
Using Application Ontologies
for the Automatic Generation of User

Interfaces for Dialog-Based Applications

Michael Hitz(&) and Thomas Kessel

Cooperative State University Baden-Wuerttemberg, Stuttgart, Germany
{michael.hitz,thomas.kessel}@dhbw-stuttgart.de

Abstract. The paper presents a data-centric, model driven approach for the
automatic generation of user interfaces (UIs) for dialog-based applications using
ontological descriptions. It focuses on Interview Applications, a common pattern
e.g. for self-service applications in EIS. Existing approaches for the automatic UI
generation usually rely on proprietary, UI-specific description models, designed
and developed manually for the application in focus. The manual creation of the
artefacts leads to a gap in the automated development, i.e. for dialog-based
application UIs, where the structure and behavior is driven by the processed data.
Furthermore, the UI specific nature of the artefacts impedes their (re-)use in
different contexts. The presented approach is a shift away from a UI-specific
towards a data-centric method of modelling dialog-based applications, bridging
this gap. Application-Ontologies are used as description means, which leads to
reusable, sharable model artifacts, applicable to different contexts of use.

1 Introduction

The ongoing digitalization of business processes in Enterprise Information Systems
(EIS) raised the need for exposing different variants of User Interfaces (UI) to let
different user groups interact with the systems in different contexts of use and sup-
porting different platforms (e.g. as a desktop, mobile and web application for customers
or insurance brokers).

A commonly observed pattern in sales related dialog-based applications is to collect
data needed for the execution of a business process in a directed dialog in form of an
interview (a.k.a form filling or directed dialog [4]). Examples for these Interview
Applications can be found i.e. on the internet or web based business portals: e.g. the
booking of a flight, the money transfer in a banking portal or the request of a quote for
an insurance product. The application type is characterized by a high degree of stan-
dardization and clearly defined interaction concepts (mostly motivated by company
style guides or platform standards). Thus the UIs for this application type are well
suited for automatic generation.

Although there exist quite a lot of approaches for the model driven generation of
UIs (see Related Work), they are not widely used in practice [14]. Mostly they rely on
manually modelling UI specific artefacts (e.g. concrete UI descriptions, taskflow- and
related data models), which are closely coupled and thus complex to create and

© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing AG 2016. All Rights Reserved
A.M. Tjoa et al. (Eds.): CONFENIS 2016, LNBIP 268, pp. 16–31, 2016.
DOI: 10.1007/978-3-319-49944-4_2

maintain. In addition, the UI specific nature and proprietary descriptions impedes their
reuse in different contexts [6]. Furthermore, the manual development of the artefacts
leads to a clear break and a gap in the automated application development – especially
for data-driven applications as the aforementioned Interview Applications, where the
structure and behavior of the UI is closely related to the data.

The objectives of this paper are to present an approach, that (1) bridges this gap by
pushing the description from proprietary UI-specific information towards a
data-centric model for applications and (2) to use common non-proprietary
descriptions (i.e. RDF/OWL Ontologies) as modelling means.

The approach is based on the thesis, that structure and behavior of UIs for Interview
Applications rely on the characteristics and semantics of the processed data. Thus UIs
could be derived from data descriptions that contain the relevant semantic information.
The proposed solution uses a single, declarative model of the processed data, which is
augmented by additional semantical information used to infer all necessary information
required to derive UIs.

The mayor benefits of this approach are to get (1) a single, UI agnostic artefact
related to the processed data that allows an improved automation for application variant
development and (2) a non-proprietary, shareable application description, appli-
cable to different contexts of use.

The proposed approach in this paper contributes to the field of model driven
development of user interfaces for dialog based applications. It adds concepts for the
use of semantic knowledge about the processed data, its representation as ontology and
its use to derive UIs.

The paper is organized as follows: first the basic idea of a data-centric description,
the character of Interview Applications and the information required to automatically
generate user interfaces are elaborated. Then the representation of the information by
means of ontologies and its concepts is presented followed by an outline of the
derivation process for the UIs. Finally, evaluation of the concept and related work is
presented, followed by a conclusion.

