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Abstract In today’s competitive business environment, companies are facing
challenges in dealing with big data issues for rapid decision making for improved
productivity. Many manufacturing systems are not ready to manage big data due to
the lack of smart analytics tools. U.S. has been driving the Cyber Physical Systems
(CPS), Industrial Internet to advance future manufacturing. Germany is leading a
transformation toward 4th Generation Industrial Revolution (Industry 4.0) based on
Cyber-Physical Production System (CPPS). It is clear that as more predictive
analytics software and embedded IoT are integrated in industrial products and
systems, predictive technologies can further intertwine intelligent algorithms with
electronics and tether-free intelligence to predict product performance degradation
and autonomously manage and optimize product service needs. The book chapter
will address the trends of predictive big data analytics and CPS for future industrial
TES systems. First, industrial big data issues in TES will be addressed. Second,
predictive analytics and Cyber-Physical System (CPS) enabled product manufac-
turing and services will be introduced. Third, advanced predictive analytics tech-
nologies for smart maintenance and TES with case studies will be presented.
Finally, future trends of digital twin industrial systems will be presented.

7.1 Introduction

In today’s competitive business environment, companies are facing challenges in
dealing with big data issues for rapid decision making for improved productivity.
Many manufacturing systems are not ready to manage big data due to the lack of
smart analytics tools. U.S. has been driving the development Cyber-Physical
Systems (CPS) and Industrial Internet to advance future manufacturing. For
instance, GE has announced Predix™ as a cloud-based service platform to enable
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industrial-scale analytics for management of asset performance and optimization of
operations [1]. Also, National Instruments introduced Big Analog Data™ three-tier
architecture solution [2], as well as LabVIEW Watchdog Agent™ Toolkit to
support smart analytics solutions throughout different big data applications [3, 4].
At the same time, Germany is leading a transformation toward 4th Generation
Industrial Revolution (Industry 4.0) based on Cyber-Physical Production System
(CPPS). It is clear that as more predictive analytics software and embedded Internet
of Things (IoT) are integrated in industrial products and systems, predictive tech-
nologies can further intertwine intelligent algorithms with electronics and
tether-free intelligence to predict product performance degradation and autono-
mously manage and optimize product service needs,

This book chapter will address the trends of predictive big data analytics and
CPS for future industrial Through-life Engineering Services (TES) systems. First,
industrial big data issues in TES will be addressed. Second, predictive analytics and
CPS enabled product manufacturing and services will be introduced. Third,
advanced predictive analytics technologies for smart maintenance and TES with
case studies will be presented. Finally, future trends of digital twin industrial sys-
tems will be presented.

7.2 Industrial Big Data Issues in TES Systems

Through-life Engineering Services (TES) systems aim at addressing the support
requirements for performance-based contracts, of which maintenance is the major
engineering service [5]. This has been motivating the users to become increasingly
interested in minimizing the whole lifecycle ownership of assets [6]. With the
prevalence of smart sensors and IoT technologies such as RFID and MTConnect,
data acquisition becomes more and more cost-effective and pervasive, but the
question remains if these data will provide us the right information for the right
purpose at the right time. Merely connecting sensors to machines or connecting
machines to machines will not facilitate rapid decision making. Current manufac-
turing systems will necessitate a deeper analysis of various data from machines and
processes.

The aforementioned issues in TES systems can be addressed by industrial big
data. Industrial big data is a systematic methodology to convert different sources of
data (sensors, controllers, history, human, fleet peer-to-peer system) into smart
actionable information in order to reduce costs and generate business revenues.
Industrial big data analytics draws actionable information from raw data collected
from various sources to support rapid decision making, so that businesses will be
able to increase operation efficiency, improve services, create novel business
models, and ultimately, generate more revenues [7]. A research conducted by
Accenture and General Electric forecasted that the values created by Industrial
Internet of Things and industrial big data could be worth $500 billion by 2020 [7].
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The concept of industrial big data in industry is related to big data in information
technology, but there are certainly distinctive characteristics between them. Both
industrial big data and big data refer to data generated in high volume, high variety,
and high velocity (“3 V” problems) that require new technologies of processing to
enable better decision making, knowledge discovery and process optimization [8].
Sometimes, the feature of veracity is also added to emphasize the quality and
integrity of the data [9]. However, for industrial big data, there should be two
additional “V’s”. One is “Visibility”, which refers to the discovery of unexpected
insights of the existing assets and/or processes and in this way transferring invisible
knowledge to visible values. The other “V” is “Value”, which put an emphasis on
the objective of industrial big data analytics—creating values. This characteristic
also implies that, due to the risks and impacts industry might face, the requirements
for analytical accuracy in industrial big data is much higher than big data analytics
in general, such as social media and customer behavior [10–13].

