
predict for all possible combinations: S1→S1, S1→S2, S2→S1, S2→S2. Figure 7
shows StatTask’s accuracy across these different schedule/modeling combina-
tions, and demonstrates that StatTask can accurately predict the miss ratio for
schedules other than the one used in sampling.

Formalizing Data Locality in Task Parallel Applications 55

Fig. 6. Comparison of measured cache miss ratios (light) against StatTask’s predictions
(dark), for two arbitrary schedules (S1 and S) for each of the BOTS benchmarks. (Color
figure online)

To evaluate StatTask’s sensitivity to changes in input data, we compared sev-
eral of the benchmarks (sparselu, strassen, sort, floorplan, nqueens) with
varying inputs: three different small and large datasets (blue bars) across mul-
tiple schedules1. Figure 8 shows that several of the benchmarks see little change
in behavior with varying input data, as the per-task execution and the over-
all distribution of tasks varies little with the input data. For these applications
StatTask can accurately predict schedule behavior even in the presence of data
set changes.

However, several applications show large changes in cache miss behavior
as the size of their data sets change. Figure 6 highlights how the behavior of
floorplan and nqueens changes as their data set sizes are increased by 4× and
3×, respectively, resulting in 40× and 120× increases in execution time. The

1 The sizes of the inputs were all within 5%.

56 G. Ceballos et al.

Fig. 7. Using StatTask to model different schedules from the same profiled data. (e.g.,
S1→S1, S1→S2, S2→S1, S2→S2) (Color figure online)

resulting change in cache behavior is due to the increase in locality from larger
problem sizes, as they spend more time working on each part of the data, result-
ing in more cache hits. StatTask could be adapted to handle such drastic changes
in behavior by incorporating a dynamic profiling phase and extrapolating the
modeled data to fit dynamically profiled data.

Our implementation and evaluation of StatTask across the BOTS bench-
marks demonstrates that this technique is both capable accurately predicting
the cache behavior of task-based programs and flexible enough to predict the
behavior of different schedules from the originally profiled one.

6 Related Work

There are three categories of related work: existing profiling tools that identify
bottlenecks of task-based applications, task-scheduling optimization techniques,
and finally techniques to analyze and understand data locality properties of
applications.

Many tools exist to profile scheduling and load-balancing of tasks. Ding et al.
[10] presented a generic and accessible tool for task monitoring, independent of
any program or library and able to acquire rich information with very low over-
head, targeting load balancing and scheduling problems unrelated to data reuse.
Lorenz et al. developed [16], a library for identifying performance problems inher-
ent to tasking with OpenMP through direct instrumentation. Schmidl et al. [19]

Formalizing Data Locality in Task Parallel Applications 57

Fig. 8. Sensitivity to different input data sets of the same size.

surveyed different techniques to analyze data delivered by instrumentation of task-
based programs in order to integrate parallel performance modeling to the automa-
tion of load-balancing. Ghosh et al. [14] have proposed OpenMP extensions to sup-
port dependence-based synchronization; Brinkmann et al. presented a graphical
debugging tool for task parallel programming that works with most of the produc-
tion frameworks. Weng and Chapman [21] looked at the task graph for OpenMP
applications to optimize load balance.

In the second category, work has been done on improving scheduling strate-
gies. The standard work-stealing approach was carefully analyzed by Blumofe
and Leiserson in [7] and [2]. Strategies accounting for the tasks types were pre-
sented by Wimmer et al. Recently, important work on cache-aware task stealing
was carried out in [9] by Chen et al. Qian Cao et al. [8] proposed a hybrid
scheduling policy for heterogeneous multicores using breadth-first over the avail-
able task-pool.

None of these approaches for task-based profiling have incorporated a general
method for understanding the data reuse implications of the tasks and schedules.
In this category, characterization of data reuse has been done theoretically in [1]
by Frigo. Practically, this can be done through instrumentation based techniques
as presented by Aamer et al. in [15] and Weidendorfer in [20].

Statistical cache modeling, first introduced in [4], is another widely used
way to characterize data locality. This work has been extended to other cache
replacement policies by Eklov in [13], and to support thread-based or multicore
shared caches in [6,12].

7 Conclusion and Future Work

This work addresses the interplay between task scheduling and shared data reuse
through caches. We have presented StatTask, a new statistical model that can
sample a single, serial run of a task-based application build reuse graphs, reuse
sets, and distance metrics. From these, StatTask can accurately predict cache
behavior for arbitrary schedules of the tasks and cache sizes on multicore parallel
systems. We have implemented a tool, which requires no programmer annota-
tion, code or runtime changes, analyzed a range of benchmarks and shown that

58 G. Ceballos et al.

there is a potential to share an average of 35% of the memory accesses between
tasks (up to 80%), while demonstrated how this analysis can be used to better
understand the sharing characteristics.

With StatTask we have a new ability to rapidly explore the impact of task
scheduling on cache behavior, which opens up a range of possibilities for intelli-
gent, reuse-aware schedulers and better performance.

We see several ways to move forward, the main one being to incorporate this
technique within a task runtime system to profile the applications and tasks
being executed, create profiles, and use this information during future runs to
identify reuse patterns, predict miss ratios and modify task placement.

Regarding tools to analyze data reuse and provide insight to developers, sev-
eral optimizations can be done to achieve better analysis modeling performance,
as well as more intelligent sampling by, for instance, phase-guided sampling to
avoid collecting redundant information for private reuses while getting more
dense samples on shared ones.

A Appendix: Proofs

Lemma. Let E and E′ be execution traces such that they share the exact same
set of accesses, but in different order. Then

(xj , xk) ∈ R̃E ⇒ (xj , xk) ∈ R̃E′ ∨ (xk, xj) ∈ R̃E′
.

Proof. Let (xj , xk) be an element of R̃E . By definition, aj = ak. Since E and
E′ share the same set of accesses, there exist x0 and x1 in E′ such that xj = x0

and xk = x1. Lets assume x0 < x1, since aj = ak then (x0, x1) ∈ R̃E′
. If x1 < x0

then (x0, x1) ∈ R̃E′

Lemma. M−1 and M are inverses.

Proof. Let T be a task, such that ET = x1 . . . xr. We can see that

M(M−1(x1 . . . xr)) = M(T (x1)) = M(T) = ET = x1 . . . xr

Conversely,

M−1(M(T)) = M−1(ET) = M−1(x1 . . . xr) = T (x1) = T

Theorem. Q = RES′

Proof. It is straightforward to prove that Q ⊆ RES′ . It is enough to observe that
CS(T, T ′) gives al the pairs in R̃ES that start in T and end in T ′. Since this set
is execution independent, those pairs are also in R̃E′

S . The condition ∀Tq ∈ S′

such that T (xk) < Tq < T (xj) ⇒ aj /∈ a(Tq) filters out the non-consecutive
reuses. Therefore, all the elements of Q are consecutive reuses.

Formalizing Data Locality in Task Parallel Applications 59

We will now show an outline for the proof that RES′ ⊆ Q. If (xj , xj+d) ∈
(T0 → T0)S′ , then T (xj) = T (xj+d) = T0. As S and S′ use the same task
universe, ∃Tr ∈ S such that TS

0 = TS′
r . By Lemma 1, ET0 = ETr

. Therefore,
∃xp ∈ ETr

such that xp = xj and xp+d = xj+d, as private reuses are relatively
offset. Then (xj , xj+d) ∈ (Tr → Tr)S ∈ QTr,Tr

⊆ Q.
Let’s now consider the case (xj , xj+d) ∈ (Tn → Tm)S′ . The tasks Tn and

Tm also occur in S. We will assume that Tn < Tm. Let T1, . . . , Tk such that
Tn < T1 < · · · < Tk < Tm. The proof is by induction on k.

When k = 0, then the sequence TnTm occur in S. Therefore, it exists xr in
ES such [xj , xj + d] = [xr, xr + d]. Since xr = xj and (xj , xj+d) ∈ RES′ , we
know that ∀xr < xs < xr+d, ar �= as. Therefore (xj , xj+d) = (xr, xr+d) ∈ (Tn →
Tm)0 ⊆ QTn,Tm ⊆ Q.

When k = 1, then TnTn+1Tm ∈ S. Lets assume that a(Tn+1) �= a(Tn), thus,
∀xs such that xj < xs < xj + d ⇒ as �= aj . Therefore (xj , xj+d) ∈ (Tn → Tm) ⊆
QTn,Tm

.
If that does not happen, it is enough to assume that there are unique

x1, . . . , xq such that xj < x1 < · · · < xq < xj+d and that aj = a1 = · · · =
aq = aj+d, with all the accesses in between with different addresses. This means
that the pairs (xj , x1), (x1, x2), . . . , (xq, xj+d) are elements of RES . Therefore,
by definition of C, this means that (xj , xj+d) ∈ C(Tn, Tm) ⊆ QTn,Tm

⊆ Q.
The final case is k ⇒ k+1. Let TnT1 . . . Tk+1Tm ∈ S. Two cases are necessary

to prove. The first one, where the set of addresses are of tasks T1, . . . , Tk are
disjoint from Tn, Tm. If that happens, then the only thing left to check is the set
of addresses of Tk, which is analogous to the case k = 1 for Tk+1. Otherwise, a
unique number of accesses with the same address appear in T1, . . . , Tk, which by
inductive hypothesis can be used transitively to obtain a pair in Q.

The proof for when Tm < Tn is analogous.

Theorem. γ = δRE
S′

Proof. Let (xj , xk) ∈ RES′ , and let Txj
= T (xj) and Txk

= T (xk). Let
Tn1 , . . . , Tnr

be such that Txj
Tn1 . . . Tnr

Txk
∈ S′. These are the tasks sched-

uled between the starting and ending tasks causing the reuse in S′. Lets also
assume Tm1 , . . . , Tms

such that Txj
Tm1 . . . Tms

Txk
∈ S, thus representing the

tasks between the starting and ending tasks of the reuse in S. It is easy to see
the following memory access sequence when S′ is executed:

xj . . . x
Txj

l x
Tn1
1 . . . x

Tn1
l . . . x

Tnr
1 . . . x

Tnr
l x

Txk
1 . . . xk = xj . . . x

Txj

l ETn1
. . . ETnr

x
Txk
1 . . . xk.

Therefore, the since the access distance is linear, we can see that

δRE
S′ (xj , xk) = δR̃E

S′ (xj , x
Txj

l) + |ETn1
| + · · · + |ETnr

| + δR̃E
S′ (x

Txk
1 , xk)

= δR̃E
S′ (xj , x

Txj

l) + |M(Tn1)| + · · · + |M(Tnr
)| + δR̃E

S′ (x
Txk
1 , xk)

= δR̃E
S′ (xj , x

Txj

l) + νS′(Txj
, Txk) + δR̃E

S′ (x
Txk
1 , xk)

60 G. Ceballos et al.

On the other hand, we can also see the following sequence when S is executed:

xj . . . x
Txj

l x
Tm1
1 . . . x

Tm1
l . . . x

Tms
1 . . . x

Tms

l x
Txk
1 . . . xk,

analogously, see that δRES (xj , xk) = δR̃ES (xj , x
Txj

l) + νS(Txj
, Txk

) +

δR̃ES (x
Txk
1 , xk), and therefore, δRES (xj , x

Txj

l)+δR̃ES (x
Txk
1 , xk) = δR̃ES (xj , xk)−

νS(Txj
, Txk

). Since the sequence xj . . . x
Txj

l is identical both in ES and ES′ then

δR̃ES (xj , x
Txj

l) = δR̃E
S′ (xj , x

Txj

l). The same holds for x
Txk
1 . . . xk. Then,

δRE
S′ (xj , xk) = δR̃E

S′ (xj , x
Txj

l) + νS′(Txj
, Txk) + δR̃E

S′ (x
Txk
1 , xk)

= δR̃E
S′ (xj , x

Txj

l) + δR̃E
S′ (x

Txk
1 , xk) + νS′(Txj

, Txk)
= δR̃ES (xj , xk) − νS(Txj

, Txk
) + νS′(Txj

, Txk
)

= γ(xj , xk)

References

1. The cache complexity of multithreaded cache oblivious algorithms. Theory of Com-
puting Systems 45(2) (2009)

2. Acar, U., Blelloch, G., Blumofe, R.: The data locality of work stealing. Theory
Comput. Syst. 35(3), 321–347 (2002)

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exper. 23(2), 187–198 (2011)

4. Berg, E., Hagersten, E.: Statcache: a probabilistic approach to efficient and accu-
rate data locality analysis. In: Proceedings of the 2004 IEEE International Sym-
posium on Performance Analysis of Systems and Software (2004)

5. Berg, E., Hagersten, E.: Fast data-locality profiling of native execution. SIGMET-
RICS Perform. Eval. Rev. 33(1), 169–180 (2005)

6. Berg, E., Zeffer, H., Hagersten, E.: A statistical multiprocessor cache model. In:
IEEE International Symposium on Performance Analysis of Systems and Software,
pp. 89–99, March 2006

7. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5), 720–748 (1999)

8. Cao, Q., Zuo, M.: A scheduling strategy supporting OpenMP task on heteroge-
neous multicore. In: 26th IEEE International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, IPDPS 2012, Shanghai, China, 21–25 May
2012, pp. 2077–2084 (2012)

9. Chen, Q., Guo, M., Huang, Z.: Cats: cache aware task-stealing based on online
profiling in multi-socket multi-core architectures. In: Proceedings of the 26th ACM
International Conference on Supercomputing, ICS 2012, pp. 163–172 (2012)

10. Ding, Y., Hu, K., Zhao, Z.: Performance monitoring and analysis of task-based
OpenMP (2013)

11. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism in
OpenMP. In: International Conference on Parallel Processing, ICPP 2009, pp. 124–
131, September 2009

Formalizing Data Locality in Task Parallel Applications 61

12. Eklov, D., Black-Schaffer, D., Hagersten, E.: StatCC: a statistical cache contention
model. In: Proceedings of the 19th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT 2010, pp. 551–552 (2010)

13. Eklöv, D., Hagersten, E.: StatStack: efficient modeling of LRU caches. In: Proceed-
ing International Symposium on Performance Analysis of Systems and Software:
ISPASS 2010, pp. 55–65. IEEE (2010)

14. Ghosh, P., Yan, Y., Eachempati, D., Chapman, B.: A prototype implementation
of OpenMP task dependency support. In: Rendell, A.P., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2013. LNCS, vol. 8122, pp. 128–140. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40698-0 10

15. Jaleel, A., Cohn, R.S., keung Luk, C., Jacob, B.: Cmp$im: a pin-based on-the-
fly multi-core cache simulator. In: The Fourth Annual Workshop on Modeling,
Benchmarking and Simulation (MoBS), Co-located with ISCA 2008 (2008)

16. Lorenz, D., Philippen, P., Schmidl, D., Wolf, F.: Profiling of OpenMP tasks
with Score-P. In: 41st International Conference on Parallel Processing Workshops,
ICPPW 2012, Pittsburgh, PA, USA, 10–13 September 2012, pp. 444–453 (2012)

17. Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200
(2005)

18. OpenMP Architecture Review Board. OpenMP application program interface ver-
sion 3.0 (2008)

19. Schmidl, D., Philippen, P., Lorenz, D., Rössel, C., Geimer, M., Mey, D., Mohr,
B., Wolf, F.: Performance analysis techniques for task-based OpenMP applica-
tions. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 196–209. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 15

20. Weidendorfer, J., Kowarschik, M., Trinitis, C.: A tool suite for simulation based
analysis of memory access behavior. In: Bubak, M., Albada, G.D., Sloot, P.M.A.,
Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 440–447. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24688-6 58

21. Weng, T., Chapman, B.: Towards optimisation of openmp codes for synchronisa-
tion and data reuse. Int. J. High Perform. Comput. Netw. 1(1–3), 43–54 (2004)

http://dx.doi.org/10.1007/978-3-642-40698-0_10
http://dx.doi.org/10.1007/978-3-642-30961-8_15
http://dx.doi.org/10.1007/978-3-642-30961-8_15
http://dx.doi.org/10.1007/978-3-540-24688-6_58

Improving the Energy Efficiency of Evolutionary
Multi-objective Algorithms

J.J. Moreno1, G. Ortega1(B), E. Filatovas2, J.A. Mart́ınez1, and E.M. Garzón1

1 Informatics Department, University of Almeŕıa, Agrifood Campus of Int. Excell.,
ceiA3, 04120 Almeŕıa, Spain

jrm069@inlumine.ual.es, {gloriaortega,jmartine,gmartin}@ual.es
2 Institute of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania

Ernest.Filatov@gmail.com

Abstract. Problems for which many objective functions have to be
simultaneously optimized can be easily found in many fields of science
and industry. Solving this kind of problems in a reasonable amount of
time while taking into account the energy efficiency is still a relevant task.
Most of the evolutionary multi-objective optimization algorithms based
on parallel computing are focused only on performance. In this paper,
we propose a parallel implementation of the most time consuming parts
of the Evolutionary Multi-Objective algorithms with major attention to
energy consumption. Specifically, we focus on the most computationally
expensive part of the state-of-the-art evolutionary NSGA-II algorithm –
the Non-Dominated Sorting (NDS) procedure. GPU platforms have been
considered due to their high acceleration capacity and energy efficiency.
A new version of NDS procedure is proposed (referred to as EFNDS).
A made-to-measure data structure to store the dominance information
has been designed to take advantage of the GPU architecture. NSGA-
II based on EFNDS is comparatively evaluated with another state-of-art
GPU version, and also with a widely used sequential version. In the eval-
uation we adopt a benchmark that is scalable in the number of objectives
as well as decision variables (the DTLZ test suite) using a large num-
ber of individuals (from 500 up to 30000). The results clearly indicate
that our proposal achieves the best performance and energy efficiency
for solving large scale multi-objective optimization problems on GPU.

1 Introduction

Many real-world problems attempt to satisfy multiple conflicting objectives at
once. It is obviously impossible to find a single optimal solution which would

This work has been partially supported by the Spanish Ministry of Science
throughout projects TIN2015-66680 and CAPAP-H5 network TIN2014-53522, by
J. Andalućıa through projects P12-TIC-301 and P11-TIC7176, and by the Euro-
pean Regional Development Fund (ERDF). Ernestas Filatovas has been partially
granted by the European COST Action IC1305: Network for sustainable Ultrascale
computing (NESUS).

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 62–75, 2016.
DOI: 10.1007/978-3-319-49956-7 5

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 63

be the best by all objectives. The main goal of Multi-Objective Optimization
(MOO) is to provide the set of compromising solutions called Pareto set. How-
ever, for some problems it is impossible to identify the exact Pareto front due
to reasons such as continuity of the front, non-existence of analytical expression
or complexity of the problem being solved. On the other hand, in many real-
world applications there is no need to find the whole Pareto front, but rather an
approximation.

The most popular approach to solve MOO problems is Evolutionary Multi-
Objective Optimization (EMO). Some well-known EMO algorithms to approxi-
mate the Pareto front are: NSGA-II [4], PAES [18], MOAE/D [30], IBEA [32],
SPEA2 [33], etc. Several phases can be identified in most of them: evaluation
of an objective function; Pareto dominance ranking, or Non Dominated Sorting
(NDS) and genetic operations. Examples of EMO approaches based on Pareto
dominance ranking are: PESA-II [2], NSGA-II [4], R-NSGA-II [5], Synchronous
R-NSGA-II [11], etc. Usually, the computational requirements of the EMO algo-
rithms are very relevant. Therefore, their High Performance implementations are
of great interest.

Nowadays, processors usually include accelerators such as Graphics Process-
ing Units (GPUs), that provide a considerable computational power to the desk-
top, laptop and mobile platforms [14]. They are referred to as heterogeneous
platforms. GPUs are widely used in the High Performance Computing (HPC)
field due to their performance/cost ratio. In the last few years, the use of GPUs
in general purpose applications has greatly increased thanks to the availability
of application programming interfaces, such as Compute Unified Device Archi-
tecture (CUDA)1 and OpenCL [24]. GPUs have hundreds of cores that can col-
lectively run thousands of computing GPU-threads. Previous works have shown
the high energy efficiency of the GPU platforms for software when they are
appropriately exploited [15].

In this work, NSGA-II is taken as an example of EMO algorithm to be
adapted and evaluated on modern heterogeneous platforms. Some parallel ver-
sions of NSGA-II have been developed: in [7–9] parallel versions of NSGA-II
algorithm based on master-slave paradigm are presented, where population is
distributed among the workers in order to speed-up the process of functions
evaluation; in [19] several parallel strategies where the Pareto ranking is par-
allelized in NSGA-II are proposed, and are experimentally investigated when
solving the competitive facility location problem in [20].

Usually, the cost of the evaluation of the objective function in EMO
approaches is not very high in the sense of computation time. Hence, most of
the computation time is spent on the NDS phase. The procedure referred to as
‘Fast Non-Dominated Sorting’ was proposed by Deb et al. in [4] to compute it.
In such proposal, the dominance information of every individual consists of: the
number of dominator individuals, the number and the list of dominated indi-
viduals. Then, the Pareto dominance ranking is computed from this dominance
information. If N is the number of individuals of the population and M the

1 https://developer.nvidia.com/cuda-toolkit.

https://developer.nvidia.com/cuda-toolkit

64 J.J. Moreno et al.

number of objectives, then, the complexity order of this process is O(MN2) and
it requires a storage of O(N2). Previous proposals of NDS have a high complex-
ity O(MN3), and a high number of redundant comparisons between pairs of
individuals, but as a counterpart their storage requirements grow up as O(N).
The reduction of the complexity order of the NDS has been a focus of interest for
researchers [10,17,21,28,31]. Some improvements were implemented by develop-
ing more efficient sorting strategies, however, computational burden of the NDS
procedure has a complexity O(MN2) in the worst case for all the approaches.
Summarizing, two kinds of approaches to compute NDS can be distinguished:
FNDS with a previous dominance computation which has few redundant com-
parisons and an intensive memory use; and NDS with redundant comparisons
to evaluate the dominance without additional memory requirements.

Due to the fact that NDS consumes most of the NSGA-II runtime, the accel-
eration of this procedure is mandatory to speed up NSGA-II, as it is justified
in [12,23,27,29]. Thus, parallel strategies should be considered to accelerate
the computation of the procedure. Recently, a novel NSGA-II parallel imple-
mentation on a GPU, which is focused on the FNDS procedure, has been pro-
posed in [12]. The NDS version of complexity O(MN3) is accelerated on GPU
with every thread computing the dominance of every individual without writ-
ing in auxiliary structures. Therefore, it is a parallel NDS version on GPU with
more redundant dominance comparisons (hereinafter this version is referred to
as Gupta-NDS). Moreover, an efficient parallel version of the FNDS procedure
has been formally presented in [29], but its experimental analysis is very limited.
Both works are very related to our proposal, since it is based on the acceleration
of the NDS procedure on GPU platforms. However, none of them consider and
evaluate the energy efficiency of their proposal.

Most of current approaches of parallel EMO algorithms do not consider
energy consumption and savings, and they are related to development of more
effective algorithms considering the execution time as main criterion. However,
nowadays the energy costs represent a relevant share of the total costs of High
Performance Computing (HPC) systems. As consequence, the energy efficiency
is a target for the HPC implementations of EMO algorithms.

In this paper we propose a GPU implementation of NDS which defines a new
data structure to store the dominance information to efficiently compute the sets
of non dominated individuals (fronts) on the GPU. This proposal is referred to
as Efficient Fast Non-Dominated Sorting (EFNDS). It is integrated in NSGA-
II and comparatively evaluated with the recent Gupta’s proposal to compute
NDS on GPU [12] from the perspectives of both performance and power/energy
efficiency. They are assessed on a NVIDIA K80, as prototype of a modern GPU
architecture. Results have shown that EFNDS achieves the best performance
and consumes less energy, thus having better energy efficiency than the other
proposal.

In summary, the major contribution of our paper is the proposal of an energy
efficient NDS procedure on GPU, a representative procedure included in the

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 65

EMO algorithms. Therefore, it is of great interest for developing energy efficiency
aware applications based on Multi-Objective Optimization.

The rest of this paper is organized as follows. In Sect. 2, the definition of the
multi-objective problem is provided. In Sect. 3, the Efficient Fast Non-Dominated
Sorting Procedure (EFNDS) as well as its parallel implementations on GPU are
described. A comparative evaluation of NSGA-II based on EFNDS and NDS on
GPU is carried out in Sect. 4. It is analysed in terms of performance, power and
energy. Finally, Sect. 5 shows the conclusions of this work.

2 Description of the Problem

A multi-objective minimization problem is formulated as follows [22]:

min
x∈S

f(x) = [f1(x), f2(x), . . . , fM (x)]T (1)

where z = f(x) is an objective vector, defining the values for all objective func-
tions f1(x), f2(x), . . . , fM (x), fi: RV → R, i ∈ {1, 2, . . . ,M}, where M ≥ 2 is
the number of objective functions; and x = (x1, x2, . . . , xV) is a vector of vari-
ables (decision vector) and V is the number of variables S ⊂ R

V is search space,
which defines all feasible decision vectors.

A decision vector x′ ∈ S is a Pareto optimal solution if fi(x′) � fi(x) for
all x ∈ S and fj(x′) < fj(x) for at most one j. Objective vectors are defined
as optimal if none of their elements can be improved without worsen at least
one of the other elements. An objective vector f(x′) is Pareto optimal if the
corresponding decision vector x′ is Pareto optimal. The set of all the Pareto
optimal decision vectors is called the Pareto set. The region defined by all the
objective function values for the Pareto set points is called the Pareto front.

For two objective vectors z and z′, z′ dominates z (or z′ � z) if z′
i � zi

for all i = 1, . . . ,M and there exists at most one j such that z′
j < zj . In EMO

algorithms, the subset of solutions in a population whose objective vectors are
not dominated by any other objective vector is called the non-dominated set,
and the objective vectors are called the non-dominated objective vectors. The
main aim of the EMO algorithms is to generate well-distributed non-dominated
objective vectors as close as possible to the Pareto front.

NSGA-II [4] is the most widely-used and well-known EMO algorithm for
approximating the Pareto front that is based on NDS. Thus, it is selected to
analyse the energy efficiency of EMO algorithms when different number of CPU
cores and/or GPU cards are exploited. The steps of NSGA-II are described in
Algorithm 1.

The Step 2 of the Algorithm 1 is devoted to computing the FNDS procedure
which is the most computationally expensive in the NSGA-II.

3 Efficient Fast Non-Dominated Sort on GPU

CUDA (Compute Unified Device Architecture) is the parallel interface intro-
duced by NVIDIA to help develop parallel codes using C or C++ language.

66 J.J. Moreno et al.

Algorithm 1. NSGA-II
Step 1: Generate a random initial population P0 of size N .
Step 2: Sort the population to different non-domination levels (fronts) and assign each

individual a fitness equal to its non-domination level (1 is the best level).
Step 3: Create an offspring population of size N using binary tournament selection,

recombination and mutation operations (parents with larger crowding distance are
preferred if their non-domination levels are the same).

Step 4: Combine the parent and the offspring populations and create a population of
2N individuals.

Step 5: Reduce the size of population to N : sort the initial population into different
non-dominated fronts; select individuals from the best non-dominated fronts until
the size of P is equal to N ; if all the individuals in a front cannot be picked fully,
calculate a crowding distance and add individuals with the largest distances into the
population.

Step 6: Check if the termination criterion is satisfied. If yes, go to Step 7, else return
to Step 2.

Step 7: Stop.

CUDA provides some abstraction to the GPU hardware, and it provides the
SIMT (Single Instruction, Multiple Threads) programming model to exploit the
GPU [26]. However, the programmer has to take into account several features of
the architecture, such as the topology of the multiprocessors and the manage-
ment of the memory hierarchy. For the execution of the program, the CPU (called
host in CUDA) performs a succession of parallel routines (kernels) invocations
to the device. The input/output data to/from the GPU kernels are communi-
cated between the CPU and the ‘global’ GPU memories. GPUs have hundreds
of cores which can collectively run thousands of computing threads. Each core,
called Scalar Processor (SP), belongs to a set of multiprocessors units called
Streaming Multiprocessors (SM). The SMs are composed by 192 (or 128) SPs
on Kepler (or Maxwell) GPU architectures [13,25,26]. This way, the GPU device
consists of a set of SMs and each kernel is executed as a batch of threads orga-
nized as a grid of thread blocks [1].

In this work, a new approach to compute and store the dominance infor-
mation is proposed. The corresponding FNDS procedure is described in Algo-
rithm 2 and referred to as Efficient FNDS (EFNDS). It selects N individuals as
‘Elite population’ from the initial population P0 with 2N individuals (step 5 of
Algorithm 1). Algorithm 2 includes two phases. The Phase 1 computes the dom-
inance matrix, D, of dimensions 2N × 2N , for the initial population and the
Phase 2 selects the individuals of the first fronts until half of them are selected
in the ‘elite’ set. The structure of the Phase 2 is well known. However, it is based
on a new way to store the dominance information. Our proposal is based on the
previous computation of a dominance matrix D whose elements, Di,j , store if
the individual Pi is dominated by Pj . That is, Di,j = 1 if Pj dominates Pi and
Di,j = 0 in other case.

This way, the idea for checking if Pi is dominated by the population P (line
14 of Algorithm 2) is based on the computation of the number of individuals of

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 67

Algorithm 2. Outline of the Efficient Fast Non-Dominated Sorting procedure
(EFNDS) to compute Step 5 of Algorithm 1
Require: P0: population M : number of objective functions

Phase 1: Compute the information of dominance
1: 2N ← |P0|
2: for i ← 1 to 2N do
3: for j ← 1 to 2N do
4: for l ← 1 to M do
5: Check dominance between individuals Pi and Pj for the objective l
6: Di,j = 0
7: if Pj dominates Pi then
8: Di,j = 1

Phase 2 Compute fronts from the dominance information of Phase 1
9: P = P0; Elite ← ∅; rank = 0

10: while |Elite| < N do
11: rank = rank + 1
12: FRank ← ∅
13: for each Pi ∈ P do (Check if Pi dominates P from the matrix D)
14: d =

∑
Pj∈P Dij

15: if d = 0 (i.e. Pi is a dominator of P) then
16: P ← P\{Pi}
17: FRank ← FRank ∪ {Pi}
18: if |Elite| + |FRank| > N then
19: FRank ← N − |Elite| individuals of FRank with higher crowding distance
20: Elite ← Elite ∪ FRank

21: return Elite

P which dominate Pi as di = |{Di,j = 1; ∀Pj ∈ P}|, so if di = 0 then Pi is not
dominated by P and it belongs to the new front. Therefore, the computation
of di can be carried out reading the corresponding values Di,j on the i-th row
of D. This new approach to identify the individuals into every new front is very
appropriate to efficiently exploit the GPU architecture.

It is relevant to underline that the computation of dominance consumes most
of the runtime of FNDS procedures when it is executed in sequential [12,29].
Our approach to compute D with a high level of parallelism, can efficiently
compute the dominance information on the GPU architecture. Moreover, the
fronts computation can also be accelerated on GPU by the use of the fast shuffled
reductions of CUDA. This way, our parallel EFNDS version efficiently computes
D and the corresponding fronts on GPU.

Algorithm 3 shows the host pseudocode to compute EFNDS on GPU. It is
based on two kernels: CuDominance (line 3) which computes the matrix D and
CuFronts (line 8) which computes one front from the dominance information
stored in D. CuDominance is executed once and CuFronts is iteratively com-
puted until a Elite population of N individuals is classified. In order to fit the
classified population to N individuals a subset of last front is selected according
to the crowding distance on CPU.

68 J.J. Moreno et al.

Algorithm 3. Host pseudocode to compute EFNDS on GPU based on the
kernels CuDominance and CuFronts
Require: P0: population M : number of objective functions

Phase 1: Compute the information of dominance
1: 2N ← |P0|
2: Communicate input population P0 from CPU memory to the GPU device memory
3: D = CuDominance() (Algorithm 4 is computed on GPU)

Phase 2 Compute fronts from the dominance information of Phase 1
4: P = P0; Elite ← ∅; rank = 0
5: while |Elite| < N do
6: rank = rank + 1
7: FRank ← ∅
8: FRank = CuFronts() (Algorithm 5 is computed on GPU)
9: Communicate new FRank from GPU device memory to the host memory

10: if |Elite| + |FRank| > N then
11: Arrange FRank in increasing order according to crowding distance
12: FRank ← Selection of N − |Elite| individuals of the ordered FRank

13: Elite ← Elite ∪ FRank

14: return Elite

Algorithm 4. CuDominance kernel to compute the dominance matrix of
EFNDS on GPU
Require: P0: population M : number of objective functions

CuDominance Kernel
1: 2N ← |P0|
2: if idx < 2N × 2N then
3: i = �idx/2N�; j = idx%2N
4: for l ← 1 to M do
5: Check dominance between individuals Pi and Pj for the objective l
6: Di,j = 0
7: if Pj dominates Pi then
8: Di,j = 1

Algorithm 4 shows the procedure to compute the dominance matrix on GPU,
CuDominance. The input is the population of 2N individuals. This way, 4N2

threads are activated to check concurrently the dominance between all pairs of
individuals and update the elements of D without any synchronization among
them.

When CuDominance finishes, the matrix D is on memory and the fronts
can be computed by successive executions of CuFronts. Algorithm 5 describes
the procedure to compute one front on GPU. One thread block is activated for
every individual. Therefore, the threads of every block compute the reduction of
a particular row of D and a fast reduction scheme based on shuffled functions is
applied 2. The shuffled functions enable a thread to directly reads a register from

2 https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/.

https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 69

Algorithm 5. CuFronts kernel to compute the set of fronts of EFNDS on GPU
1: idB = blockIdx.x; Cuda block identification
2: idx = threadIdx.x; Cuda thread identification
3: BlockSize = blockDim.x; number of threads in every Cuda block
4: if idx < 2N × BlockSize AND PidB ∈ P then

Check if PidB dominates the population P from the matrix D
5: for i = 0; i < 2N ; i = i + BlockSize do
6: if Pi ∈ P then
7: d = d + DidB,i

8: didB = BlockReduceSum(d) (Fast Shuffled Reduction into Threads Blocks)
9: if didB = 0 (i.e. PidB is a dominator of P) then

10: if idx == idB × BlockSize (First Thread in every Cuda Block) then
11: P ← P\{Pi}
12: FRank ← FRank ∪ {Pi}
13: return FRank

another thread in the same warp, therefore, threads can compute fast reductions
avoiding memory accesses.

It is noteworthy that the output of CuFronts is written in a vector F of
dimension 2N , where every element Fi stores the front number for the individ-
ual i. So, when CuFronts is executed, a new selection of individuals is classified
in the new front. Additionally, F defines the set of individuals in the population
P since if Fi = 0 then the individual i has not classified and it is a potential
individual of posterior fronts, i.e. i ∈ P . Posterior fronts classifications will be
computed only for the individuals with Fi = 0. Therefore, F also defines the
population P to compute a new front. Figure 1 illustrates the computation of

Fig. 1. Computation of the fourth front from D matrix when CuFronts kernel is
executed on GPU

70 J.J. Moreno et al.

the fourth front on the GPU. It shows the data structures and their threads
mapping involved in the computation of a front.

4 Experimental Evaluation

In this section, we evaluate two GPU versions of NSGA-II based on: (1) the
EFNDS algorithm above described and (2) the version of NDS proposed by
Gupta in [12]. Additionally, the sequential NSGA-II version 1.1.6 of K. Deb [3]
is also evaluated.

We have executed these algorithms on a Bull R421-E4 node. This platform
features an Intel Xeon E5-2620 v3 CPU at 2.40 GHz and a NVIDIA Tesla K80
accelerator, which contains two independent NVIDIA Tesla GK210 GPUs. The
implementations evaluated in this work only employ one of these GPUs. The
node runs Ubuntu 14.04.3 LTS with CUDA Toolkit 7.5. The programs have
been compiled using gcc 4.8.4 and nvcc 7.5.17 with optimization flags O3 for
GPU architecture 3.5.

For the acquisition of energy measurement data, we have developed a tool
that collects this information from various hardware counters. For Intel, it uses
the Running Average Power Limit (RAPL) interface. For NVIDIA, it uses the
NVIDIA Management Library (NVML) API.

As test problems, we consider DTLZ2 and DTLZ7. The family of DTLZ
problems was specially designed for evaluating multi-objective algorithms. They
also allow to define an arbitrary number of objective functions [6,16].

The formulation of DTLZ2 is as follows:

min f1(x) = (1 + g(x))
M−1∏

i=1

cos(
xiπ

2
)

min f2(x) = (1 + g(x))sin(
xM−1π

2
)
M−2∏

i=1

cos(
xiπ

2
)

. . .

min fl(x) = (1 + g(x))sin(
xM−l+1π

2
)
M−l∏

i=1

cos(
xiπ

2
)

. . .

min fM (x) = (1 + g(x))sin(
x1π

2
)

(2)

where g(x) =
∑n

i=M (xi−0.5)2, xi ∈ [0, 1]. The number of variables V is selected
according to the equation V = M + k − 1, with a suggested value of k = 10.

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 71

The formulation of DTLZ7 is as follows:

min f1(x) = x1

min f2(x) = x2

· · ·
min fM−1(x) = xM−1

min fM (x) = (1 + g(xM))h(f1, f2, . . . , fM−1, g)

where g(xM) = 1 +
9

|xM |
∑

xi∈xM

xi

h(f1, f2, . . . , fM−1, g) = M −
M−1∑

i=1

[
f1

1 + g
(1 + sin(3πfi))

]

subject to 0 ≤ x1 ≤ 1, for i = 1, 2, . . . , n

(3)

This test problem has 2M−1 disconnected Pareto-optimal regions. The func-
tion g requires k = |xM | decision variables and the total number of variables is
V = M + k − 1. The original author suggests k = 20.

Both DTLZ2 and DTLZ7 have been evaluated with M = 5, 10, 15 objective
functions and varying population sizes. The results for test problem DTLZ7
are displayed in Tables 1, 2 and 3. In order to clarify the analysis, no results
for DTLZ2 are shown, as our experiments suggest that both problems behave
similarly on all the tests performed.

Table 1. Runtime and power dissipated by the evaluated algorithms for 50 NSGA-II
generations with test problem DTLZ7 and 5 objectives.

2N Time (s) Average power (W)

Deb[3] Gupta [12] EFNDS Deb [3] Gupta [12] EFNDS

1000 0.91 0.76 0.63 58.03 88.19 89.21

2000 2.60 1.34 1.06 65.47 88.41 89.53

5000 12.49 3.11 2.53 61.57 91.85 91.75

10000 43.67 6.04 5.36 61.04 104.77 99.58

20000 154.27 14.38 12.90 61.07 120.23 112.46

30000 327.44 33.20 23.06 61.13 125.14 122.99

40000 563.71 47.12 34.98 61.30 133.89 129.94

50000 870.68 61.33 50.30 61.16 142.58 132.36

60000 1251.48 94.57 69.40 61.14 144.12 133.69

These tables report mean time spent in seconds and average power dissipated
in watts for each algorithm, when 50 generations are computed with varying
population sizes. The power dissipated is the aggregate of CPU and GPU power

72 J.J. Moreno et al.

Table 2. Runtime and power dissipated by the evaluated algorithms for 50 NSGA-II
generations with test problem DTLZ7 and 10 objectives.

2N Time (s) Average power (W)

Deb[3] Gupta[12] EFNDS Deb [3] Gupta [12] EFNDS

1000 1.68 1.00 0.81 58.98 87.47 86.32

2000 5.50 1.76 1.45 59.64 88.63 87.10

5000 29.11 4.24 3.69 59.90 90.46 90.37

10000 106.02 8.81 8.27 60.34 93.99 95.20

20000 402.42 19.82 19.49 60.41 115.64 118.54

30000 874.49 41.87 36.04 60.56 128.40 125.62

40000 1550.48 62.13 57.00 60.61 128.08 126.77

50000 2511.14 85.04 80.25 60.66 140.70 135.70

60000 3822.55 123.65 111.56 60.74 142.52 140.87

Table 3. Runtime and power dissipated by the evaluated algorithms for 50 NSGA-II
generations with test problem DTLZ7 and 15 objectives.

2N Time (s) Average power (W)

Deb[3] Gupta[12] EFNDS Deb [3] Gupta [12] EFNDS

1000 2.39 1.22 0.95 58.73 87.90 86.95

2000 7.95 2.25 1.77 59.59 89.13 87.79

5000 43.78 5.45 4.61 59.95 91.89 91.93

10000 166.14 11.83 10.94 60.13 95.45 96.70

20000 642.53 30.62 26.29 60.21 129.03 125.24

30000 1436.45 63.10 51.03 60.21 130.38 126.20

40000 2635.97 93.59 80.24 60.37 137.41 133.95

50000 4385.16 139.06 120.07 60.53 144.76 138.36

60000 6589.02 205.64 170.95 60.54 143.00 142.56

reported by our measuring tool. Each test has been executed ten times using
an unique seed for the random procedures of NSGA-II. This way we assert
than every run has the same computational load and the only variances in the
experimental measures come from the behavior of the hardware. The statistical
analysis of the results shows a precision of at least 5% with a confidence level
of 95%. Also, CPU-GPU communications time has been evaluated for all tests.
The experimental results have shown that they consume less than 0.1% of the
total execution times.

If we compare the two GPU implementations (Gupta and EFNDS), we
observe that EFNDS is faster, with sightly lesser power dissipation. As described
in [12], the algorithm proposed by Gupta does not store any data in device mem-
ory, instead opting to recalculate all dominance information between individuals

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 73

each time it has to compute a front. This strategy works best when the number
of fronts is low.

In our experimentation, we also measured the number of fronts needed to gen-
erate the parent population for each generation. We found that problems with
high number of objectives have fewer starting fronts, and need fewer generations
to get parent populations where all individuals are in the same front. Even in
these situations, our implementation is faster than Gupta on the test platform.
The way EFNDS stores partial dominance results takes advantage of the com-
puting capabilities of the platform, allowing for parallel reductions and re-usage
of information without being excessively penalized by memory operations.

If we compare EFNDS against the sequential implementation (called Deb in
the tables), we can observe that EFNDS is faster, regardless of problem size and
number of objectives. This speed offsets the additional energy consumed by the
GPU, making our proposal the most energy efficient between the evaluated algo-
rithms. Finally, comparing the three tables, we can note that our proposal scales
well when increasing the population, providing respectable speedups against the
sequential version.

Fig. 2. Energy consumption in kilojoules of the two GPU implementations, for DTLZ7
with M = 5, 15 and varying population sizes.

Figure 2 exhibits the energy consumed by Gupta and EFNDS versions while
solving test problem DTLZ7 for 5 and 15 objectives. As mentioned above,
the advantages of EFNDS over Gupta are most notable when the number of
objectives is low, since those are the cases where we have multiple fronts per
generation.

74 J.J. Moreno et al.

5 Conclusions and Future Works

In this paper we have proposed a GPU implementation of NDS (referred to as
EFNDS) which defines a new data structure to store the dominance informa-
tion to efficiently compute the sets of non-dominated individuals (fronts) on the
GPU. It has been integrated in NSGA-II algorithm and comparatively evaluated
with the recent Gupta’s proposal to compute NDS on GPU from the perspec-
tives of both performance and power/energy efficiency. Results have shown that
EFNDS achieves the best performance and consumes less energy, thus having
better energy efficiency than the other proposal. Therefore, it is of great inter-
est for developing energy efficiency aware applications based on Multi-Objective
Optimization.

References

1. Brodtkorb, A.R., Trond, R.H., Sætra, M.L.: Graphics processing unit (GPU) pro-
gramming strategies and trends in GPU computing. J. Parallel Distrib. Comput.
73(1), 4–13 (2013)

2. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based
selection in evolutionary multiobjective optimization. In: GECCO, pp. 283–290
(2001)

3. Deb, K.: Software Developed at KanGAL: Multi-objective NSGA-II code in C.
Revision 1.1.6 (2011). http://www.iitk.ac.in/kangal/codes.shtml

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE T. Evolut. Comput. 6(2), 182–197 (2002)

5. Deb, K., Sundar, J., Bhaskara Rao, N.U.: Reference point based multi-objective
optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–
286 (2006)

6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: WCCI, pp. 825–830 (2002)

7. Dehuri, S., Ghosh, A., Mall, R.: Parallel multi-objective genetic algorithm for clas-
sification rule mining. IETE J. Res. 53(5), 475–483 (2007)

8. Domı́nguez, J., Montiel, O., Sepúlveda, R., Medina, N.: High performance architec-
ture for NSGA-II. In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Recent Advances
on Hybrid Intelligent Systems, pp. 451–461. Springer, Heidelberg (2013)

9. Durillo, J.J., Nebro, A.J., Luna, F., Alba, E.: A study of master-slave approaches
to parallelize NSGA-II. In: IPDPS, pp. 1–8. IEEE (2008)

10. Fang, H., Wang, Q., Tu, Y., Horstemeyer, M.F.: An efficient non-dominated sorting
method for evolutionary algorithms. Evol. Comput. 16(3), 355–384 (2008)

11. Filatovas, E., Kurasova, O., Sindhya, K.: Reference point based multi-objective
optimization using evolutionary algorithms. Informatica 26(1), 33–50 (2015)

12. Gupta, S., Tan, G.: A scalable parallel implementation of evolutionary algorithms
for multi-objective optimization on GPUs. In: CEC, pp. 1567–1574. IEEE (2015)

13. Harris, M.: Maxwell: the most advanced CUDA GPU ever made (2014)
14. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative App-

roach, 5th edn. Morgan Kaufmann, San Francisco (2012)
15. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units

for scientific computing. In: IEEE IPDPS 2009, pp. 1–8 (2009)

http://www.iitk.ac.in/kangal/codes.shtml

Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms 75

16. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE T. Evolut. Comput. 10(5),
477–506 (2006)

17. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: The
NSGA-II and other algorithms. IEEE T. Evolut. Comput. 7(5), 503–515 (2003)

18. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the
Pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

19. Lančinskas, A., Žilinskas, J.: Approaches to parallelize pareto ranking in NSGA-
II algorithm. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J.
(eds.) PPAM 2011. LNCS, vol. 7204, pp. 371–380. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31500-8 38

20. Lančinskas, A., Żilinskas, J.: Solution of multi-objective competitive facility loca-
tion problems using parallel NSGA-II on large scale computing systems. In: Man-
ninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 422–433. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36803-5 31

21. McClymont, K., Keedwell, E.: Deductive sort and climbing sort: new methods for
non-dominated sorting. Evol. Comput. 20(1), 1–26 (2012)

22. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, Heidelberg (1999)
23. Moreno, J.J., Ortega, G., Filatovas, E., Mart́ınez, J.A., Garzón, E.M.: Using

low-power platforms for evolutionary multi-objective optimization algorithms. J.
Supercomput (2016). doi:10.1007/s11227-016-1862-0

24. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Boston (2011)

25. NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler GK110
(2012)

26. NVIDIA. CUDA C programming guide. version 7.0 (2015)
27. Ortega, G., Filatovas, E., Garzón, E.M., Casado, L.G.: Non-dominated sorting

procedure for pareto dominance ranking on multicore CPU and/or GPU. J. Global
Optim. (2016). doi:10.1007/s10898-016-0468-7

28. Shi, C., Chen, M., Shi, Z.: A fast nondominated sorting algorithm. In: ICNN, vol.
3, pp. 1605–1610. IEEE (2005)

29. Smutnicki, C., Rudy, J., Żelazny, D.: Very fast non-dominated sorting. Decision
Making Manufact. Serv. 8(1–2), 13–23 (2014)

30. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE T. Evolut. Comput. 11(6), 712–731 (2007)

31. Zhang, X., Ye, T., Cheng, R., Jin, Y.: An efficient approach to non-dominated
sorting for evolutionary multi-objective optimization. IEEE T. Evolut. Comput.
19(2), 201–213 (2015)

32. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 832–842. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9 84

33. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm. Technical Report 103, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)

http://dx.doi.org/10.1007/978-3-642-31500-8_38
http://dx.doi.org/10.1007/978-3-642-36803-5_31
http://dx.doi.org/10.1007/s11227-016-1862-0
http://dx.doi.org/10.1007/s10898-016-0468-7
http://dx.doi.org/10.1007/978-3-540-30217-9_84

A Parallel Model for Heterogeneous Cluster

Thiago Marques Soares, Rodrigo Weber dos Santos, and Marcelo Lobosco(B)

Graduate Program in Computational Modelling,
Federal University of Juiz de Fora, Juiz de Fora, Brazil

thiagomarquesmg@gmail.com, {marcelo.lobosco,rodrigo.weber}@ufjf.edu.br

Abstract. The LogP model was used to measure the effects of latency,
occupancy and bandwidth on distributed memory multiprocessors. The
idea was to characterize distributed memory multiprocessor using these
key parameters, studying their impacts on performance in simulation
environments. This work proposes a new model, based on LogP, that
describes the impacts on performance of applications executing on a
heterogeneous cluster. This model can be used, in a near future, to help
choose the best way to split a parallel application to be executed on
this architecture. The model considers that a heterogeneous cluster is
composed by distinct types of processors, accelerators and networks.

Keywords: Performance modeling · Parallel architectures · Heteroge-
neous clusters · Scheduling

1 Introduction

Large scale scientific applications demand the use of parallel environments, such
as a cluster of computers, in order to execute their tasks. Clusters are becoming
more heterogeneous, mixing, in a single system, distinct processors, accelerators,
such as GPUs, and network connections. To explore all the resources available in
such a heterogeneous platform, a data-parallel application must divide its data
across multiple devices. This is not an easy task due to the distinct processing
power of devices and the distinct latencies of the networks, which can lead to
unbalance in the computation and delays in process synchronization.

The goal of this paper is to present a parallel model that estimates the
execution time of applications running on heterogeneous clusters. The proposed
model extends some characteristics of the LogP [4] model in a similar way that
Lastovetsky et al. [8] did, but considering that processing units may have distinct
computational power as well as they are interconnected by connections with
distinct latencies. The idea is to use the results of this estimation, in future works,
to predict the best data division to be used in a heterogeneous cluster, taking
into account not only the processing power of each processor and accelerator, but
also the communication and synchronization costs. In order to present an initial

The authors would like to thank UFJF, FAPEMIG, CAPES, and CNPq.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 76–90, 2016.
DOI: 10.1007/978-3-319-49956-7 6

A Parallel Model for Heterogeneous Cluster 77

evaluation of the model, we also present the estimated and real computation,
communication and total execution time for distinct applications.

The remaining of this work is organized as follows. Section 2 briefly reviews
the LogP model and Sect. 3 presents related works. Section 4 presents the new
model. The experimental results are presented in Sect. 5. Finally, Sect. 6 presents
our conclusions and plans for future works.

2 The LogP Model

LogP [4] model measures the effects of latency, occupancy and bandwidth on
distributed memory multiprocessors. On these type of machine, processors com-
municate using point-to-point messages using a network infrastructure. The main
parameters used in the LogP model are the following: (a) L, that represents an
upper bound on the communication latency due to the use of point-to-point mes-
sages; (b) o, that represents the overhead, i.e., the time that a processor spends
in the transmission or reception of each message and that cannot be used to
execute other instructions; (c) g, the gap, that represents the minimum time
interval between consecutive message transmissions/receptions by a processor;
and P, the number of processor/memory modules. Observe that the reciprocal
of the g parameter represents the communication bandwidth.

The model assumes an asynchronous computation model, with processors
working in an independent way. In this model, the latency experienced by any
application message is unpredictable, but the model imposes the upper limit L
to it. The model also considers that the network has a finite capacity of sending
messages, so that at most �L/g� messages can be in transit from any pair of
processors at any time. If a processor tries to send a message while the network
capacity is full, it stalls until the message can be sent without exceeding the
network capacity. Also, the original model assumes that all messages are of the
same small size.

3 Related Works

One of the first works to propose a model for parallel computing was the bulk-
synchronous parallel model (BSP) [15]. It considers that the computation on the
processing units can occur independently and communication and computation
does not have to follow a specific time order. The model imposes, at each timestep
(called superstep), the use of a barrier for synchronization purposes, which is a
restriction of the model.

Other works have proposed models to characterize the effects of communica-
tion and overheads on the performance of applications. The LogP model works
well with fixed-sized short messages, but when large messages are considered,
the model does not predict the communication costs with the same precision.
Trying to solve this issue, Alexandrov et al. [1] proposed the LogGP model.
This model extended the LogP model with a simple linear model for long mes-
sages, by introducing a new parameter G that represents the gap per byte for

78 T.M. Soares et al.

long messages. Using this approach, the authors argue that the model can cap-
ture the behavior of both long and short messages. Another model that took into
account the message size was proposed by Kielmann et al. [7]. The PLogP model
defines five parameters, two of which, the latency and the number of processors,
with the same role of the LogP model. The other three parameters are the fol-
lowing: (a) the send overhead (os(m)), (b) the receive overhead (or(m)), and
(c) the gap (g(m)). These three parameters are functions of the message size.
A method to measure the parameters, implemented as a MPI application that
adapts itself to the network characteristics and does not saturate the network,
was also suggested by the authors. Other works focused on studying the impacts
of communication on performance. Holt et al. [6] used a wide range of appli-
cations in order to evaluate the effects of some parameters of the LogP model
on a distributed shared memory (DSM) machine. The results of these experi-
ments have shown that the occupancy of the communication controller is critical
to achieve good performance in this type of machine. The authors argue that
despite of the impacts caused by contention, it is difficult to model contention
analytically, especially for applications that try to hide latency. For this reason,
our proposed model does not use a specific parameter to describe the effects of
contention in computation; the effect caused by it is captured indirectly by the
overhead parameter. Although applications show strong sensitivity to the over-
head, as Martin et al. [11] have shown, we decided to keep the model as simple
as possible, as described in the next section.

In order to deal with heterogeneous processors interconnected by an
Ethernet-based network, Lastovetsky et al. [8] extended the LogP model with
the main goal of predicting the impact of communication into the total execution
time of an application. The model tries to represent accurately the communi-
cation behavior of applications using distinct communication patterns: point to
point, one to many, many to one and many to many. Later, Lastovetsky et al.
proposed a technique for estimating the parameters of their model [9]. This work
not only predicts the communication time, but also the total execution time of
parallel applications.

All previous models are not suited to deal with: (a) a heterogeneous cluster,
that mixes distinct CPUs and accelerators on the same environment, and (b)
heterogeneous networks. A parallel model that takes into account the execu-
tion time and capture the characteristics of a heterogeneous environment is the
HLoGP model [3]. The HLoGP is a very accurate model, but the large number
of parameters is an issue, specially when dealing with large clusters that include
accelerators. This work proposes a simpler model that predicts the execution
time of parallel applications, regardless of the computational environment used,
homogeneous or heterogeneous one.

4 The New Model

The LogP model has been used to guide parallel algorithm design, since it
could predict the behavior of applications in a distributed memory, homoge-
neous processor environment. This work proposes to extend LogP in order to

A Parallel Model for Heterogeneous Cluster 79

deal with modern heterogeneous environments, composed by distinct processors,
accelerators and networks. The main parameters used in the new model are the
same used in the LogP model, but considering a heterogeneous environment: (a)
Ld , that represents an upper bound on the communication latency of a device d;
(b) od , that represents the overhead in device d, i.e., the time that a processor
spends in the transmission or reception of each message and that cannot be used
to execute other instructions; (c) gd , the gap, that represents the minimum time
interval between consecutive message transmissions/receptions by a processor in
a device d; and (d) RP, the relative computing power of a processing unit.

There are two ways to measure Rp: (a) running a benchmark on each process-
ing unit to collect a metric, such as the processing units per time step, or (b)
using the average computation time that a processing unit takes to run one iter-
ation of an application. In the first case, given the size of the problem (size)
and the number of processing units per time step a device can execute (Rp), the
computation time is given by: size/Rp. In the second case, the computation time
can be obtained multiplying Rp by the total number of iterations. If the appli-
cation does not scale linearly with the problem size, the first way to measure the
computation time can lead to a wrong estimation. The second alternative solves
this issue since the problem size is considered implicitly.

The values of Ld and gd are also obtained prior to the execution of the
application. A network benchmark is used for this purpose. The benchmark
is executed for each type d of network that is available in the cluster. The
benchmark collects the values of Ld and gd for distinct message sizes, ranging
from 0 to 4MB. Each message size modeled by our model uses their corresponding
Ld and gd values found by the benchmark.

The value of od is computed using a benchmark [5]. This benchmark considers
that the overhead varies with the message size. The total overhead in a point-
to-point communication operations is given by: od = os + or, where os and or
are respectively the send and the receive overheads. Again, each message size
modeled by our model uses its corresponding od value found by the benchmark.

The use of benchmarks to collect the communication costs, overheads, as well
as the relative performance of the processors and accelerators, can be executed
only once, or each time a new hardware or network is included in the system.

We decided to keep the model as simple as possible, resisting the temptation
to provide a more detailed model, such as (a) including separate intra-node com-
munication and synchronizations costs (that could occur, for example, if a GPU
and a CPU exchange data), (b) considering the network topology. If the intra-
node communication costs are representative, they can be included in the model
using Ld , od and gd , where the device is the GPU and its associated latency,
overhead and bandwidth. The network topology was not considered because: (a)
algorithms usually are not attached to a particular network topology, although
the communication protocol can use this information in order to optimize col-
lective communication; and (b) the network topology is reflected in the Ln and
gn parameters.

80 T.M. Soares et al.

5 Model Evaluation

Two kernels (EP and FT) and one application (SP) from the NAS benchmark
[2] were used to validate the model. Since these benchmarks were developed to
execute in a CPU environment, another application, HIS, was chosen to evaluate
the model on a GPU environment. The HIS application simulates some compo-
nents of the human immune system [14]. The goal is to evaluate the model with
applications that have distinct computation and communication characteristics
and observe whether the model can capture them.

Some considerations were made when estimating the execution time: (a)
all benchmarks compute during several iterations, so the communication cost
described in Sect. 4 was multiplied not only by the number of communication
operations that occur at each iteration (Nop), but also by the total number of
interactions (I); (b) the Maximum Transmission Unit (MTU) size was used to
estimate the values of Ln and gn ; (c) a simple load balancing was used to dis-
tribute the data size that each processing unit receives to compute: for example,
if CPUa is twice faster than CPUb, then CPUa receives twice the data size of
CPUb.

5.1 Benchmarks

EP. The Embarrassingly Parallel kernel (EP) [2] generate pairs of Gaussian
pseudorandom deviates and tabulate the number of pairs in successive square
annuli, a typical problem of many Monte Carlo based applications. The commu-
nication occurs only at the end of the computation: a collective MPI routine is
used to combine the suns generate from all processors. The class C problem set
was used in the evaluation.

Algorithm 1 gives an overview of the EP kernel.

Algorithm 1. Pseudocode of the EP kernel
main

2:
. . . generate the seed for each process . . .

4:
. . . calculate counts and sums in each process . . .

6:
. . . Use MPI Allreduce to send parameter to all processes . . .

8:
end-main

FT. A 3-D fast-Fourier transform kernel (FT) [2] is used to numerically solve
partial differential equation (PDE) using forward and inverse FFTs. This ker-
nel tests the long-distance communication performance, considering that the
3-D FFT steps require considerable communication for operations such as array
transpositions. Such communication operations are implemented using all-to-all
exchange. In order to predict the communication time for this kernel, only the
global transpose operations were considered because the amount of data they

A Parallel Model for Heterogeneous Cluster 81

exchanged is higher than the amount exchanged by other transpose operations.
The class B problem set was used in the evaluation.

Algorithm 2 presents the pseudocode of the FT kernel.

Algorithm 2. Pseudocode of the FT kernel
main

2:
for t from 1 to number of iterations do

4:
. . . evolve u0 to u1 (t time steps) in fourier space . . .

6:
. . . calls the fft subroutine . . .

8:
. . . transpose operations in each process . . .

10:
. . . use MPI Alltoall to exchange the transpose results . . .

12:
. . . call checksum . . .

14:
end-for

16:
end-main

SP. Scalar Penta-Diagonal solver (SP) solves multiple, independent systems of
nondiagonally-dominant, scalar pentadiagonal equations using a multi-partition
scheme. The multi-partition scheme uses a coarse grained communication. The
class B problem set was used in the evaluation.

Algorithm 3 presents the pseudocode of the SP application.

Algorithm 3. Pseudocode of the SP application
main

2:
for t from 1 to number of iterations do

4:
. . . performs the block-diagonal matrix vector multiplicator . . .

6:
. . . use MPI Isend to send the buffer . . .

8:
. . . use MPI Ireceive to receive the buffer . . .

10:
. . . performs aproximate factorization in the x-plane . . .

12:
. . . use MPI Isend to send the buffer . . .

14:
. . . use MPI Ireceive to receive the buffer . . .

16:
. . . performs aproximate factorization in the y-plane . . .

18:
. . . use MPI Isend to send the buffer . . .

20:
. . . use MPI Ireceive to receive the buffer . . .

22:
. . . performs aproximate factorization in the z-plane . . .

24:
. . . use MPI Isend to send the buffer . . .

26:
. . . use MPI Ireceive to receive the buffer . . .

28:
. . . add the u vector . . .

30:
end-for

32:
end-main

82 T.M. Soares et al.

HIS. A three dimensional simulator of the Human Immune System (HIS) [14]
was used in the model evaluation. The simulator implements a mathematical
model that uses a set of eight Partial Differential Equations (PDEs) to describe
how some cells and molecules involved in the innate immune response react to
a pathogen. A detailed discussion about the model can be found in [12–14]. The
implementation is based on the Finite Difference Method [10] for the spatial
discretization and the explicit Euler method for the time evolution. The code
was implemented in C and uses CUDA to solve the PDEs in GPUs. One or
more GPUs can be used simultaneously to solve the PDEs for a piece of a mesh.
The CPU is responsible for the communication, due to border exchange between
GPUs, using MPI for this purpose. Border exchange occurs at the end of each
iteration. Two mesh sizes were used in the evaluation of the model: 150×150×150
and 200×200×200. For this application, the communication between CPU and
GPU was not considered.

Algorithm 4 gives an overview of the GPU implementation of the HIS
simulator.

Algorithm 4. GPU implementation of the HIS simulator
main

2:
. . . define the mesh slice to be computed by each GPU . . .

4:
. . . initialize submeshes according to their initial conditions . . .

6:
for t from 0 to final time do

8:
. . . call the kernels that computes the points . . .

10:
. . . use MPI Isend and MPI Receive to exchange boundaries between distinct machines . . .

12:
. . . synchronize all machines . . .

14:
end-for

16:
end-main

5.2 Computational Platform

The experiments were executed on a small cluster with 16 machines. Half of these
machines have two Intel Xeon E5620 processors with 16 GB of main memory,
six of these have two Tesla C1060 GPUs (240 CUDA cores and 4 GB of global
memory each) and the other two have two Tesla M2050 GPUs (448 CUDA cores
and 3 GB of global memory). The other eight machines have two AMD 6272
processors, with 32 GB of main memory, two Tesla M2075 GPUs, each one with
448 CUDA cores and 6 GB of global memory. Linux 2.6.32, CUDA driver version
6.0, OpenMPI version 1.6.2, nvcc release 6.0 and gcc version 4.4.7 were used to
run and compile all codes. Two distinct networks cards are available in the
cluster: Intel 82576 Gigabit Ethernet and InfiniBand Mellanox MT26428 with
a QDR of 40 Gb/s. The Intel machines are connected by the Gigabit Ethernet
card, while the AMD machines are connected by both cards. Both cards have

A Parallel Model for Heterogeneous Cluster 83

the full-duplex mode, so data can be transmitted and received simultaneously.
For this reason, the model for each application considers only half of the number
of messages exchanged since they occur in parallel. Although the total number
of cores available in each machine is equal to 32 for AMD (2 × 16) and 8 for
Intel (2 × 4), in all experiments reported in the next section only one process
was used per machine.

Two distinct environments were used in the experiments. A homogeneous
environment that uses only one type of CPU and a heterogeneous one, that
mixes distinct types of CPUs. In the homogeneous environment, composed by
AMD processors, we also used distinct types of network cards (Ethernet and
Infiniband). In the heterogeneous environment, half of the processors are AMD
and half are Intel. The only exception is the SP benchmark running with 9
processors, in which 5 Intel and 4 AMD CPUs were used. Also, we evaluated our
model on a homogeneous and a heterogeneous GPU environment. The homoge-
neous environment is composed only by M2075 GPUs, while the heterogeneous
one mixes C1060, M2050 and M2075 GPUs.

5.3 Results

This section presents, for each benchmark, the estimations obtained by our model
for the computation time, communication time and total execution time. The
computation time for EP, FT and SP was estimated for the execution on the
CPU, and the computation time for HIS was estimated for execution on the
GPU. The estimated execution time is compared with the real one and the error
in the estimation is presented. Each benchmark was executed 5 times for each
configuration in order to minimize the standard deviation.

EP. The EP benchmark is modeled using the following equation:

Ttotal =
size

Rp
+ I × Nop × log2 P × (Ld +

M

Bd
+ od), (1)

where size is the size of the problem, Rp is the relative computing power, I
is the number of iterations, Nop is the number of communication operations per
iteration, Ld is the latency, od is the overhead, P is the number of processors used
in the experiments and M is the message size. Recall that Bd is the reciprocal
of the g parameter. The first part of the equation describes the execution time,
and the remaining the communication time. For this problem we used the first
way to compute Rp because the execution is composed by a unique iteration.
Also, size = 8, 589, 934.592 units, RAMD

p = 14, 518, 343.266 units/s, RIntel
p =

24, 350, 979.353 units/s (both multiplied by the number of processors of each
type - AMD and Intel - used), I = 1 and two messages (Nop = 2) with M =
8 ×10−6 MB and one (Nop = 1) with M = 8 ×10−5 MB. The MTU size, 1.5
Kbytes, defines the values used for the latency and bandwidth, which are equal
to (a) Leth = 6.9 ×10−5 s and Beth = 93.4 MB/s for Ethernet and (b) Linf =
5.1 ×10−6 s and Binf = 1, 030.3 MB/s for Infiniband. The main communication

84 T.M. Soares et al.

Table 1. Results for the EP kernel using 2 AMD processors. All times are in seconds.

EP Ethernet Infiniband

Real Estimated Real Estimated

Computation Time 295.6 295.8 297.2 295.8

Standard Deviation 0.6% - 1% -

Error - 0.1% - 0.5%

Communication Time 2.0 ×10−4 2.1 ×10−4 1.3 ×10−5 1.6 ×10−5

Standard Deviation 22.3% - 29.7% -

Error - 6.4% - 14.5%

Total Execution Time 295.6 295.8 297.2 295.8

Standard Deviation 0.6% - 1% -

Error - 0.1% - 0.5%

Overhead 2.2 ×10−6 - 3.5 ×10−7 -

Table 2. Results for the EP kernel using 4, 8 and 16 heterogeneous nodes. All times
are in seconds.

EP 4 Nodes 8 Nodes 16 Nodes

Real Estimated Real Estimated Real Estimated

Computation Time 118.0 110.5 52.0 55.2 28.5 28.5

Standard Deviation 0.1% - 0.2% - 2.8% -

Error - 6.4% - 6.3% - 0.0%

Communication Time 4.5 ×10−4 4.2 ×10−4 7.6 ×10−4 6.3 ×10−4 8.8 ×10−4 8.4 ×10−4

Standard Deviation 14.8% - 10.4% - 8.2% -

Error - 6.3% - 17.3% - 4.6%

Total Execution Time 118.0 110.5 52.0 55.2 28.6 28.6

Standard Deviation 0.1% - 0.2% - 2.8% -

Error - 6.4% - 6.3% - 0.0%

Overhead 8.6 ×10−6 - 1.7 ×10−5 - 3.4 ×10−5 -

operation used in this kernel are the MPI Allreduce() using the binomial tree
algorithm. Table 1 presents the estimated and real computation, communication
and total execution time for EP when running on the homogeneous environment.
In all tables, the overhead represents the sum of the overheads found for each
message size.

Table 2 presents the results obtained by EP when running on a heterogeneous
environment composed by 4, 8 and 16 processors. Each configuration mixes Intel
and AMD CPUs. For example, the configuration that uses 4 processors uses 2
AMD and 2 Intel CPUs.

Tables 1 and 2 show that the model estimates precisely the computation, com-
munication and total execution time of the benchmark. The computation time
has the biggest contributiThe other parameters are size = 4, 251, 528 unitson on

A Parallel Model for Heterogeneous Cluster 85

the total execution time, while the communication time has almost no influence.
The standard deviation and the error for computation time were both below 1% in
Table 1, and below 6.5% in Table 2. In contrast, in both tables the communication
time presented a high standard deviation and error. This occurred because both
real and estimated communication time are tiny, and any fluctuations on these val-
ues imposes an increase on the deviation and error. Nevertheless, one can observe
that the error was less than the standard deviation for all estimations, except the
estimation with 8 nodes in the heterogeneous environment.

FT. The FT benchmark is modeled using the following equation:

Ttotal = I × (Rp + Nop × (P − 1) × (Ld +
M

Bd
+ od)). (2)

For this and the remaining benchmarks, we used the second way to compute
Rp because they do not scale linearly with the number of processors. For this
benchmark, RAMD

p = 3.341 s, I = 20, Nop = 2, P = 2 and M = 67.1 MB for the
first way to compute Rp. The main communication operation used in this kernel
is the MPI AlltoAll() using the pair-wise exchange algorithm. Table 3 presents
the estimated and real computation, communication and total execution time
for FT using the homogeneous environment.

Table 3. Results for the FT kernel using 2 AMD processors. All times are in seconds.

FT Ethernet Infiniband

Real Estimated Real Estimated

Computation Time 64.6 66.8 63.4 66.8

Standard Deviation 1.2% - 1.5% -

Error - 3.4% - 5.3%

Communication Time 30.4 28.7 2.6 2.5

Standard Deviation 2.3% - 7.1% -

Error - 5.4% - 0.2%

Total Execution Time 95.0 96.3 66.1 69.4

Standard Deviation 1.4% - 1.2% -

Error - 1.5% - 5.0%

Overhead 1.0 - 0.1 -

As shown in Table 3, the errors between the real and the estimated computa-
tion and communication time were lower for this benchmark, with values below
5.4%. The error in the prediction of the total execution time was kept low, below
5%. Also, the model accurately predicts the communication time when using the
Infiniband network.

86 T.M. Soares et al.

Table 4. Results for FT kernel using 4, 8 and 16 heterogeneous nodes. All times are
in seconds.

FT 4 Nodes 8 Nodes 16 Nodes

Real Estimated Real Estimated Real Estimated

Computation Time 24.7 26.7 14.3 16.2 7.8 8.7

Standard Deviation 2.5% - 3.1% - 4.2% -

Error - 8.1% - 13.4% - 12.0%

Communication Time 46.7 43.1 52.7 50.3 58.0 54.0

Standard Deviation 3.6% - 2.2% - 0.7% -

Error - 8.0% - 4.4% - 7.0%

Total Execution Time 71.4 72.0 67.0 68.1 65.8 64.1

Standard Deviation 2.6% - 1.9% - 2.0% -

Error - 0.9% - 1.8% - 2.7%

Overhead 2.2 - 1.6 - 1.4 -

Table 4 presents the results for FT running on a heterogeneous environment.
The values of Rp were 1.331 s, 0.811 s, and 0.434 s respectively for P = 4, 8 and
16 nodes. The values of M are 33.5 MB, 16.8 MB, and 8.3 MB respectively
for P = 4, 8 and 16 nodes. All other parameters values were kept. As one can
observe, the values estimated for the computation time were worst than those
estimated for the homogeneous experiment with 2 nodes, although the error on
the estimation of the total execution time were kept low, below 3%.

SP. The SP benchmark is modeled using the following equation:

Ttotal = I × (Rp + Nop × (Ld +
M

Bd
+ od)). (3)

The number of processors used for this application must be a square (1, 4,
9, 16, ...). In this benchmark, we used the second way to compute Rp.

For this experiment, the parameters change depending on the number of
nodes used. For the experiments with 4 nodes, the messages size are: one mes-
sage of length 0.1 MB and Nop = 1; one message of length 0.5 MB and Nop

= 3; and one message of length 0.1 MB and Nop = 3. The Rp value is 1.052 s.
For 9 nodes, the values are: one message of length 0.5 MB and Nop = 1; three
messages of length 0.5 MB and Nop = 6; and three messages of length 0.2 MB
and Nop = 3. The Rp value is 0.473 s. Finally, for 16 nodes the message sizes are
the following: one of length 0.3 MB and Nop = 1; five of length 0.0.35 MB and
Nop = 10; six of length 0.4 MB and Nop = 10; and one of length 0.1 MB and
Nop = 10. The Rp value used for 16 nodes is 0.359 s and I = 400. The main com-
munication operation used in this kernel is the MPI Isend() and MPI Ireceive().
Due to the lack of space, for this application we do not shown the results for the
homogeneous configuration, only for the heterogeneous one (Table 4).

A Parallel Model for Heterogeneous Cluster 87

The large number of messages exchanged is probably responsible for the
error values observed in the estimation of the communication time. However, the
values estimated for the total execution time are very close to the real values,
with all errors below 1% (Table 5).

Table 5. Results for SP kernel using 4, 9 and 16 heterogeneous nodes. All times are
in seconds.

SP 4 Nodes 9 Nodes 16 Nodes

Real Estimated Real Estimated Real Estimated

Computation Time 414.3 420.8 181.4 189.2 130.7 143.6

Standard Deviation 0.2% - 0.1% - 3.1% -

Error - 1.5% - 4.2% - 10.3%

Communication Time 28.0 24.0 83.5 74.0 213.0 188.8

Standard Deviation 3.1% - 0.3% - 0.7% -

Error - 14.1% - 11.4% - 11.4%

Total Execution Time 442.3 445.7 265.9 267.7 343.7 345.4

Standard Deviation 0.3% - 0.1% - 1.0% -

Error - 0.6% - 1.0% - 0.51%

Overhead 0.9 - 4.5 - 13.0 -

HIS. The HIS benchmark is modeled using the following equation:

Ttotal = I × (Rp + Tij), (4)

where i represents the current GPU and j the GPU whose identification
number is equal to the value of i plus one. As can be observed, this equation
uses the second way to compute Rp. Tij represents the border exchange time
between these two GPU and is defined by Eq. 5.

Tij = (Ld +
M

Bd
+ od). (5)

For a mesh of size equal to 150× 150× 150, the values used in our model are
M=1.08 MB and Rp=9.8 × 10−3 s.

Table 6 illustrates that the model successfully predicted, in a homogeneous
environment, the total execution time for both networks. All the errors stayed
below 6%. Again, the biggest error occurs in the estimation of the communication
time in Infiniband, about 10%, but in absolute values the error was low, about
1 s.

A second experiment used three distinct GPUs models: C1060, M2050 and
M2075. Since these hardware present distinct characteristics, a simple load bal-
ancing was used to divide data among all GPUs, in the way described in Sect. 4.

88 T.M. Soares et al.

Table 6. Results for the HIS application using 2 M2075 GPUs and a mesh of size
150 × 150 × 150. All times are in seconds.

HIS Ethernet Infiniband

Real Estimated Real Estimated

Computation Time 91.4 98 91.1 98

Standard Deviation 1.6% - 1.9% -

Error - 7.2% - 7.6%

Communication Time 122.0 116.3 11.6 10.5

Standard Deviation 2.2% - 3.1% -

Error - 4.7% - 9.4%

Total Execution Time 213.4 219.1 102.7 109

Standard Deviation 1.9% - 1.7% -

Error - 2.7% - 6.1%

Overhead 4.8 - 0.5 -

The GPUs with more relative power (M2075 and M2050) received the biggest
chunk of data, while the other GPU (C1060) received the smallest one. The
parameters used in this experiment are: a grid of size 200 × 200 × 200 (size =
80, 000, 000 units), Rp = 1.1 × 10−2 (for 4 nodes) and Rp = 1.0 × 10−2 s (for 8
nodes), I = 10, 000 and M= 1.9 MB. The main communication operations con-
sidered for this application were the MPI Isend() and MPI Receive(). Table 7
presents the results. As can be observed, the error in the estimation of the total

Table 7. Results for the HIS application using 4 GPUs (2 M2075, 1 C1060 and 1
M2050) and 8 GPUs (4 M2075, 2 C1060 and 2 M2050) and a mesh of size 200×200×200.
All times are in seconds.

HIS 4 Nodes 8 Nodes

Real Estimated Real Estimated

Computation Time 95.0 108.0 86.1 99

Standard Deviation 0.3% - 0.7% -

Error - 14.0% - 15.0%

Communication Time 684.6 618.7 1298,1 1443.7

Standard Deviation 0.1% - 0.3% -

Error - 9.6% - 11.2%

Total Execution Time 779.6 761.0 1384.2 1611.3

Standard Deviation 0.1% - 0.3% -

Error - 2.4% - 16.4%

Overhead 34.3 - 68.6 -

A Parallel Model for Heterogeneous Cluster 89

execution time for the configuration with 4 nodes was below 2.5%, but the error
for the configuration with 8 nodes was high, about 16%.

6 Conclusion and Future Works

This paper described a new model that generalizes the LogP model in order to
deal with heterogeneous parallel environments. The model is general and can
be used to describe the computation and communication characteristics of a
parallel application. While the original LogP model were used to guide parallel
algorithm design, the model proposed in this work will be used to find the best
combination of computing units available (accelerators and CPUs) in order to
minimize the execution time of a parallel application. The results have shown
that the model can predict the total computation time of applications with dis-
tinct characteristics, running on distinct devices and interconnected by different
network types. The error found during the estimation of the total execution time
stayed below 6% in all experiments, except for the HIS simulator, where the error
was about 16% when 8 nodes were used in the simulation. As future work, we
plan to better understand the causes of this error. In addition, we plan to: (a)
evaluate the model with more applications, especially those that mix the use
of distinct devices during their computation; and (b) use the model to choose
the data partition and work assignment that minimizes the execution time of an
application.

References

1. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporat-
ing long messages into the logP model one step closer towards a realistic model for
parallel computation. In: Proceedings of the seventh annual ACM symposium on
Parallel algorithms and architectures, pp. 95–105. ACM (1995)

2. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS
parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

3. Bosque, J.L., Pastor, L.: A parallel computational model for heterogeneous clusters.
IEEE Trans. Parallel Distrib. Syst. 17(12), 1390 (2006)

4. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E.,
Subramonian, R., Von Eicken, T.: LogP: towards a realistic model of parallel com-
putation, vol. 28. ACM (1993)

5. Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and appli-
cation availability in high performance network interfaces. In: Mohr, B., Träff,
J.L., Worringen, J., Dongarra, J. (eds.) EuroPVM/MPI 2006. LNCS, vol. 4192,
pp. 331–338. Springer, Heidelberg (2006). doi:10.1007/11846802 46

6. Holt, C., Heinrich, M., Singh, J.P., Rothberg, E., Hennessy, J.: The effects of
latency, occupancy, and bandwidth in distributed shared memory multiprocessors.
Stanford University, Computer Systems Laboratory (1995)

7. Kielmann, T., Bal, H.E., Verstoep, K.: Fast measurement of LogP parameters for
message passing platforms. In: Rolim, J. (ed.) IPDPS 2000. LNCS, vol. 1800, pp.
1176–1183. Springer, Heidelberg (2000). doi:10.1007/3-540-45591-4 162

http://dx.doi.org/10.1007/11846802_46
http://dx.doi.org/10.1007/3-540-45591-4_162

90 T.M. Soares et al.

8. Lastovetsky, A., Mkwawa, I.H., O’Flynn, M.: An accurate communication model
of a heterogeneous cluster based on a switch-enabled ethernet network. In: 12th
International Conference on Parallel and Distributed Systems, ICPADS 2006, vol.
2, p. 6. IEEE (2006)

9. Lastovetsky, A., Rychkov, V.: Building the communication performance model
of heterogeneous clusters based on a switched network. In: IEEE International
Conference on Cluster Computing, 2007, pp. 568–575. IEEE (2007)

10. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems (Classics in Applied Mathemat-
ics Classics in Applied Mathemat). Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA (2007)

11. Martin, R.P., Vahdat, A.M., Culler, D.E., Anderson, T.E.: Effects of communi-
cation latency, overhead, and bandwidth in a cluster architecture, vol. 25. ACM
(1997)

12. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinform. 14(Suppl 6), S7 (2007)

13. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., M. Quintela, B., Macedo, G.C.,
Santos, R.W., Lobosco, M.: A three-dimensional computational model of the innate
immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp.
691–706. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31125-3 52

14. Soares, T.M., Xavier, M.P., Pigozzo, A.B., Campos, R.S., Santos, R.W., Lobosco,
M.: Performance evaluation of a human immune system simulator on a GPU clus-
ter. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 458–468. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-21909-7 44

15. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

http://dx.doi.org/10.1007/978-3-642-31125-3_52
http://dx.doi.org/10.1007/978-3-319-21909-7_44

Comparative Analysis of OpenACC Compilers

Daniel Barba(B), Arturo Gonzalez-Escribano, and Diego R. Llanos

Departamento de Informatica, Universidad de Valladolid, Valladolid, Spain
{daniel,arturo,diego}@infor.uva.es

Abstract. OpenACC has been on development for a few years now. The
OpenACC 2.5 specification was recently made public and there are some
initiatives for developing full implementations of the standard to make
use of accelerator capabilities. There is much to be done yet, but cur-
rently, OpenACC for GPUs is reaching a good maturity level in various
implementations of the standard, using CUDA and OpenCL as backends.
Nvidia is investing in this project and they have released an OpenACC
Toolkit, including the PGI Compiler. There are, however, more develop-
ments out there. In this work, we analyze different available OpenACC
compilers that have been developed by companies or universities dur-
ing the last years. We check their performance and maturity, keeping in
mind that OpenACC is designed to be used without extensive knowledge
about parallel programming. Our results show that the compilers are on
their way to a reasonable maturity, presenting different strengths and
weaknesses.

1 Introduction

OpenACC is an open standard which defines a collection of compiler directives
or pragmas for execution of code blocks on accelerators like GPUs or Xeon Phi
coprocessors. OpenACC aims to reduce both the required learning time and the
parallelization of sequential code in a portable way [1]. OpenACC specification
is currently on its 2.5 version [2], which has been released recently.

OpenACC was founded by Nvidia, CRAY, CAPS and PGI, but now there is a
large list of consortium members, both from the industry and academy, including
the Oak Ridge National Laboratory, the University of Houston, AMD, and the
Edinburgh Parallel Computing Centre (EPCC), among others. The Corporate
Officers are, at the time of writing this paper, from Nvidia, Oak Ridge National
Laboratory, CRAY and AMD. Academic memberships are available to interested
institutions.

There are several compilers supporting OpenACC. The PGI Compiler (from
the Portland Group, which is a subsidiary of Nvidia for some time now) is being

This research has been partially supported by MICINN (Spain) and ERDF program
of the European Union: HomProg-HetSys project (TIN2014-58876-P), CAPAP-H5
network (TIN2014-53522-REDT), and COST Program Action IC1305: Network for
Sustainable Ultrascale Computing (NESUS). Thanks also to Dr. Hector Ortega and
Dr. Javier Fresno for their thoughtful comments, help, and encouragement.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 91–104, 2016.
DOI: 10.1007/978-3-319-49956-7 7

92 D. Barba et al.

distributed as part of the Nvidia OpenACC Toolkit, under a free 90-day trial
license, a free annual academic license, or a commercial license. The PGI Com-
piler uses CUDA or OpenCL as backend. CAPS enterprise, a provider of software
and services for the High Performance Computing community, also developed
a compiler which supports CUDA and OpenCL. However, the company is no
longer in business and its development is not available anymore. CRAY Inc. has
its own OpenACC compiler, available with their computers. It is reported to
be one of the most mature commercial compilers. However, they have not yet
offered an academic or trial license for the purposes of studies like this one. Path-
scale Inc., a compiler and multicore software developer, also made an OpenACC
implementation on their ENZO compiler. Unfortunately, after private commu-
nications they were reluctant to allow us to use their compiler for this study.

There are also several academic attempts of developing an OpenACC com-
piler. In particular, OpenUH [3] developed at the University of Houston, and
accULL [4] from Universidad de La Laguna (Spain). Both of them are available
for free to anyone interested.

This work presents a study about the level of support of OpenACC in
the available compilers, examining their strengths and weaknesses, and giving
insights on their performance.

We analyze the level of maturity of each compiler, in terms of their com-
pleteness in the support of the standard and robustness, using each compiler’s
documentation to check what parts of the specification have been implemented.
We check the support of OpenACC compiler directives with the help of a bench-
mark suite, developed by the Edinburgh Parallel Computing Centre, which will
be described later.