2 Data-Centric Description of Interview Applications

The basic assumption of the data-centric approach is, that manually developed UIs for
Interview Applications are built on the characteristics and semantics of the data
processed by the application. Application developers use this knowledge to build
suitable frontends for the data – e.g. a reasonable selection, grouping and sequence of
input elements, the showing/hiding of sections or the navigation between pages [6].
The knowledge is used implicitly by the developer and based on his experience or other
rules, that are tacit knowledge. The basic idea is to incorporate this semantical
knowledge into a data-centric model along with the processed application data.

The following sections illustrate the character of Interview Applications and show
which information is needed to derive a UI.

Using Application Ontologies for the Automatic Generation 17

2.1 Character of Interview Applications

Interview Applications collect related data in a meaningful sequential flow of questions
in a dialog with the user. Depending on already entered information the flow might
change and, if applicable, further questions are asked or omitted when necessary. The
following example illustrates the data-driven character of Interview Applications. It
contains most characteristics that need to be modeled in a data-centric description,
listed in the next section.

Example: quote for a liability insurance. The computation of a quote for a liability
insurance is chosen as a sample use case. Such calculators are a very common appli-
cation type in the insurance domain and incorporate multiple interaction patterns
common for Interview Applications.

Figure 1 shows an example of a graphical UI as used by an agent. The agent enters
successively data that is needed for computing a quote. In Fig. 1a) subsequent ques-
tions are asked concerning the customer (e.g. name and marital status). On the left side
there is a hierarchical navigation that allows random switching between various
question groups (e.g. customer and contract data).

The data input elements are chosen based on type related properties (e.g. the basic
type, value ranges, restrictions etc.). They are ordered in a semantically meaningful
manner (e.g. name information before marital status) and have a hierarchical relation
to each other (e.g. on the left hand navigation of Fig. 1a) contact information is shown
as part of customer data).

The processed data elements are semantically interrelated. This reaches from related
content (e.g. the zip code is related to a certain city) to existential relations, e.g. the

❷

❶

❸

❷

❶

❸

a) Customer data b) Product Configuara on

Fig. 1. UI for calculating a quote

18 M. Hitz and T. Kessel

date of marriage and partner data only exist if the marital status is set to married
(Fig. 1a, ❶❷). Additionally, dialogs show dynamical behavior: input is validated and
field content might need adjustment as a reaction to changes in other fields (e.g.
prefilling the city according to a given zip code or explicitly initiated user actions (e.g.
opening a customer database to prefill customer data, Fig. 1a, ❸).

2.2 Information Needs for Automatic Generation of UIs

In previous work (cf. [8, 9]) we derived a set of interaction patterns and extracted
information, that is needed to build UIs that behave as in the example above. This was
done by analyzing existing ‘real-life’ applications used in a major insurance company
and match the findings to existing work within the field of UI generation (e.g. [4, 20]).
The analysis leads to a set of information, needed to automatically derive UIs using
these patterns. The information can be grouped into two categories (cf. Table 1).

Type Related and Structural Information (I1–I4): This information is needed to
describe the data elements (i.e. types and type restrictions like ranges or allowed
values), their structure (i.e. grouping and hierarchical correlation) and a meaningful
temporal succession of the questions within the interview [5], which is based on the
semantical cohesion.

Behavioral Information (I5–I7): This is needed to model the dynamic, data-related
aspects of the UI for examination at runtime; i.e. conditions about the
existence/activation of elements/groups bound to the content of other data elements
within the model, the indication for complex validation, operations associated with
data elements and groups triggered on changes of the input data (reactions) or triggered
by the user (actions) [15, 20].

Table 1. Information needs for a datamodel and its use to derive UIs.

Using Application Ontologies for the Automatic Generation 19

This set of information was found adequate to derive different aspects of the UI
following the interaction patterns in focus. Table 1 summarizes the usage of the
information within a derivation process which will be detailed in Sect. 4.

Based on the findings, a meta model was developed that incorporates the identified
information and served as a foundation to develop data descriptions for Interview
Applications. Figure 2 shows this meta model as UML diagram.