Compared to big data in general, industrial big data is usually more structured,
more correlated, and more orderly in time and more ready for analytics [10]. This is
because industrial big data is generated by automated equipment and processes,
where the environment and operations are more controlled and human involvement
is reduced to minimum. Nevertheless, the values in industrial big data will not
reveal themselves after connectivity is realized by IoT. Even though machines are
more networked, industrial big data usually possess the characteristics of “3B” [10],
namely:

• Below-Surface

General big data analytics often focuses on the mining of relationships and
capturing the phenomena. Yet industrial big data analytics is more interested in
finding the physical root cause behind features extracted from the phenomena. This
means effective industrial big data analytics will require more domain know-how
than general big data analytics.

• Broken

Compared to big data analytics, industrial big data analytics favors the “com-
pleteness” of data over the “volume” of the data, which means that in order to
construct an accurate data-driven analytical system, it is necessary to prepare data
from different working conditions. Due to communication issues and multiple
sources, data from the system might be discrete and un-synchronized. That is why
pre-processing is an important procedure before actually analyzing the data to make
sure that the data are complete, continuous and synchronized.

• Bad-Quality

The focus of big data analytics is mining and discovering, which means that the
volume of the data might compensate the low-quality of the data. However, for
industrial big data, since variables usually possess clear physical meanings, data
integrity is of vital importance to the development of the analytical system.
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Low-quality data or incorrect recordings will alter the relationship between different
variables and will have a catastrophic impact on the estimation accuracy.

Therefore, simply transferring the techniques developed for general-purpose big
data analytics might not work well for industrial big data analytics. Industrial big
data requires deeper domain knowledge, clear definitions of analytical system
functions, and the right timing of delivering extracted insights to the right personnel
to support wiser decision making [10, 14]. Predictive analytics and Cyber-Physical
Systems are two core technologies that will help generate the most values from
industrial big data in TES systems, which will be introduced in later sections. As
Fig. 7.1 shows, predictive big data analytics and Cyber-Physical Systems will not
only benefit users from predictive maintenance, but will also nurture customer
co-creation through feedbacks to design and proactive quality assurance during
manufacturing, which will lead to a more comprehensive TES system.

Fig. 7.1 Vision for predictive analytics and Cyber-Physical Systems-Enabled TES system
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7.3 Predictive Analytics and Cyber-Physical
System-Enabled Manufacturing and Services

Predictive analytics and Cyber-Physical Systems (CPS) are the core technologies of
industrial big data [10, 11]. CPS systems require seamless integration between
computational models and physical components [15]. Each physical component and
machine will have a Digital Twin model in the cyber space composed of data
generated from sensor networks and manual inputs. As shown in Fig. 7.2, a CPS
can be constructed by following the “5C” architecture, which serves as a guideline
for the development of CPS for industrial applications [16]. Specifically, the “5C”
architecture refers to the following levels of work flow:

1. Smart Connection Level: From the machine or component level, the first thing is
how to acquire data in a secure, efficient and reliable way. It may include a local
agent and a communication protocol for transmitting data from local machine
systems to a remote central server. Previous research has investigated robust
factory network schemes based on well-known tether-free communication
methods, including ZigBee, Bluetooth, Wi-Fi, UWB, etc. [17–19].

2. Data-to-Information Conversion Level: In an industrial environment, data may
come from different resources, including controllers, sensors, manufacturing
systems (ERP, MES, SCM and CRM system), maintenance records. These data
or signals represent the condition of the monitored machine systems. However,
they must be converted into meaningful information for a real-world application,
including health assessment and fault diagnostics.

3. Cyber Level: Once we can harvest information from machine systems, how to
utilize it is the next challenge. The information extracted from the monitored
system may represent system conditions at that time point. If it can be compared

Fig. 7.2 “5C” architecture for Cyber-Physical Systems [16]
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with other similar machines or with machines in different time histories, users
can gain more insights on the system variation and life prediction. It is called
cyber level because the information is utilized in creating cyber avatars for
physical machines and building a great knowledge base for each machine
system.