Another aspect to test is the relative performance of the generated code.
For this, we would want to run more complex applications and measure the
differences between the performance of the executable code generated by each
compiler. The ideal situation would be to test applications as close to real
world problems as possible, avoiding synthetic code fragments. Since the use
of OpenACC is not common yet, we have to rely on existing benchmarks. At
this point, comparing the results from OpenACC code with CUDA or OpenCL
direct implementations might seem appropriate, but porting the different bench-
marks to these languages makes the result dependent on human interference, as
the developer’s ability for CUDA programming impacts on the performance.

The experiments conducted in this work were carried out using several bench-
marks. First, the EPCC benchmark suite which contains a group of 13 kernels
ported to OpenACC, called “Level 1” benchmarks. This benchmark suite also
contains three real applications called “Himeno”, “27stencil”, and “le core” [5].
We have also used the Pathscale port of the Rodinia benchmark [6]. We also
wanted to use the OpenACC Validation Testsuite [7] developed by the Univer-
sity of Houston, but at this moment that tool is only available for OpenACC
members.

Comparative Analysis of OpenACC Compilers 93

Our conclusion is that the different compilers are on their way to a reasonable
maturity. However, there is a number of features not fully implemented yet by
some of the compilers.

The rest of this paper is organized as follows. Section 2 describes the selected
compilers. Section 3 shows the characteristics of the benchmark suites chosen,
enumerating some problems encountered when compiling them with the compil-
ers selected. Section 4 contains the result of our analysis, in terms of completeness
of the OpenACC features supported, robustness of compiler implementations,
and relative performance of the generated code. Finally, Sect. 5 concludes our
paper.

2 Available Compilers

In the introduction we mentioned several compilers. In this section we describe
with more detail the compilers we were able to obtain and use for this study, and
we will discuss their installation particularities on our Linux based platform.

2.1 PGI Compiler

The PGI Compiler [8] is being developed by The Portland Group, being owned
by Nvidia. This compiler is widely used in webinars, workshops, and conferences.

The PGI Compiler is, at the time of writing this paper, available for download
as part of the OpenACC Toolkit from Nvidia. This toolkit includes a 90-day free
trial, the possibility of acquiring an academic license for a whole year, or buying
a commercial license.

2.2 accULL

The accULL [4] compiler developed by Universidad of La Laguna (Spain) is an
open source initiative. accULL consists on a structure of two layers contain-
ing YaCF [9] (Yet another Compiler Framework) and Frangollo [10], a runtime
library. YaCF acts as a source-to-source translator while Frangollo works as an
interface providing the most common operations found in accelerators.

2.3 OpenUH

The OpenUH [3] compiler, developed by the University of Houston (USA) is
another open source initiative. It makes use of Open64, a discontinued open-
source optimizing compiler.

3 Benchmark Description

This section describes the different benchmarks used in our work, enumerating
the main characteristics that make them interesting for this study, and any issue
detected during their compilation with the three compilers studied.

94 D. Barba et al.

3.1 EPCC OpenACC Benchmarks

This benchmark suite [11] has been developed by the Edinburgh Parallel Com-
puting Centre (EPCC). The benchmarks are divided in three categories: “Level
0”, “Level 1” and “Applications”. The compiled program launches all the bench-
marks in the suite sequentially. By default, the number of repetitions is ten, and
the result is the average for each benchmark. Time is measured in microseconds
in double precision, using the OpenMP function omp get wtime(). We describe
briefly the benchmarks included bellow:

Level 0. Level 0 includes a collection of small benchmarks that execute single
host and accelerator operations, such as memory transfers.

Level 1. Level 1 benchmarks [12] consist on a series of BLAS-type kernels.
They are based on Polybench [13] and Polybench/GPU kernels. They measure
the performance of executing those codes. These benchmarks are run on the
CPU first in order to have results to compare those obtained on the GPU.

A brief description of the different issues found while running this suite for
these compilers follows.

OpenUH: The following benchmarks cannot be compiled due to unsupported
pragmas present in their code:

kernels if: Problems using #pragma kernels if(0).
parallel private: Problems declaring params as private.
parallel firstprivate: Problems declaring params as firstprivate.
le core: Problems with non scalar pointers.
himeno: Problems with non scalar pointers.

accULL: There is a problem related to a function pointer in the host program.
The compiler, during the source to source translation modifies the syntax of the
function pointer. A double (*test)(void) is converted to a double *(test(void)).
This was solved by manually correcting this change in the intermediate C code
generated, re-compiling the object file and copying it to the main directory to
link all the object files again. No warning from any of the pragmas was detected
so we were able to run all the benchmarks.

3.2 Rodinia OpenACC

Rodinia is a benchmark suite for heterogeneous computing [14,15]. It includes
applications and kernels for multicore CPU or GPU applications.

There is an effort to port existing Rodinia benchmarks for OpenACC. Path-
scale [6] is working on this. We have tested their Rodinia version committed to
GitHub on April 25, 2014. Most of the suite works with PGI, but OpenUH and
accULL have many problems to compile most of the tests. We have been able to
successfully compile the following benchmarks contained in the suite with two
or more compilers: gaussian, nw, lud, cfd, hotspot, pathfinder, and srad2.

Comparative Analysis of OpenACC Compilers 95

4 Evaluation

In this section we analyze the OpenACC compilers, using both documentation
and experimentation. We use each compiler’s documentation to check the com-
pleteness of OpenACC features supported. Then we use the EPCC benchmarks
to check both robustness and relative performance. Finally we check thread-block
size sensibility, measuring the impact on performance of different geometries.

4.1 Experimental Setup

We used a Nvidia GTX Titan Black to run the experiments. This GPU contains
2880 CUDA cores with a clock rate of 980 Mhz and 15 SMs. It has 6 GB of RAM,
and Compute Capability 3.5. The host is a Xeon E5-2690v3 with 12 cores at a
clock rate of 1.9 GHz, and 64 GB in four 12 GB modules.

The PGI compiler is the one contained in the Nvidia OpenACC Toolkit, ver-
sion 15.7-0, published in Jul 13, 2015. We used OpenUH version 3.1.0 (published
in November 4, 2015), based on Open64 version 5.0 and using GCC 4.2.0, pre-
built, downloaded from the High Performance Computing Tools group website
[16]. accULL is version 0.4alpha (published in November 28, 2013), downloaded
from Universidad de La Laguna’s research group “Computación de Altas Presta-
ciones” [17].

4.2 Completeness of OpenACC Features Supported

From each compiler documentation we get some insight on the completeness of
the OpenACC features supported. From this information, we can conclude that
the OpenACC standard is not fully implemented yet by any of the available
compilers. There is work to be done, but the three compilers are at a respectable
maturity level.

4.3 Robustness and Pragma Implementation

The EPCC Benchmark suite contains several benchmarks for testing OpenACC
directives. These benchmarks are contained in the “Level 0” group, which has
been described in the previous section. Table 1 contains the results obtained
for the three compilers. In this section we enumerate the problems with each
benchmark and we explain the results obtained, including the overhead of the
different pragma implementations.

Except for Update host, Kernels Invoc., and Parallel Invoc., the time shown
is the difference between executing and not executing each pragma. When the
overhead is zero (or the pragma is not implemented), the times are very similar,
with minimal stochastic variation. These variations may produce a very small
negative result when calculating the difference. When differences in time are
on the order of tens of microseconds (positive or negative), it can be assumed
that there is no difference in time between the different versions tested in that
benchmark.

96 D. Barba et al.

Table 1. EPCC level 0: directive’s overhead (in µsec), 1 MB dataset

EPCC L0 PGI OpenUH accULL

Kernels if −37.50 Fail 4.54

Parallel if −30.76 −0.48 1237.02

Parallel private −21.94 Fail 51.09

Parallel 1stpriv Fail Fail −213.83

Kernels comb. −1.67 −108.43 −127.17

Parallel comb. −0.05 −2.74 33.38

Update host 478.63 373.22 548.77

Kernels Invoc. Fail 12.76 2398.20

Parallel Invoc. 31.81 13.47 1377.88

Parallel reduct. −14.85 −164.41 −2168.12

Kernels reduct −8.49 −172.31 −2009.11

PGI. There was a problem with the “Kernels Invocation” benchmark: It
returned an incorrect result. The code was not being parallelized and the prag-
mas were ignored because it wasn’t specifically stated that the iterations were
independent. This could be solved adding the keyword restrict to the pointer or
the clause independent to the pragma.

The “kernels if” and “parallel if” results are very similar, and in both cases
the results indicate that the code with the pragma is slightly faster than the
one without it, even though both are being run on the host. In [5] it was stated
that this could be because of optimizations done by the compiler while or after
processing the pragmas.

The “parallel private” benchmark shows that the creation of private variables
for each thread running the loop is slightly faster than the allocation of device
memory.

“Kernels combined” shows a very small difference of time between writing
two pragmas instead of a combined one, the former being slightly faster than
the latter although the difference is almost negligible. The same occurs for the
“parallel combined” benchmark, the difference being smaller in this case.

Finally “Parallel reduction” and “Kernels reduction” show that PGI has very
little overhead for the reduction clause. In [5] it is stated that the PGI compiler
does the reduction even if it is not annotated. This could explain the very small
difference in both benchmarks.

OpenUH. We got some errors during compilation of the “Kernels if”, “Par-
allel private” and “Parallel 1stprivate” benchmarks so they are ignored in this
analysis. However, the “Parallel if” directive is supported and the difference
between using the pragma to run code on the host or running it directly is
almost negligible.

Comparative Analysis of OpenACC Compilers 97

“Kernels combined” shows an overhead of the combined pragma versus the
separated version. However, this is not the case for the “Parallel combined”
benchmark, where the difference is much smaller. The invocation of kernels and
parallel directives are very similar. And for both of them, the reduction adds
a similar overhead. This might be related to OpenUH assuming loops to be
independent inside kernels regions.

accULL. No errors were shown while compiling or running the benchmarks
with accULL. There is a big difference between the two versions contained in
the “Kernels if” and the “Parallel if” benchmarks, where the kernels directive
version has a very small overhead compared to the non-annotated code. This
overhead is very large in the parallel directive version. This is explained by the
accULL developers in [5] where they say that the absence of a loop clause in the
parallel directive is causing the loop to be executed sequentially in each thread.
Therefore, this clause is not correctly supported, as we understand from the
OpenACC Specification that the loop should be executed only on the host.

Robustness Summary. The overall results indicate that some of the clauses
are not implemented yet, but the three compilers are in their way to a reasonable
maturity level and, since the most used directives are working, they can actually
be used for code parallelization using OpenACC.

4.4 Relative Performance of Generated Code

In this section we analyze the performance of the generated code describing the
impact of pragmas overhead in accULL. Performance measurement is divided
into data movement, where we analyze the results of the data movement bench-
marks in Level 0 of EPCC OpenACC Benchmark Suite, and execution perfor-
mance, using Level 1 and Application Level of EPCC OpenACC Benchmark
Suite, and selected benchmarks from Rodinia.

Effect of Pragmas Overhead in accULL. Some results from the Level 0
of the EPCC Benchmark Suite show a performance impact introduced by some
clauses and directives in the accULL generated code.

Kernels and Parallel invocations in accULL have a higher overhead than
other compilers. This is due to the runtime calls and it is specially noticeable in
the reduction clause. These overheads accumulation does not have a significant
impact for complex kernels, or launching the same kernel over and over again.
However, this could be a problem when running simple kernels or many different
small kernels. This is the main reason behind the overall results showing a worse
performance of the accULL compiler in this analysis.

Data Movement. Data movement performance can be measured in four bench-
marks from the Level 0 of the EPCC OpenACC benchmark suite. We have

98 D. Barba et al.

Table 2. EPCC data movement results (in µsec), 1 kB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1kB time norm. time norm. time norm.
ContigH2D 30.827 1.0 322.699 10.47 338.218 10.97
ContigD2H 14.686 1.0 323.319 22.01 343.919 23.42
SlicedH2D 12.087 1.0 310.897 25.72 315.914 26.13
SlicedD2H 14.948 1.0 324.010 21.67 327.714 21.92

GeoMean 18.93 GeoMean 19.58

Table 3. EPCC data movement results (in µsec), 1MB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1MB time norm. time norm. time norm.
ContigH2D 484.347 1.0 950.789 1.96 727.839 1.50
ContigD2H 461.936 1.0 632.691 1.37 792.761 1.72
SlicedH2D 17.094 1.0 267.982 15.68 274.462 16.06
SlicedD2H 36.335 1.0 254.702 7.01 285.685 7.86

GeoMean 4.14 GeoMean 4.24

Table 4. EPCC data movement results (in µsec), 10 MB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 10MB time norm. time norm. time norm.
ContigH2D 4141.402 1.0 6887.984 1.66 3354.666 0.81
ContigD2H 5876.088 1.0 2043.747 0.35 4396.052 0.74
SlicedH2D 27.322 1.0 404.214 14.79 427.203 15.64
SlicedD2H 48.017 1.0 269.818 5.62 280.203 5.84

GeoMean 2.64 GeoMean 2.72

Table 5. EPCC data movement results (in µsec), 1 GB dataset. White cells highlight
the best results. norm. is the normalized result using PGI as reference.

Data Mvmnt PGI OpenUH accULL
10reps, 1GB time norm. time norm. time norm.
ContigH2D 32310.009 1.0 788945.913 24.42 296340.991 9.17
ContigD2H 55179.119 1.0 553282.976 10.03 347280.359 6.29
SlicedH2D 400.066 1.0 535.011 1.34 533.943 1.34
SlicedD2H 158.071 1.0 2818.100 17.83 4294.407 27.17

GeoMean 8.75 GeoMean 6.76

launched 10 repetitions of those benchmarks with datasizes of 1 kB, 1 MB,
10 MB, and 1 GB. The results can be seen in Tables 2, 3, 4, and 5.

In [5] it was stated that PGI used pinned memory and that it was causing
issues in smaller datasets. It seems that PGI has solved this issue since then and,
looking at the documentation, it is now possible to specify the type of memory
access we want with a compilation flag. When using large datasets, OpenUH and
accULL do not show the expected results according to the evolution shown in
Tables 2, 3, and 4. We guess that this is related to the usage of pinned memory
by the PGI Compiler, allowing it to obtain better results when datasets are big
enough.

Comparative Analysis of OpenACC Compilers 99

Table 6. EPCC execution results (in µsec), 1 kB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 1kB time norm. time norm. time norm.

2MM 99.087 1.0 522.304 5.27 2799.229 28.25
3MM 80.204 1.0 380.683 4.75 3799.048 47.37

ATAX 58.103 1.0 327.110 5.63 2564.702 44.14
BICG 72.408 1.0 350.380 4.84 2628.499 36.30
MVT 80.037 1.0 354.743 4.43 2665.299 33.30

SYRK 68.426 1.0 289.512 4.23 2394.803 35.00
COV 87.261 1.0 314.617 3.61 3795.372 43.49
COR 104.976 1.0 337.362 3.21 5208.668 49.62

SYR2K 73.290 1.0 317.574 4.33 2469.765 33.70
GESUMMV 65.613 1.0 312.996 4.77 1500.021 22.86

GEMM 49.710 1.0 323.725 6.51 1237.473 24.89
2DCONV 46.444 1.0 286.174 6.16 1207.528 26.00
3DCONV 45.514 1.0 285.792 6.28 1202.494 26.42

27S 335.884 1.0 432.801 1.29 3273.728 9.75
LE2D 6842374 1.0 * * * *

HIMENO 547939 1.0 * * * *

GeoMean 4.39 GeoMean 24.38

Execution Performance, EPCC Benchmarks. In this section we will ana-
lyze the performance of the code generated by the PGI, OpenUH, and accULL
compilers with the benchmarks contained in the EPCC Level 1 and Application
level. We use three different datasets: 1 kB, 1 MB, and 10 MB. This choice is
based on the fact that bigger datasets result in an out of memory error due to
how the benchmarks try to allocate memory on the device. We suspect the mem-
ory allocation is being done in each thread inside the generated kernels, using
more memory than expected. In summary, PGI code obtains better results in
almost every benchmark. However, the differences shorten when using bigger
datasets.

For datasets of 1kB the results can be seen in Table 6. Benchmarks that fail
to execute with a specific compiler are shown with an asterisk in the table. PGI
code shows a very good performance, followed by the OpenUH code, which also
behaves quite good. accULL is showing slightly worse results because it is paying
a high price in overhead for loading kernels in memory for the first time while
this operation is not required for subsequent kernel calls, or it is less noticeable
on complex kernels where computation is more time consuming. This situation
makes it very hard to compete with other compilers for such small and simple
problems. This issue is less noticeable with bigger datasets.

When using the default dataset size of 1 MB, we can see in Table 7 that the
differences between PGI and the rest are smaller than when a dataset of 1 kB
was used. The increment of time due to the increment of dataset size for these
benchmarks is more noticeable for the PGI compiler and, to a lesser extent, for

100 D. Barba et al.

Table 7. EPCC execution results (in µsec), 1MB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 1MB time norm. time norm. time norm.

2MM 2305.698 1.0 3467.703 1.50 4002.412 1.74
3MM 705.409 1.0 1453.137 2.06 5265.778 7.46

ATAX 484.204 1.0 1222.420 2.52 4212.914 8.70
BICG 502.849 1.0 1256.871 2.50 4229.466 8.41
MVT 538.135 1.0 * * 4355.322 8.09

SYRK 1374.769 1.0 2543.616 1.85 4000.674 2.91
COV 3681.660 1.0 4251.957 1.15 23969.443 6.51
COR 3863.096 1.0 4318.953 1.12 25732.814 6.66

SYR2K 1968.789 1.0 2532.029 1.29 4586.741 2.37
GESUMMV 406.623 1.0 1195.669 2.94 2709.591 6.66

GEMM 1041.651 1.0 23642.850 22.70 3595.218 3.45
2DCONV 1637.363 1.0 1912.236 1.17 2991.542 1.83
3DCONV 9388.137 1.0 9670.520 1.03 10058.497 1.07

27S 2179.599 1.0 2224.064 1.02 8342.865 3.83
LE2D 6861089 1.0 * * * *

HIMENO 540513 1.0 * * * *

GeoMean 1.92 GeoMean 4.11

OpenUH. accULL results are very similar to the results obtained with the first
dataset of 1 kB. Notice the results obtained for the GEMM benchmark with
OpenUH, which is probably being executed sequentially.

For datasets of 10 MB, the results can be seen in Table 8. Some benchmarks,
for example “2MM” and “GEMM”, need unexpected amounts of time. Running
the accULL generated code for 2MM requires one third of the time required by
PGI and OpenUH codes. The GEMM benchmark shows a huge execution time,
probably for the reason described in the previous paragraph.

The 27 stencil application is the only benchmark in the application level that
compiles and runs successfully with all the compilers. It is a representative appli-
cation of stencil codes that uses a three-dimensional neighbour synchronization
pattern. Thus, it is a good representative of a well-known class of applications.
In Fig. 1a we show the execution times obtained for this application in the cho-
sen platform. The results show that one of the compilers cannot produce an
efficient implementation. However, as it is shown in Fig. 1b, all compilers can
derive similar solutions for simpler 3-dimensional stencil codes, as the 3DCONV
benchmark of level one.

Execution Performance, Rodinia. Regarding Rodinia, We should remark
that the compilation presented some problems and there was a very limited
amount of compiled benchmarks to choose from. The performance results can
be seen in Tables 9 and 10. Only the Gaussian benchmark reports results for

Comparative Analysis of OpenACC Compilers 101

Table 8. EPCC execution results (in msec), 10MB dataset. White cells highlight the
best results.

Exec. time PGI OpenUH accULL
10reps, 10MB time norm. time norm. time norm.

2MM 64.407 1.0 64.336 0.99 20.476 0.32
3MM 11.610 1.0 21.113 1.82 30.009 2.58

ATAX 4.345 1.0 7.415 1.71 7.659 1.76
BICG 4.385 1.0 7.397 1.69 7.689 1.75
MVT 4.406 1.0 * * 7.945 1.80
SYRK 26.537 1.0 57.242 2.16 42.834 1.61
COV 117.757 1.0 134.047 1.14 230.241 1.96
COR 120.612 1.0 122.814 1.02 223.836 1.86

SYR2K 23.450 1.0 27.939 1.16 30.062 1.28
GESUMMV 3.567 1.0 7.191 2.02 6.297 1.77

GEMM 17.788 1.0 239.713 13.48 48.567 2.73
2DCONV 7.848 1.0 7.725 0.98 8.687 1.11
3DCONV 40.551 1.0 40.235 0.99 43.729 1.08

27S 9.243 1.0 9.254 1.00 42.389 4.59
LE2D 6863 1.0 * * * *

HIMENO 528 1.0 * * * *
GeoMean 1.59 GeoMean 1.63

Fig. 1. Execution results (in msec).

execution time including and not including memory transfers. Benchmarks that
fail to compile with specific compilers are shown with an asterisk in the table.

Here we can see how the code produced by PGI is not behaving as we would
expect from the results obtained from the EPCC benchmark suite. PGI code
is taking a lot of time in data transfer operations, while OpenUH code is not
expending so much time in those operations. We discovered that the EPCC
Benchmark Suite runs a function which contains an OpenACC pragma in order
to make sure that the accelerator device is awake when the real benchmarks are
run. This does not happen in Rodinia where the first OpenACC section is the
data movement pragma. PGI generated code needs more than two seconds to set
up the accelerator device, whereas OpenUH and accULL don’t need that time.
Beside this, accULL code is having some trouble running Gaussian as the time
is not being spent in data transfer operations, but inside the generated kernels.
We suspect that they might be executing sequential code in the host, due to a

102 D. Barba et al.

Table 9. Rodinia execution time results including memory transfers. Total time (in
msec). White cells highlight the best results.

Exec. time
3 reps

PGI OpenUH accULL

gaussian 2440.206 52.491 15422.944
nw 2640.497 652.180 322.101
lud 3803.756 1723.576 *
cfd 2677.387 0.846 *

hotspot 2386.325 53.219 *
pathfinder 5137.865 34.738 *

srad2 2488.895 692.063 *

Table 10. Rodinia execution results. Kernel time (in msec) not including memory
transfers. White cells highlight the best results.

Kernel time
3 reps

PGI OpenUH accULL

Gaussian 57.345 36.092 15415.992

fail of the compiler or execution run-time to properly use the GPU. However,
accULL obtains the best results in Needle-Wunsch.

Relative Performance Summary. Results indicate a better performance for
the code generated by PGI for the simple codes in the EPCC benchmarks, but
not for the Rodinia applications. OpenUH generated code is not affected by any
noticeable overhead and its performance is very close to PGI code. In order to
analyze accULL code results it is important to take into account the overhead
produced by kernel loading operations. If a bigger input set was used, results
could be much better, but due to limitations on benchmark implementation this
was not possible at this time.

5 Conclusions

During this work, we have realized that both the OpenACC standard and
its compiler implementations are in their way to a reasonable maturity level.
Although many details are still not completely developed, the efforts to arrive
at a solid implementation are promising. Nvidia and PGI are devoting many
resources to this project, and this results in a very competitive and solid com-
piler. However, open-source alternatives are also on a good position. OpenUH
and accULL, being academic implementations, are also very interesting and show
a huge amount of work done by their creators.

Regarding completeness of OpenACC features, according to each compiler’s
documentation, we find that none of them fully support the standard. This was
expected as all of them are still not totally mature.

Comparative Analysis of OpenACC Compilers 103

Speaking about robustness and pragma implementation, PGI shows the best
behaviour, as the errors detected were related to implementation issues of the
benchmark codes instead of a compiler problem. Compared to the others, the
overhead of the implementation is smaller and it even includes some optimiza-
tions when processing pragmas that are going to be executed in the host.

Finally, the performance comparison we have made shows better results for
PGI, but the other alternatives have also shown their strengths. It would also
be interesting to run this performance analysis on several machines and different
GPUs in order to also observe the differences of the execution of the generated
code in different hardware, and this is part of our future work. The lack of
OpenACC benchmark suites makes it very difficult to try different problems
or datasizes. Our work shows that there is a need for real application codes
annotated with OpenACC pragmas to test the actual potential of the current
compiler implementation, as many articles before [5,18,19] have stated. This is
part of our current and future work.

References

1. OpenACC-standard.org, About OpenACC
2. OpenACC-Standard.org, The OpenACC application programming interface ver-

sion 2.5, October 2015
3. Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S., Chapman, B.: Compil-

ing a high-level directive-based programming model for GPGPUs. In: Caşcaval,
C., Montesinos, P. (eds.) LCPC 2013. LNCS, vol. 8664, pp. 105–120. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-09967-5 6

4. Reyes, R., López-Rodŕıguez, I., Fumero, J.J., Sande, F.: accULL: an OpenACC
implementation with CUDA and OpenCL support. In: Kaklamanis, C., Pap-
atheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 871–882.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32820-6 86

5. Grillo, L., de Sande, F., Reyes, R.: Performance evaluation of OpenACC compilers.
In: 2014 22nd Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 656–663, February 2014

6. Pathscale, Rodinia benchmark suite 2.1 with OpenACC port, April 2014. https://
github.com/pathscale/rodinia

7. Wang, C., Xu, R., Chandrasekaran, S., Chapman, B., Hernandez, O.: A valida-
tion testsuite for OpenACC 1.0. In: 2014 IEEE International Parallel Distributed
Processing Symposium Workshops (IPDPSW), pp. 1407–1416, May 2014

8. PGI, Pgi accelerator compilers with OpenACC directives. https://www.pgroup.
com/resources/accel.htm, November 2015

9. Universidad de La Laguna: YaCF, November 2015. https://bitbucket.org/ruyman/
llcomp

10. Universidad de La Laguna: Frangollo, November 2015. https://bitbucket.org/
ruyman/frangollo

11. EPCC, Epcc OpenACC benchmark suite, September 2013. https://github.com/
EPCCed/epcc-openacc-benchmarks

12. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: 2012 Innovative Parallel Com-
puting (InPar), pp. 1–10. IEEE (2012)

http://dx.doi.org/10.1007/978-3-319-09967-5_6
http://dx.doi.org/10.1007/978-3-642-32820-6_86
https://github.com/pathscale/rodinia
https://github.com/pathscale/rodinia
https://www.pgroup.com/resources/accel.htm
https://www.pgroup.com/resources/accel.htm
https://bitbucket.org/ruyman/llcomp
https://bitbucket.org/ruyman/llcomp
https://bitbucket.org/ruyman/frangollo
https://bitbucket.org/ruyman/frangollo
https://github.com/EPCCed/epcc-openacc-benchmarks
https://github.com/EPCCed/epcc-openacc-benchmarks

104 D. Barba et al.

13. Pouchet, L.-N.: Polybench: the polyhedral benchmark suite, July 2012. http://
www.cs.ucla.edu/∼pouchet/software/polybench/

14. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC 2009), pp. 44–54. IEEE
(2009)

15. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A charac-
terization of the Rodinia benchmark suite with comparison to contemporary CMP
workloads. In: 2010 IEEE International Symposium on Workload Characterization
(IISWC), pp. 1–11. IEEE (2010)

16. University of Houston, Open-source UH compiler, November 2015. http://web.cs.
uh.edu/∼openuh/download/

17. Universidad de La Laguna, accULL, November 2015. http://cap.pcg.ull.es/es/
accULL

18. Wienke, S., Springer, P., Terboven, C., Mey, D.: OpenACC — first experiences
with real-world applications. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G.
(eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 859–870. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-32820-6 85

19. Hart, A., Ansaloni, R., Gray, A.: Porting and scaling OpenACC applications on
massively-parallel, GPU-accelerated supercomputers. Eur. Phys. J. Spec. Top.
210(1), 5–16 (2012)

http://www.cs.ucla.edu/~pouchet/software/polybench/
http://www.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.uh.edu/~openuh/download/
http://web.cs.uh.edu/~openuh/download/
http://cap.pcg.ull.es/es/accULL
http://cap.pcg.ull.es/es/accULL
http://dx.doi.org/10.1007/978-3-642-32820-6_85

BigTrust 2016: The 1st International
Workshop on Trust, Security
and Privacy for Big Data

The Research of Recommendation System
Based on User-Trust Mechanism and Matrix

Decomposition

PanPan Zhang(&) and Bin Jiang

College of Computer Science and Engineering,
Hunan University, Changsha, China

994771093@qq.com, jiangbin@hnu.edu.cn

Abstract. Recommendation system is a tool that can help users quickly and
effectively obtain useful resources in the face of the large amounts of infor-
mation. Collaborative filtering is a widely used recommendation technology
which recommends source for users through similar neighbors’ scores, but is
faced with the problem of data sparseness and “cold start”. Although recom-
mendation system based on trust model can solve the above problems to some
extent, but still need further improvement to its coverage. To solve these
problems, the paper proposes a matrix decomposition algorithm mixed with user
trust mechanism (hereinafter referred to as UTMF), The algorithm uses matrix
decomposition to fill the score matrix, and combine trust rating information of
users in the filling process. According to the results of experiment using the
E-opinions Data set, UTMF algorithm can improve the precision of the rec-
ommended, effectively ease the cold start problem.

Keywords: Cold start � Data sparseness � UTMF � Trust mechanism

1 Introduction

With the development of Internet information technology, recommendation system of
information filtering is becoming more and more important and attractive. It is a
specific type of information filtering technology, try to recommend items that users
might be interested in to them, including movies, books, music, news, web pages,
images, etc. The typical filtering recommendation system is base on coordination
algorithm which can recommend by analyzing the similar users and items. Although
recommendation system has been widely studied, many problems still block its
development, such as cold start and data sparseness. Traditional recommendation
system ignores the trust relationship between users, in fact, users are more likely to
focus on their friends’ choose, so the traditional recommendation system is not able to
fully excavate the information of the user-item matrix, and will not produce realistic
recommend results.

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 107–114, 2016.
DOI: 10.1007/978-3-319-49956-7_8

2 Related Literature

With the rapid development of Internet technology, the recommendation system [1] is
widely used in the online network platform. Collaborative filtering [2] is one of the
most widely used recommendation technology, whose method just depends on the user
history score, to calculate users’ similarity and then predict every item’s rating
according to their nearest neighbors, to generate user’s target recommendation. In
recent years, in order to improve the performance of this algorithm, Zhou [3, 4] using
the knowledge of the physical dynamics, put forward recommendation algorithm based
on substance diffusion. LIU [5] also introduced the concept of material diffusion
dynamics into the collaborative filtering algorithm. The accuracy of these kinds of
algorithm is much better than the classical collaborative filtering algorithms; hence
significantly improving the accuracy of recommendation results. However, these
methods encounter date sparsity, cold start and other issues.

In order to make up for the inadequacy of previously developed algorithms, rec-
ommendation system [6, 7] based on the trust model arose. At present, the imple-
mentation of trust mechanisms in recommendation systems is still under further
research. TidalTrust [8] used a modified breadth-first method to calculate trust between
users. Other literature introduced by MoleTrust [9], which is similar to TidalTrust
algorithm but calculates trust propagation distance from the source user to target users
first. This kind of algorithm makes recommendation through calculating the trust value
between source user and target users in the user trust network. These approaches can
explain recommendation more reasonable, plays an important role in overcoming the
data sparsity and easing the cold start problem and improve the accuracy. However, the
method still needs further improvement.

In fact, in the recommendation system based on trust, the source user and the
neighbors they trust tend to share their interests. The researchers found that trust rela-
tionship among has a strong positive correlation with the user’s preference, this method
can effectively reduce the the error of the recommendation. RAY and Mahanti [10] put
forward that, deleting neighbors whose trust value is below the present threshold and
getting a new trust network can improve the recommendation accuracy, but at the
expense of the coverage. According to the above problem in previous methods, this
paper proposes a new recommendation algorithm based on trust mechanism-UserTrust
matrix decomposition algorithm (UTMF).

3 The UTMF Method

3.1 Matrix Decomposition

Matrix decomposition is a way that decompose a matrix into two or more matrix, then
multiply them into a new matrix. It can effectively relieve the data sparseness.

Rm�n � Um�k � Ik�n ¼ R
0
m�n ð1Þ

R represents User-Item matrix, U represents User-Factor matrix, I represents
Factor-Item matrix and R’ represents new predict matrix.

108 P. Zhang and B. Jiang

Different values of k makes a different prediction of score matrix and different error
with real matrix.

3.2 Loss Function

This is needed to calculate the differences between R and matrix UV, and also mini-
mize the difference.

E ¼ min
Xm

i¼1

Xn

j¼1

ðRij � UT
i VjÞ2

 !
ð2Þ

3.3 The Introduction of the Regularization

The method function experiences a problem when decomposing our matrix whereby
the sparsity of the original score matrix is too big, making it difficult to resist the
excessive fitting problem i.e. accommodating some wrong remote values lead to the
entire model’s error. Therefore, through adding a regularization in the objective
function to avoid over fitting problem i.e., in the objective function, using a factor
vector.

L ¼
Xn

i¼1

Xm

j¼1

ðRij � UT
i VjÞ2 þ k1jjUijj2 þ k2jjVjjj2 ð3Þ

k1 is the user factor regularization parameter vector, k2 is the project factor regu-
larization parameter vector.

3.4 The Regularization Parameters

When the data error level is unknown, the function can determine the regular parameter
according to the proposed optimum criterion. The basic idea is: make the regular
parameters and the solution of the rate of change of the parameters and stability level as
small as possible; using the quasi optimum method for calculating the principles as
follows:

aopt ¼ min
a[0

a
dxa

da

����

����
� �

ð4Þ

The calculation method of k1 and k2 is same to aopt.

3.5 Into the User’s Trust Mechanism

In order to minimize the loss function, we introduce the trust mechanism based on
the vector and trust of users in the collection project score vector error analysis.

The Research of Recommendation System 109

Finally, after plus penalty factor into the basis of loss function, form new loss mea-
surement strategy. The benefit is that the method procedure fully considers the influ-
ence of similar users in the iterative process method, and while reducing the influence
of non-affiliated users. This means it can improve the speed and accuracy of matrix
decomposition to a certain extent.

Therefore, the new loss function is as follows:

L ¼
Xn

i¼1

Xm

j¼1

ðRij � UT
i VjÞ2 þ k1jjUijj2 þ k2jjVjjj2 þ

X

d2Si
bTidðUi � UdÞ2 ð5Þ

b is penalty factor, Si is the trusted collection of user, and Tid is the user’s trust
value.

3.6 Iterative Optimization

We use gradient descent algorithm to optimize iterations, whereby the negative gra-
dient direction is used to decide the direction of each iteration, so that each iteration can
be made to optimize the objective function through gradual reductions.

DUi ¼ @L
@Ui

; DVj ¼ @L
@Vj

ð6Þ

Utþ 1
i ¼ Ut

i � aDU; Vtþ 1
j = Vt

j � aDV ð7Þ

t represents iteration times.

4 The Experimental Simulation and Analysis

In order to verify the algorithm proposed in this paper, experiment(s) are conducted
with a E-opinions real data sets; subdivided into 80% training and 20% testing
respectively. The main components of each experiment include: (1) The determination
of the number of potential factors in matrix decomposition; (2) UTMF algorithm
results; (3) Comparison with other algorithms performance.

4.1 Experimental Data Set

This experiment used data from a real data in the E-opinions. The data represents users
expression of their opinions from a website environment whereby, the site allows users
to comment on products such as movies, books, software, etc. In the website, users can
rate products with scores ranging from 1 to 5 points and also at the same time, they can
also make trust rating to other users i.e. trust is 1 and converse is 0. The data set
includes 49,290 users against 39,738 different products; at least having a score. A total
of 664,824 grades were done, and users trust between scores being 487,181.

110 P. Zhang and B. Jiang

4.2 The Experimental Setup and Results

Determination of the number of hidden factor in matrix decomposition:

In collaborative filtering we usually assume that some users, or some items belongs
to a type, and then use type to recommend. Here, we can also assume that class, or
factor. We assume that the user has a certain degree of ‘being fond of’ to a particular
factor, and items has certain degrees of ‘contains’ to a particular factor. The analysis
diagram showing the results suggest that, with the increase in the number of potential
factors, the MAE value is fast falling down to a minimum value and then rise again;
The minimum value of potential factor is different according to different datasets. This
is because the potential factors which influence the users’ choice are fixed. When
decomposition dimension is too small, it leads to smaller prediction precision. When
Matrix decomposition dimension is too large, the uncorrelated noise was introduced,
making the prediction accuracy smaller (Fig. 1).

When the number of iterations nears 30, the MAE’s value is lowest which is
between 0.772 to 0.775. Otherwise, when the number of iterations more than 40, it
begins to show over-fitting phenomenon (Fig. 2).

4.3 UTMF Algorithm’s Performances

Below is a table showing performances of UTMF algorithm and other algorithms
performance comparison under the E-opinions datasets. It shows the values of MAE
and the RC (Rate of Coverage) values of UTMF algorithm. The smaller MAE value
shows that the algorithm accuracy is higher; and the RC value indicates the proportion

Fig. 1. MAE changes along with the potential factors

The Research of Recommendation System 111

that objects recommendation system recommended in total objects. The greater the
coverage rate, the higher the quality of recommendation and the better the performance
of our algorithm (Table 1).

From the experimental results, it can be concluded that the collaborative filtering
algorithm based on substance diffusion has greatly improved accuracy than collabo-
rative filtering algorithm.

Algorithm based on user trust relationship solves the problem of cold start when it
improves the algorithm’s accuracy to some extent. Therefore, the trust mechanism in
the decomposition of matrix can make use of the user’s trust rating information to
enrich the available data and also improve the reliability of recommendation system,
which can further improve the system ability to alleviate cold start problems. Com-
parison experiments’ results shows that the UTMF algorithm’s performance for all
users and cold start users’ accuracy rate is 7.0% and 5.0% higher than the MT3
algorithm. Also, the coverage to all users and cold start users increased by 13.0%,
36.3% than the MT3.

Fig. 2. UTMF MAE value of the algorithm

Table 1. E-opinions the experimental results of RC and MAE.

Algorithm MAE RC
All Users Cold Users All Users Cold Users

UCF 0.860 1.063 51.26 3.22
MD-UCF 0.765 0.946 52.35 3.86
MT1 0.839 0.853 27.34 8.81
MT2 0.849 0.886 59.06 23.54
MT3 0.831 0.829 73.03 41.72
UTMF 0.773 0.788 82.55 56.87

112 P. Zhang and B. Jiang

4.4 Main Program Code

for m = 1:iter
for n = 1:length(Xtraining)

i = Xtraining(n,1) ;
j = Xtraining(n,2) ;
r = Xtraining(n,3) ;
i_trust_set =

trust(find(trust(:,1)==i),2);
i_trusted_set =

trust(find(trust(:,2)==i),1);
h = globalBias + userBias(i) +

itemBias(j) + U(i,:) * V(j,:)';

resid = h - r;
if(isempty(i_trust_set))

U(i,:) = U(i,:)-alpha*(resid.*
V(j,:) + lambda_U.* U(i,:));

else
U(i,:) = U(i,:)-alpha*(resid.*

V(j,:) + lambda_U.* U(i,:)...

+(size(i_trust_set,1).*(beta).*U(i,:)
(beta).*sum(U(i_trust_set,:))));

end
userBias(i) = userBias(i) - alpha

* resid;
itemBias(j) = itemBias(j) - alpha

* resid;
globalBias = globalBias - alpha *

resid;
end
train_predictions = predict(globalBias,

Xtraining(:,1), Xtraining(:,2), U, V, userBias,
itemBias);

test_predictions = predict(globalBias,
Xtest(:,1), Xtest(:,2), U, V, userBias,
itemBias);

train_rmse(m) = rmse(train_predictions,
Xtraining(:,3));

test_rmse(m) = rmse(test_predictions,
Xtest(:,3));

resBetaTrain(t,m) = train_rmse(m);
resBetaTest(t,m) = test_rmse(m);
fprintf('iteration %d, train rmse =

%.4f, validation rmse = %.4f\n', m,
train_rmse(m), test_rmse(m));
end

The Research of Recommendation System 113

5 Conclusion and Future Suggestions

In this paper, the study focused into the concept of modeling trust mechanism based on
the users, through the introduction of trusted users rating information, to improve
prediction accuracy of matrix decomposition and the coverage of cold start users.

Based on real data sets on E-opinions, experimental results showed that UTMF
algorithm achieved higher performances in terms of accuracy and coverage metrics as
compared to other algorithms. Additionally, the proposed algorithmic method solves
the problem of data sparseness and cold start, hence also proving that this algorithm can
give impressive results.

This work focused just on the E-opinions dataset, without fully considering the
larger data sets, and just considered the fusion from user trust mechanism. As a further
study, the next step is focusing on project label similarity which can be merged into the
field of matrix decomposition. Also using a larger data set, the study aims to analyze
and introduced parallel algorithms, which could be able, to a certain extent, improve
the performance of the algorithm.

References

1. Lv, L.Y., Chi, H.Y., Matus, M., et al.: Recommend systems. Phys. Rep. 519(1), 1–49 (2012)
2. Su, X.Y., Khoshgoftaar, M.T.: A survey of collaborative filtering techniques. J. Adv. Artif.

Intell. 2009, 421425 (2009)
3. Zhou, T., Ren, J., Medo, M.: Bipartite network projection and personal recommendation.

Phys Rev E 76(4), 046115 (2007)
4. Zhou, T.: Effect of initial configuration on network-based recommendation. Europhy. Lett.

81(5), 58004 (2008)
5. Liu, J.G., Wang, B.H.: Improved collaborative filtering algorithm via information transfor-

mation. Int. J. Mod. Phys. C 20(2), 285–293 (2009)
6. Massa, P., Averani, P.: Trust-aware recommend systems. In: The ACM Conference on

Recommend Systems, pp. 17–24. ACM Press, Minneapolis (2007)
7. Jamali, M., Ester, M.: Using a trust network to improve top-n recommendation. In: The third

ACM Conference on Recommend Systems, pp. 181–188. ACM, New York (2009)
8. Golbeck, J.: Computing and Applying Trust in Web-based Social Networks. University of

Maryland, Washington D.C. (2005)
9. Massa, P., Averani, P.: Trust metrics on controversial users: balancing between tyranny of

the majority and echo chambers. Int. J. Semantic Web Inf. Syst. 3(1), 39–64 (2007)
10. Ray, S., Mahanti, A.: Improving prediction accuracy in trust-aware recommend systems. In:

The 43rd Hawaii International Conference on System Sciences, pp. 1–9. IEEE Press Hawaii
(2010)

114 P. Zhang and B. Jiang

Traffic Sign Recognition Based
on Parameter-Free Detector

and Multi-modal Representation

Gu Mingqin1(&), Chen Xiaohua1, Zhang Shaoyong1,
and Ren Xiaoping2

1 BAIC Group New Technology Institute,
101300 Beijing, People’s Republic of China

gu_mingqin@hotmail.com,

{chenxiaohua,zhangshaoyong}@baicgroup.com.cn
2 National Institute of Metrology,

100029 Beijing, People’s Republic of China
renxp@nim.ac.cn

Abstract. For the traffic sign that is difficult to detect in traffic environment, a
traffic sign detection and recognition is proposed in this paper. First, the color
characteristics of the traffic sign are segmented, and region of interest is
expanded and extracts edge. Then edge is roughly divided by linear drawing and
miscellaneous points removing. Turing angle curvature is computed according
to the relations between the curvature of the vertices, vertices type is classified.
The standard shapes such as circular, triangle, rectangle, etch are detected by
parameter-free detector. For improving recognition accuracy, two different
methods were presented to classify the detected candidate regions of traffic sign.
The one method was dual-tree complex wavelet transform (DT-CWT) and 2D
independent component analysis (2DICA) that represented candidate regions on
grayscale image and reduced feature dimension, then a nearest neighbor clas-
sifier was employed to classify traffic sign image and reject noise regions. The
other method was template matching based on intra pictograms of traffic sign.
The obtained different recognition results were fused by some decision rules.
The experimental results show that the detection and recognition rate of the
proposed algorithm is higher for conditions such as traffic signs obscured,
uneven illumination, color distortion, and it can achieve the effect of real-time
processing.

Keywords: Parameter-free detector � Curvature � Shape classification �
Multi-modal representation � Traffic sign recognition

1 Introduction

Automatic detection and recognition of road traffic signs is an essential task for reg-
ulating the traffic, guiding and warning drivers or pedestrians. Traffic sign recognition
had attracted a great attention in automatic vehicular technology for their complexity of
detection and recognition from background. Generally, this system mainly can be

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 115–124, 2016.
DOI: 10.1007/978-3-319-49956-7_9

divided in two parts. First, the algorithms tried to extract all regions with possible traffic
sign candidates, termed as detection phase. Second, the previous detected regions were
classified or recognized by special classifier, referred to as classification phase.

The detection phase can be divided in three approaches. Some authors preferred to
detect traffic sign edges information in grayscale image, as they did not consider
obviously reliable color segmentation due to its sensitivity to various factors. A fast
histogram of oriented gradient features [1] was used to detect pedestrian and sign. Edge
image was resulted by edge detection methods such as Sobel [2], Canny [3] operator on
grayscale image and looked for candidate regions of traffic sign. R. Belaroussi et al. [4]
built a geometric model of the image gradient orientation to detect triangular signs.
Nevertheless, these methods were mainly focused on shape analysis and sensitive to
noise. Other approaches analyzed clustering and intelligent feature for extracting
regions of interest(RoI). Features such as Haar, orientation correction [5] and classifiers
such as Adaboost were employed to detect traffic sign in input images. However, the
algorithms expressed a bias against the weak classifier families.

After the initial detection for traffic sign, several RoIs were sent to classification
stage. Typical classification method was template matching [6]. RoIs should be pre-
viously normalized in same size, and matched traffic sign templates in a collected
database by cross correlation. The approach was vulnerable to imperfect traffic sign
regions since the result of the normalized cross correlation was strongly dependent on
the similarity of template and RoIs. The other commonly methods of the classification
were neural network. Lim King Hann et al. [7] applied principle component analysis
(PCA) and Fisher’s linear discriminant (FLD) to extract pictogram discriminant fea-
tures, and proposed RBFNN (Radial Basis Function Neural Networks) based on
Lyapunov stability theory to train and classify features. Neural networks can cope with
large variances, however input data had to be normalized and their time complexity
was high. The same drawback was existed in Support Vector Machine [8]. Other
approaches developed special classification methods, The above methods were either
difficult to recognize traffic sign in urban environments or had high computing com-
plexity. Due to drawbacks of above methods, a novel algorithm was proposed in this
paper.

2 Traffic Sign Detection

In China, traffic signs were designed in standard geometrical shapes such as circle,
octagon, triangle, rectangle, and square with distinctive colors (red, blue, yellow etc.)
Traffic signs in urban and highway scenes carried mass of useful messages for drivers.

2.1 Color Segmentation of Traffic Signs

For obtaining a well segmentation result, each pixel value v ¼ vR; vG; vB½ � in RGB color
space was converted by following formulas:

116 G. Mingqin et al.

Colorredðx; yÞ ¼ minððvR � vGÞ=S; ðvR � vGÞ=SÞ
Colorblueðx; yÞ ¼ minððvB � vRÞ=S; ðvB � vGÞ=SÞ
Coloryellowðx; yÞ ¼ minððvG � vBÞ=S; ðvR � vBÞ=SÞ

8><
>: ð1Þ

where, S ¼ vR + vG + vB; ðx; yÞ was pixel coordinates. Through this transformation,
each distinctive color can be separated from background with only one threshold, i.e.:

Binarycðx; yÞ ¼
1;Colorcðx; yÞ[thresholdc
0;Colorcðx; yÞ� thresholdc

(
ð2Þ

where, c 2 red; blue; yellowf g thresholdc was taken {0.1, 0.1, 0.15} along different
color here. The interested regions of traffic sign were obtained by fixed threshold
segmentation. According to the area and shape, the suitable connected areas of each
binary image were retained.

2.2 Interested Regional Extension and Edge Detection

In order to obtain complete regions of traffic signs, the upper left corner and lower right
corner coordinates of retained regions Ri;c were ðxil;c; yil;cÞ and ðxir;c; yir;cÞ respectively.
Then the height and width of Ri;c are extended to contain complete regions of traffic
signs. The height and width of the original image were set as H,W, respectively. The
top and bottom of Ri;c were extended to Hi;c=4, and left and right were extended to
Wi;c=4.

Then the color image of the extended region was cut from the original image. The
edge of this region was detected by Canny algorithm. Then the outer contour edge of
traffic sign interested region was obtained (Fig. 1).

Candidate regions of blue traffic sign

Candidate regions of red traffic sign

Fig. 1. Interest of Region and edge extracting of traffic sign (Color figure online)

Traffic Sign Recognition Based on Parameter-Free Detector 117

2.3 Specific Shape Judgment and Classification

The shape of traffic signs in China included the regular shape such as circle, triangle,
and rectangle. So the traffic sign shapes were detected by curvature and angle of edge
pixels.

Parameter-free Detector. In the geometric analysis, curvature is composed of curve
derivative, can be calculated by the following formula:

jðtÞ ¼ _xðtÞ€yðtÞ � €xðtÞ _yðtÞ
_x2ðtÞþ _y2ðtÞ� �3=2 ð3Þ

Defined a0ðtÞ ¼ ðx0ðtÞ; y0ðtÞÞ, a00ðtÞ ¼ ðx00ðtÞ; y00ðtÞÞ, as showed in Fig. 2. Then the
directional curvature and values were defined as followed:

jaðtÞ ¼ sign
2 \ G

*

i;G
*

iþ 1

� ���� ���
G
*

i

��� ���þ G
*

iþ 1

��� ��� ¼ aðtÞ � aðt � eÞ
t � ðt � eÞk k

jdðtÞ ¼ a0ðtÞxa00ðtÞy � a00ðtÞxa0ðtÞy
� �.

a0ðtÞk k3

8>>>><
>>>>:

ð4Þ

vx and vy were components of x; y in v 2 R2 respectively. Their differentials were:

a0ðtÞ ¼ aðtÞ � aðt � eÞ
a00ðtÞ ¼ a0ðtÞ � a0ðt � eÞ ¼ aðtÞ � 2aðt � eÞþ aðt � 2eÞ

(
ð5Þ

Once the previous and next points (Pp and Pn) were determined, we obtain two
vectors V1;V2 to compute the angle a:

Fig. 2. Demonstration of curvature of curve

118 G. Mingqin et al.

V1 ¼ Pc � Pp;V2 ¼ Pc � Pn ð6Þ

h ¼ tan�1 V1 � V2

V1k k � V2k k
� 	

ð7Þ

Firstly, edges were split and divided into the corresponding edge. Then the edges
were sorted. Calculate the two edge angle a, and judge turning angle type (Fig. 3):

(1) If turning angle h 2 ½110�
; 130

� �, this point was a vertex of triangle.
(2) If turning angle h 2 ½80�

; 100
� �, this point was a vertex of rectangle.

(3) If turning angle h 2 ½0�
; 60

� �, two edges were fitting straight line of a circle.

Therefore, the shape type can be judged by turning angle value between two
straight, the length of near straight, and vertices location. The final results were showed
in Figs. 4 and 5.

Fig. 3. Illustration of corner validation algorithm

Fig. 4. Turning angle curvature of standard geometry

Traffic Sign Recognition Based on Parameter-Free Detector 119

3 Traffic Sign Recognition

In order to improve recognition accuracy, 2 different recognition techniques
(DT-CWT + 2DICA [9] and intra pictogram recognition) were employed to classify
traffic signs respectively, then their classification results were fused by some decision
rules.

Red triangle sign Edge image Remained straight and

turning angle

Remained straight and

turning angle

Edge imageBlue triangle sign

Fig. 5. Turning angle curvature of traffic signs

(a) The regional image of
circle traffic sign

(b) Edge image

(c) Edge linearization(d) The location of circle
traffic signs

Fig. 6. Localization of candidate region of circular traffic sign (color figure online)

120 G. Mingqin et al.

3.1 DT-CWT + 2DICA

Due to directional advantage, less computation requirement and nearest shift and rotation
invariance, DT-CWT was suitable for traffic sign representation. In order to obtain the
same number of DT-CWT image feature, candidate image of traffic sign was converted
into grayscale image fromRGB, and normalized to 64 � 64 pixels in advance. Two trees
were used for the rows of the image and two trees for the columns in a quad-tree structure
with 4:1 redundancy. The four quad-tree components of each DT-CWT coefficient were
combined by simple arithmetic sum and difference operations to yield a pair of complex
coefficients. This produced six directionally selective subbands for each scale of the
two-dimensional DT-CWT at approximately �15

�
, �45

�
and �75

�
. Synthesis filters

were used to dual-tree complex wavelet transform for obtaining Oi; i ¼ 1; � � � ; 4 repre-
sented synthesis filtering result of six directional selective subbands. Each Oi had been
normalized to unit variance before matrix concatenation v ¼ ðO1; � � � ;O4ÞT :

To reduce the computational complexity, feature matrix v was interlaced sampling
previously. Then a 2DICA algorithm described in [19] was used to reduce dimension
and eliminate redundancy of traffic sign sample feature. The nearest neighbor classifier
was adopted to classify the category of traffic sign.

3.2 Intra Pictogram Extraction and Matching

For extracting intra pictogram, color image CIi;c and binary image BIi;c of candidate
region were processed simultaneously. For prohibition, speed limit or yield signs,
pictogram extractions were affected by red border, since red pixels had approximate
value with black in gray image. Then red border of traffic sign candidate were set 0 in
advance. Assume row� col was size of BIi;c, and IntraI was zero image with same size
of BIi;c. Non-zero elements of each row in binary image BIi;c were found and denoted
their ordinates as yk ¼ yk;1; yk;2; � � � ; yk;N

 �
; k ¼ 1; 2; � � � ; row; N was the number of

non-zero elements. Let Dj�1 ¼ yk;j � yk;j�1; the following rule was adopted to achieve
inner regions of candidate.

IntraIðk; yk;j�1 : yk;jÞ ¼
1; Dj�1 [0

0; otherwise

(
ð8Þ

Region with maximum area in IntraI was labeled and showed in Fig. 6. Then it was
cropped from CIi;c and converted into gray image Gi;c.

Warning, information or direction signs were made up of 2 different representative
colors generally. So CIi;c was only directly converted into grayscale image Gi;c from
RGB color space at preprocessing stage.

Histogram that fell into 256 bins was counted gray value of the intra region. To
obtain the threshold Leveli;c of segmentation, Otsu’s method was employed to auto-
matically perform histogram shape-based image thresholding. Supposed that ðx; yÞ was
the coordinate of inner pixel in candidate region. Since letters or pictograms of red and
yellow traffic sign were generally black, whereas letters or pictograms of blue traffic
sign were white, for red and yellow traffic sign, if Gi;c x; yð Þ \ Li;c, then Ini;c x; yð Þ ¼ 1,

Traffic Sign Recognition Based on Parameter-Free Detector 121

else Ini;c x; yð Þ ¼ 0. Otherwise, for blue traffic sign, if Gi;c x; yð Þ[Li;c, then
Ini;c x; yð Þ ¼ 1, else Ini;c x; yð Þ ¼ 0.

Erosion and dilation by same structuring element were used to eliminate noise
pixels in binary image InBi;c. The following steps performed pictograms extracting:

(1) If one row or column of InBi;c was all 0, then it was removed from InBi;c.
(2) If InBi;c was empty or null, then its output result was labeled as 0, else, go to (3).
(3) Send InBi;c to classifier of template matching, decide whether it belonged to

classes of traffic sign or not and label its corresponding result (class number or 0).

3.3 Fusion of Classification Results

Assumed that the two classification results of three consecutive frames by DT-CWT +
2DICA and intra pictogram +template matching were Dre1;Dre2;Dre3f g; Ire1;f
Ire2; Ire3g; respectively. The following decision rules were used to decision-making:

(1)
OutR1 ¼

Dre;more than 2 valuesDre in Dre1;Dre2;Dre3f g
0; otherwise

(

(2)
OutR2 ¼

Ire;more than 2 values Ire in Ire1; Ire2; Ire3f g
0; otherwise

(

(3)
Out ¼ OutR1;OutR1 ¼ OutR2 \OutR1 6¼ 0\OutR2 6¼ 0

0; otherwise

(

If Out was 0, then this candidate was not a traffic sign, else the traffic sign’s
category OutR1 will be sent to control center to make decision according to traffic
sign’s category.

4 Experiment and Analysis

4.1 Experiment Data

To evaluate traffic sign recognition system, a camera which equipped with a 12 mm
fixed mega-pixel lens with 38.3 � 26.2° field of view was used to face straight ahead
and mounted to the front of car roof. Its resolution and frame rate were 1040 � 1392,
25 fps respectively. Since detection algorithm depended primarily on color, the gain
and shutter speeds were fixed to avoid saturation of the traffic signs, particularly mirror
reflection of sign’s smooth surface.

122 G. Mingqin et al.

4.2 Overall Performance

Figure 7 showed some results of traffic sign recognition using the proposed algorithm.
Detected traffic sign regions were enclosed by yellow boundaries and their recognition
results were demonstrated with small standard pictures below the image.

To test overall performance of algorithm, 5 group video sequences captured from
road scenes in a city were input the proposed recognition system. Table 1 illustrated
their detection and recognition rate, and it showed that overall recognition rate of
proposed algorithm was up to 95.24% at the peak. Experimental results indicated that
the proposed recognition method was robust, effective for classifying traffic signs. False
positive cases were validly reduced because color and shape of traffic sign were
considered in detection stage. At same time, false negative rate slightly decreased with
fusion of different recognition algorithm: DT-CWT + 2DICA and intra pic-
togram + template matching. However, the total recognition rate slightly dropped.

5 Conclusion

This paper introduces a novel algorithm for traffic signs recognition. In detection stage,
the color feature was used to segment the image. Then the interesting regions were
extracted by binarization and geometrical characteristic of regions. The parameter-free
detector can search the given shapes such as circle, triangle, and rectangle in the

Fig. 7. Detection and recognition results of traffic sign in different traffic scenes (Color figure
online)

Table 1. Algorithm performance (%)

Database Video
number

True detection
rate

False negative
rate

False recognition
rate

Recognition
rate

Test1 131 97.23 2.77 3.21 96.57
Test2 145 98.42 1.58 2.93 97.55
Test3 119 96.51 3.49 4.85 95.96
Test4 121 98.26 1.74 2.13 95.29
Test5 132 95.24 4.76 2.37 95.813

Traffic Sign Recognition Based on Parameter-Free Detector 123

extended interesting region. In recognition stage, two different methods are used to
classify the detected traffic sign candidate regions for improving recognition accuracy.
One method mixes DT-CWT, 2DICA and nearest neighbor classifier to classify traffic
sign candidate and reject noise image. It can effectively extract features of candidate
region, eliminate feature’s redundancy and fast classify traffic sign. The other method is
template matching based on intra pictograms of traffic sign. It employs color and RoIs
analysis to extract intra pictograms and matches intra pictograms of test image with
template database to recognize traffic sign. At the output stage, the result which fuses
previous 2 different recognition results by some decision rules is output. Experimental
results show that overall rate of proposed algorithm is more than 95%. These indicate
that the proposed recognition method can classify traffic signs robustly, effectively, and
nearly real-time in urban scenes.

References

1. Overett, G., Petersson, L., Andersson, L., et al.: Boosting a heterogeneous pool of fast hog
features for pedestrian and sign detection. In: IEEE Intelligent Vehicles Symposium, Xi’an,
China, pp. 584–590. IEEE, Piscataway, USA (2009)

2. Nunn, C., Kummert, A., Muller-Schneiders, S.: A two stage detection module for traffic
signs. In: 2008 IEEE International Conference on Vehicular Electronics and Safety,
Columbus, OH, USA, pp. 248–252. IEEE, Piscataway, USA (2008)

3. García-Garrido, M.Á., Sotelo, M.Á., Martín-Gorostiza, E.: Fast road sign detection using
hough transform for assisted driving of road vehicles. In: Moreno Díaz, R., Pichler, F.,
Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 543–548. Springer,
Heidelberg (2005). doi:10.1007/11556985_71

4. Belaroussi, R., Tarel, J.: Angle vertex and bisector geometric model for triangular road sign
detection. In: 2009 Workshop on Applications of Computer Vision, Snowbird, UT, USA,
pp. 1–7. IEEE, Piscataway, USA (2009)

5. de la Escalera, A., Armingol, J.M., Pastor, J.M., et al.: Visual sign information extraction
and identification by deformable models for intelligent vehicles. IEEE Trans. Intell.
Transp. Syst. 5(2), 57–68 (2004)

6. Hann, L.K., Phooi, S.K., Minn, A.L.: Intra color-shape classification for traffic sign
recognition. In: 2010 International Conference of Computer Symposium, Tainan, Taiwan,
pp. 642–647. IEEE, Piscataway, USA (2010)

7. Maldonado-Bascón, S., Lafuente-Arroyo, S., Gil-Jiménez, P., et al.: Road-sign detection and
recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 8(2), 264–
278 (2007)

8. Akinlar, C., Topal, C.: EDCircles: a real-time circle detector with a false detection control.
Pattern Recogn. 46(2013), 725–740 (2013)

9. Topal, C., Akinlar, C.: Edge drawing: a combined real-time edge and segment detector.
J. Vis. Commun. Image Represent. 23(2012), 862–872 (2012)

10. Zi-Xing, C., Ming-Qin, G.: Traffic sign recognition algorithm based on shape signature and
dual tree-complex wavelet transform. J. Central S. Univ. Technol. (English Edition) 20(4),
433–439 (2013)

11. Selesnick, W., Baraniuk, R.G., Kingsbury, N.C.: The dual-tree complex wavelet transform.
IEEE Sig. Process. Mag. 22(6), 123–151 (2005)

124 G. Mingqin et al.

http://dx.doi.org/10.1007/11556985_71

Reversible Data Hiding Using Non-local Means
Prediction

Yingying Fang and Bo Ou(B)

College of Computer Science and Electronic Engineering, Hunan University,
Changsha 410082, China

{201308060210,oubo}@hnu.edu.cn

Abstract. In this paper, we propose a prediction-error expansion based
reversible data hiding scheme by incorporating non-local means (NLM)
prediction. The traditional local predictors reported in literatures rely on
the local correlation and behave badly in predicting textural pixels. To
remedy this, we propose to use NLM to achieve better prediction in tex-
ture regions and globally utilize the potential self-similarity contained
in the image itself. More specifically, the textural pixels distinguished
by its local complexity are predicted by NLM while the smooth pix-
els having high local correlation are predicted by a local predictor. The
incorporation of NLM makes the proposed method possible to achieve
accurate predictions in both smooth and texture regions. Optimal para-
meters in the method are obtained by minimizing the prediction-error
entropy. Experimental results show that the proposed method can yield
an improvement compared with some state-of-the-art methods.

Keywords: Reversible data hiding · Non-local means · Image similarity

1 Introduction

With the wide applications of digital multimedia and the Internet, digital data
hiding was introduced as a technique for embedding extra information to covers
such as image, audio and video for their notation, copyright protection, integrity
authentication, etc. However, a drawback is that the insertion of information may
bring out permanent degradation on original data even though they are usually
imperceptible to the human visual system, which is intolerant for original data
in some sensitive fields such as medical and judical imagery, etc. To meet such
special requirement, the reversible data hiding to losslessly recover both the
embedded and original data was proposed.

Basically, various reversible data hiding algorithms could be classified into
four types: compression based, integer transform based, histogram shifting (HS)
based and prediction-error expanding (PEE) based algorithms. Compression
based algorithms [1] are mainly implemented by compressing the host data to
save space for data embedding. Integer transform based algorithms [2–4] trans-
form pixel pairs by reversible integer transforms and embed bits in the transform
c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 125–135, 2016.
DOI: 10.1007/978-3-319-49956-7 10

126 Y. Fang and B. Ou

coefficients i.e. a well-known difference expanding (DE) proposed by Tian where
features are the differences between two neighboring pixel. HS based algorithms
[5,6] embed data into the pixels with the most occurrences in a special statistical
quantity histogram (such as prediction-error histogram), and consequently splits
the peak bin into two adjacent bins. Established on HS, PEE based algorithms
[7–10] embed secret data according to such feature histogram, but it further
incorporates difference expanding as its embedding modification. It divides the
feature histogram into the inner and outer regions, and embeds data bits into
inner-region pixels while shifting the outer-region ones. Regarded as a general-
ized version of DE and HS, larger embedding capacity can be achieved by this
construction due to its good capability of capacity control and potential to well
utilize the image correlation.

Up to now, PEE still attracts much attention of researchers to improve its
performance by developing new prediction algorithms or histogram shifting man-
ner in the two procedures of its mechanism: (1) to find an appropriate predictor,
which shows an invariant relationship between the host and modified data, to
generate the statistical quantity histogram and guarantee the reversibility, and
(2) design an embedding strategy to optimize the histogram modification. With
respect to prediction, the conventional PEE only focuses on exploiting local
redundancies but neglects the utilization of non-local correlation of the whole
image. This results in bad performances for highly textural images. From this
point of view, PEE could be further improved.

In this paper, we propose an efficient reversible data hiding scheme in two
following aspects:

– NLM prediction: The fact that natural images have much redundancy allows
us to find many similar patches within the same image [11]. In fact, NLM
can also be well incorporated into PEE to take advantage of such similarity
of images. In NLM, a pixel p can be predicted by averaging the values of far
away pixels whose neighborhoods resemble those of p. In this way, we can take
advantage of the overall correlation of an image to obtain accurate predictions
even for texture images.

– Adaptive prediction: The local and non-local predictors are combined to pre-
dict pixels according to the local complexity. Only the relative textural pixels
with a certain amount of non-local similar patches are predicted by NLM.
This action helps to maximize the benefits of NLM on textural pixels without
causing worse predictions in smooth regions and reducing the computational
complexity at the same time. The two kinds of predictors are switched adap-
tively without any extra flag bits.

The rest of this paper is organized as follows. The PEE technique is briefly
introduced in Sect. 2. The details of the proposed algorithm are described in
Sect. 3. The experimental results and performance comparison are discussed in
Sect. 4. Finally, conclusions are made in Sect. 5.

Reversible Data Hiding Using Non-local Means Prediction 127

2 Background

In this section, we will briefly review the mechanism of PEE based works in two
phases: embedding and extraction.

In PEE, the secret data bits are concealed into pixels based on the prediction-
error histogram. Such a histogram obeys a Laplace-Gaussian like distribution
with the highest occurrence near zero value. It is well known that the more
sharply distributed the prediction-error histogram, the better performance PEE
gains. For a given pixel p, the prediction value p̂ is calculated based on the
neighboring pixels in conventional PEE predictors (such as MED [7], Mean [9]
and GAP [10]):

p̂ = Θ(p), (1)

where the prediction function Θ(·) returns an integer-valued prediction. The
prediction-error is obtained as e = p − p̂. For each pixel, if e ∈ [Tl, Tr), it will
be regarded as an inner one and embedded one bit through the prediction-error
expansion ew = 2e + b, where Tl, Tr are two parameters determined by the
payload, b is a to-be-embedded data bit 0/1 and ew is the embedded prediction-
error; else, if e ∈ (−∞, Tl) ∪ [Tr,+∞), it is taken as an outer one and shifted
outwards Tl/Tr to create vacancy bins in the prediction-error histogram. Usually,
we assume that Tl < 0 and Tr ≥ 0. The larger the payload size, the bigger the
value |Tr − Tl|. In summary, the embedded pixel pw is generated as

pw =

⎧
⎨

⎩

p + e + b, e ∈ [Tl, Tr);
p + Tr , e ∈ [Tr,+∞);
p + Tl , e ∈ (−∞, Tl).

(2)

After PEE embedding, the prediction-error of inner and outer pixels are conse-
quently changed to ew ∈ [2Tl, 2Tr) and ew ∈ (−∞, 2Tl) ∪ [2Tr,∞), respectively.
In terms of the definition of mean square error MSE =

∑
(pw − p)2, the embed-

ding distortion is determined by e, i.e. the smaller e, the less distortion for the
same payload.

During data embedding, some pixel values may be outside of the range of
the gray-scale image, e.g. [0, 255], after modifications. To avoid such an over-
flow/underflow problem, a possible solution is to let these problematic pixels keep
unchanged and mark them in the location map for the distinction at decoder.
The location map should be transmitted as a part of side information to the
decoder as well, and weakens the PEE performance to some extent as it con-
sumes the embedding capacity. Fortunately, in practice the size of location map
is affordable even without compression, because the maximum modifications on
pixels in PEE are usually small for a huge payload size and the boundary pixels
are few in natural images.

In the decoding phase, the side information is extracted in advance to help
the decoder regain the prediction and distinguish the problematic pixels. Then
the embedded prediction-error is obtained as ew = pw − p̂. After generating the

128 Y. Fang and B. Ou

embedded prediction-error histogram, the inner and outer pixels can be classified
with the help of Tl and Tr, and the original prediction-error e is recovered as

e =

⎧
⎨

⎩

⌊
ew

2

⌋
, ew ∈ [2Tl, 2Tr);

ew − Tr, ew ∈ [2Tr,∞);
ew − Tl, ew ∈ (−∞, 2Tl),

(3)

where �·� is the floor function. Accordingly, the pixel is restored in the inverse
manner of embedding: p = p̂ + e. For the inner pixels whose ew ∈ [2Tl, 2Tr), the
secret data bits are extracted by b = ew − 2

⌊
ew

2

⌋
until the payload size is met.

Finally, both the original image and the secret data are recovered.

3 Proposed Algorithm

3.1 Non-local Means Prediction

In general, the prediction of a pixel is based on its neighboring pixels but neglects
that some non-local patches can be applied to achieve better prediction. The
benefit of NLM prediction is that it can provide extra correlation between pixels
when the local correlation are somehow limited, and is therefore important for
the prediction of textural pixels. Here, the double embedding pattern introduced
by Sachnev et al. [9] is employed as shown in Fig. 1(a) and the diagram of NLM
prediction is illustrated in Fig. 2.

Fig. 1. (a) The double layer embedding, where the pixels are classified into two sets
denoted by square and circle accordingly, (b) The basic patch unit in NLM.

A patch Pi,j , is regarded as a combination of the central pixel pi,j and its
neighboring vector V(pi,j) = (pi−1,j , pi+1,j , pi,j−1, pi,j+1) as shown in Fig. 1(b),
which can be used to assess the similarity of two pixels. The NLM prediction
NL(pi,j) is given by the expression:

NL(pi,j) =
1∑

k

wk

∑

p̃k∈P̃k

wkp̃k (4)

Reversible Data Hiding Using Non-local Means Prediction 129

Fig. 2. The framework of NLM prediction.

Fig. 3. The self-similarity of Lena for different Tsim, where the pixel having the similar
non-local patches is marked white: (a) Tsim = 0, (b) Tsim = 10.

where the sign “∼” represents a non-local element and wk is the weighted value
determined by the similarity between the current patch Pi,j and the non-local
one P̃k. The similarity between V(p̃k) and V(pi,j) is measured by the norm-2
distance as

dk = ‖V(p̃k) − V(pi,j)‖2. (5)

With the set of a similarity threshold Tsim, the patch with the distance below
Tsim is judged to be similar to the current one while larger distance signifies that

130 Y. Fang and B. Ou

this dissimilar patch is not suitable for the prediction. Based on such partition,
the associated weight wk of each non-local patch can be adaptively assigned as

wk =
{

1, dk ≤ Tsim

0, dk > Tsim.
(6)

Referring to (4), the prediction of pi,j equals to the average value of those
center-placed pixels in similar non-local patches. The pixel p̃k is assumed to
be the similar non-local pixel with a small distance neigbor vetor to the to-be
predicted pixel pi,j . As the self-similarity is illustrated in the example Fig. 3, it
shows that some basic structures are repeated dispersedly in the whole image
and can be described by its homogeneous patches for prediction. Besides, as a
result of the forwarding characteristic, an intuitive inference is that more non-
local similar patches can be found at the beginning of data hiding than at the
end as pixels are processed (Fig. 4).

−60 −40 −20 0 20 40 60
0

500

1000

1500

2000

2500

3000

3500

4000

Prediction error

O
cc

u
rr

e
n

ce

Lena: texture pixels

NL−mean
Local−mean

Fig. 4. The prediction-error histograms of textural pixels for Lena image, where TLV

and Tsim in NLM are set as the optimal values.

For smooth pixels, we use a local predictor for prediction, i.e., the local mean
M(pi,j),

M(pi,j) =
pi−1,j + pi+1,j + pi,j−1 + pi,j+1

4
. (7)

3.2 Adaptive Prediction

To determine the class of predictor to a pixel, the local variance of a pixel
LV (pi,j) is computed to measure the local complexity, where LV (pi,j) =√

1
4

∑4
k=1 (vk(pi,j) − M(pi,j))

2
and vk(pi,j) is the element in neighbor vector

V(pi,j). Note that LV (pi,j) is constant both in the embedding and extraction
phases. Then for a specific threshold TLV , the pixels with LV (pi,j) ≤ TLV are

Reversible Data Hiding Using Non-local Means Prediction 131

referred to as smooth ones, while the others with LV (pi,j) > TLV are referred
to as textural ones. Now the pixel pi,j can be predicted as follows:

p̂i,j =
{

NL(pi,j), LV (pi,j) > TLV and
∑

wk ≥ 1
M(pi,j) , else,

(8)

0 5 10 15 20 25 30

2.8

2.85

2.9

2.95

3

3.05

Tsim

E
n

tr
o

p
y

Lena

TLV = 0

TLV = 4

TLV = 6

TLV = 8

TLV = 10

Fig. 5. The entropy of prediction-error histogram in the single layer embedding (only
“square” pixels are used for embedding).

where
∑

wk = 0 indicates that no similar patch is available for NLM. The
distribution of prediction-error histogram is measured by the entropy as

E(Tsim, TLV) = −
∑

e

pr(e) ln(pr(e)), (9)

where pr(·) denotes the probability of an element, the prediction-error e =
p − round(p̂) and the function round(·) rounds the element into the nearest
integer. So, the task of performance optimization is to estimate the best para-
meters {T ∗

sim, T ∗
LV } which generate the smallest E(Tsim, TLV) of prediction-error

histogram from a given image:

{T ∗
sim, T ∗

LV } = arg min
Tsim,TLV ≥0

E(Tsim, TLV). (10)

Here, an exhaustive search before embedding is adapted to find the solution
of (10). Figure 5 gives an example that the entropy varies from TLV and
Tsim in a single layer embedding, where the minimum one is found by the
full search. To ease the computation complexity in double layer embedding,
the parameters of “circle” and “square” pixels (denoted by 1st layer and 2nd

layer, respectively) are selected similarly. That is to say, the optimal parame-
ters of 2nd layer can be empirically chosen in the nearby range of T 1st

LV , T 1st
sim as

T 2nd

LV ∈ [T 1st

LV −ΔT, T 1st

LV +ΔT], T 2nd

sim ∈ [T 1st

sim −ΔT, T 1st

sim +ΔT], where ΔT is the

132 Y. Fang and B. Ou

window size. In fact, compared to the minimum entropy, the difference between
the suboptimal and optimal entropy is negligible as shown in Fig. 5. Further-
more, a greedy-like algorithm could be applied to further reduce the complexity
in both layers.

After finding the opitimal T ∗
sim and T ∗

LV by an exaustive search, we mod-
ify the derived optimal adaptive-prediction-error histogram to embed data bits
according to PEE. To help the extraction work performed directly,the side infor-
mation including threshold parameters Para, the size of secret data bits C and
the compressed location map L with the length LL is necessary to be imbeded.
Thus the payload size PL = S + LL + C, while the total size of the side infor-
mation is S = Para + �log2C� + �log2LL� + L bits. Note that S is concealed in
the LSB of the first S pixels and these pixels are excluded from the embedding
and extraction procedures, and both layers are assumed to be embedded with a
half payload.

4 Experimental Results

In this section, we will evaluate the performance of the proposed method and
compare it with the state-of-the-art methods. Specifically, four types of reversible
data hiding algorithms including Hu et al.’s [8], Sachnev et al. [9], Luo et al.’s [6]
and Wang et al. [3] are compared. Such algorithms are based on DE, PEE, HS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
32

34

36

38

40

42

44

46

48

50

52

54

56

58

Embedding Rate (bpp)

P
S

N
R

(d
B

)

Lena

NLM

Hu et al.

Luo et al.

Wang et al.

Sachnev et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

Embedding Rate (bpp)

P
S

N
R

(d
B

)

Baboon

NLM

Hu et al.

Luo et al.

Wang et al.

Sachnev et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
34

36

38

40

42

44

46

48

50

52

54

56

58

60

Embedding Rate (bpp)

P
S

N
R

(d
B

)

Airplane

NLM

Hu et al.

Luo et al.

Wang et al.

Sachnev et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

Embedding Rate (bpp)

P
S

N
R

(d
B

)

Barbara

NLM

Hu et al.

Luo et al.

Wang et al.

Sachnev et al.

Fig. 6. Performance evaluation of the proposed method compared with other methods
over standard test images.

Reversible Data Hiding Using Non-local Means Prediction 133

0 0.2 0.4 0.6 0.8 1
5

6

7

8

9

10

11

12

13
x 10

4

Embedding Rate (bpp)

O
c
c
u

rr
e

n
c
e

Texture pixels in 2
nd

 layer embedding

Lena

Baboon

Airplane

Barbara

Fig. 7. The quantity of textural pixels in 2nd layer varying with the embedding rate.

and integer transform, respectively, and termed as Hu-DE, Sa-PEE, Luo-HS and
Wang-IT, respectively. The tests are enforced on four 512 × 512 sized standard
images including Lena, Baboon, Airplane and Barbara. Before going any further,
the definitions of texture complexity and self-similarity are introduced to better
illustrate our experimental results.

Definition 1. For a H × W sized image, the textural complexity of an image,
denoted by TC, is calculated as the mean values of all local variances as

TC =
1

(H − 2) × (W − 2)

H−1∑

i=2

W−1∑

j=2

LV (i, j), (11)

where H,W are the height and width of the image, respectively. Obviously, TC
decreases with the smoothness of the image.

Definition 2. The self-similarity of an image SS is defined to count the quantity
of pixels which have non-local patches with identical neighborhood, i.e. Tsim = 0.

The capacity-distortion comparisons between the proposed method and the
above five methods are depicted in Fig. 6. It can be seen that our method sig-
nificantly outperforms Hu-DE, Sa-PEE, Luo-HS since the proposed adaptive-
prediction-error histogram is more sharply distributed than theirs. For Sa-PEE,
it employs the sorting technique to approximately arranges the magnitude of
prediction-error in a descending order, which helps to reduce the distortion at
low embedding rates. Compared with Sa-PEE, our method is slightly lower than
Sa-PEE at low embedding rates, but make gains at the high embedding rate
varying with the image type. To verify the superiority of NLM prediction, we
can also utilize the sorting technique to further improve the performance of the
proposed method as shown in Fig. 6. Besides, ours performs better for a huge
payload because the 2nd layer goes textural when 1st layer is excessively embed-
ded as shown in Fig. 7.

134 Y. Fang and B. Ou

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
28

30

32

34

36

38

40

42

44

46

48

50

Embedding Rate (bpp)

P
S

N
R

(d
B

)

Texture 1

NLM
Sachnev et al.

(b)

Fig. 8. The comparison of performance-capacity curve on the textural image. (a) Test
image (b) Performance comparison

Furthermore, another experiment is designed to demonstrate the superior-
ity of our proposed method on texture images. A textural image in USC-SIPI
image database (http://sipi.usc.edu/database/) is tested (see Fig. 8(a)), and the
corresponding capacity-distortion curve is given in Fig. 8(b). The test image is
with strong texture or periodic structure, i.e., TC is very high, meaning that
they are weak in local correlation but still possess the redundancy overall. It is
seen that the image is highly textural with tiny fragments while the others con-
sist of bigger and regular fragments. By comparison, it shows that our method
outperforms Sa-PEE especially for the images with tiny fragments, which also
indicates that NLM prediction is more robust to local noise if the image consist
of the repeated structures.

5 Conclusions

In this paper, we improve the conventional predictors in reversible data hiding
schemes by using non-local means. Unlike the conventional predictors wholly
dependent on the local correlation, the non-local pixels can be used of the pre-
diction of the current one by globally utilizing the self-similarity in an image.
Thus, our method achieve a deeper histogram exploiting the overall redundancy
of the whole image. Compared with the state-of-the-art methods, the experimen-
tal results demonstrate that our method provides a good embedding performance
especially for texture images.

Acknowledgement. This work is supported by the National Science Foundation of
China (Nos. 61502160, 61472131, 61272546), Science and Technology Key Projects of
Hunan Province (2015TP1004).

References

1. Celik, M.U., Sharma, G., Tekalp, A.M., Saber, E.: Lossless generalized-LSB data
embedding. IEEE Trans. Image Process. 14(2), 253–266 (2005)

http://sipi.usc.edu/database/

Reversible Data Hiding Using Non-local Means Prediction 135

2. Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans.
Circuits Syst. Video Technol. 13(8), 890–896 (2003)

3. Wang, X., Li, X., Yang, B., Guo, Z.: Efficient generalized integer transform for
reversible watermarking. IEEE Signal Process. Lett. 17(6), 567–570 (2010)

4. Coltuc, D.: Low distortion transform for reversible watermarking. IEEE Trans.
Image Process. 21(1), 412–417 (2012)

5. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits
Syst. Video Technol. 16(3), 354–362 (2006)

6. Luo, L., Chen, Z., Chen, M., Zeng, X., Xiong, Z.: Reversible image watermarking
using interpolation technique. IEEE Trans. Inf. Forens. Security 5(1), 187–193
(2010)

7. Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible
watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

8. Hu, Y., Lee, H.K., Li, J.: DE-based reversible data hiding with improved overflow
location map. IEEE Trans. Circuits Syst. Video Technol. 19(2), 250–260 (2009)

9. Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking
algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol.
19(7), 989–999 (2009)

10. Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive
prediction-error expansion and pixel selection. IEEE Trans. Image Process. 20(12),
3524–3533 (2011)

11. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising. In:
IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65,
June 2005

Secure Data Access in Hadoop Using Elliptic
Curve Cryptography

Antonio F. Dı́az(B), Ilia Blokhin, Julio Ortega, Raúl H. Palacios,
Cristina Rodŕıguez-Quintana, and Juan Dı́az-Garćıa

Department of Computer Architecture and Technology, University of Granada,
Granada and Andalusian Health Service (SAS), Granada, Spain

{afdiaz,jortega,raulhp,crodriguez}@ugr.es, djnib@correo.ugr.es,

juan.diaz.sspa@juntadeandalucia.es

Abstract. Big data analytics allows to obtain valuable information from
different data sources. It is important to maintain control of those data
because unauthorised copies could be used by other entities or companies
interested in them. Hadoop is widely used for processing large volumes
of information and therefore is ideal for developing big data applications.
Its security model focuses on the control within a cluster by preventing
unauthorised users, or encrypting data distributed among nodes. Some-
times, data theft is carried out by personnel who have access to the
system so they can skip most of the security features. In this paper, we
present an extension to the Hadoop security model that lets control the
information from the source, avoiding that data can be used by unautho-
rised users and improving corporative e-governance. We use an eToken
with elliptic curve cryptography that performs a robust operation of the
system and prevents from being falsified, duplicated or manipulated.

Keywords: Hadoop · Big data · Security · Elliptic curve cryptography

1 Introduction

Processing large volumes of data requires specific tools that are optimised to
manage them. Big Data paradigm opens up new possibilities and challenges to
manipulate information in a efficient and safe way.

Traditional data analytics may not be able to handle such large quantities of
data. Big data applications process data sets whose size is far beyond the capa-
bilities of typical databases, storage, management and information processing.

In a basic configuration, data can be stored locally and accessible by only few
users so that, it is a straightforward task how to restrict access. However, the
big data scenario is more complex because there might be various data sources,
multiple processing nodes and storage as well as a large number of users who

A.F. Dı́az—This work has been partially supported by European Union FEDER and
the Spanish Ministry of Economy and Competitiveness TIN2015-67020-P, FPA2015-
65150-C3-3-P, and PROMEP/103.5/13/6475 UAEH-146.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 136–145, 2016.
DOI: 10.1007/978-3-319-49956-7 11

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 137

can access to the information, making it difficult to maintain data security at
all stages. A current big data processing model is based on data providers that
send the information to companies that process their data. If a valuable source
believes that its data can not be copied, it should study what mechanisms have
to be added to guarantee their safety.

Hadoop [2] is a versatile Java-based system used for processing big data.
It solves the problem of storing data and distribute processing across multiple
nodes allowing it to scale computing capacity. It can work with thousands of
nodes and terabytes of data. Its distributed file system (HDFS) offers seamless
transfer of data between nodes and the system can continue operating without
interruption even if a node fails.

Hadoop consists of a distributed file system, a platform for analysis and data
storage and a layer that manages parallel computing and administrative tools.
Figure 1 shows the overall architecture of Hadoop, where the most significant
elements are:

– HFDS: Fault tolerant distributed file system.
– YARN: It provides computing resources necessary for running applications.
– MapReduce: Data processing distribution mechanism among nodes.
– HBase: NoSQL database for data column.
– Pig: High level data-flow language that simplifies MapReduce programming.
– Hive: Data query application.
– Sqoop: It allows data transference between relational databases and Hadoop.