A data description (DataDescription) consists of a succession of data groups
(DataGroup) that might contain an ordered list of further groups or data elements
(DataItem). This constellation allows to model the requested structural information
regarding cohesion, (hierarchical) grouping and temporal succession (order) of the
elements (I2, I3, I4). Groups and data items are detailed by attributes/facets. E.g. the
type information (I1) and existential and activation conditions (I5) can be specified
for each description element in the model. Further facets are used to specify the element
more precisely in terms of data related aspects i.e. type restrictions that are usually part
of a type system like XML-Schema (I1). Table 2 summarizes the semantics of the
facets for DataGroups and DataItems. Additionally, each description element might
have associated validation-, reaction- and action operations (I6, I7). These are
detailed by further facets (cf. Fig. 2) like a name for the operation, triggering events

Fig. 2. Metamodel in UML notation

Table 2. Facets for DataGroups and
DataItems

20 M. Hitz and T. Kessel

and references to model elements needed for the execution of the operation
(input/output parameters) [8]. Elements are referenced by an identifier in dotted
notation, pointing out their position in the model hierarchy to be retrieved at runtime
(cf. Sect. 4, step 3).

The resulting model addresses the first objective of this paper stated in Sect. 1: an
approach describing Interview Applications based on their processed data, augmented
by data related information, that can be used to derive UIs. To achieve the second goal –
using sharable and common means for the description – we apply this model to
RDF/OWL as a common language in the field of semantic web technologies.

3 Using Ontologies as Application Description

The objective is to describe the mapping of the information requirements (I1–I7) listed
in Sect. 2.2. towards RDF/OWL and hence develop an application ontology.
RDF/OWL [11] and its basic features are selected as a well understood, widely adapted
technology used in different contexts for which tooling is available (e.g. reasoners,
APIs). Table 3 summarizes the RDF/OWL features and concepts that are used to model
the identified information requirements (I1–I7).

Ontologies in general are intended to describe entities, relationships, contained data
elements and additional facts in a way that inferences are built upon that knowledge.
Hence the mapping of most of the structural information as identified in Sect. 2.2 to
RDF/OWL is a straight forward task.

To illustrate the mapping, Listing 1 shows a simplified application ontology for the
customer data example in Sect. 2.11: DataGroups are modeled as owl:Classes within
an ontology and their hierarchical relations as owl:ObjectProperties (e.g. customerdata
as an object property of a Liability with range Customerdata). The Classes section

Table 3. Mapping of information needs to RDF/OWL features

1 Due to the space restrictions of a paper, a complete example can be reviewed at https://doi.org/10.
13140/RG.2.2.16564.24963.

Using Application Ontologies for the Automatic Generation 21

https://doi.org/10.13140/RG.2.2.16564.24963
https://doi.org/10.13140/RG.2.2.16564.24963

declares the DataGroups (e.g. Customerdata, Contractdata and Fullname) as part of
the application ontology (i.e. an ontology for a liability insurance <http://…/
liability/v1#>). DataItems are defined likewise as owl:DatatypeProperties, containing
information to which class they belong to, along with basic type information (e.g.
Listing 1, exemplary data associated with an Address). Using these basic concepts, the
structural information of I2 and I4 and partially I1 are covered.

However not all of the identified information needed for UI generation can be
expressed out-of-the-box. Ontologies are made for knowledge representation and
therefore RDF/OWL does not contain information like sequence of data (I3), existential
conditions (I5) or functional aspects (I6, I7) in its basic language. To the best of our
knowledge, RDF/OWL does neither include a concept for the description of operations
nor for declaratively modelling conditions/references on instance data. To express the
information needed, we use the OWL annotation concept as used by [7, 12] to produce
a profiled ontology. This allows to incorporate the information declaratively and leads
to an application ontology, that is (1) still covered by basic RDF/OWL (and thus can be
used for standard reasoning) yet (2) exposes the additional information for reasoners
(e.g. UI generators) that do understand the profile.

22 M. Hitz and T. Kessel

Table 4 lists the used annotations within the proposed profile along with their
mapping to the information needs. As an example, Listing 1 shows annotations for
type, sequence, validation and reactions applied to elements of the sample ontology.