4. Cognition Level: By implementing previous levels of CPS, it can provide the
solutions to convert the machine signals to health information and also compare
with other instances. In cognition level, the machine itself should take advantage
of this online monitoring system to diagnose its potential failure and alert its
potential degradation in advance. Based on the adaptive learning from the
historical health evaluation, the system then can utilize specific prediction
algorithms to predict the potential failure and estimate the time to reach certain
level of failures.

5. Configuration Level: Since the machine can online track its health condition, the
CPS can provide early failure detection and send health monitoring information
to operation level. This maintenance information can be fed back to factory
systems so that the operators and factory managers can make the right decision
based on the maintenance information. At the same time, the machine itself can
adjust its working load or manufacturing schedule in order to reduce the loss
caused by the machine malfunction and eventually achieve a resilient system.

For the first level, communication protocols play a significant role to enable
tether-free communication between machines and data acquisition systems. In this
way, recently developed communication protocols such as MTConnect [17] can
help users acquire controller signals. Authors of the research in [18] demonstrated
that using new communication protocols, in this case MTConnect, paves the way of
acquiring data from band saw machines and other manufacturing equipment.
Although these methods are helping to make data acquisition more efficient, the
challenge of dealing with different sources of data is still in place [19].

The second level of the architecture, data to information conversion, has also
received considerable attention specifically for prognostics and health management
(PHM). Lee et al. [20] provides a relatively comprehensive review on current PHM
approaches for rotary machinery. Trendafilova et al. [21] presented a non-linear
data analysis method using accelerometer measurements to identify the backlash
severity for industrial robot joints. Liao et al. [22] developed a method to use
multiple baselines for identifying faults in band saw machines axis. They used
vibration, temperature and torque measurements to train various baselines in
self-organizing maps models. As it is obvious with these cases, using induced faults
and laboratory situation can cover some key failure signatures of the target system
but it is not possible to identify all the possible failure modes which happen in
real-life situation.

The third level of the proposed “5C” architecture, the cyber level, intends to
provide more intelligent and time-based methods. Using equipment history and
algorithms that improve and adapt themselves provides more reliable and robust
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methods for equipment health monitoring and life estimation. Such algorithms are
able to learn the equipment behavior over time and improve initial failure signa-
tures. Even if the original target equipment is unavailable or failed, these models
will still be available and can be applied to any other similar equipment. These
cyber-models use historical data to improve themselves and data from similar
machines to gain more knowledge. Wang et al. [23], developed a trajectory simi-
larity based prognostics method which uses historical data to identify the remaining
useful life of assets. Yang et al. [24] developed an adaptive prognostics and health
management method for adaptively identifying new working regimes in the data
and build new models base on them. Lapira [25] developed a method to use
different clustering algorithms to perform machine to machine comparison and
generate the health status of wind turbines and industrial robots. This fleet based
similarity approach provided more accurate estimation of machines’ status by peer
comparison and identifying a more reliable baseline.

The cognition level intends to apply decision making and reasoning methods to
recommend actionable operations to maintain optimal production while extend the
lifetime of assets. There are few researches that focus on using real machine status
for decision making such as the work by Haddad et al. [26] where authors used the
asset remaining useful life (RUL) as input to option theory to identify the appro-
priate time for maintenance actions. This study only focused on deciding the
maintenance time and did not consider changing working regime and reducing load
of the machine as possible options.

The configuration level provides machine with self-adjusting and
self-configuration capability. Most of the current research is focused on keeping
humans in the decision making loop. Therefore, there are significant research
opportunities on developing the concept of self-configuration and self-adjustment
concept.

The “5C” architecture has indicated that Cyber-Physical Systems is focused on
transferring raw data to actionable information, understanding process insights, and
eventually improve the process by evidence-based decision making. Improved
processes will further increase productivity and reduce costs. This aligns with the
mission of TES systems, which supports usage performance requirements
throughout product lifecycle and create values for customers.

7.4 Advanced Analytics for Smart Maintenance and TES
with Case Studies

In industrial applications, the “5C” architecture can be applied hierarchically to
different levels including components, machines, and fleets. At each level, specific
analytics are required to generate useful information from raw data and conse-
quently discover useful knowledge about the system.
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1. Component level: At this level, digital twins from critical components of each
machine are modeled in the cyber space. They work in parallel with the physical
component while possessing huge differences: they are not bounded by time or
location. These digital twins capture significant changes in the health status of
each component and once the physical component is degraded, they will give
prediction of the remaining useful life. Additionally, as these digital twins are on
the cloud, they can interact with other components even though they are geo-
graphically distributed. Such models are very inclusive as they log lifespan of
components undergoing various stress level and working regimes.
Consequently, the system will gain self-awareness.