Fig. 1. Hadoop architecture.

This article describes a mechanism that complements and extends the cur-
rent security model presented in Hadoop. The rest of the article is organised
as follows: Sect. 2 provides an overview of the security features that implements
Hadoop; Sect. 3 describes the main elements used in the model; In Sect. 4 the
main features of the API developed are shown; Sect. 5 describes the proposed
extended security model and finally in Sect. 6 the conclusions and future work
are presented.

138 A.F. Dı́az et al.

2 Hadoop Security

Security models in Hadoop have evolved due to the Internet exposure of com-
puter resources and the users’ requeriments [6]. In fact, some CVE vulnerabilities
have been reported. Companies like Cloudera [4] or Hortonworks [10] have devel-
oped solutions where they solve the main security features and, books like Lakhe
[16] describes practical way to afford those security enhancements. Some authors
have revised Hadoop security model as Jam [13].

2.1 Main Elements

Hortonworks establishes a corporate security model based on five basic pillars:
management, authentication, authorization, auditing and data protection.

To facilitate the administration is advisable to establish a centralised and
coherent resource management model. Apache Ranger allows defining security
policies that are applied to other components.

Hadoop can use its own authentication mechanism directly referring to the
user information (Active Directory, LDAP, NFS, PAM, ...) or use a strong
authentication mechanism based on Kerberos as shown in the Fig. 2.

In this case, encrypted delegate tokens services are used to validate access to
Hadoop. The process is basically: the client requests a TGT (Ticket-Granting
Ticket) and authenticates with the Kerberos KDC (Key Distribution Center)
(1). The KDC validates the authenticity of the user (2) and returns the authen-
tication token (3). The client uses the TGT to request a service key (4). Finally,
the user can provide this token to the JobTracker node that can access to the
Hadoop (5) resources and data in HDFS.

Different elements and applications that run on Hadoop can be controlled
using several levels of authorisation. Apache Ranger allows precise access control
to data and control policies and it is easily expandable via plugins.

The Hadoop audit log registers access to resources and it is useful for study
of use, estimate costs and to detect unauthorised use. Data protection allows to
encrypt the information stored and the communication between Hadoop appli-
cations.

This work focuses on establishing alternative authentication mechanisms and
encryption and audit access to data.

2.2 Data Encryption

An important element to consider is the encryption of data because it may
penalise the access speed and therefore it can affect the overall performance of
data processing. Some studies have proposed the use of GPU to reduce the time
penalty that may cause the encryption and decryption process. Al-Kiswany [11]
defines a library primitives to accelerate hashing distributed storage systems.
W.Sun [20] proposes an environment for combining the GPU in storage systems
and implemented in the Linux kernel where the GPU-based AES encryption

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 139

Fig. 2. Hadoop access.

getting a transfer rate of 4 Gbps, while the results with the CPU offered less
than half of GPU performance.

Shredder [12] uses GPU to enhance computing and storage in Hadoop reduc-
ing Bottlenecks CPU. In general, works based on the GPU emphasise perfor-
mance improvement but do not reveal energy efficiency or the real conditions
in large cluster of computers where perhaps the number of nodes with GPU is
usually smaller. Moreover, Intel has developed new enhancements such as Intel
AES New Instructions (NI) [8] including encryption accelerators CPUs which
significantly improves performance.

It has been proposed some alternative encryption schemes for Hadoop as
HDFS-RSA & HDFS-Pairing [17] or Yang’s proposal [22] that uses IDEA and
RSA. Park [19] proposed an AES encryption based on the HDFS model. Other
systems such as Kadre [15] that uses MapReduce combined with AES for encryp-
tion in parallel.

2.3 Additional Security Features

Rhino is an open source project that improves Hadoop platform with additional
protection mechanisms and tries to eliminate potential security holes in the
Hadoop stack. Among the variety of work undertaken within the framework of
this project it is interesting to highlight a common abstraction layer that stablish
a cryptographic API and the definition of a suitable environment for the resource
distribution and key management.

Hadoop’s perimeter security is based on the corporative firewall as the gate-
way Apache Knox. This mechanism offers a single point of authentication and
access to services for multiple Hadoop clusters. Knox provides a central point
of access to the Hadoop REST API and offers different levels of authorization,
authentication, and SSO (Single Sign-On).

140 A.F. Dı́az et al.

3 Security Elements Used in the Extended Model

Before describing the security model, we describe some elements necessary for
such implementation.

3.1 eToken

If we want to deploy a robust security model, it is advisable to use a robust
cryptographically device. We have used an eToken that is connects via USB to
the node that acts as a data license server. This eToken is based on the Atmel
ATECC508A [3] which incorporates various security features.

The advantage of this circuit is that it allows secure communication between
its internal elements and verification software on the computer, preventing
possible Man-In-the-Middle attacks that may capture data exchange between
them. The circuit implements ECDSA and ECDSH algorithms (briefly described
below). It includes asymmetric encryption algorithms based on elliptic curve
cryptography (ECC), which is considerably more efficient than RSA. According
to the recommendation of ECRYPT II and published by ENISA [1] a 256-bit
ECC encryption requires 3248 bits in RSA. RSA algoriths would be slow because
of the size of the keys, so the industry is shifting to ECC systems. In an Intel
Xeon, the 256-bit ECDSA signature is approximately 9 times faster than a 2048-
bit RSA signature.

3.2 ECDSA

Elliptic Curve Digital Signature Algorithm (ECDSA) [14] is a variant of the
DSA algorithm based on Elliptic Curve. It was proposed by Scott Vanstone [21]
in 1992 and was accepted as an ISO standard in 1998 (ISO 14888-3), ANSI
standard (ANSI X9.62) in 1999, IEEE standard 1963-2000 in 2000 and FIPS
standard (FIPS 186-2) in 2000. Examples of use are Bitcoins and a authentica-
tion mechanism implemented in TLS (Transport Layer Security). In particular,
FIPS186-3 is used [5] in this circuit although there is an updated version of the
standard FIPS186-4 2013.

Let’s see how the algorithm is used to sign: Suppose Alice wants to sign a
message with his private key (dA) and Bob confirms Alice’s signature Alice’s
public key (HA). Thus, only Alice can sign and everyone can check it. The
following steps are performed:

– A hash of the message is calculated and truncated to n bits (which is the order
of the subgroup), value denoted as z.

– A random value is generated k.
– We apply the algorithm to the value with the private key dA obtaining the

firm (r, s).

We use (r, s) to verify the signature and the truncated hash of the message,
z, which applied after the verification algorithm with the public key HA can
confirm the authenticity of the signature.

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 141

Although the algorithm is quite robust cryptographically, it must be used
correctly because, if the recommendations are not followed, its application can
be easily vulnerable. It is important that the number k has to be a good ran-
dom number and change each time it is used. In fact, several vulnerabilities are
documented, as an example: The PlayStation 3 video console games could run
only signed by Sony with ECDSA and thus prevents other games on the market
without his signature, but they used the same k. Although initially unknown, k
could be calculated from two different games and from here you could obtain the
private key. A similar problem was detected in various applications for Android
Bitcoin wallets and OpenSSL where it was corrected in version 1.0.0e.

3.3 ECDH

The elliptic curve Diffie-Hellman algorithm (ECDH) is a safely key exchange
protocol that can be used through an insecure channel. The circuit implements
the NIST SP800-56A [9] standard, although there is an updated version (Rev 2)
of the document.

If Alice and Bob want to share a secret key, first agree to an elliptic curve
E over a finite body Zp sufficiently secure and agree to a point G ∈ E(Zp) so
that the subgroup generated by G is of a high order. They create their own
private keys dA and dB and public HA = dAG and HB = dBG. Then exchange
their public keys HA and HB on the insecure channel. Finally, Alice estimates
S = dAHB and Bob S = dBHA. A man-in-the-middle attack could obtain the
public keys of Alice HA and Bob HB but could not figure S.

S = dAHB = dA(dBG) = dB(dAG) = dBHA (1)

The value of S can be used to create a symmetric safe key for the exchange
of information between them. The keys can be static (always the same pair
of public and private keys) or may change (new public and private keys are
calculated every time the algorithm is used).

4 API eHTSecurity

It has been defined an API Token Security eHadoop (eHTSecurity) that stablish
a robust encryption and authentication based on the chip mechanism and is
available for Linux. The eHSecurity API consists of two separate modules: data
server (eHTSecurity server) and data receiver (eHTSecurity client).

The API data server has three modules shown in the Fig. 3: Key management,
eTokens Update and encryption.

Key management is responsible for creating and storing the symmetric
encryption keys to encrypt data and asymmetric keys for authentication of cus-
tomers. EToken allows updating the keys securely. When a eToken is validated,
it is inserted the private key that will allow to authenticate and decrypt the
symmetric key. The API data receiver verifies that the user or then node is
authenticated and obtains the symmetric key to decrypt from the private key
contained in the chip.

142 A.F. Dı́az et al.

Fig. 3. API Server.

ECDSA is used by the module to check the chip and verify that the mod-
ule code has not been tampered with. It is used to decrypt the key ECSH sent
through the insecure channel(I2C+USB) so that the key is used to extract the
data using the private key that is inside the chip. Figure 4 shows the communi-
cation process between the chip and the computer.

Fig. 4. Communication between API eSecurity and ATECC508A.

The API is integrated into the Hadoop security model on 2 levels: authenti-
cation and encryption. The advantage of using a token-based authentication is
that it integrates the basic mechanisms of communication, which facilitates its
implementation.

Although HDFS allows encryption, it is directed to local storage on data that
is not accessible. In our case, the data is encrypted at the source and therefore the
proper encryption HDFS is not necessary, although not it is not incompatible.

IEEE 1619-2007 standard is used [7] with the XTS (XEX-TCB-CTS) mode
[18] for encrypting. The XTS provides greater protection for encryption block
compared to other systems such as CBC and ECB. The XTS is also used in
BitLocker, FileVault 2 TrueCrypt, FreeOTFE, dm-crypt among others as well
as encryption of storage devices.

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 143

This system, as shown in Fig. 5, uses two keys, one for encryption AES block
and another to encrypt the “Tweak Value” i. This encrypted value and is fur-
ther modified with a polynomial function of Galois GF (2128) and an XOR is
performed with the plaintext and ciphertext of each block. The GF function
provides greater randomness and ensures that identical data blocks not produce
identical encrypted texts. This will avoid using IVs and chaining. Decryption of
data is performed by reversing this process. Since each block is independent and
there is a chain, if the data stored encrypted is damaged, only the data of that
particular block will be unrecoverable. With chaining modes, these errors can
spread to other blocks when decrypted. Another advantage of the XTS is that
it can run in parallel, thus speeding up the processing of large volumes of data.

Fig. 5. Diagram of XTS-AES.

5 Extended Security Model

The proposed system establishes the following extensions from the current
Hadoop’s model:

– The data provider can send encrypted information and remotely control who
has access to such data.

– The client authenticates the user (or user group) by Kerberos that verifies it
with the eToken.

– The client incorporates a layer which is independent of decrypting encryption
includes HDFS.

– Decryption incorporates a statistic that allows to audit the use of data.
– This service is validated by Kerberos tickets that is authenticated with eToken

through the API.
– The eToken is managed in part by the data provider (which does not have

to match the administrator running Hadoop cluster) and partly by the local
administrator.

144 A.F. Dı́az et al.

In this model, the data source encrypts data by controlling the cluster where
processing is executed. This is useful when the source relies on a group of users,
enabling corporate access, and avoiding that can be used outside of an authorised
cluster. In this case, the eToken is located in any of the cluster nodes and that
node acts as a license data server and the KDC validates authentication accessing
that node.

This configuration consists of the following elements: Data provider (license
server and data server) and the cluster processing (data receiver, licenser server
and data processing nodes).

When the data server wants to send data to a client, it requests an encryption
key to the license server. The encryption key is sent, but it is encrypted so that
it can only be used by the client.

When the client receives data, they are stored encrypted on HDFS. If it
comes to access them asks for the KDC a token to validate access, and the data
license server decrypts the key with which they were sent. At this stage, the
license server verifies that the decryption code, and the code itself has not been
tampered with.

6 Conclusions and Future Work

This paper presents a security model for Hadoop that allows controlling userdata
source control preventing unauthorised use of them. To increase their safety, an
eToken based on a chip with elliptic curve cryptography and some additional
resources have been protected against forgery or manipulation. The ESecurity
API has been developed, and it performs the XTS-AES encryption, which pro-
vides access to the eToken and integrates with Hadoop components. As future
work we are evaluating how to optimise the encryption layer to reduce the over-
head and improve the interface configuration and management of eToken both
local and remotely.

References

1. Algorithms, key size and parameters report - 2014. ENISA (2016)
2. Apache hadoop (2016)
3. ATECC508A Atmel CryptoAutentication Device. Atmel (2016)
4. Cloudera Apache Hadoop. Cloudera (2016)
5. FIPS PUB 186–3. Digital Signature Standard (DSS). FIPS (2016)
6. Hadoop in secure mode. Apache (2016)
7. IEEE P1619/D16 Standard for Cryptographic Protection of Data on Block-

Oriented Storage Devices). IEEE (2016)
8. Intel Advanced Encryption Standard Instructions (AES-NI). Intel (2016)
9. NIST Spp. 800–56A Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography. NIST (2016)
10. What is Apache Hadoop? Hortonworks (2016)

Secure Data Access in Hadoop Using Elliptic Curve Cryptography 145

11. Al-Kiswany, S., Gharaibeh, A., Santos-Neto, E., Yuan, G., Ripeanu, M.: Storegpu:
exploiting graphics processing units to accelerate distributed storage systems. In:
Parashar, M., Schwan, K., Weissman, J.B., Laforenza, D. (eds.), HPDC, pp. 165–
174. ACM (2008)

12. Bhatotia, P., Rodrigues, R., Verma, A.: Shredder: Gpu-accelerated incremental
storage and computation. In: Proceedings of the 10th USENIX Conference on File
and Storage Technologies, FAST 2012, p. 14, Berkeley, CA, USA (2012). USENIX
Association

13. Jam, M.R., Khanli, L.M., Javan, M.S., Akbari, M.K.: A survey on security of
hadoop. In: 2014 4th International eConference on Computer and Knowledge Engi-
neering (ICCKE), pp. 716–721, October 2014

14. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ecdsa) (2016)

15. Kadre, V., Chaturvedi, S.: Article: Aes - mr: A novel encryption scheme for securing
data in hdfs environment using mapreduce. Int. J. Comput. Appl. 129(12), 12–19
(2015). Published by Foundation of Computer Science (FCS), NY, USA

16. Lakhe, B.: Practical Hadoop Security. Apress, Berkely (2014)
17. Lin, H.Y., Shen, Tzeng, W.G., Lin, B.S.P.: Toward data confidentiality via inte-

grating hybrid encryption schemes and hadoop distributed file system. In: 2012
IEEE 26th International Conference on Advanced Information Networking and
Applications (AINA), pp. 740–747, March 2012

18. Martin, L.: Xts: A mode of aes for encrypting hard disks. IEEE Secur. Priv. 8(3),
68–69 (2010)

19. Park, S., Lee, Y.: Secure hadoop with encrypted HDFS. In: Park, J.J.J.H., Arabnia,
H.R., Kim, C., Shi, W., Gil, J.-M. (eds.) GPC 2013. LNCS, vol. 7861, pp. 134–141.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38027-3 14

20. Sun, W., Ricci, R., Curry, M.L.: Gpustore: Harnessing gpu computing for storage
systems in the os kernel. In: Proceedings of the 5th Annual International Systems
and Storage Conference, SYSTOR 2012, pp. 9: 1–9: 12. ACM, New York, NY, USA
(2012)

21. Vanstone, S.: Responses to NISTs proposal. Commun. ACM 35, 50–52 (1992).
ACM

22. Yang, C., Lin, W., Liu, M.: A novel triple encryption scheme for hadoop-based
cloud data security. In: 2013 Fourth International Conference on Emerging Intelli-
gent Data and Web Technologies (EIDWT), pp. 437–442, Sept 2013

http://dx.doi.org/10.1007/978-3-642-38027-3_14

Statistical Analysis of CCM.M-K1
International Comparison Based on Monte

Carlo Method

Chang-qing Cai1, Xiao-ping Ren1(&),
Guo-dong Hao2, Jian Wang1, and Tao Huang1

1 National Institute of Metrology, Beijing 100029, People’s Republic of China
{caichq,renxp,wjian,huangt}@nim.ac.cn

2 Department of Intelligence Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

haoguodong@csu.edu.cn

Abstract. The application of the Monte Carlo method is used in the processing
of the measurement result of CCM.M-K1. This method can get over the limi-
tations that apply in certain cases to the method described in GUM. Introduction
and analysis of CCM.M-K1 measurement result was given out and commercial
software named @RISK was used to purse numerical simulation and the result
was compared with the final report of CCM.M-K1, which showed that differ-
ences between results of these two were negligible.

Keywords: Key comparison � Reference value � Degree of equivalence �
Monte carlo method

1 Introduction

A key comparison is one of the set of comparisons selected by a Consultative Com-
mittee to test the principal techniques and methods in the field. For example, in mass
filed, there have already several key comparisons holding in the past twenty years. In
Table 1, it lists the details of CCM key comparisons.

The outputs of the statistical analysis of a CIPM key comparison are the key
comparison reference value, the degrees of equivalence, and their associated uncer-
tainties. So these three factors are very important during key comparison.

Besides, key comparisons carried out by regional metrology organizations are
referred to as RMO key comparisons; this kind of key comparisons must be linked to
the corresponding CIPM key comparisons by means of joint participants. Table 2
shows the status of APMP RMO comparisons.

The grants that have been received from the National Natural Science Funds of China (51405459),
National Science and Technology Support Program (2011BAK15B06), Special-Funded Program on
National Key Scientific Instruments and Equipment Development (2012YQ090208) are hereby
acknowledged with much gratitude.

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 146–155, 2016.
DOI: 10.1007/978-3-319-49956-7_12

Cox gives guidelines for the statistical analysis of a CIPM key comparison [8]. This
is based on the assumption that travelling standard having good short term stability and
stability during transport. Besides, each NMI laboratory realizes its measurement
independent of the others [9]. However, the key comparison may occur: some or all of
the measurements are mutually dependent, or the travelling standard is not stable
enough. We can know that many CIPM key comparisons are not simple; reference [8]
does not apply to CIPM key comparisons at some situations. That’s why researchers
intend to develop further guidelines to cover these complications, and the Monte Carlo
method (MCM) is used to overcome these limitations.

This paper uses a Monte Carlo method to re-analyze the measurement result of
CCM.M-K1 comparison. Sections 2 and 3 are, respectively, an introduction and an
analysis of CCM.M-K1 measurement result. In Sect. 4, we use Excel and Risk analysis
software to re-calculate CCM.M-K1 result. In this section, we also give the key
comparison reference value and its associated uncertainty based on the Monte Carlo
method. A comparison between Monte Carlo and method in the final report appears in
Sect. 5.

Table 1. CIPM key comparisons of mass standard

Key comparisons Transfer artifacts Date Year of report Number
of labs

CCM.M.K1 2 � 1 kg 1995–1998 2004 [1] 15
CCM.M.K2 100 mg, 2 g, 20 g, 500 g, 10 kg 1998–1999 2003 [2] 14
CCM.M.K3 50 kg 2001–2002 2005 [3] 14
CCM.M.K3.1 2 � 50 kg 2009 2010 [4] 2
CCM.M.K4 2 � 1 kg 2011–2012 2014 [5] 16
CCM.M.K5 200 mg, 1 g, 50 g, 200 g, 2 kg 2000–2003 2011 [6] 19
CCM.M.K6 50 kg 2011–2013 2015 [7] 9
CCM.M.K7 500 mg, 5 g, 10 g, 100 g, 5 kg 2014–2015 / 10

Table 2. RMO key comparison of mass standard

APMP key
comparisons

Transfer artifacts Date Year of report Number
of labs

APMP.M.M-K1 2 � 1 kg 1999–2001 2004 15
APMP.M.M-K1.1 1 kg 2008 2011 2
APMP.M.M-K2 100 mg, 2 g, 20 g, 500 g, 10 kg 2004–2007 2009 11
APMP.M.M-K2.1 100 mg, 2 g, 20 g, 500 g 2010 2011 2
APMP.M.M-K5 200 mg, 1 g, 50 g, 200 g, 2 kg 2015–2016 / 19
APMP.M.M-K6 100 mg, 2 g, 20 g, 500 g, 1 kg 2005–2006 2008 14

Statistical Analysis of CCM.M-K1 International Comparison 147

2 Status of CCM.M-K1 Comparisons

This comparison was carried out between 1995–02 and 1997–11. There were 14 lab-
oratories taking parting inside this comparison except BIPM was pilot laboratory (PL).

Seven participating laboratories determined the mass of travelling standards VSL-1
and J2 (Group 1) while the remaining seven determined the mass of travelling stan-
dards VSL-2 and J3 (Group 2). BIPM determined the mass of each package at the
beginning and the end of the comparisons and four times during the course of the
comparisons. The measurement results are shown in Tables 3 and 4.

Table 3. Measurement result of group 1

Date Lab mVSL1-1 kg mJ2-1 kg uc/ug

Feb-95 BIPM 0.478 3.378 12
May-95 NMi,c 0.457 3.353 18
Jul-95 NPL 0.478 3.367 16
Sep-95 BIPM 0.471 3.365 12
Feb-96 VNIIM 0.529 3.396 24
May-96 BIPM 0.473 3.357 12
Aug-96 PTB 0.467 3.354 12
Dec-96 SMU 0.532 3.412 22
Feb-97 BIPM 0.474 3.383 12
Feb-97 BIPM 0.473 3.36 12
Mar-97 KRISS 0.468 3.357 14
Apr-97 BIPM 0.471 3.364 12
Jul-97 BNM 0.47 3.367 11
Sep-97 BIPM 0.468 3.359 12

Table 4. Measurement result of group 2

Date Lab mVSL2-1 kg mJ3-1 kg uc/ug

Feb-95 BIPM 0.042 3.564 12
Jul-95 NIST 0.01 3.54 19
Sep-95 NRC,c 0.012 3.54 16
Feb-96 NRLM,c 0.007 3.538 13
May-96 BIPM 0.024 3.554 12
Jul-96 CSIRO 0.025 3.557 14
Sep-96 BIPM 0.024 3.556 12
Oct-96 NIM 0.087 3.573 21
Feb-97 BIPM 0.083 3.586 12
Feb-97 BIPM 0.041 3.564 12
May-97 IMGC 0.034 3.561 13
Jun-97 BIPM 0.033 3.564 12
Sep-97 CENAM 0.031 3.556 13
Oct-97 BIPM 0.023 3.559 12

148 C. Cai et al.

In this comparison, reference value was established based on the results of all
participants. For the median has been proposed as a “robust” estimator for reference
values [10]. So the reference value of this comparison is −3.0 lg (using all corrected
results) and the std. deviation of reference value is 2.2 lg.

3 Analysis of Measurement Data and Processing Method
in CCM.M-K1 Report

In the process of measurement result, examine the average mass and the average mass
difference for each group is useful to check the unusual measurement result.

The first quantity depends sensitively on traceability to the international prototype
(involving an important correction for air buoyancy) but averages over other influences.
Figure 1(a) and (c) shows the average mass of two groups.

(a) Average mass of group1 (b) Average mass difference of group1

(c) Average mass of group2 (d) Average mass difference of group2

1995/01/01 1996/01/01 1997/01/01 1998/0
1.88

1.9

1.92

1.94

1.96

1.98

2

Date

BIPM

NMi,c

NPL

BIPM

VNIIM

BIPM

PTB

SMU

BIPM

BNM

BIPM

KRISS

BIPM

BIPM

1995/01/01 1996/01/01 1997/01/01

-1.47

-1.465

-1.46

-1.455

-1.45

-1.445

-1.44

-1.435

-1.43

-1.425

-1.42

-1.415

-1.41

-1.405

Date

BIPM

BIPM

BNM
BIPM

KRISS

BIPM

BIPM

SMU

PTBBIPM

VNIIM

BIPM
NPL

NMi,c

1995/01/01 1996/01/01 1997/01/01 1998/0
1.74

1.76

1.78

1.8

1.82

1.84

1.86

Date

BIPM

NIM

BIPM
BIPM

NIST NRC,c

NRLM,c

BIPM

CSIRO

BIPM

IMGC
BIPM

CENAM

BIPM

1995/01/01 1996/01/01 1997/01/01 1998/0
-1.79

-1.785

-1.78

-1.775

-1.77

-1.765

-1.76

-1.755

-1.75

-1.745

-1.74

-1.735

-1.73

-1.725

-1.72

-1.715

-1.71-1.71

Date

BIPM

NISTNRC,c
NRLM,c

BIPM CSIRO
BIPM

NIM

BIPM

BIPM

IMGC

BIPM

CENAM

BIPM

Fig. 1. The average value and average difference as reported by each participant

Statistical Analysis of CCM.M-K1 International Comparison 149

The second quantity more clearly indicates the relative stability of the travelling
standards. Figure 1(b) and (d) shows the average mass difference of two groups.

From this data check, we can find VNIIM, SMU in group 1 and NIM in group 2
might have situation happening. This method is based on pilot laboratory’s measuring
result and it thus serves as a diagnostic tool. Now we can use chi-squared test to find
the discrepant measurements [8].

A sound and well-established approach for evaluating the measurement uncertainty
is set out in the “Guide to the expression of Uncertainty Measurement” (GUM).
However, it is also clear that GUM approach encompasses a tedious and error-prone
series of calculations [11].

In 1997, BIPM created the Joint Committee for Guides in Metrology (JCGM) with
the mission of revising GUM in order to improve its ease of use and expand its range of
application, since it displayed certain limitations. In the first of these supplements, an
alternative procedure is described for the calculation of uncertainties: the Monte Carlo
Method (MCM) [12].

There are software applications that have been specifically developed for calcu-
lating uncertainties based on MCM method, like @RISK [13] and toolbox in
MATLAB [12]. In the next chapter, we will use @RISK software to re-analyze the
measurement result of CCM.M-K1.

4 Monte Carlo Method and Its Application in CCM.M-K1

The input quantities for the numerical simulation are listed in Table 5. As the pilot
laboratories measured the two travelling standards, and even the pilot measured more
than once each travelling standard, the same correlation value between the measure-
ments done by the same laboratory was considered.

Here Nðl; r2Þ is normal distribution. The mathematical models used for the
numerical simulation were the corresponding to the Eq. (1) in the final report of CCM.
M-K1 (page 5) [1].

From the resulting pdfs of the numerical simulation, the mean values are taken as
the best estimated for the corresponding differences, and the standard deviations are
taken as the standard uncertainty of such differences. Here we give two examples in
each group respectively. NMi,c‘s initial distribution is shown in Fig. 2(a) and (b).

Table 5. Input quantities for the numerical simulation.

Lab. Distribution Expectation l Standard deviation r

NMi,c Nðl; r2Þ 1.905 0.018

NIST Nðl; r2Þ 1.775 0.019

NPL Nðl; r2Þ 1.9225 0.016

NRC,c Nðl; r2Þ 1.776 0.016

NRLM,c Nðl; r2Þ 1.7725 0.013

(continued)

150 C. Cai et al.

(a) Numerical Simulation For NMi,c

(b) Numerical Simulation For NIST

Fig. 2. Histogram Resulting For NMi,c and NIST

Table 5. (continued)

Lab. Distribution Expectation l Standard deviation r

VNIIM Nðl; r2Þ 1.9625 0.024

CSIRO Nðl; r2Þ 1.791 0.014

PTB Nðl; r2Þ 1.9105 0.012

NIM Nðl; r2Þ 1.83 0.021

SMU Nðl; r2Þ 1.972 0.022

KRISS Nðl; r2Þ 1.9125 0.014

IMGC Nðl; r2Þ 1.7975 0.013

BNM Nðl; r2Þ 1.9185 0.011

CENAM Nðl; r2Þ 1.7935 0.013

Statistical Analysis of CCM.M-K1 International Comparison 151

To simulate the pdfs of pilot laboratory, each participant may have different
measurement result of pilot laboratory. For example, before and after the NMi,c and
NPL, the distribution of PL is Nð1:928; 0:0122Þ and Nð1:918; 0:0122Þ. This is due to

(a) Numerical Simulation For BIPM In group 1

(b) Numerical Simulation For BIPM In group 2

(c) Numerical Simulation For Two BIPM Measurement Result In Two Groups

Fig. 3. Histogram resulting for pilot laboratory

152 C. Cai et al.

PL had make two measurements before these participants. The Fig. 3 shows the two
distributions of PL measurements and the average distribution of these two distribu-
tions Nð1:923; 0:00852Þ.

After we got the distribution of average distributions of PL, we can use distribution
of each participant to minus the average distribution of PL. for example, NMi,c‘s
distribution minus PL, and the result is difference between participant and PL, which is
Nð�0:018; 0:02022Þ.

(a) Numerical Simulation For the Difference Between NMi,c and BIPM

(b) Numerical Simulation For the Difference Between NIST and BIPM

Fig. 4. Histogram resulting for the difference between participant and PL

Table 6. Data of the median resulting of numerical simulation(/mg)

mRV −0.003

u(mRV) 0.007
U(mRV), k = 2 0.014
P[x1,x2] [−15.5,9.6]

Statistical Analysis of CCM.M-K1 International Comparison 153

According to this method, we can give out all the distributions of mass differences.
Results of some numerical simulation are shown in Fig. 4(a) and (b). The mean values
of the pdfs, resulting from the numerical simulation, are taken as the best estimates of
the output quantities and the standard deviations as the corresponding standard
uncertainties.

The key comparison reference value and its dispersion are shown in Table 6. The
histogram resulting from the numerical simulation is shown in Fig. 5.

Fig. 5. Histogram resulting from simulation corresponding to KCRV and its uncertainty

Table 7. Comparison between CCM.M-K1 report and monte carlo method

Lab. CCM.M-K1 Report Monte Carlo Method
diff_mRV
(mg)

U(lg) degree of
equivalence

diff_mRV
(mg)

U(lg) degree of
equivalence

BIPM 0.003 24 0.13 0.003 24.8 0.13
NMi,c −0.015 37 0.41 −0.015 39.3 0.39
NIST −0.018 39 0.47 −0.018 41.1 0.44
NPL 0.002 32 0.07 0.002 35.3 0.06
NRC,c −0.017 34 0.50 −0.017 36.4 0.47
NRLM,c −0.020 28 0.72 −0.020 32.0 0.63
VNIIM 0.049 48 1.03 0.049 51.2 0.96
CSIRO 0.005 29 0.18 0.005 31.9 0.16
PTB −0.001 26 0.04 −0.001 33.4 0.03
NIM −0.001 46 0.03 −0.001 50.1 0.02
SMU 0.060 44 1.37 0.060 50.5 1.19
KRISS −0.001 29 0.04 −0.001 31.8 0.04
IMGC 0.000 27 0.00 0.000 30.4 0.00
BNM 0.006 22 0.28 0.006 27.5 0.22
CENAM 0.002 27 0.08 0.002 30.7 0.07

154 C. Cai et al.

Table 7 is a detail comparison of the degree of equivalence between results
reported by CCM.M-K1 and the evaluation result from Monte Carlo Method. We can
see that the result is almost the same and VNIIM is in the range of equivalence based
on Monte Carlo method.

5 Conclusions

The paper summarizes the measurement results of CCM.M-K1, a key comparison of
1 kg weights. The measurement result was dealt based on the GUM. Recently, Monte
Carlo method are adopted more often which was developed to overcome some of the
limitations of the GUM, especially when an interval of confidence with a stipulated
coverage probability is needed.

The numerical simulation in this paper was done in @Risk for Microsoft Excel 5.5
with 1 � 106 trials. The result of numerical simulation was compared with the result in
CCM.M-K1 report. Differences between results of these two are negligible, and this
result show that MCM leads to a better understanding of the measurement process.

References

1. Aupetit, C., Becerra, L.O., Bignell, N., et al.: Final Report on CIPM key comparison of 1 kg
standards in stainless steel. Techn. Suppl. Metrologia 41, 1–31 (2004)

2. Final Report on CIPM key comparison of multiples and submultiples of the kilogram (CCM.
M-K2). Metrologia, 40(1A), 1–27 (2003)

3. Gosset, A., Madec, T.: Final report: CCM.M-K3 comparison / 50 kg mass. Metrologia 42,
1–19 (2005)

4. Mann, G., Madec, T., Meury, P.A.: CCM.M-K3.1 comparison / 50 kg mass. Metrologia 47,
1–10 (2010)

5. Becerra, L.O., Borys, M., et al.: Key comparison of 1 kg stainless steel mass standards
CCM.M-K4. Metrologia 51, 1–22 (2014)

6. Andel, I.V., Becerra, L.O., et al.: Report on CIPM key comparison of the second phase of
multiples and submultiples of the kilogram (CCM.M-K5). Metrologia 48(1), 40 (2011)

7. Abbott, P.J., Becerra, L.O., et al.: Final report Of CCM key comparison of mass standards
CCM.M-K6, 50 kg. Metrologia 52, 1–24 (2015)

8. Cox, M.G.: The evaluation of key comparison data. Metrologia 39, 589–595 (2002)
9. Kacker, R.N., Datla, R.U., Parr, A.C.: Statistical analysis of CIPM key comparisons based

on the ISO Guide. Metrologia 41, 340–352 (2004)
10. Muller, J.W.: Possible advantages of a robust evaluation of comparisons. J. Res. Nat. Inst.

Stan. Technol. 105(4), 551–555 (2000)
11. Jurado, J.M., Alc´azar, A.: A software package comparison for uncertainty measurement

estimation. Accred. Qual. Assur. 10, 373–381 (2005)
12. Beascoa, M.S., Alegre, J.M., et al.: Implementation in MATLAB of the adaptive Monte

Carlo method for the evaluation of measurement uncertainties. Accred. Qual. Assur. 14, 95–
106 (2009)

13. Sugiyama, Sam: Monte Carlo simulation/risk analysis on a spreadsheet: Review of three
software packages. Foresight 9, 36–42 (2008)

Statistical Analysis of CCM.M-K1 International Comparison 155

First International Workshop on Data
Locality in Modern Computing Systems

(DLMCS 2016)

Redundancy Elimination in the ExaStencils
Code Generator

Stefan Kronawitter1(B), Sebastian Kuckuk2, and Christian Lengauer1

1 University of Passau, 94030 Passau, Germany
{stefan.kronawitter,christian.lengauer}@uni-passau.de

2 FAU Erlangen-Nürnberg, 91058 Erlangen, Germany
sebastian.kuckuk@fau.de

Abstract. Optimizing the performance of compute-bound codes
requires, among other techniques, the elimination of redundant compu-
tations. The well-known concept of common subexpression elimination
can achieve this in parts, and almost every production compiler conducts
such an optimization. However, due to the conservative nature of these
compilers, an external redundancy elimination can additionally increase
the performance. For stencil codes using finite volume discretizations, an
extension to eliminate redundancies between loop iterations is also very
promising. We integrated both a classic common subexpression elimi-
nation and an extended version in the Exastencils code generator and
present their impact on a real-world application.

Keywords: CSE · Common subexpression elimination · Vectorization

1 Introduction

Many scientific application fields, such as physics and chemistry simulations,
require the solution of discretized partial differential equations (PDEs). This
can be achieved efficiently by the usage of multigrid methods [8,16]. Since their
composition and performance tuning can become quite complex and an appli-
cation scientist is usually not interested in spending much time and effort on
code optimization, a domain-specific language (DSL) is a good way to proceed.
In project Exastencils1 [12], we are developing a multi-layered DSL called ExaS-
lang [15] for geometric multigrid solvers and a corresponding code generator that
is able to produce automatically optimized target code [11] for a given hardware
description. The four layers of ExaSlang provide different levels of abstraction
and are designed to address the needs of different user groups. Especially at the
more concrete levels, the user can specify complex computations performed for
the different multigrid components. Due to the regularity of stencil codes, there

S. Kronawitter—This work is supported by the German Research Foundation
(DFG), as part of Priority Programme 1648 “Software for Exascale Computing”
in project ExaStencils under contracts RU 422/15 and LE 912/15.

1 http://www.exastencils.org.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 159–173, 2016.
DOI: 10.1007/978-3-319-49956-7 13

http://www.exastencils.org

160 S. Kronawitter et al.

are various situations that may result in redundant computations. Therefore, the
elimination of such redundancies both inside a single loop iteration and between
loop iterations can be beneficial. The latter is especially useful in the context of
finite volume discretizations.

We make the following contributions:

– a simple space-efficient extension of a common subexpression elimination
(CSE) algorithm to eliminate redundancies between loop iterations,

– a detailed description of its implementation in the Exastencils code generator,
along with useful preliminary steps and a subsequent vectorization,

– a demonstration of its usefulness for a real-world application.

The rest of the paper is organized as follows. Section 2.1 presents different
approaches for a redundancy elimination and discusses their assets and draw-
backs. Several preliminary steps to increase the yield of a redundancy elimina-
tion are described in Sect. 2.2. Two different CSE approaches implemented in
the Exastencils code generator are introduced in Sects. 2.3 and 2.4 respectively.
As the latter requires introducing additional code, which prevents vectoriza-
tion in the first place, Sect. 2.5 describes how to overcome this limitation. An
evaluation of the presented techniques using a fluid-flow simulation is given in
Sect. 3. Section 4 introduces related work on redundancy elimination. Section 5
concludes.

2 Common Subexpression Elimination (CSE)

CSE [4] is frequently implemented in production compilers [2]. The basic idea is
to remove repeated computations from expressions by reusing the result of the
first computation. It is easy to see that this optimization can only be performed
if none of the associated variables or memory regions are modified between the
repeated evaluations of subexpressions. The drawback of this approach is that
CSE potentially increases the register pressure since additional values must be
preserved, which may lead to register spilling. But, in this case, the assumption
is that, for larger expressions, the newly introduced memory access operations
are faster than a recomputation of the expression.

2.1 Approaches to Common Subexpression Elimination

Text-Based CSE. There are different approaches for the detection of common
subexpressions. The classic CSE searches for textual redundancies, introduces
a new temporary variable, which holds the value of the common subexpression
(CS), and replaces each occurrence by an access to the new variable. Figure 1a
shows a simple code snippet, which contains the CS 2*i three times. Figure 1b
shows an optimized version.

However, since redundant expressions are searched in the text, some opti-
mization opportunities are missed. For example, there are two pairs of CSs in
Fig. 2a. The first, 2*i, can be detected easily, but the other, 5+x respectively

Redundancy Elimination in the ExaStencils Code Generator 161

x = 2*i / j + 2*i;

x = x * 2*i;

(a) input code

cs = 2*i;

x = cs / j + cs;

x = x * cs;

(b) optimized code

Fig. 1. Example for a textual CSE.

5+y, varies in the last variable name and is therefore not detected, even though
both variables have the same value. One can overcome this limitation by per-
forming constant propagation and textual CSE repeatedly until a fixed point is
reached. First, a CSE possibly introduces name aliases, which are resolved by a
constant propagation. Second, since this may reveal new redundant expressions,
a CSE must be reapplied. A dedicated detection of both pairs of subexpressions
in Fig. 2a requires a semantic equivalence test, which is provided by, e.g., global
value numbering (GVN).

x = 2 * i;

y = 2 * i;

a = 5 + x;

b = 5 + y;

(a) input code

x = 2 * i;

y = x;

a = 5 + x;

b = a;

(b) optimized code

Fig. 2. Example for a semantic CSE based on GVN.

Global Value Numbering. GVN [3,5] is an analysis based on the static single-
assignment form of a program. The first step is to assign a so-called value num-
ber to all variables such that two variables have the same value number iff their
semantic equivalence can be proved. An optimal number mapping for the exam-
ple in Fig. 2a would be [i → 1, x → 2, y → 2, a → 3, b → 3]. According to this
mapping, x and y, as well as a and b, are equal, which leads to the optimized
code shown in Fig. 2b.

There are cases in which GVN is not able to identify a redundant computation
that can be eliminated by a textual CSE. For example, the CS 2*i in Fig. 3a
can be detected easily by a text-based CSE, while the value numbers of x and y
must be different, since their values differ in sign if i is less than or equal to 0.

Loop-Carried Redundancies. Another opportunity for optimization arises from
CSs between subsequent iterations of a surrounding loop as depicted in Fig. 4.
The expression exp(0.5*i + 0.25) in iteration i-1 evaluates to the same value
as the expression exp(0.5*i - 0.25) in the next iteration i:

exp(0.5*(i-1) + 0.25) == exp(0.5*i-0.5+0.25) == exp(0.5*i - 0.25)

Thus, the former can be reused. This incurs a higher detection effort, since some
arithmetic conversions and simplifications are necessary due to the changing

162 S. Kronawitter et al.

x = 2 * i;

if (i > 0)

y = 2 * i;

else

y = -(2 * i);

w = 5 + y;

(a) input code

x = 2 * i;

if (i > 0)

y = x;

else

y = -x;

w = 5 + y;

(b) optimized code

Fig. 3. Example in which CSE is able to remove a redundancy not recognized by GVN.

value of the loop iterator. Also, the optimization shown in Fig. 4 requires that
function exp is free of side-effects, so the analysis must be aware of this. One
should further ensure that the CSs in different loop iterations do not overlap, i.e.,
do not share a part of the input code. For example, the redundant expression
found above could be extended to x = 4.2+exp(0.5*i + 0.25) in iteration
i-1 and y = 4.2+exp(0.5*i - 0.25) in iteration i. But, since the summand
4.2 is now part of both expressions, the value for A[i] is x + y - 4.2. The
additional subtraction of the shared summand 4.2 increases the complexity of
the optimized code unnecessarily while reducing its benefit.

for (int i = 0; i < n; ++i) {

A[i] = 4.2

+ exp(0.5*i - 0.25)

+ exp(0.5*i + 0.25);

}

(a) input code

lcs = exp(0.5*0 - 0.25);

for (int i = 0; i < n; ++i) {

tcs = exp(0.5*i + 0.25);

A[i] = 4.2 + lcs + tcs;

lcs = tcs;

}

(b) optimized code

Fig. 4. Example of a loop-carried redundancy elimination.

The idea of such a loop-carried CSE is not restricted to a single encasing
loop but, for multiple outer loops a separate value for each iteration of all inner
loops must be remembered, which leads to a significant increase in memory
consumption. Another drawback is that the reuse of data from the previous
iteration effectively sequentializes a loop or, at least, requires a special treatment
for a parallel execution.

2.2 Preliminary Transformations

The Exastencils code generator supports both types of redundancy elimination
described in the previous subsection, namely a text-based and a loop-carried
version. In order to facilitate the removal of as many and as large redundant
computations as possible, a number of preliminary transformations is required.

Redundancy Elimination in the ExaStencils Code Generator 163

Inlining. To start, two special inlining transformations, one global and one local,
are executed. Besides leading to a better starting position, the former is necessary
since multiple calls of arbitrary functions cannot be merged in general. Inlining
the body of pure functions simplifies the redundancy detection. It is then only
required to recognize and deal with pure calls to the standard C math library.
All other function calls can be rejected, i.e., they are not allowed to be part of
a CS.

The local inlining performed subsequently removes constant local variables,
i.e., variables which are assigned exactly once, namely in their definition. This
obviously introduces redundant computations, since every read of such a vari-
able is replaced by the same expression. But it allows arithmetic optimizations
and simplifications of the combined expressions, and the CSE applied later can
potentially also detect larger redundant computations.

Arithmetic Simplifications. The arithmetic optimizations mentioned previously
are the last step of the preprocessing. Since all transformations of the Exastencils
code generator are performed on an abstract syntax tree (AST), the detection
of redundant computations can be complex, as indicated by Fig. 5. In this exam-
ple, the initializations of x and y are identical, but the corresponding ASTs are
completely different. Even if the multiplication by 2 is factored out of the com-
putation in the first line, the ASTs do not match because of the different order
of the operands in the summation. For a binary addition, it is not sufficient
to simply permute the children of each node, which exploits the commutativity
law, but a more advanced restructuring analogously to the associativity law is
required. To deal with this, the code generator uses a more general summation
node with an arbitrary number of summands, of which a binary addition is a
special case. A transformation to merge several nested additions into a single
summation and to fix the permutation is straightforward. The same holds for
multiplications, while subtraction and division must remain binary, since they
are neither commutative nor associative. Note that one must take care when
dealing with matrices and vectors, as the commutativity of the multiplication
only holds for scalar values.

x = 2 + 2 * i + 2 * j;

y = 2 * (i + j + 1);

(a) input code

+

2 +

*

2 i

*

2 j

(b) AST for x

*

2 +

i +

j 1

(c) AST for y

Fig. 5. Analysis example.

A normalization according to the distributivity law is a bit more complex.
The heuristics implemented focuses mainly on affine computations, which is

164 S. Kronawitter et al.

sufficient for the run-time-intense parts of the generated stencil codes. In a first
step, the AST of the input expression is analyzed bottom up. The result is a key-
value mapping which represents the given expression as a sum. Its keys are the
summands and the associated values their constant coefficients. For each visited
node, the mapping is generated either directly in case of an array or variable
access, or for an operator by merging the mappings of their children accordingly.
E.g., for an addition expression with the children mappings {i->3, j->1} and
{i->1, k->4}, the result is {i->4, j->1, k->4}. This effectively normalizes
the expression in the wrong direction: it maximizes the number of multiplications
performed. But a reversal of this mapping factors out as many constants as
possible. For the given example, the reversal is {4->i+k, 1->j} which results
in the normalized expression 4*(i+k) + j.

2.3 Text-Based CSE

Although the loop-carried CSE described in the next subsection is performed
first, it is based in both concepts and techniques on the traditional redundancy
elimination, which justifies addressing the latter first. Section 2.1 introduced two
different approaches to CSE, both with their own advantages and disadvantages.
A value numbering would be the only transformation in the code generator
that requires a static single-assignment form of the code. Therefore, an AST-
based redundancy detection, analogously to a syntactical one, was implemented.
In combination with the two inlining steps performed beforehand, most of the
restrictions of this approach do not pose a hindrance. For example, both expres-
sions for a and b from Fig. 2a read 5 + 2*i after x and y are inlined, which can
now be optimized by any approach.

The detection begins with a search of variable accesses, array accesses, and
constants in the input AST. Each instance found more than once is added to
the initial set of redundant operations along with their ancestors. Note that the
children of these nodes are ignored, i.e., array subscripts are not analyzed here,
since there is a specialized optimization performing an address precalculation
beforehand [11]. Starting with the initial list, larger CSs are detected inductively
as presented in Algorithm 1: a larger CS can only be formed by a set of smaller
CSs. Since the code generator uses generalized sum and product nodes with an
arbitrary number of arguments, these have to be treated specially as in Lines
7 to 10. The function powerset children is used to create new nodes with all
possible subsets of the children of a given node. These nodes are also tested, since
any combination of summands or factors can be computed repeatedly. Finally,
the declaration of the new variables can be inserted at the beginning of the given
code block and the subsequent elimination process is straightforward.

An analysis of the presented detection process reveals that each node of the
input tree is added at most once to the list of potential CSs, namely as the
parent of its child with largest depth. Therefore, in each step, the depth of the
newly detected trees, which represent the new CSs, increases by exactly 1, so
the depth of the input AST is an upper bound for the number of steps required.

Redundancy Elimination in the ExaStencils Code Generator 165

input : set of initial common subexpressions CSs
output: set of all common subexpressions

1 newCSs = CSs
2 while newCSs �= {} do
3 newCSs’ = newCSs
4 newCSs = {}
5 foreach expr ∈ locations(newCSs’) do
6 parent = parent(expr)
7 if parent is sum or product then
8 foreach parent’ ∈ powerset children(parent) do
9 if children(parent’) ⊆ CSs then

10 newCSs = newCSs ∪ {parent’}

11 else if children(parent) ⊆ CSs then
12 newCSs = newCSs ∪ {parent}
13 CSs = CSs ∪ newCSs

14 return CSs

Algorithm 1. Find larger CSs based on an input set of smaller ones.

After the first CS is removed, one could either update the set of the remaining
ones carefully to choose how to continue, or simply restart the whole analysis.
Due to its simplicity and low performance impact, the code generator currently
restarts the CSE after each removed redundancy until either no new CS is found,
or the largest one becomes too small to be profitable.

2.4 Loop-Carried CSE

The Exastencils code generator also supports loop-carried CSE, as described
in Sect. 2.3, which is executed first. The basic idea is to detect and eliminate
redundant expressions not only in a text sequence of statements, but also between
statement instances of subsequent loop iterations, as described in Sect. 2.1.

Before the actual redundancy detection is started, each node of the AST gets
its own unique integer identifier assigned as a preparation of a later overlap test.
For the detection of redundancies between neighboring loop iterations, the body
is duplicated and each occurrence of the loop iterator i is replaced by the expres-
sion i-str(i), while str denotes the stride of the given loop. The expressions
in the modified body are then simplified using the transformation described in
Sect. 2.2. As a result, the loop bodies of two subsequent iterations of the i-loop
are available. These two versions of the loop body then form the input for the
text-based CS detection described in the previous subsection. As explained in
Sect. 2.1, only common subtrees that do not overlap in the unprocessed source
are allowed to be eliminated. This is equivalent to the uniqueness test for
the integral identifiers associated with each node among all common subtrees.
From the remaining redundancies one must select an appropriate subset to be
eliminated.

166 S. Kronawitter et al.

The selection of subexpressions to be eliminated in this approach is worth
a closer look. Choosing the largest CS is not always sufficient. Figure 6a shows
a loop in which one could reuse data from the previous loop iteration. The run
time of this loop is clearly dominated by the calls of exp. While the original
code contains four calls in each iteration, a text-based CSE can save two of
them. But this code can also be optimized by a loop-carried CSE. On the one
hand, Fig. 6b shows the resulting code if the largest possible redundancy, namely
exp(0.5*i-0.25)+4.2 in iteration i-1 and exp(0.5*i+0.25)+4.2 in iteration
i, is eliminated. However, it still contains two calls of exp, which can only be
simplified by adding another variable to carry even more data between loop
iterations. In this example, it would only require one additional scalar value
but the problem can also arise in situations with a higher dimensionality, which
could lead to a significantly higher memory usage. On the other hand, starting
directly with the smaller redundancy exp(0.5*i-0.25) and exp(0.5*i+0.25)
results in the code shown in Fig. 6c, which gets along with only a single exp
call. Therefore, the code generator takes not only the size of a CS, but also
the number of its occurrences into account. The heuristics used eliminates all
redundancies larger than a fixed threshold, which leads to good results for all test
cases mentioned before. A more advanced approach based on, e.g., the results of
a roofline analysis or auto-tuning would be possible, too.

for (int i = 0; i < n; ++i) {

A[i] = exp(0.5*i - 0.25) + exp(0.5*i + 0.25);

B[i] = exp(0.5*i - 0.25) + 4.2;

C[i] = exp(0.5*i + 0.25) + 4.2;

}

(a) input code

lcs = exp(0.5*0 - 0.25) + 4.2;

for (int i = 0; i < n; ++i) {

tcs = exp(0.5*i + 0.25);

A[i] = exp(0.5*i - 0.25) + tcs;

B[i] = lcs;

C[i] = tcs + 4.2;

lcs = tcs + 4.2;

}

(b) eliminating the largest CS

lcs = exp(0.5*0 - 0.25);

for (int i = 0; i < n; ++i) {

tcs = exp(0.5*i + 0.25);

A[i] = lcs + tcs;

B[i] = lcs + 4.2;

C[i] = tcs + 4.2;

lcs = tcs;

}

(c) eliminating a smaller CS

Fig. 6. Example in which eliminating a smaller CS results in a better performance.

The last part –the elimination itself– proceeds as follows. A new array to
store the values computed in the previous loop iterations must be introduced.
Its extent increases depending on how many loops are inside the one for which
the loop-carried CSE is executed. E.g., for a three-fold loop nest with an itera-
tion vector (i, j, k) ∈ {0,...,511}3 and a redundancy between subsequent

Redundancy Elimination in the ExaStencils Code Generator 167

iterations of the i-loop, separate scalars for each of the inner 512*512 iterations
are required. Its initialization is performed only in the first iteration of the i-
loop using the redundant expression itself. This introduces a condition that is
removed in a later optimization step by performing a partial unrolling. The CSs
are replaced by an access to array element [j, k]. What remains is an update of
the array with a new value from the current iteration. The expression for it can
be generated from the CS by replacing each occurrence of i with i+str(i). This
also introduces a new textual redundancy, which is eliminated by the successive
text-based CSE.

The application of this approach is not limited to subsequent iterations; it
can be easily extended to any step size. In our domain of stencil computations,
however, this is usually not necessary.

2.5 Vectorization

One drawback of the presented loop-carried CSE is that it effectively sequen-
tializes the corresponding loop, since data from the immediate predecessor is
required.

On the one hand, employing multiple processor cores regardless of a previous
redundancy elimination is easy if each thread executes one contiguous sequence
of loop iterations. In this case, the initialization must be adapted to be executed
not only in the first iteration of the loop but in the first one of each thread. Addi-
tionally, each thread must have its private buffer to carry information between
different loop iterations.

On the other hand, vectorizing the innermost loop to load a single proces-
sor core to capacity is more complex, since it is equivalent to the concurrent
computation of subsequent loop iterations. Excluding this loop from the loop-
carried CSE is also not an option, as this is the most profitable one to optimize:
it requires only a single scalar to carry data between iterations. However, the
newly introduced data dependences do not prevent the vectorization in general,
but require a more careful selection of the generated instructions for all three
accesses to the new temporary variable. First, the initialization of the tempo-
rary need not be vectorized at all, as only the initial scalar has to be computed
separately. Second, vectorizing a statement, which loads the value from the pre-
vious iteration, leads to two different situations, as shown in Fig. 7. For the first
element of the vector, the required value is the one of the previous iteration
stored in the temporary (thick arrow) while the values of all other elements are
actually computed in the current iteration and used twice. This requires the cor-
responding elements of this iteration to be computed prior to the load operation
and also to generate suitable data shuffling instructions. Third, the store of the
newly computed value handed to the next iteration must be restricted to the
last element of the computed vector. Alternatively, the whole vector could be
preserved, which may reduce the number of shuffle instructions. But this also
requires an additional load before the vectorized loop and a store after it to pre-
serve data between different loops, such as a prolog or epilog loop if the number
of iterations is not evenly divisible by the vector size.

168 S. Kronawitter et al.

iteration

computed value

reused value

i-1 i i+1 i-4 i i+4

Fig. 7. Reusing a value from the previous iteration in the scalar and vectorized case.
Arrows represent data copy operations. Thick ones are accross loop iterations.

3 Evaluation

Solving simple PDEs, such as Poisson’s equation, is not suitable for the evalu-
ation of the presented techniques since the resulting code is already quite sim-
ple. Consequently, subexpressions occur only rarely and if they do they are not
very complex. Thus, we choose the application of simulating non-isothermal and
non-Newtonian fluid flows instead. The targeted fluids have a high relevance in
academia and industry alike. They are usually given by suspensions of particles
or macromolecules and can be encountered as gels, pastes or foams. Relevant
examples include organic fluids such as blood, food products such as fruit juice,
and industrial fluids such as drilling fluids and mining pulps.

In recent decades, many approaches for such fluid flow simulations have
been developed. Our implementation is based on the SIMPLE algorithm (Semi-
Implicit Method for Pressure Linked Equations). A detailed derivation is beyond
the scope of this paper but can be found in the literature [14,17]. The main idea
of the SIMPLE algorithm is as follows: Instead of solving the entire non-linear
system at once, linear systems of equations (LSEs) are set up for each of the
velocity components. This step corresponds to freezing all other unknowns. Next,
the single LSEs are solved. In our case, we use dedicated geometric multigrid
solvers for this step. Since freezing components introduces some errors, a subse-
quent pressure correction has to be calculated and applied. In the classical SIM-
PLE algorithm, these steps are repeated until convergence is reached. For our
problem, however, an extension towards incorporating temperature and thereby
induced effects is required. Fortunately, this can be done similar to solving for
the other components, i.e., by setting up another LSE and solving it. Due to
the dependency of the five single LSEs on the current solution, a recomputa-
tion is required in every SIMPLE iteration. In total, an algorithm as detailed
in Algorithm 2 emerges. The function ‘update quantities’ includes the model-
ing of temperature-induced behavior and the chosen model for non-Newtonian
behavior.

Concerning discretization, we rely on a finite volume approach on non-
uniform staggered grids, as depicted in Fig. 8. The specifics can be found else-
where [17,18]. Generally, finite volume discretizations, especially on staggered
grids, require frequent interpolation and integration of values and expressions
with respect to control volume interfaces. Usually, at least parts of these compu-
tations on interfaces are independent of the direction of the evaluation. Consider,
e.g., the evaluation of a physical quantity located at the cell centers on the East
(right) interface. This evaluation will yield the same value when performed for

Redundancy Elimination in the ExaStencils Code Generator 169

foreach time step do
while not converged do

update quantities
set up LSEs for u, v and w, and solve
set up LSE for pressure correction and solve
apply pressure correction
set up LSE for temperature and solve

Algorithm 2. SIMPLE algorithm.

the West (left) interface from the point on the next cell. Consequently, a loop-
carried CSE has the potential to benefit most codes based on these types of
discretizations.

values associated with the
x-staggered grid, e.g. U

values associated with the
y-staggered grid, e.g. V

values associated with the
cell centers, e.g. p and

cell-centered
control volumes

x-staggered
control volumes

y-staggered
control volumes

Fig. 8. 2D illustration of the lower left part of a non-equidistant, staggered grid. Veloc-
ity components are associated with the centers of edges (resp. faces in 3D). Staggered
control volumes get halved at the boundary.

All experiments were executed on Intel Xeon E5-2690 v2 processors. They
consist of ten Ivy Bridge EP cores, each running at 3.2 GHz. The complete
simulation with 10,000 time steps was implemented in our DSL ExaSlang 4
and compiled to C++ code for the given architecture by the Exastencils code
generator. Some basic optimizations, such as address precalculation are always
applied, while the effect of the presented optimizations are evaluated in detail.
The C++ code was compiled with gcc 5.2 using aggressive optimizations (-O3)
and enabling AVX instruction generation (-mavx). For a single simulation, four
execution times were extracted: the time to update physical properties such
as viscosity (update quantities), the time to set up the LSEs for all variables

170 S. Kronawitter et al.

(compile LSEs) and to solve them (solve LSEs), as well as the total time which
consists of the previous mentioned and other factors such as convergence checks.
Each of these times is the average over all 10,000 time steps for a single simu-
lation. Additionally, every simulation was executed five times for a grid size of
643, and their median is shown in Fig. 9. On the one hand, it can be seen that
neither the update of the quantities, nor the solving of the LSEs do benefit from
the CSE techniques. This is an expected result, since the corresponding codes
do not contain any redundant computation between different loop iterations.
And the ones found by the text-based CSE are too small to influence the run
time. Vectorization also does not affect the performance of solving the LSEs,
since they are clearly memory-bandwidth-bound. However, it does increase the
performance of the quantity update, which can be explained by a frequent usage
of the square-root function, whose vectorized version is considerably faster than
the one in the math library shipped with gcc 5.2. On the other hand, the com-
pilation of the LSEs, which requires a significant portion of the total run time,
does benefit from both CSE approaches and a vectorization: their run time can
be reduced by more than 50 %. The base version of this code contains several
larger redundant computations, both inside the loop bodies and between subse-
quent loop iterations, which can be factorized out by the two CSE techniques.
Another interesting observation is that the text-based CSE along with vector-
ization performs very well and the additional usage of the loop-carried CSE is
only slightly better. This is because the optimizations render this code memory-
bandwidth-bound.

update quantities compile LSEs solve LSEs total

base
tb CSE
tb & lc CSE
tb CSE + vect
tb & lc CSE + vect

av
g.

 e
xe

cu
tio

n
tim

e
pe

r t
im

es
te

p
[m

s]

0
10

20
30

40
50

Fig. 9. Average execution times per time step for the presented text-based (tb) and
loop-carried (lc) CSE optimizations applied. Total run time is divided into the update
of physical properties such as viscosity, compiling the LSE, i.e., updating the stencil
coefficients, solving them, and other factors not shown such as convergence checks.

4 Related Work

CSE and GVN are well-known and also well-understood compiler optimiza-
tion techniques incorporated in almost all production compilers [2,5,13]. These

Redundancy Elimination in the ExaStencils Code Generator 171

implementations are suitable for removing redundancies introduced by the com-
piler itself, e.g., when it creates address-computation instructions from abstract
array accesses. However, CSs at source-code level are not always identified as
such, since the target compiler must make worst-case assumptions for aliasing
and other language features. More powerful CSE techniques were presented by
Debray [6] and Saabas et al. [1], and elsewhere. Additionally, there exist several
specialized CSE approaches, which focus on problems in different application
domains, such as digital signal processing [10,17].

Neither of these take redundancies between loop iterations into account.
Hammes et al. present a temporal CSE for a special type of loops from the
language SA-C [9]. For these loops, the programmer can explicitly specify a so-
called window for the data structure to traverse. This window defines how many
neighboring elements are accessed per loop iteration. It is also used to identify
redundancies between subsequent loop iterations, which simplifies the detection
process but also limits the applicability. A more powerful approach was pre-
sented by Faber et al. [7]. It is based on the polyhedral model and can therefore
detect redundancies between any loop iterations. On the downside, this approach
only detects CSs for which the non-array parts are structurally equivalent, i.e.,
the example of Fig. 4a cannot be optimized. Additionally, even if a single scalar
would be sufficient to carry information from one loop iteration to the next,
every instance of this value gets its own memory location. In contrast to the
presented loop-carried CSE from Sect. 2.4, this unnecessarily increases memory
consumption.

5 Conclusion

We presented redundancy-elimination optimizations implemented in the Exas-
tencils code generator. These contain a traditional text-based version of a CSE,
along with a small set of preliminary transformations to increase both the size
and the number of CSs found. The latter consists of an inlining step to allow
removing redundancies across function boundaries, and arithmetic simplifica-
tions to prevent the commutativity and associativity law of addition and multi-
plication to interfere with the CS detection.

Based on the simplification transformation we also formulated a simple exten-
sion of the text-based CSE to be also applicable across loop boundaries. This
allows reusing already evaluated subexpressions from the previous iteration of
any surrounding loop. However, it comes at a cost: for outer loops not only a sin-
gle scalar must be preserved, but for each inner loop iteration an additional value
has to be stored. Vectorizing the optimized code also requires special treatment,
since the reuse of values from a previous loop iteration introduces an additional
data dependency.

Finally, we demonstrated the usefulness of the presented techniques with
a real-world application, namely a non-isothermal and non-Newtonian fluid-
flow simulation. The performance of the affected code parts was doubled and the

172 S. Kronawitter et al.

optimizations were able to render them memory-bandwidth-bound. A text-based
version can be profitable, or at least not harmful, for any stencil computation,
while a loop-carried approach is especially useful for finite volume discretizations.

References

1. Aceto, L., Ingolfsdottir, A., Saabas, A., Uustalu, T.: Program and proof optimiza-
tions with type systems. J. Logic Algebraic Prog. 77(1–2), 131–154 (2008)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers - Principles, Techniques
and Tools, 2nd edn. Addison-Wesley, Boston (2007)

3. Click, C.: Global code motion/global value numbering. In: Proceedings of ACM
SIGPLAN 1995 Conference on Programming Language Design and Implementa-
tion (PLDI), pp. 246–257. ACM, June 1995

4. Cocke, J.: Global common subexpression elimination. In: Proceedings of Sympo-
sium on Compiler Optimization, pp. 20–24. ACM, Jul 1970

5. Cocke, J., Schwartz, J.T.: Programming Languages and Their Compilers: Pre-
liminary Notes, 2nd edn. Courant Institute of Mathematical Sciences, New York
University (1970)

6. Debray, S.K.: Compiler optimizations for low-level redundancy elimination: An
application of meta-level prolog primitives. In: Pettorossi, A. (ed.) META
1992. LNCS, vol. 649, pp. 120–134. Springer, Heidelberg (1992). doi:10.1007/
3-540-56282-6 8

7. Faber, P., Griebl, M., Lengauer, C.: Loop-carried code placement. In: Sakellariou,
R., Gurd, J., Freeman, L., Keane, J. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp.
230–235. Springer, Heidelberg (2001). doi:10.1007/3-540-44681-8 34

8. Hackbusch, W.: Multi-Grid Methods and Applications. Springer-Verlag, Heidel-
berg (1985)

9. Hammes, J., Böhm, A.P.W., Ross, C., Chawathe, M., Draper, B.A., Rinker, B.,
Najjar, W.A.: Loop fusion and temporal common subexpression elimination in
window-based loops. In: Proceedings of 8th IPDPS Reconfigurable Architectures
Workshop (RAW), 8 p. IEEE Computer Society, April 2001

10. Kamal, H., Lee, J., Koo, B.: An improved non-CSD 2-bit recursive common subex-
pression elimination method to implement FIR filter. ETRI J. 33(5), 695–703
(2011)

11. Kronawitter, S., Lengauer, C.: Optimizations applied by the ExaStencils code gen-
erator. Technical Report MIP-1502, Faculty of Informatics and Mathematics, Uni-
versity of Passau, 10 p., January 2015

12. Lengauer, C., et al.: ExaStencils: advanced stencil-code engineering. In: Lopes, L.,
et al. (eds.) Euro-Par 2014. LNCS, vol. 8806, pp. 553–564. Springer, Heidelberg
(2014). doi:10.1007/978-3-319-14313-2 47

13. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan Kauf-
mann Publishers Inc., San Francisco (1997)

14. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass and momen-
tum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer
15(10), 1787–1806 (1972)

15. Schmitt, C., Kuckuk, S., Hannig, F., Köstler, H., Teich, J.: ExaSlang: A domain-
specific language for highly scalable multigrid solvers. In: Proceedings of 4th Inter-
national Workshop on Domain-Specific Languages and High-Level Frameworks for
High Performance Computing (WOLFHPC), pp. 42–51. ACM (2014)

http://dx.doi.org/10.1007/3-540-56282-6_8
http://dx.doi.org/10.1007/3-540-56282-6_8
http://dx.doi.org/10.1007/3-540-44681-8_34
http://dx.doi.org/10.1007/978-3-319-14313-2_47

Redundancy Elimination in the ExaStencils Code Generator 173

16. Trottenberg, U., Osterlee, C.W., Schüller, A.: Multigrid. Academic Press, New
York (2000)

17. Vasco, D.A., Moraga, N.O., Haase, G.: Parallel finite volume method simulation
of three-dimensional fluid flow and convective heat transfer for viscoplastic non-
Newtonian fluids. Numer. Heat Transf. Part A: Appl. 66(2), 990–1019 (2014)

18. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid
Dynamics: The Finite Volume Method, 2nd edn. Pearson Education Limited,
Upper Saddle River (2007)

A Dataflow IR for Memory Efficient RIPL
Compilation to FPGAs

Robert Stewart1(B), Greg Michaelson1, Deepayan Bhowmik2,
Paulo Garcia2, and Andy Wallace2

1 School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK

R.Stewart@hw.ac.uk
2 School of Engineering and Physical Sciences,

Heriot-Watt University, Edinburgh, UK

Abstract. Field programmable gate arrays (FPGAs) are fundamentally
different to fixed processors architectures because their memory hierar-
chies can be tailored to the needs of an algorithm. FPGA compilers for
high level languages are not hindered by fixed memory hierarchies. The
constraint when compiling to FPGAs is the availability of resources.

In this paper we describe how the dataflow intermediary of our declar-
ative FPGA image processing DSL called RIPL (Rathlin Image Process-
ing Language) enables us to constrain memory. We use five benchmarks
to demonstrate that memory use with RIPL is comparable to the Vivado
HLS OpenCV library without the need for language pragmas to guide
hardware synthesis. The benchmarks also show that RIPL is more expres-
sive than the Darkroom FPGA image processing language.

Keywords: Domain specific languages · FPGAs · Data locality

1 Introduction

1.1 Memory Costs of High Level FPGA Languages

General Purpose Languages. Programming with C++ for FPGAs often
relies heavily on the programmer’s use of language pragmas to control how data
structures should be implemented in hardware. For example when using Xilinx
Vivado HLS [13], if a 3×3 window for applying a 2D filter is needed, the pro-
grammer must use an array partition pragma to partition the 3×3 pixel window
array into individual scalar elements, to avoid its implementation using BRAM.

Image Processing Languages and Libraries. Domain specific languages
(DSLs) offer potential for clearer syntax, stronger semantic checks, type-system-
based guarantees and compiler optimisation for improved code execution. Com-
pared to compiling C/C++ with HLS tools, DSLs can capture domain knowledge
to abstract hardware templates that encapsulate common data access patterns
that can more easily be analysed, e.g. for FIFO depth and bitwidth requirements.
c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 174–188, 2016.
DOI: 10.1007/978-3-319-49956-7 14

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 175

A DSL may be an existing collection of language primitives ported to FPGAs,
e.g. the Vivado HLS support [10] for a subset of the OpenCV [2] library. OpenCV
C++ library code is not synthesisable directly, instead OpenCV function calls in
existing software code must be replaced with corresponding function calls from
the HLS library. In this restricted setting, it is not possible to use dynamic mem-
ory allocation e.g. in the construction of image whose dimensions are decided
at runtime. For good performance using this library, the programmer must use
explicit pragmas to guide hardware generation.

Alternatively, DSLs may be embedded within the programming model of
an existing language, e.g. the Darkroom [5] FPGA image processing DSL is
embedded within Terra [4]. Darkroom is compiled to line-buffered pipelines,
with all intermediate values in local line-buffer storage. Images at each stage of
computation are specified as pure functions from 2D coordinates to the values
at those coordinates.

Our RIPL DSL for FPGAs is implemented as a standalone language, i.e. it
has its own syntax and its stream processing based programming model is not
hindered by a programming model of any general purpose host language. The
memory performance and expressivity of HLS OpenCV, Darkroom and RIPL is
compared in Sect. 5.

1.2 Data Locality

Fixed memory architectures comprise very fast cache access, off chip DDR mem-
ory access, or slow disk storage. Each application must fit into a fixed mem-
ory architecture representing a single large hierarchical memory space. A com-
mon approach is to build data locality aware compilers [11], e.g. locality aware
scheduling of OpenMP tasks on multicore CPUs [9] and mapping nested access
patterns on GPUs [8]. Minimising cache misses involves profiling cache traces,
moreover trading function inlining with executable size, and managing memory
pressure. Minimising memory requirements is a particular problem for close to
sensor real-time image processing on FPGAs, where hard choices must be made
in trading off memory and processing.

1.3 FPGA Memory

An important FPGA language implementation choice is whether on chip or off
chip memory should be used to store data structures. Utilising off chip memory is
sometimes unavoidable depending on the data transforms an algorithm requires,
e.g. transposing or rotating an image, both of which require an image frame
buffer. However, frequently using off chip memory from different parts of FPGA
circuits does not scale, because only one memory read from an on chip circuit can
be performed in each clock cycle. This can sequentialise execution and hence hurt
throughput performance. Moreover, off chip memory access can take multiple
clock cycles compared to latency-free LUT RAM or one cycle to access BRAM.
On chip memory provides contention free local buffer access for different parts of
the application specific circuit, because it is distributed across the FPGA’s fabric.

176 R. Stewart et al.

Compilers of high level real-time languages should therefore prioritise wholly on
chip memory implementations. However, the scarcity of BRAM introduces its
own set of constraints for programming language designers to consider.

Memory layout on FPGA chips is fundamentally different to fixed processor
architectures. Instead of compiling a program to map efficiently to fixed memory
hierarchies, synthesis of high level languages builds a custom memory architec-
ture on chip tailored for the needs of an algorithm. The constraint when compil-
ing high level languages to FPGAs is the available resources, e.g. on chip memory
ranges from 4 Mb to 68 Mb. The challenge for HLS compilers is therefore to min-
imise memory use from algorithms expressed with high level software languages.
Synthesis tools can choose to implement memory using registers, lookup tables
(LUTs), or block RAM (BRAM). Unlike cache contention issues on multicore
CPUs, there is no contention to access BRAM memory because it is distributed
across the fabric of an FPGA.

2 FPGA Memory Constraints

2.1 Image Buffer Capacity

The main FPGA resource for implementing memory is BRAM blocks. For exam-
ple, the Z-7020 chip on the Zedboard has 140 36 Kb BRAM blocks amounting to
4.4 Mb. The XC7K480T chip on the Kintex-7 board has 1,910 18 Kb blocks and
995 36 Kb blocks amounting to 34 Mb. The XC7VX1140T chip on the Virtex-7
board has 3,760 18 Kb blocks and 1,880 36 Kb blocks amounting to 68 Mb. A
single channel image pixel is 8 bits, or 1 byte. A 320×240 image with a single
colour channel is 76, 800 bytes, a 512×512 image is 262,144 bytes, a 1024×768
image is 786,432 bytes, and a 1920×1080 image is 2,073,600 bytes.

Storing entire image frame buffers on FPGAs does not scale. The cost of
buffering entire image frames on chip is shown in Fig. 1. The Zedboard can store
up to seven 320×240 frame buffers and just two 512×512 frame buffers. The
Kintex-7 can store up to five 1024×768 buffers and two 1920×1080 buffers, and
the Virtex-7 is able to store four 1920×1080 buffers. Localised pixel, row and
region buffers should instead be generated by high level language compilers.

2.2 Eliminating Intermediate Buffers with Compiler Optimisation

When compiling high level programs to FPGAs, it is important to eliminate
intermediate data structures because on chip BRAM is a scarce resource. A
motivating example is shown in Fig. 2. This C++ code applies a Sobel edge
detection filter with a nested for loop, and then brightens the result with another
nested for loop. It uses the OpenCV Mat class for two intermediate images,
image2 and image3. The xGradient() and yGradient() functions are omitted for
brevity. Whilst these intermediate image structures could be offloaded to off chip
DDR memory, this would result in a latency of multiple clock cycles for every
memory access, compared to a single cycle for on chip access. There is a need for

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 177

Fig. 1. Storing multiple frame buffers with on chip FPGA Memory

Fig. 2. Intermediate images using OpenCV’s Mat class

FPGA language compilers to avoid wasteful memory resources on intermediate
images image2 and image3.

One data locality approach in data parallel language compilers is to start from
an imperative language with loops, and fuse the successive loops over the input
image1 into an expression tree in a single loop, to improve cache locality and on
chip register locality e.g. [6,12]. For CPU or GPU scheduling, this expression
tree can be duplicated to apply the same fused computation on image chunks in

178 R. Stewart et al.

a data parallel fashion. However for pipelined FPGA scheduling, where different
computations are applied to separate regions of an image stream, a compiler
would apply loop fusion optimisations, and then expression pipelining in the
body of those loops to create hardware pipelines of fine grained operator dataflow
graphs.

3 RIPL: An FPGA DSL for Maximising Data Locality

We take a different approach with RIPL. The language design is inspired by
streaming libraries e.g. [7], which provides stream combinators like map, fold
and sum. Composition of these RIPL primitives is a natural way of expressing
pipelines of low and medium level image processing kernels. These pipelines are
preserved during compilation and mapped into hardware as concurrent circuits.

RIPL has a declarative non-terminating programming model that is con-
strained for processing infinite image stream, a programming model from which
minimal memory costs can more easily be extracted. It represents a high pro-
gramming abstraction when compared to direct hardware design with HDLs. We
term RIPLs stream combinator primitives as algorithmic skeletons [3]. They cap-
ture the common pattern of many low and medium level image signal processing
operations such as 1 dimensional (1D) and 2D filters, combining images, and
global operations such as finding the maximum pixel value. Intermediate images
in RIPL programs are transformed to streams that are shared through parallel
hardware pipelines, rather than copying whole images for each pipeline phase to
process. The RIPL implementation is available online1.

3.1 RIPL Skeletons

RIPL skeletons abstract common data access patterns, to which the user sup-
plies functions and values. They have been designed such that dataflow analysis
can be performed on their composition, and to extract the minimal memory
requirements of their use. The RIPL program in Fig. 3 broadly corresponds to
the OpenCV C++ in Fig. 2, though RIPLs convolve and filter2D skeletons also
mirrors edge pixels over image boundaries to apply the kernel function to edge
pixels. When compiled to hardware, the image stream image1 is incrementally
processed, first by hardware logic that computes Sobel edge detection and then
by logic that brightens each pixel in the stream.

Skeleton API. The RIPL skeletons are shown in Fig. 4, using a standard nota-
tion for function type signatures, e.g. map is a skeleton that takes two arguments:
an M×N image, and function from a vector of A pixels to a vector of B pixels.
It returns an M×N image. Each skeleton is repeatedly applied over an image
stream. Types in Fig. 4 are annotated with pixel major order, vector lengths and
image dimensions. For example, [P]A is a vector of pixels of length A, so an
argument in a function of the form λ[a, b] has an implicit type [P]2.
1 https://github.com/robstewart57/ripl.

https://github.com/robstewart57/ripl

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 179

Fig. 3. RIPL equivalent of the OpenCV C++ in Fig. 2

Fig. 4. RIPL skeletons

An image IR(M,N) is M pixels wide and N pixels high, and whose pixels are in
row (R) major order. RIPLs map and unzip skeletons are implicitly directional,
sliding linearly either row wise or column wise over a one dimensional vector of
pixels. This meta information about stream order, image dimensions and vector
lengths is not specified by the programmer; it is inferred by the RIPL compiler.

Skeletons with Non-overlapping Sliding Windows. The map skeleton
slides over an image and applies the user defined function with a non-overlapping
1D vector on each execution. The zipWith skeleton is similar, though it slides a
vector window of the same length over two images in lock step. The map and
zipWith skeletons are stateless and do not carry state between executions. Their
memory costs are therefore solely determined by the length of the sliding vector
that they consume. The zipWithScalar skeletons combines every pixel and a

180 R. Stewart et al.

scalar value with a user defined function, and similarly zipWithVector allows the
programmer to use a random access vector to modify an image.

As an example of non-overlapping sliding windows, the following RIPL
assignment combines two images using zipWith with a mean average combi-
nator. The memory cost is 2 8 bit integers, one each for pixels p1 and p2 from
images image1 and image2 respectively.
image3 = zipWith image1 image2 (\[p1] [p2] -> [(p1+p2)/2]);

Skeletons with Overlapping Sliding Windows. The imap skeleton is use-
ful for applying 1D filters to an image. It is an indexed map that slides over
contiguously positioned pixels in a non-discrete fashion. The imap syntax dif-
fers from map, because imap applies a function from a pixel position [.] to a
new value for that position, using the current pixel value and its neighbouring
pixels using +/-, e.g. [.-1] points to the pixel to the left of [.] in an IR image.
The difference in how map and imap traverses an image is depicted in Fig. 5,
which is labelled with repeated execution counts show the difference in their
data processing rates of an image row. Figure 6 shows the expression of a 1D
blur filter in RIPL, along with its memory cost. The hardware implementation
of this imap consumes pixels into a 3 element circular buffer, updating the mid
point index for [.], before executing the user defined blur function.

Fig. 5. Comparison of map with indexed map

Fig. 6. Memory requirements of 1D blur with imap satisfied with a circular buffer

RIPLs unzip skeleton is for splitting apart an image into two images, and
shares the pixel position syntax with imap. The hardware memory generated
from unzip is similar to imap, the difference being its scheduling – the hardware
for unzip creates two image streams, which are produced by alternating the
execution of the two user defined functions.

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 181

Skeletons for 2D Filters. Many 2D filters can be implemented by combining
the results of two 1D filters, one in the horizontal direction and one in the verti-
cal direction. This implementation approach is possible in RIPL by applying a 1D
horizontal filter with imap, transposing the result with transpose, then applying a
vertical 1D filter with imap. However, this is a very memory costly composition,
because transpose generates a frame buffer. For better stream data locality, RIPL
has two 2D filters convolve and filter2D. The convolve skeletons modifies each pixel
by applying a convolution of its neighbours using a small user defined M PLH N
kernel. The following example applies 3×3 kernel to sharpen an image.
image2 = convolve image1 (3,3) {0,-1,0,-1,5,-1,0,-1,0};

The filter2D skeleton provides more expressivity than convolve. When using
filter2D with a 3×3 window, the programmer is provided 9 pixel values that can
be used in their own function body, as shown earlier in Fig. 3 which computes
the approximate magnitude |G| = |Gx| + |Gy| for Sobel edge detection.

The memory requirements for convolve and filter2D is shown in Fig. 7. This
has the capacity to store two rows and a further three pixels. Stream based
processing begins once one row and two pixels are streamed into the corre-
sponding buffer, which is when the top left pixel can be processed.

output processed stream

pixel value beingcomputed

stream to be consumed

buffered pixels

Fig. 7. Memory cost for convolve and filter2D

Stateful Skeletons. Stateful programming is achieved with RIPL using two
skeletons, foldScalar and foldVector. They apply user defined reduction opera-
tions on images or image regions. Reducing an image to a scalar value is done
using foldScalar, e.g. finding the maximum pixel value. The scan skeleton is
similar to foldScalar, but returns a stream of intermediate successive reduced
values. Reducing an image to a vector is done using foldVector, e.g. computing
a colour histogram with each bin initialised to 0. Maximum pixel and histogram
calculations are expressed as:
maxValue = foldScalar image1 0 (\p currMax -> max p currMax);
histogram = foldVector image1 0 255 (\p hist -> hist[p]++);

4 RIPL Memory Costs

4.1 Memory Costs for Computation

RIPL programs are compiled to a dataflow intermediary of small computational
actors and FIFOs. The memory costs for each RIPL skeleton in bytes is shown

182 R. Stewart et al.

Table 1. Memory costs for RIPL skeletons

Example

Skeleton buffer size RIPL code M × N buffer size

mapM,N,A,B A map image1
(λ[a, b, c] → ...)

n/a 3

imapM,N,A A + 1 imap image1 (λ[.] →
([. − 1] + [.] + [. + 1])/3)

n/a 4

zipWithM,N,A A ∗ 2 zipWith image1
(λ[a, b] [c, d] → ...)

n/a 4

zipWithScalarM,N,A A + 1 zipWithScalar image1
(λ[a, b] x → ...)

n/a 3

zipWithV ectorM,N,A,B A + B + 1 zipWithVector image1
(λ[a, b] vect → ...)

n/a 3 + B

unzipM,N,A A + 1 unzip image1 (λ[a, b] →
...) (λ[c, d] → ...)

n/a 3

convolveM,N,A,B M ∗ 2 + 3 convolve image1 (3,3)
kernel

512×512 1027

filter2DM,N,A,B M ∗ 2 + 3 filter2D image1 (3,3)
(λ... → ...)

512×512 1027

scanM,N 2 scan image1 0 (λ.. → ..) n/a 2

foldScalarM,N 2 foldScalar image1 0
(λ.. → ..)

n/a 2

foldV ectorM,N,A A + 1 foldVector image1 255
0 (λ.. → ..)

n/a 256

transposeM,N M ∗ N transpose image1 512 × 512 262144

in Table 1. The map, imap, zipWith and unzip skeletons are implemented with
either overlapping or non-overlapping sliding vectors, and hence their memory
requirements are not determined by an image’s dimensions. These costs are
calculated from their offsets in stream access, analogous to array access offset
analysis in for loops in imperative languages. The map and zipWith memory
costs are solely determined by the vector length of the λ argument in the user
defined function. The memory cost of zipWithScalar and zipWithVector is the
stored scalar or vector, and the next incoming pixel value. The memory costs
for imap are determined by the biggest X in [.+X] occurrences in the output
expression, minus the biggest Y in [.-Y] occurrences.

The memory cost for the foldScalar and scan skeletons is the folded scalar and
the next pixel from the image stream. The foldVector skeleton’s memory require-
ments are determined by the programmer’s choice of output vector length which
is folded through each execution, and the next pixel from the image stream.
The convolve and filter2D skeleton’s memory requirements are determined by
the processed image’s width. The most costly skeleton is transpose, because it

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 183

requires an entire image to be stored in a buffer before being outputted with a
transpose index.

4.2 Memory Costs for Communication

An addition memory cost is the depth of dataflow wires to ensure deadlock free
RIPL execution. Dataflow wires are derived by data dependencies in RIPL pro-
grams, i.e. if the output of one skeleton is used as an input to another, then
a FIFO point-to-point connection is created in hardware to support that data
sharing. When the output of one RIPL skeleton is used in just one place in a
program, only one output FIFO will be connected from the hardware imple-
menting that skeleton, shown in Fig. 8a. In these cases, the required FIFO depth
is determined by the vector length of the λ argument in the receiving skeleton.
For example, if a map takes λ[a, b, c] then the required depth is 3. The overall
memory cost for FIFOs in Fig. 8a is 2 8 bit integers.