The proposed mapping onto RDF/OWL constructs addresses the second objective
of this paper stated in Sect. 1: it leads to an ontological description for Interview
Applications. Hence it incorporates all the information contained in the meta model in
Sect. 2.2, UIs may be derived based on such an ontology (cf. Sects. 4 and 5). Hence it
uses a common language and describes the processed data for an application, it can be
used in different contexts and is not limited to UI generation. An example for a non-UI
use will be given in the evaluation section.

Nevertheless, the approach has limitations regarding its universality. The conse-
quence of a profiled ontology using proprietary annotations is, there has to be a rea-
soner that is aware of the profile. The contained information is not interpretable to
general reasoners and thus it is not shared as ‘world knowledge’. The proposed solution
is consciously limited to hierarchical ontologies. This is not a restriction for Interview
Applications as they operate on hierarchical data structures by definition. But this
characteristic prevents the approach to be applied to arbitrary ontologies that might
have a reticular graph structure. Sahar et al. [21] address this problem in the context of
UI generation. The results found there may be used to extend the applicability of the
proposed approach in future work.

4 Derivation Process for UIs

As outlined in Table 1 (Sect. 2.2), the information contained in the proposed model is
used for the automatic derivation of UIs. Figure 3 outlines the derivation process. The
basic approach is based on the concepts of the CAMELEON framework as proposed by
Calvary et al. [3]. The starting point for the UI derivation process is an instance of the
data-centric application model (data-centric core model). It contains the description of
the processed data of the application according to the structure and properties presented
in Sect. 2.2.

Table 4. Elements of the annotation profile

Using Application Ontologies for the Automatic Generation 23

Step 1: the core model is transformed into an abstract UI (AUI) using information
about the context of use to concretize the information contained in the data-centric
model. This step is crucial to generate usable UIs from a solely data-centric model
that intentionally omits technical details. This phase includes the enrichment with
labels, explaining texts and help information (depending on the language context),
the mapping of data types to concrete types of the AUI (e.g. the mapping of the
custom type zip to a text field restricted to 5 digits, if the language context is
German) and abstract UI input elements. For instance, a number range control for a
numerical value having min/max restrictions or a oneOfManySelection control for
elements restricted to a set of possible values. The information needed here is
derived from I1, I2, I3 and I4.
Step 2: derives a concrete UI (CUI) from the AUI description by incorporating the
device context for which the UI is intended. It includes the mapping of fields onto
pages (pagination) by using information about device restrictions (e.g. for mobile
devices) and exploiting the cohesion information contained in the data-centric
model. The latter indicates how a flow of questions may be split up and positioned
on pages for different device categories. The information needed here is derived
from I2 and I4.

Step 3: Depending on the technological context a final UI is derived by generating
concrete UI Widgets for the AUI controls. Besides, an access mechanism to user
entered data at runtime needs to be supplied, allowing the implementation of the
functional aspects, e.g. a model for evaluation of visibility in
Model-View-Controller application. The information for the functional aspects is
derived from I1, I5, I6 and I7.

Fig. 3. Derivation process for UI variants

24 M. Hitz and T. Kessel

5 Demonstration and Evaluation

The following sections focus on the validation of the stated objectives to show that
(1) a data-centric approach may lead to an increased automation and is suitable for
generating UIs for Interview Applications, (2) ontologies can be used within the
approach to describe application UIs in a non-proprietary way that are (3) shareable and
thus applicable for different contexts of use.

Our research on the topic of data-centric application descriptions is conducted using
the Design Science Research (DSR) [18] and Action Design [22] approach. The
resulting artefacts (i.e. data-centric meta model, derivation process and ontological
description) are refined in several iterations and evaluated per iteration by implemen-
tation and technical experiments with prototypes – which is a commonly applied
technique for evaluation of algorithms and models [17].

The evaluation of the approach was conducted in association with a major German
insurance company (Allianz Deutschland AG) from which we drew the data for the
evaluation. The insurance company provided a set of typical ‘real-life’ Interview
Applications that were used for the analysis phase and the validation of the imple-
mentation. From this set, relevant applications were selected that cover the interaction
patterns identified during analysis and to demonstrate the usefulness of the automated
process and afterwards the ontology developed in this paper.