2. Machine Level: This level incorporates knowledge generated in the component
level in addition to machine operation history, system settings and other attri-
butes to create a digital twin for each machine. Adequate analytical methods
have to be applied at data-to-information Conversion Level and Cyber Level to
generate machine level performance and health metrics. At this stage, digital
twins of similar machines are comparable to each other to identify low per-
formance machines regardless of working regime.

3. Fleet Level: As mentioned before, cyber models are not bounded by time or
location. This advantage provides opportunity to design and incorporate meth-
ods for reactively modifying the production flow. For example, leveraging the
historical machine performance data and component status (from component
and machine levels), it is possible to optimize the working regime among the
fleet in order to maximize the life span of all components and at the same time
maintain optimal productivity. This level brings self-maintainability and
self-configurability to the system.

7.4.1 Advanced Predictive Analytics and Algorithms

The effectiveness of the proposed CPS architecture relies on the performance of the
data analysis and management functions deployed in the cyber level. Served as a
bridge connecting the lower level data acquisition and upper level cognition
functions, the cyber level is required to autonomously summarize, learn and
accumulate system knowledge based on data collected from a group of machines.
The system knowledge includes possible working regimes, machine conditions,
failure modes and degradation patterns, which is further used by cognition and
reconfiguration functions for optimization and failure avoidance. On the other hand,
because of complications in machine configuration and usage patterns, autonomous
data processing and machine learning is of high priority since the traditional ad hoc
algorithm model can hardly be applied to complex or even unexpected situations.
New methods have to be developed to perform these tasks and generate appropriate
results. In this section, we introduce the “Time Machine” as the framework for
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performing analytics on the cyber level. This framework consists of three major
parts [27]:

1. Snapshot Collection: Information is continuously being pushed to the cyber
space from machines. The role of snapshot collection is to manage the incoming
data and store the information in an efficient fashion. Basically, to reduce
required disk space and process power, snapshots of machine performance,
utilization history and maintenance have to be recorded instead of the whole
time-series. These snapshots are only taken once a significant change has been
made to the status of the monitored machine. The change can be defined as
dramatic variation in machine health value, a maintenance action or a change in
the working regime. During the life cycle of a machine, these snapshots will be
accumulated and used to construct the time-machine history of the particular
asset. This active time-machine record will be used for peer-to-peer comparison
between assets. Once the asset is failed or replaced, its relative time-machine
record will change status from active to historical and will be used as similarity
identification and synthesis reference.

2. Similarity Identification: In cyber level, due to availability of information from
several machines, the likelihood of capturing certain failure modes in a shorter
time frame is higher. Therefore, the similarity identification section has to look
back in historical time machine records to calculate the similarity of current
machine behavior with former assets utilization and health. At this stage, dif-
ferent algorithms can be utilized to perform pattern matching such as match
matrix [28], fleet-based fault detection [25], and trajectory similarity-based
methods [23]. Once the patterns are matched, future behavior of the monitored
system can be predicted more accurately.

3. Synthesis Optimized Future Steps: Predicting remaining useful life of assets
helps to maintain just-in-time maintenance strategy in manufacturing plants. In
addition, life prediction along with historical time machine records can be used
to improve the asset utilization efficiency based on its current health status.
Historical utilization patterns of similar asset at various health stages provide
required information to simulate possible future utilization scenarios and their
outcome for the target asset. Among those scenarios, the most efficient and yet
productive utilization pattern can be implemented for the target asset.

New algorithms have to be designed to comply with the proposed Time Machine
framework. In this section, two representative machine learning and knowledge
extraction methodologies are introduced for performing health assessment and
prognostics within the CPS structure.

7.4.1.1 Similarity-Based Fleet-Sourced Health Monitoring

Considering a machine fleet, similarity always exists among machines—machines
that are performing similar tasks or at similar service time may have similar
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performance and health condition. Based on such similarity, machine clusters can
be built, as a knowledge base representing different machine performance and
working conditions.