Fig. 8. Memory costs for dataflow FIFOs

If the output image of one skeleton is used in multiple places, then depth
requirements can increase, shown in Fig. 8b. This RIPL program finds the biggest
pixel value of 233 with foldScalar, which is used to threshold the original image
using zipWithScalar with a threshold of 233 − 100. The generated hardware
duplicates image image1 over two FIFOs, one to the dataflow actor for comput-
ing the maximum value, and the other to threshold the image. Pixel tokens are
transmitted to both FIFOs in lock step. Therefore in order for maxP to be com-
puted, the actor executing foldScalar needs to receive all tokens, so the FIFO to
the threshold actor needs capacity to buffer the entire 512×512 image for the
maxP value to be computed. The overall memory cost for FIFOs in Fig. 8b is
(2 + 512 × 512) 8 bit integers.

4.3 FPGA Memory Implementation

Once RIPL programs are compiled to dataflow graphs, actor computation
code and dataflow wires are compiled to HDL using an open source dataflow

184 R. Stewart et al.

compiler [1], which makes choices about how to implement memory. For scalar
integer values it uses FPGA slice registers used as memory. For small arrays that
the RIPL compiler generates to support convolve, filter2D and foldVector, the
dataflow compiler may also use slice registers depending on the overall mem-
ory requirements of the complete hardware design. The benefit of implementing
these memories with slice registers is that the larger BRAM blocks are avail-
able for other parts of an algorithm, and because BRAM access is one clock
cycle whilst LUTs RAM can be accessed without any latency. BRAM is used to
support larger arrays generated by the RIPL compiler to support convolve and
filter2D on big images, and for transpose which needs an entire image buffer.

FIFOs are compiled to HDL as generic memories, leaving the FPGA synthesis
tools to choose how to implement them. Rendevous single token FIFOs will be
implemented using registers or LUTs. Small FIFOs, e.g. to buffer a single row, are
likely to be implemented with LUTs, whilst large FIFO depths, e.g. to support
duplicating image streams in Fig. 8b, will likely be implemented using BRAM.

5 Evaluation

5.1 Expressivitiy

We next compare RIPL with the Vivado HLS OpenCV library. A key difference is
that RIPL supports used defined functions to be expressed, whilst HLS OpenCV
is a collection of predefined functions. For example, the HLS OpenCV hls::Max
function combines two images by retaining the brighter of the pixels at each
point, which can be expressed using RIPL’s zipWith and max in the function
body. Another example is RIPLs filter2D, which enables the programmer to
define the mid pixel point with any function, whereas hls::Filter2D only supports
convolution of a user defined kernel, equivalent to RIPL’s convolve skeleton.

Another difference between RIPL and HLS OpenCV is image sharing. When
an image is used in two places in a RIPL program, the image stream is automati-
cally duplicated and shared to both consuming skeletons. With the HLS OpenCV
model, an equivalent program would deadlock because the first function that
uses the image will consume its pixels, emptying the FIFO. The hls::Duplicate
function must be used explicitly to avoid this.

OpenCV programming requires explicit dimension and bitwidth information
for each image declaration. The hls: : Mat <> template class is used to initialise
an image, e.g. hls: : Mat < 512, 512,HLS 8UC1 > defines a 512×512 single
channel image, using 8 unsigned bits per pixel. In contrast, the RIPL compiler
infers the dimension of every image, by following dimension transformations per-
formed by skeletons through the implicit dataflow paths starting from imread,
the only place where dimensions are explicit. The compiler also infers pixel
bitwidths automatically, by calculating maximum upper bounds on bitwidth
requirements as image data flows through arithmetic operators. Another differ-
ence is the inference of FIFO depths. The default FIFO depth in both RIPL
and HLS OpenCV is 1. However, when an image is used in multiple places the
RIPL compiler increases the FIFOs automatically to frame buffers (Sect. 4.2).

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 185

Fig. 9. Thresholding with HLS OpenCV using a maximum pixel value

The HLS compiler does not make this inference, leaving the programmer to
use FPGA co-simulation to identify deadlocks. The user then programmatically
uses #pragma HLS stream depth =< N > to specify the FIFO depth to avoid
deadlock. Figure 9 shows a HLS OpenCV example that demonstrates the need
for explicit image duplication and explicit FIFO depths. The RIPL compiler
infers both of these properties automatically.

The final difference is how image processing pipelines are constructed.
Pipelined parallelism in RIPL is automatic. When two skeletons are composed in
sequence over an input image, they will execute in parallel over different regions
of the image stream. In HLS OpenCV, the programmer must specify #pragma
HLS dataflow above the function calls intended to be pipelined over the image
stream.

One similarity between HLS OpenCV and RIPL is the implementation of
image data structures. An OpenCV image is a hls::Mat. The Vivado HLS
FPGA implementation of hls::Mat images uses hls::stream internally, so OpenCV
images on FPGAs are FIFOs, which is also true for RIPL. Hence random image
access is not possible in either case.

Darkroom can be used to express benchmarks 1 and 2 (✓), but not 3, 4
or 5 (✗). Global reductions are not supported, because Darkroom’s line buffers
cannot be used to store values beyond a traversing a single line. Such a buffer is
required to compute the maximum pixel value (3) and the histogram (4). RIPL
is the only language of the three compared that supports image transposition,
which again requires a frame buffer that uses 64 BRAMs.

186 R. Stewart et al.

5.2 Space Performance

We use five benchmarks to compare the space performance of RIPL and OpenCV
compiled to FPGAs using Vivado HLS. The benchmarks are (1) brighten each
pixel in an image by 50, (2) 2D Sobel edge detection, (3) find the maximum pixel
maxPixel value then threshold the image with (maxPixel − 50), (4) compute
a sum histogram for an image then normalise the image using the histogram,
and (5) transpose an image. All programs are compiled for the Xilinx Zedboard
XC7Z020 for 512×512 single channel images. The memory use performance of
Darkroom cannot be compared because the line buffer to Verilog compiler back-
end is not publicly available.

Table 2. Memory implementation and expressivity results

Benchmark RIPL HLS OpenCV Darkroom

BRAM LUTs BRAM LUTs

1 Image brighten 0 (0%) 118 (0%) 0 450 (0%) ✓

2 Sobel 2D edge detection 1 (0%) 12273 (23%) 3 (1%) 713 (1%) ✓

3 Threshold with max pixel 64 (45%) 280 (0%) 64 (45%) 9172 (1%) ✗

4 Histogram normalisation 64 (45%) 799 (1%) 3 (1%) 2918 (5%) ✗

5 Image transposition 64 (45%) 321 (0%) ✗ ✗

The synthesis results in Table 2 are for RIPL and HLS OpenCV. RIPL and
OpenCV occupy very similar memory resources for image brightening (1) and
image thresholding (3). For Sobel edge detection (2), RIPL uses 2 BRAMs less
than OpenCV by instead using more LUTs. Thresholding and histogram nor-
malisation (4) in RIPL require a FIFO depth equal to the number of pixels in
the image in RIPL’s hardware backend. To support 8 bit pixels, the synthe-
sis tools use BRAMs in 32Kb mode, so storing a 512×512 image requires 64
BRAM blocks for these two benchmarks. The same is true for HLS OpenCV
for thresholding, but not histogram normalisation. This is because of an opti-
misation built into hls::EqualizeHist(), which normalises frame N + 1 using the
histogram computed for the previous frame N . This results in more efficient
BRAM use compared to RIPL. We plan this optimisation for RIPL.

6 Conclusion

Memory resources on FPGAs can be tailored to the needs of an algorithm, so
FPGA compilers are not hindered by fixed memory hierarchies such as those on
CPUs and GPUs. They are however constrained by the limited amount of on chip
BRAM and LUT memory resources. This paper describes the memory efficiency
aspects of RIPL, our image processing DSL for FPGAs. RIPL is more concise
than Vivado HLS OpenCV, because it automatically infers upper bounds on
bitwidths and the required FIFO depths for image streams, and image streams

A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs 187

are automatically duplicated when necessary. Despite these abstractions, RIPL
memory use is competitive on three of the four benchmarks expressible with
the Vivado HLS OpenCV. RIPL is more expressive than the Darkroom image
processing DSL, because Darkroom compiles to line buffers so does not support
global image reductions. Future work will explore temporal video processing
capabilities in RIPL, where new opportunities for dataflow analysis for data
locality may arise. We also wish to explore the applicability of RIPL for FPGA
acceleration of other stream based domains beyond image processing.

Acknowledgements. We acknowledge the support of the Engineering and Physical
Research Council, grant reference EP/K009931/1 (Programmable embedded platforms
for remote and compute intensive image processing applications).

References

1. Bezati, E.: High-level synthesis of dataflow programs for heterogeneous platforms.
Ph.D. thesis, STI, EPFL, Switzerland (2015)

2. Bradski, G.R., Kaehler, A.: Learning OpenCV - Computer Vision with the
OpenCV library: Software that Sees. O’Reilly, Beijing (2008)

3. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1991)

4. DeVito, Z., Hegarty, J., Aiken, A., Hanrahan, P., Vitek, J.: Terra: a multi-stage
language for high-performance computing. In: ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Seattle, WA, USA, June 16–19,
2013, pp. 105–116. ACM (2013)

5. Hegarty, J., Brunhaver, J., DeVito, Z., Ragan-Kelley, J., Cohen, N., Bell, S.,
Vasilyev, A., Horowitz, M., Hanrahan, P.: Darkroom: compiling high-level image
processing code into hardware pipelines. ACM Trans. Graph. 33(4), 1–11 (2014)

6. Kennedy, K., McKinley, K.S.: Maximizing loop parallelism and improving data
locality via loop fusion and distribution. In: Banerjee, U., Gelernter, D., Nicolau,
A., Padua, D. (eds.) LCPC 1993. LNCS, vol. 768, pp. 301–320. Springer, Heidelberg
(1994). doi:10.1007/3-540-57659-2 18

7. Kiselyov, O.: Iteratee IO: Safe, Practical, Declarative Input Processing. In: 11th
International Symposium on Functional and Logic Programming. LNCS, vol. 7294,
pp. 166–181 (2012)

8. Lee, H., Brown, K.J., Sujeeth, A.K., Rompf, T., Olukotun, K.: locality-aware map-
ping of nested parallel patterns on GPUs. In: 47th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 2014, Cambridge, UK, December
13–17, 2014, pp. 63–74. IEEE (2014)

9. Muddukrishna, A., Jonsson, P.A., Brorsson, M.: Locality-aware task scheduling
and data distribution for openmp programs on NUMA systems and manycore
processors. Sci. Program. 2015, 981759: 1–981759: 16 (2015)

10. Stephen Neuendorffer, T.L., Wang, D.: Accelerating OpenCV Applications with
Zynq-7000 All Programmable SoC using Vivado HLS Video Libraries. Technical
report, Xilinx, June 2015

11. Tate, A., et al.: Programming abstractions for data locality. In: Workshop on Pro-
gramming Abstractions for Data Locality, Swiss National Supercomputing Center,
Lugano, Switzerland, April 2014

http://dx.doi.org/10.1007/3-540-57659-2_18

188 R. Stewart et al.

12. Wieser, V., Grelck, C., Haslinger, P., Guo, J., Korzeniowski, F., Bernecky, R.,
Moser, B., Scholz, S.: Combining high productivity and high performance in image
processing using Single Assignment C on multi-core CPUs and many-core GPUs.
J. Electron. Imaging 21(2), 21116 (2012)

13. Xilinx: Implementing Memory Structures for Video Processing in the Vivado HLS
Tool. Technical report, Xilinx, September 2012

Ultrascale Computing for Early
Researchers (UCER 2016)

Exploring a Distributed Iterative Reconstructor
Based on Split Bregman Using PETSc

Estefania Serrano1(B), Tom Vander Aa2, Roel Wuyts2, Javier Garcia Blas1,
Jesus Carretero1, and Monica Abella1,3

1 University Carlos III, Madrid, Spain
{esserran,fjblas,jcarrete}@inf.uc3m.es

2 ExaScience Life Lab at imec, Leuven, Belgium
{Tom.VanderAa,Roel.Wuyts}@imec.be

3 Instituto de Investigacion Sanitaria Gregorio Marañon (IiSGM), Madrid, Spain
mabella@hggm.es

Abstract. The proliferation in the last years of many iterative algo-
rithms for Computed Tomography is a result of the need of finding new
ways for obtaining high quality images using low dose acquisition meth-
ods. These iterative algorithms are, in many cases, computationally much
more expensive than traditional analytic ones. Based on the resolution
of large linear systems, they normally make use of backprojection and
projections operands in an iterative way reducing the performance of
the algorithms compared to traditional ones. They are also algorithms
that rely on a large quantity of memory because they need of working
with large coefficient matrices. As the resolution of the available detec-
tors increase, the size of these matrices starts to be unmanageable in
standard workstations. In this work we propose a distributed solution of
an iterative reconstruction algorithm with the help of the PETSc library.
We show in our preliminary results the good scalability of the solution
in one node (close to the ideal one) and the possibilities offered with a
larger number of nodes. However, when increasing the number of nodes
the performance degrades due to the poor scalability of some fundamen-
tal pieces of the algorithm as well as the increase of the time spend in
both MPI communication and reduction.

Keywords: Computed tomography · CT · PETSc · MPI · Iterative
reconstruction

1 Introduction

Medical imaging is a multidisplinary field that includes physicians, mathemati-
cians or computer scientists with the objective of obtaining better images for

E. Serrano—This work has been partially supported under the COST Action IC1305
“Network for Sustainable Ultrascale Computing Platforms” (NESUS), the grant
TIN2013-41350-P, Scalable Data Management Techniques for High-End Computing
Systems from the Spanish Ministry of Economy and Competitiveness, FPU14/03875
from the Spanish Ministry of Education, NECRA RTC-2014-3028-1, TEC2013-
47270-R and RTC-2014-3028-1 project.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 191–200, 2016.
DOI: 10.1007/978-3-319-49956-7 15

192 E. Serrano et al.

diagnosis and the study of diseases in human beings. One of the important tech-
niques nowadays is CT (Computed Tomography). CT uses X-Ray images and a
computational processing pipeline to obtain the inner images of the body thanks
to the different rate of absorption of the rays depending on the materials. This
computational pipeline normally consists on the application of different algo-
rithms, which, over time, have been developed to increase the quality of the final
images in different unfavorable situations.

The proliferation in the last years of many iterative algorithms for CT is a
result of the need of finding new ways for obtaining high quality images using
low dose acquisitions. These iterative algorithms are, in many cases, computa-
tionally much more expensive than traditional analytic methods. The general
approximation of iterative reconstruction algorithms is the continuous improve-
ment of the final resulting image, taking into account the characteristics of the
input radiographies. They are also algorithms that rely on a large amount of
memory because they work with large and dense coefficient matrices. As the
resolution of the available detectors increase, the size of these matrices becomes
unmanageable in standard workstations.

In this work, we present an iterative reconstruction algorithm adapted to
a distributed environment using the PETSc library. With this approach, it is
possible to overcome the memory limits of single node executions and increase the
computational resources. This solution could be applied to other type of iterative
algorithms or even to standard analytical methods in the reconstruction of large
volumes. For the construction and implementation of the iterative algorithm we
have started from a parallel CT simulator containing basic operations [10].

This work is divided in the following sections. In Sect. 2 we present a brief
summary of different approaches that have been taken to accelerate iterative
reconstruction algorithms. The iterative algorithm implemented is explained in
detail in Sect. 3 and we provide a graphical description of the flow of the appli-
cation. Then, in Sect. 4 we explain the approach taken in this work to distribute
the computations through the use of PETSc and MPI. We evaluate our imple-
mentation in terms of performance in Sect. 5. Finally, major conclusions of our
work are presented in Sect. 6.

2 Related Work

There have already been works discussing different optimizations of iterative
algorithms for CT. The works proposed in [4,6,8] are focused on the optimiza-
tion of the projection and backprojection methods included in the iterative recon-
struction. The approach is similar to the one taken by us, since the kernel opera-
tors are normally the tasks that are more time consuming thus requiring a larger
optimization effort. Works in [4,6] follow the parallelization approach, dividing
the planes to process them separately in a CUDA compatible device and com-
paring with a CPU implementation. Another approach is the one taken by Rit
et al. in [8], in which the authors present novel techniques for truncating and
reducing the number of operations of the kernel, obtaining a faster algorithm.

Exploring a Distributed Iterative Reconstructor Based on Split Bregman 193

Distribution of the computation has also been a studied topic. Palenstijn et al.
[7] present a similar approach to the work shown here. They implement a version
of SIRT algorithm from the ASTRA Toolbox in a distributed way using MPI
and GPUs for the backprojection and projection methods. MPI over the Cloud
have been used by Rosen [9] for the implementation of a penalized weighted
least-squareswith ordered subsets (PWLS-OS) reconstruction algorithm. Finally,
changing of paradigm from MPI to MapReduce, we have the work of Meng et al.
[5], which parallelizes with MapReduce large 4D reconstruction studies for FDK
(Feldkamp, Davis and Kress) non iterative reconstruction algorithms, obtaining
a speedup of 10 over the one node version when using Hadoop relying on 200
nodes. All these distributed versions perform considerably better than their one
node versions and prove the feasibility of reconstructing large problems. However,
the scalability of some of these approaches is not near ideal.

3 Iterative Reconstruction Algorithm

Iterative reconstruction algorithms rely on the iterative refinement of the final
image until a point of convergence or a minimal noise rate are reached. There
exist multiple types of iterative algorithms and innumerable variations. One of
the main characteristics of an iterative algorithm is the progressive refinement
of the image to be reconstructed. This is carried out through the application of
specific operators: backprojection and projection.

The backprojection operator consists on the transformation of the projection
images (or radiographies) to a 3D volume that contains the information of the
inside of the scanned object. The projection operator is just the opposite: from
a 3D volume it is able to recover the radiographies. In other words, it projects
the volume onto different planes. Simplifying, both of them are based on the
computation of ray trajectories that traverse the voxels in the volume to reach
the detector. Then, it computes the integral of the values in the voxels or pixels
reached. Therefore, the computational complexity of these algorithms is, respec-
tively: O(dim u * dim v *dim z) and O(dim ps * dim pz *dim v) being dim u,
dim v and dim z the number of voxels in the final volume in each of the axis,
and dim ps and dim pz the number of pixels of the detector.

In our case, we work on a new iterative algorithm based on the split Bregman
method [3] that includes a Krylov subspace solver [2]. The main purpose of the
Krylov solver is to resolve the equation system:

Ax = b, (1)

where A is the system matrix and x and b are vectors representing volume
data.

The system matrix A is a large matrix representing the relationship between
the value of the voxels in the volume and the pixel value in the detector. In
medium and large studies the size of this matrix increases, as well as the cost
to compute it. Thus, it is easier to employ backprojection and projection algo-
rithms than their system matrix representation. For this reason we execute an

194 E. Serrano et al.

independent function to compute Ax, which results in a much smaller vector
than the system matrix A and requires the usage of a matrix-free compatible
solver. We also provide the vector b, being an approximation of the final vol-
ume. The specific Krylov space solver employed in this work was BiCGSTAB
(Bi Conjugate Gradient Stabilized method) [11] in its matrix-free form without
any preconditioners.

Although this algorithm contains a variety of vector operations, the execution
time is conditioned by the two previously explained analytical operators.

4 Distributed Implementation

The basis of the distributed implementation is the possibility of, not only increas-
ing the computation power due to the increase in the number of processors or
accelerators available, but also to increase the memory which allows the recon-
struction of bigger volumes and the use of higher number of projections.

4.1 PETSc and MPI

For the implementation of the algorithm in a distributed environment we
employed the library PETSc (Portable, Extensible Toolkit for Scientific Compu-
tation) [1], which relies on MPI (Message Passing Interface) for the communica-
tion between different nodes. This library contains several methods for matrix
and vector computation, as well as optimized and distributed versions of the
most popular solvers including BiCGSTAB. It also allows integration with sev-
eral external mathematical libraries and even can take advantage of specialized
hardware like GPUs.

The implementation of the distributed routines is based on the use of par-
allel structures included in PETSc, the distributed memory distributed arrays
(DMDAs), which describe the parallel structure of an object (a vector or matrix)
including the partitioning, ordering, interpolations, and ghost or stencil regions.
Developing the distributed functions taking into account this structure leads
to a partitioning-independent implementation, which provides a more flexible
execution of the application in diverse environments.

Its compatibility with MPI allows the programming of hybrid algorithms that
combine native MPI functions with PETSc structures and methods.

4.2 Distribution Strategy

The distribution and parallelization strategy were constructed around the divi-
sion of the output data (the volume) in different chunks. This division is done
in the z axis (as seen in Fig. 1) to encourage data locality and to avoid unneces-
sary communication. Since most of the operations are voxel independent (sum of
vectors, vector scaling, vector subtraction) and others are independent in the dif-
ferent u-v planes, the partitioning of the vector through the z axis was the most
reasonable option. However, there exist a dependency in the z plane regarding

Exploring a Distributed Iterative Reconstructor Based on Split Bregman 195

the algorithm: the execution of the backprojection and projection step over a
partition of the volume generates incomplete information. The backprojection is
an operator in which the generation of each of the voxels is totally independent,
and the same happens for projection on the different pixels. However, if we want
to obtain a complete and correct volume, the projections must also be complete.
As shown in Fig. 1, the application of the projection operator over independent
chunks of the volume generates incomplete projections in the z axis leading to
the computation of incorrect voxel values in the subsequent backprojection step.
To overcome this problem it is necessary to obtain the complete and correct
projections in all distributed processes, thus creating a synchronization point.
At this synchronization point, the interpolation zones of each projection in each
process must be reduced to obtain the final correct value.

Fig. 1. Interpolation zones that must be reduced inside the volume and projection.
Each partition of the volume is held by a different node.

This division strategy provides good results for the backprojector operator,
but it does not scale for the case of the projector. This is due to the fact that
projector’s complexity, O(dim ps * dim pz *dim v) does not depend of the par-
titioned variable, the dimension of the volume in z. To provide scalability, we
had to decrease the size of the computed projections for each partitioned volume
computing the maximum and minimum projections lines. These projection lines
(red dot lines in Fig. 1) represent the limits of the contribution of the partial
volume to the projection.

196 E. Serrano et al.

5 Experimental Study

We have executed a preliminary evaluation of the implementation on a sin-
gle node and in a distributed environment composed of 12 nodes. The purpose
was to evaluate the scalability of the application for a different number of MPI
processes. The evaluation was done on nodes with an Intel(R) Xeon(R) CPU
X5660 @ 2.80 GHz with 12 physical cores and 96 GB of memory. The version of
MPI used was MPICH 2 with the Hydra manager. The application was compiled
with GCC 4.9 and the execution was configured to have the processes bound to
the physical cores of the node. The PETSc version employed was 3.7.

The application was tested with real data: 360 projections of 128× 128 pixels
of a crocodile scapula for the single node execution. The output data consisted
on a volume of 128× 128x128 voxels. Only two iterations of the algorithm were
executed since the time per iteration is stable for most studies.

In the case of the distributed implementation we employed a realistic use
case: 180 projections of 512× 512 pixels and the volume output data was
512× 512x512 voxels. Again 2 iterations of the algorithm were executed.

5.1 Single Node Execution

We have divided the execution time between different phases of the algorithm:
the reading of the projection data, the initial broadcast of the initial projection,
the Krylov solver and the writing of the result volume. In Fig. 2 we plot the
execution time for each of these phases as well as the total time employed and
the ideal progression time with an ideal scaling. The Krylov solver takes most of
the time of the application, representing the other phases less than 1 % percent
of the total time.

As we can see from Fig. 3 the backprojection follows almost the same progres-
sion as the linear ideal speedup, having with 12 processes a speedup of 11.12 with

Fig. 2. Execution time of the application for different number of processors and stages.

Exploring a Distributed Iterative Reconstructor Based on Split Bregman 197

Fig. 3. Speedup for the backprojection and projection phases for different number of
processors vs ideal speedup.

respect of the execution with just one MPI process. The scalability of the projec-
tion kernel is worse than that of the backprojection kernel. This is an expected
behaviour since, as explained before, the projection does not scale directly with
the partition variable, but with the projection of the divided volume over the
detector. This means that the scalability of the projection will be worst than
that of the backprojection and that also depends of variables such as the dis-
tance between source, object and detector and pixel and voxels sizes. In these
first experiments the influence of the reduction of the projections is not high
because of the low number of processes. However, in further evaluation in larger
scales, this reduction could represent a problem to be tackled.

5.2 Distributed Execution

For the distributed execution we chose a larger data set with less projection
simulating a realistic use case. We show the total execution time compared with
the ideal one for different number of processors in Fig. 4. The MPI processes are
always distributed equally between nodes.

As in the evaluation with the single node, the Krylov solver represents a large
percentage of the execution time of the application although, a larger gap with
the total time is observed. This gap includes minor functions such as matrix sub-
stractions and vector multiplications as well as the projection reduction. Study-
ing the execution time for all the projection reductions performed during the
execution (both included and not included inside the Krylov solver) we can see
in Fig. 5 that the combination of results to obtain the final projection planes
(the reduction) now represents a higher percentage of the total time, being, with
144 processors almost 50 % of the total.

This naturally influences the maximum speedup that can be obtained taking
into account parallelization as we show in Fig. 6. The backprojection operator
scales neraly ideally, however the inadequate scaling of the projection opera-
tor due to the previously explained reasons, as well as the problem introduced
with the projection reduction cost reduce significantly the total speedup of the
application that reaches a maximum of 40 when using 144 processors.

198 E. Serrano et al.

Fig. 4. Execution time of the application for different number of processors and stages.

Fig. 5. Execution time of the application for different number of processors and stages
including time spent in projection reduction.

Fig. 6. Speedup for the backprojection and projection phases for different number of
processors vs ideal speedup.

Exploring a Distributed Iterative Reconstructor Based on Split Bregman 199

6 Conclusions

In this paper, we have presented the implementation and evaluation of an iter-
ative reconstruction method for CT in a distributed environment. For the dis-
tribution of the application we have chosen PETSc, a mathematical library on
top of MPI that already implemented some of the algorithms needed for our
method. We have partitioned the main output dataset to provide scalability as
well. In the first preliminary evaluation, we observed that our implementation
scales in the main computational parts (backprojector and projector operators)
and it is possible to execute in parallel with little differences in the final result.
However, when distributing over several nodes, the specific characteristics of the
projection operation along with the increasing cost of the projection reduction
impacts negatively on the overall performance providing poor speedups.

Further scalability evaluations with larger volumes will be done in the future
with both GPU and CPU alternatives for the main operators. Additionally, we
plan to optimize the reduction of the projections with a division of the reduction
in different groups, taking into account their contribution to the projection lines.
Finally, further studies for the improvement of the scalability of the projection
operator will be done, taking into account other possible partitioning variables
that can give a more balanced solution for this operator.

References

1. Balay, S.,Abhyankar, S.,Adams,M.F.,Brown, J.,Brune,P.,Buschelman,K.,Dalcin,
L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp,
K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page (2016). http://
www.mcs.anl.gov/petsc

2. de Molina, C., Abascal, J., Desco, M., Abella, M.: Study of the possibilities of
surface-constrained compressed sensing (SCCS) method for limited-view tomogra-
phy in CBCT systems. In: Proceedings of the 4th International Meeting on Image
Formation in X-Ray CT, pp. 491–494 (2016)

3. Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems.
SIAM J. Imaging Sci. 2(2), 323–343 (2009)

4. Jian-Lin, C., Lei, L., Lin-Yuan, W., Ai-Long, C., Xiao-Qi, X., Han-Ming, Z., Jian-
Xin, L., Bin, Y.: Fast parallel algorithm for three-dimensional distance-driven
model in iterative computed tomography reconstruction. Chin. Phys. B 24(2),
28703 (2015)

5. Meng, B., Pratx, G., Xing, L.: Ultrafast and scalable cone-beam CT
reconstruction using MapReduce in a cloud computing environment. Med.
Phys. 38(12), 6603–6609 (2011). http://scitation.aip.org/content/aapm/journal/
medphys/38/12/10.1118/1.3660200

6. Nguyen, V.G., Jeong, J., Lee, S.J.: Gpu-accelerated iterative 3d ct reconstruction
using exact ray-tracing method for both projection and backprojection. In: 2013
IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC),
pp. 1–4. IEEE (2013)

7. Palenstijn, W.J., Bdorf, J., Batenburg, K.J., King, M., Glick, S., Mueller, K.:
NWO: A distributed SIRT implementation for the ASTRA Toolbox. None, June
(2015). https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=23719

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://scitation.aip.org/content/aapm/journal/medphys/38/12/10.1118/1.3660200
http://scitation.aip.org/content/aapm/journal/medphys/38/12/10.1118/1.3660200
https://repository.cwi.nl/noauth/search/fullrecord.php?publnr=23719

200 E. Serrano et al.

8. Rit, S., van Herk, M., Sonke, J.J.: Fast distance-driven projection and truncation
management for iterative cone-beam ct reconstruction

9. Rosen, J.M., Wu, J., Wenisch, T.F., Fessler, J.A.: Iterative helical CT reconstruc-
tion in the cloud for ten dollars in five minutes. In: Proceedings International MTG
on Fully 3D Image Recon. in Rad. and Nuc. Med. pp. 241–244 (2013). http://web.
eecs.umich.edu/∼fessler/papers/lists/files/proc/13/web/rosen-13-ihc.pdf

10. Serrano, E., Blas, J.G., Molina, C., Garcia, I., Carretero, J., Desco, M., Abella, M.:
Design and evaluation of a parallel and multi-platform cone-beam X-ray simulation
framework. In: Proceedings of 4th International MTG on Image Formation in X-ray
CT, pp. 423–426 (2016)

11. Van der Vorst, H.A.: Bi-cgstab: a fast and smoothly converging variant of bi-cg for
the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2),
631–644 (1992)

http://web.eecs.umich.edu/~fessler/papers/lists/files/proc/13/web/rosen-13-ihc.pdf
http://web.eecs.umich.edu/~fessler/papers/lists/files/proc/13/web/rosen-13-ihc.pdf

Implementation of the Beamformer Algorithm
for the NVIDIA Jetson

Fran J. Alventosa1, Pedro Alonso1(B), Gema Piñero2, and Antonio M. Vidal1

1 Department of Information Systems and Computation (DSIC),
Universitat Politècnica de València, Valencia, Spain

{fraalrue,palonso,avidal}@dsic.upv.es
2 Instituto de Telecomunicaciones y Aplicaciones Multimedia (iTEAM),

Universitat Politècnica de València, Valencia, Spain
gpinyero@iteam.upv.es

Abstract. Nowadays, the aim of the technology industry is intensively
shifting to improve the ratio Gflop/watt of computation. Many proces-
sors implement the low power design of ARM architecture like, e.g. the
NVIDIA TK1, a chip which also includes a GPU embedded in the same
die to improve performance at a low energy consumption. This type of
devices are very suitable target machines to be used on applications that
require mobility like, e.g. those that manage and reproduce real acoustics
environments. One of the most used algorithms in these reproduction
environments is the Beamformer Algorithm. We have implemented the
variant called Beamformer QR-LCMV, based on the QR decomposition,
which is a very computationally demanding operation. We have explored
different options differing basically in the high performance comput-
ing library used. Also we have built our own version with the aim of
approaching the real-time processing goal when working on this type of
low power devices.

Keywords: Audio processing · Beamformer · GPU-CPU Processing ·
Heterogeneous QR Factorization

1 Introduction

In High Performance Computing (HPC), the challenge is not only to improve the
performance of applications that have a very high computational cost but also
to improve another type of applications, those that require a low computational
power but are characterized however by the immediacy of the result, i.e. applica-
tions with real-time constraints. The Beamformer Algorithm, object of study in
this work, is a typical algorithm used in digital signal processing contexts whose
purpose is to separate different sound sources simultaneously broadcast on the

This work has been supported by projects TEC2015-67387-C4-1-R of the Span-
ish Ministerio de Economı́a y Competitividad and PROMETEOII/2014/003 of the
Generalitat Valenciana.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 201–211, 2016.
DOI: 10.1007/978-3-319-49956-7 16

202 F.J. Alventosa et al.

same channel so that they are, therefore, mixed [3]. A typical example is of sev-
eral people speaking at the same time in the same room. The main objective
of a “Beamformer” application is to separate those different sources and try to
extract the original independent signals in real-time.

Another challenge we address nowadays is to use mobile low-power devices to
perform this task. Both mobility and a long battery life are requirements to the
applicability of these devices. However, a real-time response of the application
and the use of low-power devices can be incompatible. The problem is exacer-
bated by the fact that, in order to achieve an accurate solution, the amount of
numerical operations increases exponentially with the problem size.

However, on the positive side of the scales, currently we count on low-power
processors based on ARM architecture that incorporate an embedded GPU in
the same die. They are the NVIDIA TK1 and the NVIDIA TX1 processors.
These processors can be found in tablets (NVIDIA Shield) under the Android
operating system or under the Linux operating system (Jetson Development
Kit). Being in the same chip, both the CPU and the GPU share the same
physical address space in main memory allowing thus to access shared data very
fast. Hence, using the CPU in combination with the GPU can help to reach the
real-time threshold if we can develop an optimized version of our algorithm for
this processor. Furthermore, the ratio gflops per watt is large for these devices
thanks to the GPU, allowing thus to save energy.

In this work we start the way to a real-time Beamforming Algorithm on
low-power devices which feature an embedded GPU. In particular, we have
implemented codes corresponding to the Beaformer QR-LCMV (Linearly Con-
strained Minimum Variance) Algorithm presented in [4]. In the implementation
we have employed different high performance computing libraries that contain
linear algebra solvers, i.e. implementations of BLAS and LAPACK. We used
OPENBLAS [8] and PLASMA [2], which are optimized and parallel libraries that
work with the cores of the CPU. To work with the GPU we used CUBLAS [5],
the NVIDIA optimized implementation of BLAS for its GPUs. And, finally, we
also used MAGMA [9], which is a library containing hybrid routines that let to
use both the CPU and the GPU when possible. As we will see in the results,
none of these libraries are completely satisfactory to exploit the capabilities of
a Jetson processor. This is why we added to the set of possibilities our own
implementation of the Beaformer QR-LCMV Algorithm, taking advantage of
the peculiarities of the hardware employed, in this case the NVIDIA Jetson
TK1.

The paper is structured as follows. The following section explains the math-
ematical model which is in the base of the Beamformer QR-LCMV Algorithm,
which is a summary of the proposal presented in [4]. Next, in Sect. 3 we show how
the algorithm has been implemented. Section 4 shows the experimental results
obtained running the algorithm with different HPC libraries. The paper ends
with some conclusions.

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 203

2 Mathematical Background of the Beamformer
Algorithm

Figure 1 shows graphically the problem that solves the application that we
address in this paper. Concretely, this problem model presents two speakers
that emit one different signal each and an array of three microphones, each one
located at a different point of a room, that capture the sound signal coming from
the sound sources. In these systems, it is required that the number of listeners
is larger than the number of sources.

Fig. 1. Beamformer model

Formally, the Beamformer model is described as follows. Each Sm, for m ∈
1, 2, represents a speaker of the model. Through Vn, for n ∈ 1, 2, 3, we represent
the microphones located at different points of the room. Variable hmn represents
the existing channel between the m-th speaker and the n-th microphone. The
array gz, for z ∈ 1, 2, 3, is the filter to be applied to microphone z in order to
get the sought-after signal k. Finally, array y(k) represents the output signal as
the result of applying filter g to the signals captured by the microphones.

Let sm(k), m = 1, . . . , M , be signals emitted by M loudspeakers, the goal is
to develop N filters gn, n = 1, . . . , N , being N the number of microphones in
the system, that allow to rebuild the original source signals once cleaned from
noise and room reverberation. To this end, we use channel responses of the room,
represented as hnm, for the values n and m stated before.

The output of the n-th microphone is given by:

xn(k) =
M∑

m=1

Lh∑

j=1

hnm(j)sm(k − j) + vn(k),

where Lh is the length of longest room impulse response of all the acoustic
channels hnm, and vn(k) is the noise signal. (For the sake of clarity, we will not
consider the noise term hereafter.) Also for clarity and computation efficiency,
we rewrite the form of the output signal of each microphone as

xn(k) =
M∑

m=1

hT
nmsm(k),

204 F.J. Alventosa et al.

where sm(k) is the column vector defined as

sm(k) =
[
sm(k) sm(k − 1) · · · sm(k − Lh + 1)

]T
,

and hnm is the R
Lh×1 acoustic channel vector from loudspeaker m to micro-

phone n.
Considering now the problem of recovering source signals sm(k) from the

recorded observations xn(k), Beamforming filters gn have to be designed so that
the output signal y(k) is a good estimate of sm(k), that is, y(k) = ŝm(k−τ) with
minimum error. Given a maximum length of Lg taps for each of the N filters
gn, the broadband Beamforming output signal is expressed in a similar form as

y(k) =
N∑

n=1

gT
nxn(k),

where gn is the R
Lg×1 vector containing the ordered taps of Beamforming filters

gn, and xn(k) = [xn(k)x(k − 1) · · · xn(k − Lg + 1)]T .
The LCMV Algorithm calculates the Beamforming filters as:

gLCMV = R̂−1
x H:m[HT

:mR̂−1
x H:m]−1um, (1)

where the solution array gLCMV is formed by the concatenation of filters gn,
i.e. gLCMV = [gT

1 , . . . ,gT
N]T , and matrix H(NLg)×(Lg+Lh−1)

:m is a partition of the
channel impulse matrix that only includes the impulse responses from the m-th
source to the N microphones used in Sylvester matrix form. Matrix R̂x is the
correlation matrix of the recorded signals, and um is a vector set to zeros except
for one entry which is set to one at the proper position in order to compensate
the room impulse response delay.

The implementation of the LCMV Algorithm proposed seeks for efficiency
and accuracy, and for this reason is mainly based on the QR decomposition.
Firstly, we form the following matrix X ∈ R

NLg×K ,

X =
1√
K

⎛

⎜⎜⎜⎝

x1(k) x1(k + 1) . . . x1(k + K − 1)
x2(k) x2(k + 1) . . . x2(k + K − 1)

...
...

...
xN (k) xN (k + 1) . . . xN (k + K − 1)

⎞

⎟⎟⎟⎠ ,

where K (> NLg) is the number of samples used. The algorithm computes the
QR decomposition of XT , i.e. XT = QR, where Q is orthogonal and R is upper
triangular. Thus, in order to use LAPACK routines we build directly matrix XT

in column major order representation. Using matrix X, matrix R̂x (1) can be
computed as

R̂x = XXT = RTQTQR = RTR .

Now, we define for convenience matrix W = R̂−1
x H:m so that the LCMV

Beamformer filter gLCMV (1) can be expressed as

gLCMV = W[HT
:mW]−1um. (2)

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 205

Algorithm 1. The QR-LCMV Beamformer Algorithm

Require: Xmicro, N, LG, tam
Ensure: Y

1: Construction of matrix X. (Algorithm 2)
2: Computation of the QR decomposition of matrix X.

3: Computation of the Beamformer filter (G). (Algorithm 3)
4: Apply filter Beamformer (vector G) to get the output (vector Y).

We also define a matrix named Z which is the solution of the linear system

RTZ = H:m,

so that using the QR decomposition of matrix X we have

W = R̂−1
x H:m = (RTR)−1H:m = R−1R−TH:m = R−1Z,

where clearly matrix W is the solution of the linear system RW = Z.
The path to obtain the Beamforming filters proceeds by solving the linear

system
Abm = um, (3)

where A = HT
:mW = HT

:mR−1Z = ZTZ. Also here, the solution of the linear
system (3) is obtained through a QR factorization, in this case, of matrix Z.
Let Z = Q′R′ be the QR decomposition of matrix Z, then vector bm can be
computed by solving the following two triangular linear systems:

R′Ty = um,

R′bm = y.

Finally, it is easy to see that the Beamformer filter presented in (1) can be
computed through these last objects, i.e. R, Z, and bm, this way:

gLCMV = R−1Zbm,

which involves a matrix vector product and a triangular linear system solution.

3 Implementation of the QR-LCMV Algorithm

We call QR-LCMV Algorithm to the LMCV Algorithm derived in the previous
section whose computation is based on the QR decomposition. This algorithm
can be easily described at the highest level of abstraction through four sequential
steps that are summarized in Algorithm 1.

Matrix X, of size rows × cols, has a rectangular structure characterized
by a number of rows which is much greater than the number of columns
(rows � cols), being rows and columns functions of the filter length LG and the
number of microphones N. This matrix is built as shown in Algorithm2. For the

206 F.J. Alventosa et al.

Algorithm 2. Construction of matrix X

Require: Xmicro, N, LG, tam
Ensure: X

1: pXmicro = Xmicro+LG-1;

2: pmatrixX = X;

3: for(i=0; i<N; i++) {

4: pXmicroaux = pXmicro;

5: for(r=0; r<LG; r++) {

6: for(j=0; j<k; j++) {

7: *pmatrixX = *(pXmicroaux+j);

8: *pmatrixX++;

9: }

10: pXmicroaux--;

11: }

12: pXmicro += tam;

13: }

Algorithm 3. Computation of the Beamformer filter G

Require: rows, cols, lda, l, R, H
Ensure: G

1: // Z = R*H

2: memcpy(Z,H,n*l);

3: strsm_(L,U,T,N,&cols,&l,&alpha,R,&lda,Z,&cols);

4: // A = Z*Z’;

5: memcpy(A,Z,cols*l);

6: calculateQR(cols,l,cols,A);

7: // B[] = zeros; B[lg]=1

8: spotrs_(U,&l,&right,A,&cols,B,&l,&info);

9: sgemv_(N,&cols,&l,&alpha,Z,&cols,B,&right,&zero,G,&right);

10: strsv_(U,N,N,&cols,R,&rows,G,&right);

construction of X, we use an entry data matrix (Xmicro) which contains a set of
values corresponding to the impulse response of the room and represents thus
the physical features of the transmission channel. The integer tam is associated
with some dimension of matrix Xmicro.

The second step of Algorithm 1 is solved by calling a LAPACK routine of
the most suitable package. The libraries used exploit the ARM cores both in
sequential and in parallel. Furthermore, some libraries allow to use the GPU
alone or together the CPU cores. However, we did not find any implementation
of the QR decomposition able to use the four ARM cores together the GPU.
Hence, we performed a reimplementation of the LAPACK routine larfb, used by
the driver routine geqrf, so that the GPU can be used in the QR decomposition
(using CUBLAS library) at the same time the CPU cores can be used in parallel
to perform another parts of the QR decomposition. This strategy is very similar
to that implemented by MAGMA for multicore with a GPU attached. However,

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 207

we decided to perform our own implementation since the results obtained with
the MAGMA routine in the Jetson were very disappointing.

The third step of Algorithm1 is devoted to the computation of filter G and its
description is depicted in Algorithm 3. The last step involves simply operations
needed to compute the final solution.

4 Analysis of the Results

In this work, we have employed the hardware platform NVIDIA Jetson TK1 [6].
The NVIDIA Jetson is a development kit running Linux that includes the proces-
sor Tegra K1 of NVIDIA, a processor which is also included in a wide variety
of mobile devices like the Tablet NVIDIA Shield. The K1 chip features a quad-
core ARM Cortex-A15 [1] processor and a Kepler [7] GPU with 192 cores. The
NVIDIA Jetson includes 2 GB of main memory shared by the ARM proces-
sors and the GPU. It has, in addition, a great variety of connection interfaces:
USB 3.0, mini-PCIE, GygaEthernet, SATA 3, HDMI. . . , that make of this device
a very useful tool for a wide set of applications.

In the experimental tests the system used is made of 3 microphones and
2 loudspeakers. We worked with two filter lengths: 319 and 1499, which are
upper and lower thresholds of usual filter lengths for this type of system.

The two first tests were performed to compare different versions of libraries
BLAS and LAPACK optimized for the NVIDIA Jetson TK1. Optimized ver-
sions of these libraries can be found, e.g. in ATLAS and OPENBLAS. Tables 1
and 2 show the execution time using these two libraries, respectively, when run-
ning on one core. It can be easily observed that the optimization performed by
OPENBLAS is slightly better than that of ATLAS for this hardware.

Table 1. Results of the Beamformer algorithm using ATLAS with 1 core.

LG = 319 LG = 1499

TIME % TIME %

MatrixX 0.022 s 1% 0.44 s 0%

QR of MatrixX 2.327 s 85% 224.03 s 86%

G Filter 0.373 s 14% 35.57 s 14%

Total time 2.722 s 100% 260.04 s 100%

The tables show three parts of the algorithm that correspond with those
described in Algorithm 1, taking into account that the last two steps are merged
in only one execution time (G Filter). We clearly observe, by analyzing the
profile of the algorithm, that the most time consuming operation of the algorithm
is the QR factorization of matrix X. The cost of this operation is all above 80 %
of the total cost. This disparity in the cost of each part of the algorithm dictates

208 F.J. Alventosa et al.

Table 2. Results of the Beamformer algorithm using OPENBLAS with 1 core.

LG=319 LG=1499

TIME % TIME %

MatrixX 0.015s 1 % 0.28s 0 %

QR of MatrixX 2.049s 85 % 191.19s 86 %

G Filter 0.348s 14 % 30.91s 14 %

Total time 2.413s 100 % 222.37s 100 %

that the optimization effort should be addressed to the QR decomposition of
matrix X.

As a natural step forward we tested the behaviour of this algorithm when
using more than one core. In this case there are 4 cores available to operate with.
Libraries OPENBLAS and PLASMA both provide with a parallel implementa-
tion of the LAPACK routine that allows to obtain the QR factorization of a
general matrix in parallel. Table 3 shows the execution time, also partitioned in
the parts of the algorithm, when using 4 cores and OPENBLAS. The results with
4 cores using PLASMA are shown in Table 4. As in the case of using libraries
ATLAS and OPENBLAS with a single core, also here OPENBLAS is better
than PLASMA when using the four 4 cores of the TK1.

Table 3. Results of the Beamformer algorithm using OPENBLAS with 4 cores.

LG=319 LG=1499

TIME % TIME %

MatrixX 0.015s 2 % 0.28s 0 %

QR of MatrixX 0.639s 84 % 55.19s 86 %

G Filter 0.108s 14 % 8.91s 14 %

Total time 0.763s 100 % 64.37s 100 %

Table 4. Results of the Beamformer algorithm using PLASMA with 4 cores.

LG=319 LG=1499

TIME % TIME %

MatrixX 0.013s 1 % 0.32s 0 %

QR of MatrixX 0.709s 74 % 56.48s 75 %

G Filter 0.236s 25 % 18.20s 24 %

Total time 0.958s 100 % 75.00s 100 %

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 209

Table 5. Results of the Beamformer algorithm using OPENBLAS with 4 cores and
MAGMA.

LG=319 LG=1499

TIME % TIME %

MatrixX 0.013s 1 % 0.40s 1 %

QR of MatrixX 1.117s 87 % 36.65s 83 %

G Filter 0.158s 12 % 6.99s 16 %

Total time 1.289s 100 % 44.03s 100 %

Table 6. Results of the Beamformer algorithm using OPENBLAS with 4 cores and
CUBLAS.

LG=319 LG=1499

TIME % TIME %

MatrixX 0.015s 1 % 0.30s 1 %

QR of MatrixX 1.056s 83 % 31.45s 81 %

G Filter 0.206s 16 % 6.93s 18 %

Total time 1.277s 100 % 38.68s 100 %

Next, we used the embedded GPU of the processor TK1. We firstly used the
only package (to the best of our knowledge) that allows to use a general purpose
processor together a GPU, i.e. MAGMA (Table 5). We checked that the MAGMA
implementation is still not properly optimized, and that a specialized work must
be done to tune the hybrid implementation for processors like the NVIDIA TK1.
Following the idea inspired by MAGMA, we made our own implementation of
a hybrid algorithm that uses the four CPU cores plus the GPU device, using
OPENBLAS for the CPU and CUBLAS for the GPU. Table 6 shows that our
implementation outperforms MAGMA.

0

0.5

1

1.5

2

2.5

3

matrixX QR of matrixX GFilter

T
im

e
(s

ec
.)

LG=319

ATLAS 1 core
OBLAS 1 core
OBLAS 4 cores
PLASMA 4 cores
MAGMA
CUBLAS

0

50

100

150

200

250

matrixX QR of matrixX GFilter

T
im

e
(s

ec
.)

LG=1499

ATLAS 1 core
OBLAS 1 core
OBLAS 4 cores
PLASMA 4 cores
MAGMA
CUBLAS

Fig. 2. Profile of the Beamformer algorithm with regard to the library employed.

210 F.J. Alventosa et al.

−40

−20

0

20

40

60

80

ATLAS 1 vs OBLAS 1 OBLAS 1 vs OBLAS 4 PLASMA 4 vs OBLAS 4 MAGMA vs CUBLAS OBLAS 4 vs CUBLAS

P
er

ce
n
ta

g
e

Libraries

319
1499

Fig. 3. Peer comparison of libraries (percentage of improvement).

Figure 2 summarizes the results with each different library and/or setting for
the two filter lengths, i.e. LG = 319 and LG = 1499, to compare them all.

In addition, Fig. 3 depicts the percentage of improvement by pairs of libraries
for both filter lengths. For instance, the first tick shows that OPENBLAS with
1 core performs better than ATLAS with 1 core for both filter lengths. On the
other side of the figure, the negative value shows that it is worse using CUBLAS
(the GPU) than using the four cores with OPENBLAS for a small filter length
(LG=319) but, on the contrary, for a large filter length it is better to use the
GPU instead of the 4 ARM cores. In general, we observe that the GPU plays a
more significant role as the problem size increases.

5 Conclusions

The very large computational cost of the QR decomposition in which is based
the QG-LCMV Beamformer Algorithm makes this method not suitable for real-
time processing of digital sound reproduction systems when we try to use mobile
devices based on ARM technology. However, the combination of a processor like
the NVIDIA TK1, which contains a GPU accelerator embedded, with a proper
implementation of the QR decomposition opens the door to the possibility of
reaching this goal. The advent of the new processor NVIDIA TX1 can help in
this way if we perform a suitable implementation of the QR decomposition like
the one presented in this paper.

Another conclusion regards with the available BLAS/LAPACK routines,
which are (still) very far of being optimized libraries for these type of processors.
A lot of work is left to do, for instance, on the MAGMA package to exploit the
heterogeneous nature of the NVIDIA SoC processors.

References

1. ARM. (2016) ARM processors. http://www.arm.com/products/processors/
2. Dongarra, J., et al.: “PLASMA users’ guide”, Electrical Engineering, Computer

Science Department, Univesity of Tennessee, Knoxville, Tennessee 37996, Technical
report (2015). http://icl.cs.utk.edu/plasma

http://www.arm.com/products/processors/
http://icl.cs.utk.edu/plasma

Implementation of the Beamformer Algorithm for the NVIDIA Jetson 211

3. Benesty, Y.H.J., Chen, J., Dmochowski, J.: On microphone-array beamforming from
a mimo acoustic signal processing perspective. IEEE Trans. Audio Speech Lenguage
Process. 15, 1053–1065 (2007)

4. Lorente, J., Piñero, G., Vidal, A., Belloch, J., González, A.: Parallel implementations
of beamforming design and filtering for microphone array applications. In: Proceed-
ings of the 19th European Signal Processing Conference (EUSIPCO), Barcelona,
Spain, pp. 501–505 (2011)

5. NVIDIA: NVIDIA CUDA Basic Linear Algebra Subroutines. https://developer.
nvidia.com/cublas

6. NVIDIA. (2015) NVIDIA Jetson TK1. http://www.nvidia.es/object/jetson-tk1-em
bedded-dev-kit-es.html

7. NVIDIA. (2016) NVIDIA Kepler. http://www.nvidia.es/object/nvidia-kepler-es.
html

8. OpenBLAS: An optimized BLAS library. http://www.openblas.net/
9. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid

GPU accelerated manycore systems. Parallel Comput. 36(5–6), 232–240 (2010).
http://icl.cs.utk.edu/magma

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://www.nvidia.es/object/jetson-tk1-embedded-dev-kit-es.html
http://www.nvidia.es/object/jetson-tk1-embedded-dev-kit-es.html
http://www.nvidia.es/object/nvidia-kepler-es.html
http://www.nvidia.es/object/nvidia-kepler-es.html
http://www.openblas.net/
http://icl.cs.utk.edu/magma

MARL-Ped+Hitmap: Towards Improving
Agent-Based Simulations with Distributed

Arrays

Eduardo Rodriguez-Gutiez1(B), Francisco Martinez-Gil2(B),
Juan Manuel Orduña2(B), and Arturo Gonzalez-Escribano1(B)

1 Departamento de Informática, Universidad de Valladolid,
Campus Miguel Delibes s/n, 47011 Valladolid, Spain

{eduardo,arturo}@infor.uva.es
2 Departamento de Informática, Universidad de Valencia,
Avenida Universidad s/n, Burjassot, 46100 Valencia, Spain

{francisco.martinez-gil,juan.orduna}@uv.es

Abstract. Multi-agent systems allow the modelling of complex, het-
erogeneous, and distributed systems in a realistic way. MARL-Ped is a
multi-agent system tool, based on the MPI standard, for the simulation
of different scenarios of pedestrians who autonomously learn the best
behavior by Reinforcement Learning. MARL-Ped uses one MPI process
for each agent by design, with a fixed fine-grain granularity. This require-
ment limits the performance of the simulations for a restricted number of
processors that is lesser than the number of agents. On the other hand,
Hitmap is a library to ease the programming of parallel applications
based on distributed arrays. It includes abstractions for the automatic
partition and mapping of arrays at runtime with arbitrary granularity,
as well as functionalities to build flexible communication patterns that
transparently adapt to the data partitions.

In this work, we present the methodology and techniques of granu-
larity selection in Hitmap, applied to the simulations of agent systems.
As a first approximation, we use the MARL-Ped multi-agent pedestrian
simulation software as a case of study for intra-node cases. Hitmap allows
to transparently map agents to processes, reducing oversubscription and
intra-node communication overheads. The evaluation results show sig-
nificant advantages when using Hitmap, increasing the flexibility, per-
formance, and agent-number scalability for a fixed number of processing
elements, allowing a better exploitation of isolated nodes.

Keywords: Agents · Crowd simulation · Message-passing · Program-
ming tools · Distributed arrays

A. Gonzalez-Escribano—This work has been funded by Spanish MINECO and the
EU ERDF program under grants HomProg-HetSys TIN2014-58876-P, TIN2015-
66972-C5-5-R, CAPAP-H5 network TIN2014-53522-REDT, and COST Program
Action IC1305: Network for Sustainable Ultrascale Computing (NESUS).

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 212–225, 2016.
DOI: 10.1007/978-3-319-49956-7 17

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 213

1 Introduction

Multi-agent systems allow the modelling of complex, heterogeneous, and distrib-
uted systems, in a realistic way. They assign an agent to each entity involved
in the real-world environment [17,18]. This software paradigm is particularly
appropriated for the study of pedestrian dynamics, where autonomous interac-
tions among individuals generate global system behaviors. MARL-Ped [13] is a
multi-agent distributed tool where each agent (pedestrian) learns its own behav-
ior by Reinforcement Learning (RL) [15], allowing the simulation of pedestrian
groups (ranging from a few ones to crowds) in different scenarios (queue for-
warding, congestion scenarios, evacuation of enclosed ares, etc.). The great com-
putational workload added by the learning process of each agent, together with
the required number of agents in medium and large scale scenarios require the
use of High Performance Computing platforms. Indeed, the number of agents
tested in learning environments is usually limited by the available computing
resources. MARL-Ped is based on the MPI message-passing standard which pro-
vides portability across distributed- and shared-memory environments. It uses
one MPI process for each agent by design, with a fixed fine-grain granular-
ity. This requirement limits the performance of the simulations for a restricted
number of processors that is lesser than the number of agents. On the other
hand, Hitmap [7] is a library designed to ease the task of programming parallel
applications by using distributed arrays. It includes abstractions for the auto-
matic partitioning and mapping of arrays with arbitrary granularity, as well as
the automatic construction of flexible communication patterns adapted to the
partition.

In this work, we present the methodology and techniques of granularity selec-
tion in Hitmap applied to the simulations of agent systems, using MARL-Ped
as a case of study. Hitmap allows to transparently map agents to processes. We
show the benefits of using this mechanism for improving the performance of
agent-based applications executed in a restricted number of processing elements
that is lesser than the number of agents. It eliminates oversubscription effects,
and reduces intra-node communication overheads by grouping communications.
The application of the Hitmap methodology does not increase the development
effort. The comparative performance evaluation shows that the version using
Hitmap uses more efficiently the computing resources, becoming more scalable
in terms of the number of simulated agents.

The rest of the paper is organized as follows: Sect. 2 shows some related work.
Section 3 introduces MARL-Ped and Hitmap tools. Next, Sect. 4 describes how
Hitmap has been included in the MARL-Ped original application. Then, Sect. 5
presents an experimental evaluation of the modified application. Finally, Sect. 6
discusses some conclusion remarks and future work to be done.

2 Related Work

Pedestrian-dynamics models were improved and extended in the 80 s with the
advent of low cost computers. Many different models have been used: the social

214 E. Rodriguez-Gutiez et al.

forces model [9], models based on cellular automata [2], or continuum models
based on gas kinetics equations [10]. However, the most extended ones are agent-
based models [14], due to the ease of extracting global behavior as the sum of
individual behaviors. In the last years, some efforts have been made to add
machine learning technique to agent-based pedestrian models [12], in such a
way that the agents learn their individual behavior by themselves, releasing
the programmer of this task. Since the behavior learning is a complex task, it
has become the main challenge for the pedestrian models. On the other hand,
the microscopic simulation of pedestrian in crowded scenarios requires parallel
processing. In this sense, specific architectures have been proposed for these
simulations [1], and parallel architectures, where interconnected servers share the
computational workload, have been developed [16]. Even architectures based on
many-core processors have been used for simulating a marathon of one million
runners [19].

Hitmap offers an intermediate abstraction layer, halfway between the man-
ual programming of distributed data structures on message-passing models,
and PGAS languages (Partitioned Global Address Space), like Chapel [3] or
UPC [11]. Hitmap also provides mechanisms for the construction of reusable
communication patterns at runtime that adapt to the data partition, creat-
ing a low number of aggregated communications. This leads, for example, to a
performance efficiency comparable to UPC, with a reduced programming com-
plexity and development effort [7]. Hitmap is used as a runtime system for the
Trasgo parallel programming framework [8], that offers an approach similar to
PGAS languages. Hitmap extends and generalizes the hierarchy creation and
data partition functionalities of other libraries or distributed arrays models,
such as HTAs [5] o Parray [4]. It allows to use transparent partition policies,
either regular or irregular, defined as interchangeable modules with a common
interface. This hides to the programmer the decisions about granularity and syn-
chronization across hierarchical levels. Hitmap has also been extended to support
data structures such as sparse matrices, or graphs, using the same methodology
and interface [6].

3 MARL-Ped and Hitmap

3.1 MARL-Ped

MARL-Ped is a multi-agent system tool for pedestrian simulation which uses
reinforcement learning (RL) [15] in each agent to learn the individual behavior
of a single pedestrian. The purpose of the RL algorithm is to compute a control
function which will be used by the agent to select at a given moment the action
to do, based on the sensorized local state. MARL-Ped includes two types of
agents: (a) Pedestrian (Learning) agents, which execute the RL algorithms and
store the control function learned; and (b) an Environment agent, which executes
the physical system simulation of the scenario, and sensorizes the state of each
agent. The scenario is a 3D virtual world where the physical model engine named
Open Dynamic Engine (ODE) simulates the collisions and forces moving the

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 215

Fig. 1. MARL-Ped scheme showing the types of agents and their relationships.

pedestrians. Figure 1 shows a graphic scheme of the system, including both types
of agents, and the communications exchange. These communications take place
exclusively between the Environment agent and the rest of agents.

MARL-Ped has two working modes: learning mode and simulation mode.
Both modes include the same communications between learning agents and the
environment. The only difference is that RL algorithms are active in the learning
mode to incrementally compute the control function, that will be used in the
simulation mode. Both modes are synchronous, and composed of the classical
cycle of observation-action-reward:

1. The Environment agent queries the ODE about the dynamic situation of each
agent, consisting of position, speed, distance to the closest n pedestrians, and
the distance to the closest n objects. In learning mode, the Environment agent
also assigns a reward for each pedestrian agent depending on different facts:
if it has reached the target, if it has collisioned with other agents or objects,
etc.

2. The Environment agent sends the state and reward information to the Learn-
ing agents.

3. Each Learning agent uses the received information to build the local state
and the immediate reward value. In the learning mode, the data built will be
used by the RL algorithm to update the control function. In the simulation
mode, the control function is not updated.

4. The agent queries the current control function to obtain the new action to
be executed. The action indicates a change in direction and/or speed of the
pedestrian.

216 E. Rodriguez-Gutiez et al.

5. The agents send their actions to the Environment agent, which in turn
translate them into physical actions executed by the ODE in the virtual
environment.

This cycle is repeated a given number of times which is a configuration para-
meter of the system. In the learning mode with some tens of agents, this para-
meter can range from hundreds of thousands to several million times.

3.2 Hitmap

Hitmap [7] is a library for the partition, mapping, and management of hier-
archically distributed data structures at runtime. It was originally designed for
dense arrays, and has been also extended to support sparse data structures, such
as sparse matrices or graphs, using the same methodology and interface [6]. It
is based on an SPMD (Single Program Multiple Data) model and the message-
passing paradigm. Hitmap defines several abstractions to write parallel programs
using distributed data structures. The functions in the library are grouped in
three main modules.

Tiling functions. They allow the definition and management of hierarchically
tiled data structures. These functionalities can be used independently of the rest
of the library to improve locality on sequential code. They define classes to rep-
resent domains of indexes in a compact form. A class named HitTile represents
the association between the elements of the indexes-domain space and the actual
data, allowing the accesses to data with the same efficiency as manually devel-
oped codes without the tile abstraction. A process can declare and allocate a
subspace of the original domain, in order to create a distributed data structure.

Mapping functions. They include interchangeable modules that implement
policies to automatically part and map domains in terms of the processes of a
virtual topology. The virtual topologies are also generated by another class of
policy modules at runtime. Neighbor relations across processes are established
by these policies. The partitions are represented by objects named HitLayouts
that can be queried to obtain the indexes subdomain mapped to the local, a
neighbor, or any other remote virtual process.

Communication functions. They are an abstraction of the message-passing
model for tiles or tiles parts across virtual processes. They allow the creation
of HitCom objects that store the information needed to marshall/unmarshall
and exchange selected tile data across processes. Several interfaces for differ-
ent types of point-to-point and collective communications are available. More
complex patterns composed of multiple communication operations involving one
or more tiles (several HitCom objects), are implemented as HitPattern objects.
The constructor functions have always HitLayout parameters that are queried
internally to automatically determine who communicates and what. Thus, these
objects are transparently adapted on construction to the target platform details
and the actual data distribution selected. The communication objects have a
method that can be called at any time, and as many times as needed, to execute
the communications. Internally, these objects exploit efficient MPI techniques
such as derived data types, asynchronous communications, etc.

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 217

Fig. 2. Global structure of the simulation and task distribution across processors in
the original MARL-Ped design (top) and after applying Hitmap (bottom).

4 Applying Hitmap Techniques and Methodology

In this section we describe how the Hitmap methodology and techniques can be
applied to agent-based simulation applications to adapt the granularity of tasks
to the available processing resources. We show this process using MARL-Ped as
a case of study.

4.1 Structural Changes

The structure of the MARL-Ped application has been redesigned. The Hitmap
version applies the concept of distributed arrays to group learning agents in
processes, instead of using a single MPI process for each one, and a different
process for the environment agent. Figure 2 (top) shows the conceptual distribu-
tion of the computation in the original MARL-Ped version. Each process executes
the code of a single agent (RLAgent class). The last process performs the envi-
ronment simulation (RLEnvironment class). The objects of these classes have
several methods that implement the corresponding operations of the simulation
loop that is repeatedly executed.

One of the first design decisions for the Hitmap version is to distribute agents
across the available processes without reserving a special process for the envi-
ronment. The environment code will be executed by one of the processes that
will also have learning agents assigned, as the main computation for the learn-
ing agents and environment never overlap in time. Hitmap provides the tools
needed for the balanced distribution of agents between the available processes
as depicted in Fig. 2 (bottom). Each process should be able to execute, for each
iteration of the simulation loop, the code of several learning agents.

In addition, the process in which the environment agent is mapped should
execute its code. Thus, the simulation loop code cannot be placed inside the
environment or learning agent classes. The application must be redesigned to
execute the simulation loop in the main function. The simulation loop must
iterate across the number of agents mapped to the process. To achieve this, the
codes of the simulation loop are removed from the methods of the learning and

218 E. Rodriguez-Gutiez et al.

environment classes. The private and protected methods called inside the loops
are redeclared as public. The control logic that do the calls is relocated inside
the new simulation loop at the main function. The environment control logic is
wrapped with conditionals to ensure that only one process executes it. Hitmap
automatically labels one process as the group leader. This process can identify
itself by using a function call, and is therefore the one selected to execute the
environment logic.

4.2 Distributed Arrays and Communication Patterns

The MPI-based communications in original MARL-Ped code have been replaced
by distributed-array management functions provided by Hitmap. All data struc-
tures involved in communications are substituted by HitTile structures.

During the initialization stage of the program, the distributed arrays and
objects of type HitCom and HitPattern are created to contain the specifications
of the communications that will be invoked from the new simulation loop. Con-
trol signals are represented by a single integer-type variable at each process,
independently of the number of assigned agents. On the other hand, two dis-
tributed arrays are declared for each data flow between the environment and
the learning agents. These arrays have a global index domain equal to the num-
ber of learning agents. For one of the arrays, we use a distribution policy that
maps its elements evenly across the processes. For the other one, we use a policy
that maps all of the domain elements to the process running the environment.
Given these two arrays with the same domain but different distribution poli-
cies, Hitmap allows the creation of a HitPattern object with a single function
call. This object implements a communication pattern capable of redistributing
the data from one array to the correspondent local or remote elements of the
other array. This technique allows the construction of communication objects
that will transparently move the data between the two copies of each array; the
one actually distributed and the other one having the entire index domain at
the environment process. The communication pattern adapts (at construction
time) to the results of the partition policies, regardless of the number of agents
and processes. This mechanism solves, in a unique way, the construction of the
communication flows.

5 Experimental Study

This section describes an experimental study to show the advantages of using
Hitmap on agent-based simulation programs. The study is focused on two areas.
The first one is the code complexity and development effort. The second one is
the performance when the number of agents grows above the number of available
processing elements.

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 219

Table 1. Measurements of complexity and development effort.

MARL-Ped MARL-Ped+Hitmap

KDSI (code lines) 1970 1888

McCabe’s C.C 209 171

Halstead 19.38 ×106 18.26 ×106

5.1 Development Effort

The first part of this experimental study shows that programming with Hitmap
introduces granularity flexibility, even with a slightly lower development effort
and code complexity than the original agent-per-process approach. We have
measured several metrics both in the original MARL-Ped source code and in
the modified Hitmap version: (a) The KDSI metric of the COCOMO method-
ology, based in the total number of source code lines; (b) McCabe’s cyclomatic
complexity; and (c) Halstead development effort metric. We have applied these
metrics on the main function of the programs and the three classes modified
when redesigning the original application. We have considered both the code of
the modified functions and the header files, excluding comments and removing
conditional compilation parts related to versions, alternatives or details of the
MPI libraries used, etc. The modified code represents 16 % of the total applica-
tion code, that has approximately 12 200 lines of code.

The results in Table 1 show that the version directly designed and pro-
grammed using Hitmap presents slightly lower complexity and effort than the
original MPI version. Programming a direct MPI version with the agent distrib-
ution and load balancing capacity of the Hitmap version would clearly increase
the programming effort, since the programmer would have to include code deal-
ing with decisions about distributed array partition and management, that are
transparently implemented in Hitmap.

5.2 Experimental Methodology for Performance Studies

The second part of the experimental study includes performance measurements
of both the original MARL-Ped program and the Hitmap-based version. This
work is focused on the MARL-Ped learning process, which is the most computa-
tionally demanding mode, and does not imply input/output operations during
the main computation and communication loop. The code has been instrumented
in order to measure the execution time for each distributed process. We have
measured the time elapsed from the start of the initialization of parallelism-
related structures (MPI or Hitmap) to the end of the execution of the learning
process, before writing the results in files. Since each execution of the whole
program gives one time measurement for each process, we consider as the global
result the time of the slowest process, the one that has required the longer time
to be completed. In addition, each experiment has been repeated several times in

220 E. Rodriguez-Gutiez et al.

Fig. 3. Snapshot of the simulated scenario.

order to test the variability of the results. Both codes have been executed in mul-
ticore platforms, where communication costs are lower and potential overheads
have a higher impact on the overall performance. These potential overheads can
be associated to changes in execution structure, handling of internal Hitmap
data structures, or computations and choices about the particular communica-
tions, among others. We have selected two machines, one with 8 cores (named
Miami), and the other with 12 cores (named Chimera). Both machines had the
hyperthreading option enabled. Table 2 summarizes the characteristics of these
platforms as well as the development tools used in the study.

Since the execution time required for a full learning process execution is
extremely long (RL is based on a long iterative process), the program has been
limited to only 100 training iterations in all cases, in order to analyze a search
space that is broad enough in terms of execution parameters. This threshold
has been experimentally set to produce both a large computational load, and a
significant number of communication and synchronization steps. The test sce-
nario selected for the experiments has been validated in previous works [13].
This scenario reproduces a classic navigation problem in pedestrian dynamics
called “shortest path vs. quickest path”. In this scenario, a group of pedestri-
ans must move from the room where they are initially located to a target place
located outside of the room. This room has two exits, one of them being closer
to the target than the other one. Agents must learn that if all of them head
for the nearest exit, then a bottleneck is formed, making the overall evacuation
time longer. A better solution implies that approximately half of the agents use
the nearest exit, while the other half leaves the room through the most distant
one, leading to a quicker evacuation. The configuration chosen places 28 agents
in a 30-meter by 30-meter square room with two possible exits. Each exit has
a width of one meter in order to prevent passage of more than one pedestrian
at the same time. The goal of the agents is to reach the meeting point placed

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 221

outside the room. Figure 3 illustrates the considered scenario, showing a snapshot
of the simulation.

5.3 Performance Effect of the Agents Grouping

One of the objectives of this work is to obtain a better scalability when the
number of agents grows, for a restricted number of processing elements in single
cluster nodes. It is achieved using the Hitmap strategy of grouping several agents
to the same process. This first performance study experimentally tests the dif-
ference in performance when the number of agents increases above the number
of available processing elements in a given machine. Both programs (the original
MARL-Ped version and the Hitmap-based version) have been run in learning
mode with the number of MPI processes set to the number of cores available on
each machine, and we have progressively increased the number of agents above
that number.

Figure 4 shows the execution times required by Miami and Chimera machines
(using 8 and 12 MPI processes respectively) for simulations of 100 learning iter-
ations with different numbers of learning agents. In the original MARL-Ped
tool (whose plots are labeled as MARL-Ped in the figure), the number of MPI
processes is the number of agents plus one. In the MARL-Ped+Hitmap tool
(whose plots are labeled as Hitmap in the figure), the number of processes has
been fixed to be the number of actual cores of the machine. The structure of these
simulation applications, that make use of collective communications with clear
global synchronization points around the execution of the simulation engine,
does not present a parallel slackness property. This property appears in cer-
tain applications when several processes assigned to the same element alternate
communication and computation phases without overlapping.

Table 2. Characteristics of the machines used in the experimental study.

Miami Chimera

Processor 2x Intel X5550 2x Intel E5-2620 v2

Clock speed 2.66 GHz 2.10 GHz

Cores 8 12

Main memory 32GB DDR3-1333 8 GB DDR4-1866

Cache L1 128K 32 K

L2 1024K 256 K

L3 8192K 15360 K

Operative system CentOS 7.2.1511 x64 CentOS 7.0.1406 x64

C++ Compiler GCC 4.8.5 20150623 GCC 4.8.2 20140120

Compilation flags -O3 -O3

MPI implementation MPICH 3.0.4 MPICH 3.1.3

222 E. Rodriguez-Gutiez et al.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 5 10 15 20 25 30

T
im

e
(s

ec
on

ds
)

Number of agents

Execution time vs number of agents (Miami)

 MARL-Ped avg
 Hitmap 8 proc avg

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 12 14 16 18 20 22 24 26 28 30

T
im

e
(s

ec
on

ds
)

Number of agents

Execution time vs number of agents (Chimera)

 MARL-Ped avg
 Hitmap 12 proc avg

Fig. 4. Execution time vs. number of agents for 100 iterations of learning. The plots
show with error bars the standard deviation of six different executions.

Figure 4 shows a very similar behavior in both platforms: the required exe-
cution time is slightly longer for MARL-Ped than for the Hitmap version while
the number of agents does not reach double the number of existing cores in the
machine. From this value up, the execution time required by MARL-Ped is signif-
icantly higher, linearly increasing with a high slope. These plots show how the
additional costs of oversubscription (executing simultaneously more processes
than processing elements available) has a negative impact on the application
performance. Thus, in the Chimera machine, with 12 cores and hyperthreading
enabled, the effect is much more remarkable starting at 24 agents, where MARL-
Ped uses 25 MPI processes, increasing the oversubscription ratio to more than
two. When there is oversubscription, the way in which task schedulers swap
processes becomes relevant. Thus, we can observe slightly higher differences
between maximum and minimum execution times in both Miami and Chimera
machines for the original MARL-Ped program. On the contrary, the Hitmap plots
remain almost flat regardless of the number of agents, showing much shorter exe-
cution times than the original MARL-Ped. This behavior is due to the fact that
Hitmap can limit the number of processes, executing sequentially on each process
the code of several agents in a more efficient way.

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 223

5.4 Impact of the Amount of Processes

This section studies the impact of modifying the number of processes, and there-
fore the agents distribution per process, when MARL-Ped+Hitmap is used.

Figure 5 shows the results obtained for a fixed number of 28 agents in the
two machines. For MARL-Ped+Hitmap, we include plots for several consecu-
tive experiments to show the variability of the results. The execution results
of MARL-Ped+Hitmap are better than those of the original MARL-Ped in all
cases, because of the oversubscription effects discussed in the previous section. It
can be seen that the results for the Hitmap version when executed with a single
process are slightly improved when the number of processes grows up to the
number of cores in the machine, since the parallelism level increases. However,
when the number of processes exceeds the number of real cores (without tak-
ing hyperthreading into account), the performance decreases and results become
more unstable, due to stochastic negative effects of oversubscription. The process
scheduling policy of the operative system also contributes to make the results
more unpredictable. Due to the execution order of the processes during the con-
text switching, in some cases execution times are as short (good) as before the
start of the oversubscription, while in other cases the results are worse, but
with a clear upper limit. Once the number of processes exceeds the number or
available threads, taking hyperthreading into account, the results considerably
worsen.

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5 10 15 20 25

T
im

e
(s

ec
on

ds
)

Number of processes executing agents

Execution time vs processes (Miami)

 28 Agents Hitmap, expt. 1
 28 Agents Hitmap, expt. 2
 28 Agents Hitmap, expt. 3
 28 Agents Hitmap, expt. 4
 MARL-Ped avg

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25

T
im

e
(s

ec
on

ds
)

Number of processes executing agents

Execution time vs processes (Chimera)

 28 Agents Hitmap, expt. 1
 28 Agents Hitmap, expt. 2
 28 Agents Hitmap, expt. 3
 28 Agents Hitmap, expt. 4
 MARL-Ped avg

Fig. 5. Execution time vs. number of processes for 100 iterations of training, with a
fixed number of 28 agents.

224 E. Rodriguez-Gutiez et al.

These results indicate that the number of processes to select in MARL-
Ped+Hitmap in training mode is predictable, and can be adapted to the features
of the target machines when the application is launched. The execution times
are shorter and more stable when the number of processes is equal to the num-
ber of real processing elements, without taking into account the hyperthreading
option.

6 Conclusions

This article presents the application of the techniques and tools of the Hitmap
library to control the granularity of agent to processes map in agent-based simu-
lation applications. As a first approximation, we use the MARL-Ped multi-agent
pedestrian simulation software as a case of study for intra-node cases. The per-
formance evaluation results show that MARL-Ped+Hitmap allows simulations
with a number of agents greater than the number of processing elements avail-
able in a machine, while keeping execution times stable and predictable. These
results show that the use of distributed arrays and automatic data partitions
improves the performance agent-based simulation tools, due to the ability of
Hitmap of transparently map a high number of agents to a constricted number
of processes.

Future work includes the study of the scalability of Hitmap techniques in
multi-node clusters when the effects of network and communication across nodes
appear; the application of Hitmap to other related simulation applications;
research on ways to suppress or mitigate bottlenecks in the simulation stages;
and the use of the new MARL-Ped+Hitmap version to further study the quality
and results of crowd simulations with a much greater number of agents.

References

1. Bharambe, A., Pang, J., Seshan, S.: Colyseus: a distributed architecture for online
multiplayer games. In: NSDI 2006: Proceedings of the 3rd conference on Networked
Systems Design and Implementation, p. 12. USENIX Association, Berkeley, CA,
USA (2006)

2. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-
directional pedestrian walkways. Transp. Res. Part B: Methodological 35(3), 293–
312 (2001)

3. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the chapel
language. Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

4. Chen, Y., Cui, X., Mei, H.: Parray: A unifying array representation for heteroge-
neous parallelism. SIGPLAN Not. 47(8), 171–180 (2012)

5. Fraguela, B.B., Bikshandi, G., Guo, J., GarzaráN, M.J., Padua, D., Von Praun,
C.: Optimization techniques for efficient hta programs. Parallel Comput. 38(9),
465–484 (2012)

6. Fresno, J., Gonzalez-Escribano, A., Llanos, D.: Blending extensibility and perfor-
mance in dense and sparse parallel data management. IEEE Trans. Parallel Distrib.
Syst. 25(10), 2509–2519 (2014)

MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations 225

7. Gonzalez-Escribano, A., Torres, Y., Fresno, J., Llanos, D.: An extensible system
for multilevel automatic data partition and mapping. IEEE Trans. Parallel Distrib.
Syst. 25(5), 1145–1154 (2014)

8. Gonzalez-Escribano, A., Llanos, D.R.: Trasgo: a nested-parallel programming sys-
tem. J. Supercomput. 58(2), 226–234 (2011)

9. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E
51, 4282–4286 (1995)

10. Hughes, R.L.: The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169–182
(2003)

11. Mallón, D.A., Gómez, A., Mouriño, J.C., Taboada, G.L., Teijeiro, C., Touriño,
J., Fraguela, B.B., Doallo, R., Wibecan, B.: Upc performance evaluation on a
multicore system. In: Proceedings of the Third Conference on Partitioned Global
Address Space Programing Models, pp. 9: 1–9: 7. PGAS 2009, NY, USA. ACM,
New York (2009)

12. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent reinforcement learning
for simulating pedestrian navigation. In: Vrancx, P., Knudson, M., Grześ, M. (eds.)
ALA 2011. LNCS (LNAI), vol. 7113, pp. 54–69. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-28499-1 4

13. Martinez-Gil, F., Lozano, M., Fernández, F.: MARL-ped: A multi-agent reinforce-
ment learning based framework to simulate pedestrian groups. Simul. Model. Pract.
Theor. 47, 259–275 (2014)

14. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers
Conference, pp. 763–782. Miller Freeman Game Group, San Francisco, California
(1999)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

16. Vigueras, G., Orduña, J.M., Lozano, M.: A read-copy update based parallel server
for distributed crowd simulations. J. Supercomput. 64(1), 156–166 (2013)

17. Wooldridge, M.: Multi-Agent Systems. Intelligent Agents. MIT Press, Cambridge
(2013)

18. Wooldridge, M., Jennings, N.: Intelligent agents: theory and practice. Knowl. Eng.
Rev. 10, 115–152 (1995)

19. Yilmaz, E., Isler, V., Cetin, Y.Y.: The virtual marathon: Parallel computing sup-
ports crowd simulations. IEEE Comput. Graph. Appl. 29(4), 26–33 (2009)

http://dx.doi.org/10.1007/978-3-642-28499-1_4
http://dx.doi.org/10.1007/978-3-642-28499-1_4

Efficiency of GPUs for Relational Database
Engine Processing

Samuel Cremer(B), Michel Bagein(B), Säıd Mahmoudi(B),
and Pierre Manneback(B)

Computer Science Department, University of Mons,
Rue de Houdain, 9, 7000 Mons, Belgium

samuel.cremer@heh.be,

{michel.bagein,said.mahmoudi,pierre.manneback}@umons.ac.be

Abstract. Relational database management systems (RDBMS) are still
widely required by numerous business applications. Boosting perfor-
mances without compromising functionalities represents a big challenge.
To achieve this goal, we propose to boost an existing RDBMS by making
it able to use hardware architectures with high memory bandwidth like
GPUs. In this paper we present a solution named CuDB. We compare the
performances and energy efficiency of our approach with different GPU
ranges. We focus on technical specificities of GPUs which are most rele-
vant for designing high energy efficient solutions for database processing.

Keywords: In-Memory DB · RDBMS · GPU · SoC

1 Introduction

In recent years, it has became common to use GPUs as co-processing units for
scientific simulations in HPC environment or for computer vision applications,
either for faster processing or for energy saving. Consumption of data still grows
in order to deal higher needs on data storage and processing (social network, IoT,
distributed applications, data externalization, etc.). To contain energy growing
needs, numerous researches [1] show that GPUs are more efficient than CPUs for
high and intensive computing but only for a limited number of specific applica-
tions. Our vision of energy saving is more based on improving efficiency of usual
components. Data RDMS SQL engine is one of the most spread and used com-
ponent, targeting operating systems, personal applications, CRM, ERP up to
largely distributed applications (DropBox, Skype) and either for small devices
(Smartphone) up to datacenters. Using RDBMS components in applications is
largely driven by the high flexibility of SQL language for data definition and
manipulation. The counterpart of this flexibility is the computing complexity
(parsing, query plan generation and execution, data retrieval) in term of CPU
cycles per data manipulation. Starting from this situation, we focused in boost-
ing such engines, in order to improve this last ratio. One of the usual ideas that
might be proposed for such a purpose is to parallelize such engine on all CPU
c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 226–233, 2016.
DOI: 10.1007/978-3-319-49956-7 18

Efficiency of GPUs for Relational Database Engine Processing 227

available cores in order to speedup performances with a limited power overhead.
This approach is limited by the number of cores sharing a common memory
space on one computing node. To overcome this limit, one way is to exploit
more efficient processing accelerators.

The main GPU efficiency advantage is given by its hardware architecture:
many synchronized arithmetic and logic units (ALU) are driven by only one
instruction decoder enabling large vectorized data process. In contrast, CPU
cores are fully asynchronous, enabling multiple concurrent processes running
together, but each ALU requires its own decoder. ALUs, which are the real
data processing worker, can be more populated in GPU die (more than 2000
cores) than in CPU die. Again, thanks to its architecture, GPU brings a second
advantage over CPU: the memory bandwidth. On GPU cards, memory chips
implantation is dedicated to processor data bus which can be much wider than
the usual 64 bit buses of DIMM RAM memories. In term of speed, high end
GPU memory bandwidths (480 GB/s for 384-bit GDDR5X memory of a Titan
X) are currently more than ten time faster than RAM memories (25,6 GB/s for
a PC4-25600 DDR4).

Most of database treatments are extraction queries. A same extraction query
is generally applied on multiple data rows which is a valid workflow for a SIMT
(Single Instruction Stream Multiple Threads) architecture like a GPU. That
is why GPUs can deliver high performance and fast responsiveness when they
are used for database treatments while improving energy efficiency. The first
objective of this paper is to show that a database engine which uses GPUs
can outperform a conventional CPU implementation. Our second objective is to
investigate which type of GPU architecture and which technical specificities are
most relevant to build an efficient solution for database treatments.