To allow a deeper investigation, an online-link2 is provided that lists sample
resources for the liability quote application used throughout this paper. It shows a
working example of application variants and the complete application models men-
tioned below.

Evaluation of the Viability of the Data-Centric Approach (1). First, the derivation
process outlined in Sect. 4 was implemented resulting in a Transformation Service
(exposed as RESTful webservice), which transforms a data-centric application
description to a final UI for different platforms. The implementation was based on
available components from previous work done by Hitz [8]. The implementation

Fig. 4. Basic setting for evaluation

2 Link to website with additional content: https://doi.org/10.13140/RG.2.2.16564.24963.

Using Application Ontologies for the Automatic Generation 25

https://doi.org/10.13140/RG.2.2.16564.24963

focused on web-based Interview Applications covering HTML/JavaScript UIs for
different device categories (mobile, desktop). In addition, another prototype for rich
client UIs using JavaFX was established recently.

Figure 4 shows the basic setting for the implementation. The aforementioned
selected applications were described as a first step by using a DSL (domain specific
language) as proposed in [8] (Fig. 4, upper left), which contains a model following the
proposed meta model (cf. Sect. 2.2). These models were imported into the data-centric
core model and used by the transformation service to produce final UIs for different
platforms as outlined in Sect. 4.

Results: The implementation of the transformation process and its application to
existing Interview Applications showed that the information outlined in Sect. 2.2 is
appropriate to derive non-trivial UIs for the identified interaction patterns in practice.
The functionality of the generated UIs corresponds to a large extent to the already
existing manually designed counterparts which served as a basis for the analysis. It
could be demonstrated, that a single artefact is sufficient to model Interview Appli-
cations and that the data-centric approach leads to a high degree of automation for
generating different variants for the applications (e.g. different technologies, navigation,
input styles).

However, limitations could be observed in situations, where the outlined model did
not contain enough semantical information for a selection of sophisticated widgets for
the generation of the final UI. For example, the use of a selection panel using buttons
instead of a dropdown box depends on the character of the question (like ‘product
component selection’). This issue was solved by extending the model with additional
properties like semantical tags for an element.

The results of this implementation are already used in production environments of
Allianz Deutschland AG, e.g. to dynamically generate the UIs of complex electronic
risk acceptance check applications for different products on customer and agent portals.

Applicability of Ontologies (2). To evaluate the applicability of the approach to
ontologies, a comparative evaluation was chosen based on the implementation of the
first step (Fig. 4). The goal was to demonstrate that the proposed ontology has the same
expressive power as the DSL used in the first step and thus produces the same output.
To achieve this, the same applications were modeled using the proposed ontology (cf.
Sect. 3) and an import module was implemented, that mapped the ontology contents to
the core model of the transformation service (Fig. 4, lower left). This was used to
generate final UIs, which were compared to the ones generated in the first step.

Results: The results clearly show that both kinds of description can be mapped to the
same core model and bear the same expressive power. The implementation showed,
that the proposed approach for using ontologies to describe Interview Applications
leads to the same results as the solution using the proprietary DSL used in [8]. Though
it is no formal proof, the result clearly indicates that the data-centric approach may be
applied to ontological descriptions of Interview Applications.

Ontology Based, Shareable and Reusable Application Descriptions (3). For the
suitability of the proposed ontology as shareable, reusable application descriptions, we

26 M. Hitz and T. Kessel

applied the approach to a concept for distributed marketspaces working with generic
UIs for the specification of complex products. This work is already published in [10]
and thus summarized here. The objective was to show, that application ontologies as
proposed above can be (1) shared and used to generically build composed UIs and
(2) can be used for non-UI-specific purposes – in this case to deduce a complex product
request from the user input, that is an instance of the applications data model repre-
sented by the ontology.