As for algorithms, unsupervised learning algorithms such as Self-Organizing
Map (SOM) and Gaussian Mixture Model (GMM) can be used for autonomously
creating clusters for different working regime and machine conditions. The adaptive
clustering methodology [24] utilizes an on-line update mechanism: the algorithm
compares the latest input (Time Machine) to the existing cluster and tries to identify
one cluster that is most similar to the input sample using multidimensional distance
measurement. Search of similar cluster can end with two results: (1) Similar cluster
found. If it is this case, then the machine from which the sample has been collected
will be labeled as having the health condition defined by the identified cluster.
Meanwhile, depending on deviation between existing cluster and the latest sample,
the algorithm will update the existing cluster using new information from the latest
sample. (2) No similar cluster found. In this case, the algorithm will hold its
operation with the current sample until it sees enough count of out-of-cluster
samples. When number of out-of-cluster samples exceeds a certain amount, it
means that there exists a new behavior of the machine that has not been modeled so
that the algorithm will automatically create a new cluster to represent such new
behavior. In such case the clustering algorithm can be very adaptive to new con-
ditions. Moreover, the self-growing cluster will be used as the knowledge base for
health assessment in the proposed cyber space. With such mechanism, different
machine performance behaviors can be accumulated in the knowledge base and
utilized for future health assessment.

7.4.1.2 Prognostics of Machine Health Under Complex Working
Conditions

After the health condition and the working regimes are identified for each machine,
the next step is to predict the remaining useful life (RUL). First, using utilization
history and measurement data, the relationship between machine degradation and
the utilization (stress) history is built. Many existing prediction algorithms fail to
perform well for in-field machines because they cannot handle dynamic or
complex-working regimes that may alter the actual degradation path from previ-
ously learned ones. The proposed utilization matrix based prediction is grounded on
the understanding that the fundamental reason for machine degradation is not only
time, but also other stress factors. As a consequence, a general-purpose prediction
algorithm has to be based on the stress versus life relationship.

For systems such as CNC machines, more dimensions (e.g. material hardness,
machining parameters, volume of removed material, etc.) need to be added to the
stress matrix to cover all major factors that cause degradation. After the definition of
stress matrix, machine learning algorithms such as Bayesian Belief Network
(BBN) and Hidden Markov Model (HMM) can be used to relate the different
degradation rates observed in machine fleet to corresponding stress history.
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Eventually degradation rate can be generated for prediction under different usage
patterns that may occur in real world applications.

7.4.2 Case Studies

7.4.2.1 Self-aware Band Saw Machine

The core components of band saw machines are band saws used for cutting. As
cutting volume grows, the band saws will gradually wear down, which results in a
decline in processing efficiency and quality. For this reason, the plant must arrange
a large number of workers to keep an eye on the machine operations and the wear of
band saws, and determine the replacement timing based on experience. As quality
requirements vary with different cutting tasks, and factors influencing quality
cannot be root caused easily, the healthy band saws would be replaced well before
they break. Thus, it is necessary to gather processing data from band saw machine
controllers and add-on sensors, and develop a predictive CPS platform for band saw
degradation analysis and prognostics, thereby making the band saw machine more
intelligent by providing customers with visualized productivity management
services.

In the course of processing, an intelligent band saw machine can analyze data in
near real time: It first identifies condition parameters of the current work piece, and
then extracts diagnostic characteristics from vibration signals and other critical
parameters. After normalizing diagnostic characteristics in light of working con-
ditions, it maps the current diagnostic characteristics to areas on the health map
representing the current health stage. Such information is divided into three cate-
gories: working condition information, diagnostic information, and health status
information. With voluminous lifecycle information files on band saws, users can
conduct data mining through big data analysis.

While making band saw machines self-aware and intelligent, the manufacturer
developed an intelligent cloud service platform to provide users with customized
band saw machine health and productivity management services. As shown in
Fig. 7.3, after status information gathered by band saw machines is transmitted to
the cloud for analysis, users can get the health condition of key components,
degradation of band saws, operation parameter matching and risk assessment
through the user interface on portable devices or web interface. This makes every
band saw machine operating condition quantitative and visual. With the platform,
users can also manage their production plans, and manage band saw machines and
band saws as required by the production tasks. When a band saw is worn to a point
that it cannot meet machining quality requirements, the system will automatically
remind the user to replace it, and automatically generate an order for the band saw
in the material management ERP system. While dramatically boosting the efficiency
of human resources, it avoids uncertainties brought about by management based on
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experience. Meanwhile, the service life of band saws is prolonged, and quality
management is conducted in a quantitative and transparent manner.