2 Positioning and Related Works

Previous research thematic focused on improving processing speed of database
engines with GPUs can be subdivided in 3 categories: (1) proposals for con-
ceptions of RDBMS engines, (2) NoSQL engines, and (3) studies of abilities
of GPUs to process some specific functionality of RDBMS engines. First cate-
gory of previous researches contains GPUQP [2], where the authors describe the
potentiality to execute each relational operator of generated query plan, either
on CPU or GPU. The authors focused on the processing of single join-queries
and contributed to provide a foundation for many other researches. An impor-
tant contribution is Sphyraena [3], where the authors proposed to accelerate the
SQLite open source database engine with GPUs. This work has inspired us in
going some steps further. Firstly, with new designs of faster storage and join
engines for increasing responsiveness and secondly with a multithreaded CPU
co-processing engine to maintain highest speed accelerations on tiny datasets.
In the second category we can find - for example Mega-KV [4], a Key-Value
store running on GPUs. With Mega-KV, data are hosted in CPU side RAM-
memory while GPU memory only hosts a hash table of keys. Incoming queries are

228 S. Cremer et al.

regrouped and launched concurrently on GPU. Global performances are inter-
esting with high number of incoming queries but an isolated query is not running
faster as with a classical CPU implementation. Unlike Mega-KV, our solution
is based on a RDBMS: in order to improve processing time, each query exploits
the available parallel cores of GPU. This approach offers better response times
for each query. In last category, proposals like GPUTx [5] focused on transaction
mechanisms of GPU RDBMs. It can execute only pre-compiled procedures and
is not able to process single queries. In 2013, Pietron et al. published a paper
presenting the implementation of “SELECT WHERE” and “SELECT JOIN”
queries with non-indexed data on a GPU-database [6]. Join operations were
implemented as Cartesian products of tables which procure a quadratic time
complexity for a simple join operation. With CuDB, those kinds of queries are
dynamically resolved, thanks to temporary indexation mechanisms, on linearith-
mic time complexity which provide faster executions.

3 Boosting a RDBMS with GPUs

According to DB-Engines ranking [7], RDBMs are still more popular and are not
yet being overthrown by NoSQL engines. Hosting relational databases of mul-
tiple clouds with hybrids nodes (CPU + GPU) can deliver better performances
while improving energy efficiency of datacenters. Our solution, named CuDB, is
an In-Memory RDBMS where data is mainly processed by GPU, based on the
SQLite open source RDBMS. In order to achieve an easy migration of existing
applications, CuDB preserves same API and query compiler of SQLite. As those
two mechanisms are intrinsically sequential processes, they cannot benefit from
parallel architecture of GPUs and they are still processed by the CPU. The two
last modules, data processing and storage engines which required most of process-
ing resources, are implemented on GPU side. Most part of processing is computed
in parallel by the GPU cores and the entire database is hosted in GPU memory
in order to benefit from its higher memory bandwidth. Because the entire data-
base resides into the GPU global memory, and unlike many other GPU applica-
tions, each query processing has to transfer a very limited amount of data from
CPU to GPU. The amount of data to transfer is essentially limited to size of the
query plan, which represents around one kilobyte per query. A query plan gener-
ated by query compiler is sent to GPU and executed by all GPU threads. Every
GPU thread process the query plan on its own data subset. This scheme is able
to deal with the SIMT specificities of GPU architectures while taking advantages
either of massively parallel cores than large GPU memory buses.

To maximize performances, memory accesses of GPU-threads have to be coa-
lesced [8]. Given that each CUDA thread works on its own record and on the
same column, a column-oriented data structure is able to provide coalesced mem-
ory access in order to mask high latency times of GPU global memory. Coalesced
memory accesses can be obtained when data-structure uses fixed-size columns,
but this is a constraint for variable-length strings and blob values. Those types of
data are managed as pointers. Pointers are stored into the column-oriented stor-
age zone and refer to associated values stored in a row-oriented storage zone.

Efficiency of GPUs for Relational Database Engine Processing 229

Column-oriented and row-oriented tables are located side by side in order to
minimize memory foot-print and increasing data locality (cache optimization).
Fixed-length strings are entirely stored into the column-oriented storage zone,
like numerical values. However, in the context of non-extensible GPU memory
size, the main drawback of this storage method is the data compactness induced
by fixed size columns. CuDB storage engine supports also storage tables orga-
nized in row-oriented to maximize data compactness, this it implies a 20% to
300% performance drop depends on query type and data types.

To be more efficient than CPU, GPU processing needs a minimal amount of
data to process. With queries on tiny tables, CPU processes faster than GPU.
In order to maintain the maximal performances for all situations, a switch and a
threshold are implemented to redirect query execution of tiny tables from GPU to
CPU side. Equivalent processing and storage engines are implemented at CPU
side. Theses CPU engines are designed on the same parallel principles of the
GPU counterpart engines, with POSIX multithreading. This way, queries that
involve small datasets are processed by CPU, with as drawback that we have to
maintain duplicated tiny tables (less than 1000 records) at CPU memory side.
In upcoming work, the threshold (1000 records per table) will be dynamically
managed.

4 Experimental Results

For the equity of the performance comparison, with SQLite we used an in-
memory stored database. Given that the query parser remains identical for
CuDB and SQLite we did not take into account its execution time. For all ver-
sions, we only measured the elapsed time of the query-plan executions. Results
generated by GPU are asynchronously exported to central RAM (Pinned Mem-
ory). When all GPU jobs are finished, CPU can access entire results and measure
of execution time is evaluated at this instant. In order to smooth variations gener-
ated by the overall system load, all results reports average of hundred executions
of same queries. As time variations of same queries were less than 5%, they are
not reported to preserve the readability of this paper. We consider that average
measures are sufficiently relevant to be presented as valid results. We test mul-
tiple forms of SELECT queries, with single table scans and multiple table joins.
We used an experimental database setup wherein tables contain one char(80)
column and multiple integer columns. Rows selected by our queries are, in most
cases, randomly spread inside tables.

For the veracity of our evaluations we choose to test a panel of several GPUs.
Given that there is currently no entry level GPU for newer Maxwell generation,
we chose to make our benchmark with the Kepler family. All of them are issued
from a same Kepler generation and are manufactured in 28 nm. GPU1 represent
a high end GPU with numerous cores and a higher memory bandwidth. GPU2
is a little GPU but with best ratio of core/bandwidth and core/L2 cache. GPU3
is a cheap entry level GPU with slower GDDR3 memory. We also think that it
should be relevant to test performances with a SoC version: the Tegra K1. This

230 S. Cremer et al.

Table 1. Hardware specifications

CPU GPU1 GPU2 GPU3 SoC

Name Core i7 2600K GTX770 GT740 GT720 Tegra K1

Cores 4 + HT 1536 384 192 4(CPU) + 192(GPU)

Frequency 3.4GHz ˜1GHz ˜1GHz ˜0.8GHz ˜0.8GHz

L2 Cache 8MB 512 kB 256 kB 128 kB 128 kB

Mem. Bandwidth 21GB/s 220GB/s 80GB/s 15GB/s 15GB/s

TDP 95W 230W 64W 19W 11W

kind of low-power platform can be considerate like the next generation of mobiles
devices where efficiency improvement can increase battery autonomy. We used
a “Jetson TK1” development kit which embeds 192 GPU Kepler cores, quad
32bits ARM Cortex-A15 CPU cores and one battery-saver core on the same die.
Only one unified memory space is used by GPU and CPU cores. Main hardware
specifications we used for performances tests are listed in Table 1.

Fig. 1. Average speedups Fig. 2. Energy efficiency improvements

Figure 1 shows the average speedups obtained with our different test plat-
forms with SQLite on the Core i7 2600 K as reference. The multithreaded CPU
version is always faster than SQLite and provide a maximal speedup of 4,1. The
discrete GPUs need quite a thousand of records to become more efficient and
reach a peak speedup of 37 for the fastest GPU, 6 for the slowest and 4,7 for
Tegra K1.

During our tests, we also measured the power consumption of the whole
system with an external power meter. From those values we have subtracted
the idle power consumption with the purpose of showing only the consumptions
involved by database processing’s. Figure 2 shows the gains in energy efficiency
with our different platforms. It seems that, when volume of data is sufficient,
using a GPU-RDBMS is always more energy efficient than CPU In-Memory
implementations. Also cheap entry levels GPUs performs very well. This obser-
vation should however be tempered by the fact that our reference processor is an
outdated second generation Core i7 CPU (32 nm) with a TDP of 95W. Current

Efficiency of GPUs for Relational Database Engine Processing 231

14 nm sixth generation of Core i7, like 6920HQ available in laptops has a TDP
of only 45 W while delivering similar performances. Anyway, with an energy
efficiency starting at 1700% for GPU1 and rising up to 5800% with the Tegra
platform, GPUs are still far ahead.

4.1 PCI-Express Bus: The Bottleneck

PCI-Express bus is a bottleneck when a query returns numerous records. Figure 3
shows the results with a trivial “SELECT * FROM T WHERE 1” query. That
kind of query works just like a memory dump where GPU cores just read values
and send it directly back to the CPU through PCI-Express bus.

Fig. 3. Speedup with SELECT all Fig. 4. Speedup with SELECT WHERE

The performances of GPU1 and GPU2, plugged on a PCI Express 16x inter-
faces, are similar (5x and 4,7x) despite GPU1 is theoretically 4 times faster.
GPU3 is about 2 times slower (2,75x) because it is plugged on 8x PCI-Express
interface. The SoC platform becomes here the fastest solution when enough data
are involved with a speedup of 5,4x. With a Tegra K1, there is no PCI Express
bottleneck. Data are directly copied through the main memory bus but it is still
a disappointment that on those kinds of SoC architecture, data still needs to be
copied between CPU and GPU space memory; we expected a real shared memory
space, which could avoid all data transfers/duplications between CPU and GPU.
We had tested the “unified memory” mechanisms provided by CUDA 6 which
allow using a single memory pointer for CPU and GPU code. It seems it is only
a developer’s easiness: data are still duplicated/transferred in background by
the driver what results in noticeable performance loss and even with the Tegra
K1. CuDB current implementation preserves separated CPU and GPU mem-
ory pointers in order to maximize performances. With conventional usages of
RDBMs, queries generally return only a small proportion of the processed data.
Figure 4 shows average speedups obtained with different “SELECT WHERE”
queries. For those tests, the amount of returned records vary from 10 rows up to
2000 rows for queries on the largest datasets. If we compare results of Figs. 3
and 4, we can see that PCI-Express bus has much less influence. GPU3 suffer
from its 8x bus when it has to send more than a thousand of records back to
RAM memory.

232 S. Cremer et al.

4.2 Comparison Between Versions of a Same GPU

As shown on Table 1, GPU specificities of Tegra K1 SoC are similar to a GeForce
GT720. The main differences are: (1) one is embedded into a SoC and the other
is a graphic card, and (2) one shares its memory with the CPU cores while
the other has to transfer data through a slow PCI Express 8x bus. To compare
both implementations of a same GPU we “underclocked” our Core i7 CPU to
1.6 GHz and the DDR3-1333 Memory to 800 MHz to be closer to the perfor-
mances of ARM cores of Tegra K1. HyperThreading and Intel Turboboost were
also disabled. We notice that with this configuration, our desktop CPU is still
11% faster than the Tegra K1 CPU cores. For full table scans and with this high
performance degradation of our Core i7 CPU, we notice no relevant performance
drop of the GT720. With join queries which involve multiple tables, we notice
a higher impact of CPU speed. With CuDB, before joining tables on unindexed
values, transient indexes are made in order to reduce the time complexity of
joins. This way, CuDB is able to process really fast joins on unindexed data,
unlike MySQL which handle those joins with nested loops. Creating and sorting
transient indexes require multiple device synchronizations. A big constraint for
GPGPU solutions is that the only reliable way to implement barriers for syn-
chronization of all GPU threads, is to stop the execution of the kernel. Unlike
single table scans, join queries require multiple kernel launches. Speed of whole
hardware platform (CPU, RAM and buses) has more impact on the general per-
formances of join queries. Compared to GT720 with “underclocked” CPU, Tegra
K1 is multiple times slower while processing join queries on tiny datasets. This
performance gap decreases up to 40% for processing queries on biggest tables.
Slower processing speed of Tegra K1 for join queries is due to the shared memory
bus and slower CPU cores.

If we are focused on pure energy consumption, Tegra K1 is potentially the
most efficient solution but it needs enough data (500 k) before it becomes really
interesting. The fact that K1 become efficient when it has to treat large datasets
is contradictory with the fact that its memory, shared with CPU cores, is quiet
limited (2 GB), and remains not extensible. Another drawback of the SoC plat-
form is that performances are not consistent. During our tests we had a variance
of 107% while discrete GPUs offered a great stability with a variance of only 5%.
This instability in performances is again explained by the fact that the memory
is shared with CPU cores. Moreover, ARM CPU cores of Tegra K1 are relatively
slow. With the SoC platform, our GPU kernels need 1.2 ms to start while 0.14 ms
are sufficient with the desktop hardware. This explains why Tegra K1 is always
slower than other GPU solutions when it has to process small datasets.

4.3 Summary

In view of our different results, entry level GPUs are cheap and energy effi-
cient but, with their slower memory bus, they are only 50% faster than a quad-
core CPU. This performance gain is not enough to justify managing constraints
involved by GPGPU solutions. A SoC platform, like a Jetson TK1, procures a

Efficiency of GPUs for Relational Database Engine Processing 233

high energy efficiency but it suffers from same drawbacks than entry level GPUs,
adding the fact that CPU cores and memories are even more limited. We did not
test our solution with Tegra X1 SoC which is theoretically around 50% faster
but it preserves similar memory limitations. If we take a closer look at results
of GPU1 and GPU2, for a boosted GPU-RDBMS we deduce the follow rule:
memory bandwidth and amount of L2 cache per core are more significant than
number of cores. GPU1 is not 4 times faster than GPU2 though it has 4 times
more cores. GPU2 is nearly 3 times faster than GPU3 while having similar power
efficiency, even though it has only 2 times more cores. For database processings,
the most efficient solution should be mid-range GPU (less than 1000 cores) with
the same amount of cache and same memory bandwidth than high end GPUs.

5 Conclusion and Future Works

In this paper, we presented CuDB, a solution able to boost performances of
an open source RDBMs by using GPU architectures. We showed that GPUs are
able to speed up most of extraction queries while reducing the global energy con-
sumption. The biggest challenges we still have to resolve is to deal with memory
limitations of GPUs and adding a full transaction support. In this paper, we also
showed that for building an energy efficient solution, all ranges of GPUs has to
be taken into account and not only the faster ones. CuDB includes also a mul-
tithreaded CPU processing engine which already procures substantial speedups
for query on tiny tables. To complete our study, it should be interesting to test
our multithreaded CPU engine on Many-Core platforms like Xeon Phi’s. Rel-
evance of memory bandwidth has been pointed and, regarding specificities of
next generation of GPUs and Xeon Phi’s (no prominent increase of number of
cores but massive memory improvements), it seems that industry agrees with
our observations.

References

1. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units
for scientific computing. In: IPDPS 2009, Sichuan (2009)

2. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N.K., Luo, Q., Sander, P.V.:
GPUQP: query co-processing using graphics processor. In: SIGMOD/PODS 2007,
Beijing, pp. 1061–1063 (2007)

3. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with
CUDA. In: 3rd Workshop on GPGPU, Pittsburgh, pp. 94–103 (2010)

4. Zhang, K., Wang, K., Yuan, Y., Lei, G., Lee, R., Zhang, X.: Mega-KV: a case for
GPUs to maximize throughput of in-memory key-value stores. VLDB Endowment,
col. 8(11), 1226–1237 (2015)

5. He, B., Xu, Yu, J.: High-throughput transaction executions on graphics processors.
VLDB Endowment 4(5), 314–325 (2011)

6. Pietron, M., Russek, P., Wiatr, K.: Accelerating select where and select join queries
on a GPU. Comput. Sci. (AGH) 14(2), 243–252 (2013)

7. DB-Engines Ranking. http://db-engines.com/en/ranking
8. van den Braak, G., Mersman, B., Corporaal, H.: Compiletime GPU memory access

optimizations. In: ICSAMOS 2010, Samos, pp. 200–207 (2010)

http://db-engines.com/en/ranking

Geocon: A Middleware for Location-Aware
Ubiquitous Applications

Loris Belcastro1(B), Giulio Di Lieto1, Marco Lackovic2,
Fabrizio Marozzo1, and Paolo Trunfio1

1 DIMES, University of Calabria, Rende, Italy
{lbelcastro,fmarozzo,trunfio}@dimes.unical.it

2 Helmes AS, Tallinn, Estonia
marco.lackovic@helmes.ee

Abstract. A core functionality of any location-aware ubiquitous sys-
tem is storing, indexing, and retrieving information about entities that
are commonly involved in these scenarios, such as users, places, events
and other resources. The goal of this work is to design and provide the
prototype of a service-oriented middleware, called Geocon, which can be
used by mobile application developers to implement such functionality. In
order to represent information about users, places, events and resources
of mobile location-aware applications, Geocon defines a basic metadata
model that can be extended to match most application requirements. The
middleware includes a geocon-service for storing, searching and selecting
metadata about users, resources, events and places of interest, and a
geocon-client library that allows mobile applications to interact with the
service through the invocation of local methods. The paper describes
the metadata model and the components of the Geocon middleware. A
prototype of Geocon is available at https://github.com/SCAlabUnical/
Geocon.

1 Introduction

With the widespread diffusion of mobile technologies and location-based ser-
vices, it is possible to provide ubiquitous access to context-aware information
(e.g., interesting attractions or events in a given place being visited). A core
functionality of any location-aware ubiquitous system is storing, indexing, and
retrieving information about entities that are commonly involved in these sce-
narios, such as (mobile) users, places, events and other resources (e.g., photos,
media, comments). The goal of this work is to design and provide the prototype
of a service-oriented middleware, called Geocon, which can be used by mobile
application developers to implement such functionality. Geocon can be used to
discover location-aware content, to share context-related information, and to
facilitate interaction among users of mobile apps. Examples of services that can

This work has been partially supported by Project PON04a2 D DICET-INMOTO-
ORCHESTRA funded by MIUR.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 234–243, 2016.
DOI: 10.1007/978-3-319-49956-7 19

https://github.com/SCAlabUnical/Geocon
https://github.com/SCAlabUnical/Geocon

Geocon: A Middleware for Location-Aware Ubiquitous Applications 235

be implemented in a mobile app using Geocon are: (i) discovery of cultural
places to be visited during a trip; (ii) publication of user reviews about hotels
and restaurants; (iii) sharing of real-time information about events, traffic, and
so on.

A key benefit for developers using Geocon is the possibility to focus on the
front-end functionality provided by their mobile application, without the need
of implementing by scratch back-end components for data storing, indexing and
searching, since they are provided by the middleware. In order to represent
information about users, places, events and resources of mobile location-aware
applications, Geocon defines a basic metadata model that can be extended to
match most application requirements. The widely-used JavaScript Object Nota-
tion (JSON) format is employed to represent such metadata. The architecture
of the middleware includes a geocon-service that exposes methods for storing,
searching and selecting metadata about users, resources, events and places of
interest, and a geocon-client library that allows mobile applications to inter-
act with the service through the invocation of local methods. The interaction
between service and client is based on the REST model.

Given the huge number of users, places, events and resources that may be
involved in location-aware ubiquitous applications, scalability plays a funda-
mental role [8]. Geocon was designed to ensure scalability through the use of a
NoSQL indexing and search engine, Elasticsearch, that can scale horizontally on
a very large number of nodes as the system load increases. Elasticsearch is used
in combination with an external NoSQL database, MongoDB, which is more
focused on constraints, correctness and robustness. Data stored in MongoDB
can be asynchronously pushed to Elasticsearch, making it possible to persist in
Elasticsearch a subset of the data stored in the external database.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 describes the metadata model. Section 4 describes the middleware
architecture and components. Finally, Sect. 5 concludes the paper.

2 Related Work

The European research project CRUMPET [5] (Creation of User-Friendly
Mobile Services Personalised for Tourism) was developed in the early 2000s,
before the mass diffusion of smartphones, for addressing issues related to the
mobility of tourists. Taking into account different user’s travel purposes (e.g.
business, leisure, entertainment, education), CRUMPET aims to provide infor-
mation services meeting the different tourists’ needs. It exploits information
about users’ personal interests and their geographical position to filter the con-
tent available to them. One of the primary goals of CRUMPET was to implement
and improve FIPA1(Foundation for Intelligent Physical Agents) specifications for
mobile applications. The project used the explicit/implicit feedback concepts and
the GML (Geography Markup Language) standard for storing geographic data.

1 http://www.fipa.org.

http://www.fipa.org

236 L. Belcastro et al.

Yu and Chang [10] extended the CRUMPET project ideas by seeking new
intelligent solutions for overcoming the limitations of handheld devices in terms
of reduced screen size for displaying information and limited bandwidth for
transmitting data over a mobile network. Schmidt-Belz and Poslad [7] presented
another study connected to the CRUMPET project, which aims to assess the
quality of CRUMPET usability from the end user’s point of view. The study
takes into account four European locations (i.e., Heidelberg, Helsinki, London
and Aveiro) and makes use of the standard questionnaire SUMI2 (Software
Usability Measurement Inventory - ISO/IEC 9126) to evaluate quality of soft-
ware usability. This questionnaire was replaced in 2011 by SQuaRE3(Systems
and software quality Requirements and evaluation - ISO/IEC 25010).

Some works have been devoted to the development of context aware-mobile
applications that use context to provide information and/or services relevant to
the user, in which the relevance depends on the user’s intentions [1]. An example
is COMPASS [9] (Context-aware Mobile Personal Assistant), which provides
services and information based on user’s interests and position. For selecting
relevant services, COMPASS uses two types of criteria: (i) strict criteria, which
are used for discarding irrelevant results; and (ii) soft criteria, for sorting results
and assigning a relevance score to each service/information. The application is
based on the WASP platform [4] that provides general support services, such
as context manager and indexing services. WASP can be integrated with other
services and can be easily applied to other domains, such as taxi reservation or
dwelling search.

3 Metadata Model

We defined a metadata model for representing information about users, places,
events and resources of mobile location-aware applications. The model identifies
a number of categories for indexing items in the domain of interest, which are
generic enough to satisfy most of the application contexts. In particular, the
metadata model is divided into four categories:

– User: defines basic information about a user (e.g., name, surname, e-mail).
– Place: describes a place of interest (e.g., square, restaurant, airport), including

its geographical coordinates.
– Event: describes an event (e.g., concert, exhibition, conference), with informa-

tion about time and location.
– Resource: defines a resource (e.g., photo, video, web site, web service) associ-

ated to a given place and/or event, including its Uniform Resource Identifier
(URI).

Tables 1, 2, 3 and 4 present the basic metadata fields for each of the four
categories listed above. Metadata are meant to be extensible, i.e., it is possible

2 http://sumi.ucc.ie/.
3 http://www.iso.org/iso/catalogue detail.htm?csnumber=35733.

http://sumi.ucc.ie/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

Geocon: A Middleware for Location-Aware Ubiquitous Applications 237

Table 1. Basic User metadata.

Name Type Description

id String Unique user identifier

name String Given name

surname String Family name

email String E-mail

token String Authentication token

Table 2. Basic Place metadata.

Name Type Description

id String Unique place identifier

name String Name of the place

description String Textual description of the place

latitude Real Latitude of the place

longitude Real Longitude of the place

address String Full address of the place

user id String Id of the user who created the place

to include additional fields based on the specific application. For example, the
user schema may be extended to include birth date, city, linked social network
accounts, and so on.

Table 3. Basic Event metadata.

Name Type Description

id String Unique event identifier

name String Name of the event

description String Textual description of the event

start date String Date and time when the event begins

end date String Date and time when the event ends

place id String Id of the place where the event is held

user id String Id of the user who created the event

To represent metadata, the JavaScript Object Notation (JSON) is used.
JSON is a widely-used text format for the serialization of structured data that
is derived from the object literals of JavaScript [2]. Figure 1 shows an example of
JSON metadata describing a User. Beyond the basic metadata (id, name, etc.),
it includes some additional fields (city, linked accounts and food preferences).

238 L. Belcastro et al.

Table 4. Basic Resource metadata.

Name Type Description

id String Unique resource identifier

name String Name of the resource

description String Textual description of the resource

URI String Link to the resource

place id String Id of the place to which the resource is associated

event id String Id of the event to which the resource is associated

user id String Id of the user who created the resource

Fig. 1. Example of User metadata in JSON.

Fig. 2. Example of Place metadata in JSON.

Figure 2 shows an example of Place metadata, regarding the “Kabuki” restau-
rant in Washington, DC, USA, which is tagged as a Japanese and sushi specialties
restaurant using an additional “tags” field.

Geocon: A Middleware for Location-Aware Ubiquitous Applications 239

4 Middleware

Figure 3 describes the architecture of the middleware, which includes two main
components:

– geocon-service, which contains a central registry for indexing users, resources,
events and places of interest; it exposes methods for storing, searching and
selecting metadata about these entities.

– geocon-client is a client-side library that allows mobile applications to interact
with geocon-service through the invocation of local methods.

Fig. 3. Architecture of the middleware.

The interaction between service and client is based on the REST model [6].
To this end, a complete support to CRUD (Create, Read, Update, and Delete)
operations on the metadata has been defined through Java APIs.

4.1 Geocon-Service

The geocon-service has been implemented as a RESTful Web service and exposed
via the Web service container Grizzly 4, which was deployed on the Microsoft

4 https://grizzly.java.net.

https://grizzly.java.net

240 L. Belcastro et al.

Azure platform that ensures scalability, reliability, and access to external data
analytics [3].

The framework used in our implementation to develop RESTful Web ser-
vices is Jersey5, an open source framework that implements JAX-RS (Java API
for RESTful Web Services) using annotations to map a Java class to a Web
resource, and natively supports JSON representations through the integrated
library Jackson6.

The core component of geocon-service is the indexing and search engine,
which has been implemented using Elasticsearch7. Elasticsearch is an open-
source, distributed, scalable, and highly available search server based on Apache
Lucene8, and provides a RESTful web interface. Elasticsearch has been chosen
because of several benefits, including:

– it is document-oriented, which means that entities can be structured as JSON
documents;

– it is schema-free, which means it is able to detect the data structure automat-
ically without need to specify a schema before indexing documents;

– it is horizontally scalable: if more power is needed, other nodes can be added
and Elasticsearch will reconfigure itself automatically;

– it has APIs for several programming languages, including Java, which makes
it easily integrable with other systems.

Geocon-service uses the query language provided by Elasticsearch, which is a
full Query DSL (Domain Specific Language) based on JSON. Therefore, queries
can be defined through the following main commands:

– term: returns all the documents whose specified field contains a given term.
The following example returns all the documents whose field name contains
the word “Mary”:

{"term" : { "name" : "Mary" }}

– prefix : returns all the documents whose specified field contains a term begin-
ning with a given prefix. The following example returns all the documents
whose field surname begins with “Ro”:

{"prefix" : { "surname" : "Ro" }}

– bool : returns all the documents containing a boolean combination of queries.
It is built using one or more boolean clauses (i.e., must, must not, should,
and the parameter minimum should match that is the minimum number of
clauses to be met). The following example returns all the users whose name is
“Mary”, that are not between 10 and 20 years old, and that like eating sushi
or pizza:

5 Jersey: http://jersey.java.net/.
6 Jackson: http://jackson.codehaus.org/.
7 https://www.elastic.co/.
8 https://lucene.apache.org/.

http://jersey.java.net/
http://jackson.codehaus.org/
https://www.elastic.co/
https://lucene.apache.org/

Geocon: A Middleware for Location-Aware Ubiquitous Applications 241

{"bool" : {
"must" : { "term" : { "name" : "Mary" } },
"must_not" : {

"range" : {"age" : { "from" : 10, "to" : 20 }}
},
"should" : [

{ "term" : { "food-preferences" : "sushi" } },
{ "term" : { "food-preferences" : "pizza" } }

],
"minimum_should_match" : 1

}}

Due to some limitations of Elasticsearch (e.g., absence of transaction sup-
port, possible loss of write operation during cluster reforming/splitting), we use
it in combination with an external NoSQL database, MongoDB9, which is more
focused on constraints, correctness and robustness. Compared to relational data-
bases, MongoDB provides several benefits in terms of simplicity, flexibility, and
scalability. Data stored in MongoDB can be asynchronously pushed to Elastic-
search. In such way, it is possible to persist in Elasticsearch a subset of the data
stored in the external database, possibly using a different data format.

4.2 Geocon-Client

Geocon-client is the library used by mobile applications to interact with geocon-
service. The library aims to facilitate communication with the geocon-service
methods, hiding some low-level details (e.g., authentication, REST invocation,
etc.) and providing users with a complete set of functions for executing CRUD
operations. These functions are implemented using a set of objects and methods
provided by the client library to the application layer.

Geocon-client consists of five classes: four classes are used to represent
the metadata categories (User, Place, Event and Resource), while a fifth
class (SearchEngine) is used to expose the methods for storing and searching
data on geocon-service. For each class representing a metadata category, the
SearchEngine class provides a set of CRUD methods: register, get, update, and
delete. As an example, Table 5 shows the CRUD methods provided to register,
get, update and delete Resource elements in the service.

Table 5. CRUD methods for Resource elements.

Method Description

register (Resource r) Registers a resource to the service

get (Resource r) Returns the metadata of a resource

update (Resource r) Updates the metadata of a resource

delete (Resource r) Deletes a resource

9 https://www.mongodb.com.

https://www.mongodb.com

242 L. Belcastro et al.

5 Conclusions

Geocon is a service-oriented middleware designed to help mobile developers to
implement location-aware ubiquitous applications. In particular, Geocon pro-
vides a service and a client library for storing, indexing, and retrieving infor-
mation about entities that are commonly involved in these scenarios, such as
(mobile) users, places, events and other resources (e.g., photos, media, com-
ments). A key benefit for developers using Geocon is the possibility to focus
on the front-end functionality provided by their mobile application, without the
need of implementing by scratch back-end components for data management,
which are provided by the middleware.

Geocon defines a basic metadata model to represent information about users,
places, events and resources of mobile location-aware applications, which can be
easily extended to match most application requirements. In order to ensure a
high level of decoupling and efficient communication between client and service,
the REST model has been adopted. Moreover, given the huge number of users,
places, events and resources that may be involved in location-aware ubiquitous
applications, Geocon uses the Elasticsearch engine that can scale horizontally on
a very large number of nodes. A prototype implementation of Geocon is available
at https://github.com/SCAlabUnical/Geocon.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). doi:10.
1007/3-540-48157-5 29

2. ECMA. Ecma-262: ECMAscript Language Specification, 5th edn. ECMA (Euro-
pean Association for Standardizing Information and Communication Systems)
(2009)

3. Marozzo, F., Talia, D., Trunfio, P.: A cloud framework for big data analytics work-
flows on azure. Adv. Parallel Comput. 23, 182–191 (2013)

4. Martin, S., Leduc, G.: An active platform as middleware for services and com-
munities discovery. In: Sunderam, V.S., Albada, G.D., Sloot, P.M.A., Dongarra,
J. (eds.) ICCS 2005. LNCS, vol. 3516, pp. 237–245. Springer, Heidelberg (2005).
doi:10.1007/11428862 33

5. Poslad, S., Laamanen, H., Malaka, R., Nick, A., Buckle, P., Zipl, A.: CRUMPET:
creation of user-friendly mobile services personalised for tourism. In: Second Inter-
national Conference on 3G Mobile Communication Technologies, (Conf. Publ. No.
477), pp. 28–32 (2001)

6. Richardson, L., Ruby, S.: RESTful web services. O’Reilly Media Inc. (2008)
7. Schmidt-Belz, B., Poslad, S.: User validation of a mobile tourism service. In: Pro-

ceedings of the Workshop on HCI in Mobile Guides, pp. 57–62. University of Udine
(2003)

8. Talia, D., Trunfio, P., Marozzo, F.: Data Analysis in the Cloud. Elsevier, USA
(2015)

https://github.com/SCAlabUnical/Geocon
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/11428862_33

Geocon: A Middleware for Location-Aware Ubiquitous Applications 243

9. Setten, M., Pokraev, S., Koolwaaij, J.: Context-aware recommendations in the
mobile tourist application COMPASS. In: Bra, P.M.E., Nejdl, W. (eds.) AH
2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27780-4 27

10. Yu, C.-C., Chang, H.: Personalized location-based recommendation services for
tour planning in mobile tourism applications. In: Noia, T., Buccafurri, F. (eds.)
EC-Web 2009. LNCS, vol. 5692, pp. 38–49. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03964-5 5

http://dx.doi.org/10.1007/978-3-540-27780-4_27
http://dx.doi.org/10.1007/978-3-540-27780-4_27
http://dx.doi.org/10.1007/978-3-642-03964-5_5
http://dx.doi.org/10.1007/978-3-642-03964-5_5

I/O-Focused Cost Model for the Exploitation
of Public Cloud Resources
in Data-Intensive Workflows

Francisco Rodrigo Duro(B), Javier Garcia Blas, and Jesus Carretero

Computer Science and Engineering Department, University Carlos III, Leganes, Spain
{frodrigo,fjblas,jcarrete}@inf.uc3m.es

Abstract. Ultrascale computing systems will blur the line between HPC
and cloud platforms, transparently offering to the end-user every possi-
ble available computing resource, independently of their characteristics,
location, and philosophy. However, this horizon is still far from complete.
In this work, we propose a model for calculating the costs related with the
deployment of data-intensive applications in IaaS cloud platforms. The
model will be especially focused on I/O-related costs in data-intensive
applications and on the evaluation of alternative I/O solutions. This
paper also evaluates the differences in costs of a typical cloud storage ser-
vice in contrast with our proposed in-memory I/O accelerator, Hercules,
showing great flexibility potential in the price/performance trade-off. In
Hercules cases, the execution time reductions are up to 25% in the best
case, while costs are similar to Amazon S3.

Keywords: Cloud · Amazon · Data-intensive · Cost model · Workflows

1 Introduction

The popularization of the cloud computing paradigm brought a new scenario to
the scientific computing field. Based on the virtually limitless resources offered
in a pay-per-use approach, research centers have the possibility to use cloud
resources instead of the traditional HPC infrastructures. It could be even possible
to combine the benefits offered by both approaches, owning an HPC cluster
or supercomputer for testing and development, while deploying experiments in
this HPC infrastructure augmented with as much cloud computing resources as
needed or as possible given the budget of the project. This combination will lead
the path to Ultrascale systems [2], large-scale complex systems that join parallel
and distributed computing systems, reaching two to three orders of magnitude
larger than todays systems. The research line for achieving Ultrascale systems
should focus on the simplification of this scenario with mixed infrastructures, by

F. Rodrigo Duro—This work was supported by the project TIN2013-41350-P “Scal-
able Data Management Techniques for High-End Computing Systems” from the
Ministerio de Economı́a y Competitividad, Spain.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 244–257, 2016.
DOI: 10.1007/978-3-319-49956-7 20

I/O-Focused Cost Model for Public Cloud Resources Exploitation 245

transparently taking advantage of every possible computing resources available,
independently of their characteristics, location, or philosophy.

However, the current technology is far from this ideal scenario. Interfaces in
both HPC and cloud platforms differ and difficult its use in a combined way.
The philosophy differences in cloud and HPC infrastructures, especially in the
I/O subsystems, are still an unsolved inconvenience for generic applications.
For tackling with this limitation, in previous works we proposed Hercules [5,9],
an in-memory generic I/O architecture for data-intensive applications, as an
alternative to current infrastructure-specific I/O solutions.

This lack of generic approaches does not only affect to the computing
infrastructures, but also to the scientific applications. Since the introduction
of the MapReduce paradigm, we have seen a change in the trends of scientific
application paradigm, from the classical CPU-intensive applications (large-scale
simulations, complex mathematical problems, etc.) to data-intensive applica-
tions. However, most of the technological breakthroughs emerged from the Big
Data field are not fully applied to data-intensive scientific applications executed
on HPC infrastructures. In the recent years, the use of workflow engines for the
design, implementation, and execution of data-intensive applications in different
infrastructures, is seen as the best generic approach for scientific computing.

Future Ultrascale systems will be in charge, not only of transparently offering
every available resource to the users, but they will also be responsible of schedul-
ing each computing job to the platform with the best fit for the characteristics
of the application. In order to better understand when the pay-per-use cloud
resources are the best option for a specific workload, it is indispensable to fully
understand the incurred costs of executing an application in the cloud. In this
work, we propose a model for calculating potential costs derived from the deploy-
ment of a data-intensive application over an IaaS cloud platform. This model
takes especially into account the costs related with I/O operations, including
the impact of deploying our proposed in-memory I/O accelerator, Hercules, as
an alternative to the default cloud storage service. We have also applied this
model to a study case that involves the execution of a data-intensive applica-
tion, demonstrating that our solution better suits the pay-per-use philosophy
for I/O operations over temporary data, flexibly adapting the performance and
costs to the user requirements.

The remainder of the paper is organized as follows. Section 2 overviews pre-
vious works related to data-intensive applications in clouds. Section 3 introduces
Hercules. Section 4 proposes a model for calculating the costs of deployment of
an application in an IaaS cloud platform. Section 5 applies our model to the
execution of a data-intensive application, comparing Amazon S3 and Hercules.
Finally, Sect. 6 presents the conclusions of this work.

2 Related Work

Workflow engines, such as DMCF [8], Pegasus [1], and OmpSs [4] are software
systems for designing and executing data analysis workflows. Most workflow

246 F. Rodrigo Duro et al.

engines rely on the default shared storage. This implies that the I/O performance
of tasks is limited by the performance of the default storage and can be greatly
affected by contention. Thus, currently, the costs of working with large datasets
mainly depends on infrastructures, where storage and computation resources are
not completely decoupled as in the case of HDFS.

As a result, data locality-aware techniques and in-memory storage are becom-
ing more and more important, avoiding these problems. Recent solutions like
Tachyon [7] have shown the importance of data locality and in-memory storage
for improving performance in data-intensive applications. Chiu et al. [3] evalu-
ated the effects of reducing the data transfers through the use of a cooperative
cache. In this work, we demonstrate that our in-memory cache solution also
reduces applications production costs compared with the Amazon S3 storage
system.

Yuan et al. [10] presented a novel intermediate data storage strategy for
reducing the cost of the scientific cloud workflows. This strategy is based on the
automatic store of the most appropriate intermediate datasets. In [11], the same
authors proposed a dataset storage cost model for managing the intermediate
data in a scientific cloud-aware workflow systems. Our approach differs from this
one by considering both application and hardware characteristics.

3 Hercules Background

Hercules is a generic I/O architecture based on in-memory key-value stores.
Hercules can be deployed as an I/O subsystem alternative to existing storage
solutions such as parallel shared file system in HPC systems and cloud storage
services in cloud platforms. It is especially designed for the acceleration of I/O
operations over temporary data in data-intensive applications.

The main characteristics offered by Hercules are: easy deployment, flexibility,
portability, scalability, and performance. Based on its easy deployment, Hercules
can be flexibly configured with as many I/O nodes as necessary, depending on
the requirements of the application or even depending on the requirements of
each execution of the same application. A larger number of I/O nodes deployed
is translated to the (several) network interfaces available, implying a greater
aggregated throughput available for the applications.

Additionally, based on the generic characteristics of the architecture, Hercules
can be deployed in a wide range of different infrastructures, including HPC
systems [5] and cloud platforms [9], showing potential performance improvements
while providing portability for existing and legacy applications. Hercules is also
capable of being deployed for sharing resources with the compute nodes, enabling
the possibility of exposing data locality in order to be exploited by locality-aware
schedulers. However, this feature is out of the scope of this work.

4 Costs Model for In-Memory Storage on Clouds

In this section, we present a model with the objective of calculating the costs
associated with the execution of a data-intensive workflow application in a public

I/O-Focused Cost Model for Public Cloud Resources Exploitation 247

cloud platform. We have based this model on the Amazon AWS platform, but
given the similarity in billing concepts of the different existing IaaS providers,
this model should be applicable to other cloud providers (i.e., Microsoft Azure).
Application modeling is focused on workflow applications, represented as a
Directed Acyclic Graph (DAG).

Fig. 1. Workflow model for the cost analysis.

Figure 1 shows how graph nodes (circles) represent the computational cost
of each task (CPU time in seconds) while boxes represent data communication
between tasks. Each box corresponds with one file, representing the file size mea-
sured in MB. Links associating tasks and files represent I/O dependencies, being
write operations the links with task-to-file direction and read operations the file-
to-task links. Any number of workflow instances can be executed depending on
the number of existing input files.

CTOTAL = CCSS + CCCI (1)

The total execution cost of an application (CTOTAL) is denoted as the sum of
the costs of the cloud storage services (CCSS) and the costs of compute instances
(CCCI). Both costs depend on the characteristics of the application, the char-
acteristics of the infrastructure, and the execution time, i.e. the time needed for
executing an application is lower using two computing instances than using one,
but the cost of deploying two virtual machines (VMs) is greater than deploying
one during the same amount of time.

4.1 Cloud Storage Service Costs

The cloud storage service costs (CCSS) refers to the costs related with the I/O
operations (amount of data stored, number of read/write operations, etc.) and
can be calculated as:

248 F. Rodrigo Duro et al.

CCSS =
∑

i∈F

FSizei · Scost · tex +
∑

j∈E

Einj · PUTcost +
∑

j∈E

Eoutj ·GETcost (2)

where F and E are respectively the sets of involved files and the in/out edges
of the application. Every existing link has two different associated input and
output costs. These costs will be considered depending on the nature of the I/O
operation: write operations will have IN = 1, OUT = 0 costs (represented also as
Ein), while read operations will have these values changed (IN = 0, OUT = 1,
represented as Eout). Each of these costs represents one I/O operation over
a specific file. FSize is the file size of one file object in MB and Scost is the
store cost of files. Amazon charges the storage as USD/GB per month, so the
total storage cost will depend on the total execution time (tex), introduced in
Eq. 6. We only take into account the cost of execution, but any data stored
before/after the execution of the workflow in the cloud storage service will be
billed. Based on these parameters, the cost of storing files can be calculated.
Ein and Eout represent the number of input and output operations over each
file, while GETcost and PUTcost represent the cost of every operation (a billing
concept existing in most cloud storage services).

The CCSS cost can be decomposed in more specific costs depending on the
nature of the I/O operations. In our case, it will be especially useful to measure
the cost of operations performed over input and output files (CCSSin

, CCSSout
)

independently from the rest of I/O operations (CCSStmp
), as shown in Eq. 3.

CCSS = CCSSin
+ CCSStmp

+ CCSSout
(3)

where CCSSin
, CCSSout

, and CCSStmp
take into account only storage costs and

I/O operation costs related with input, output, and temporary files, respectively.

4.2 Computing Resources Costs

For the second part of the Eq. 1, the objective is to calculate the costs related
with the use of computing resources. These costs include the VM instances used
for executing the application and depend on the total execution time:

CCCI = tex ·
∑

i∈V

VMcosti (4)

where V is the set of VM instances deployed during the execution of the applica-
tion. In order to better represent the costs associated with the deployment of the
Hercules I/O accelerator, the former equation can be decomposed differentiating
the VM instances executing the application and the VM instances deployed for
the Hercules I/O back-end servers:

CCCI = tex · (
∑

i∈C

VMcosti +
∑

j∈H

VMcostj) (5)

I/O-Focused Cost Model for Public Cloud Resources Exploitation 249

where C and H are the sets of VM instances deployed during the execution of the
application, for computation and Hercules purposes, respectively. tex is the total
execution time of the application (in seconds) and VMcost is the price of deploy-
ing each VM during one second (in USD/s). This cost calculation introduces the
first simplification of our proposed model. In the Amazon EC2 platform, VM
instances are billed for full hours, independently of being used 1 s or 59 min. In
our model, we consider paying only for the useful time in seconds. This simpli-
fication can be explained by the use of the infrastructure for executing multiple
batch applications. In this simplified scenario, configuration, initialization, and
full hour costs can be discarded. When multiple applications are executed by the
same infrastructure, these costs are diluted between all the executions. Other
cloud platforms, like Microsoft Azure1, allow per minute billing. This advanced
billing model can even better fit our model.

The total execution time depends on two different factors: time spent in
computation (tCPU) and time spent during I/O operations (tI/O):

tex = tCPU + tI/O (6)

Both CPU and I/O times are affected by the characteristics of the infrastruc-
ture used during the execution of the application. tCPU will be reduced depend-
ing on the number of compute instances used during the execution of the appli-
cation:

tCPU =
∑

i∈T ti

n(C)
(7)

T is the task set of the application, while C is the set of VM instances
deployed during the execution of the application for computation purposes. ti
represents the execution time of each task of the workflow and n(C) is the
number of VM machines deployed. The second simplification of our model con-
sists on considering all the tasks as perfectly scalable and as executable by any
instance (without taking into account dependencies), fully utilizing all the avail-
able resources, resulting in a perfect distribution of the load where the total
execution time is divided by the number of VM instances. Our model suppose
homogeneous VM instances where the CPU load has been previously profiled
in order to measure the CPU time required by each task on this specific VM
instance.

Finally, the I/O time (tI/O) is calculated taking into account both the I/O
characteristics of the application and the infrastructure used. The performance
achieved for read and write operations using the Amazon S3 service greatly vary,
leading to the distinction in the following equation:

tI/O =
∑

i∈W FSizei

n(C) · BWwrite
+

∑
j∈R FSizej

n(C) · BWread
(8)

1 http://azure.microsoft.com/en-us/pricing/.

http://azure.microsoft.com/en-us/pricing/

250 F. Rodrigo Duro et al.

where W and R represent the sets of write operations and read operations in
the application, while FSize represents the size of these operations in MB. n(C)
represents the number of VM instances deployed and affects the total available
bandwidth of I/O operations (BW is the bandwidth perceived by each node for
I/O operations in MB/s). The way of considering the total available bandwidth
introduces the third simplification of our model, which is the perfect scalability
of the I/O operations, without taking into account network congestion and I/O
contention. If one VM instance requires 10 s to write 10 files containing 100 MB
of data each (1 GB total), two virtual instances will ideally perform the same
operations in 5 s. Again, the simplification excludes any kind of data dependen-
cies, dividing the total I/O work between the available compute VM instances,
in a perfectly balanced scenario.

Given the fact that Hercules only affects I/O operations performed over tem-
porary data, it is necessary to decompose the previous I/O time in three different
factors:

tI/O = tI/Oinput
+ tI/Otmp

+ tI/Ooutput
(9)

The time needed for reading the input files of the application from Amazon
S3 (tI/Oinput

) and the time needed to write the results to persistent storage
(tI/Ooutput

), is the same in the S3-only cases and the cases where Hercules is
present. It can be modeled as:

tI/Oinput
=

∑
i∈IN FSizei

n(C) · BWread
(10)

tI/Ooutput
=

∑
i∈OUT FSizei

n(C) · BWwrite
(11)

where IN is the set of read operations performed over input files and OUT is
the set of write operations performed over result files during the execution of
the application. The time needed for executing the I/O operations over tem-
porary files (tI/Otmp

) is modeled differently for S3 (tI/Otmp
(S3)) and Hercules

(tI/Otmp
(HER)), as detailed in the two following equations:

tI/Otmp
(S3) =

∑
i∈TW FSizei

n(C) · BWwriteS3

+

∑
j∈TR FSizej

n(C) · BWreadS3

(12)

tI/Otmp
(HER) =

∑
i∈TW FSizei

MINVM · BWwriteHER

+

∑
j∈TR FSizej

MINVM · BWreadHER

(13)

MINVM = min(n(C), n(H)) (14)

where W and R represent the sets of write operations and read operations per-
formed over temporary files during the execution of the application and n(H)
represents the number of VM instances deployed for the Hercules infrastructure.
The total available bandwidth over files stored in Hercules depends, not only

I/O-Focused Cost Model for Public Cloud Resources Exploitation 251

on the number of compute VM instances, but also on the number of Hercules
I/O nodes available. We have selected the minimum of both values, denoted as
MINVM , because it will be the limiting factor in the maximum available band-
width. As example, in the case of a low number of compute nodes using a large
Hercules infrastructure, the limiting factor will be the bandwidth available at
client side: two compute instances will perform I/O operations in half the time
required by one computing VM. However, this assumption is only true when the
I/O nodes outnumber the computing infrastructure. In case of a lesser number
of I/O nodes, the limiting factor will be the available bandwidth exposed by
the Hercules infrastructure, i.e. four compute instances accessing concurrently
to only one Hercules node, will share the maximum possible bandwidth offered
by this node. This model is consistent with the results shown in the experimental
evaluation of our solution. The rest of variables remain as described for Eq. 8.

As a summary, there are three main differences presented by the use of Ama-
zon S3-only solutions in contrast with a hybrid solution using Amazon S3 for
I/O files and Hercules for any I/O operation performed over temporary files.
First, Hercules requires the deployment of a greater number of VM instances (or
VMs with more RAM when deployed sharing resources with the compute nodes),
incurring in a greater computation costs (pay-per-use of VM instances). Second,
Hercules deployment can result in time reductions due to the acceleration of
I/O operations, obtaining a reduction of the total execution time of the appli-
cation, potentially lowering the costs related to the computing infrastructure
(VM instances). Third, through the use of Hercules instead of Amazon S3 for
I/O operations performed over temporary files, the cost of using the storage ser-
vice can be lowered, which is especially important in the targeted data-intensive
applications.

The next section presents the evaluation of a use case application, consis-
tent with the data intensive target, in order to analyze this balance in different
scenarios.

5 Costs Analysis of a Data-Intensive Application

In order to show the usefulness of our proposed model, we are going to define
a data-intensive application with realistic characteristics. This costs analysis
will show the budget impact of I/O-related operations in the execution of a
data intensive application in a public cloud platform, as well as presenting the
execution costs of the application performing every I/O operation over Amazon
S3 in comparison with performing I/O operations over temporary data stored
in Hercules.

5.1 Application Description

As a study case, we have used an I/O intensive workflow application where both
computation and I/O times are balanced. Figure 2 depicts the workflow phases,
where an image file is read by the filter task, creating three new image files. The

252 F. Rodrigo Duro et al.

filtering task can be any kind of lightweight image-processing computation, such
as applying three different filters and decomposing the image in RGB colors.
These new image files are afterwards read by the combine task, combining the
images or selecting one of the images (this combination/selection can be based
on any criteria: quality, randomness, patterns, etc.) writing a final image file as
a result of the workflow. Every image in the workflow has roughly the same size
and any number of images can be used as input files.

Fig. 2. Image processing data-intensive workflow used as study case for analyzing the
costs derived of the deployment of Hercules over a cloud infrastructure. (Color figure
online)

When Hercules is deployed and temporary files are stored in Hercules I/O
nodes. In our study case, the images created by the filter task and read by the
combine task (depicted in orange) are temporary files. Input and resulting files
are stored in the Amazon S3 storage service in every evaluated case for dura-
bility reasons. The selected Hercules deployment consists of sharing resources
with compute nodes, while deploying VM instances with a greater amount of
RAM for the in-memory storage of data. Based on that logic, in the Amazon
S3-only case we have deployed m4.xlarge VM instances (4 cores, 16 GB RAM,
0.264 USD/hour) and r3.xlarge memory optimized VM instances for the Her-
cules case, which are equivalent VM instances with more RAM (4 cores, 31.5 GB
RAM, 0.371 USD/hour). In the table, the cost of VM instances for the Hercules
infrastructure appears as +0.107 USD/hour, showing the price difference of the
additional main memory required. Additionally, r3.xlarge come with 80 GB SSD
space, which can be utilized for data.

Tables 1, 2, and 3 present the specific configuration of every configurable vari-
able of our model, describing the characteristics of the application in Table 1, the
characteristics of the architecture in Table 2, and the billing concepts and prices
applied based on Amazon AWS costs in Table 3. Every variable representing
costs is presented as provided by the cloud operator (Amazon) and normalized
to our model when necessary. Amazon S3 and Hercules bandwidths are based
on previous works [6].

I/O-Focused Cost Model for Public Cloud Resources Exploitation 253

Table 1. Input parameters for the costs analysis of the study case: Characteristics of
the application.

Parameter Value

Total input files 8,192

Size of input files 128 MB

Total size of input files 1 TB (8,192 * 128 MB)

Generated temporary files 24,576 (3 * 8,192)

File size of temporary files 128 MB

Total size of temporary files 3 TB (128 MB * 24,576)

Generated result files 8,192

File size of result files 128 MB

Total file size of result files 1 TB (128 MB * 8,192)

No. GET operations 32,768 (4 * 8,192)

No. PUT operations 32,768 (4 * 8,192)

Filter task CPU time 20 s

Combine task CPU time 10 s

Table 2. Input parameters for the costs analysis of the study case: Characteristics of
the infrastructure running the application.

Parameter Value

No. compute VM instances (C) 32

No. Hercules I/O nodes (H) 4 to 32

BWreadS3 90 MB/sa

BWwriteS3 20 MB/sa

BWreadHER 90 MB/sa

BWwriteHER 90 MB/sa

aBased on our previous work [6].

We have selected 30 s of computation time for balancing the I/O-to-
computation ratio. Based on an image file size of 128 MB, reading the image
from Amazon S3 at around 90 MB/s implies ∼1.4 s while writing the same image
at around 20 MB/s is translated in ∼6.4 s. The workflow consists of a total of five
image files, with one read and one write operation per file (with the exception of
input and output files which are only read or written, not both), up to a total of
4 read operations and 4 write operations, resulting in ∼31.2 s. CPU time can be
distributed as 20 s for the filter task and 10 s for the combine task. Figure 3 shows
the details of this data intensive application following the workflow model pre-
sented in Fig. 1. As can be seen in Table 1, in this configuration the application
processes 8,192 images, leading to 8,192 executions of the workflow that can be
carried out in parallel in different computing resources with a proper scheduler.

254 F. Rodrigo Duro et al.

Table 3. Input parameters for the costs analysis of the study case: billing concepts
and prices in the Amazon AWS platform.

Parameter Value

Storage cost 0.0300 USD per GBa

Normalized storage cost 1.13e−11 USD per MB per sec

Total CPU time 245,760 s (30 * 8,192 s)

Compute VM instances cost 0.239 USD/hour per nodeb

Normalized comp. VM instances cost 0.000066 USD/sec per node

Hercules I/O nodes cost +0.107 USD/hour per nodeb

Normalized Hercules I/O nodes cost 0.000029 USD/sec per node

GET operations cost 0.004 USD per 10,000 op.a

Normalized GET operations cost 0.0000004 USD

PUT operations cost 0.005 USD per 1,000 op.a

Normalized PUT operations cost 0.000005 USD
aBased on Amazon S3 prices https://aws.amazon.com/s3/pricing/.
bBased on Amazon AWS prices for Amazon EC2 m4.xlarge and r3.xlarge
instances https://aws.amazon.com/ec2/pricing/.

Fig. 3. Model of the image processing data-intensive workflow used as study case,
including tasks, CPU cost (CPU time), I/O operations, and I/O cost (file size).

5.2 Costs Analysis

Figure 4 plots the breakdown of the total execution time of the experiment over
different I/O infrastructures. S3 case represents executions where every I/O
operation is performed over the Amazon S3 storage service, while every other
case rely on different Hercules deployments for temporary data accesses (using 4,
8, 16 and 32 I/O nodes deployed sharing resources with the compute nodes). The
black line represents the total cost of the execution of this workflow, based on
the previously presented costs model. Figure 4 clearly shows how the flexibility
of Hercules can be used for finding a trade-off between cost and execution time.
Using 4 I/O nodes, Hercules presents a poor execution time compared with the
S3 case. However, as the number of I/O nodes increases, the total execution
time is reduced. This behavior is produced by the increased performance of I/O
operations performed over temporary data, using Hercules as I/O accelerator.
Every other phase of the workflow execution time remains constant for every

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/ec2/pricing/

I/O-Focused Cost Model for Public Cloud Resources Exploitation 255

Fig. 4. Breakdown of the total execution time comparing the use of the cloud stor-
age service (S3) for every I/O operation with the deployment of different Hercules
configurations for temporary data. The black line represents the total execution cost
(secondary Y axis). Computing infrastructure is 32 VM instances for every case.

experiment (including the S3 case): reading the input files, writing the results,
and computation time.

The trend shown by the costs line seems counter-intuitive for two main rea-
sons. First, total execution costs are similar in some Hercules and S3-only cases,
which seems incorrect given the additional resources needed for the Hercules I/O
infrastructure. Second, Hercules costs are reduced at the same pace as more Her-
cules I/O nodes are deployed, which again seems unrealistic given the fact that
costlier VMs are necessary. Figure 5 presents a breakdown of the execution costs,
detailing the cost related with three different billing concepts: S3-related costs
(storage and PUT/GET operations), the costs of the VM instances deployed as
computing resources. and the cost of VM instances running as Hercules back-
ends. The combination of Figs. 4 and 5 shows how the usage of Hercules for
temporary data both reduces the total execution time and reduces the amount
of data stored over Amazon S3. On the one hand, the reduction of the total
execution time affects the amount of time where VM instances are deployed,
reducing the costs related with computation and I/O instances. On the other
hand, the reduction of data stored over S3 minimizes the costs related with the
use of the S3 API, both in persistent data storage and PUT/GET operations
costs.

It is also interesting to highlight how the performance scales as the price is
reduced in Hercules. The flexibility in the deployment of the Hercules infrastruc-
ture offers to the users the ability of trading-off execution time and cost efficiency,
depending on their necessities. The specific characteristics of the application or
the cloud provider used may vary these results, but we consider the study case
presented as a fair example of data-intensive application (balanced CPU and

256 F. Rodrigo Duro et al.

Fig. 5. Breakdown of the total execution cost comparing the use of Amazon S3 for every
I/O operation with the deployment of different Hercules configurations for temporary
data. Computing infrastructure is 32 VM instances for every case.

I/O time, large amount of temporary data produced) and cloud provider (being
Amazon AWS one of the most used IaaS cloud providers).

Our cost analysis shows how data-intensive applications can be benefited
by the deployment of Hercules, resulting in reductions in total execution time
with a comparable cost. Depending on the execution time reductions achieved
by applying Hercules for temporary I/O operations, it could be possible to even
obtain cost reductions in applications with a great amount of temporary data
in comparison with Amazon S3. Total execution time is reduced due to the
increased I/O performance offered by our proposed I/O accelerator. In the costs
reduction side, on the one hand, the additional costs related with the deployment
of additional or costlier VM instances for the Hercules I/O infrastructure can
be compensated with a reduction in total execution time (less total execution
time is translated in less time using the deployed VM instances). On the other
hand, the costs of storing and accessing temporary data in a persistence-oriented
service like Amazon S3 can be avoided by using Hercules I/O nodes.

6 Conclusions

This work has presented a model for calculating potential costs derived from the
deployment of data-intensive applications over IaaS cloud platforms. This model
takes especially into account the costs related with I/O operations, including the
impact of deploying our proposed in-memory I/O accelerator (Hercules) as an
alternative to default cloud storage services. Additionally, we have applied the
proposed model to a data-intensive image processing application, comparing the
costs of execution performing every I/O operation over the default cloud storage
service in contrast with deploying Hercules for temporary data.

I/O-Focused Cost Model for Public Cloud Resources Exploitation 257

We can conclude that the performance of data-intensive applications with a
large amount of temporary data can be improved while maintaining the execu-
tion costs. The main benefit offered by our solution for future Ultrascale systems
is the flexibility in configuration, targeting different objectives depending on the
requirements of the application and the available budget. The user choose to
save money or save time in comparison with the default cloud storage service,
even beating both price and performance in balanced configurations.

In the future we should focus on the extension of the costs model for taking
into account data locality issues, which should expose even better performance
and costs in Hercules cases. Additionally, the model can be applied to other IaaS
public cloud providers like Microsoft Azure.

References

1. Deelman, E.: Pegasus, a workflow management system for science automation.
Future Gen. Comp. Syst. 46, 17–35 (2015)

2. Carretero, J., et al.: Memorandum of understanding. In: Network for Sustainable
Ultrascale Computing (NESUS), p. 30 (2014). http://www.nesus.eu

3. Chiu, D., Agrawal, G.: Evaluating caching and storage options on the Amazon Web
Services Cloud. In: 11th IEEE/ACM International Conference on Grid Computing,
pp. 17–24 (2010)

4. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.:
OmpSs: a proposal for programming heterogeneous multi-core architectures. Par-
allel Process. Lett. 21(02), 173–193 (2011)

5. Duro, F.R., Blas, J.G., Isaila, F., Wozniak, J.M., Carretero, J., Ross, R.: Flexible
data-aware scheduling for workflows over an in-memory object store. In: CCGRID
2016, pp. 321–324, May 2016

6. Duro, F.R., Garcia-Blas, J., Isaila, F., Carretero, J.: Experimental evaluation of a
flexible I/O architecture for accelerating workflow engines in cloud environments.
In: DISCS 2015, pp. 6:1–6:8 (2015)

7. Li, H., Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Tachyon: Reliable, mem-
ory speed storage for cluster computing frameworks. In: Proceedings of the ACM
Symposium on Cloud Computing, pp. 1–15. ACM (2014)

8. Marozzo, F., Talia, D., Trunfio, P.: JS4Cloud: script-based workflow programming
for scalable data analysis on cloud platforms. Concurrency Comput. Pract. Expe-
rience 27(17), 5214–5237 (2015)

9. Rodrigo Duro, F., Marozzo, F., Garcia Blas, J., Talia, D., Trunfio, P.: Exploit-
ing in-memory storage for improving workflow executions in cloud platforms. J.
Supercomputing 72(11), 4069–4088 (2016)

10. Yuan, D., Yang, Y., Liu, X., Chen, J.: A cost-effective strategy for intermediate
data storage in scientific cloud workflow systems. In: IPDPS 2010, pp. 1–12 (2010)

11. Yuan, D., Yang, Y., Liu, X., Chen, J.: On-demand minimum cost benchmarking
for intermediate dataset storage in scientific cloud workflow systems. J. Parallel
Distrib. Comput. 71(2), 316–332 (2011)

http://www.nesus.eu

SCDT-2016: Supercomputing Co-Design
Technology Workshop

Cellular ANTomata as Engines
for Highly Parallel Pattern Processing

Arnold L. Rosenberg(B)

Computer and Information Science, Northeastern University,
Boston, MA 02115, USA
rsnbrg@ccs.neu.edu

Abstract. One important approach to high-performance computing has
a (relatively) simple physical computer architecture emulate virtual algo-
rithmic architectures (VAAs) that are highly optimized for important
application domains. We expose the Cellular ANTomaton (CAnt) com-
puting model—cellular automata enhanced with mobile FSMs (Ants)—
as a highly efficient VAA for a variety of pattern-processing problems
that are inspired by biocomputing applications. We illustrate the CAnt
model via a scalable design for an n × n CAnt that solves the following
bio-inspired problem in linear time.
The Pattern-Assembly Problem.
Inputs: a length-n master pattern Π and r test patterns π0, . . . , πr−1, of
respective lengths m0 ≥ · · · ≥ mr−1.
The problem: Find every sequence 〈πj0 , . . . , πjs−1〉 of πk’s, possibly
with repetitions, that “assemble” (i.e., concatenate) to produce Π; i.e.,
πj0 · · · πjs−1 = Π.
Timing: m1 + · · · + mr + O(n) steps, with a quite-small big-O constant.

Keywords: HPC via emulation · Cellular ANTomata · Pattern
assembly

1 Introduction

1.1 (PA + VAA) = (Path Toward HPC)

Ever since the development, in the 1970s, of technologies that enable massively
parallel computers, the value of “indirection” in the development of algorithms
for such computers has been recognized. Rather than cope explicitly, for each
successive desired application, with the complex physical architectures (PAs) of
such computers, one could fruitfully design domain-optimized virtual algorith-
mic architectures (VAAs) that the PAs would emulate efficiently. This approach
employed a genre of co-design: the structure of each VAA carefully accommo-
dated both the fixed features of the PA and the data- and communication-flow
needed by algorithms that performed the computations that achieved the target

This research was supported in part by US NSF Grant CSR-1217981.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 261–277, 2016.
DOI: 10.1007/978-3-319-49956-7 21

262 A.L. Rosenberg

application. This computational paradigm, as enunciated in [19] and elsewhere,
has led to a varied and valuable literature that explored the problem of designing
VAAs for myriad important applications; see, e.g., [1,14,18,22,25]. One exciting
recurring observation in this decades-spanning literature is that many VAAs can
lead to high-performing algorithms for broad, diverse genres of applications.

In order for emulation-based co-design to be an effective avenue for achiev-
ing high performance computing, one must have access to a repertoire of VAAs
that (a) can be optimized for important specific application domains and (b)
can be efficiently emulated on relatively simple PAs. The current paper adds yet
more evidence that the Cellular ANTomaton (CAnt) computing model of [21] is
such a VAA. We support this claim here by designing CAnts that scalably pro-
vide high performance (algorithmic) solutions for a variety of pattern-processing
problems of the sort encountered in the increasingly important applications that
arise in biologically inspired computing.

1.2 The Computing Model

(a) Meshes. The n×n mesh Mn is an array of cells indexed by nonegative integers:
each cell has a distinct index 〈i, j〉, with 0 ≤ i, j < n. Mn’s row-k cells are:
〈k, 0〉, . . . , 〈k, n − 1〉; its column-k cells are: 〈0, k〉, . . . , 〈n − 1, k〉. We posit
King’s-move adjacencies: cells 〈i, j〉 and 〈i′, j′〉 are adjacent iff max(|i − i′|,
|j − j′|) = 1.

(b) Cellular automata. An n × n cellular automaton (CA) is obtained by placing a
copy of a single finite-state machine (FSM) F within each cell of Mn; F 〈i,j〉

denotes the copy of F within cell 〈i, j〉. FSMs in adjacent cells exchange one
message per step.

(c) Cellular ANTomata. An n × n Cellular ANTomaton (CAnt) is obtained by
deploying a (possibly heterogeneous) team of mobile finite-state machines
(called Ants) atop an n×n CA, at most one Ant per cell. Each Ant exchanges
messages at each step with the FSM in its current cell and with each Ant on
an adjacent cell.

CAnts provide a powerful computing model that finds application in sev-
eral application domains. Our earlier work studied CAnts working on problems
inspired by robotics [21]; The present paper illustrates CAnts solving pattern-
processing problems that are inspired by bioinformatic applications.

We merely mention two inviting, as-yet unexplored, areas in which CAnts
may make signficant contributions: (i) as discrete versions of feedback-intense
continuous biological systems—such as, e.g., the immune system in the liver [8];
(ii) as engines for big data-inspired applications: the Ants bring processing power
to where it is needed, while the underlying CA moves data in a more-or-less
regular fashion.

Elaboration and Clarification. (1) The nature of FSMs. Regrettably, FSMs
are saddled historically with the name “machines,” hence are usually thought
of as hardware constructs. In fact, FSMs can fruitfully serve as an easily imple-
mented programming model; cf. [20,24]. Thus viewed, CAnts become virtual,

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 263

algorithmic constructs. (2) The nature of Ants. Ants can be either physical or vir-
tual. Even in purely algorithmic studies, virtual Ants can simplify algorithmics.
(3) Timing within CAnts. We design CAnts that operate semi-synchronously:
neighboring FSMs/Ants never get out of synch by as much as an entire state
transition. By careful programming, CAnts can behave as though they were
fully synchronous; cf. [7,26]. (4) Enforcing (algorithmic) scalability. We achieve
scalable CAnt-designs by having n × n CAnts operate with n as an unknown;
algorithms can exploit only “finite-state” properties of n (such as parity).

To conserve space, we describe CAnts via text and/or small examples.
One easily formalizes our anthropomorphically described CAnt-designs and
analyses.

1.3 Algorithmic Tools that Enhance the Power of CAnts as VAAs

(a) Virtual tracks. It is convenient to view Mn’s rows and columns as having
tracks, which allow symbols in FSMs’ memories to “pass by” or “cross over”
one another. By endowing all rows and columns with tracks, we can view Mn

as having multiple layers (of course, only a fixed finite number). We use struc-
tured symbols to implement virtual tracks; e.g.: (i) 〈σ1, σ2〉 can represent two

vertical tracks σ1 , σ2 or two horizontal tracks
σ1
−
σ2

; (ii) 〈σ1, σ2〉〈σ3, σ4〉〈σ5, σ6〉

can represent a pile of three cells, each with two vertical tracks
σ1 , σ2
σ3 , σ4
σ5 , σ6

, or two

adjacent cells, each with two horizontal tracks
σ1 σ3 σ5
− − −
σ2 σ4 σ6

. We simplify exposi-

tion by discussing tracks as though they were physical, not virtual.
(b) Synchrony and synchronization. CAs and CAnts operate semi-synchronously—

i.e., do not require full synchrony; they monitor every action that affects
more than one FSM. This is formalized by orchestrating state transitions
into sequences of sub-transitions; cf. [20,21]. CAnts precede every global
action by a barrier synchronization implemented, say, via the firing squad
protocol (FSP) [17]. The FSP begins with all targeted FSMs—i.e., those that
are to be synchronized—in a “dormant” state. An initiator FSM orchestrates
a program of message-exchanges among the FSMs, which guarantees that all
targeted FSMs enter a designated active state at the same time-step. It is
shown in [11] that: 2n – 1 synchronous steps suffice for the FSP to simulta-
neously activate all FSMs, both in a linear array of n FSMs and in an n × n
CA or CAnt.

(c) Using mesh walls for navigation [21]. Let FSM F initiate walks within Mn whose
slopes are ±45◦, beginning and ending at (possibly distinct) edge-cells of Mn.
These walks can be used to replicate or complement distances along Mn’s
edges, scalably, without any explicit computation. Focus, for illustration, on
a walk that begins at a top-edge cell 〈0, j〉. If j < n − 1, then F can take a
southeasterly step, which leads it to cell 〈1, j + 1〉; if j = n − 1, then Mn’s
right edge), then F would “fall off” Mn. Similarly, if j > 0, then F can take

264 A.L. Rosenberg

a southwesterly step, which leads it to cell 〈1, j − 1〉; if j = 0, then on Mn’s
left edge), then F would “fall off” Mn. Therefore—cf. Fig. 1—if we focus on
any integer r ≤ n/2:

– if F begins at cell A = 〈0, r〉, then its southwesterly walk ends at cell
B = 〈r, 0〉; and its southeasterly walk ends at cell C = 〈n − r − 1, n − 1〉.

– if F begins at cell D = 〈0, n − r − 1〉, then its southwesterly walk ends at
cell E = 〈n−r−1, 0〉; and its southeasterly walk ends at cell F = 〈r, n−1〉.

Clerical adjustments accommodate source- and destination-cells along any edges.

B

r

r

rr

r

r

E
C

F

DA

Fig. 1. Trajectories that lead an FSM to the mirrors of the cell it begins on. The point
is that when the slopes of all indicated trajectories are (multiples of) 45◦, then the
indicated distance equalities hold (as elaborated in the text).

This algorithmic strategem provides two benefits. (i) It allows one to avoid
certain (possibly) costly multi-precision calculations involving n when n is huge.
(ii) It enables simple O(n)-step CA-computations that (cf. Fig. 2) answer ques-
tions such as: Is the word along row 0 of Mn a palindrome (does it read the
same forwards and backwards)? Is the word along row 0 the reversal of the word
along row n − 1?

pattern

σ σ1 σ σ σ σ σ σ

σ

0 2 3 4 5 6 7

7 6 5 4 3 2 1 0

initial

final

pattern

Fig. 2. M8 with a word along row 0 and the reversal of that word along row 7.

(d) Programmability. The algorithmic benefits of VAAs have received much atten-
tion over the decades, but there has been less focus on the advantages of VAAs
regarding algorithm specification, or, programmability. VAAs that are based
on FSMs, such as CAs and CAnts, have received some welcome attention, via

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 265

general-purpose specification systems such as CARPET [24] and via broadly
applicable special-purpose systems as studied in [2]. As exposed in [18], these
systems encompass the important data-flow ideas underlying systolic arrays
[15].

1.4 Our Highlighted Case Study: Pattern Assembly by CAnts

The best way to illustrate the use of CAnts as a VAA is to design a CAnt
that incorporates several sophisticated algorithmic ideas to solve a significant
problem. To that end, we now develop a CAnt that provides a linear-time, scal-
able solution to a pattern-processing problem that is inspired by bioinformatic
applications.

The (parameter-n) Pattern-Assembly Problem (PAP).
Inputs: (a) a length-n master pattern Π; (b) a sequence 〈π1, . . . , πr〉 of test
patterns, of respective lengths m1 ≥ · · · ≥ mr (each mi ≤ n).
Problem: Discover every multi-sequence 〈πj1 , . . . , πjs〉 of test patterns that
“assembles” to produce pattern Π. In detail, allowing each πjk to appear
multiple times (perhaps 0), we must have

Π = πi1πi2 · · · πik . (1)

We design an n × n CAnt C that scalably solves the parameter-n PAP in linear
time, specifically, within m1 + · · · + mr + O(n) steps, with a quite-small big-O
constant. (Note that the big-O constant-factor uncertainty involves only n, not
the mi.)

1.5 Related Work

The PAP is a quite natural problem, so it is not surprising that variants have
been studied in other contexts. Specifically, the version of the PAP in which
the test patterns are fixed a priori (rather than being dynamically specified
inputs that can vary in length and “content”) has been called the word break
problem, and O(n2)-step dynamic programming solutions to this problem have
been announced. See, e.g., [28–30].

Focusing on the model rather than the algorithmic problem: CAs have been
known for decades to combine mathematical simplicity with levels of computa-
tional efficiency that make them feasible platforms for many real computational
tasks; cf. [10,21,24,27]. Indeed, CAs are remarkably efficient for a broad range
of tasks that require tight coordination of many simple agents [5,6,9,13,16]. A
variant of CAs underlies the DFMS model of [3], which implements a specialized
laboratory-on-a-chip. Several recent CA-based robotics-motivated studies appear
in [23]. The preceding models deviate from CAnts in fundamental ways: they
support algorithms that are: fully synchronous (there is a single clock); centrally
controlled (there is a central planner); not scalable (the central planner knows
and exploits the size of the system). Some models are centrally programmable,

266 A.L. Rosenberg

using systems such as CARPET [24]; their global name spaces preclude scala-
bility. CAs have also been used for a rather general suite of parallel-computing
applications in [24] and related works. More closely related to our study are the
(one-dimensional) CAs used in [13] for (bio-inspired) pattern matching. Also
relevant, in a formal sense, are studies of formal languages in a two-dimensional
setting, e.g., [4]. Our prior work on CAnts, which appears in [21] has developed
efficient algorithms for three robotics-inspired problems involving path-planning
and exploration:

1. Parking: Route ≤ n Ants to maximally compact configurations in their closest
corners of Mn. Time: O(n2) steps.

2. Food-finding: Pair min(r, s) out of r Ants with min(r, s) out of s “food items.”
Time: take O(min(nr, n

√
s)) steps.

3. Maze-threading: Route an Ant from a maze entrance to a designated maze exit.
Time: O(shortest path) steps.

Space limitations force us to ignore three bodies of literature that are only
marginally relevant to our study: CAs as parallel computers, e.g., [9,24]; ant-
inspired models of “swarm intelligence,” e.g., [12]; myriad (applied) automata-
theoretic studies of the (in)ability of FSMs to explore graphs with goals such as
finding “entrance”-to-“exit” paths or exhaustively visiting all nodes or all edges
of input graphs.

2 A CAnt-Design for the Pattern Assembly Problem
(PAP)

Instance P = 〈Π,P 〉 of the PAP is specified by the following inputs from the
“outside world”: a length-n master pattern Π = σ0 · · · σn−1 and a sequence
P = 〈π1, . . . , πr〉 of distinct test patterns, of respective lengths: m1 ≥ · · · ≥ mr,
where each mi ≤ n. The goal is to determine whether there is a multi-sequence
P̂ = 〈πi1 , . . . , πik〉 of test patterns—i.e., a sequence with possible repetitions—
whose concatenation, in the indicated order, equals Π, in the sense of Eq. 1. We
call P̂ a solution to instance P. We design a CAnt C that scalably solves instance
P; our design is based on the following reformulation of the PAP.

Focus on any solution to instance P = 〈Π,P 〉 of the PAP. As exposed by
Eq. 1, each copy of a test pattern πij ∈ P̂ is characterized by two position-indices
within Π:

πij ’s begin-index bij (resp., end-index eij) is the position within the spec-
ification of Π in Eq. 1 where πij ’s first symbol (resp., πij ’s last symbol)
occurs.

These indices jointly identify πij as the length-(mij = eij − bij + 1) subpattern
of Π:

πij = σbij
σbij+1 · · · σeij

−1σeij
.

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 267

Call 〈bij , eij 〉 the instance-span of πij under Eq. 1. The challenge of the PAP

under this reformulation is that C must determine whether there is a sequence
P̃ = 〈〈bi1 , ei1〉, . . . , 〈bik , eik〉〉 of instance-spans from P such that:

(a) bi1 = 0; (b) bij+1 = eij + 1 for 0 ≤ j < n − 1; (c) eik = n − 1. (2)

We exploit this equational view to design our CAnt C that solves instance P.

2.1 Discovering Instance-Spans

Our PAP-solving CAnt C invokes three algorithmic tools: broadcast-replication
(Sect. 2.1A); zip-matching (Sect. 2.1B); pipelining (Sect. 2.1C). Figure 3 illus-
trates the first two of these. Focus on a single length-m test pattern π =
τ0 · · · τm−1 that begins, left-justified, on row n − 1, having been input from the
“outside world” one step earlier. Because (as we see imminently) C will create
n − m copies of π, we enhance legibility by embellishing π and its symbols with
a copy-index, as π(0) = τ

(0)
0 · · · τ (0)

m−1.

A. Broadcast-replication

Step A1: (Broadcast): In m − 1 successive steps, C staggers the symbols of
π(0) as they climb to row 0: τ

(0)
0 stays on row n − 1; τ

(0)
1 moves up to row

n − 2, . . . , τ
(0)
m−1 moves up to row n − m. F 〈n−1,m−1〉, which contains τ

(0)
m−1,

recognizes its rightmost status by the emptiness of cell 〈n− 1,m〉. It initiates
τ
(0)
m−1’s ascent immediately after receiving input τ

(0)
m−1. Each other F 〈n−1,i〉

that contains a symbol of π(0) initiates its symbol’s ascent when it senses that
its eastward neighbor’s symbol has moved (i.e., vacated its cell). π(0) moves
northward for n − m steps, until τ

(0)
m−1 encounters σm−1 along row 0.

Step A2a: (Replication): As an essential adjunct to the broadcast operation,
C initiates the replication of π(0). Say that F 〈i,j〉 holds a symbol τ of π(0).
If F 〈i,j〉’s easterly neighbor, F 〈i,j+1〉, does not hold a symbol of π, then, in
addition to sending τ to its northerly neighbor, F 〈i−1,j〉, F 〈i,j〉 sends τ to its
northeasterly neighbor, F 〈i−1,j+1〉.
Step A2b. After broadcast-plus-replication, n − m copies {π(i)} of π climb
toward row 0. All copies of all π(i)s’ last symbols τ

(i)
m−1 arrive at row 0 simul-

taneously. As each τ
(i)
m−1 reaches cell 〈0, n − m + i〉 (its target on row 0), C

activates a virtual Ant at that cell. That Ant will “shepherd” π(i) through
the zip-matching process.

B. Zipped pattern matching
The zipped pattern-matching strategy is illustrated using test pattern π(0) =
τ
(0)
0 τ

(0)
1 τ

(0)
2 in Fig. 3. (The operator “·” denotes logical and.)

Step B1a. The Ants activated in Step A2b initiate the concurrent zip-matching
of all copies of test pattern π. Although the actual match-tests occur along

268 A.L. Rosenberg

(a)

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(0)
1 τ

(0)
2

⇒

(b)

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2

τ
(0)
0 τ

(0)
1

⇒

(c)

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2

τ
(0)
1 τ

(1)
1

τ
(0)
0

⇒

(d)

σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1

τ
(0)
0 τ

(1)
0

⇒

(e)

σ0 σ1 σ2 σ3 σ4 σ5
τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0

⇒

(f)

() () () ()
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
2 τ

(1)
2 τ

(2)
2 τ

(3)
2

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1 τ

(3)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0

⇒

(g)

ε220 ε321 ε422 ε523
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
1 τ

(1)
1 τ

(2)
1 τ

(3)
1 τ

(4)
1

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0 τ

(4)
0

⇒

(h)

ε220 · ε110 ε321 · ε211 ε422 · ε312 ε523 · ε413
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0 τ

(4)
0 τ

(5)
0

⇒

(i)
↑ ↑ ↑ ↑

ε220 · ε110 · ε000 ε321 · ε211 · ε101 ε422 · ε312 · ε202 ε523 · ε413 · ε303
σ0 σ1 σ2 σ3 σ4 σ5

Fig. 3. Illustrating zipped pattern-matching on a length-(n = 6) master pattern Π
(along row 0) and a length-(m = 3) test pattern π (along row n − 1 = 5). Symbols
of copies of π have superscripts (0)–(3) to aid legibility. Steps (a)–(f): the copies are
broadcast-replicated to prepare for zip-matching. Steps (g)–(i): the copies are zip-
matched, and match-results are accumulated, by logical anding the truth-values of
match-variables εijk ≡ [σi = τ

(k)
j] (k = 0 in the figure). Vertical arrows (↑) [Step (i)]

indicate Ants’ transmitting results to the “outside world.”

row 0, symbols of copies of π that are below row 0 continue to climb as the
match-tests proceed. The tests proceed as follows. First, all copies of τm−1 are
compared with their adjacent symbols from master pattern Π, and each result
is recorded as the truth-value of a match-variable εijk ≡ [σi = τ

(k)
j] (in our

example, k = 0). Next, all copies of τm−2 are compared with their adjacent
symbols from Π, . . . ; finally, all copies of τ0 are compared with their adjacent
symbols from Π. Note how each sequence of matches is reminiscent of the
closing of a zipper (whence the algorithm’s name). As successive matches are
performed, each Ant and-accumulates the results of its tests in a register—
depicted initially by empty parentheses in Fig. 3 and thence by underscored
logical expressions that and the truth-values of match-variables. Thus, an
Ant concurrently:

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 269

• walks westward along Π (which serves as the “top” half of the “zipper”)
• accesses successive lower-index symbols of π (the “bottom” half of the

“zipper”).

C enables this access by continuing to move the symbols of π northward.

A harmless feature here is that extraneous copies of symbols of π arrive
at row 0, to the east of all of the Ants—because, for simplicity, we did not
provide a termination mechanism for the replication process. C has row-0
FSMs to the east of all Ants erase all encountered extraneous symbols.
This is possible because Ants are activated and travel westward as a block.

Step B1b. After m westward steps, symbols of copies of π stop arriving, which
tells the Ants that the zip-match is complete. At that point, each Ant’s ε-
register contains the yes/no “decision” whether the copy of π that it shep-
herded is a subword of Π. The Ant announces its decision to the “outside
world.” In detail: the Ant that finishes the zip-match process on cell 〈0, j〉
has completed zip-matching copy π(j) of π; and it announces whether a copy
of π begins at position j of Π.
Timing. Each symbol of each copy of a length-m pattern π follows a trajectory
comprising n − 1 northward moves, followed by m westward moves. Because
of concurrency, C’s decisions about copies of π are available (simultaneously)
within n + m steps.

C. Processing multiple test patterns
One can pipeline the zip-matching process in order to discover instance-spans
of multiple test patterns relative to a fixed master pattern Π. To this end
one needs simply feed the desired sequence of test patterns, π1, . . . , πr, one
after the next, into row n − 1, left-justified, in nondecreasing order of length.
In detail:

One feeds test patterns π0, . . . , πr−1, of respective lengths m0 ≥ · · · ≥ mr−1 (each
mi ≤ n), left justified into row n − 1 of C, in such a way that each πi+1 arrives
mi steps after πi.

The following observations enable a pipelined algorithm that discovers
instance-spans for multiple test patterns. When processing a length-m test pat-
tern π, C eventually vacates portions of Mn, which can then be used to zip-match
another test pattern. In particular: (i) C vacates row n−1 after m steps. It vacates
rows with successively lower indices at each subsequent step. Vacated rows are
available for processing new test patterns. (ii) Activated Ants travel westward
as a block in row 0. Cells eastward of that block are available for zip-matching
new test patterns.

The pipelined algorithm and its timing analysis proceed as follows.

Step C1. Test pattern π0 is processed as in Sects. 2A, 2B within n + m0 steps.

270 A.L. Rosenberg

Step C2. Test patterns π1, . . . , πr−1. Focus on the end of the processing of
πi, where i ≥ 0. As each symbol of πi vacates row n − 1, the symbol’s FSM
announces that its cell is available for inputting πi+1. Because mi ≥ mi+1 all
symbols of πi+1 can be input to row n − 1. C inserts πi+1 “backwards,” from
last symbol to first, to facilitate zip-matching. Symbols enter the broadcast-
replication process immediately.
Timing: πi+1 climbs into position at row 0 in n steps; it takes mi+1 more
steps for πi+1 to get zip-matched. However, n of these n+mi+1 steps overlap
n of the steps for processing πi. Thus, the net additional time for πi+1 is mi+1

steps.
Summation: C discovers instance-spans for the sequence of test patterns π0,
. . . , πr−1 within n + m0 + · · · + mr−1 steps.

Note the absence of constant factors!