For this purpose, a demonstrator was implemented that used the aforementioned
results. Figure 5a shows the basic architecture of the demonstrator. As generic user
frontend a Complex Product Builder (CPB) application was implemented, that let the
user search and select Application Ontologies (AO) as proposed in this paper (Fig. 5a,
❶). These are drawn from a shared UI description repository containing arbitrary UIOs
for different product components (e.g. the booking of a concert or flight). The user
selected AOs for his demand are sent to the Transformation Service (Fig. 5, ❷), which
returns the generated UI partials for each AO. These are aggregated into a UI presented
to the user (Fig. 5b). Since the UI partials are generated from the elements contained in
the AO, the user input clearly relates to the corresponding ontology elements. This
allows to build an instance model for each presented AO containing the input data of
the user using an Ontology Mapper (Fig. 5, ❸). The result is a set of ontology instances
on which a reasoner can build inferences and derive a complex product request, which
can be sent to the Distributed Market Space for further processing (i.e. generating a
quote/proposal for the requested product components).

a) Basic Architecture (modified from [10]) b) sample UI for a travel booking
request

Fig. 5. Generic UIs for complex product requests

Using Application Ontologies for the Automatic Generation 27

Results: Although the demonstrator is yet still a proof-of-concept, it already showed,
that it is possible to share application descriptions and thus provide generic UIs based
on Application Ontologies. AOs can be assembled from arbitrary sources (e.g.
topic-related repositories for insurance, travel planning etc.). The UIs can automati-
cally be derived and aggregated based on the contained information. As a second result
the demonstrator showed, that these ontological descriptions can be used for
non-UI-specific purposes like reasoning on instances of the AOs and thus further
processing in backend systems that do understand the used ontologies.

6 Related Work

The research on the automatic generation of UIs covers many contributions during the
last years that are based on model-driven concepts. There are several approaches
focusing on different aspects of UI generation.

User Interface Description Languages (UIDL) focus mainly on the description of
concrete UIs in a technology independent way. Examples are JavaFX3, UIML [1],
UsiXML [13] and XForms4. The essential idea is to model dialogs and forms by using
technology independent descriptions of in-/output controls and relations between ele-
ments and behavior (e.g. visibility) within a concrete UI.

Task-/conversation based approaches describe applications by dialog flows
which are derived from task models – e.g. CAP3 [23], MARIA [16] and conversation
based approaches by Popp et al. e.g. [19]. They focus on a concrete model of the dialog
flows and their variants. To generate an application frontend, the steps in a dialog flow
are associated with technology independent UI descriptions displayed to the user.

Data-centric approaches can be found in JANUS [2] andMecano [20] which use a
domain model as starting point for the derivation of UIs. While JANUS is designed to
provide CRUD-like interfaces that work on a persisted domain model that does not
support much dynamics in the UI, Mecano adds these aspects to its description.

Existing Ontology based approaches generally rely on the concepts of the men-
tioned approaches and use ontologies to represent the information about concrete UIs.
For instance, in analogy of UIDL approaches, Liu et al. [24] propose an ontology driven
framework to describe UIs based on concepts stored in a knowledge base. Khushraj and
Lassila [12] uses web service descriptions to derive UI descriptions based on a UI
ontology, adding UI related information to the concept descriptions (profile). In analogy
with task based approaches, Gaulke and Ziegler [7] use a profiled domain model
enriched with UI related data to describe a UI and associate it with an ontology driven
task model. ActiveRaUL [21] combines an UIDL with a data-centric approach and
makes a significant contribution to the generation of UIs based on arbitrary ontologies.
They derive a hierarchical presentation of an ontology and map it to an ontological UI

3 I. Fedortsova et al. 2014: http://docs.oracle.com/javase/8/javafx/fxml-tutorial/preface.html.
4 M. Dubinko et al. 2003: http://www.w3.org/TR/xforms.

28 M. Hitz and T. Kessel

http://docs.oracle.com/javase/8/javafx/fxml-tutorial/preface.html
http://www.w3.org/TR/xforms

description. Since there is not much semantic information contained, the resulting UIs
are yet very simple and not very feature rich regarding the supported interactions.

Dissociation: A main goal of the proposed data-centric approach is to minimize the
number of needed artefacts and to use a representation that can be reused for different
purposes. The models of the aforementioned approaches usually do not contain enough
semantical information for reasoning that could be used for deriving UI variants. The
UIs are manually modeled using a large amount of artefacts. This opens a gap in
automating the process for building UIs. In addition, the produced artefacts are usually
proprietary and UI-specific. That impedes their reuse for other purposes related to
application generation.