After demonstration at the International Manufacturing Technology Show
(IMTS) 2014 in Chicago, the manufacturer’s intelligent band saw machines and
intelligent cloud services drew great attention. Seen as outstanding demonstration
of intelligent equipment, such products and services have won great popularity
among customers.

7.4.2.2 From Lean to Smart—Production Line Smart Maintenance

Automobile Manufacturer B has introduced a prediction analysis model in the
health management of industrial robots. As such industrial robots were widely
applied under different working conditions for different manufacturing purposes,
installing external sensors for them was not feasible, and their health status should
be analyzed based on parameters obtained in the controller. One type of the
industrial robots deployed by Automobile Manufacturer B is the six-axis robotic
arm, which would completely shut down when a fault occurs on any axis. To
address this problem, Automobile Manufacturer B first identified the robotic arm
working conditions based on the revolving speed signals of its servo axes and then
established a health evaluation model for the status parameters (such as torque and

Fig. 7.3 Intelligent management of band saw machine
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temperature) under each working condition, so as to predict a fault three weeks in
advance.

After that, Automobile Manufacturer B started to roll out the prediction analysis
model on the six-axis servo robotic arms, conducted cluster analysis based on their
types and working conditions, and formed “cyber fleets” for the various types of
robotic arms. For each “cyber fleet,” Automobile Manufacturer B adopted cluster
modeling to analyze data about the covered robotic arms, judged the abnormality of
each robotic arm by comparing it with the whole community, and sorted all robotic
arms in the community based on their health status (Fig. 7.4).

After conducting quantitative analysis on the health status of the robotic arms,
Automobile Manufacturer B adopted an Internet-based model to manage the
analysis results, and established an online monitoring system for the “cyber fac-
tory”. In the “cyber factory”, administrators can manage equipment status in a
vertical and all-around manner at the levels of production system, production line,
work station, single equipment and even key components, and carry out the
maintenance and production plans based on the current equipment status. This
system can generate a health report every day, which analyzes all equipment in the
production line, sorts them based on their health status, and indicates the health
risks and problematic parts of all equipment for equipment management personnel.
In this way, potential risks will be identified in routine spot inspections and
unnecessary inspections and maintenance can be effectively avoided. As a result,
Automobile Manufacturer B successfully achieved the transition from preventative
to predictive maintenance.

7.5 Future Trends of Digital Twin Industrial Systems

Through the discussion in precious sections, as shown in Fig. 7.5, it is evident that
future industrial systems will shift from machine-based to evidence-based decision
making, from solving visible problems to avoiding invisible problems [29], and
from product-centric quality control to user-centric value creation.

Fig. 7.4 Predictive analysis results for industrial robotic arms
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First, transformation from machine-based to evidence-based decision making
will rapidly take place. Traditionally, manufacturing system management heavily
depends on experienced personnel. In an aging society, knowledge loses with
retired workforce. Therefore, a smart analytical system is needed to transform
experience-based know-how into evidence-based decision making for sustainable
operation.

Then, transformation from solving visible problems to avoiding invisible issues
will become a new focus of the industry to change the mindset of smart mainte-
nance. Manufacturing issues can generally be divided into visible and invisible
categories [13]. Through smart analytics of interconnected multidimensional sys-
tems, correlations and causal functions can be modeled so that meaningful and
actionable information can be extracted.

Eventually, transformation from product-centric quality control to user-centric
value creation will naturally become the objective of the aforementioned efforts.
Product quality is important, but that shall not be the end of TES systems. The final
objective of manufacturing products and providing services is to optimize user
experience and in return to improve design to further advance product features.
Users will drive the needs of both product features and service models, and pre-
dictive analytics and CPS technologies will be the foundation of revealing and
fulfilling such needs.

In future digital twin industrial systems, data will remain the most important
medium to provide customized products and services for users. Through data,
customers will be connected with the manufacturing systems closely and be
involved in the design, manufacturing, and maintenance phases. Digital Twin
Industrial System will not merely become a transformation of manufacturing sys-
tems, but a more profound and revolutionary change in business models, service

Fig. 7.5 Opportunity space of TES Digital Twin Industrial System
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models, supply chains and value chains. Its fundamental motivation comes from
innovative technological changes in the business model and intelligent service
system.
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