2.2 Computing with Instance-Spans

A. Representing instance-spans compactly and efficiently
Equation 2 allows us to focus only on instance-spans of test patterns, rather
than on the patterns that form the instances. This simplifies the design of C
because an instance-span ι can be represented using only three symbols. As
in the example ι = [↘↘ · · · ↘↘], the compound symbol “[↘” denotes ι’s
leftmost symbol; the compound symbol “↘]” denotes ι’s rightmost symbol;
all of ι’s intermediate symbols are instances of “↘”. Having C represent each
instance-span by means of a southeasterly diagonal sequence, as suggested
in Fig. 4, facilitates processing distinct instance-spans in parallel, using an

for πih
: bih

= � eih
= � + 4

for πij
: bij

= � + 1 eij
= � + 3

for πik
: bik

= � + 1 eik
= � + 4

⎫⎬
⎭ ⇒ · · ·

σ� σ�+1 σ�+2 σ�+3 σ�+4

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
[↘

[↘
[↘ ↘

↘ ↘
↘] ↘]

· · ·

Fig. 4. The “calculus” of result-coalescing. Three positive matches (perforce, from
different patterns): πih and πik share end-index � + 4; πij and πik share begin-index
� + 1.

(a) τ2
τ1

τ0

⇒
τ2

τ1
τ0

⇒

τ2
τ1

τ0 (b)

[↘
↘

↘]
⇒

[↘
↘

↘]

⇒
[↘

↘
↘]

⇒ [↘
↘

↘]

Fig. 5. (a) A northward-bound pattern of symbols. (b) A southward-bound instance-
span.

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 271

algorithmically convenient compact representation. For pattern-instances πij

and πih : (i) If πij and πih share a begin-index (i.e., bij = bih), then one pattern
is a prefix of the other, so the span of the shorter one “nests in the shadow”
of the longer; see πij and πik in Fig. 4. (ii) If πij and πih share an end-index
(i.e., eij = eih), then the spans of both patterns share the shadow-symbols of
the shorter one; see πih and πik in Fig. 4.

B. When instance-spans move
When patterns of symbols (e.g., copies of test patterns) move within Mn, the
understanding is that each symbol of each pattern moves at each step until
it reaches its destination, as in Fig. 5(a). In contrast, when instance-spans
move, the understanding is that they do so at half-speed, as in Fig. 5(b). The
delays built into this worm-like pattern allow time for an (instance-span)
symbol to inform its northwesterly neighbor to stop moving southward. C
thereby orchestrates the movements of instance-spans so that they end up in
a southeasterly staggered formation, with the southeast-most symbol at row
n − 2, as suggested by Fig. 4.

A final detail: An FSM knows that it is on row n − 2, i.e., has the “name”
F 〈n−2,j〉, because its southerly neighbor, F 〈n−1,j〉, recognizes that it has no
southerly neighbor.

C. Computing instance-spans via augmented zipped pattern-matching
Our PAP-solving CAnt C produces and processes (representations of)
instance-spans efficiently by using an augmented version of zipped pattern-
matching; Fig. 6 shows a small example: four copies of a length-3 test
pattern π = τ0τ1τ2 being zip-matched against a length-6 master pattern
Π = σ0σ1σ2σ3σ4σ5. The figure begins from Step (f) of Fig. 3; therefore, we
describe here only the processing of instance-spans.

The virtual Ants in Fig. 6 generate the sequences of instance-spans exposed
by Eq. 2. Note that the formulation of the PAP embodied in Eq. (2) employs
only instance-spans that arise from positive copies of a test pattern π, i.e., copies
that the zipped pattern-matcher identifies as subpatterns of master pattern Π.
But, C cannot know whether the copy of π that is processed by Ant A—call it
π(A)—is positive until A completes zip-matching π(A). Rather than wait for such
knowledge—at the cost of time and/or bookkeeping complication—C has Ants
proceed optimistically, but with an efficient mechanism for later eliminating false-
positives. Specifically, as Ant A begins to zip-match π(A), it anticipates that π(A)

is a positive copy of π, so A generates “↘]”, the rightmost symbol of a positive
instance-span, and A dispatches this symbol southward. Continuing thus, as
A zip-matches the intermediate symbols of π(A), it generates and dispatches
instances of “↘”, the intermediate symbol of a positive instance-span. Only
when A finally zip-matches the initial symbol of π(A)—which is when it knows
whether π(A) is, indeed, positive—does it modify its optimistic behavior. At
this point, A consults its AND-accumulating εijk-value register to determine
whether π(A) is positive. If π(A) is positive, then A generates “[↘”, the leftmost

272 A.L. Rosenberg

⇒

(g)

ε220 ε321 ε422 ε523
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
1 τ

(1)
1 ↘] τ

(2)
1 ↘] τ

(3)
1 ↘] ↘]

τ
(0)
0 τ

(1)
0 τ

(2)
0 τ

(3)
0

⇒

(h)

ε220 · ε110 ε321 · ε211 ε422 · ε312 ε523 · ε413
σ0 σ1 σ2 σ3 σ4 σ5

τ
(0)
0 τ

(1)
0 ↘ τ

(2)
0 ↘ τ

(3)
0 ↘ ↘

↘] ↘] ↘] ↘]

⇒

(i)

ε220 · ε110 · ε000 ε321 · ε211 · ε101 ε422 · ε312 · ε202 ε523 · ε413 · ε303
σ0 [↘ σ1 [N] σ2 [↘ σ3 [N] σ4 σ5

↘ ↘ ↘ ↘
↘] ↘] ↘] ↘]

⇒

(j)

σ0 σ1 σ2 σ3 σ4 σ5
[↘ [↘

↘ ↘ ↘ ↘
↘] ↘] ↘] ↘]

⇒

(k)

σ0 σ1 σ2 σ3 σ4 σ5

[↘ [↘
↘ ↘

↘] ↘] ↘] ↘]

⇒

(l)

σ0 σ1 σ2 σ3 σ4 σ5

[↘ [↘
↘ ↘

↘] ↘]

Fig. 6. The augmented zipped pattern-matcher for a single test pattern π. C broadcast-
replicates π to achieve Step (g), where n − m copies have reached row 0. Virtual
Ants zip-match copies against Π, producing the anded values of match-variables εijk.
Outcomes are memoized via an instance-span (abbreviated “i-s”) for each copy. The
i-s of a copy that occurs in Π (a “YES”, as, e.g., copies (0) and (2)) travels southward
until its end-index reaches row n− 2; the i-s of a copy with a “NO” (as, e.g., copies (1)
and (3)) is erased.

symbol of a positive instance-span, and it dispatches this symbol southward. If
π(A) is not positive, then A generates a negation symbol “[N]”, which announces
π(A)’s nonpositive status, and it dispatches this symbol southward.

Each pattern that represents a positive instance-span travels southward in
the southeasterly staggered fashion depicted in Fig. 6, until its rightmost symbol
(“↘]”) encounters row n− 2. Because instance-spans travel at half-speed, C can
have each positive instance-span halt with its last symbol on row n − 2 and its
earlier symbols on successively northward cells. As nonpositive instance-spans
travel southward, they are followed by the negation symbol [N]. In contrast to
all other symbols from instance-spans, [N] travels southeasterly at full speed—
and it erases every occurrence of “↘” or “↘]” that it encounters. [N] continues
this erasing until it reaches row n − 2, at which point it self-erases.

When the virtual Ant in cell 〈0, 0〉 finishes its last zip-match, it has F 〈0,0〉

initiate an FSP-synch throughout Mn. The 2n − 1 time-steps of this action
allow C to complete two phase-completing actions. (1) C uses this time to “clean
up,” by ensuring that: (i) the (last symbols of the) positive instance-spans have
reached row n − 2; (ii) the nonpositive instance-spans have been erased. (2) C
also triggers the final phase of solving the PAP, which process is initiated by
F 〈n−1,n−1〉.

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 273

2.3 Completing the PAP-Solving Process

Once positive instance-spans are in place, F 〈n−1,n−1〉 initiates the final phase
of the PAP-solving process via an FSP-synch. This is essentially a breadth-first
construction of a DAG GP that we associate with instance P of the PAP. GP ’s
vertices comprise all prefixes of master pattern Π that are concatenations of
multi-sequences of test patterns, including the null prefix, [null]. For each vertex
x and each test pattern π ∈ P , there is an arc (x → xπ) from x to xπ if and
only if pattern xπ is a prefix of Π. Any path from vertex [null] to vertex Π
describes a solution to instance P of the PAP.

C attempts to construct DAG GP “backwards,” from sink to source. C
assumes optimistically that pattern Π is a vertex of GP , so it begins its construc-
tion with a DAG G that contains Π as its sole vertex. C then tries to augment
G by means of a breadth-first search along the reversed arcs of GP , with the
hope of discovering a path from source [null] to sink Π. C proceeds inductively
from the initial G. For each newly discovered vertex/pattern x, C generates every
prefix y of x for which there exists a test pattern π such that x = yπ. Call such
a prefix y viable. C adds all viable prefixes to the vertex-set of the evolving G.
This inductive process ends in one of two ways.

1. C eventually adds to DAG G’s vertex-set a vertex x that is a test pattern.
G thereby becomes a sub-DAG of GP whose vertex-set contains both [null]
and Π—which means that G encodes a solution to instance P of the PAP.
By continuing to add vertices to G, C arrives at a maximal version of G
that contains all paths from source [null] to sink Π, hence, all solutions to
instance P of the PAP.
2. C eventually reaches a point at which no vertex x of G has a viable prefix,
so the final version of G does not contain vertex/pattern [null]. It follows
that DAG GP does not contain vertex/pattern Π, so there is no solution to
instance P of the PAP.

1 0 1 0 1 0 1 0 1 0 1 0
	 five empty rows 	
1̂ 1̂ 1̂ 1̂

1̂ 0 1̂ 0 1̂ 0 1̂ 0 1̂

1̂ 0̂ 1̂ 0̂ 1̂ 0̂ 1̂ 0̂ 1̂ 0̂
0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0

⇒ · · · ⇒

1 0 1 0 1 0 1 0 1 0 1 0
	 five empty rows 	
1̂ 1̂ 1̂ 1̂

1̂ 0 1̂ 0 1̂ 0 1̂ 0 1̂

1̂ 0̂ 1̂ 0̂ 1̂ 0̂ 1̂ 0̂ 1̂ 0̂
0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0
b b b, e b, e b e b e b, e b e

Fig. 7. Illustrating the final phase of solving the PAP, with master pattern Π =
101010101010 and test patterns from the set {010, 101, 1010, 10101}. Symbols b and
e denote, respectively, the beginnings and ends of discovered instance-spans.

274 A.L. Rosenberg

2.4 A Small Example

Figure 7 illustrates our solution process when the master pattern is Π =
101010101010, and the test patterns form the set {010, 101, 1010, 10101}.
Figure 7(left) depicts the initial configuration after all positive instances have
reached their target positions within Mn. Figure 7(right) depicts the final con-
figuration, after all (beginnings and ends of) arcs of GP have been discovered;
symbols “b” and “e” along row n − 1 denote, respectively, the beginnings and
ends of discovered arcs. To enhance legibility: (i) We portray actual (sample)
patterns, rather than “shadows”; (ii) we mark the initial symbol of each positive
instance with a “hat”; the remainder of each instance extends thence diagonally
down to row n − 2. In detail, when activated by the FSP-synch, F 〈n−1,n−1〉 ini-
tiates the construction of GP as follows. First, it adds the end-of-instance-span
symbol “e” to cell 〈n − 1, n − 1〉. From that step on, inductively:

1. Whenever symbol “e” is added to a cell 〈n − 1, k〉, C searches upward along
the diagonal path that ends in that cell, looking for beginning-of-instance-
span symbols “b”. In Fig. 7(right), the traversed northwesterly path from cell
〈n − 1, n − 1〉 encounters the string 010̂1̂. (Remember that this is being done
from right to left.) Whenever a “hatted” symbol is encountered, C sends the
symbol “b” vertically downward to row n − 1.

2. Whenever a cell 〈n − 1, i〉 along row n − 1 receives a beginning-of-instance-
span symbol “b”, F 〈n−1,i〉 tells its lefthand neighbor F 〈n−1,i−1〉 (if it exists)
to insert an end-of-instance-span symbol “e” into its cell. The rationale is
that if we are identifying a solution to Eq. 1, then some pattern from P (at
cell 〈n − 1, i − 1〉) must end immediately before a new pattern from P begins
(at cell 〈n − 1, i〉). C does not add the symbol e to any cell 〈n − 1, i〉 whose
northward neighbor 〈n − 2, i〉 does not contain a symbol: such a cell cannot
contain the end of a prefix of Π. (Note the leftmost two cells along row n− 1
in Fig. 7(right).)

Once the described process has completed, one can read the “answer” for
the subject instance of PAP; moreover, by tracing backward along diagonals, one
determines all solutions to the problem instance. In our example, the answer is
“YES”: there is a parsing of Π of the form in Eq. 1. We find four witnessing
parsings of Π = 101010101010:
〈101, 010, 101, 010〉; 〈1010, 10101, 010〉; 〈1010, 1010, 1010〉; 〈10101, 010, 1010〉

2.5 Timing

(1) As in Sect. 2.1, we can use zipped pattern-matching to discover the instance-
spans associated with instance P, within n + m1 + · · · + mr steps. (2) The
algorithm of Sect. 2.3 positions all positive instance-patterns in northwest-to-
southeast diagonal paths that end in row n − 2. Most of this is achieved within
the “time-shadow” of zipped pattern matching, so the net time-cost for achieving
this configuration is O(n) steps, with a quite-small big-O constant, including the

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 275

time for all instance-patterns to reach their final homes. (3) Constructing DAG
GP involves an n-step east-to-west traversal of row n−1 that is accompanied by
marches up the diagonal instance-patterns. C marches along row n − 1 at half
pace, to ensure that it reaches a cell 〈n−1, k〉 at the same time-step when a sym-
bol “b” (if there is any) destined for that cell arrives. In detail, when instance-pair
“bij”-“eij” instance-pair is processed: all trajectories followed by C—the north-
westward trajectory along the diagonal, the southward trajectory that delivers
symbol “b”, and the westward trajectory to the home for that symbol along
row n − 1—have identical lengths, eij − bij . When C marches westward at half
pace, all three trajectories complete in precisely 2(eij − bij) time-steps. Thus,
2n steps suffice for traversing row n − 1 westward and processing all “bij”-“eij”
instance-pairs.

Thus, C solves instance P of the PAP within m1 + · · ·+mr +O(n) steps, with
a quite-small big-O constant.

3 Conclusion

CAnts were invented in [21] to augment the known benefits of CAs as a paral-
lel computing model. The focus in [21] was on robotics-inspired path-planning
and exploration problems. The current study introduces the use of CAnts in
the realm of bioinformatic algorithms, specifically with focus on the signifi-
cant Pattern-Assembly Problem (which also entails pattern-matching). In com-
panion work in progress, we achieve efficient matching of test patterns within
master patterns when the test patterns are allowed to wrap around the mas-
ter pattern. The power of CAnts that is witnessed by our perspicuous scal-
able, linear-time CAnt-designs, combines with the amply-demonstrated ease of
implementing CAnts on simple PAs (cf., [1,2,7,9,14,15,19,22,24,25] to argue
for adding CAnts to the arsenal of valuable VAAs that enable high-performance
computing.

References

1. Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group action graphs and parallel
architectures. SIAM J. Comput. 19, 544–569 (1990)

2. Avis, D., Bremmer, D., Deza, A. (eds.): Polyhedral Computation. In: CRM Pro-
ceedings and Lecture Notes, vol. 48. American Mathematical Society (2009)

3. Böhringer, K.F.: Modeling and controlling parallel tasks in droplet-based microflu-
idic systems. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 25, 329–339
(2006)

4. Borchert, B., Reinhardt, K.: Deterministically and sudoku-deterministically recog-
nizable picture languages. In: 2nd International Conference on Language and
Automata Theory and Applications (2007)

5. Chen, L., Xu, X., Chen, Y., He, P.: A novel ant clustering algorithm based on cel-
lular automata. In: IEEE/WIC/ACM International Conference, Intelligent Agent
Technology (2004)

276 A.L. Rosenberg

6. Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata
model of flow in ant trails: non-monotonic variation of speed with density. J. Phys.
A: Math. Gen. 35, L573–L577 (2002)

7. Fisher, A.L., Kung, H.T.: Synchronizing large VLSI processor arrays. IEEE Trans.
Comput. C-34, 734–740 (1985)

8. Folcik, V.A., An, G.C., Orosz, C.G.: The basic immune simulator: an agent-based
model to study the interactions between innate and adaptive immunity. Theor.
Biol. Med. Model. 4, 39 (2007)

9. Folino, G., Mendicino, G., Senatore, A., Spezzano, G., Straface, S.: A model based
on cellular automata for the parallel simulation of 3D unsaturated flow. Parallel
Comput. 32, 357–376 (2006)

10. Goles, E., Martinez, S. (eds.): Cellular Automata and Complex Systems. Kluwer,
Amsterdam (1999)

11. Gruska, J., Torre, S., Parente, M.: Optimal time and communication solutions
of firing squad synchronization problems on square arrays, toruses and rings. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
200–211. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30550-7 17

12. Hu, X., Zhang, J., Li, Y.: Orthogonal methods based ant colony search for solving
continuous optimization problems. J. Comput. Sci. Technol. 23, 2–18 (2008)

13. Laurio, K., Linaker, F., Narayanan, A.: Regular biosequence pattern matching with
cellular automata. Inf. Sci. 146(1–4), 89–101 (2002)

14. Leighton, F.T.: Introduction to Parallel Algoithms and Architectures. Morgan
Kaufmann Publ., San Mateo (1992)

15. Leiserson, C.E.: Systolic and semisystolic design. In: IEEE International Confer-
ence on Computer Design, pp. 627–630 (1983)

16. Marchese, F.: Cellular automata in robot path planning. In: EUROBOT 1996, pp.
116–125 (1996)

17. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley (1962)

18. Quinton, P.: Automatic synthesis of systolic arrays from uniform recurrence equa-
tions. In: 11th IEEE International Symposium on Computer Architecture, pp.
208–214 (1984)

19. Rosenberg, A.L.: Better parallel architectures via emulations. In: Meyer, F.,
Monien, B., Rosenberg, A.L. (eds.) Nixdorf 1992. LNCS, vol. 678, pp. 30–36.
Springer, Heidelberg (1993). doi:10.1007/3-540-56731-3 4

20. Rosenberg, A.L.: The Pillars of Computation Theory: State, Encoding, Nondeter-
minism. Universitext. Springer, New York (2009)

21. Rosenberg, A.L.: Cellular ANTomata. Adv. Complex Syst. 15(6) (2012). doi:10.
1142/S0219525912500701

22. Rosenberg, A.L., Scarano, V., Sitaraman, R.K.: The reconfigurable ring of proces-
sors: efficient algorithms via hypercube simulation. Parallel Proc. Lett. 5, 37–48
(1995). (Special Issue on Dynamically Reconfigurable Architectures)

23. Sirakoulis, G., Adamatzky, A. (eds.): Robots and Lattice Automata. Emergence,
Complexity and Computation, vol. 13. Springer, Switzerland (2014)

24. Spezzano, G., Talia, D.: The CARPET programming environment for solving sci-
entific problems on parallel computers. Parallel Distr. Comput. Prac. 1, 49–61
(1998)

25. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville
(1984)

26. Williams, T.: Clock skew and other myths. In: IEEE International Symposium on
Asynchronous Circuits and Systems (2003)

http://dx.doi.org/10.1007/978-3-540-30550-7_17
http://dx.doi.org/10.1007/3-540-56731-3_4
http://dx.doi.org/10.1142/S0219525912500701
http://dx.doi.org/10.1142/S0219525912500701

Cellular ANTomata as Engines for Highly Parallel Pattern Processing 277

27. Wolfram, S. (ed.): Theory and Application of Cellular Automata. Addison-Wesley,
Reading (1986)

28. (2011). http://thenoisychannel.com/2011/08/08/retiring-a-great-interview-
problem

29. (2016). http://www.geeksforgeeks.org/dynamic-programming-set-32-word-break-
problem

30. (2016). http://ideone.com/53LMkr

http://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem
http://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem
http://www.geeksforgeeks.org/dynamic-programming-set-32-word-break-problem
http://www.geeksforgeeks.org/dynamic-programming-set-32-word-break-problem
http://ideone.com/53LMkr

Educational and Research Systems for Evaluating
the Efficiency of Parallel Computations

Victor Gergel(✉), Evgeny Kozinov, Alexey Linev, and Anton Shtanyk

Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
gergel@unn.ru,

{evgeny.kozinov,alexey.linev,anton.shtanyuk}@itmm.unn.ru

Abstract. In this paper we consider the educational and research systems that
can be used to estimate the efficiency of parallel computing. ParaLab allows
parallel computation methods to be studies. With the ParaLib library, we can
compare the parallel programming languages and technologies. The Globalizer
Lab system is capable of estimating the efficiency of algorithms for solving
computationally intensive global optimization problems. These systems can build
models of various high-performance systems, formulate the problems to be
solved, perform computational experiments in the simulation mode and analyze
the results. The crucial matter is that the described systems support a visual
representation of the parallel computation process. If combined, these systems
can be useful for developing high-performance parallel programs which take the
specific features of modern supercomputing systems into account.

Keywords: High-performance system · Parallel computations · Parallel
algorithm · Numerical experiment · Simulation · Parallel speedup · Parallel
efficiency

1 Introduction

The computational power of modern supercomputer systems is rapidly increasing. In
2008, performance exceeded the petaflops level (1015 operations per second). Currently,
the performance of Sunway TaihuLight (China), the most powerful supercomputer
system, already exceeds 100 Pflops. This system consists of 10.5 million computational
elements (a more than 100-fold performance increase over the last 8 years). Due to their
enormous computational power, supercomputer systems can solve many problems of
modern society (Grand Challenge Problems).

These huge supercomputer capabilities should be used efficiently. It should be noted
that despite the fact that standard Linpack test results are 70–90% for the maximum

This research was supported by the Russian Science Foundation, project No 16-11-10150 “Novel
efficient methods and software tools for time-consuming decision making problems using
supercomputers of superior performance.”

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 278–290, 2016.
DOI: 10.1007/978-3-319-49956-7_22

supercomputer performance, for a large number of scientific and engineering problems
the performance of supercomputer computations is significantly lower (as low as 10%).

The efficiency of high-performance computing system applications is currently
one of the main challenges of supercomputer technologies. Methods and software
programs need to use efficient algorithms, provide efficient parallelization and
employ the specific features of supercomputer systems to the maximum extent. All
these problems should be analyzed, which usually requires performing a large
number of computational experiments.

Estimating parallel program efficiency requires a corresponding integrated environ‐
ment that is utilized to execute computational experiments. Thus, it is necessary to have
access to several supercomputer systems with differing architectures and computer
equipment. Executing computational experiments can be relatively time-consuming
and, thus, may require large resources. It should also be noted that analyzing the results
of computational experiments is very complicated due to the large volume of data and
the various visual methods required to represent these data.

The high cost and complexity of supercomputer computational experiments can be
significantly reduced by developing and broadly applying educational and research
software systems, which provide the tools to model various high-performance systems,
to formulate the problems to be solved, to execute the computational experiments in
simulation mode and to analyze the results.

The application of educational and research software systems to evaluate parallel
algorithms is actively being researched (see, for example, [1–4]). One of the first
methods for visually representing parallel systems is described in [5]. Estimating the
efficiency of tools for animating and visualizing the program execution process is studied
in [6–8]. Some of the available educational and research software systems are considered
in [9, 10]. One widely used approach is to use Matlab for visualizing algorithms and
programs [11].

In this article we discuss some educational and research software systems that were
developed at the University of Nizhni Novgorod and are actively used to educate
specialists in the field of supercomputer technologies [4].

The rest of the paper is organized as follows. In Sect. 2, we consider ParaLab (Parallel
Laboratory) [12–14], which is an integrated environment for studying and researching
the solutions of parallel algorithms that are used in a majority of “classical” computa‐
tional problems (matrix computations, sorting, graph processing, optimization, etc.).
The wide range of tools available for visualizing the execution process for experiments
and for analyzing their results provides the ability to evaluate the efficiency of various
parallel algorithms on various computational systems, evaluate the scalability of these
algorithms and determine the speedup that can be achieved by parallel computations.
Computational experiments are executed on personal computers with a single CPU
running the Windows OS in parallel computations simulation mode.

In Sect. 3, we consider a library of parallel algorithms ParaLib (Parallel Library) [15,
16], which is intended for studying and developing modern parallel technologies and
programming languages, and provides examples of parallel algorithm implementations
for a large number of mathematical computation problems. Using examples of compu‐
tational problems and their parallel solution methods, we can compare the computational

Educational and Research Systems 279

complexity of parallel algorithms and the efficiency of parallel programs. The experi‐
ments can be executed either on a personal computer or on a computational system with
distributed memory. Software to implement parallel methods are developed using
various parallel programming languages and technologies, including the OpenMP
parallel programming technology for systems with shared memory [17], the MPI parallel
programming technology for systems with distributed memory [18], the Chapel parallel
programming language [19] and the Co-Array Fortran parallel programming
language [20].

In Sect. 4, we consider the Globalizer Lab system (Global Optimization Laboratory)
[21], which is an integrated software environment for computational experiments for
analyzing global search methods. Multiextremal optimization problems are commonly
encountered in practical applications. They are computationally intensive and can be
solved only by using high-performance computing systems. Globalizer supports the
formulation of optimization problem, allows the selection of a global search algorithm,
executes computational experiments and analyzes global search results.

At the end of the paper, we provide a conclusion and discuss possible areas of future
research.

2 The ParaLab System for Evaluating Parallel Methods

The ParaLab system (Parallel Laboratory) [12–14] is an integrated software environ‐
ment that enables both real parallel computations on a multiprocessor computing system
and the simulation of such experiments on a personal computer with the ability to visu‐
alize the parallel processing of complex computational problems.

ParaLab provides the following.

1. Simulation of parallel computing systems. During the simulation process, the user
can determine the topology of the parallel computing system that will be used to
implementation the experiments, set the number of CPUs for the selected topology
(Fig. 1), determine the CPU performance and select the communication properties
and method.
The ParaLab system provides support for the following main computing system
topologies: line, ring, star, grid, hypercube and complete graph.
ParaLab can perform computational experiment simulations on multiprocessor
(SMP) and multi-CPU (multicore) architectures. At the highest level, a computer
system is represented as a set of computers (computing nodes). Each computer
consists of one or more processors, and each processor contains one or more cores.

2. Determining the computational experiment parameters. To set the parameters,
a user can formulate the computational problem for which the ParaLab system
implements parallel algorithms. For a selected problem, the user can determine the
problem parameters. For the solution of the formulated problem can be selected the
parallel method.

280 V. Gergel et al.

The ParaLab system supports computational experiments for multiplying matrices
by a vector, matrix multiplication, solving linear equation systems, sorting,
processing graphs, solving PDE and multiextremal optimizations.

3. Visualization parameters. The ParaLab system allows users to set the visualization
parameters and select the required demonstration mode, the visualization mode for
exchanging data between processors, and the level of detail for visualizing executed
parallel computations (see Fig. 2).

4. Computational experiments. ParaLab can perform experiments with parallel solu‐
tions for selected problems. The system also can determine several problems for
experiments with different types of multiprocessor systems, problems and parallel
computation methods. The execution of these experiments can be performed simul‐
taneously (in time-shared mode); the simultaneous execution of experiments for
several problems provides a convenient demonstration for solving one original
problem with different methods, using different topologies and with varying param‐
eters. For a series of experiments that requires a long time to perform computations,
the system provides an automatic execution mode where the results are stored in an
experiment register, so it is possible to analyze the resulting data later.

5. Accumulation and analysis of computational experiment results. ParaLab
supports the accumulation and analysis of experimental results; the results that were
stored in the experiment register can be utilized to build plots that describe how
parallel computation parameters (computation time, acceleration, efficiency) depend
on the problem parameters and the properties of the computational system (see
Fig. 3).

Fig. 1. Dialog window for selecting the number of processors and computational cores

Educational and Research Systems 281

Fig. 2. ParaLab window for executing computational experiments

Fig. 3. Window for the register of experimental results

One of the main features of the system is that the user can select the method for
executing an experiment. An experiment can be executed in simulation mode, i.e. it is
executed on a single processor without any special software utilities such as message-
passing libraries. In addition, ParaLab supports the following methods for executing
real computational experiments:

• on a single computer with a message-passing library MPI (multithreaded execution);
this library has a public version that can be downloaded from the internet and installed
on computers running the MS Windows operation system,

• on a real multiprocessor computational system,
• in remote access mode for the computational clusters.

282 V. Gergel et al.

If we perform an experiment on a multiprocessor computing system or in remote
access mode, then ParaLab allows the type of computational nodes to be selected.

To determine the dependencies of performance characteristics from problem and
computing system parameters for experiments executed in simulation mode, the system
utilizes theoretical estimations based on the available parallel computation models
[22–24]. For experiments on multiprocessor computing systems, the dependencies are
constructed based on the results of prior computational experiments. Any previously
performed experiments can be restored and performed again. In addition, the system
provides an experiment register in which the problem statement, computing system
parameters and the computational results are stored.

The ParaLab system can be freely used and downloaded from the Supercomputer
Technologies Centre of University of Nizhni Novgorod website [14].

3 ParaLib Parallel Computational Methods Library

The ParaLib (Parallel Library) library [15, 16] is designed for the study and comparative
examination of various parallel algorithmic languages and parallel software develop‐
ment technologies. For executing parallel experiments, the library provides a control
system. Its dialog window is shown in Fig. 4.

Fig. 4. Dialog window of the ParaLib control system

Educational and Research Systems 283

The ParaLib control system provides the following.

1. Selection of problem and solution method. For executing parallel experiments,
the ParaLib system allows the user to select the problem to be solved, its solution
method and the technology and programming language to be used to implement the
method.
ParaLib contains methods for solving of a number of “classical” mathematical
computation problems, which are used to study the basics of parallel programming.
For solving the problems ParaLib provides both serial and parallel methods. Method
implementations are provided for all problems based on OpenMP and MPI [17, 18].
For the problem of matrix multiplication ParaLib provides implementation methods
based on the Co-Array Fortran and Chapel parallel programming languages [19, 20].

2. Context information. ParaLib provides the required information on selected algo‐
rithms and implementation methods. The system information panel displays the
problem statement, a description of the selected method and examples of the algo‐
rithm implementations. In addition, it displays the general information on the
ParaLib library and the problems and methods currently implemented in the library.

3. Execution of computational experiments. In the ParaLib system, the user can
determine the specific conditions for executing a computational experiment with the
help of the following parameter set:
• The number of execution threads. The computational threads or processes are

used as the execution environment depends on the selected method and the
programming language.

• The size of the problem to be solved. The values assigned to these parame‐
ters depend on the type of problem to be solved. For example, for the matrix
multiplication problem, this parameter is the size of the matrix, while for the
graph optimization problems it is the number of graph nodes. The meaning of
the parameter is explained on the system information panel with the problem
description.

• An additional parameter that can be required for formulating the problem to be
solved. The meaning of the parameter is explained on the system information
panel with the problem description or the implementation method.

• The number of iterations for the computational experiment. Repeated execution
of a computational experiment may be necessary to increase the accuracy of the
execution time estimate for parallel programs.

The system can calculate the speedup for previously performed experiments. To
calculate the speedup, the system automatically executes the experiment using a
single thread or process, depending on the technology or programming language.
To monitor the execution time, a dialog window displays a timer indicating the
current execution time for the parallel program. The experiment may be interrupted
at any moment during its execution.

4. Accumulation and analysis of the computational experiment results. ParaLib
records the results of all executed experiments. The results are displayed in a table
(experiment register), which contains the parameters of the experiment and the
parallel program execution time.

284 V. Gergel et al.

If the volume of results becomes too large, the user can delete or hide the results of
selected experiments. As a default, the execution time and the speedup of compu‐
tational efficiency are displayed for all experiments.
For the data analysis, the experimental results can be shown in the table in a desirable
order. For analytic convenience, the user can select experimental results as needed
based on the problem to be solved, method and technology.

5. Visual comparison of experimental execution time. To provide a visual repre‐
sentation of the results, ParaLib displays a chart with the results of the computational
experiments, where the horizontal axis represents the serial number of the experi‐
ment and the vertical axis represents the execution time or the speedup. The chart
also displays the maximum and minimum execution time, as well as the ratio
between the maximum and minimum values. The corresponding values for the
execution time or the speedup are displayed next to each column on the chart.

To implement all of the described functions, the parallel algorithm architecture
library and control system is organized as a system of functionally-oriented software
layers, or levels (see Fig. 5).

Fig. 5. Architecture of the ParaLib library

The upper level consists of the control system. The system sets the conditions for
computational experiments, runs the executable modules for different initial conditions,
accumulates data from the executed experiments and estimates the feasibility of a chosen
technology or parallel programming language for solving a particular problem.

Educational and Research Systems 285

The next level is the subsystem containing the computational problems for which
the library provides implemented solutions. This subsystem also contains information
and descriptions of all problems stored in the library.

The next level is the subsystem which, for each problem from the prior level provides
available solution methods and their implementations based on different parallel
programming languages and technologies. In addition, this subsystem also contains
descriptions for parallel algorithm implementations.

At the lowest level is a subsystem containing the implementations of algorithms by
applying different methods, technologies and programming languages. Each implemen‐
tation in this subsystem consists of several files (each with source code and an executable
module). In the ParaLib framework, executable modules accept four parameters – the
size of the problem, the number of iterations of the algorithm, the number of threads or
processes and an optional parameter, which depends on the specific problem. As the
result of running the executable module, the systems tracks the run-time and records it
in a separate line of the experiment register.

The ParaLib library can be freely used and downloaded from the Supercomputer
Technologies Centre of University of Nizhny Novgorod website [16].

4 GlobalizerLab for Studying Global Optimization Methods

The Globalizer Lab (Global Optimization Laboratory) [21] system is an integrated soft‐
ware environment for computational experiments for analyzing global optimization
methods. Global optimization problems are often encountered in practical situations.
They are computationally intensive and can only be solved by using high-performance
computing systems [25–29]. The general view of the Globalizer dialog window is shown
in Fig. 6.

Fig. 6. Dialog window of the Globalizer Lab system

286 V. Gergel et al.

The Globalizer systems provides the following.

1. Formulation of optimization problems. The system supports several different
problem formulation methods. The objective function can be selected from a
standard set of test problems that are commonly used in global optimization. Mini‐
mization functions can also be selected using the symbolic formula or can be gener‐
ated by a random generator. The function determined by any of these methods can
be modified in the graphical editor included in the system. All of the above methods
for setting the functions are easy to use and provide methods for formulating complex
one-dimensional multiextremal optimization problems with the required character‐
istics (presence of a “plateau,” “wide” and “narrow” minimums, “oscillations”, etc.).

2. Selection of the global optimization algorithm from the optimization methods
built-in in the system. Globalizer contains 10 multiextremal optimization methods
that are well known in the theory and practice of global optimization. The system
also supports extending the set of available methods using integrated tools, without
applying algorithmic programming languages.

3. Determine the visual indicators for observing the global search process. Based on
these indicators, the system can demonstrate a graph of the minimizing function or
it’s piecewise linear approximation, utilizing the function values from each iteration,
as well as determine the distribution, density and sequence of iteration points and
the corresponding function values. Monitoring the visual indicators during the global
search process helps to develop the necessary skills for practically applying and
further developing multiextremal optimization methods.

4. Execution of computational experiments. Experiments can be executed in serial
or parallel modes (see Fig. 7). The latter method allows us to visually compare the
dynamics for various optimization methods executed in time-shared mode. The
system also provides executing serial experiments that are performed in automatic
mode with storing optimization results for further data analysis. In addition, experi‐
ments can be performed in the manual search mode when the iterations points are
determined by the user (this mode can be used to test different hypotheses that could
be utilized as global search patterns).

5. Accumulation and analysis of the results of previous experiments. The Global‐
izer system estimates the efficiency (operational characteristics) of the methods and
provides an experiment register to record optimization results. The accumulated data
can be presented in different visual forms (tables, plots, diagrams) that are very
convenient for analysis. Computational results can be stored in the Globalizer system
archive, printed or copied to the Windows clipboard as text, graphics or tables and
imported into a text editor, Word, Excel or other Windows OS programs for further
processing (including their reproduction for papers, reports, etc.).
The Globalizer Lab system can be used freely and downloaded from the Supercom‐
puter Technologies Centre of University of Nizhni Novgorod website [21].

Educational and Research Systems 287

Fig. 7. Example of the simultaneous execution of several experiments

5 Conclusion

In this paper we consider educational and research systems that can be used to estimate
efficiency of parallel computations. ParaLab enables the evaluation of parallel compu‐
tation methods. With the ParaLib library, we can compare parallel programming
languages and technologies. The Globalizer Lab system is capable of estimating the
efficiency of algorithms for solving computationally intensive global optimization prob‐
lems. These systems provides to model various high-performance systems, formulate
problems, perform computational experiments in simulation mode and analyze the
results. The crucial matter is that the described systems visually represent the parallel
computation process. In general, these systems can be useful for developing high-
performance parallel programs which take the specific features of modern supercom‐
puting systems into account.

An important area for further research is the scalability of these systems in order to
add new parallel programming problems, methods and technologies. It is also necessary
to be able to execute experiments for simulated systems with a large number of
processors and computational cores.

References

1. A Survey on Training and Education Needs for Petascale Computing. http://www.prace-ri.eu/
IMG/pdf/D3-3-1_document_final.pdf

2. Rague, B.: Teaching parallel thinking to the next generation of programmers. J. Educ. Inform.
Cybern. 1(1), 43–48 (2009)

3. Voevodin, V., Gergel, V., Popova, N.: Challenges of a systematic approach to parallel
computing and supercomputing education. In: Hunold, S., et al. (eds.) Euro-Par 2015. LNCS,
vol. 9523, pp. 90–101. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27308-2_8

288 V. Gergel et al.

http://www.prace-ri.eu/IMG/pdf/D3-3-1_document_final.pdf
http://www.prace-ri.eu/IMG/pdf/D3-3-1_document_final.pdf
http://dx.doi.org/10.1007/978-3-319-27308-2_8

4. Gergel, V., Liniov, A., Meyerov, I., Sysoyev, A.: NSF/IEEE-TCPP curriculum
implementation at the State University of Nizhni Novgorod. In: IPDPSW 2014 Proceedings
of the 2014 IEEE International Parallel & Distributed Processing Symposium Workshops, pp.
1079–1084. IEEE Computer Society, Washington, DC, USA (2014)

5. Kraemer, E., Stasko, J.T.: The visualization of parallel systems: an overview. J. Parallel
Distrib. Comput. 18, 105–117 (1993)

6. Hundhausen, C.D., Dougla, S.A., Stasko, J.T.: A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13(3), 259–290 (2002)

7. Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á.: Towards the effective use of educational
program animations: the roles of student’s engagement and topic complexity. Comput. Educ.
67, 178–192 (2013)

8. Lazaridis, V., Samaras, N., Sifaleras, A.: An empirical study on factors influencing the
effectiveness of algorithm visualization. Comput. Appl. Eng. Educ. 21, 410–420 (2013)

9. Ben-Ari, M., Bednarik, R., Ben-Bassat, L.R., Ebel, G., Moreno, A., Myller, N., Sutinen, E.:
A decade of research and development on program animation: the Jeliot experience. J. Vis.
Lang. Comput. 22(5), 375–384 (2011)

10. Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization systems for
introductory programming education. ACM Trans. Comput. Educ. (TOCE) 13(4), 15 (2013)

11. Teaching with Data, Simulations and Models. Topical Resources. http://serc.carleton.edu/
NAGTWorkshops/data_models/toolsheets/MATLAB.html

12. Gergel, V., Labutina, A.: The ParaLab system for investigating the parallel algorithms. In:
Hsu, C.-H., Malyshkin, V. (eds.) MTPP 2010. LNCS, vol. 6083, pp. 95–104. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14822-4_11

13. Kozinov, E., Shtanyuk, A.: Learning parallel computations with ParaLab. In: CEUR
Workshop Proceedings, vol. 1513, pp. 11–20 (2015)

14. The ParaLab system website (2016). http://hpc-education.unn.ru/en/trainings/teachware/
paralab. Accessed

15. Kozinov, E., Gergel, V., Line, A., Shtanyuk, A.: Educational and research systems for
studying of parallel methods. In: CEUR Workshop Proceedings, vol. 1482, pp. 779–786
(2015). (in Russian)

16. The ParaLib Library website (2016). http://hpc-education.unn.ru/en/trainings/teachware/
paralib. Accessed

17. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Melon, R.: Parallel
Programming in OpenMP. Morgan Kaufmann Publishers, San-Francisco (2000)

18. Group, W., Lusk, E., Skjellum, A.: Using MPI. Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge (1994)

19. Reid, J.: JKR Associates, UK Coarrays in the next Fortran Standard, 21 April 2010. ftp://
ftp.nag.co.uk/sc22wg5/n1801-n1850/n1824.pdf

20. The Chapel Parallel Programming Language. http://chapel.cray.com/
21. The Globalizer Lab system website (2016). http://hpc-education.unn.ru/en/trainings/

teachware/globlab. Accessed
22. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Computing. The

Benjamin/Cummings Publishing Company, Inc., San Francisco (1994)
23. Quinn, M.J.: Parallel Programming C with MPI and OpenMP. Mccraw-Hill, New York (2004)
24. Gergel, V.P.: Theory and Practice of Parallel Computations. Binom, Moscow (2007). (in

Russian)
25. Strongin, R.G., Sergeyev, Ya.D: Global Optimization with Non-convex Constraints

Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

Educational and Research Systems 289

http://serc.carleton.edu/NAGTWorkshops/data_models/toolsheets/MATLAB.html
http://serc.carleton.edu/NAGTWorkshops/data_models/toolsheets/MATLAB.html
http://dx.doi.org/10.1007/978-3-642-14822-4_11
http://hpc-education.unn.ru/en/trainings/teachware/paralab
http://hpc-education.unn.ru/en/trainings/teachware/paralab
http://hpc-education.unn.ru/en/trainings/teachware/paralib
http://hpc-education.unn.ru/en/trainings/teachware/paralib
ftp://ftp.nag.co.uk/sc22wg5/n1801-n1850/n1824.pdf
ftp://ftp.nag.co.uk/sc22wg5/n1801-n1850/n1824.pdf
http://chapel.cray.com/
http://hpc-education.unn.ru/en/trainings/teachware/globlab
http://hpc-education.unn.ru/en/trainings/teachware/globlab

26. Gergel, V.P.: A method of using derivatives in the minimization of multiextremum functions.
Comput. Math. Math. Phys. 36(6), 729–742 (1996)

27. Gergel, V., Grishagin, V., Israfilov, R.: Local tuning in nested scheme of global optimization.
Procedia Comput. Sci. 51, 865–874 (2015)

28. Barkalov, K., Gergel, V.: Parallel global optimization on GPU. J. Global Optim. 66, 1–18
(2015). doi:10.1007/s10898-016-0411-y

29. Lebedev, I., Gergel, V.: Heterogeneous parallel computations for solving global optimization
problems. Procedia Comput. Sci. 66, 53–62 (2015)

290 V. Gergel et al.

http://dx.doi.org/10.1007/s10898-016-0411-y

Generalized Approach to Scalability Analysis
of Parallel Applications

Alexander Antonov(B) and Alexey Teplov

Moscow State University, Moscow, Russia
asa@parallel.ru, alex-teplov@yandex.ru

Abstract. This article describes an approach to scalability analysis of
parallel applications, which is a major part of the algorithm description
used in AlgoWiki, the Open Encyclopedia of Parallel Algorithmic Fea-
tures. The proposed approach is based on the suggested definition of
generalized scalability of a parallel application. This study uses joined
and structured data on an application’s execution and supercomput-
ing co-design technologies. Parallel application properties are studied by
analyzing data collected from all available sources of its dynamic char-
acteristics and information about the hardware and software platforms
corresponding with the features of an algorithm and its implementation.
This allows reasonable conclusion to be drawn regarding potential rea-
sons of changes in the execution quality for any parallel applications and
to compare the scalability of various programs.

Keywords: Scalability · Dynamic characteristics · Efficiency · Parallel
computing · Supercomputing co-design

Introduction

Scalability is one of the most important properties of parallel algorithms and pro-
grams. Its analysis is given special attention in the AlgoWiki Open Encyclopedia
of Parallel Algorithmic Features project [1]. It is important for the encyclope-
dia that this property can be used in a comparative analysis of various parallel
algorithms [2] and can be complemented by other studies on the same topic.
However, the existence of various definitions of scalability and approaches to its
analysis prevents researchers from comparing the results of studies conducted in
different terms.

Many different definitions of scalability can be found in academic publica-
tions. These mainly point to the changes in dynamic characteristics (namely,
speed-up and performance) for one and the same application under different
startup conditions.

The results were obtained in Moscow State University with the financial support of
the Russian Science Foundation, agreement N 14-11-00190, and the Russian Foun-
dation for Basic Research, grant N 16-07-01003 (Sect. 4), and grant N 16-07-00972
(Sect. 5).

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 291–304, 2016.
DOI: 10.1007/978-3-319-49956-7 23

292 A. Antonov and A. Teplov

The scalability of a parallel application is often shown as a chart illustrating
the dependency of the program’s speed-up or performance on the number of
processors or processing cores used. However, researchers usually point out that
this correlation also depends on other factors and provide the specific values of
those factors for which it was obtained. For example, the influence of problem
size produced terms like strong and weak scalability [3], and wide scalability [4].

The definition used in [5] is abstract, as it defines scalability simply as an
ability, i.e. a property of the application itself, not relating it to the dependency
of performance characteristics on changes in the environment. In [6], the author
links the notion of scalability strictly to the dependence between the speed-up of
a parallel application and the number of processors, without defining what this
speed-up should be compared with. In [7], the idea of scalability is related to
changes in performance, which should be proportional to the hardware resources
available. Other authors [8] call an algorithm scalable only if the number of
processors changes, singling out efficiency as the most interesting feature. There
are many other definitions of this term.

An analysis of the advantages and disadvantages of existing definitions helps
to identify their common features. Most authors agree that algorithm perfor-
mance is substantially affected by the hardware and software platform, and
therefore either conclude that this is a fixed correlation, or point to the need
to use co-design technologies to find an optimal solution. The wide range of
definitions [9–13] shows that different authors approach this term from differ-
ent angles. On the one hand, this illustrates the complexity and importance of
scalability while, on the other hand, it indicates the need to deeply analyze this
property for parallel applications. The fact that a single term has such a great
number of definitions is also a sign that it requires a more concise, yet more
generalized and universal definition if we want it to describe the properties of a
parallel application.

1 Introducing the Term of Generalized Scalability

The term “scalability” only recently entered academic literature. To some level,
this explains the existence of numerous definitions of this term. In most cases
the term is defined as a dependency between some property of the program and
certain startup conditions.

The main drawback of most of these definitions is that the authors only
describe the dependency between one specific program property and one (rarely
two) startup parameter. Moreover, even looking at just one integral indicator
from the entire range of characteristics available does not show the entire picture
of the changes in the executed program’s characteristics, and doesn’t explain,
even indirectly, the reasons for such changes.

What unites all of the different definitions of this term is that almost everyone
relates it to the dependency of various characteristics of the program (speed-
up, performance, efficiency, etc.) on the number of processors involved in its
execution.

Generalized Approach to Scalability Analysis of Parallel Applications 293

Dynamic characteristics [14] are those indicators of a parallel application
that describe the process of its execution. These can include execution time,
speed-up, performance, efficiency, etc. They can be averaged over some period
of time or measured instantly. Dynamic characteristics can be divided into two
groups [15], depending on how they are obtained.

The first group includes measurable dynamic characteristics. These are, for
example: the program execution time, the number of cache misses, the number
of bytes sent over the communication network during its execution, the number
of memory read/write operations during its execution, etc.

The second group includes calculated dynamic characteristics, which are
derived from measurable dynamic characteristics. These include: speed-up, per-
formance, network data transfer rate, the number of cache misses per second,
instant and average efficiency, etc.

By startup parameter [14], we mean any parallel application parameter that
has an impact on its execution process. Startup parameters for a parallel appli-
cation do not include those parameters that do not affect its execution (such
as the number of comments in the program code, the names of variables in the
program, etc.).

Startup parameters can be divided into the following types:

1. hardware parameters — those related to the system’s hardware (CPU, RAM,
computing node, interconnect);

2. system parameters — those related to the operating system, compilers,
libraries, system applications and their settings;

3. software parameters — those that affect the program logic or its computa-
tional complexity, as well as various parameters considered by the application
developer (data amount, data format, data output parameters, logical forking,
various algorithm parameters, etc.).

To understand the properties of a parallel application and the reasons for
discovered scalability features, it is important to consider all available startup
parameters and dynamic characteristics. We should view scalability as a more
general property of a parallel application, which includes both the dependency
of dynamic characteristics on various startup parameters, and the connections
between changes in the values of various dynamic characteristics.

Therefore it is advisable to define scalability [14] as a property of a parallel
application that describes the dependency of changes in the full range of dynamic
characteristics for that program on the full range of its startup parameters.

With this definition, the term “scalability” allows the execution of a parallel
application to be described and to get an idea of how computing resource usage
changes upon changes in various program startup parameters. This allows the
user to draw conclusions about the factors affecting an application’s efficiency, to
identify the consistency of the algorithm, its implementation and the computing
system, and to find potential ways to improve execution efficiency by making
changes to the application and to the hardware and software platform.

To determine the correlation between a program’s execution quality and some
of its startup parameters, any dynamic characteristic can be used. Any startup

294 A. Antonov and A. Teplov

parameter can be used as an argument. This approach effectively treats scal-
ability as a multi-dimensional dependency reflecting the changes in the entire
combination of dynamic characteristics, while reviewing the entire diversity of
factors affecting program execution. Most other definitions of the term “scala-
bility” are in fact particular cases of the proposed definition.

Figure 1 shows a three-dimensional representation of scalability of a parallel
application that performs dense matrix multiplication, which is understood as
the dependency of performance on the number of processors and the matrix
size. Cross-sections of the charts are shown for a fixed problem size (A) and a
fixed number of processes (C), which correspond to strong scalability and wide
scalability.

Fig. 1. Cross-section of the data representation for generalized scalability of dense
matrix multiplication given a fixed problem size (A) and a fixed number of processes
(C) demonstrates strong scalability (B) and wide scalability (D), respectively.

If we intersect the generalized scalability data with a plane located at an angle
to the axes of reference, we will get a weak scalability chart. One can point to a
connection between the proposed definition and the definition of the isoefficiency
function [12] if implementation efficiency is used as the dynamic characteristic of
the same program instead of performance. By crossing the obtained surface with
a constant efficiency value, we will get a cross-section describing the dependency

Generalized Approach to Scalability Analysis of Parallel Applications 295

of the problem size on the number of processors. With this change of parameter
values, program execution efficiency will remain constant.

Correspondingly, most of the known definitions of scalability can be derived
from the proposed definition by using various combination of startup parameters
and dynamic characteristics of the application being analyzed.

Thus, we can say that using the proposed approach to defining scalability
does not conflict with existing definitions of this term, but rather expands and
generalizes them relative to the currently used parameters of program execution
quality and startup parameters.

As a result, existing studies of scalability can be supplemented by different
startup parameters and different dynamic characteristics of the same algorithm
or its implementation. This approach allows to create an extensible library with
information on the scalability properties of an algorithm and its implementa-
tions. New studies will only enhance the overall picture.

2 Key Principles of Scalability Studies

The proposed principles for studying scalability [16,17] imply merging all avail-
able data on the execution of a parallel application and analyzing the impact of
each individual factor and its combination with its related dynamic characteris-
tics. In this case, data on the program’s scalability can be presented as a vector
function of several variables. The arguments to this function will be the variable
program startup parameter values. The function’s values can be presented as a
vector, where the value of each element is the value of a dynamic characteristic
obtained while executing the parallel application.

The key focus when analyzing the data will be on the dependencies aris-
ing between various dynamic characteristics. As the nature of the data used
for analysis differs, and the amount of data increases greatly, the analysis itself
becomes a more complex task too. However, finding the connections between
changes in various dynamic characteristics enable conclusions to be made regard-
ing what causes these mutual impacts. When studying scalability under the pro-
posed approach, researchers can combine the results of various studies of the
same parallel application with different startup parameters and supplement the
existing information on the program’s scalability.

The analysis of the data collected in this case is intended to identify the
dependencies between integral dynamic characteristics [18] and dynamic char-
acteristics obtained from system monitoring.

The proposed analytical approach helps to consider the impact of various
factors, to find reasons for changes in algorithm characteristics, and to draw
conclusion about how execution efficiency can be improved, using co-design tech-
nologies if necessary.

Another important part of the proposed principles for scalability studies
using dynamic characteristics is a more in-depth analysis of each individual
dynamic characteristic. This allows the impact of each individual factor to be
evaluated regarding the entire program’s scalability.

296 A. Antonov and A. Teplov

3 Analysis of Factors that Reduce Scalability Using
System Monitoring Data

The reasons that impact a program’s scalability can include factors related to the
program’s execution algorithm, its implementation features, and the properties
of the programming technologies used. Importantly, the factors that affect a pro-
gram’s scalability also include the characteristics of the hardware and software
environment in which the parallel application is executed.

However, when analyzing the program’s scalability, it is less important to
observe the impact of each individual factor separately, than determining how
this impact is affected by changes in the program startup parameters.

The factors that have the maximum impact on the scalability of parallel
applications can be divided into several groups for convenience.

The first group includes factors related to using communication networks as
one of the most important components of a supercomputer. The second group
includes factors related to elements of a supercomputer’s computing node usage.
Finally, the third group includes factors related to the characteristics of the
algorithm used or the parallel application studied.

The analysis of the system monitoring data is based on usage of a certain
set of sensors that report the status of the hardware and software environment.
Depending on the purpose of the study, information is collected from the rele-
vant subset of sensors. As a result, we obtain a historical record of the computing
system’s states at various moments during the application execution. It should
be noted that system monitoring data can only be used to develop hypotheses
about the factors affecting a system’s dynamic characteristics. Carefully col-
lected and properly calculated statistics, with subsequent analysis of the results
obtained, help to identify the reasons for certain patterns in the computing sys-
tem’s behavior with higher accuracy.

By analyzing a computing system’s monitoring data, we can determine a
very wide range of factors affecting scalability.

For example, an analysis of networking activity helps isolate the causes of
problems like high latency or low bandwith of the communication network. In
the example below, network bandwith will determine how much time is used to
send each message. The more processes that send messages, the more load will
be experienced by the switches connecting the computing nodes.

Let’s look at launching the same application — a specially designed test,
with startup parameters corresponding to sending messages of different length
(1; 1,000,000; 100,000,000).

The Infiniband data transmission chart (Fig. 2A) shows low network usage
intensity, with a rate of about 100 MB/sec when the message length equals 1. As
the message length is increased to 1,000,000 (Fig. 2B), network usage intensity
increases to 900 MB/sec. The difference between the minimum and maximum
data transfer rate values increases as well. Average data send and receive rates
fluctuate from the maximum to the minimum value and then back. This behavior
can indicate that individual nodes have reached their maximum capacity, which
results in transmission delays for many messages of great length.

Generalized Approach to Scalability Analysis of Parallel Applications 297

Fig. 2. Data transfer rate over an Infiniband network (A — length 1; B — length
1,000,000; C — length 100,000,000).

In the third experiment with the same test, the message length is increased
to 100,000,000 (Fig. 2C). The maximum data transfer rate increases up to
1,100 MB/sec, which is higher than the value in the previous experiment
(900 MB/sec). However, the minimum data send and receive rate decreases to
650 MB/sec. This is much lower than in the previous experiment (850 MB/sec),
which wasn’t too far from the maximum value. The transmission pattern remains
the same, but the gap between maximum and minimum transmission rates is
much larger. The minimum data transmission rate falls lower than in the experi-
ment with shorter messages. Deviations in the average transfer rate also increase
substantially and acquire a stepped structure. This confirms our assumption
about a bandwith threshold being reached on the communication network.

Other examples of the various factors that affect application scalability based
on the system monitoring data are provided in [19].

298 A. Antonov and A. Teplov

4 Comparing Application Scalability on the Basis
of Execution Efficiency

When analyzing scalability of several applications, we face the issue of deter-
mining the quality criteria that can be used for comparing their scalability. The
usual purpose of studying the scalability of parallel applications is to find limits
for reasonable changes in the application startup parameters for which efficiency
remains relatively high. In the proposed approach, execution efficiency is just
one of the several integral characteristics studied.

It makes sense to use execution efficiency as a dynamic characteristic and to
analyze its changes in order to compare scalability. Increased efficiency will have a
positive impact on the program execution quality, and vice versa. The intensity
of the changes will describe the algorithm’s and its specific implementation’s
features in general. For example, application efficiency can vary within certain
limits, either in sharp steps or in a smooth and slow manner, which corresponds
to two different templates in application behavior.

In this case, the approach to comparing the scalability of parallel applications
can be reduced to studying how program execution efficiency depends on the set
of startup parameters for various applications. By comparing the resulting multi-
dimensional dependencies, it is possible to conclude which case results in better
scalability.

One possible implementation of this approach to comparing application scal-
ability is described in [14,20] — an approach that produces numeric scalability
metrics. The approach described analyzes the impact on efficiency from each
specific startup parameter and their combinations. The key criteria for the com-
parison is the intensity and direction in which efficiency changes. Generally, the
faster efficiency decreases, the worse scalability of the given application is.

5 An Example of Scalability Analysis According
to the Proposed Approach

As an example of the practical application of the universal principles of scala-
bility analysis described above, we can present a study of a Linpack benchmark
implementation (HPL).

As part of this research, we used Job Digest reports [21] to obtain system
monitoring data. The report data was analyzed for dependencies between various
charts produced from system sensors.

When studying the HPL benchmark, two variable startup parameters were
used: the number of processes and the matrix size. The number of processors
varied in the [8; 128] limits with increments of 8 processes, while the matrix
size changed in the [1000; 100,000] range, with increments of 1000. A constant
calculation block size of 224 was used.

The study was conducted using the Lomonosov MSU supercomputer [22],
on computing nodes with four quad-core Intel Xeon 5570 CPUs, 8 GB RAM
each. 8 processes were launched per computing node, one for each CPU core.

Generalized Approach to Scalability Analysis of Parallel Applications 299

Increasing the number of processes in steps of 8 provided a uniform distribution
of processes over computing nodes, fully loading all CPU cores at each node.

The results are depicted in Fig. 3 as a surface, for which the X and Y coor-
dinates correspond to the number of processes and the matrix size respectively,
with Z indicating the test execution efficiency.

When considering the resulting dependency, it is important to point out
the rather high efficiency of the test on the given computing system. For most
combinations of the startup parameters, efficiency was close to 80%. However,
with a large matrix size and a small number of processes, the efficiency dropped
sharply to 0%. This corresponds to the matrix size no longer fitting in the avail-
able random-access memory.

Fig. 3. Linpack benchmark scalability. Efficiency data.

The efficiency also drops smoothly as the number of processes grows given a
fixed matrix size. The figure shows a cross-section of the resulting surface with
a fixed matrix size of 15,000. The cross-section shows how execution efficiency
dropped as the number of processes increased. Efficiency dropped from about
72% to about 42% as the number of processors increased from 4 to 128. A 30%
efficiency drop for a matrix of this size is quite substantial. To understand its
causes, it is useful to look at system monitoring data for each launch of the
program.

Looking at the behavior of other dynamic characteristics, it is obvious that
they were not constant during the program execution, and changed over time fol-
lowing a complex pattern. Figure 4 shows an example of Infiniband data transfer

300 A. Antonov and A. Teplov

rate (in Megabytes and packets per second) for one run of the Linpack bench-
mark using a matrix size of 50,000. The biggest challenge when looking at these
series of values is to single out those that will be characteristic for the given
application and will show that the intensity of communication network usage
changes with the startup parameters (the number of processes in this example).

Fig. 4. Data transfer rate over an Infiniband network in MB/sec and packets/sec.

The most interesting values are those obtained from the monitoring system
sensors while executing the computational part of the program.

Values that can help identify changes in the dynamic characteristics over the
entire program execution can be selected by various methods. To analyze the
Linpack benchmark performance, values were averaged over the entire period of
computational execution.

We looked at the interval where the Linpack benchmark efficiency decrease
(given a fixed matrix size of 15,000) was particularly sharp — namely for the
number of processes varying from 16 to 48. The benchmark efficiency drops 14%
over this period, which is quite a significant indicator. This allows changes in
the behavior of the hardware’s dynamic characteristics to be noted while sub-
stantially reducing the amount of data analyzed. At the same time, despite the
efficiency decrease, the overall performance of the program increases by 160%.

To clarify the reasons behind the efficiency decrease, we need to analyze the
averaged system monitoring data. When the benchmark with a fixed matrix
size is executed over the period in question, the number of cache misses per
second goes down steadily (see Fig. 5). This indicates a positive impact from
data decomposition — the data now fits in the cache memory more efficiently.
It is also noteworthy that the number of L3 cache misses (A), which are the
most costly in terms of performance, decreases by almost 15% on average over

Generalized Approach to Scalability Analysis of Parallel Applications 301

all computing nodes. The number of L1 cache misses (B) doesn’t decrease as
quickly, which can likely be explained by the increase in program performance:
the rate of cache misses drops, but the overall number increases as the total
number of operations per second grows faster.

Fig. 5. Changes in the maximum and average (for all nodes) number of L1 (A) and
L3 (B) cache misses per second, when executing the Linpack benchmark with a matrix
size of 15,000 and a variable number of processes.

Figure 6 shows the changes in RAM access intensity. As the number of
processes increases over the given interval, system monitoring data shows that
the number of memory read operations remains more or less constant.

The growth in the maximum and average memory write operations can be
explained by the increase in performance. Definitely, the 25% increase in the
maximum number of memory write operations per second is bound to result in
higher overhead costs. However, the numeric values are far from the limits for
the used hardware, so it is unlikely they were the main reason for the reduction
in the program’s overall efficiency.

Fig. 6. Changes in the maximum and average (for all nodes) number of memory read
(A) and write (B) operations per second, when executing the Linpack benchmark with
a matrix size of 15,000 and a variable number of processes.

302 A. Antonov and A. Teplov

Figure 7 shows the changes in the maximum and average data transfer rates
while executing the benchmark. This data shows that an increasing number of
processes leads to a substantial increase in the intensity of data exchange over
an Infiniband communication network. The average rate for all nodes in bytes
per second goes up by 35%, while the maximum rate increases by 19%. Another
important issue is that with all of the experiments conducted, the average and
maximum data transfer rates expressed in packets per second barely differ from
each other. This indicates that the length of messages sent decreases, as the
transfer of shorter messages is related to higher overhead due to network latency.

The rate in packets per second goes up almost twice as fast as the rate in
megabytes per second. As the number of processes increases from 16 to 48, the
average and maximum data rates in packets per second increase by 77%.

Fig. 7. Changes in the maximum and average (for all nodes) data transmission rate
on an Infiniband network in bytes/sec (A) and packets/sec (B) and packet length (C)
when executing the Linpack benchmark with a matrix size of 15,000 and a variable
number of processes.

The graph showing the dependency on the packet length (C) supports the
conclusion that as the number of processes increases, the communication net-
work becomes overloaded with a large number of small packets. Message length
decreases by one third, while the number of messages increases by 77%; this can
be the main reason for the overall decrease in execution efficiency.

The proposed approach to studying the definition of scalability is complex,
but this complexity is compensated for by obtaining a relatively large amount
of information on the scalability properties of parallel applications and by draw-
ing conclusions that reasonably point to the underlying causes of the efficiency
decrease. This can be used to improve the development quality for both simpler
parallel applications and larger software suites.

6 Conclusions

The practice of studying parallel programs requires the introduction of an
expanded and generalized definition for the term “scalability”. Scalability is a

Generalized Approach to Scalability Analysis of Parallel Applications 303

property that determines the nature of a multi-dimensional dependency between
a program’s dynamic characteristics and its startup parameters. The proposed
approach to generalized scalability analysis is based on supercomputing co-design
technologies and allows conclusions to be drawn about the program’s quality, the
reasons for reduced scalability and the most critical factors affecting its execu-
tion.

The proposed approach is universal and allows the same mechanism to be
used to analyze any parallel applications. It also allows scalability studies by
other authors to be generalized based on different definitions of this property. The
approach can supplement the existing knowledge about an algorithm’s features
obtained from various studies. These properties of the proposed approach are
particularly important for use in the AlgoWiki Open Encyclopedia of Parallel
Algorithmic Features.

The data collected on the generalized scalability of an algorithm and its
implementation can be used by parallel application developers to coordinate the
hardware and software features within the supercomputing co-design concept.
By analyzing the results, it is possible to provide recommendations on changes to
be done in the hardware and software platform or to the software implementation
of the algorithm, improving the overall efficiency of computing resource usage
by parallel applications.

References

1. Voevodin, V., Antonov, A., Dongarra, J.: AlgoWiki: an open encyclopedia of par-
allel algorithmic features. Supercomputing Front. Innovations 2(1), 4–18 (2015)

2. Frolov, A.V., Antonov, A.S., Voevodin, VI.V., Teplov, A.M.: One problem solving
different methods’ comparison according to the criteria of the Algowiki project.
In: Proceedings of the 10th Annual International Scientific Conference on Parallel
Computing Technologies, Arkhangelsk, Russia, pp. 347–360 (2016)

3. Gddeke, D., et al.: Exploring weak scalability for FEM calculations on a GPU-
enhanced cluster. Parallel Comput. 33(10), 685–699 (2007)

4. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
Proceedings of the 2nd International Workshop on Software and Performance, pp.
195–203. ACM (2000)

5. Patil, R.V., George, B.: Tools and techniques to identify concurrency issues. MSDN
Magazine (2008)

6. Levin, M.P.: Parallel Programming Using OpenMP. Binom, Moscow (2008)
7. Ivanov, D.E.: Scalable parallel genetic algorithm for generating the identifying

sequences for modern multicore computing systems. Control Syst. Comput. (1),
25–32 (2011)

8. Gergel, V.P., Fursov, V.A.: Lectures on Parallel Computations, Samara (2009)
9. Alabdulkareem, M., Lakshmivarahan, S., Dhall, S.K.: Scalability analysis of large

codes using factorial designs. J. Parallel Comput. 27(9), 1145–1171 (2001)
10. Barnes, B., et al.: A regression-based approach to scalability prediction. In: Pro-

ceedings of the 22nd International Conference on Supercomputing, pp. 368–377
(2008)

304 A. Antonov and A. Teplov

11. Chi, C.C., Alvarez-Mesa, M., Juurlink, B., Clare, G., Henry, F., Pateux, S., Schierl,
T.: Parallel scalability and efficiency of HEVC parallelization approaches. IEEE
Trans. Circ. Syst. Video Technol. 22(12), 1827–1838 (2012)

12. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of
parallel algorithms and architectures. IEEE Parallel Distrib. Technol. 1(3), 12–21
(1993)

13. Reed, D., Roth, P.C., Aydt, R., Shields, K., Tavera, L.F., Noe, R.J., Schwartz,
B.W.: Scalable performance analysis: the Pablo performance analysis environment.
In: Proceedings of the IEEE on Scalable Parallel Libraries Conference, pp. 104–113
(1993)

14. Teplov, A.M.: Analysis of scalability of parallel applications on the basis of super-
computer co-design technologies. Ph.D. thesis, Moscow (2015)

15. Adinetz, A.V., Bryzgalov, P.A., Zhumatiy, S.A., Nikitenko, D.A., Stefanov, K.S.:
Job Digest–approach to jobs dynamic properties investigation on supercomputer
systems. Vestnik UGATU (Sci. J. Ufa State Aviat. Tech. Univ.) 17(2), 131–188
(2013)

16. Antonov, A.S., Teplov, A.M.: Analysis of the parallel programs scalability based
on supercomputer co-design technologies. In: Computer Technologies in Sciences.
Methods of Simulations on Supercomputers. Part 2 Proceedings, Tarusa, pp. 18–28
(2015)

17. Antonov, A., Voevodin, V., Voevodin, V., Teplov, A.: A study of the dynamic char-
acteristics of software implementation as an essential part for a universal descrip-
tion of algorithm properties. In: 24th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing Proceedings, pp. 359–363 (2016)

18. Nikitenko, D., Voevodin, V., Zhumatiy, S., Stefanov, K., Teplov, A., Shvets, P.,
Voevodin, V.: Supercomputer application integral characteristics analysis for the
whole queued job collection of large-scale hpc systems. In: Proceedings of the
International Scientific Conference on Parallel Computational Technologies (PCT
2016), Chelyabinsk, pp. 20–30 (2016)

19. Antonov, A.S., Teplov, A.M.: Use of system monitoring data to determine factors
reducing application scalability. Izvestiya SFedU. Eng. Sci. 12(161), 90–101 (2014)

20. Teplov, A.M.: An approach to the comparison of parallel program scalability.
Numer. Methods Program. 15(4), 697–711 (2014)

21. Adinets, A.V., Bryzgalov, P.A., Voevodin, V.V., Zhumatii, S.A., Nikitenko, D.A.,
Stefanov, K.S.: Job digest: an approach to dynamic analysis of job characteristics
on supercomputers. Numer. Methods Program. 13, 160–166 (2012)

22. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: “Lomonosov”:
Supercomputing at Moscow State University. Contemporary High Performance
Computing: From Petascale toward Exascale. Chapman & Hall/CRC Computa-
tional Science, Boca Raton (2013)

System Monitoring-Based Holistic Resource Utilization
Analysis for Every User of a Large HPC Center

Dmitry Nikitenko(✉), Konstantin Stefanov, Sergey Zhumatiy, Vadim Voevodin,
Alexey Teplov, and Pavel Shvets

Research Computing Center of Moscow State University, Moscow, Russia
{dan,cstef,serg,vadim}@parallel.ru, alex-teplov@yandex.ru,

pavel.shvets.srcc@gmail.com

Abstract. The problem of effective resource utilization is very challenging
nowadays, especially for HPC centers running top-level supercomputing facilities
with high energy consumption and significant number of workgroups. The weak‐
ness of many system monitoring based approaches to efficiency study is the basic
orientation on professionals and analysis of specific jobs with low availability for
regular users. The proposed all-round performance analysis approach, covering
single application performance, project-level and overall system resource utiliza‐
tion based on system monitoring data that promises to be an effective and low
cost technique aimed at all types of HPC center users. Every user of HPC center
can access details on any of his executed jobs to better understand application
behavior and sequences of job runs including scalability study, helping in turn to
perform appropriate optimizations and implement co-design techniques. Taking
into consideration all levels (user, project manager, administrator), the approach
aids to improve output of HPC centers.

Keywords: Performance monitoring · Performance analysis tools · Dynamic job
characteristics · Integral job characteristics · Job analysis · Job sequence analysis · Job
queue analysis · Scalability study · HPC center efficiency

1 Introduction

Supercomputer systems have always been different from lower-performance computers
in virtually all aspects: scale, number and variety of components, complexity of archi‐
tecture, power consumption, higher requirements for general infrastructure etc. Because
of this, much deeper understanding of the dynamics of everything that occurs around a
high-performance computing system is required as early as at the system development
stage. Many hardware system components already have built-in sensors which can be
read in one way or another. Initially most of those sensors were implemented by the
manufacturers for individual component debugging purposes. However, the user-acces‐
sible portion of the characteristics can be successfully used to evaluate not only the
performance of the component itself, but also the behavior of the entire hardware and
software suite under specific conditions. In addition, a lot of useful information about
the current application execution status can be obtained from the operating system. As

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 305–318, 2016.
DOI: 10.1007/978-3-319-49956-7_24

a result, a relatively large set consisting of dozens of characteristics describing the
current status of hardware and software components (CPU, network interfaces, input/
output systems, operating system etc.) is available for each node. Use of such data
collected by means of a monitoring system allows generating a computer system activity
profile and understanding what was going on with each component as well as the entire
system or a certain set of nodes [1].

General approaches to application and computing system performance analysis
based on system monitoring data differ in a number of key aspects: association with a
certain monitoring system or data storage method, number and configuration of analyzed
characteristics, their collection frequency, and analytical capabilities. Another important
peculiarity of monitoring systems is the orientation on a certain type of user. For
example, as a rule, one can configure the system to collect data from a specified set of
nodes or to collect data regarding an exact job run. As soon as node number and number
of jobs scale, implementation difficulties grow, leading to more and more highly-speci‐
alized analysis.

In this article we propose an approach based on system monitoring that provides
means for performance analysis for most typical user roles: regular user, project manager
and system administrator. The approach allows every regular user getting dynamic and
integral characteristics of any of his jobs that were run. On the next level, project
managers and system administrators have access to a wider range of jobs according to
their permissions.

2 Background and Related Work

A reasonable trade-off must be made between the two key issues: what data needs to be
stored in the database, and when should data be analyzed? The most of the challenges
can be overcome by the following principles:

• on-the-fly analysis – all relevant information is extracted from the monitoring data
before it’s stored in the database;

• on-site analysis – monitoring data must be processed where it is obtained;
• dynamic reconfiguration of monitoring systems – the monitoring system must be

capable of adjusting its configuration during the course of its work, depending on the
load on the supercomputer and the specific analysis objectives.

A prototype monitoring system based on these principles is currently being tested at our
supercomputing center [2]. The majority of existing monitoring systems process no data
at the source computing nodes [3–9]. Usually this approach is explained by the need to
reduce the agent’s impact on the applications executed at this computing node. But nowa‐
days one should remember that data movement is much and much more expensive than
compute operations and even noticeable overhead on the nodes can be reasonable if we get
rid of excessive data movement. Another option to reduce the data flow from monitoring
system is to cut the sensor set and data polling frequency for generation of profiles that
represent general application behavior. The simplest set designed for dynamics analysis of
an application can be as short as: CPU_user, Load Average, Flop/s, Interconnect and I/O

306 D. Nikitenko et al.

activity measured in packets and bytes per second, number of cache misses and memory
access operations [10]. Such a set can be extended to match used SW/HW capability and
analysis requirements. Many approaches to monitoring job performance have been
proposed [11–18]. Their common feature is that they are intended for monitoring the
performance of specific jobs. A significant portion of these systems [11–15, 18] start
agents at the respective computing nodes whenever a job is launched. Data from the agents
are collected into a database then reviewed after the job is completed. Some systems, such
as [16, 17], constantly collect and save data from computing nodes. Data analysis is also
performed by selecting part of the data related to a specific job. This approach is quite
reasonable when analyzing individual jobs. However, if we want to analyze the entire flow
of jobs being executed by the supercomputer at any given moment, this approach would
result in too much overhead.

Obviously, highly detailed analysis of monitoring data is only required for certain
specific jobs. This means that data for most jobs will be written to the database only
once and read only once to calculate the respective integrated metrics which characterize
the application in general. However, this mode of operation results in a strong degra‐
dation of the data storage system performance, or in unreasonable expense.

An interesting performance analysis toolkit based on system monitoring data was
developed recently. The HOPSA (HOlistic Performance System Analysis) suite [19]
was created as a result of a joint Russian – European project. The project aimed to create
an integrated application performance analysis environment that would combine
research on the system monitoring data analysis level and traditional in-depth analysis
methods. The main idea was to provide information on dynamic characteristics of the
running jobs over standard protocols based on continuous collection of system moni‐
toring data. The system allowed accessing the data both in the raw data flow mode and
upon completion of work through generation of special queries. It is important to note
that the system was originally designed for flexible setup. In particular, provisions were
made for use of a wide range of potential data sources, such as system monitoring tools
(Ganglia, Clustrx, etc.), data storage systems (specialized Mongo and Cassandra data‐
bases or OTF2 [20] trace files), visualization tools (Google Charts, High Charts) and
other modules. Based on the initial system monitoring data analysis, options for a more
detailed research into the problem became available using traditional instrumentation
and profiling tools (Scalasca, Vampir, ThreadSpotter, Paraver etc.) [21]. In addition to
achievement of the project objectives, successful implementation of the project provided
valuable insight into the capabilities and prospects of approaches that utilize system
monitoring data. The achieved results inspired authors to develop and deploy a suffi‐
ciently extended comprehensive technique based on system monitoring data analysis.

3 The Proposed Approach Principles

The main goal of our approach is to provide easy and useful tool aimed at performance
and resource utilization analysis based on system monitoring data for every job and for
every user of HPC center starting from a regular user up to the level of system admin‐
istrator or manager, so the following design principles were placed in command.

System Monitoring-Based Holistic Resource Utilization Analysis 307

Key design feature - availability of sufficient information on every application run.

(1) General information on every finished job must be available, including data from
resource manager and average rate of resource utilization (here and elsewhere inte‐
gral job characteristics) obtained from the monitoring system (Fig. 1).

Fig. 1. Example of job list for a specific user

(2) The used monitoring system sensor set, polling frequency and saved data coars‐
ening must be configured in a way to grant availability of job profiles based on
dynamic characteristics for all finished jobs right after execution with no resource-
intensive post mortem operations.

(3) There must be means for job marking and categorization based on certain job char‐
acteristics-based criteria or conjunction of such criteria in manual or automatic
modes.

(4) Job information access restrictions must meet workflow regulations of certain HPC
center, supporting various scopes of analysis: user (a project member), project
manager, and administrator.

5) Portability and scalability with flexible configuration, supporting diverse data
sources with no integration with system software. Open source components
preferred.

3.1 General Information on Jobs

General information on jobs includes data that is obtained directly after job finishes,
whether successfully or not. It includes such basic details like: id and owner; duration:
submit, start and finish time; status (completed, canceled, failed, etc.) and partition;
number of allocated cores; startup command line options, etc.

This type of info can be obtained from the resource manager directly or its log files
as soon as the job ends. It doesn’t depend on availability of monitoring system.

3.2 Average Rate of Resource Utilization

This group of data consists of averages, calculated on the base of dynamic characteristics
obtained from the monitoring system. The set of metrics can be as wide as peculiarities
of exact installation allow. If a monitoring system like DiMMon [2] is used, it becomes

308 D. Nikitenko et al.

possible it calculate these types of values on-the-fly. Nevertheless, if there’s no such
monitoring system or there’s a need for extending the list of averages with some other
calculated values that require processing of whole system monitoring data related to the
job with methods that require post-mortem analysis, of course, it is possible to enrich
the set easily. We keep to the point that it is reasonable to use only those metrics that
can be processed on-the-fly. If one needs post-mortem analysis methods, it might be
reasonable to apply these methods to a certain set or sequence of jobs.

At present we use a set of averages and medians corresponding to the key set of
dynamic characteristics described above. Some of dynamic characteristics are useful for
fine analysis, but are not so good for study of their averages. So the averages set is a bit
reduced, including now the following averages of: CPU_user, Flops, L1 cache replace‐
ment rate, LLC miss rate, memory load and store rate, interconnect sent/received data
and packets, load average and for systems with HDDs, local storage usage intensity for
reads and writes.

It’s quite useful to highlight average values especially for similar jobs, e.g. jobs of
a certain user, or consequent runs of same application with different options. It can be
also a good option to specify some resource utilization rates as symptoms of anomalous
node or system behavior. This can be managed by resilience systems [22].

3.3 Certain Job Analysis: Job Digests and Results of External Analyzers

Once any job was analyzed by an external analyzer, it’s quite reasonable to keep the
results or reports around. By default we find useful to provide links to Job Digest [23]
reports built on coarse-grained system monitoring data - we use 5 min granularity at
present for large jobs. The reports still represent major application behavior at this level
of averaging.

At the same time, when the detailed Job Digest report is needed, it can be specified
to the monitoring system or storing aggregator and the related collected data will be
available for fine analysis. There’s no need to keep fine-grained data for all the jobs.

3.4 Tags and Comments

The more the number of executed jobs is the more reasonable becomes analysis of the
patterns and regularity. It can be done for a whole system, for a partition, for a project,
for a software package, for a single user, or for a combination of the above. The
processing of a number of Job Digests or just general info of multiple jobs can be done
in different ways: something can be seen in on-the-fly mode, something requires post-
mortem methods, and some analysis results are obtained manually.

The set of jobs’ peculiarities that seem to be interesting and useful can’t be fixed,
we must be able to extend it whether it is done because of metrics list extension, because
of new idea of performance degradation symptom, or just because of new and previously
unseen type of unusual application behavior.

This drove us to implementation of different types of categories and tags as an
extension for general application run info. The tags correspond to various clusters of
jobs based on a number of criteria. For example, there are categories based on such

System Monitoring-Based Holistic Resource Utilization Analysis 309

application details on memory usage like ratio of total memory operations to L1 cache
misses or ratio of L1 misses to L3 misses and so on.

It becomes possible to easily find intersections of such clusters, having in result a
set of jobs that possess desired characteristics at the same time [24]. Besides tags,
comments and analysis reports to every job run can be added. Important thing is that it
allows not only to study a number of similar jobs, but to suggest methods of optimization
to a number of similar applications if a solution is found for a single one.

3.5 Target User Groups

At present three target user groups are defined: regular users (project members), project
managers and administrators. This follows from the logic of general organization of
workflow in our HPC center. The resources (CPU hours, disk space, etc.) are granted
for a certain project. Every project has a project manager, who is responsible for regular
user activity in terms of the project and can ask administrator to adjust quotas for any
project participant. Project members correspond to a UNIX group, every project member
- to a single account. If a researcher participates in two different projects, he uses two
different accounts, the access details for which are synchronized by user management
system [25, 26]. It’s quite reasonable to use authorization methods of such systems if
available.

Regular users have access to the details of all jobs that were run under his accounts.
This allows to focus on results of own work. As a rule users know the specifics of their
applications, and unusual program behavior would most likely be recognized by the
author. This means that this level of access is aimed at rising efficiency of specific user
applications: user can notice low resource usage efficiency, crashed jobs, wasted CPU
hours having access at the same time to detailed information for any of own jobs. At the
same time the jobs run by the project co-members are available only to the project
manager by default but can be made visible for all project members by request.

Project manager can access info on own jobs like a regular user, but at the same time
he is given the permissions to see all the jobs of the supervised project. At this point
project supervisor gains all means for observing the distribution of resource usage by
project members having all necessary details on every job run. It allows making appro‐
priate decisions regarding the project: resource distribution among project members,
revealing low-efficient jobs that waste valuable resources, plan further requests for
resources, project staff, optimization procedures, etc.

The level of administrator or system manager allows seeing the whole scope of jobs
and their details. The main benefits for administrators are revealing users and projects
with low-efficient jobs, analysis of overall queue of jobs for better planning of system
tuning and adjusting of policies. System administrators can get rich knowledge on how
do real applications use HPC resources. One can discover really resource-demanding
applications or clusters of applications that do not exploit some particular capabilities
or just cannot be run effectively on specific partitions, exact nodes, architecture, or soft‐
ware environment. Following co-design techniques such information can be used to

310 D. Nikitenko et al.

rearrange the provision of resources to better fit the needs of applications or to recom‐
mend platform-specific optimizations for such user application. This information can
be also of a value when an upgrade or a new HPC system is being planned.

4 Implementation Technologies Brief

The following software base is involved now:

• supported resource managers: Slurm [27], Cleo [28];
• tested monitoring systems: Ganglia, Collectd, tuned Clustrx [29] (in production

mode), DiMMon [2] (in test mode, but most promising);
• data storage for coarsened system monitoring data and job info: PostgreSQL;
• coarsening system monitoring data before saving to DB: Python scripts;
• job info requests: JavaScript & jQuery (development purpose) and proprietary Ruby-

on-Rails plug-in for user management systems with a standalone option (used in test
mode);

• user management system with means of authentication and authorization: Octo‐
shell [25].

For a 2.1 PFlops system with about 5K nodes the managed data is:

• metrics saved: 20+ , 5 min granularity;
• number of jobs: about a thousand per day;
• disk space used: about 1 Gbyte per day.

We kept in mind an idea of building a tool that might be deployed at any supercom‐
puter center with minimal efforts. The basic scheme is presented at Fig. 2.

Fig. 2. General workflow scheme

System Monitoring-Based Holistic Resource Utilization Analysis 311

5 Using of Integral Job Characteristics in Practice

When analyzing the performance of parallel applications it is very useful to have infor‐
mation on the application behavior and its overall resource utilization. The former can
be based on system monitoring data and the latter on integral job characteristics built as
averages and medians of corresponding dynamical characteristics. In this section we
give a few typical use cases overview of how it is used in real everyday practice of our
HPC Center.

5.1 Analysis Job Collections Searching for Anomalous Application Behavior

Many users of high-performance computer systems run applications that use standard
models, sets of libraries, packages, and ready-to-use solvers. In these cases a typical
proportion of required resources amount and the elapsed machine time usually can be
found. Such a proportion is often considered as typical or even optimal, and users prac‐
tice the same startup program configuration to keep to it. The applications often use the
same type of calculations organized in an iterative process. The main quality measure
for this type of users is the correct execution and the correctness of the obtained results.