The solution proposed in this paper is based on the application’s processed data and
enriches its model by additional semantics. This leads to a single, central description
for the application that serves as a knowledge base for the automatic derivation of UI
variants. The data-centric approach allows the reuse of the model in different contexts
and - by using a non-proprietary representation for the model - the sharing and inte-
gration into different environments. Though this approach is restricted to interview
applications, it allows a significantly simplified modelling process, since the results can
be derived from a single source.

7 Conclusion

In this paper a data-centric, model driven approach for the automatic generation of
user interfaces for dialog based Interview Applications is presented. The approach is
based on a UI-agnostic, data-centric description for applications. The foundation is a
model of the processed application data which is enhanced by type-related, structural
and behavioral information to yield automatically generated UI variants as demon-
strated in the previous sections. The information needs are identified and a meta-model
is derived from which the UIs can be inferred. Furthermore, the information needs are
mapped to an ontological description relying on RDF/OWL constructs to get a
non-proprietary representation of that information to be used in different contexts.
A process to derive UIs from such a data-centric model is outlined. Finally, the
evaluation is presented which (1) provides an implementation of the generation process
for UIs from data-centric application descriptions, is used as proof-of-concept
regarding the (2) usefulness of the ontological descriptions for UI generation and
(3) its viability as sharable, non-proprietary means for generating UIs for data-driven
applications.

The results of the evaluation indicate, that using a data-centric model is feasible for
UI generation in case of Interview Applications. Since the number of artefacts is
reduced to a single, UI-agnostic application model, the step for declaring UIs manually
can be eliminated. Because of its data-centric nature, it can be used for non-UI-specific
tasks. Using a universal representation as RDF/OWL adds even more value, as the
application model is sharable and the contained semantics can be exploited by standard
tools for reasoning on the model and instances.

Using Application Ontologies for the Automatic Generation 29

The approach is intentionally restricted to dialog based Interview Applications that
are very important and frequently used in EIS, e.g. in the insurance domain. Since a
limited set of applications was used for the analysis, we cannot claim completeness of
the identified interaction patterns. The practical use of the approach will bring forth
additional interaction patterns extending the basic information set in future. Regarding
the proposed use of ontologies, the evaluation strongly indicates the usefulness for UI
derivation – though it is restricted to hierarchical structures and uses proprietary
annotations and thus restricting its universality. Future work might concentrate on
finding more general ways for incorporating the information and exploit existing
approaches to apply the approach to arbitrary ontologies.

References

1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., Shuster, J.E.: UIML: an
appliance-independent XML user interface language. In: WWW 1999 Proceedings of the
Eighth International Conference on World Wide Web, pp. 1695–1708 (1999)

2. Balzert, H., Hofmann, F., Kruschinski, V.: The JANUS application development environ-
ment—generating more than the user interface. Comput. Aided Des. User Interfaces 96,
183–206 (1996)

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.:
The CAMELEON Reference Framework (2002)

4. Chlebek, P.: User Interface-orientierte Softwarearchitektur. Vieweg & Sohn Verlag,
Wiesbaden (2006)

5. Constantine, L.L., Lockwood, L.A.D.: Software for Use: a Practical Guide to the Models and
Methods of Usage-Centered Design. ACM Press/Addison-Wesley Publishing Co.,
New York (1999)

6. Coutaz, J.: User interface plasticity: model driven engineering to the limit! In: EICS 2010
Proceedings of the 2nd ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pp. 1–8 (2010)

7. Gaulke, W., Ziegler, J.: Using profiled ontologies to leverage model driven user interface
generation. In: Proceedings of 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS 2015, pp. 254–259 (2015)

8. Hitz, M.: mimesis: Ein datenzentrierter Ansatz zur Modellierung von Varianten für
Interview-Anwendungen. In: Nissen, V., Stelzer, D., Straßburger, S., Fischer, D. (eds.)
Proceedings - Multikonferenz Wirtschaftsinformatik (MKWI) 2016, pp. 1155–1165 (2016)