It is quite easy to distinguish the typical start-up in these cases because the same
code is usually run, with the typical calculation sets by iterations. Therefore the analysis
of dynamic characteristics shows similar patterns. Integral characteristics of these job
runs also vary within a small deviation.

However there is the chance for application run to turn incorrect for some reason.
This can happen either due to a user mistake, a problem of system software or a hardware
problem. The user can incorrectly choose algorithm parameters, specify job start config‐
uration, the input data files, etc. At the same time there can be met access restrictions to
the required libraries by the OS, as well as partial loss of data packets or node unavail‐
ability and so on due to system errors. Such problems regardless of their nature can be
explained by the user purely as incorrect program execution and consequently unreliable
obtained results.

In order to identify such incorrectly performed job runs we practice analysis of the
integral characteristics of the entire user job collection, analyzing it for anomalous
values. Sometimes such anomalies can be found manually, if we, for example, analyze
multiple launches of a particular package. In such cases difference between normal and
anomalous runs almost always will be easily visible. However, quite often manual anal‐
ysis cannot help us to detect anomalous behavior. The reason is that we need to know
the criteria – what combination of integral characteristics corresponds to normal
behavior, and what values refer to incorrect runs due to hardware errors or other types
of emergency situations.

To solve this problem we are developing a software tool for supercomputer job flow
analysis based on machine learning methods [30]. For classification purposes we
currently use Random Forest method [31] as it shows the best accuracy in our case.

The classifier is trained on real jobs launched on Lomonosov supercomputer.
Training set consists of 300 jobs that were manually classified as one of three classes –
normal, anomalous or suspicious. Belonging to suspicious class means that we are not

312 D. Nikitenko et al.

sure that this job is definitely anomalous, but it’s surely worth analyzing it more accu‐
rately, using, for example, Job Digest report.

The input data for our classification method is integral characteristics aggregated
from monitoring data. Each job is described using~20 features – median and oscil‐
lation ratio (maximum minus minimum divided by average) for each dynamic char‐
acteristic collected on Lomonosov supercomputer. In this case a job is called anom‐
alous if the value of one or a combination of features noticeably differs of common
values for most jobs. It should be noted that anomaly criteria will differ for different
jobs flows, which means that our classifier should be retrained each time when used
on a new supercomputer.

Currently our proposed method is being tested in the Supercomputing center of the
Moscow State University. For the month our classifier detected~80 real anomalous jobs
(we analyzed only jobs running for more than 1 h and not in test partitions). Next step

Fig. 3. Job Digest report: timeline graphs of dynamic characteristics.

System Monitoring-Based Holistic Resource Utilization Analysis 313

we are currently working on – notify users about their running anomalous jobs, so they
can quickly fix it.

The example of an anomalous job detected using our classification method is shown
on Fig. 3 – a part of Job Digest report with timeline graphs of dynamic characteristics
changing during job run. In this figure three characteristics are shown – CPU load,
number of flops and number of misses to L1 cache per second. All other dynamic char‐
acteristics (memory or network usage, system load, etc.) are very similar.

These Job Digest graphs clearly show that this job is anomalous – nearly half of the
time there were no computations or any other activity. But Job Digest report is usually
used only when is it already known that something is wrong with a job. And in this case
most of the time some intensive work was performed, which means that integral char‐
acteristics will have common values and won’t arouse any suspicion during manual
analysis. But such anomalous jobs have some distinctive combination of feature values.
And since these jobs are present in the training set, our classifier has learned how to
distinguish them, so it manage to automatically classify this job as definitely anomalous.

One of the main drawbacks of this method – if one of anomaly types is not present
in the training set, it is likely that jobs of this type won’t be classified as anomalous.
Currently one of our main goals is to find as many different types of real anomalies as
we can. If needed, the deeper analysis of any certain run can be carried out by the analysis
of the job dynamical characteristics that form a job profile on resource utilization [24].

5.2 Using of Integral Job Characteristics for the Work Activity Management

When a group of users undertakes collaborative work as a part of a project, it is essential
to provide tools that help managing and coordinating their activity at the level of project
members, the level of project managers and the level of system administrators.

In this case, the analysis of jobs average resource utilization based on analysis of
integral characteristics of whole project’s job collection can help to make the necessary
changes that would allow achieving project results faster or with better precision within
the same limited amount of computing resources.

For example, let’s take a look at a workgroup where some of users (project members)
conduct similar calculations and run similar jobs and it is possible to analyze integral
characteristics of all the jobs that are run as a part of the project.

If the project manager identifies the fact that integral job characteristics for a part of
users differs from regularly observed values, administrators and project manager can
instantly track the reasons of the anomalous application behavior and fix found issues.
Besides inefficiencies, it is also possible to track the most efficient and typical job runs
resources utilization to spread positive experience for all members of the group working
on the project. If one has no ability to observe the characteristics of the whole project
job collection, it is impossible to estimate any single run as an efficient or inefficient
one. It is of a special practical value if a project has a very limited amount of computing
and time resources and practices numerous short job runs.

This situation is typical for the workgroups with diverse experience levels. Less
experienced users can use some compile or run options improperly, thereby consuming

314 D. Nikitenko et al.

given resources less effectively. Also it happens frequently for geographically
distributed research teams, conducting joint research.

Monitoring of the integral job characteristics for a certain project allows its project
manager having clear understanding of resource utilization balance in the workgroup.
This serves as a good base for further possible quota rearrangement, workload redis‐
tribution, and other changes, that would increase efficient outcome of the project and
consequently increase output of an HPC center as a whole.

5.3 Enhancing Scalability of User Applications

The last, but definitely not the least example of a target is a challenging scalability topic.
Parallel applications scalability analysis is an extremely resource-demanding task and
often requires a large number of job runs and further analysis of large arrays of data
collected on executed programs’ characteristics.

The set of analyzed characteristics of the program includes such factors as job dura‐
tion, performance, efficiency and other characteristics regarding the utilization of
various resources and computing nodes components.

The majority of users create their applications trying to achieve minimum job dura‐
tion for solving the problem and therefore reaching high performance of a computer
system. This is sensible only if the allocation of computing resources is available at no
cost and in any desired quantity. If so, scalability analysis focuses on search for such
start configuration that would require minimum time for the solution of the problem with
no care for any resource utilization rate. For example, when analyzing the scalability of
Linpack benchmark with two parameters (size of the matrix and the number of used
cores) a significant growth of the performance and a strong decrease in the efficiency in
the same area can be observed (Fig. 3).

In the real world computing resources are limited and rarely free, CPU time and all
other resources must be paid for and/or given an account of their utilization. The criteria
for optimization and optimal program startup configuration becomes also dependable
on many factors that represent computing cost: utilized CPU hours, number of nodes
engaged, job duration, storage usage, etc. So the ability to provide scalability analysis
and search for reasons of scalability decrease is essential when optimizing application
performance.

Integral job characteristics appear to be an extremely informative source of data on
program scalability. Using this source, one can find a correlation of values in changes
of certain resource utilization characteristics (CPU, memory access and cache misses,
interconnect, etc.) and generalized indicators of the overall performance, efficiency and
execution time. Thus, comparing the obtained values of the certain characteristics and
its general indicators makes possible to draw conclusions about the reasons for the
overall efficiency degradation of the parallel program. The integral characteristics for a
job collection (Fig. 1) can be exported and used to built and analyze dependencies of
these integral characteristics from any startup parameters. For every integral character‐
istic one can perform stand alone analysis, or search for correlations between some of
them (Fig. 4). After analyzing the shown correlations between the integral characteristics
for this experiment series, one can conclude that the main reason for the efficiency

System Monitoring-Based Holistic Resource Utilization Analysis 315

degradation is increasing InfiniBand activity - the increase in the number of transmitted
packets per second at a disproportionately low growth of transmitted amount of data per
second. This indicates that the network is transmitting large number of packets of short
length. And that’s why the overall efficiency of communication is significantly reduced
driving to overall efficiency degradation.

Fig. 4. Scalability of Linpack benchmark. Startup parameters: size of the matrix and the number
of processes; characteristics: various resource utilization integral job characteristics available for
all executed jobs.

Carrying out this type of analysis of integral characteristics is challenging because
the data collection for a large series of experiments should be provided for a large number
of characteristics and all relevant dependencies should be performed.

However, the result of such an analysis allows estimating the contribution of the
certain components of a computer system in the overall performance of the application,
its scalability and most critical resources for a certain application.

6 Conclusion and Acknowledgments

The main advantage of the proposed approach is in covering the whole scope of jobs
that were run and providing various methods of giving access to this data to every user
of supercomputing center according to user status and permissions.

316 D. Nikitenko et al.

At present the basic infrastructure of the approach is already implemented, arousing
great interest among users that were invited for testing purposes. Current basic func‐
tionality already provides tons of valuable data for every user, but we have a wide range
of enhancements that just are to be done in close future.

First, it’s a finalizing development of Ruby-On-Rails module instead of JavaScript-
controlled web tool. This is critical both for performance and security reasons.

Second, but very important issue is interactive tools for general job info analysis.
Methods of selecting and grouping various jobs, visualization of results (histograms,
charts, etc.), basic methods of prediction of user activity and resource utilization for
regular users and project supervisors. This functionality will be available with moving
to Ruby-On-Rails as well as availability to regular users.

This work was funded in part by the Russian Found for Basic Research, grants
№16-07-01003A, № 16-07-01121, Russian Presidential study grant (SP-1981.2016.5)
and by the Ministry of Education and Science of the Russian Federation, Agreement
No. 14.607.21.0006 (unique identifier RFMEFI60714X0006).

References

1. Voevodin, V., Stefanov, K.: Supercomputers at exascale: bigdata and extreme computing of
the total monitoring. In: BDEC Workshop, Barcelona, 29-30 January (2015)

2. Stefanov, K., Voevodin, V.: Distributed modular monitoring (DiMMon) approach to
supercomputer monitoring. In: Proceedings of the 2015 IEEE International Conference on
Cluster Computing, pp. 502–503. IEEE (2015)

3. Zenoss. http://www.zenoss.org
4. Zabbix. http://www.zabbix.com
5. Cacti®. http://www.cacti.net
6. Massie, M.L., et al.: The ganglia distributed monitoring system: design, implementation, and

experience. Parallel Comput. 30(7), 817–840 (2004)
7. The OpenNMS project. http://www.opennms.org
8. Nagios - the industry standard in IT infrastructure monitoring. http://www.nagios.org
9. Collectd – The system statistics collection daemon. https://collectd.org

10. Nikitenko, D.: Complex approach to performance analysis of supercomputer systems based
on system monitoring data. In: Numerical Methods and Programming vol. 15, pp. 85–97
(2014)

11. Gunter, D., Tierney, B., Jackson, K., Lee, J., Stoufer, M.: Dynamic monitoring of high-
performance distributed applications. In: Proceedings 11th IEEE International Symposium
on High Performance Distributed Computing, pp. 163–170 (2002)

12. Mellor-Crummey, J., Fowler, R.J., Marin, G., Tallent, N.: HPCVIEW: a tool for top-down
analysis of node performance. J. Supercomput. 23(1), 81–104 (2002)

13. Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A holistic approach
for performance measurement and analysis for petascale applications. In: Allen, G.,
Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M. (eds.) ICCS 2009, Part
II. LNCS, vol. 5545, pp. 686–695. Springer, Heidelberg (2009)

14. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., Tallent,
N.R.: HPCTOOLKIT: tools for performance analysis of optimized parallel programs.
Concurrency Comput. Pract. Exp. 22(6), 685–701 (2010)

System Monitoring-Based Holistic Resource Utilization Analysis 317

http://www.zenoss.org
http://www.zabbix.com
http://www.cacti.net
http://www.opennms.org
http://www.nagios.org
https://collectd.org

15. Eisenhauer, G., Kraemer, E., Schwan, K., Stasko, J., Vetter, J., Mallavarupu, N.: Falcon: on-
line monitoring and steering of large-scale parallel programs. In: Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel Computation, pp. 422–429 (1995)

16. Kluge, M., Hackenberg, D., Nagel, W.E.: Collecting distributed performance data with
dataheap: generating and exploiting a holistic system view. Procedia Comput. Sci. 9, 1969–
1978 (2012)

17. Mooney, R., Schmidt, K.P., Studham, R.S.: NWPerf: a system wide performance monitoring
tool for large Linux clusters. In: 2004 IEEE International Conference on Cluster Computing
(IEEE Cat. No. 04EX935), pp. 379–389 (2004)

18. Ries, B., et al.: The paragon performance monitoring environment. In: Supercomputing 1993,
Proceedings, pp. 850–859 (1993)

19. Joint RF-EU HOPSA Project. http://www.vi-hps.org/projects/hopsa/overview
20. Open Trace Format (OTF2). https://silc.zih.tu-dresden.de/otf2-current/html
21. Mohr, B., Hagersten, E., Giménez, J., Knüpfer, A., Nikitenko, D., Nilsson, M., Servat, H.,

Shah, A., Voevodin, V., Winkler, F., Wolf, F., Zhukov, I.: The HOPSA workflow and tools.
In: Proceedings of the 6th International Parallel Tools Workshop, Stuttgart, September 2012

22. Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Stefanov, K., Voevodin, V., Voevodin,
V., Zhumatiy, S.: An approach for ensuring reliable functioning of a supercomputer based on
a formal model. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski,
J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 12–22. Springer, Heidelberg (2016).
doi:10.1007/978-3-319-32149-3_2

23. Adinets, A., Bryzgalov, P., Nikitenko, D., Stefanov, K., Voevodin, V., Zhumatiy, S.: Job
digest: an approach to dynamic analysis of job characteristics on supercomputers. In:
Numerical Methods and Programming: Advanced Computing, vol. 13. Sect. 2, pp. 160–166
(2012)

24. Nikitenko, D., Voevodin, V., Zhumatiy, S., Stefanov, K., Teplov, A., Shvets, P., Voevodin,
V.: Supercomputer application integral characteristics analysis for the whole queued job
collection of large-scale HPC systems. In: Parallel Computational Technologies (PCT 2016):
Proceedings of the International Scientific Conference. Chelyabinsk, Publishing of the South
Ural State University, pp. 20–30 (2016)

25. Nikitenko, D., Voevodin, V., Zhumatiy, S.: Octoshell: large supercomputer complex
administration system. In: proceedings of Russian Supercomputing Days International
Conference, Moscow, Russia, 28-29 September 2015, Proceedings, CEUR Workshop
Proceedings, vol. 1482, pp. 69–83 (2015)

26. Nikitenko, D., et al.: Resolving frontier problems of mastering large-scale supercomputer
complexes. In: Proceedings of the ACM International Conference on Computing Frontiers
(CF 2016), pp. 349–352. ACM, New York (2016)

27. Slurm Workload Manager. http://slurm.schedmd.com
28. Cleo cluster batch system. http://sourceforge.net/projects/cleo-bs
29. Clustrx. http://t-platforms.ru/products/software/clustrxproductfamily/clustrxwatch.html
30. Voevodin, V., Voevodin, V., Shaikhislamov, D., Nikitenko, D.: Data mining method for

anomaly detection in the supercomputer task flow. In: proceedings of Numerical
Computations: Theory and Algorithms, The 2nd International Conference and Summer
School, 20-24 June 2016, Pizzo calabro, Italy (2016)

31. Description of random forest algorithm and its realization. http://scikit-learn.org/stable/
modules/ensemble.html#random-forests

318 D. Nikitenko et al.

http://www.vi-hps.org/projects/hopsa/overview
https://silc.zih.tu-dresden.de/otf2-current/html
http://dx.doi.org/10.1007/978-3-319-32149-3_2
http://slurm.schedmd.com
http://sourceforge.net/projects/cleo-bs
http://t-platforms.ru/products/software/clustrxproductfamily/clustrxwatch.html
http://scikit-learn.org/stable/modules/ensemble.html%23random-forests
http://scikit-learn.org/stable/modules/ensemble.html%23random-forests

Co-design of a Particle-in-Cell Plasma
Simulation Code for Intel Xeon Phi:
A First Look at Knights Landing

Igor Surmin1, Sergey Bastrakov1, Zakhar Matveev2, Evgeny Efimenko1,3,
Arkady Gonoskov1,3,4, and Iosif Meyerov1(B)

1 Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
meerov@vmk.unn.ru

2 Intel Corporation, Nizhni Novgorod, Russia
3 Institute of Applied Physics of the Russian Academy of Sciences,

Nizhni Novgorod, Russia
4 Chalmers University of Technology, Gothenburg, Sweden

Abstract. Three dimensional particle-in-cell laser-plasma simulation is
an important area of computational physics. Solving state-of-the-art
problems requires large-scale simulation on a supercomputer using spe-
cialized codes. A growing demand in computational resources inspires
research in improving efficiency and co-design for supercomputers based
on many-core architectures. This paper presents first performance results
of the particle-in-cell plasma simulation code PICADOR on the recently
introduced Knights Landing generation of Intel Xeon Phi. A straight-
forward rebuilding of the code yields a 2.43 x speedup compared to the
previous Knights Corner generation. Further code optimization results
in an additional 1.89 x speedup. The optimization performed is beneficial
not only for Knights Landing, but also for high-end CPUs and Knights
Corner. The optimized version achieves 100 GFLOPS double precision
performance on a Knights Landing device with the speedups of 2.35 x
compared to a 14-core Haswell CPU and 3.47 x compared to a 61-core
Knights Corner Xeon Phi.

1 Introduction

The first supercomputer to pass the 100 PFLOPS mark (according to the
TOP500 list, https://www.top500.org/) opens a new stage in the road to exas-
cale systems. Such systems are expected to solve important problems of compu-
tational science, such as climate modeling, improving efficiency of energy sources,
human brain simulation at neural level, and others. Making progress in assem-
bling and efficient utilization of large supercomputers requires an interdiscipli-
nary collaboration of software developers with engineers, mathematicians, physi-
cists, chemists, and experts in other areas. The interdisciplinary principle is an

This study was supported by the RFBR, project No. 15-37-21015. I. Surmin, S.
Bastrakov and I. Meyerov are grateful to Intel Corporation for access to the system
used for performing computational experiments presented in this paper.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 319–329, 2016.
DOI: 10.1007/978-3-319-49956-7 25

https://www.top500.org/

320 I. Surmin et al.

important part of co-design in supercomputing. Currently, a significant share of
supercomputers is based on many-core architectures, most notably GPUs and,
more recently, Intel Xeon Phi. Thus, it is important to co-design codes for such
architectures.

In June 2016, during the ISC High Performance, the first performance results
of the new Intel Xeon Phi of Knights Landing (KNL) generation for solving sev-
eral problems have been presented [1,2]. New Xeon Phi devices are many-core
CPUs with 60+ cores and 4 hardware threads per core, 512-bit SIMD, and 16 GB
high-bandwidth MCDRAM. Compared to the previous Knights Corner (KNC)
generation, the new Xeon Phi devices not only bring about 3 x improvement in
the single-core performance, but also eliminate the need for a PCI Express con-
nection, which might have been an issue for some applications on KNC coproces-
sors. Taking into account binary compatibility of the code between regular and
KNL-generation CPUs, it is interesting to research performance of existing par-
allel codes on KNL as well as develop approaches to code optimization for KNL.

The studies presented in this paper are motivated with growing needs for
carrying out large-scale 3D particle-in-cell simulations in several research direc-
tions of plasma physics. Performing such simulations is possible on supercom-
puters with specialized parallel codes. The particle-in-cell method inherently
allows massively parallel processing and thus can be efficiently implemented for
supercomputers. The growth of computational power accompanied with multi-
level parallelization and optimization leads to gradual extension of capabilities
of particle-in-cell codes, such as [3–7], giving access to fascinating studies that
have been previously impossible.

Techniques of implementation and optimization of particle-in-cell codes for
many-core architectures are rather well studied. There are several highly efficient
implementations of the particle-in-cell method for GPUs, including [7–10]. Intel
Xeon Phi is a newer platform with some specific features. Our previous work
[11,12] was among the first attempts of implementation of the method for Xeon
Phi of KNC generation, along with another study [13]. The previous work showed
that the KNC generation of Xeon Phi allows relatively easy porting of existing
parallel codes with reasonable performance, but obtaining significant speedups
over multi-core CPUs could require some additional work, most importantly in
terms of vectorization.

This paper presents the first performance results of PICADOR particle-in-
cell laser-plasma simulation code [12,14] on Intel KNL. The code is developed by
an interdisciplinary group of physicists, mathematicians, and software develop-
ers. The main contribution of this paper is performance evaluation of a plasma
simulation code on high-end CPUs and Xeon Phi of KNC and KNL generations.
We measure performance for a baseline, previously optimized, version of the code
and show results of applying further optimization steps on CPUs and Xeon Phi.

The paper is organized as follows. Section 2 briefly describes the particle-
in-cell method for laser-plasma simulation. Section 3 gives performance results
for the baseline version of the code without additional modification on KNL.
Section 4 presents results of optimization of the code with some KNL-specific

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi 321

methods and some methods that yield benefit on other platforms as well.
Section 5 concludes the paper.

2 Particle-in-Cell Method Overview

The progress in utilization of supercomputers for particle-in-cell plasma simu-
lation is of a special interest in the context of the rapid advancement of tech-
nologies of producing high-intensity laser pulses. Nowadays, high-intensity laser
systems are reaching unprecedented densities of electromagnetic energy among
all controllable sources available in a laboratory. Interaction of such laser pulses
with various targets provides a possibility to access extreme conditions and new
regimes that open up new ways towards solving important technological prob-
lems and carrying out fundamental studies, ranging from compact sources for
hadron therapy to probing nonlinear properties of vacuum. Particle-in-cell sim-
ulations are known to play a key role in a wide range of related studies, because
the methodology of the particle-in-cell method allows natural account for vari-
ous phenomena, from target ionization at low intensities to the processes due to
quantum electrodynamics at ultra-high intensities [15].

However, the basic stages of plasma simulation with the particle-in-cell
method typically remain the most computationally demanding and challenging
for optimization. The particle-in-cell method [16–18] implies representing real
particles of plasma with a smaller number of so-called macro-particles. Just as
for real particles, the dynamics of macro-particles is governed by the relativis-
tic equations of motion. For the sake of shortness, hereafter we write particles
instead of macro-particles.

Apart from the motion under the effect of external electromagnetic fields, the
particles interact with each other through the self-generated electromagnetic
field, which evolves according to the Maxwell’s equations. In such a way, the
electromagnetic field is affected by the particles through the current density,
while the particles experience the Lorentz force due to the electromagnetic field.
Both electromagnetic field and current density are defined on a discreet grid.
Thus, the field is interpolated to the position of particles, while the contribution
of each particle to the current density is distributed among the nearest grid
nodes. The core of the particle-in-cell method consists of the following stages
[18]: numerical integration of Maxwell’s equations, field interpolation, solving
particles’ equations of motion, and computing the current density created by
the particles. For the rest of the paper we refer to field interpolation and solving
equations of motion together as particle push, computation of current density
as current deposition.

From a computational point of view, the procedures of field interpolation and
current deposition concern accessing and changing two differently arranged sets
of data, for the particles and for the electromagnetic field and current density
values at the grid nodes. Arranging efficient calculations becomes even more com-
plicated because of migration of particles between the grid cells. Thus, because of
both high demands of the modern studies and the method inherent complexity,
efficient implementation of the particle-in-cell method remains challenging.

322 I. Surmin et al.

3 Baseline Version

PICADOR [11,12,14] is a C++ code for plasma simulation based on the particle-
in-cell method. The code is currently used in several research projects concerning
simulation of laser-plasma interaction [15,19–21]. Here we briefly describe the
organization of parallel processing in PICADOR, more implementation and opti-
mization details (improving memory locality and scaling efficiency, vectorization)
are given in [12]. The code exploits parallelism on all levels available at modern
cluster systems. Distributed memory parallelism is achieved by means of spatial
domain decomposition and load balancing using MPI [22]. On the shared mem-
ory level particles are stored separately for each cell; OpenMP threads process
particles in different cells in parallel. SIMD instructions are used by means of
partial vectorization of loops over particles in a cell as well as manual coding of
intrinsic-based implementation of some stages of the method.

Throughout this paper we use a frozen plasma benchmark problem with a
40×40×40 grid, 50 particles per cell and 1000 time steps, that can be solved on
a single CPU or Xeon Phi. Apart from the single-device performance, an impor-
tant aspect for utilizing supercomputers is scalability on distributed memory.
These two aspects are somewhat orthogonal for the particle-in-cell method, as it
allows spatial domain decomposition with communications only between neigh-
bor domains. Scaling results of PICADOR are presented in [11,12,22], including
90% strong scaling efficiency on a system with 64 KNC Xeon Phi coproces-
sors [12].

The simulations were performed in double precision using the standard cloud-
in-cell particle form factor [18] and the charge-conserving Villasenor – Buneman
current deposition scheme [23]. The computational experiments were performed
at a node of Intel Endeavor system1 with Intel Xeon E5-2697 v3 (Haswell, 14
cores, 2.6 GHz, 36 MB cache), Intel Xeon Phi 7120 (KNC, 61 cores, 1.2 GHz,
30.5 MB cache), and Intel Xeon Phi 7250 (KNL, 68 cores, 1.4 GHz, 34 MB cache,
16 GB MCDRAM). Intel Xeon Phi 7250 was used in Quadrant cluster mode, all
data placed in MCDRAM.

We recompiled the code, which had been previously optimized for the KNC
generation of Xeon Phi, to run on KNL. Since the optimal run configuration on
KNC was a single MPI process and 4 OpenMP threads per core [12], first we
tried running a single MPI process on KNL as well, with 1, 2, 3, and 4 threads
per core. The comparison of these configurations is presented at Table 1. Same as
for KNC, increasing the number of threads per core is beneficial for PICADOR
on KNL. For the rest of the paper we only consider configurations with 4 threads
per core.

Table 2 presents the run time of the baseline version running a single MPI
process per device with 1 OpenMP thread per core on CPU and 4 OpenMP
threads per core on Xeon Phi. The KNL device outperforms both 14-core Haswell
CPU and 61-core KNC, the corresponding speedups are 1.51 x and 2.43 x. Thus,
just rebuilding the code for KNL with no additional optimization results in a

1 Not to be confused with Endeavor Supercomputer at NASA Ames Research Center.

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi 323

Table 1. Run time of the baseline version on KNL with a single MPI process and
different number of OpenMP threads per core. Time is given in seconds.

Stage # threads per core

1 2 3 4

Particle push 13.41 11.69 9.51 10.92

Current deposition 12.72 9.84 10.95 8.91

Other 0.38 0.41 0.51 0.44

Overall 26.51 21.94 20.97 20.27

significant speedup compared to KNC. This is not a surprising result, since the
theoretical performance on KNL is about 3 x of that of KNC. In the next section
we demonstrate how additional optimization of the code and choosing a better
configuration of processes and threads can further improve performance on KNL.

Table 2. Run time of the baseline version on CPU and Xeon Phi with a single MPI
process on each device. Time is given in seconds.

Stage Intel Xeon E5-2697 v3 Intel Xeon Phi

7120 (KNC) 7250 (KNL)

Particle push 18.30 22.69 10.92

Current deposition 12.02 25.64 8.91

Other 0.25 0.98 0.44

Overall 30.57 49.31 20.27

4 Performance Analysis and Optimization on Knights
Landing

4.1 Choosing the Optimal Run Configuration

A run configuration of processes and threads can significantly influence the per-
formance of an MPI + OpenMP code and the optimal configuration is often non-
obvious [2]. Thus, our first step towards increasing performance is comparison
of different configurations of processes and threads. Table 3 presents comparison
of different configurations of processes and threads, each running 4 threads per
core. Increasing the number of processes up to 8 while keeping the overall num-
ber of threads constant yields an increase in performance, up to 1.31 x compared
to the single-process configuration. A possible explanation is that in this case
data layout better fits the application. However, further increasing the number
of processes results in performance degradation. For the rest of the paper we use
the configuration with 8 MPI processes and 34 OpenMP threads per process on
KNL.

324 I. Surmin et al.

Table 3. Run time of several process-thread configurations on KNL for the baseline
version of the code. Time is given in seconds.

Stage #processes × #threads per process

1 × 272 2 × 136 4 × 68 8 × 34

Particle push 10.92 9.16 8.51 8.07

Current deposition 8.91 7.68 7.60 7.15

Other 0.44 0.35 0.30 0.26

Overall 20.27 17.19 16.41 15.48

4.2 Auto-vectorization of Field Interpolation

Efficient vectorization of some stages of the particle-in-cell method is not easy,
particularly for field interpolation that results in an intricate memory access
pattern with indirect indexing [12,24]. For the version of the code for CPUs and
KNC we explicitly disabled compiler auto-vectorization of the corresponding
loops as it resulted in some slowdown due to inefficient operations with memory.
However, new instructions in AVX-512 allow some speedup on KNL due to auto-
vectorization of these loops. Table 4 presents comparison of the baseline version
and a version with auto-vectorization of field interpolation, which is a part of
the particle push stage, on KNL. The speedup of this stage due to vectorization
is 1.19 x.

Table 4. Run time of the baseline version and a version with auto-vectorization of
field interpolation on KNL. Time is given in seconds.

Stage Baseline version Auto-vectorization of field interpolation

Particle push 8.07 6.81

Current deposition 7.15 7.15

Other 0.26 0.26

Overall 15.48 14.22

4.3 Supercells

A promising approach to improve performance of the particle-in-cell method
on many-core architectures is grouping and processing particles by supercells,
formed by several nearby cells. First introduced for GPUs [7], it has been recently
reported to be advantageous for CPUs as well [24]. The size of supercells is chosen
so that particle and grid data processed during the particle push and current
deposition stages fit L1 cache.

The exact amount of data processed is implementation-specific. For
PICADOR with supercells of size S × S × S cells, the size of data used for

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi 325

Villasenor – Buneman current deposition on a single core can be estimated as

CurrentDepositionDataSize(S) = (4 threads per core)×
(
(S + 1)3 grid values

)
× (3 current components) × (8 Bytes per value).

Particles are processed in chunks, for each chunk results of field interpolation
and some auxiliary coefficients are stored in a local array. For field interpolation
and particle push with cloud-in-cell formfactor the approximate size of data is

ParticlePushDataSize(S) = (4 threads per core) ×((
(S + 2)3 grid values

)
× (6 field components) × (8 Bytes per value) +

(64 Bytes per particle + 56 Bytes of auxiliary data per particle)
× (16 particles per chunk)) .

Table 5 presents results for a single-core on KNL running 4 threads. For the
sake of simplicity we consider only cubical supercells with equal number of cells
for each dimension.

Table 5. Results for different supercell sizes on the single-core of KNL running 4
threads depending on the supercell size. Estimated size of data actively used while
processing a supercell combined for 4 threads and run time are given.

Stage Supercell size for each dimension

1 2 3 4 5 6

Particle push Data size, KB 12.86 19.97 31.68 49.15 73.54 105.98

Time, sec 34.28 31.23 32.35 30.95 32.12 34.10

Current deposition Data size, KB 0.77 2.59 6.14 12.00 20.74 32.93

Time, sec 40.44 30.69 30.25 28.85 28.77 28.00

As follows from Table 5, in the single-core case the most efficient supercell size
for particle push is 4. For the current deposition stage, increasing the size up to
6 leads to a steady increase in performance. However, using larger supercells
results in decreasing the number of independent subproblems solved in parallel
using OpenMP, which could hinder the overall performance. For example, taking
into account chessboard supercell processing scheme used in PICADOR, for grid
size 40 × 40 × 40 of the benchmark problem and supercell size S = 6 there are
at most (depending on implementation details, usage of ghost cells, etc.) 64
independent subproblems, that is not enough to fully saturate Xeon Phi. Thus,
taking into account multi-threading, the optimal supercell size is smaller than
for the single-core case. For our code the empirically best supercell size on KNL
was 2, on KNC and Haswell CPU it was 2 for particle push and 4 for current
deposition. Table 6 presents results of the supercell version on each device and

326 I. Surmin et al.

Table 6. Run time of the version with supercells on CPU and Xeon Phi. For each
device the empirically chosen best process-thread configuration was used. Time is given
in seconds.

Stage Intel Xeon E5-2697 v3 Intel Xeon Phi

7120 (KNC) 7250 (KNL)

Particle push 16.78 20.93 5.73

Current deposition 8.22 15.44 4.77

Other 0.27 0.95 0.25

Overall 25.27 37.32 10.75

the speedups compared to the baseline. Supercells are beneficial for all three
platforms in question, with 1.21 x speedup on the Haswell CPU and 1.32 x
speedup on Xeon Phi, both KNC and KNL.

4.4 Roofline Model

Finally, we measured performance of the optimized version using Intel VTune
Amplifier. The resulting overall performance is 42.5 GFLOPS on the CPU and
100 GFLOPS on the KNL device in double precision. The obtained performance
is much lower than the theoretical peak performance of the hardware used. Thus,
on KNL we achieved only about 3% of the peak. However, particle-in-cell codes
tend to have a rather low amount of arithmetic operations per amount of data
loaded from memory, which could be a serious performance-hindering factor. To
investigate it, we applied the roofline model [25], which is a tool that represents
the attainable upper bound performance.

We used the roofline model based on data traffic through RAM and L1
cache. Data traffic was collected using Roofline Analysis of Intel Advisor. The

Fig. 1. Roofline model for the optimized version of the code on CPU and KNL. Left:
roofline using RAM data traffic (MCDRAM on KNL). Right: roofline using L1 data
traffic.

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi 327

results for the main stages of the computational loop and overall are presented at
Fig. 1. To compute arithmetic intensity, we divided the number of floating-point
operations by data traffic through the corresponding type of memory (RAM
and L1 for CPU, MCDRAM and L1 for KNL). The roofs were calculated as
a product of arithmetic intensity and theoretical peak memory bandwidth. As
follows from the constructed roofline, the attainable upper bound performance
is much lower than the peak performance. Still, the code achieves only about
26% of the upper bound on CPU and 14% on KNL. Therefore, there is a large
room for improvement, mainly in terms of efficient vectorization.

5 Conclusions and Future Work

This paper presents a first look at Intel Xeon Phi CPUs of Knights Landing
generation for particle-in-cell plasma simulation. We use the plasma simulation
code PICADOR, which has been previously ported and optimized for KNC. A
simple rebuilding of the code for KNL yields a 2.43 x speedup compared to KNC
in the same configuration. Choosing the optimal configuration of processes and
threads for KNL and applying several techniques to improve performance leads
to a 1.89 x speedup on KNL compared to the baseline version. Auto-vectorization
of the field interpolation loop, which led to a slowdown on KNC, gives some
benefit on KNL due to AVX-512 instruction set. Utilization of supercells gives
speedup on CPU as well as on Xeon Phi. The speedup of the optimized version
on a Knights Landing device is 2.35 x compared to a 14-core Haswell CPU and
3.47 x compared to a 61-core Knights Corner Xeon Phi coprocessor. The code
achieves 100 GFLOPS double precision performance on KNL.

Overall, the obtained results show that KNL is a promising platform for
particle-in-cell plasma simulation. Compared to the previous-generation KNC,
it opens new prospects for performance improvement. Same as for KNC,
approaches to optimization are mostly shared with CPUs. It allows maintaining
a single version of the code for CPUs and Xeon Phi, probably with some minor
changes. Our future work includes further performance improvement, especially
in terms of vectorization, for benchmark and up-to-date physical problems.

References

1. Kunkel, J.M., Balaji, P., Dongarra, J. (eds.): ISC High Performance 2016. LNCS,
vol. 9697. Springer, Heidelberg (2016)

2. Jeffers, J., Reinders, J., Sodani, A.: Intel Xeon Phi Processor High Performance
Programming: Knights Landing Edition. Morgan Kaufmann, New York (2016)

3. Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva,
L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of laser
wakefield accelerators. Plasma Phys. Control. Fusion. 55(12), 124011 (2013)

4. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-
formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15(5), 055703 (2008)

328 I. Surmin et al.

5. Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code
VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61(3), 425–433 (1999)

6. Vay, J.-L., Bruhwiler, D.L., Geddes, C.G.R., Fawley, W.M., Martins, S.F., Cary,
J.R., Cormier-Michel, E., Cowan, B., Fonseca, R.A., Furman, M.A., Lu, W., Mori,
W.B., Silva, L.O.: Simulating relativistic beam and plasma systems using an opti-
mal boosted frame. J. Phys. Conf. Ser. 180(1), 012006 (2009)

7. Burau, H., Widera, R., Honig, W., Juckeland, G., Debus, A., Kluge, T., Schramm,
U., Cowan, T.E., Sauerbrey, R., Bussmann, M.: PIConGPU: a fully relativistic
particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–
2839 (2010)

8. Kong, X., Huang, M.C., Ren, C., Decyk, V.K.: Particle-in-cell simulations with
charge-conserving current deposition on graphic processing units. J. Comput. Phys.
230(4), 1676–1685 (2011)

9. Decyk, V.K., Singh, T.V.: Particle-in-cell algorithms for emerging computer archi-
tectures. Comput. Phys. Commun. 185(3), 708–719 (2014)

10. Glinsky, B.M., Kulikov, I.M., Snytnikov, A.V., Romanenko, A.A., Chernykh, I.G.,
Vshivkov, V.A.: Co-design of parallel numerical methods for plasma physics and
astrophysics. Supercomput. Front. Innov. 1(3), 88–98 (2014)

11. Bastrakov, S., Meyerov, I., Surmin, I., Efimenko, E., Gonoskov, A., Malyshev, A.,
Shiryaev, M.: Particle-in-cell plasma simulation on CPUs, GPUs and Xeon Phi
coprocessors. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS,
vol. 8488, pp. 513–514. Springer, Heidelberg (2014)

12. Surmin, I.A., Bastrakov, S.I., Efimenko, E.S., Gonoskov, A.A., Korzhimanov, A.V.,
Meyerov, I.B.: Particle-in-cell laser-plasma simulation on xeon phi coprocessors.
Comput. Phys. Commun. 202, 204–210 (2016)

13. Nakashima, H.: Manycore challenge in particle-in-cell simulation: how to exploit 1
TFlops peak performance for simulation codes with irregular computation. Com-
put. Electr. Eng. 46, 81–94 (2015)

14. Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov,
I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems.
J. Comput. Sci. 3, 474–479 (2013)

15. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I.,
Muraviev, A., Sergeev, A., Surmin, I., Wallin, E.: Extended particle-in-cell schemes
for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92(2),
023305 (2015)

16. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-
Hill, New York (1981)

17. Dawson, J.M.: Particle simulation of plasmas. Rev. Modern Phys. 55(2), 403–447
(1983)

18. Birdsal, C.K.: Plasma Physics via Computer Simulation. CRC Press, Boca Raton
(2004)

19. Muraviev, A.A., Bastrakov, S.I., Bashinov, A.V., Gonoskov, A.A., Efimenko, E.S.,
Kim, A.V., Meyerov, I.B., Sergeev, A.M.: Generation of current sheets and giant
quasistatic magnetic fields at the ionization of vacuum in extremely strong light
fields. JETP Lett. 102(3), 148–153 (2015)

20. Mackenroth, F., Gonoskov, A., Marklund, M.: Chirped-standing-wave acceleration
of ions with intense lasers. Phys. Rev. Lett. 117(10), 104801 (2016)

21. Mackenroth, F., Gonoskov, A., Marklund, M.: Theoretical benchmarking of laser-
accelerated ion fluxes by 2D-PIC simulations (to appear). http://arxiv.org/abs/
1607.00776

http://arxiv.org/abs/1607.00776
http://arxiv.org/abs/1607.00776

Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi 329

22. Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I.:
Dynamic load balancing based on rectilinear partitioning in particle-in-cell plasma
simulation. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 107–119.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-21909-7 12

23. Villasenor, J., Buneman, O.: Rigorous charge conservation for local electromagnetic
field solvers. Comput. Phys. Commun. 69, 306–316 (1992)

24. Vincenti, H., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable SIMD algo-
rithm for charge/current deposition in Particle-In-Cell codes (to appear). http://
arxiv.org/abs/1601.02056

25. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

http://dx.doi.org/10.1007/978-3-319-21909-7_12
http://arxiv.org/abs/1601.02056
http://arxiv.org/abs/1601.02056

Efficient Distributed Computations with DIRAC

Viktor Gergel1, Vladimir Korenkov2,3, Andrei Tsaregorodtsev3,4(✉),
and Alexey Svistunov1

1 Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
gergel@unn.ru, alexey.svistunov@itmm.unn.ru

2 Joint Institute for Nuclear Research, Dubna, Russia
korenkov@jinr.ru

3 Plekhanov Russian University of Economics, Moscow, Russia
4 CPPM, Aix Marseille Université, CNRS/IN2P3, Marseille, France

atsareg@cppm.in2p3.fr

Abstract. High Energy Physics (HEP) experiments at the LHC collider at CERN
were among the first scientific communities with very high computing require‐
ments. Nowadays, researchers in other scientific domains are in need of similar
computational power and storage capacity. Solution for the HEP experiments was
found in the form of computational grid - distributed computing infrastructure
integrating large number of computing centers based on commodity hardware.
These infrastructures are very well suited for High Throughput applications used
for analysis of large volumes of data with trivial parallelization in multiple inde‐
pendent execution threads. More advanced applications in HEP and other scien‐
tific domains can exploit complex parallelization techniques using multiple inter‐
acting execution threads. A growing number of High Performance Computing
(HPC) centers, or supercomputers, support this mode of operation. One of the
software toolkits developed for building distributed computing systems is the
DIRAC Interware. It allows seamless integration of computing and storage
resources based on different technologies into a single coherent system. This
product was very successful to solve problems of large HEP experiments and was
upgraded in order to offer a general-purpose solution. The DIRAC Interware can
help including also HPC centers into a common federation to achieve similar
goals as for computational grids. However, integration of HPC centers imposes
certain requirements on their internal organization and external connectivity
presenting a complex co-design problem. A distributed infrastructure including
supercomputers is planned for construction. It will be applied for inter-discipli‐
nary large-scale problems of modern science and technology.

Keywords: Distributed computing · High-performance computations · Cloud
services · Grid systems · Workflow management · Big data management

1 Introduction

The number of scientific domains with highly intensive computational applications is
rapidly increasing. The High Energy Physics (HEP) experiments at the LHC collider,

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 330–341, 2016.
DOI: 10.1007/978-3-319-49956-7_26

CERN, have pioneered the new era of highly data intensive studies. However, other
disciplines are quickly increasing their data volume requirements. Applications dealing
with Exabyte-level data volumes are already on the horizon. New scientific communities
need urgently tools to work with large datasets and massively parallel applications
adapted to their specific tasks and suitable to the expertise level of their scientists. The
scientific collaborations nowadays are often international with many groups coming
from different laboratories and universities. As a result, the available computing and
storage resources of a given collaboration are usually distributed as each group is coming
up with its own contribution. Therefore, there is a strong necessity of building computing
systems that cope with large volumes of distributed data and distributed computing
resources that can be used for these data analysis.

The DIRAC Project was started to solve the data intensive analysis problem for one
of the LHC experiments, LHCb, in 2003 [1, 2]. It was started as a Workload Management
System (WMS) in order to operate multiple computing centers in Europe to produce
modeling data for the experiment optimization. However, the need in an efficient Data
Management System coping with many millions of files with distributed replicas and
having a close coupling with the WMS was quickly understood. As a result, the DIRAC
allows performing all the data analysis tasks of LHCb and other HEP experiments [4–6].

After multiple years of successful usage in the HEP domain, the DIRAC software
was generalized to be suitable for other applications requiring large data volumes and
computing power. It provides a development framework and many ready-to-use services
to build distributed computing systems adapted to particular scientific communities.
These tools serve to interconnect technologically heterogeneous computing and storage
resources into a coherent system seen by the users as a single large computer with a
friendly interface and consistent computational and storage subsystems. Therefore, we
speak about DIRAC Interware – technology to aggregate multiple computing resources
and services. This toolkit can be also used to integrate computing centers of the HPC
type supporting massively parallel applications along with the traditional grid sites. This
requires development of several new components and also a model of an HPC center,
which is rich enough for a large number of applications that can run in such HPC feder‐
ations.

In this article we will overview the DIRAC Interware, its base architecture and
implementation. We will describe the base Workload Management and Data Manage‐
ment systems of DIRAC as well as computing and storage resources accessible with
these services. We will discuss specific features of HPC centers and possible ways to
integrate them into a comment distributed infrastructure. We will present also plans for
integration of several HPC centers into a federation dedicated to actual scientific prob‐
lems.

2 DIRAC Overview

DIRAC Project provides all the necessary components to create and maintain distributed
computing systems. It is forming a layer on top of third party computing infrastructures,
which isolates users from the direct access to the computing resources and provides them

Efficient Distributed Computations with DIRAC 331

with an abstract interface hiding the complexity of dealing with multiple heterogeneous
services. This pattern is applied to both computing and storage resources. In both cases,
abstract interfaces are defined and implementations for all the common computing
service and storage technologies are provided. Therefore, the users see only logical
computing and storage elements, which simplifies dramatically their usage. In this
section we will describe in more details the DIRAC systems for workload and data
management.

2.1 Workload Management

The DIRAC Workload Management System is based on the concept of pilot jobs [3].
In this scheduling architecture (Fig. 1), the user tasks are submitted to the central Task
Queue service. At the same time the so-called pilot jobs are submitted to the computing
resources by specialized components called Directors. Directors use the job scheduling
mechanism suitable for their respective computing infrastructure: grid resource brokers
or computing elements, batch system schedulers, cloud managers, etc. The pilot jobs
start execution on the worker nodes, check the execution environment, collect the worker
node characteristics and present them to the Matcher service. The Matcher service
chooses the most appropriate user job waiting in the Task Queue and hands it over to
the pilot for execution. Once the user task is executed and its outputs are delivered to
the DIRAC central services, the pilot job can take another user task if the remaining
time of the worker node reservation is sufficient.

Fig. 1. WMS with pilot jobs

332 V. Gergel et al.

There are many advantages of the pilot job concept. The pilots are not only increasing
the visible efficiency of the user jobs but also help managing heterogeneous computing
resources presenting them to the central services in a uniform coherent way. Large user
communities can benefit also from the ability of applying the community policies that
are not easy, if at all possible, with the standard grid middleware. Furthermore executing
several user tasks in the same pilot largely reduces the stress on the batch systems no
matter if they are accessed directly or via grid mechanisms, especially if users subdivide
their payload in many short tasks trying to reduce the response time.

The pilot job based scheduling system allows easy aggregation of computing
resources of different technologies. Currently the following resources are available for
DIRAC users:

• Computing grid infrastructures based on the gLite/EMI grid middleware. The
submission is possible both through the gLite Workload Management System and
directly to the computing element services exposing the CREAM interface. Examples
of such grid infrastructures are WLCG and EGI grids.

• Open Science Grid (OSG) infrastructure based on the VDT (Virtual Data Toolkit)
suite of middleware [7].

• Grids based on the ARC middleware which was developed in the framework of the
Nordugrid project [8].

• Standalone computing clusters with common batch system schedulers, for example,
PBS/Torque, Grid Engine, Condor, SLURM, OAR, and others. Those clusters can
be accessed by configuring an SSH tunnel that will be used by DIRAC directors to
submit pilot jobs to the local batch systems.

• Sites providing resources via most widely used cloud managers, for example Open‐
Stack, OpenNebula, Amazon and others. Both commercial and public clouds can be
accessed through DIRAC.

• Volunteer resources provided with the help of BOINC software. There are several
realizations of access to this kind of resources all based on the same pilot job frame‐
work.

As it was explained above, a new kind of computing resource can be integrated into
the DIRAC Workload Management System by providing a corresponding Director using
an appropriate job submission protocol. This is the plugin mechanism that allows
connecting easily new computing facilities as needed by the DIRAC users.

2.2 Data Management

The DIRAC Data Management System (DMS) is based on similar design principles as
the WMS [9]. An abstract interface is defined to describe access to a storage system and
there are multiple implementations for various storage access protocols. Similarly, there
is a concept of a FileCatalog service, which provides information about the physical
locations of file copies. As for storage services there are several implementations for
different catalog service technologies all following the same abstract interface.

A storage system can be accessible via different interfaces with different access proto‐
cols. But for the users this stays logically a single service providing access to the same

Efficient Distributed Computations with DIRAC 333

physical storage space. Similar situation can happen also for the file catalog services. To
simplify access to this kind of services, DIRAC defines aggregators that allow working
with multiple services as if with a single one from the client perspective. All the plug-ins
and aggregators are hidden behind the DataManager API which have methods to perform
all the basic operations needing access to both storage and catalog services.

DIRAC is also providing a number of auxiliary and higher level services to support
higher-level operations as well as to help administrators to run the system:

• Support for bulk asynchronous operations is provided by the Request Management
System (RMS);

• Transformation System (TS) provides means to automate recurrent massive data
operations driven by the data registration or file status change events;

• Staging service to manage bringing data on-line into a disk cache in the SEs with
tertiary storage architecture. These operations are usually triggered automatically by
the WMS before the jobs using these data as input can be submitted for execution to
the worker nodes.

• FTS Manager service to submit and manage data transfer requests to an external File
Transfer Service.

• Data Logging service to log all the operations on a predefined subset of data mostly
for debugging purposes.

• Data Integrity service to record failures of the data management operations in order
to spot malfunctioning components and resolve issues.

• The general DIRAC Accounting service is used to store the historical data of all the
data transfers, success rates of the transfer operations, etc.

DIRAC provides plug-ins for a number of storage access protocols most commonly
used in the distributed storage services:

• SRM, XRootd, RFIO, etc.;
• gfal2 library based access protocols (DCAP, HTTP-based protocols, S3, WebDAV,

etc.) [10].

If some DIRAC user community would need access to a storage system not yet
supported by the DIRAC Interware, it will be easy to incorporate it by providing a new
plug-in to the system.

In addition DIRAC provides its own implementation of a Storage Element service
and the corresponding plug-in using the custom DIPS protocol. This is the protocol used
to exchange data between the DIRAC components. The DIRAC StorageElement service
allows exposing data stored on file servers with POSIX compliant file systems, for
example NFS or Lustre. This service helps to quickly incorporate data accumulated by
scientific communities in any ad hoc way into any distributed system under the DIRAC
Interware control.

2.3 DIRAC Development Framework

All the DIRAC components are written in a well-defined software framework with a
clear architecture and development conventions. A large part of the functionality is

334 V. Gergel et al.

implemented as plugins implementing predefined abstract interfaces. There are several
core services to orchestrate the work of the whole DIRAC distributed system, the most
important ones are the following:

• Configuration service used for discovery of the DIRAC components and providing
a single source of configuration information;

• Monitoring service to follow the system load and activities;
• Accounting service to keep track of the resources consumption by different commun‐

ities, groups and individual users;
• System Logging service to accumulate error reports in one place to be able to quickly

react to problems.

Modular architecture and the use of core services allow developers to easily write
new extensions concentrating on their specific functionality and avoiding recurrent
tasks.

All the communications between distributed DIRAC components are secure
following the standards introduced by computational grids, which is extremely impor‐
tant in the distributed computing environment.

Users are provided with a number of different interfaces to interact with the system.
This includes a rich set of command-line tools for Unix environment, Python language
API to write one’s own scripts and applications. DIRAC functionality is available also
through a flexible and secure Web Portal which follows the user interface paradigm of
a desktop computer.

3 DIRAC Usage Examples

DIRAC based infrastructures are used by multiple scientific communities having to
integrate heterogeneous resources at their disposal. Many of the common requirements
are already satisfied by the core DIRAC components. However, each community can
have its own specific workflows and data models. Therefore it is quite usual that large
experiments are introducing new services implementing their particular management
logic.

3.1 Physics Applications

DIRAC was originally developed for the LHCb experiments at the LHC collider at
CERN, Geneva. Among the High Energy Physics experiments, LHCb stays the most
intensive user of the DIRAC Interware using it as the basis for its data production system
[12]. Figure 2 illustrates the scale of the computing resources usage by LHCb.

The plot is produced by the DIRAC Accounting system and shows that on average
the LHCb data production system is controlling about 50 thousands of simultaneous
jobs running at more than 100 distributed computing centers. This is equivalent to
running a virtual distributed computing center of up to 100 thousands CPU cores. The
LHCb data volume reaches about 40 PBytes spread over more than 20 data centers in
Europe and Russia. LHCb is using mostly resources provided by the WLCG computing

Efficient Distributed Computations with DIRAC 335

grid infrastructure [13]. However, it also incorporates several large non-grid centers,
such as Ohio Supercomputing Center in USA or Yandex computing farm in Russia.
Those centers are incorporated seamlessly using the DIRAC Interware. LHCb is using
all the DIRAC core services for managing workflows and data but it has also developed
several specific ones, like for example, Bookkeeping service for storing all the data
provenance information, or Production service for managing large numbers of tasks and
files in am automated way. All the LHCb specific services are developed within the
DIRAC Framework as extensions and thus reuse multiple core APIs.

Another example is the Belle II experiment at KEK, Tsukuba, Japan. This was the
first experiment to start using DIRAC outside LHCb [5]. The initial requirement of the
Belle Collaboration was the possibility to incorporate commercial cloud resources
provided by the Amazon Company. The VMDIRAC subsystem was initiated as a
DIRAC extension to manage computing resources coming from various cloud providers.
Now it is making part of the DIRAC core services and other user communities can
benefit from it.

The BES III experiment at IHEP, Beijing, China is one more HEP experiment using
DIRAC for its production system [14]. In particular, IHEP developers contributed
several modules to the DIRAC File Catalog service, for example, Dataset modules for
managing large collections of files as a single entity. The DIRAC service installation
for the BES III experiment in IHEP was recently upgraded to support multiple user
communities, like the Juno experiment or the CEPC project [15].

Fig. 2. Simultaneously running distributed LHCb jobs

336 V. Gergel et al.

3.2 Multi-domain DIRAC Services

The success of DIRAC for supporting large scientific user communities suggested the
idea that DIRAC services can be also offered to smaller research groups without the
need to install and maintain complicated software and hardware systems. Indeed many
small groups, often without deep knowledge of the distributed computing matters, still
need access to large computing infrastructures for their application. Therefore, DIRAC
services were offered as part of several distributed computing infrastructure projects
[16]. The first such service was provided by the France-Grilles National Grid Infra‐
structure (NGI) project in 2012. Now it serves about 20 different grid Virtual Organi‐
zations. For example, users from the international biomed Virtual Organization submit
more than a half of their payloads through the FG-DIRAC service in France.

Since 2014, the DIRAC4EGI service is offered by the European Grid Infrastructure
(EGI) Project. Several communities representing various scientific domains like life
sciences, climatology and others use this service. The service is also intensively used
for dissemination purposes, for example for tutorials on using distributed grid and cloud
computing resources.

4 Federation of HPC Centers

Several examples of successful incorporation of HPC centers dedicated to massively
parallel applications into a common distributed infrastructure including grid, cloud and
stand-alone centers showed that it is possible to create a dedicated system to federate
multiple HPC sites based on the DIRAC Interware technology. This will offer a full
potential of these centers to large scientific communities that require more and more this
kind of resources for their applications.

It is important to mention that combining grid computing centers together with the
HPC centers can be very useful for communities with very complex workflows where
some steps can be executed on a cheaper grid computing elements and others on HPC
ones. Such optimization can reduce the time and the cost of the overall workflow execu‐
tion.

4.1 Open Distributed Supercomputer Infrastructure Project

A project for construction of an Open Distributed Supercomputer Infrastructure (ODSI)
will have to carry out several tasks. First of all, the concept of the ODSI must be formu‐
lated, which includes several aspects:

• Develop a model of an HPC center that will be as much in common for all the involved
sites as possible. For each site, this model will be described in the system configu‐
ration with the site-specific parameters. As a result this will allow to present all the
HPC centers as logical resources for the users that can be used in a transparent inter‐
changeable manner;

Efficient Distributed Computations with DIRAC 337

• Develop efficient algorithms for managing large numbers of tasks executed in heter‐
ogeneous computing environment including HPC centers, which optimize the usage
of computing and storage resources and minimize the overall execution time;

• Develop the necessary new DIRAC components to support the HPC specific work‐
flows and reuse as much as possible the already existing tools. This will allow seam‐
less migration for the DIRAC users to the new type of resources;

• Formulate common policies of usage of the HPC centers by large distributed user
communities and implement tools to support those policies.

Building the ODSI infrastructure will need going through a number of prototypes
involving an increasing number of HPC centers first on the national and then on the
international levels. Several research laboratories and universities in Russia (JINR,
Dubna, University of Nizhni Novgorod, and others) are planning to undertake such
project. As a result it will create the infrastructure for solving a number of inter-disci‐
plinary large-scale problems of the modern science and technology, which are already
selected as the project pilot applications [17–19].

4.2 Co-design of a Federated HPC Supercomputer

In order to be included into the ODSI infrastructure an HPC center must follow several
design requirements to ensure homogeneous access and security rules. Integration of
traditional computing centers is relatively simple, especially those that participate in
grid infrastructures. The HPC centers are in most cases designed and deployed without
plans for eventual participation in any federation project. Therefore, their organization
has little in common, which makes their integration difficult. The pilot job based WMS
offers opportunities that can be very helpful in such projects because it does not require
running complicated services on sites.

Interaction with the DIRAC Central Services. WMS with pilot jobs assumes
outbound connectivity from the worker nodes. This is necessary to let pilots interact
with the central services to report their status and request user payloads. If a computing
center allows worker node outbound connectivity, then its connection to a DIRAC
infrastructure is similar to traditional centers and requires minimal effort from the site
administrators. However, a majority of HPC centers forbid such outbound connectivity
for various reasons. In this case, DIRAC proposes a special service – Gateway – that
can run on a HPC site gatekeeper host and serve as a proxy to pass messages from pilot
jobs to the central services. Using this service requires a minor change in the pilot
configuration on such sites while fully preserving the overall architecture and logic. The
HPC center in this case must provide the gatekeeper host with appropriate dual external/
local network connectivity. The host throughput capacity should be sufficient to support
the possibly rather intensive traffic of data being produced or analyzed in the center. The
security requirements to this host are very strict, as its certificate will be trusted by the
DIRAC services as representing users whose jobs are running in the center.

Another problem of running jobs in the HPC centers with limited worker node
connectivity is exporting the resulting data. If the data cannot be sent out directly from
the worker nodes, this can be achieved by means of the Storage Element Proxy service.

338 V. Gergel et al.

This service allows access to any Storage Element from the machines not having the
necessary software for corresponding plug-ins or other limitations. In this case, the client
is accessing the Storage Element Proxy service with the DIRAC native DIPS protocol
and the service transmits the access request to the destination SE with the suitable
protocol. The client credentials are checked and used to access the destination service
by delegation. In the case of running user jobs in computing centers where worker nodes
do not have access to the WAN and therefore can not upload the resulting data directly,
running the Storage Element Proxy service in the Gateway host of the computing center
can help to export data from the worker nodes without a need to use some intermediate
buffer storage and transfer data asynchronously by some additional agent or a cron job.
Putting this all together, Fig. 3 illustrates the general scheme of connecting an HPC
center to a DIRAC-based infrastructure.

Fig. 3. Pilot job interaction with DIRAC central services in case of no outbound connectivity in
the worker nodes

Multiple CPU Slot Reservation. Applications running at HPC centers usually use
multiple processors or even multiple worker nodes together. The reservation of multi-
host computing slots is a complicates task and can be done by means of the local batch
system scheduler, for example SLURM, OAR, or others. The pilot based WMS can
exploit the tools offered by the target batch system but it can also offer other interesting
opportunities here.

Computing slots reserved by the pilots can be orchestrated by a central DIRAC MPI
service [11]. This service keeps track of all the groups of pilots that can work together
to run parallel applications. These groups are combining pilots that are running on
worker nodes on the same high performance local network, which allows exchanges
using some variation of the MPI protocol. Accumulation of such pilot groups that can
eventually constitute an MPI ring is a rather complicated and time-consuming process.
The computing slots that are freed by previously running jobs are blocked by the work‐
load management system in order to satisfy requirements of the jobs in its waiting queue
and accumulate the necessary capacity. While the multi-processor slot is being accu‐
mulated, the constituent processors stay idle decreasing the overall efficiency. Therefore,
the accumulated group of slots is a very valuable asset that should be used as much
efficiently as possible. With the pilot jobs coordinated by the DIRAC MPI service such

Efficient Distributed Computations with DIRAC 339

multi-worker reservations can be reused for multiple user payloads without the need to
redo the multi-slot reservations. As a result, this can increase dramatically the efficiency
of the usage of the HPC resources.

In a batch system, the computing slot is reserved for a limited amount of time in
order to ensure a fair sharing of resources among different tasks and users. However,
worker nodes reserved by the DIRAC WMS can execute multiple jobs coming from
different users and ensuring fair sharing on the meta-scheduler level. This mode of
operation has many advantages. It puts less load on the local batch system scheduler and
increases the efficiency of resources usage. However, administration of the batch system
may require stopping the worker nodes from time to time to perform maintenance tasks,
e.g. software or hardware upgrades. In this case, the DIRAC pilots occupying the worker
nodes should receive signals from the batch system ordering the node liberation. The
signals should be well specified and the corresponding handlers should be included into
the DIRAC pilots. The handlers will then ensure graceful finalization of the running user
applications avoiding losses of the job results that can happen in case of abrupt killing
of the batch jobs. The design of the batch system signals and of the pilot signal handlers
requires a close cooperation between the HPC centers administrators and developers of
the DIRAC software.

5 Conclusions

The DIRAC Interware provides a framework and a rich set of services to build distrib‐
uted computing systems. Such systems are successfully used for a number of High
Energy Physics and AstroPhysics experiments, but also for other applications in different
scientific domains. The Workload Management System with pilot jobs proved to be very
efficient to control user tasks in a High Throughput environment. However, it can be
also applied for aggregation of the HPC computing resources. The pilot job scheduling
paradigm can increase significantly the scheduling efficiency for parallel applications
requiring multi-processor computing slots. Combining traditional, cloud and HPC
computing centers in a single distributed infrastructure can allow execution of complex
workflows needing different types of resources on different subsequent steps. As a result,
this can increase the overall efficiency of the usage of otherwise heterogeneous
computing resources.

Building an Open Distributed Supercomputer Infrastructure aggregating multiple
HPC centers in Russia and abroad can bring the support for massively parallel applica‐
tions to a new level. This will make the supercomputer resources elastic from the user
perspective, which means that much more power can be provided momentarily for a
given application when it is actually needed. On the other hand it will dramatically
increase the usage efficiency of multiple HPC centers.

References

1. Tsaregorodtsev, A., et al.: DIRAC3: the new generation of the LHCb grid software. J. Phys.
Conf. Ser. 219, 062029 (2010)

340 V. Gergel et al.

2. DIRAC Project. http://diracgrid.org
3. Casajus, A., Graciani, R., Tsaregorodtsev, A.: DIRAC pilot framework and the DIRAC

Workload Management System. J. Phys. Conf. Ser. 219, 062049 (2010)
4. BES III Collaboration. http://bes.ihep.ac.cn/bes3
5. Kuhr, T., Hara, T.: Computing at Belle II. In: Proceedings of the CHEP 2012 International

Conference, New-York, May 2012
6. Arrabito, L., et al.: Application of the DIRAC framework in CTA: first evaluation. In:

Proceedings of the CHEP 2012 International Conference, New-York, May 2012
7. OpenScience Grid. https://www.opensciencegrid.org/
8. ARC project. http://www.nordugrid.org/arc/
9. Smith, A., Tsaregorodtsev, A.: DIRAC: data production management. J. Phys. Conf. Ser.

119, 062046 (2008)
10. Gfal2 Project. https://dmc.web.cern.ch/projects-tags/gfal-2
11. Tsaregorodtsev, A., Hamar, V.: MPI support in the DIRAC Pilot Job Workload Management

System. J. Phys. Conf. Ser. 396, 032109 (2012)
12. Stagni, F., Charpentier, P.: The LHCb DIRAC-based production and data management

operations systems. J. Phys.: Conf. Ser. 368, 012010 (2012)
13. WLCG Computing Grid Infrastructure. http://wlcg.web.cern.ch
14. Zhang, X.M., Pelevanyuk, I., Korenkov, V., et al.: Design and operation of the BES-III

distributed computing system. Procedia Comput. Sci. 66, 619–624 (2015)
15. Yan, T., Suo, B., et al.: Multi-VO support in IHEP’s distributed computing environment. J.

Phys. Conf. Ser. 664, 062068 (2015)
16. Tsaregorodtsev, A.: DIRAC Distributed Computing Services. J. Phys. Conf. Ser. 513, 03209

(2014)
17. Barkalov, K., Gergel, V.: Multilevel scheme of dimensionality reduction for parallel global

search algorithms. In: OPT-i 2014. An International Conference on Engineering and Applied
Sciences Optimization, Kos Island, Greece, 4–6 June 2014, pp. 2111–2124 (2014)

18. Gergel, V.P., Strongin, R.G.: Parallel computing for globally optimal decision making on
cluster systems. Future Gener. Computer Systems 21(5), 673–678 (2005)

19. Bastrakov, S., Meyerov, I., Gergel, V., et al.: High performance computing in biomedical
applications. Procedia Comput. Sci. 18, 10–19 (2013)

Efficient Distributed Computations with DIRAC 341

http://diracgrid.org
http://bes.ihep.ac.cn/bes3
https://www.opensciencegrid.org/
http://www.nordugrid.org/arc/
https://dmc.web.cern.ch/projects-tags/gfal-2
http://wlcg.web.cern.ch

The Co-design of Astrophysical Code
for Massively Parallel Supercomputers

Boris Glinsky1, Igor Kulikov1, Igor Chernykh1(&), Dmitry Weins1,
Alexey Snytnikov1, Vladislav Nenashev2, Andrey Andreev3,

Vitaly Egunov3, and Egor Kharkov3

1 Institute of Computational Mathematics and Mathematical Geophysics
SB RAS, Lavrentjeva Ave. 6, 630090 Novosibirsk, Russia

chernykh@ssd.sscc.ru
2 Novosibirsk State Technical University,

Prospekt K. Marksa, 630073 Novosibirsk, Russia
3 Volgograd State Technical University,

Lenin Avenue, 28, 400005 Volgograd, Russia

Abstract. The rapid growth of supercomputer technologies became a driver for
the development of natural sciences. Most of the discoveries in astronomy, in
physics of elementary particles, in the design of new materials in the DNA
research are connected with numerical simulation and with supercomputers.
Supercomputer simulation became an important tool for the processing of the
great volume of the observation and experimental data accumulated by the
mankind. Modern scientific challenges put the actuality of the works in com-
puter systems and in the scientific software design to the highest level. The
architecture of the future exascale systems is still being discussed. Nevertheless,
it is necessary to develop the algorithms and software for such systems right
now. It is necessary to develop software that is capable of using tens and
hundreds of thousands of processors and of transmitting and storing of large
volumes of data. In the present work the technology for the development of such
algorithms and software is proposed. As an example of the use of the tech-
nology, the process of the software development is considered for some prob-
lems of astrophysics.

Keywords: Exascale systems � Co-design � High performance computing �
Computational astrophysics � Physics of plasmas

1 Introduction

Recently the scientific community is widely discussing the transition to exascale
supercomputers. The main global challenges that the computer science specialists are
facing are the following. First, it is the problem of the development of algorithms that

This work was partially supported by RFBR grants 15-31-20150, 15-01-00508, 16-01-00564,
14-01-00392, 16-07-00534, 16-29-15120 and by Grant of the President of Russian Federation for the
support of young scientists number MK 6648.2015.9.

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 342–353, 2016.
DOI: 10.1007/978-3-319-49956-7_27

can consider the massive exascale level parallelism. Second, it is also the high-energy
consumption of high performance computers. Third, it is the necessity to store and to
process of exadata. Finally, it is the possible deviation from the classical paradigms of
parallel programming. It is very important to research and development of next gen-
eration algorithms, software, and applications as an investment in hardware [1]. During
the recent 7–8 years, a huge number of papers on the above listed questions appeared.
In [1–5] a review is given and various approaches to exascale scientific software design
are given. Most of these papers are based on co-design approach and also on the
presumption that exascale systems will be built as massively parallel computers with
the use of computational accelerators. In [6–8] the intrinsic problems of exascale
systems are listed, such as insufficient concurrent work available to maintain high
utilization of all resources, time-distance delay intrinsic to parallel actions and
resources on the critical execution path, which is not necessary in a sequential variant,
delay due to the lack of availability of oversubscribed shared resources. Also in [6–8]
various methods for overcoming the intrinsic problems are given. In [9] the perfor-
mance analysis is given for splitter-based parallel sorting algorithm on one of the most
interesting supercomputers, namely the TSUBAME 2.5, which has 4000 NVIDIA
K20x GPUs. Detailed analysis, however, reveals that the limitation is almost entirely
due to the bottleneck in CPU-GPU host-to-device bandwidth. One of the main ques-
tions is the energy efficiency of programs [10, 11]. The analysis of the energy efficiency
of the programs using computation accelerators may be conducted with both Nvidia
nvprof utility [12] and Intel micsmc [13]. The most powerful computer from Top500
list consume over 15 MW. That is why the efficient workload distribution for the
exascale system is one of the most important questions. Due to this reason, the design
of the algorithms and programs for the systems based on mobile processors is highly
actual [14, 15]. Considering the above listed papers, we propose our approach to the
design of algorithms and software for massively parallel supercomputers:

1. The co-design: co-design here is the adaptation of the computational algorithm as
well as the mathematical method to the architecture of the supercomputer at every
stage of the problem solution.

2. Simulation modeling with AGNES: development of the preemptive algorithms and
software for the most promising exascale computers on the basis of simulation
modeling

3. Estimation of the energy efficiency of the algorithm: efficiency of memory uti-
lization, of the resources of the processor and computation accelerators and of the
network resources, analysis of energy consumption.

The advantage of our approach is the use of the AGNES package for the simulation
modeling of the program execution. The AGNES package [16] enables to make the
prediction of the scalability of the program basing on the statistics accumulated from
program runs on various architectures [16, 17]. This is the difference of the AGNES
package from the work in papers [18, 19] and that is why it enables to get an exact
enough prediction of the scalability based on the real execution data.

The Co-design of Astrophysical Code 343

2 The Co-design Approach

The development of scientific software without considering the target architecture may
result in scalability [20]. We propose the following four stages for the design of the
scientific software:

1. The choice of the physical model according to the problem statement and the
possibility of the implementation of the target supercomputer architecture.

2. The choice of the mathematical model for the accurate description of the physical
processes under study. The mathematical model must take the details of the exas-
cale system into account.

3. The choice of computational methods considering the details of the exascale system
4. The implementation of the parallel code for massively parallel supercomputers.

As it was already mentioned in the Introduction, the development of code for
petascale and especially for exascale systems is a complex scientific problem that
requires the co-design approach. In such a way, the peculiarities of the problems of
astrophysics are considered while keeping in mind the four above listed stages of
co-design. Thus in each stage the different though interrelated problems are solved. Let
us further describe each stage in detail.

At the stage of the construction of the physical model, the specification of the
problem under study is being done. In addition, the sub-grid physical processes are
defined. Moreover, at this stage, it is possible to make a reserve for further stages. In the
problems of astrophysics, there are two physically different components. They are the
gas component and the collisionless component. The gas component is employed for
the description of the intergalactic and galactic gas, and for the simulation of stars (for
example, the collapse of stars). The collisionless component is used for the description
of stars and of dark matter in the galaxies and sometimes of the interstellar dust. The
simulation of the interstellar component implies many difficulties. In the N-body
model, which is traditionally employed for the description of the collisionless com-
ponent there is the hard restriction for the number of particles. There is also the
problems of the spurious entropy, of the numerical noise and of the particle form-factor
choice in Particle-Mesh methods. Moreover, particle methods require load balancing
which is a complex procedure for Peta- and Exascale supercomputers. A powerful
option for the N-body model is the model based on the first moments of the colli-
sionless Boltzmann equation [21, 22]. This model was successfully tested on the
problems of the evolution of galaxies and the collision of galaxies.

While the mathematical formulation of the gas component model involved no big
difficulties, for the collisionless component it is another way. The mathematical for-
mulation of the first moments of the collisionless Boltzmann equation may be written in
different forms. The specificity of the astrophysical problems is that the thermal con-
ductivity terms have no crucial meaning. All the dynamics is defined by the distribution
of density and velocity and by the entropy function. The entropy function for the gas
component is the pressure and for the collisionless component, it is the velocity dis-
persion tensor.

344 B. Glinsky et al.

The original numerical method based on the combination of the Godunov method,
operator splitting approach and piecewise-parabolic method on local stencil was used
for numerical solution of the hyperbolic equations [23]. The piecewise-parabolic
method on local stencil provides the high precision order. The equation system is
solved in two stages: at the Eulerian stage, the equations are solved without advective
terms and at the Lagrangian stage, the advection transport is being performed. At the
Eulerian stage, the hydrodynamic equations for both components are written in the
non-conservative form and the advection terms are excluded. As the result, such a
system has an analytical solution on the two-cell interface. This analytical solution is
used to evaluate the flux through the two-cell interface. In order to improve the pre-
cision order, the piecewise-parabolic method on the local stencil (PPML) is used. The
method is the construction of local parabolas inside the cells for each hydrodynamic
quantity. The main difference of the PPML from the classical PPM method is the use of
the local stencil for computation. It facilitates the parallel implementation by using only
one layer for subdomain overlapping. It simplifies the implementation of the boundary
conditions and decreases the number of communications thus improving the scalability.
The detailed description of this method can be find in [24]. The same approach is used
for the Lagrangian stage. Now the Poisson equation solution is based on Fast Fourier
Transform method. This is because the Poisson equation solution takes several percents
of the total computation time. After the Poisson equation solution, the hydrodynamic
equation system solution is corrected. It should be noticed here that the system is
overdefined. The correction is performed by means of the original procedure for the full
energy conservation and the guaranteed entropy nondecrease. The procedure includes
the renormalization of the velocity vector length, its direction remaining the same (on
boundary gas-vacuum) and the entropy (or internal energy) and dispersion velocity
tensor correction. Such a modification of the method keeps the detailed energy balance
and guaranteed non-decrease of entropy.

The limitation of the astrophysical codes based on the SPH [25] and AMR [26]
methods is the limited scalability. It is stipulated by the use of the tree-based procedure
in these methods. It is well known that the tree-based procedures have strict limitations
on scalability resulting in the limitations of the AMR and SPH parallel implementa-
tions. In addition, the AMR method has many difficulties in the transition from one
mesh to another. This may result in the distortion of the solution. In the original
approach presented in the paper employs regular meshes. The usage of regular meshes
does not cause new mesh problems and at the same time gives a possibility to use
various Cartesian topologies of communication for supercomputers and for
accelerators.

In this work, the attention is focused on three architectures: the classical multi-
processor architecture, the hybrid architecture equipped with NVIDIA Tesla/Kepler the
graphical accelerators and the hybrid architecture equipped with Intel Xeon Phi
accelerators. The main characteristic of the supercomputer is the topology of the
connections between computational cores. For the classical architecture, the topology
might be arbitrary, but in most cases, the multidimensional Cartesian topology is used.

If the graphical accelerators are being used, then the multilevel Cartesian topology
of the GPU plays the major role. With Intel Xeon Phi accelerators, the topology has the

The Co-design of Astrophysical Code 345

shape of a ring, which is also a sort of Cartesian topology. In such a way, the focus
must be on arbitrary multidimensional Cartesian topologies.

The MPI library was used as the main tool for the development of the parallel code.
Nvidia’s CUDA technology was used for computations with graphical accelerators.
This technology was used despite its complexity because provides full control over the
computational process. Moreover, CUDA provides the low-level means for data
movement between CPU and GPU. It also enables to define the topology of compu-
tational threads explicitly and to control their resources.

OpenMP technology was used for the computations with Intel Xeon Phi acceler-
ators in the native mode. It was performed by means of the decomposition of the outer
computational loops along the subdomain cells. In the offload mode, the extension of
the OpenMP technology was used with the explicit specification of the memory domain
transmitted to the accelerator and the procedures executed by the accelerator.

3 The Essentials to Gain Performance on Intel Xeon Phi
Accelerators

There are many papers and success stories about transferring codes from CPU to Intel
Xeon Phi (KNC) accelerator. The most of them are dedicated to bottlenecks of Intel
Xeon Phi architecture and problems of software design [27, 28]. The key stages of code
optimization for Intel Xeon Phi accelerator are algorithm optimization, optimization of
arithmetic operations, optimization of memory operations, reducing the number of
memory load operations, FMA instructions usage. In case of our astrophysics code, we
achieve 6.5x speed-up due to the next optimizations:

1. Vectorization (changing scalar data type to vector data type).

Initial code:

vppp = dmedium(Vx, i + 1, k + 1, l + 1, i, k, l, NX, NY,
NZ);
rvppp = a[i*NZ*NY + k*NZ + l];
 if (vppp < 0.0) rvppp = a[(i + 1)*NZ*NY + k*NZ + l];

Vectorized code:

vppp = dmediumVectPhi(Vx, i + 1, k + 1, l + 1, i, k, l,
NX, NY, NZ);
rvppp = _mm512_load_pd(a + i*NZ*NY + k*NZ + l);
__m512d next = _mm512_load_pd(a + (i + 1)*NZ*NY + k*NZ +
l);
__m512d zero = _mm512_set1_pd(0);
rvppp = _mm512_mask_blend_pd(_mm512_cmp_pd_mask(vppp, ze-
ro, _CMP_LT_OS), rvppp, next);

346 B. Glinsky et al.

2. Optimization of arithmetic operations (changing slow data operations to fast data
operations with vector data types).

Initial code:

__m512d four = _mm512_set1_pd(4.0);
FXP =
_mm512_div_pd(_mm512_add_pd(_mm512_add_pd(_mm512_mul_pd(v
ppp, rvppp), _mm512_mul_pd(vppm, rvppm)),
_mm512_add_pd(_mm512_mul_pd(vpmp, rvpmp),
_mm512_mul_pd(vpmm, rvpmm))), four);

Optimized code:

__m512d quoter = _mm512_set1_pd(0.25);
FXP =
_mm512_div_pd(_mm512_add_pd(_mm512_add_pd(_mm512_mul_pd(v
ppp, rvppp), _mm512_mul_pd(vppm, rvppm)),
_mm512_add_pd(_mm512_mul_pd(vpmp, rvpmp),
_mm512_mul_pd(vpmm, rvpmm))), quoter);

3. Memory aligning (alignment data in memory for optimal memory usage)

Initial code:

R = new real[NX*NY*NZ];
inline __m512d _mm512_loadu_pd(double* a)
{
__m512d v_temp = _mm512_setzero_pd();
v_temp = _mm512_loadunpacklo_pd(v_temp, a);
v_temp = _mm512_loadunpackhi_pd(v_temp, a + 8);
return v_temp;

}
__m512d next = _mm512_loadu_pd(a + (i + 1)*NZ*NY + k*NZ +
l);
_mm512_storeu_pd(anext + i*NZ*NY + k*NZ + l, result);

Optimized code:

R = (real*)_mm_malloc((NX*NY*NZ + 8) * 8, 64);
R+=7;
__m512d next = _mm512_loadu_pd(a + (i + 1)*NZ*NY + k*NZ +
l);
_mm512_storeu_pd(anext + i*NZ*NY + k*NZ + l, result);

The Co-design of Astrophysical Code 347

4. FMA instructions usage. The FMA instruction set is an extension to the 128 and
256-bit Streaming SIMD Extensions instructions in the x86 microprocessor
instruction set to perform fused multiply–add (FMA) operations [29].

Initial code:

FXM=_mm512_mul_pd(_mm512_add_pd(_mm512_add_pd(
_mm512_mul_pd(vmpp, rvmpp), _mm512_mul_pd(vmpm, rvmpm)),
_mm512_add_pd(_mm512_mul_pd(vmmp, rvmmp),
_mm512_mul_pd(vmmm, rvmmm))), quoter);

Optimized code:
FXM=_mm512_mul_pd(vmpp, rvmpp);
FXM=_mm512_fmadd_pd(vmpm, rvmpm,FXM);
FXM=_mm512_fmadd_pd(vmmp, rvmmp,FXM);
FXM=_mm512_fmadd_pd(vmmm, rvmmm,FXM);
FXM=_mm512_mul_pd(FXM, quoter);

4 Simulation Modeling for an Astrophysics Problem

Supercomputers of the exascale level will appear approximately in 2018–2020.
Nevertheless, the scalability of an algorithm may be studied now by means of the
simulation modeling. It is known that simulation modeling is applied for the study of
the behavior of the complex systems.

One of the kinds of such complex systems are the exascale computers since they
contain tens or hundreds of millions of computational cores. The simulation model
enables to find the bottlenecks in the algorithms and to find out the need for
improvement. It provides the information on parameters that impact scalability. In the
present work, the peculiarities of the behavior of computational algorithms on various
clusters are considered. The estimation of their scalability is performed by the
multi-agent modeling system called AGNES (AGent NEtwork Simulator) [16]. Special
agents were created in the AGNES system for the astrophysics algorithms under study.
The agents simulate the behavior of computational nodes in the course of execution of
the corresponding algorithms (AstroGrid). These agents simulate the behavior of
computational nodes by the modeling of computations for each of the problems and by
the modeling of sending data to neighbor nodes. The AstroGrid agent sends messages
to a couple of neighbors and waits for the messages from them. Only after that, the
computation loop continues. The modeled delay time intervals are gathered and
compared with the delay time intervals taken from the real launches of the astrophysics
code under study. Simulation modeling results are compared to the parameters of the
program run. This is done in order to check the simulation model of the astrophysical
code execution. The real run was performed with the supercomputer called the
Polytechnic in the Saint-Petersburg Polytechnic University. The computer is essentially
the RSC PetaStream architecture [30] machine equipped with Intel Xeon Phi 5120D
(KNC) accelerators. Each node of Polytechnic has 8x Intel Xeon Phi accelerators with
their own interconnect (only native mode can be used for calculations). Users cannot

348 B. Glinsky et al.

use CPUs in this architecture. This installation has Intel Parallel Studio XE 2016
software tool with Intel C ++ compiler 16 and Intel MPI 5.3.3. This system has 256x
Intel Xeon Phi accelerators (more than 60000 cores). The results of the checking of the
simulation model are given in Fig. 1. It is possible to say that the simulation model is
similar to the real run. Unfortunately, we cannot use 100 % of KNC performance. We
got from 30 to 100 GFLOPS performance on each accelerator for astrophysical code
due to memory size restrictions (it is not possible to put enough data to 16 GB of
internal accelerator memory). We hope that next Intel Xeon Phi series (KNL archi-
tecture) accelerators with hybrid memory mode will speed up our code better.

The source data for the scalability study were obtained from the NKS-30T cluster in
the Siberian Supercomputer Centre and in the Joint Supercomputer Centre RAS. The
simulation modeling was done for a large number of cores. The simulation results are
given in Fig. 2.

It follows from the Fig. 2 that the execution time slightly (about 20%) grows for
5120 computational nodes and the best scalability results are shown for the compu-
tational nodes with Nvidia Kepler K40 and Intel Xeon Phi (native mode).

5 Energy Efficiency

At the moment energy, efficiency is actual mostly for commercial platforms [3].
However, with the age of exascale coming closer, the importance of HPC will increase
greatly. The inefficient use of tens of megawatts may bring to naught the very idea to
create exascale computers.

The term «energy efficiency for scientific HPC applications» in the present work
means the most efficient use of each core, processor or computational accelerator; the
minimization of communication between computational nodes; good workload bal-
ancing of the program. The minimization of communications enables to decrease the

Fig. 1. Simulation for the astrophysical code.

The Co-design of Astrophysical Code 349

idle standing time for processors and accelerators. Good workload balancing enables to
load the computational system uniformly. In the case of good workload balancing and
stable node balancing we can make a set of the program runs that shows the relation
between power consumption and usage of cores. The most energy efficient algorithm
gave the best FLOPS per Watts (Joules/sec) value. For our astrophysical code, we

Fig. 2. Scalability research of the astrophysical code.

350 B. Glinsky et al.

reduced the time for MPI operations to 7–8% of the total time and to achieve the level
of imbalance of 2–3% through all the process threads. These parameters provided the
weak scalability of 75% for 224x Intel Xeon Phi accelerators (more than 50 K cores).
We achieved 3 GFLOPS per Watt for our astrophysical code.

6 Conclusion

In this work, an approach is presented for the development of algorithms and software
for massively parallel supercomputers. The approach consists of the three interrelated
stages. The stage is the co-design, the simulation of scalability and the improvement of
the energy efficiency. Co-design here is the adaptation of the computational algorithm
as well as the mathematical method to the architecture of the supercomputer at every
stage of the problem solution. In our case, the key stages of code optimization are
algorithm optimization, optimization of arithmetic operations, optimization of memory
operations, reducing the number of memory load operations, FMA instructions usage.
The simulation of the scalability by means of the AGNES package is an important
stage in the development of algorithms and software. At this stage, the proposed
architecture of the exascale system is set and the scalability is studied with this
architecture. The stage of the improvement of energy efficiency stage consists of the
analysis of the possible code improvements such as the increase of the computational
load of CPUs and GPUs, making better load balancing and reducing the number of
MPI operations.