9. Hitz, M.: Interner Projektbericht zu mimesis.ui., DHBW-Stuttgart (2013)
10. Hitz, M., Radonjic-Simic, M., Reichwald, J., Pfisterer, D.: Generic UIs for requesting complex

products within distributed market spaces in the internet of everything. In: Buccafurri, F.,
Holzinger, A., Kieseberg, P., Tjoa, A.M.,Weippl, E. (eds.) CD-ARES 2016. LNCS, vol. 9817,
pp. 29–44. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45507-5_3

11. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web
Ontology Language Primer. http://www.w3.org/TR/2009/REC-owl2-primer-20091027/

12. Khushraj, D., Lassila, O.: Ontological approach to generating personalized user interfaces
for web services. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 916–927. Springer, Heidelberg (2005). doi:10.1007/11574620_65

30 M. Hitz and T. Kessel

http://dx.doi.org/10.1007/978-3-319-45507-5_3
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/
http://dx.doi.org/10.1007/11574620_65

13. Limbourg, Q.: USIXML: a user interface description language supporting multiple levels of
independence. In: Matera, M., Comai, S. (eds.) ICWE Workshops, pp. 325–338. Rinton
Press (2004)

14. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, present, and future of model-based user
interface development. i-com Zeitschrift für interaktive und kooperative Medien 10(3), 2–11
(2011)

15. Miguel, A., Faria, J.P.: Automatic generation of user interface models and prototypes from
domain and use case models. In: Matrai, R. (ed.) User Interfaces. InTech (2010)

16. Paterno, F., Santoro, C., Spano, L.D.: MARIA: a universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environment.
ACM Trans. Comput. Interact. 16, Article No. 19 (2009)

17. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research evaluation.
In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS, vol. 7286,
pp. 398–410. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29863-9_29

18. Peffers, K., Tuunanen, T., Gengler, C.E., Rossi, M., Hui, W., Virtanen, V., Bragge, J.: The
design science research process: a model for producing and presenting information systems
research. In: Proceedings of Design Science Research in Information Systems and
Technology DESRIST 2006, vol. 24, pp. 83–106 (2006)

19. Popp, R., Falb, J., Arnautovic, E., Kaindl, H., Kavaldjian, S., Ertl, D., Horacek, H., Bogdan,
C.: Automatic generation of the behavior of a user interface from a high-level discourse
model. In: Proceedings of the 42nd Annual Hawaii International Conference on System
Sciences, HICSS (2009)

20. Puerta, A.R., Eriksson, H., Gennari, J.H., Musen, M.A.: Beyond data models for automated
user interface generation. In: Proceedings British HCI 1994 (1994)

21. Sahar, A., Armin, B., Shepherd, H., Lexing, L.: ActiveRaUL: automatically generated web
interfaces for creating RDF data. In: Proceedings of the 12th International Semantic Web
Conference, ISWC 2013, vol. 1035, pp. 117–120 (2013)

22. Sein, M.K., Henfridsson, O., Rossi, M.: Action design research. MIS Q. 35, 1–20 (2011)
23. Van den Bergh, J., Luyten, K., Coninx, K.: CAP3: context-sensitive abstract user interface

specification. In: Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems - EICS 2011, pp. 31–40 (2011)

24. Liu, B., Chen, H., He, W.: Deriving user interface from ontologies: a model-based approach.
In: Proceedings of International Conference on Tools with Artificial Intelligence ICTAI
2005, pp. 254–259 (2005)

Using Application Ontologies for the Automatic Generation 31

http://dx.doi.org/10.1007/978-3-642-29863-9_29

	Using Application Ontologies for the Automatic Generation of User Interfaces for Dialog-Based Applications
	Abstract
	1 Introduction
	2 Data-Centric Description of Interview Applications
	2.1 Character of Interview Applications
	2.2 Information Needs for Automatic Generation of UIs

	3 Using Ontologies as Application Description
	4 Derivation Process for UIs
	5 Demonstration and Evaluation
	6 Related Work
	7 Conclusion
	References