References

1. Reed, D.A., Dongarra, J.: Exascale computing and big data. Comm. ACM 58(7), 56–68
(2015)

2. Dongarra, J.J., et al.: The international exascale software project roadmap. Int. J. High Perf.
Comp. App. 25(1), 3–60 (2011)

3. Keyes, D.E.: Exaflop/s: the why and the how. C.R. Mechanique 339, 70–77 (2011)
4. Hsu, C-H., Kremer, U.: The design, implementation, and evaluation of a compiler algorithm

for CPU energy reduction. In: Programming Languages, Design, and Implementation (2003)
5. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan,

N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel
computing landscape. Comm. ACM 52, 56–67 (2009)

6. Sterling, T.: Achieving scalability in the presence of asynchrony for exascale computing.
Adv. Parall. Comp. 24, 104–117 (2013)

7. Gao, G., Sterling, T., Stevens R., Hereld, M., Zhuparallex, W.: A study of a new parallel
computation model. In: Proceedings of IEEE International Parallel and Distributed
Processing Symposium, pp. 1–6 (2007)

8. Tabbal, A., Anderson, M., Brodowicz, M., Kaiser, H., Sterling, T.: Preliminary design
examination of the parallex system from a software and hardware perspective. Sigmetrics
Perform. Eval. Rev. 38(4), 81–87 (2011)

The Co-design of Astrophysical Code 351

9. Shamoto, H., Shirahata, K., Drozd, A., Sato, H., Matsuoka, S.: Large-scale distributed
sorting for GPU-based heterogeneous supercomputers. In: Proceedings 2014 IEEE
International Conference on Big Data, IEEE Big Data 2014, pp. 510–518 (2014)

10. Springer, R., Lowenthal, D.K., Rountree, B., Freeh, V.W.: Minimizing execution time in
MPI programs on an energy-constrained, power scalable cluster. In: Proceedings of the
Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 230–238 (2006)

11. Freeh, V.W., Pan, F., Lowenthal, D.K., Kappiah, N., Springer, R., Rountree, B., Femal, M.
E.: Analyzing the energy-time tradeoff in high-performance computing applications. IEEE
Trans. Parall. Distr. Sys. 18(6), 835–848 (2007)

12. NVIDIA profiler. http://docs.nvidia.com/cuda/profiler-users-guide/
13. Intel micsmc utility. https://software.intel.com/en-us/articles/measuring-power-on-intel-

xeon-phi-product-family-devices
14. Nikolskiy, V., Stegailov, V.: Floating-point performance of ARM cores and their efficiency

in classical molecular dynamics. J. Phys.: Conf. Ser. 681, Conf. 1, 1–7 (2015)
15. Keller, V., Gruber, R.: One joule per GFlop for BLAS2 now!. In: AIP Conference

Proceedings, vol. 1281, pp. 1321–1324 (2010)
16. Podkorytov, D., Rodionov, A., Sokolova, O., Yurgenson, A.: Using agent-oriented

simulation system agnes for evaluation of sensor networks. In: Vinel, A., Bellalta, B.,
Sacchi, C., Lyakhov, A., Telek, M., Oliver, M. (eds.) MACOM 2010. LNCS, vol. 6235,
pp. 247–250. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15428-7_24

17. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley, Chichester (2007)

18. Glinsky, B., Rodionov, A., Marchenko, M., Podkorytov, D., Weins, D.: Scaling the
distributed stochastic simulation to exaflop supercomputers. In: Proceedings of IEEE High
Performance Computing and Communication and 2012 IEEE 9th International Conference
on Embedded Software and Systems, pp. 1131–1136 (2012)

19. Chavarría-Miranda, D., Manzano, J., Krishnamoorthy, S., Vishnu, A., Barker, K., Hoisie,
A.: SCaLeM: a framework for characterizing and analyzing execution models. In:
Proceedings of 20 Years of Beowulf Workshop, ACM International Conference Proceeding
Series, pp. 34–43 (2015)

20. Kulkarni, A., Lang, M., Lumsdaine, A.: GoDEL: A multidirectional dataflow execution
model for large-scale computing. In: Proceedings of the First Workshop on Data-Flow
Execution Models for Extreme Scale Computing, pp. 10–18 (2011)

21. Kulikov, I.: GPUPEGAS: a new GPU-accelerated hydrodynamic code for numerical
simulations of interacting galaxies. Astrophys. J. Suppl. Ser. 214(12), 1–12 (2014)

22. Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.: AstroPhi: a
code for complex simulation of dynamics of astrophysical objects using hybrid supercom-
puters. Comp. Phys. Comm. 186, 71–80 (2015)

23. Godunov, S.K., Kulikov, I.M.: Computation of discontinuous solutions of fluid dynamics
equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024
(2014)

24. Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation,
operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput.
Phys. 317, 316–346 (2016)

25. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to
non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

26. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics.
J. Comput. Phys. 82, 64–84 (1989)

352 B. Glinsky et al.

http://docs.nvidia.com/cuda/profiler-users-guide/
https://software.intel.com/en-us/articles/measuring-power-on-intel-xeon-phi-product-family-devices
https://software.intel.com/en-us/articles/measuring-power-on-intel-xeon-phi-product-family-devices
http://dx.doi.org/10.1007/978-3-642-15428-7_24

27. Pennycook, S.J., Hughes, C. J., Smelyanskiy, M., Jarvis, S.A.: Exploring SIMD for
molecular dynamics, using intel xeon processors and intel xeon phi coprocessors. In: 2013
IEEE 27th International Symposium on Parallel and Distributed Processing (IPDPS) 2013,
pp. 1085–1097. IEEE (2013)

28. Kim, S., Han, H.: Efficient SIMD code generation for irregular kernels. In: Proceedings of
the Symposium on Principles and Practice of Parallel Programming, New Orleans, LA, 25–
29 February 2012, pp. 55–64 (2012)

29. Intel® Architecture Instruction Set Extensions Programming Reference. https://software.
intel.com/sites/default/files/m/9/2/3/41604

30. RSC PetaStream – 1PFLOPS per cabinet massively parallel supercomputer. http://www.
rscgroup.ru/sites/default/files/rsc_petastream_en_print.pdf

The Co-design of Astrophysical Code 353

https://software.intel.com/sites/default/files/m/9/2/3/41604
https://software.intel.com/sites/default/files/m/9/2/3/41604
http://www.rscgroup.ru/sites/default/files/rsc_petastream_en_print.pdf
http://www.rscgroup.ru/sites/default/files/rsc_petastream_en_print.pdf

Hardware-Specific Selection the Most
Fast-Running Software Components

Alexey Sidnev(&)

Lobachevsky State University of Nizhni Novgorod,
Nizhny Novgorod, Russia

alexey.sidnev@itmm.unn.ru

Abstract. Software development problems include, in particular, selection of
the most fast-running software components among the available ones. In the
paper it is proposed to develop a prediction model that can estimate software
component runtime to solve this problem. Such a model is built as a function of
algorithm parameters and computational system characteristics. It also has been
studied which of those features are the most representative ones. As a result of
these studies a two-stage scheme of prediction model development based on
linear and non-linear machine learning algorithms has been formulated. The
paper presents a comparative analysis of runtime prediction results for solving
several linear algebra problems on 84 personal computers and servers. The use
of the proposed approach shows an error of less than 22% for computational
systems represented in the training data set.

Keywords: Software development � Software component selection � Runtime
prediction � Computational system characteristics � Machine learning

1 Introduction

High performance and distributed computing has been being a relevant field in recent
years. At present, we have a deeper understanding of the necessity of the algorithm
optimization for core computational problems with respect to specific architecture and
problem parameters. As a result, there are plenty of high performance libraries specially
optimized for various hardware architectures (such as Intel MKL, AMD ACML,
NVIDIA CUDA SDK, Sun Performance Library, etc.) at present. Some of these libraries
allow automatic selecting efficient algorithm implementations and the parameters of
these ones, which would be optimal for specific architectures and problem features.
ATLAS is one of the most known examples of such libraries, which provides portably
efficient BLAS implementation.

Currently, the prediction of runtime and, consequently, selecting the optimal
algorithms for specific problems is one of the most important fields of distributed and

This research was supported by Russian Science Foundation, Project No 16-11-10150 “Novel
efficient methods and software tools for the time consuming decision making problems with using
supercomputers of superior performance”.

© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 354–364, 2016.
DOI: 10.1007/978-3-319-49956-7_28

high performance computing applications. Some research has been carried out in this
area. J.R. Rice has stated the problem of algorithm selection for the first time [1] and
has reduced this one to the approximation problem. One of the main approaches to the
best algorithm selection consists in the runtime prediction and the selection of the
fastest algorithm.

One of the possible ways to predict the algorithm runtime can be based on the results
of the test runs. Brewer [2] has described the supercomputer runtime prediction by
means of linear modeling based on the results of numerical experiments. However
executing the experiments for all possible values of studied parameters can be
time-consuming too much. Yang et al. [3] suggested analysis of an algorithm efficiency
based on the information obtained in the course of its partial execution. In the same way,
it is possible to predict the runtime for small dimensions and to extrapolate the results
onto greater ones. However, the execution efficiencies for small and greater dimensions
may differ. Since mid-1990s, machine learning algorithms have been used to solve the
runtime prediction problem. The methods used the most extensively include the linear
regression and its modifications (namely, the ridge and lasso regressions), the ensembles
of decision trees, the support vector machines, the neural networks (see [4] for example),
and the stochastic Gaussian processes [5]. Kotthoff et al. [6] have compared the results
of several machine learning methods used for solving the algorithm selection problem.
According to these results, the linear regression and the decision trees have been proven
to be the most efficient in most cases.

In [7–9] the issue of algorithm selection efficiency has been discussed to consider a
scheduling problem as an example (e.g. calculating foodstuffs transportation routes
through a city). Howe et al. [8] have stated that depending on problem parameters, the
majority of such algorithms either find an appropriate solution quickly or take a long
time to find it (in the latter case, the algorithm is stopped because of preset runtime limit
is exhausted). Therefore, it makes sense to use appropriate algorithms for specific
classes of problem parameters only while the efficient planners enabling selection of
suitable algorithm are demanded strongly. Xu et al. [10] have analyzed well-known the
SAT solving planner. Gagliolo and Schmidhuber [11] have compared 28 planners
using 4,726 test data sets. As can be seen from the above, the issue of automatic choice
of the efficient algorithm selection has been studied extensively to date [12].

All authors referred to above use the run history for runtime prediction assuming
the same computational system to be used to execute the algorithm. In the present
paper, more generalized problem statement is considered, which enables the prediction
without experiments involving the target computational systems.

2 Runtime Prediction Problems

We assume that r; r[1, implementations of an algorithm are available and all of them
solve the same problem and have the same set of parameters. For example, for matrix
multiplication problem these parameters are the matrix dimensions. Let

Hardware-Specific Selection 355

P ¼ p1; p2; . . .; pmð Þ

is the problem parameter vector and

X ¼ x1; x2; . . .; xkð Þ

to be the characteristics vector of a computational system, so the ith implementation
runtime yi with the parameters P and the characteristics X will be

yi ¼ fi P;Xð Þ;

where fi is an unknown functional dependence, i ¼ 1; r.
The most efficient implementation of algorithm i* minimizes the time required to

solve specific problem:

i� ¼ argmin
i¼1::r

fi P;Xð Þ: ð1Þ

In order to solve problem (1), one needs to solve the runtime prediction problem,
which consists in constructing a function gi P;Xð Þ approximating fi with a sufficient
accuracy. The usual approaches produce the runtime predictions for particular algo-
rithm implementation using the history of runs on the same computational system, i.e.
function fi depends on the algorithm parameters P only. Such an approach requires
testing the algorithm implementation on every computational system that might take a
lot of time. This paper proposes an alternative approach that allows predicting without
testing on the target computational systems.

We choose the prediction quality to be the subject to the next loss function:

Q gið Þ ¼
X
P;Xð Þ2T

gi P;Xð Þ � fi P;Xð Þð Þ2; ð2Þ

where T is the test data set, which values fi P;Xð Þ are known in advance. So far, the
runtime prediction problem for the specific computational system involves the con-
struction of a function g�i , which minimizes the loss function:

g�i ¼ argmin
gi

X
P;Xð Þ2T

gi P;Xð Þ � fi P;Xð Þð Þ2: ð3Þ

In order to construct g�i , let us use the runtime data for n computational systems.
The set

T ¼ Xi; yi;j;Pi;j
� �ei

j¼1

� �n

i¼1
ð4Þ

contains the results of all executed runs (the training set), where ei is the number of
experiments involving the ith computational system.

356 A. Sidnev

3 Approach to Solving Runtime Prediction Problems

Runtime prediction problem (3) can be considered as a special case of the regression
problem, which can be solved by a wide range of machine learning methods. In order
to use any of these methods, we need to define a parametric set of mappings g P;X; hð Þ,
where h 2 H is some undefined parameters and g : P� X �H ! Rþ is a function,
which can be used to approximate the exact prediction dependencies fi, i ¼ 1; r.
Problem (3) has several non-trivial features, which make it difficult to construct such a
parametric set:

1. The algorithm implementation runtime depends on the parameters of the compu-
tational systems in a non-trivial way, so this dependency can be hardly represented
as an analytical function with sufficient accuracy.

2. The extrapolation is necessary, e.g. a runtime prediction is to be done for larger
problem dimensions then it is available in the training set.

To overcome these difficulties the proposed approach combines the linear regres-
sion methods with the non-linear ones.

Let us assume that for each implementation of the algorithm, an asymptotic
complexity estimate is given in the next unified form:

h P;Cð Þ ¼ c0 þ
Xl

i¼1

ciui Pð Þ; ð5Þ

where ui is a function that depends on the algorithm parameters. Then, the runtime of
algorithm implementation yi can be represented as a function h P;Cð Þ with the adjusted
coefficients C ¼ c0; c1; . . .; clð Þ. Note that the coefficients C depend on the problem
parameters P because different implementations of the same algorithm may be opti-
mized differently for different problem parameters.

There are two stages in the learning algorithm (Fig. 1):

1. For each computational system with the characteristic X and for each value of
P from the training set, the coefficients C of function h P;Cð Þ are being found with
a preset threshold value W for the coefficient of determination. The regression of
the coefficients C is applied for each computational system i ¼ 1; n separately:
(a) Initialize the training set Ti ¼ yi;j;Pi;j

� �ei
j¼1, s ¼ 1.

(b) If s[ei, then all samples were processed, go to step (f); else use the linear
least squares algorithm to estimate the coefficients C ¼ c0; c1; . . .; clð Þ of the
function h P;Cð Þ for the data set Ti.

(c) Calculate the adjusted coefficient of determination for the linear model from
previous step and the data set Ti considering the number of model parameters

R2 ¼ R2 � 1� R2� � l
ei � l� 10

ð6Þ

Hardware-Specific Selection 357

where R2 is the coefficient of determination.
(d) If the value of R2 is larger than the preset threshold value W, then PCs ¼ C,

s ¼ sþ 1, go to step (b); else go to step (e).
(e) If h Pi;s;C

� �
[yi;s, then exclude arg max

j¼1::ei
h Pi;j;C
� �� yi;j

� �
from Ti, else exclude

arg min
j¼1::ei

h Pi;j;C
� �� yi;j

� �
from Ti. ei ¼ ei � 1, go to step (b).

(f) For computational system i perform clustering of coefficients PCei
j¼1 using

DBSCAN [13] in order to eliminate the outliers.
2. Form the training set using the coefficients obtained at the previous step and

corresponding characteristics of computational system and algorithm parameters
X;Pð Þ ! C, perform training of non-linear model on the obtained data (using the
Random Forest method [14]).

The prediction algorithm has two stages also (Fig. 1):

1. The computational system characteristics X* and the algorithm parameters P* are
used to predict the coefficients C� ¼ c�0; c

�
1; . . .; c

�
l

� �
from (5).

2. The algorithm parameters P* and the calculated coefficients C* are used to calculate
the runtime prediction

Fig. 1. Algorithms of learning and prediction

358 A. Sidnev

y� ¼ c�0 þ c�1u1 P�ð Þþ � � � þ c�1ul P
�ð Þ ð7Þ

So far, the proposed solution of problem (3) consists of the prediction coefficients
of asymptotic complexity function instead of the actual runtime values. The obtained
solution provides extrapolating and successful analysis of a complex dependence of the
algorithm runtime on the system parameters.

4 Features

4.1 Parameters of Algorithms

To predict the algorithm implementation runtime for a specific computational system,
the linear regression method was used (i.e. linear least squares). For each algorithm, an
asymptotic complexity estimate was available, so function h P;Cð Þ was known. The
algorithms, their parameters, and the functions h P;Cð Þ are given in Table 1.

4.2 Static Characteristics of Computational Systems

The static characteristics of the computational systems are the parameters, which
remain unchanged during the computations and may be obtained from the respective
system information (e.g. from the processor registers [15]). Some parameters of the
systems used are listed below.

1. Theoretical peak performance of the computational system for double-precision
floating point computations (the calculations were subject to the number of vector
instructions the processor is capable to handle per cycle [16]).

Table 1. Algorithm, parameters, the asymptotic complexity function and the conditions of the
numerical experiments

Algorithm Parameters P Function h(P, C) Experiments on every
computational system

Matrix
multiplication
C ¼ A � B,
A 2 Rm�k,
B 2 Rk�n

Matrix size:
m, k, n

T ¼ C1mknþC0 200 random matrixes
from 100 � 100 to
5000 � 5000

Sorting Array size: n T ¼ C1nlog nð ÞþC0 49 random arrays from
105 to 4 � 107 elements

Direct method for
solving system of
linear equations

Computational
grid size: n

T ¼ C1n3 þC0 46 random computational
grid from 100 � 100 to
10000 � 10000

Fast Fourier
transform

Array size: n T ¼ C1nlog nð ÞþC0 30 random arrays from
104 to 25 � 106 elements

Hardware-Specific Selection 359

2. The information for each level of the processor cache:
(a) Cache size.
(b) Whether the cache is shared by multiple cores or belongs to a single core.
(c) The number of cache access ports.

3. CPU clock speed in normal and turbo modes, the front side bus speed.
4. Memory subsystem information:

(a) Number of channels.
(b) Memory timing: CAS Latency, RAS to CAS Delay, RAS Precharge, Cycle

Time.
5. The number of cores, the number of processors.
6. Hyper Threading availability.
7. Processor type: mobile, desktop, or server.
8. Processor manufacturer: Intel, AMD.
9. Core type: Ivy Bridge, Sandy Bridge, Conroe, Haswell, Wolfdale, Arrandale,.

Brisbane, Yorfield, Pineview, Penryn, Lynnfield.
10. Supported instruction set: AVX, FMA4, SSE5, SSE4a, SSE4.2, etc.

In all, 77 static characteristics were used. All of them are either numerical or binary
numbers.

4.3 Measurable Characteristics of Computational Systems

The static characteristics of the computational systems provide a sufficient description
of the computational system performance. However, the description of the memory
subsystems (both cache and RAM) requires some additional parameters. One of these
parameters is the memory bandwidth.

The memory bandwidth is measured during the writing and reading operations. To
execute these operations the data block size is taken to the power of two within the
range from 8 KB to 64 MB (total 14 cases). This range enables the evaluation of all
memory hierarchy elements. Access to memory elements may be either sequential or
random. Thus, the memory bandwidth is measured for 4 different access types:

1. Sequential writing.
2. Sequential reading.
3. Random writing.
4. Random reading.

In all, 56 measurable parameters are used.

4.4 Feature Selection of Computational Systems

133 characteristics of the computational system are redundant for the data set with only
84 samples. Using such a large amount of features decreases the generalization ability
of the model, so one needs to select the relevant features only. For example, for the
matrix multiplication problem, the next four features were experimentally found to be
the most relevant: the theoretical computer performance peak, the sequential write

360 A. Sidnev

speed for 2 MB memory block, the random write speed for 2 MB memory block, and
the random read speed for 2 MB memory block. For all further experiments, these 4
features of the computational systems were used.

5 Results of Numerical Experiments

For each computational system, the experiments were carried out using MKL [17],
OpenBLAS [18], TBB [19], and FFTW [20] libraries to estimate the algorithm run-
times depending on the problem parameters. Detailed information about the experi-
ments is presented in Table 1. Total, 84 computational systems with shared memory
were used (mobile, desktop, and server). Note that the performance of the computa-
tional systems used in the experiments varied within very wide range. Thus, solving the
systems of linear equations with 10,000 variables using MKL library took from few
seconds (for Intel Core i5-4570) up to 1,500 s (for Intel Atom N475).

5.1 Runtime Prediction

Figure 2 presents the boxplots of the runtime prediction errors for each computational
system using the proposed approach for matrix multiplication from Intel MKL library.
Training was performed on the small matrices (up to 1,000 � 1,000; total 36

Fig. 2. Runtime prediction results for matrix multiplication using the proposed approach

Hardware-Specific Selection 361

experiments for each computational system) only, and the predictions were performed
for the matrices up to 5,000 � 5,000 in size. Each computational system was used for
generating a test set while the others were used as the training ones thus ensuring
leave-one-out cross-validation. The results for the training set without the samples from
the target computational system are presented as well as the results for the training set
containing 5 samples from the target computational system.

The estimates obtained with proposed approach had the average error less than 22%
for the systems, which are represented in the training set widely (desktops and laptops).
The presence of data from the target computational system allows decreasing the
average error down to 10% for these systems.

The results of widely used machine learning algorithms, such as random forest,
SVM, and neural networks, applied to problem (3) are presented in [21]. The average
relative error of runtime prediction using these methods were shown to be more than
95% that makes these ones unusable for such problems.

Figure 3 shows the histograms of computational system number subject to the
average runtime prediction error (left) and the standard deviation of prediction (right).
For the majority of computational systems, the prediction error is not greater than 30%
and the deviation is not greater than 5%.

5.2 Selection of the Fastest Algorithm Implementation

In order to analyze the efficiency of the algorithm implementation selection, let us
introduce an index L, which reflects the percentage of average matrix multiplication
runtime increasing relative to the optimal choice

L ¼ 1
n

Xn
i¼1

Pei
j¼1 yi;j �min yMKL

i;j ; yOpenBLASi;j

� �� �
Pei

j¼1 min yMKL
i;j ; yOpenBLASi;j

� � �100%; ð8Þ

Fig. 3. Distribution histograms of the matrix multiplication runtime prediction

362 A. Sidnev

where yi;j is the runtime of the selected implementation.
The following widely used strategies lead to a significant increasing of matrix

multiplication runtime relative to the optimal choice:

– using OpenBLAS on all systems lead to 32% runtime increasing,
– using Intel MKL on all systems lead to 13% runtime increasing,
– using Intel MKL on Intel systems and OpenBLAS on AMD systems lead to 11%

runtime increasing.

The proposed approach allows achieving 2% runtime increasing only relative to the
optimal implementation choice for the matrix multiplication algorithm. For the
experiments with other algorithms, this value is shown to be not greater than 6%.

6 Conclusions

This paper formulates the algorithm implementation selection problem subject to a
computational system based on the experimental results obtained from the other
computational systems. The proposed approach provides a runtime prediction model in
the form of the runtime function of algorithm parameters and computational system
characteristics. Four parameters from total 133 ones were found to be the most relevant:
the theoretical computer performance peak, the sequential write speed for 2 MB
memory block, the random write speed for 2 MB memory block, and random read
speed for 2 MB memory block. Learning was based on the combination of the linear
least squares method and the non-linear machine learning techniques (the random
forest method). Such an approach combines the extrapolation ability and minor pre-
diction error for the systems represented in the training data set widely.

The results may be used for the selection of the most efficient algorithm imple-
mentation in the target computer system without running the actual experiments.
Besides, such data may be used for the evaluation of efficiency of the algorithm
implementations as well as of the one of the computational system for the purposes of
solving the problems mentioned above.

The results demonstrate the effectiveness of the proposed approach. The experi-
ments with proposed approach on 84 computational systems and 4 libraries have shown
the average increasing of problem solving time to be not greater than 6 % relative to the
optimal choice.

The proposed approach for the runtime prediction and the most efficient imple-
mentation selection was applied to the global optimization algorithms as well [22–24].

References

1. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
2. Brewer, E.A.: High-level optimization via automated statistical modeling. In: Proceedings of

the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP 1995), pp. 80–91 (1995)

Hardware-Specific Selection 363

3. Yang, T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel
applications using partial execution. In: Proceedings of IEEE/ACM Supercomputing:
International Conference on High-Performance Networking and Computing (2005)

4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics. Springer, Heidelberg (2009)

5. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT
Press, Cambridge (2006)

6. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection
for search problems. AI Commun. 25(3), 257–270 (2012)

7. Fink, E.: How to solve it automatically: selection among problem-solving methods. In:
Proceedings of the Fourth International Conference on AI Planning Systems, pp. 128–136.
AAAI Press (1998)

8. Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploiting competitive
planner performance. In: Biundo, S., Fox, M. (eds.) Recent Advances in AI Planning (ECP
1999). Lecture Notes in Computer Science, vol. 1809, pp. 62–72. Springer, Berlin
Heidelberg (2000)

9. Roberts, M., Howe, A.: Learned models of performance for many planners. In: ICAPS 2007
Workshop AI Planning and Learning (2007)

10. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla2009: an automatic algorithm
portfolio for SAT. Solver description, SAT competition 2009 (2009)

11. Gagliolo, M., Schmidhuber, J.: Dynamic algorithm portfolios. In: International Symposium
on Artificial Intelligence and Mathematics (ISAIM 2006) (2006)

12. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm Runtime Prediction: Methods
& Evaluation. Artif. Intell. 206, 79–111 (2014)

13. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise, pp. 226–231. AAAI Press (1996)

14. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
15. Intel Processor Identification and CPUID Instruction. Application Note 485, May 2012
16. Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-operation

breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/optimize/instruction_
tables.pdf. Accessed 4 June 2014

17. Intel Math Kernel Library 11.1. https://software.intel.com/en-us/intel-mkl. Accessed 6 Apr
2014

18. OpenBLAS 0.2.9. http://www.openblas.net/. Accessed 6 Apr 2014
19. Intel Threading Building Blocks 4.2. https://www.threadingbuildingblocks.org/. Accessed 6

Apr 2014
20. FFTW 3.3.4. http://www.fftw.org/. Accessed 6 Apr 2014
21. Sidnev, A.: Runtime prediction on new architectures. In: Proceedings of the 10th Central and

Eastern European Software Engineering Conference in Russia (CEE-SECR 2014), p. 7,
Article 17. ACM, New York (2014)

22. Barkalov, K., Gergel, V.: Multilevel scheme of dimensionality reduction for parallel global
search algorithms. In: An International Conference on Engineering and Applied Sciences
Optimization (OPT-i 2014), Kos Island, Greece, 4–6 June 2014, pp. 2111–2124 (2014)

23. Bastrakov, S., Meyerov, I., Gergel, V., et al.: High performance computing in biomedical
applications. Procedia Comput. Sci. 18, 10–19 (2013)

24. Lebedev, I., Gergel, V.: Heterogeneous parallel computations for solving global optimization
problems. Procedia Comput. Sci. 66, 53–62 (2015)

364 A. Sidnev

http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://software.intel.com/en-us/intel-mkl
http://www.openblas.net/
https://www.threadingbuildingblocks.org/
http://www.fftw.org/

Automated Parallel Simulation of Heart
Electrical Activity Using Finite Element Method

Andrey Sozykin1,2,3(B), Timofei Epanchintsev1,2,3, Vladimir Zverev1,3,
Svyatoslav Khamzin2,3, and Aleksandr Bersenev1,3

1 Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
2 Institute of Immunology and Physiology UrB RAS, Ekaterinburg, Russia

3 Ural Federal University, Ekaterinburg, Russia
Andrey.Sozykin@urfu.ru

Abstract. In this paper we present an approach to the parallel simu-
lation of the heart electrical activity using the finite element method
with the help of the FEniCS automated scientific computing frame-
work. FEniCS allows scientific software development using the near-
mathematical notation and provides automatic parallelization on MPI
clusters. We implemented the ten Tusscher–Panfilov (TP06) cell model
of cardiac electrical activity. The scalability testing of the implementa-
tion was performed using up to 240 CPU cores and the 95 times speedup
was achieved. We evaluated various combinations of the Krylov par-
allel linear solvers and the preconditioners available in FEniCS. The
best performance was provided by the conjugate gradient method and
the biconjugate gradient stabilized method solvers with the successive
over-relaxation preconditioner. Since the FEniCS-based implementation
of TP06 model uses notation close to the mathematical one, it can
be utilized by computational mathematicians, biophysicists, and other
researchers without extensive parallel computing skills.

Keywords: Heart simulation · Finite element method · Scalability ·
Krylov subspace methods · FEniCS · Parallel computing

1 Introduction

The mechanical contraction of a heart, which pumps the blood throughout the
entire body, is caused by its electrical activity. In order to understand how the
heart works, it is important to be able to simulate cardiac electrical processes.
However, heart simulation is a complex multilevel (cell-tissue-organ) modeling
task [9] that is very computationally intensive. Therefore, for a fast and accurate
heart simulation, parallel computing is required.

The work is supported by the RAS Presidium grant I.33P “Fundamental prob-
lems of mathematical modeling,” project no. 0401-2015-0025. Our study was per-
formed using the Uran supercomputer of the Krasovskii Institute of Mathematics
and Mechanics and computational cluster of the Ural Federal University.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 365–372, 2016.
DOI: 10.1007/978-3-319-49956-7 29

366 A. Sozykin et al.

However, the parallel heart simulation is impeded by the two obstacles. First,
it requires a deep knowledge in a number of modern computational architectures
and parallel programming technologies, which most of biophysicists do not pos-
sess. Secondly, sophisticated multilevel models are hard to implement in code,
especially when the complex optimization for modern computational architec-
tures is required. As a result, multilevel simulation software is very hard to
support, while models and computational architectures are changing constantly.

Nowadays, automated scientific computing frameworks that allow software
development using near-mathematical notation are becoming popular. Recently,
the performance of such frameworks was significantly improved by the use of just-
in-time compilers, highly efficient mathematical libraries, parallel computing,
etc.

We propose an approach to simulation of the heart electrical activity using
the scientific computing framework FEniCS [6], which provides the ability to
automatically solve partial differential equations (PDE) using the finite element
method (FEM) on MPI clusters. We use the FEniCS framework to study the
space propagation of the membrane potential alternation over the left ventricle
(LV) of a human heart using the ten Tusscher–Panfilov (TP06) cell model [10].

Due to the fact that FEM produces sparse matrices, computations heavily
depend on the degree of sparsity because it allows to use various optimization
techniques such as the compressed row storage, the sparse matrix-vector multi-
plication, or custom approaches [3]. Various models produce matrices with dif-
ferent degrees of sparsity. Hence, linear solvers and appropriate preconditioners
demonstrate different results on parallel systems for various models. We evalu-
ated which combination of the linear solver and the preconditioner is the most
suitable for the simulation of a cardiac electrical activity using the TP06 model.

2 Model of the Heart Electrical Activity

There are many mathematical models of cardiac electrical activity. However,
all of them contain the description of the action potential (AP), which is the
difference of the potential between the intra- and extracellular space. We adopted
the TP06 model [10,11] for the simulation of the electrical activity in the LV of
a human heart. This model uses the reaction-diffusion equations to describe the
space and time evolution of the action potential (V):

Cm · dV
dt

= ∇ · (D∇V) − Iions, (1)

dS

dt
= g(V, S), (2)

where Cm is the capacitance of a cell membrane, D is the 3×3 diffusion matrix,
Iions is the sum of the ionic currents, S is the vector of the model variables
that govern the ion currents, and g is the vector-valued function that describes
the time evolution of each variable. The boundary conditions provide the LV
electrical isolation.

Automated Parallel Simulation of Heart Electrical Activity 367

On the intracellular level, the electrical potential arises from a very compli-
cated interaction among ionic currents and cell organelles (organized structures
in cells). The TP06 model contains the equations that describe how does the
state of ion channels change with time and the kinetics of intracellular concentra-
tions of calcium, sodium and potassium, extracellular potassium, the kinetics of
calcium complexes, and calcium kinetics in the organelles. All of this processes
are described by 18 phase variables. System (1)–(2) is defined at each point
of the heart tissue, and, consequently, we should solve it for each node of the
computational mesh.

Thus, the TP06 model is a nonlinear system of partial and ordinary differ-
ential equations (ODE) that cannot be solved analytically and, hence, must be
solved on a computer using numerical techniques. This task is highly computa-
tionally intensive due to the big number of equations in the 3D domain and the
stiffness of the TP06 model.

3 FEniCS and the Finite Element Method

FEM provides a powerful methodology for discretizing differential equations,
however, it produces algebraic systems the solution of which is also a challenge.
Linear solvers must handle sparsity and possible ill-conditioning of the algebraic
systems. In addition, modern solvers should also be able to use parallel com-
puting systems efficiently. The FEM implementation in FEniCS is intended to
automate a PDE solution. In particular, FEniCS relies on the automation of dis-
cretization, discrete solution, and error control. FEniCS provides two approaches
for a PDE solution: direct and iterative. Iterative solution is more efficient
because it uses less memory and is easier to parallelize [6].

The FEniCS framework is a collection of software components for the for-
mulation of variational forms (UFL [1]), the discretization of variational forms
(FIAT, FFC [4]), and the assembly of the corresponding discrete operators (UFC,
DOLFIN [7]). To solve a problem, FEniCS uses several highly efficient parallel
algebra backends, such as PETSc and Hypre. UFL is a domain-specific language
designed for convenient and understandable formulation of variational forms
using the near-mathematical notation. The discretization of variational forms
is done by generation of arbitrary order instances of the Lagrange elements on
lines, triangles, and tetrahedra (FIAT), and compilation of efficient low-level
C++ code that can be used to assemble the corresponding discrete operator
(FFC). The assembly of the discrete operators (tensors) is crucial for accelera-
tion on parallel computing systems. The idea is to split the mesh among process-
ing units, compute the local matrix, and insert the values back into the global
matrix. The FEniCS team designed the local-to-global mapping algorithm [4] to
map values between the local and global matrices.

The most computationally intensive task is solving the local linear system.
Hence, optimization of this step by selecting appropriate linear solver and pre-
conditioner can provide a significant computation speedup.

368 A. Sozykin et al.

4 Model Implementation in FEniCS

In order to implement the TP06 model in FEniCS, we transformed the nonlinear
system (1)–(2) into a linear one, which let us use iterative solvers. The transfor-
mation was performed with the help of the first order operator splitting scheme
(the Marchuk–Yanenko method) [5]. The scheme of computing V (tn) and S(tn)
can be described as follows. Let us assume that we have already calculated the
values of V (t) and S(t) for t < tn. In order to find the values of V (tn) and S(tn),
we solve Eq. (3),

dV ∗

dt
= D∇V ∗, V ∗(t = tn−1) = V (tn−1), t ∈ [tn−1, tn],

dV ∗∗

dt
= Iions, V

∗∗(t = tn−1) = V ∗(tn),

dS∗∗

dt
= g(V ∗, S∗∗), S∗∗(t = tn−1) = S(tn−1).

(3)

First, we solve the diffusion PDE. After that we have to find the solution of
the ODE system for cell ionic currents. We get the final values of V (tn) and S(tn)
according to the rules V (tn) = V ∗∗(tn) and S(tn) = S∗∗(tn). This method is also
known as the method of splitting into physical processes. The disadvantage of
the approach is the necessity to use a very small integration time step (0.0005 s)
in order to capture the fast electrochemical processes.

The model was implemented in the Python language using UFL. The code
fragment for the diffusion PDE problem formulation is presented in Listing 1.1.
First, a finite element mesh is created and loaded from the file. After that the
discrete function space for AP is defined. FEniCS uses the term trial function
to specify the unknown function that should be approximated (the variable v
contains a trial function and the v0 variable contains the initial values). The
next step is to define the linear variational problem for the diffusion equation.
Lastly, the PDE solver is created.

Listing 1.1. Formulation of the diffusion PDE variational problem

mesh = Mesh ()
Code fo r l oad ing mesh from the f i l e
Bui ld ing func t i on space f o r ac t i on p o t e n t i a l
Space AP = FunctionSpace (mesh , ”Lagrange” , l a g r ange o rde r)
Define the PDE Problem
v = Tria lFunct ion (Space AP)
v0 = Function (Space AP)
PdePart = (1 . 0/ dt)∗ i nne r (v − v0 , q1)∗dx \

− (− i nne r (D∗grad (v) , grad (q1)))∗ dx
PDEproblem = LinearVar iat iona lProb lem (lh s (PdePart) ,

rhs (PdePart) , v , bcs=bcs)
Creat ing the PDE so l v e r
PDEsolver = L inea rVar i a t i ona lSo l v e r (PDEproblem)

Automated Parallel Simulation of Heart Electrical Activity 369

Listing 1.2 demonstrates the code fragment for solving differential equations.
The first step in the for loop solves the diffusion PDE using the PDEsolver.
After that, the values of the state variables and AP, which was computed on
the previous step, are stored. Next, the ODE system describing the cell ion
currents is solved using the ODEsolver. There is no need for explicit, manual
parallelization because the parallelization is provided by FEniCS. In addition to
parallel computation, FEniCS provides the parallel output, during which each
process writes its part of the data to a single file.

Listing 1.2. Solving the differential equation systems

for t in t ime range [1 :] :
So l v ing d i f f u s i o n equat ion
a s s i gn (v0 , v)
PDEsolver . s o l v e ()
So lv ing c e l l e qua t i ons
a s s i gn (ode vars0 , ode vars)
a s s i gn (ode vars0 . sub (0) , v)
ODEsolver . s o l v e ()
Stor ing data i f necessary
i f s t ep s

v f i l e << (v , t)
s t ep s += 1

5 Performance Evaluation

During the experiments, we simulated the electrical activity of the human heart
LV using the asymmetric anatomical model that was previously developed in
our group [8] (an example of LV 3D mesh is presented in Fig. 1). We used the
tetrahedral mesh with the length of the tetrahedrons from 2 to 4 mm; the mesh
contained 7178 points and 26156 tetrahedrons. The GMSH software [2] was used
for the initial mesh generation. Next, the mesh was converted by the DOLFIN
module to the HDF5 format in order to enable parallel I/O operations.

The initial simulation conditions were the activation of a small part of LV
near the apex (the potential is greater than 40 millivolt). The simulation duration
was 0.3 s of physical time, because after this period the electrical activity tends
to the equilibrium state in absence of an external stimulus.

The experiments were carried out on the Uran supercomputer of the
Krasovskii Institute of Mathematics and Mechanics with the following compu-
tational nodes configuration: 2 x Intel Xeon CPU X5675 CPU, 192 GB RAM,
Infiniband DDR interconnect, CentOS 7 operating system. The FEniCS version
1.6.0 was used.

The TP06 model implementation was executed on the Uran supercomputer
in parallel using various numbers of CPU cores, from 1 to 240. We used Krylov
parallel linear solvers and preconditioners available in FEniCS (Table 1). The

370 A. Sozykin et al.

Table 1. Parallel Krylov solvers and preconditioners available in FEniCS

Solver Preconditioner

Biconjugate Gradient Stabilized Algebraic Multigrid (amg)

Method (bicgstab) Default preconditioner (Block Jacobi)

Conjugate Gradient method (cg) Hypre Algebraic Multigrid (hypre amg)

Successive Over-relaxation (sor)

Fig. 1. An example of 3D mesh of the left ventricle (asymmetric model)

Table 2. The simulation time (minutes) using for various numbers of CPU cores

Solver and Preconditioner Number of CPU cores

1 12 36 60 96 120 156 180 216 240

bicgstab + amg 1937 275 109 74 50 44 36 33 29 28

cg + amg 1930 242 96 65 44 39 35 32 29 27

bicgstab + default 1915 214 82 53 38 34 28 25 22 20

cg + default 1896 224 86 53 35 30 27 24 21 20

bicgstab + hypre amg 1947 248 98 67 45 39 35 33 29 28

cg + hypre amg 1925 268 106 71 49 43 35 32 29 27

bicgstab + none 2021 263 92 61 40 34 30 27 23 22

cg + none 1963 247 95 63 42 37 29 26 23 21

bicgstab + sor 1845 208 79 53 34 30 26 24 20 19

cg + sor 1839 220 85 55 36 32 26 23 20 19

simulation time with various combinations of solvers and preconditioners is pre-
sented in Table 2, the achieved speedup is demonstrated in Fig. 2.

Automated Parallel Simulation of Heart Electrical Activity 371

0

10

20

30

40

50

60

70

80

90

100

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240

Sp
ee

du
p,

 ti
m

es

Number of CPU cores

bicgstab + amg

cg + amg

bicgstab + default

cg + default

bicgstab + hypre_amg

cg + hypre_amg

bicgstab + none

cg + none

bicgstab + sor

cg + sor

Fig. 2. Simulation speedup depending on the number of CPU cores

6 Discussion

The experiments demonstrated that the FEniCS-based TP06 model implemen-
tation provides acceptable performance and good scalability. The best result was
achieved using the conjugate gradient method and the biconjugate gradient sta-
bilized method solvers with the successive over-relaxation preconditioner: 19 min
of the simulation time, 95 times speedup using the 240 CPU cores.

Choosing the appropriate combination of the solver and the preconditioner
is an important task. The best combination from our experiments (Table 1)
provided 30% more performance on 240 CPU cores than the worst one (the
biconjugate gradient stabilized method solver with the algebraic multigrid pre-
conditioner). To save space, we presented in the paper only the best experiment
results. FEniCS includes other solvers and preconditioners not listed in Table 1.
Hence, in practice, the difference in performance of the best combination and
other solvers and preconditioners available in FEniCS could be more than 30%.

As the number of CPU cores increases, the preconditioner’s influence on per-
formance becomes greater than the solver’s. When we conducted the simulation
on 132 CPU cores or more, there was no tangible difference in performance
between different solvers working with the same preconditioner (Table 2).

7 Conclusion

The created implementation of the TP06 model uses the near-mathematical
notation provided by the FEniCS framework. As a result, computational mathe-
maticians and biophysicists can use this implementation for experimenting with

372 A. Sozykin et al.

the model. They can easily modify the model parameters, the initial activation
conditions, and even change the model itself. Despite the usage of the near-
mathematical notation, our implementation provides an acceptable performance
and scales well. The possible direction of the future work is to use the TP06
model implementation for simulation of complicated processes in LV that can
cause heart diseases, such as scroll wave dynamics. Another important task is
to implement the model of mechanical heart activity using FEniCS and provide
the ability to simulate electro-mechanical function of the heart.

References

1. Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N.: Unified form
language. ACM Trans. Math. Softw. 40(2), 1–37 (2014)

2. Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh gener-
ator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng.
79(11), 1309–1331 (2009)

3. Jansson, N.: Optimizing sparse matrix assembly in finite element solvers with one-
sided communication. In: Daydé, M., Marques, O., Nakajima, K. (eds.) VECPAR
2012. LNCS, vol. 7851, pp. 128–139. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38718-0 15

4. Kirby, R.C., Logg, A.: A compiler for variational forms. ACM Trans. Math. Softw.
32(3), 417–444 (2006)

5. Li, Y., Chen, C.: An efficient split-operator scheme for 2-D advection-diffusion
simulations using finite elements and characteristics. Appl. Math. Model. 13(4),
248–253 (1989)

6. Logg, A., Mardal, K.A., Wells, G.: Automated Solution of Differential Equations
by the Finite Element Method: The FEniCS Book. Springer Science & Business
Media, Heidelberg (2012)

7. Logg, A., Wells, G.N.: DOLFIN: automated finite element computing. ACM Trans.
Math. Softw. (TOMS) 37(2), 1–28 (2010)

8. Pravdin, S.F., Berdyshev, V.I., Panfilov, A.V., Katsnelson, L.B., Solovyova, O.,
Markhasin, V.S.: Mathematical model of the anatomy and fibre orientation field
of the left ventricle of the heart. Biomed. Eng. Online 54(12), 21 (2013)

9. Kerckhos, R.C.P., Healy, S.N., Usyk, T.P., McCulloch, A.D.: Computational meth-
ods for cardiac electromechanics. Proc. IEEE 94, 769–783 (2006)

10. Ten Tusscher, K.H., Panfilov, A.V.: Alternans and spiral breakup in a human ven-
tricular tissue model. Am. J. Physiol. Heart Circulatory Physiol. 291(3), H1088–
H1100 (2006)

11. Ten Tusscher, K.H., Panfilov, A.V., et al.: Organization of ventricular fibrillation
in the human heart. Circulation Res. 100(12), e87–e101 (2007)

http://dx.doi.org/10.1007/978-3-642-38718-0_15
http://dx.doi.org/10.1007/978-3-642-38718-0_15

Using hStreams Programming Library
for Accelerating a Real-Life Application

on Intel MIC

Lukasz Szustak1, Kamil Halbiniak1(B), Adam Kulawik1,
Roman Wyrzykowski1, Piotr Uminski2, and Marcin Sasinowski2

1 Czestochowa University of Technology, Czȩstochowa, Poland
{lszustak,khalbiniak,adam.kulawik,roman}@icis.pcz.pl

2 Intel Corporation, Santa Clara, USA
{piotr.uminski,marcin.sasinowski}@intel.com

Abstract. The main goal of this paper is the suitability assessment of
the hStreams programming library for porting a real-life scientific appli-
cation to heterogeneous platforms with Intel Xeon Phi coprocessors. This
emerging library offers a higher level of abstraction to provide effective
concurrency among tasks, and control over the overall performance. In
our study, we focus on applying the FIFO streaming model for a par-
allel application which implements the numerical model of alloy solid-
ification. In the paper, we show how scientific applications can benefit
from multiple streams. To take full advantages of hStreams, we propose
a decomposition of the studied application that allows us to distribute
tasks belonging to the computational core of the application among two
logical streams within two logical/physical domains. Effective overlap-
ping computations with data transfers is another goal achieved in this
way. The proposed approach allows us to execute the whole application
3.5 times faster than the original parallel version running on two CPUs.

Keywords: Intel MIC · Hybrid architecture · Numerical modeling of
solidification · Heterogeneous programming · Hstreams library · Task
and data parallelism

1 Introduction

Efficient concurrency on the task level is difficult to achieve, especially on hetero-
geneous platforms. An emerging effort on the way to meet this challenge is the
hStreams programming framework [1–3], a new heterogeneous streaming library.
It is based on a simple FIFO streaming model, and supports concurrency across
nodes, among tasks within a node, and between data transfers and computation.

This research was conducted with the financial support of National Science Centre
grant no. UMO-2011/03/B/ST6/03500. The authors are grateful to the Czestochowa
University of Technology for granting access to Intel Xeon Phi coprocessors provided
by the MICLAB project no. POIG.02.03.00.24-093/13.

c© Springer International Publishing AG 2016
J. Carretero et al. (Eds.): ICA3PP 2016 Workshops, LNCS 10049, pp. 373–382, 2016.
DOI: 10.1007/978-3-319-49956-7 30

374 L. Szustak et al.

This framework is aimed at making it easier to port and tune task-parallel
codes by offering such features as [1]: (i) separation of concerns, (ii) sequential
semantics, (iii) task concurrency, (iv) pipeline parallelism, and (v) unified inter-
face to heterogeneous platforms. In particular, the first feature addresses key
programming productivity issues by allowing a separation of concerns between
(1) the expression of functional semantics and disclosure of task parallelism, and
(2) the performance tuning and control over mapping tasks onto a platform. As a
result, while creators of scientific algorithms receive something simple and intu-
itive, code tuners may work long after them, having the freedom to control over
the code execution without the need for application domain expertise. A detailed
comparison of hStreams with other heterogeneous programming environments
such as OpenMP, OmpSs, Offload Streams and CUDA Streams is presented in
paper [1].

Heterogeneous platforms become increasingly popular in many application
domains [2–4]. The combination of using a general-purpose CPUs combined with
specialized computing devices (e.g., GPU, Intel Xeon Phi or FPGA) enabled in
many cases for accelerating an application by significant amounts [4–6]. However,
realizing these performance potentials remains a challenging issue.

The main goal of this paper is the suitability assessment of the hStreams
framework for porting a real-life scientific application to heterogeneous platforms
with Intel Xeon Phi coprocessors. We focus on utilizing the FIFO streaming
model in a parallel application which implements a numerical model of alloy
solidification. This application has been already studied in our previous work [7],
where we developed an approach for porting and optimizing the application on
computing platforms with a single Intel Xeon Phi accelerator [4]. The proposed
scheme of parallelization and workload distribution was implemented using the
offload interface [7], dedicated directly for the Intel MIC architecture.

The contribution of this paper to the area of co-design technologies are as fol-
lows: (1) demonstration of applicability of the hStreams programming framework
for porting a complex application to a heterogeneous platform in a relative quick
and easy way, which justifies the conclusion that using the hStreams framework
increases the level of abstraction for the code development in hybrid hardware
environments; (2) hardware-aware performance tuning of the resulting code with
its experimental evaluation showing practically the same performance as in the
case of the low-level offload interface.

The material of the paper is organized as follow. Section 2 provides an
overview of the hStreams library, while Sect. 3 introduces the numerical model
of solidification, and the idea of its parallelization on platforms containing Intel
Xeon Phi coprocessors. The next section outlines the most important details
of mapping the solidification application onto heterogeneous streams. Section 5
presents performance results achieved for the proposed approach, while Sect. 6
concludes the paper and addresses future works.

Using hStreams Programming Library for Accelerating 375

2 Introduction to Hetero Streams Library

2.1 Overview of hStreams

The hetero Streams library (hStreams) [1,2] allows stream programming in
heterogeneous platforms consisting of Intel Xeon CPUs and Intel Xeon Phi
coprocessors. Stream programming model assumes existence of one or more
FIFOs abstractions, where computation jobs are submitted on the computing
entities.

Before proceeding further, the introduction is needed for two key definitions
that hStreams uses: source is a place where work is enqueued to be performed,
and sink is a place where work is executed. Source and sink can either share
resources of the same processor or reside on separate ones. In a typical scenario,
source resides on an Intel Xeon CPU, while sinks are present on the same CPU,
as well as on Intel coprocessors connected to the main processor over PCIe.

Memory resources shared between source and sinks are called logical
buffers. Logical buffers are registered by the application on the source.
Once the hStreams run-time is aware of the buffer, a pointer to a memory
location anywhere inside that buffer is recognized as a handle, and can be
used for performing data transfers or compute actions involving that buffer.
A logical buffer created by the user may have instantiations in many logical
domains beside the source. Those instantiations of the buffer are called phys-
ical buffers. A logical buffer must have a corresponding physical buffer on the
logical domain where it is intended to be used (either as an operand of a data
transfer or a compute action).

Actions are enqueued in a FIFO queue called stream. From the operating
systems point of view, the stream is a subset of processor cores with access to
the local memory. There are three categories of actions: task computations,
memory transfers and synchronization. The task computation is performed
entirely on the sink side. Memory transfers are performed between buffers on
the source and their sink instantiations. Transfers are defined by the direction
(source to sink or sink to source) and source-side buffer addresses. Synchroniza-
tion actions involve the sink endpoint of a stream waiting on a collection of
events, triggered by the completion of actions enqueued in any stream.

Streams are organized into logical domains. Memory buffers are shared
by all streams inside a single logical domain, while being disjointed from other
logical domains. One or more logical domains belong to a physical domain. The
physical domain can be treated as physical device: an Intel Xeon Phi coprocessor
or an Intel Xeon server. This approach allows us to have the same API for a
coprocessor and server, while also sharing the same memory on server.

Internally, hStreams has implicit dependency management. By default a task
enqueued in a stream depends on the previous task in this stream and on all
buffers used by this task, but does not depend on memory transfers of buffers not
related to the previous task. Dependencies can also be controlled explicitly by the
application - for example, the application can wait for completion of one or more

376 L. Szustak et al.

previously defined events. Such dependency management allows programmers to
hide communication behind computation.

Two levels of API are exposed by hStreams - the higher level App API and
lower level Core API. The former offers a subset of the hStreams functionality
and is designed to allow a novice user to quickly start writing programs. Its
productivity is boosted by helper functions and common building blocks. The
Core API - on the other hand - exposes the full functionality of hStreams, and is
targeted at a more advanced user. Currently, the hStreams library supports Intel
Xeon CPUs and the first generation of Intel Xeon Phi coprocessors. Support for
other configurations may be added in the future. The hStreams framework was
created by Intel and is maintained on the public repository. Its latest version
and source code is available at https://github.com/01org/hetero-streams.

2.2 Comparison of hStreams with OpenMP

In this section, we briefly compare hStreams with OpenMP as the most popular
parallel programming standard, which offers support for heterogeneous comput-
ing [8]. The most obvious differences between them is that hStreams represents
a library-based API, while OpenMP is a compiler-based language extension [1].
An important advantage of hStreams is independence from the compilers. In this
case, the utilization of new features requires only updating the library, unlike
OpenMP where new mechanisms are available only after updating the compiler
to the latest version. For many programmers who prefer to change compilers
rarely, the use of the library-based extensions seems to be most attractive.

Unlike OpenMP, the Hetero Streams library provides an uniform interface
for heterogeneous platforms [1,2]. Both environments are based on the host-
centric model, where one of the host threads transfers data and computation to
the platform components. However, in hStreams all the resources of a platform
are handled in uniform way, whie OpenMP separates constructs used to assign
the application workload to host and remote devices. The current version of the
hStreams library gives also the possibility for offloading computation to remote
nodes over fabric. The great advantage of hStreams over OpenMP is the ability to
subdividing a device, that allows executing multiple offload regions concurrently.

The differences between hStreams and OpenMP are noticeable also in data
management. Both environments give the possibility to transfer data from mem-
ory of one device to another. In hStreams, buffers used for data movements have
to be allocated before starting the transfer, while in OpenMP data allocations
can be performed explicitly or implicitly. Opposite to OpenMP, the hStreams
framework provides also an efficient support for memory allocations in different
memory types [1].

https://github.com/01org/hetero-streams

Using hStreams Programming Library for Accelerating 377

3 Application: Numerical Model of Solidification and
Parallelization on Platforms with Intel MIC

3.1 Numerical Model

The phase-field method is a powerful tool for solving interfacial problems in
materials science [9]. It has mainly been applied to solidification dynamics [10],
but it has also been used for other phenomena such as viscous fingering [11], frac-
ture dynamics, [12], and vesicle dynamics [9]. The number of scientific papers
related to the phase-field method grows since the 90 years of XX century, reach-
ing for the last 7 years more than 400 positions (according to the SCOPUS
database) [13].

In the numerical examples studied in this paper, a binary alloy of Ni-Cu is
considered as a system of the ideal metal mixture in the liquid and solid phases.
The numerical model [14] refers to the dendritic solidification process in the
isothermal conditions with constant diffusivity coefficients for both phases. It
allows us to use the field-phase model defined by Warren and Boettinger [14].
In this model, the growth of microstructure during the solidification process is
determined by solving a system of two PDEs [14,15], which define the phase
content φ and concentration c of the alloy dopant (one of the alloy components).

The resulting numerical scheme belongs to the group of forward-in-time iter-
ative algorithms [7]. The application code consists of two main blocks of com-
putation, which are responsible for determining either the phase content (Fig. 1)
or the dopant concentration. In the model studied in the paper, values of φ and
c are calculated for nodes uniformly distributed across a square domain. How-
ever, the presented approach, which is based on the generalized finite difference
method, allows for solving PDEs not only for regular, but also irregular grids.

Fig. 1. Phase content for the simulated time t = 2.75 × 10−3s (original code)

378 L. Szustak et al.

3.2 Idea of Parallelization for Platforms with MIC

In the studied application, computation are interleaved with writing partial
results to a file. In the original version (Fig. 2a), parallel computations are exe-
cuted for subsequent time steps, while writing results to the file is performed after
the first time step, and then after every package of 2000 time steps. Figure 2b
shows the idea of adapting the application to platforms with a single Intel Xeon
Phi. In this approach, the coprocessor is employed to perform major parallel
workloads, while the rest of application is assigned to CPU, as not requiring
massively parallel resources. In consequence, writing data to the file is the respon-
sibility of CPU, while the coprocessor provides execution of parallel regions of
the code.

Fig. 2. Idea of adapting solidification application to platforms with Intel MIC [7]

At the beginning, all the input data are transferred from CPU to the
coprocessor, which then starts computation for the first time step. After finishing
it, all the results are transferred back to CPU. During this transfer, coprocessor
starts computations for the next package of 2000 time steps. At the same time,
CPU begins writing results to the file, immediately after receiving outcomes
from the coprocessor. Such a scheme is repeated for every package of 2000 time
steps. A critical performance challenge here is to overlap workload performed
by the coprocessor with data movements. To meet this challenge, data transfers
between CPU and Xeon Phi, writing data to the file, as well as computation
have to be performed simultaneously.

4 Porting with hStreams

4.1 Mapping Application Workload onto Heterogeneous Streams

The hStreams library supports the task parallelism by creating multiple streams.
This advantage can be efficiently applied for the proposed idea of adapting the

Using hStreams Programming Library for Accelerating 379

solidification application to platforms with a single Intel MIC. Our approach
distinguishes the two main tasks: (i) writing outcomes to the file, and (ii) run-
ning parallel computation. These tasks are mapped onto two logical streams
created within two logical domains. This solution allows for executing streams
on different computing resources, such as processor and coprocessor.

The idea of mapping the application on heterogeneous streams is illustrated
in Fig. 3. While the first stream is responsible for parallel computation performed
for subsequent packages of 2000 time steps, the second one has to provide trans-
fers of outcomes from the first stream, in order to write them further to the file.
These streams are assigned respectively to the coprocessor and CPU.

Fig. 3. Mapping solidification application onto heterogeneous streams

Because of mutual dependencies between the execution of streams, their syn-
chronizations becomes a crucial issue. The hStreams library offers two scenarios
for solving this issue that correspond to various ways of filling queues of streams.
The first way requires to fill the FIFO queue before the stream execution, while
the second one refill the FIFO queue during the execution of stream. In both
cases, the source process is responsible for the management of queues. For the
first way, the stream synchronization is based on the completion of events that
have to be inserted into the streams before execution. The second way, called
the active synchronization, employs the source process to provide the synchro-
nization of streams during execution. In this scenario, the source process waits
for the completion of tasks of a stream, in order to insert subsequent tasks to
queues, and then run streams. In our approach, the second scenario is chosen
(see Fig. 3) as more suitable for the proposed idea of parallelization. As a results,
the synchronization points occur after every package of 2000 time steps.

Selecting an appropriate method for providing efficient data transfers is
important for the overall performance. In the proposed approach, data are trans-
ferred excluding the source process. It allows us to reduce the communication
path from the default scheme Stream 1 → source → Stream 2 to the shorter

380 L. Szustak et al.

one, where data are transferred directly between streams: Stream 1 → Stream 2.
The task of data movement that downloads outcomes from the logical domain
of Stream 1 is inserted into queue of Stream 2.

To overlap computation with data transfers, the double buffering techniques
is applied: the first buffer is used to provide computation while the second one is
responsible for data movement of outcomes of the previous time steps (Fig. 3).
However, a right policy of hStreams data dependencies has to be applied for
enabling this optimization. The default police HSTR DEP POLICY CONSERVATIVE
prevents the simultaneous execution of tasks for data transfers and computation.
To solve this problem, the policy HSTR DEP POLICY BUFFERS has to be set in
order to ensure the asynchronous execution of these tasks using different buffers.

By defauult, streams are executed on coprocessors. Since Stream 2 should
run on the CPU site, the hStreams Core API has to be used to provide such a
mapping. This API allows programmers to perform a more advanced manage-
ment of the hStream library.

4.2 Data Parallelization Within Streams

The original CPU version of the application uses the OpenMP standard to uti-
lize cores/threads, based on the OpenMP construction #pragma omp parallel
for. Since the Intel Xeon Phi coprocessors supports OpenMP, the application
code can be rather easily ported to this platform. To ensure the best overall
performance without significant modifications in the source code, we use several
compiler-friendly optimizations, and empirically determine the best OpenMP
setup for the loop scheduling.

The utilization of vector processing is crucial for ensuring the best perfor-
mance on Intel Xeon Phi. The quickest way to achieve this goal is the compiler-
based automatic vectorization. However, in the studied case the innermost loop
cannot be vectorized safely, mainly because of data dependencies. To solve this
problem, we propose to change slightly the code by adding temporary vectors
responsible for loading the necessary data from the irregular memory region, and
than providing SIMD computations (see our previous work [5,7]).

5 Performance Results

In this study, we use the platform [16] equipped with two Intel Xeon E5-2699 v3
CPUs (Haswell-EP), and Intel Xeon Phi 7120P coprocessor (Knight Corner).
The benchmarks are compiled using the Intel icpc compiler (v.15.0.2) with the
same optimization flags. All tests are performed for modeling solidification appli-
cation using the double precision floating-point format, 110000 time steps, and
grid with 4000000 nodes (2000 nodes along each dimensions x and y).

Table 1 presents the comparison of the execution times obtained for: (i) orig-
inal CPU parallel version of the solidification application, (ii) optimized parallel
version based on the offload interface (see our previous work [7]), and (iii) new
parallel code programmed with hStreams. Both the offload- and hStreams-based

Using hStreams Programming Library for Accelerating 381

versions correspond to the proposed adaptation of the studied application to
platforms with a single Intel Xeon Phi.

The total execution time of the original version (see Fig. 2a) includes the sum
of execution times necessary for performing parallel computation and writing
outcomes to the file. The proposed approach (see Fig. 2b) allows us to hide
more than 99 % of computations behind data movements, for both the offload-
and hStreams-based versions, and finally accelerate the whole application about
3.50x. Comparing the execution times of the hStreams- and offload-based codes,
we can see that the difference is negligible, since it is equal to 0.28 %.

Table 1. Performance results for different versions of the solidification application

Tasks

Code version data movements parallel computation Time Speedup

original CPU CPU 641min 32 s -

offload-based CPU MIC 183min 08 s 3.50x

hStreams-based CPU MIC 183min 39 s 3.49x

6 Conclusions and Future Works

The hStreams programming library is a promising solution for the exploration
of emerging multi- and manycore architectures that become increasingly com-
plex, hierarchical and heterogeneous. It is expected that the potential of using
hStreams on current and future platforms will be manifested for a wide range
of real-life applications. Our research allow us to conclude that the hStream
library enables for porting such applications on modern architectures, including
Intel MIC, in a relatively quick and easy way.

The streaming abstraction is one of advantages of this library which enables
for mapping concurrent tasks onto computing resources. A rich functionality
of hStreams, including synchronization scenarios and overlapping tasks, makes
this library programmer-friendly, and increases the level of abstraction for the
code development. The performed benchmark confirms that the hStreams library
allows for achieving the performance results at the same level as the offload
model, dedicated directly for the Intel MIC architecture. At the same time, it is
worth to mention that the proposed adaptation of the solidification application
to platforms with Intel MIC plays the main role in accelerating computations,
while the hStreams library and offload interface are “only” tools that allows us
to reach this goal.

The performance results achieved in this study provide the basis for further
research on the development and optimization of code. The primary direction
of our future work is to utilize hStreams for porting the studied application on
heterogeneous platforms with more than one Intel Xeon Phi coprocessor, and
taking advantage of all the computing resources to process together the appli-
cation workload. Also, we plan to use our application as a valuable benchmark

382 L. Szustak et al.

for comparing hStreams with other programming models and languages inter-
faces, and in particular, with the OpenMP 4.x support [17] for heterogeneous
computing and task-parallelism.

References

1. Newburn, C.J., et al.: Heterogeneous streaming. In: IPDPSW, AsHES (2016)
2. Jeffers, J., Reinders, J.: Fast matrix computations on heterogeneous streams. In:

Jeffers, J., Reinders, J. (eds.), High Performance Parallelism Pearls: Multicore and
Many-core Programming Approaches, vol. 2, pp. 49–52. Morgan Kaufmann (2015)

3. Li, Z., et al.: Evaluating the Performance Impact of Multiple Streams on the MIC-
based Heterogeneous Platform (2016). arXiv preprint arXiv:1603.08619

4. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adapta-
tion of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor.
Sci. Program. (2015). http://dx.doi.org/10.1155/2015/642705

5. Szustak, L., Halbiniak, K., Kuczynski, L., Wrobel, J., Kulawik, A.: Porting, opti-
mization of solidification application for CPU-MIC hybrid platforms. Accepted to
print: Int. J. High Perform. Comput. Appl., 13 (2016)

6. Rojek, K., et al.: Adaptation of fluid model EULAG to graphics processing unit
architecture. Concurrency Computations Pract. Experience 27(4), 937–957 (2015)

7. Szustak, L., Halbiniak, K., Kulawik, A., Wrobel, J., Gepner, P.: Toward parallel
modeling of solidification based on the generalized finite difference method using
intel xeon phi. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K.,
Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 411–422. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-32149-3 39

8. OpenMP Application Programming Interface (2015)
9. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci.

Eng. 17(7), 73001 (2009)
10. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering.

Wiley, New York (2010)
11. Folch, R., Casademunt, J., Hernandez-Machado, A., Ramirez-Piscina, L.: Phase-

field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numer. Study.
Phys. Rev. E 60(2), 1734–1740 (1999)

12. Karma, A., Kessler, D., Levine, H.: Phase-field model of mode III dynamic fracture.
Phys. Rev. Lett. 87(4), 40401 (2001)

13. Takaki, T.: Phase-field modeling and simulations of dendrite growth. ISIJ Int.
54(2), 437–444 (2014)

14. Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegrega-
tion patterns in a binary alloy using the phase-field method. Acta Metall. et Mater.
43(2), 689–703 (1995)

15. Longinova, T., Amberg, G., Ågren, J.: Phase-field simulations of non-isothermal
binary alloy solidification. Acta Mater. 49(4), 573–581 (2001)

16. Pilot Laboratory of Massively Parallel Systems (MICLab). http://miclab.pl
17. Michael Klemm. Heterogeneous Programming with OpenMP 4.5.

https://www.scc.kit.edu/downloads/sca/Heterogeneous%20Programming
%20with%20OpenMP%204.5.pdf

http://arxiv.org/abs/1603.08619
http://dx.doi.org/10.1155/2015/642705
http://dx.doi.org/10.1007/978-3-319-32149-3_39
http://miclab.pl
https://www.scc.kit.edu/downloads/sca/Heterogeneous%20Programming%20with%20OpenMP%204.5.pdf
https://www.scc.kit.edu/downloads/sca/Heterogeneous%20Programming%20with%20OpenMP%204.5.pdf

Author Index

Abella, Monica 191
Alonso, Pedro 201
Alventosa, Fran J. 201
Andreev, Andrey 342
Antonov, Alexander 291

Bagein, Michel 226
Barba, Daniel 91
Bastrakov, Sergey 319
Belcastro, Loris 234
Benner, Peter 18
Bersenev, Aleksandr 365
Bhowmik, Deepayan 174
Black-Schaffer, David 43
Blas, Javier Garcia 191
Blokhin, Ilia 136

Cai, Chang-qing 146
Carretero, Jesus 191, 244
Ceballos, Germán 43
Chernykh, Igor 342
Cremer, Samuel 226

Di Lieto, Giulio 234
Díaz, Antonio F. 136
Díaz-García, Juan 136
dos Santos, Rodrigo Weber 76

Efimenko, Evgeny 319
Egunov, Vitaly 342
Epanchintsev, Timofei 365
Ezzatti, Pablo 18

Fang, Yingying 125
Filatovas, E. 62

Garcia Blas, Javier 244
Garcia, Paulo 174
Garzón, E.M. 62
Gergel, Victor 278
Gergel, Viktor 330
Glinsky, Boris 342
Gonoskov, Arkady 319
Gonzalez-Escribano, Arturo 91, 212

Hagersten, Erik 43
Halbiniak, Kamil 373
Hao, Guo-dong 146
Huang, Tao 146

Jiang, Bin 107

Khamzin, Svyatoslav 365
Kharkov, Egor 342
Knüpfer, Andreas 3
Korenkov, Vladimir 330
Kozinov, Evgeny 278
Kronawitter, Stefan 159
Kuckuk, Sebastian 159
Kulawik, Adam 373
Kulikov, Igor 342

Lackovic, Marco 234
Lastovetsky, Alexey 30
Lengauer, Christian 159
Linev, Alexey 278
Llanos, Diego R. 91
Lobosco, Marcelo 76

Mahmoudi, Saïd 226
Malik, Tania 30
Manneback, Pierre 226
Marozzo, Fabrizio 234
Martínez, J.A. 62
Martinez-Gil, Francisco 212
Matveev, Zakhar 319
Meyerov, Iosif 319
Michaelson, Greg 174
Mingqin, Gu 115
Moreno, J.J. 62

Nagel, Wolfgang E. 3
Nenashev, Vladislav 342
Nikitenko, Dmitry 305

Orduña, Juan Manuel 212
Ortega, G. 62
Ortega, Julio 136
Ou, Bo 125

Palacios, Raúl H. 136
Piñero, Gema 201

Quintana-Ortí, Enrique S. 18

Remón, Alfredo 18
Ren, Xiao-ping 146
Rodrigo Duro, Francisco 244
Rodriguez-Gutiez, Eduardo 212
Rodríguez-Quintana, Cristina 136
Rosenberg, Arnold L. 261

Sasinowski, Marcin 373
Serrano, Estefania 191
Shaoyong, Zhang 115
Shtanyk, Anton 278
Shvets, Pavel 305
Sidnev, Alexey 354
Silva, Juan P. 18
Snytnikov, Alexey 342
Soares, Thiago Marques 76
Sozykin, Andrey 365
Stefanov, Konstantin 305
Stewart, Robert 174
Surmin, Igor 319

Svistunov, Alexey 330
Szustak, Lukasz 30, 373

Teplov, Alexey 291, 305
Trunfio, Paolo 234
Tsaregorodtsev, Andrei 330

Uminski, Piotr 373

Vander Aa, Tom 191
Vidal, Antonio M. 201
Voevodin, Vadim 305

Wagner, Michael 3
Wallace, Andy 174
Wang, Jian 146
Weins, Dmitry 342
Wuyts, Roel 191
Wyrzykowski, Roman 30, 373

Xiaohua, Chen 115
Xiaoping, Ren 115

Zhang, PanPan 107
Zhumatiy, Sergey 305
Zverev, Vladimir 365

384 Author Index

	Welcome Message from the ICA3PP 2016 General and Program Chairs
	Welcome Message from the SCDT 2016 General Chairs
	Welcome Message from the TAPEMS 2016 Program Chairs
	Welcome Messages from the BigTrust 2016 General Chairs
	Welcome Messages from the UCER 2016 General Chairs
	Welcome Messages from the DLMCS 2016General Chairs
	Welcome Message from the SCDT 2016 General Chairs
	Organization
	Contents
	TAPEMS 2016: International Workshop in Theoretical Approaches to Performance Evaluation, Modeling and Simulation
	OTFX: An In-memory Event Tracing Extension to the Open Trace Format 2
	1 Introduction
	2 Related Work
	3 Concepts for In-memory Event Tracing
	3.1 Non-intrusive Runtime Filtering
	3.2 Enhanced Encoding Techniques
	3.3 Event Reduction

	4 The Hierarchical Memory Buffer
	5 Evaluation
	5.1 Methodology and Target Applications
	5.2 Runtime Overhead
	5.3 Trace Size Reduction
	5.4 Trace Analysis

	6 Conclusion
	References

	Tuning the Blocksize for Dense Linear Algebra Factorization Routines with the Roofline Model
	1 Introduction
	2 The Roofline Model
	3 Matrix Inversion via GJE
	4 Optimizing the Algorithmic Blocksize
	4.1 General Discussion of High Performance for Dense Linear Algebra Routines
	4.2 Blocked Algorithm for GJE
	4.3 Multi-block Variant of GJE

	5 Experimental Evaluation
	6 Concluding Remarks and Future Work
	References

	Network-Aware Optimization of MPDATA on Homogeneous Multi-core Clusters with Heterogeneous Network
	1 Introduction
	2 Related Work
	2.1 MPDATA
	2.2 Communication Optimization for Parallel Applications

	3 MPDATA on Clusters
	4 Communication-Optimal Mapping Arrangement for MPDATA
	4.1 Cost Function Based on Asymmetric Bandwidth
	4.2 Heuristic Based on Asymmetric Bandwidth Cost Function

	5 Experimental Results
	5.1 Inter-cluster Experiments
	5.2 Intra-cluster Experiments

	6 Conclusions
	References

	Formalizing Data Locality in Task Parallel Applications
	1 Introduction
	2 Motivation: Task Data Reuse
	3 Theoretical Background
	3.1 Sequential Memory Access Execution Model
	3.2 Distances and Reuses
	3.3 Task Execution Model
	3.4 Equivalence Between Schedules and Memory Accesses

	4 Statistical Cache Modeling with Task Support
	4.1 Existing Statistical Cache Models
	4.2 The StatTask Model
	4.3 Methodology of the StatTask Model

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	A Appendix: Proofs
	References

	Improving the Energy Efficiency of Evolutionary Multi-objective Algorithms
	1 Introduction
	2 Description of the Problem
	3 Efficient Fast Non-Dominated Sort on GPU
	4 Experimental Evaluation
	5 Conclusions and Future Works
	References

	A Parallel Model for Heterogeneous Cluster
	1 Introduction
	2 The LogP Model
	3 Related Works
	4 The New Model
	5 Model Evaluation
	5.1 Benchmarks
	5.2 Computational Platform
	5.3 Results

	6 Conclusion and Future Works
	References

	Comparative Analysis of OpenACC Compilers
	1 Introduction
	2 Available Compilers
	2.1 PGI Compiler
	2.2 accULL
	2.3 OpenUH

	3 Benchmark Description
	3.1 EPCC OpenACC Benchmarks
	3.2 Rodinia OpenACC

	4 Evaluation
	4.1 Experimental Setup
	4.2 Completeness of OpenACC Features Supported
	4.3 Robustness and Pragma Implementation
	4.4 Relative Performance of Generated Code

	5 Conclusions
	References

	BigTrust 2016: The 1st International Workshop on Trust, Security and Privacy for Big Data
	The Research of Recommendation System Based on User-Trust Mechanism and Matrix Decomposition
	Abstract
	1 Introduction
	2 Related Literature
	3 The UTMF Method
	3.1 Matrix Decomposition
	3.2 Loss Function
	3.3 The Introduction of the Regularization
	3.4 The Regularization Parameters
	3.5 Into the User’s Trust Mechanism
	3.6 Iterative Optimization

	4 The Experimental Simulation and Analysis
	4.1 Experimental Data Set
	4.2 The Experimental Setup and Results
	4.3 UTMF Algorithm’s Performances
	4.4 Main Program Code

	5 Conclusion and Future Suggestions
	References

	Traffic Sign Recognition Based on Parameter-Free Detector and Multi-modal Representation
	Abstract
	1 Introduction
	2 Traffic Sign Detection
	2.1 Color Segmentation of Traffic Signs
	2.2 Interested Regional Extension and Edge Detection
	2.3 Specific Shape Judgment and Classification

	3 Traffic Sign Recognition
	3.1 DT-CWT + 2DICA
	3.2 Intra Pictogram Extraction and Matching
	3.3 Fusion of Classification Results

	4 Experiment and Analysis
	4.1 Experiment Data
	4.2 Overall Performance

	5 Conclusion
	References

	Reversible Data Hiding Using Non-local Means Prediction
	1 Introduction
	2 Background
	3 Proposed Algorithm
	3.1 Non-local Means Prediction
	3.2 Adaptive Prediction

	4 Experimental Results
	5 Conclusions
	References

	Secure Data Access in Hadoop Using Elliptic Curve Cryptography
	1 Introduction
	2 Hadoop Security
	2.1 Main Elements
	2.2 Data Encryption
	2.3 Additional Security Features

	3 Security Elements Used in the Extended Model
	3.1 eToken
	3.2 ECDSA
	3.3 ECDH

	4 API eHTSecurity
	5 Extended Security Model
	6 Conclusions and Future Work
	References

	Statistical Analysis of CCM.M-K1 International Comparison Based on Monte Carlo Method
	Abstract
	1 Introduction
	2 Status of CCM.M-K1 Comparisons
	3 Analysis of Measurement Data and Processing Method in CCM.M-K1 Report
	4 Monte Carlo Method and Its Application in CCM.M-K1
	5 Conclusions
	References

	First International Workshop on Data Locality in Modern Computing Systems (DLMCS 2016)
	Redundancy Elimination in the ExaStencils Code Generator
	1 Introduction
	2 Common Subexpression Elimination (CSE)
	2.1 Approaches to Common Subexpression Elimination
	2.2 Preliminary Transformations
	2.3 Text-Based CSE
	2.4 Loop-Carried CSE
	2.5 Vectorization

	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	A Dataflow IR for Memory Efficient RIPL Compilation to FPGAs
	1 Introduction
	1.1 Memory Costs of High Level FPGA Languages
	1.2 Data Locality
	1.3 FPGA Memory

	2 FPGA Memory Constraints
	2.1 Image Buffer Capacity
	2.2 Eliminating Intermediate Buffers with Compiler Optimisation

	3 RIPL: An FPGA DSL for Maximising Data Locality
	3.1 RIPL Skeletons

	4 RIPL Memory Costs
	4.1 Memory Costs for Computation
	4.2 Memory Costs for Communication
	4.3 FPGA Memory Implementation

	5 Evaluation
	5.1 Expressivitiy
	5.2 Space Performance

	6 Conclusion
	References

	Ultrascale Computing for Early Researchers (UCER 2016)
	Exploring a Distributed Iterative Reconstructor Based on Split Bregman Using PETSc
	1 Introduction
	2 Related Work
	3 Iterative Reconstruction Algorithm
	4 Distributed Implementation
	4.1 PETSc and MPI
	4.2 Distribution Strategy

	5 Experimental Study
	5.1 Single Node Execution
	5.2 Distributed Execution

	6 Conclusions
	References

	Implementation of the Beamformer Algorithm for the NVIDIA Jetson
	1 Introduction
	2 Mathematical Background of the Beamformer Algorithm
	3 Implementation of the QR-LCMV Algorithm
	4 Analysis of the Results
	5 Conclusions
	References

	MARL-Ped+Hitmap: Towards Improving Agent-Based Simulations with Distributed Arrays
	1 Introduction
	2 Related Work
	3 MARL-Ped and Hitmap
	3.1 MARL-Ped
	3.2 Hitmap

	4 Applying Hitmap Techniques and Methodology
	4.1 Structural Changes
	4.2 Distributed Arrays and Communication Patterns

	5 Experimental Study
	5.1 Development Effort
	5.2 Experimental Methodology for Performance Studies
	5.3 Performance Effect of the Agents Grouping
	5.4 Impact of the Amount of Processes

	6 Conclusions
	References

	Efficiency of GPUs for Relational Database Engine Processing
	1 Introduction
	2 Positioning and Related Works
	3 Boosting a RDBMS with GPUs
	4 Experimental Results
	4.1 PCI-Express Bus: The Bottleneck
	4.2 Comparison Between Versions of a Same GPU
	4.3 Summary

	5 Conclusion and Future Works
	References

	Geocon: A Middleware for Location-Aware Ubiquitous Applications
	1 Introduction
	2 Related Work
	3 Metadata Model
	4 Middleware
	4.1 Geocon-Service
	4.2 Geocon-Client

	5 Conclusions
	References

	I/O-Focused Cost Model for the Exploitation of Public Cloud Resources in Data-Intensive Workflows
	1 Introduction
	2 Related Work
	3 Hercules Background
	4 Costs Model for In-Memory Storage on Clouds
	4.1 Cloud Storage Service Costs
	4.2 Computing Resources Costs

	5 Costs Analysis of a Data-Intensive Application
	5.1 Application Description
	5.2 Costs Analysis

	6 Conclusions
	References

	SCDT-2016: Supercomputing Co-Design Technology Workshop
	Cellular ANTomata as Engines for Highly Parallel Pattern Processing
	1 Introduction
	1.1 (PA + VAA) = (Path Toward HPC)
	1.2 The Computing Model
	1.3 Algorithmic Tools that Enhance the Power of CAnts as VAAs
	1.4 Our Highlighted Case Study: Pattern Assembly by CAnts
	1.5 Related Work

	2 A CAnt-Design for the Pattern Assembly Problem (PAP)
	2.1 Discovering Instance-Spans
	2.2 Computing with Instance-Spans
	2.3 Completing the PAP-Solving Process
	2.4 A Small Example
	2.5 Timing

	3 Conclusion
	References

	Educational and Research Systems for Evaluating the Efficiency of Parallel Computations
	Abstract
	1 Introduction
	2 The ParaLab System for Evaluating Parallel Methods
	3 ParaLib Parallel Computational Methods Library
	4 GlobalizerLab for Studying Global Optimization Methods
	5 Conclusion
	References

	Generalized Approach to Scalability Analysis of Parallel Applications
	1 Introducing the Term of Generalized Scalability
	2 Key Principles of Scalability Studies
	3 Analysis of Factors that Reduce Scalability Using System Monitoring Data
	4 Comparing Application Scalability on the Basis of Execution Efficiency
	5 An Example of Scalability Analysis According to the Proposed Approach
	6 Conclusions
	References

	System Monitoring-Based Holistic Resource Utilization Analysis for Every User of a Large HPC Center
	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Proposed Approach Principles
	3.1 General Information on Jobs
	3.2 Average Rate of Resource Utilization
	3.3 Certain Job Analysis: Job Digests and Results of External Analyzers
	3.4 Tags and Comments
	3.5 Target User Groups

	4 Implementation Technologies Brief
	5 Using of Integral Job Characteristics in Practice
	5.1 Analysis Job Collections Searching for Anomalous Application Behavior
	5.2 Using of Integral Job Characteristics for the Work Activity Management
	5.3 Enhancing Scalability of User Applications

	6 Conclusion and Acknowledgments
	References

	Co-design of a Particle-in-Cell Plasma Simulation Code for Intel Xeon Phi: A First Look at Knights Landing
	1 Introduction
	2 Particle-in-Cell Method Overview
	3 Baseline Version
	4 Performance Analysis and Optimization on Knights Landing
	4.1 Choosing the Optimal Run Configuration
	4.2 Auto-vectorization of Field Interpolation
	4.3 Supercells
	4.4 Roofline Model

	5 Conclusions and Future Work
	References

	Efficient Distributed Computations with DIRAC
	Abstract
	1 Introduction
	2 DIRAC Overview
	2.1 Workload Management
	2.2 Data Management
	2.3 DIRAC Development Framework

	3 DIRAC Usage Examples
	3.1 Physics Applications
	3.2 Multi-domain DIRAC Services

	4 Federation of HPC Centers
	4.1 Open Distributed Supercomputer Infrastructure Project
	4.2 Co-design of a Federated HPC Supercomputer

	5 Conclusions
	References

	The Co-design of Astrophysical Code for Massively Parallel Supercomputers
	Abstract
	1 Introduction
	2 The Co-design Approach
	3 The Essentials to Gain Performance on Intel Xeon Phi Accelerators
	4 Simulation Modeling for an Astrophysics Problem
	5 Energy Efficiency
	6 Conclusion
	References

	Hardware-Specific Selection the Most Fast-Running Software Components
	Abstract
	1 Introduction
	2 Runtime Prediction Problems
	3 Approach to Solving Runtime Prediction Problems
	4 Features
	4.1 Parameters of Algorithms
	4.2 Static Characteristics of Computational Systems
	4.3 Measurable Characteristics of Computational Systems
	4.4 Feature Selection of Computational Systems

	5 Results of Numerical Experiments
	5.1 Runtime Prediction
	5.2 Selection of the Fastest Algorithm Implementation

	6 Conclusions
	References

	Automated Parallel Simulation of Heart Electrical Activity Using Finite Element Method
	1 Introduction
	2 Model of the Heart Electrical Activity
	3 FEniCS and the Finite Element Method
	4 Model Implementation in FEniCS
	5 Performance Evaluation
	6 Discussion
	7 Conclusion
	References

	Using hStreams Programming Library for Accelerating a Real-Life Application on Intel MIC
	1 Introduction
	2 Introduction to Hetero Streams Library
	2.1 Overview of hStreams
	2.2 Comparison of hStreams with OpenMP

	3 Application: Numerical Model of Solidification and Parallelization on Platforms with Intel MIC
	3.1 Numerical Model
	3.2 Idea of Parallelization for Platforms with MIC

	4 Porting with hStreams
	4.1 Mapping Application Workload onto Heterogeneous Streams
	4.2 Data Parallelization Within Streams

	5 Performance Results
	6 Conclusions and Future Works
	References

	Author Index

