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Optimization: A Review of Applications
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Abstract This review paper considers literature in the field of preventive main-
tenance scheduling optimization, particularly for applications to power plants, with
the view to assess the methods used and identify research trends and gaps. Aspects
of each of the papers such as application domain, problem formulation, model
formulation and optimization techniques have been analyzed and assessed.
Research trends such as the increasing use of stochastic parameters, multiple
objectives and hybrid optimization methods have been identified. A research gap
has been identified: the application of discrete-event simulation methods with
multi-objective hybrid optimization for power plant preventive maintenance
scheduling. These areas provide exciting research opportunities with significant
potential benefits for power generation companies including increased profit and
reliability.

24.1 Introduction

Various different types of maintenance scheduling can be defined: Corrective
Maintenance (CM), Preventive Maintenance (PM), and Condition Based
Maintenance (CBM). CM is performed upon component failure and generally leads
to high failure cost and large downtimes [1]. Monitoring technologies are often
used to perform on-line assessment of the condition of equipment and then con-
dition based maintenance activities can be applied to prevent high failure costs.
Prognostics can be used as an extension of condition based maintenance strategies.
Prognostics use condition based maintenance technologies to diagnose failures of
components and to potentially forecast future failures [2]. Preventive maintenance
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can be used in conjunction with, or as an alternative to, monitoring based main-
tenance strategies. Preventive maintenance constitutes a predefined schedule or
routine of check-ups and repair tasks [3]. The focus of this review is on optimizing
preventive maintenance schedules.

Preventive maintenance scheduling has been widely used within industry and
these activities are often performed at a higher frequency than is required to prevent
unnecessary failures [4]. The manufacturer or equipment supplier will usually
predefine a set of constraints and maintenance intervals for the schedule to abide
[5]; these are often based on the experience of engineers. A number of industry
sectors have identified the benefits which can be achieved through optimization of
preventive maintenance schedules, for instance: increased reliability and profit and
lower risk and costs. Applications for preventive maintenance scheduling opti-
mization have appeared in a range of industry sectors including transport [6, 7],
manufacturing [8] and power industries [5, 9, 10]. This work is concerned with the
application of preventive maintenance scheduling optimization for power plants.

Optimization of maintenance schedules within the power generation industry is
vital as generation equipment must be reliable, to enable generation companies to
provide a reliable service to customers. This optimization could also produce large
cost savings through increased sales and decreased downtime, also increasing the
overall utilization of the plant. These savings made in operational costs can also
assist generation companies by enabling them to provide competitive energy prices
[11]. For larger power plants the main equipment can have different manufacturer’s
guidelines and maintenance intervals; in such a scenario it could be beneficial to
perform simultaneous maintenance on major equipment as the opportunity arises.

A number of review papers considering maintenance scheduling optimization
exist: in [12] a detailed literature review is performed of scheduling research
covering job shop scheduling, work in [13] focusses on multi-objective production
scheduling research. These reviews cover the generic machine scheduling problem
and do not consider preventive maintenance scheduling within the power industry.
In [1] authors provide a brief overview of different levels of maintenance
scheduling within power systems and outline the maintenance scheduling problem
in power systems for various time scales. Studies [3, 14] examine literature for the
Generator Maintenance Scheduling problem (GMS). In [14] authors provide details
on problem features, goals for optimization and optimization techniques. Authors in
[3] provide a comprehensive description of problem features, objective functions
and interfaces with other scheduling problems. This paper presents an up to date
review of papers within all areas of power plant preventive maintenance scheduling
optimization with detailed information about objective functions, constraints and
optimization methods. In particular this paper examines various optimization
methods for the preventive maintenance scheduling problem including: dimen-
sionality reduction [4], expert systems [15], Genetic Algorithms (GA) [9, 16–18],
hybrid methods [19–21], Particle Swarm Optimization (PSO) [22–24], Simulated
Annealing (SA) [25] and Tabu Search (TS) [26]. Notably the application of hybrid
optimization methods is a new research area which has not been covered by pre-
vious reviews.
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24.2 Methodology

Scopus, being the largest abstract and citation database for peer-reviewed literature,
was chosen as the main database to access papers. Initially scheduling optimization
review papers were studied to provide a good overview of scheduling optimization
within industry. Subsequently a number of review papers for maintenance
scheduling were found and used to identify journals and conferences which contain
the most relevant papers. Papers were chosen based on relevance to preventive
maintenance scheduling with application to the power industry and optimization.

A primary search in Scopus using the keywords: ‘maintenance scheduling
power’ resulted in over 1000 results. Hence, a more focused search was made using
the keywords: ‘preventive maintenance scheduling optimization power plant.’ This
search returned around 25 papers among which 11 papers were chosen. The number
of papers which focus on power plant equipment maintenance is limited; hence
papers which explore the GMS problem were found through a further search using
‘generator maintenance scheduling’, as generator has been used as a synonym for
power plant by many authors. There is a large amount of literature on the GMS
problem, hence a subset of GMS papers were chosen. Papers were chosen which
specifically applied optimization methods and also had more citations. This paper
focusses on the optimization methods applied by papers in the area of preventive
maintenance scheduling for power plants.

Information about 45 chosen papers was collated in an Excel spreadsheet.
Columns within the spreadsheet include: year of paper, journal or conference,
country, name of paper, authors, objective functions, constraints, application area,
optimization method and any further comments. From the spreadsheet, trends were
easily identified using graphs. For instance, the column titled ‘year’ was analysed
and a trend indicating an increasing amount of research within recent years was
identified; Fig. 24.1 illustrates this trend.
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24.3 Application Domains

The optimization of preventive maintenance schedules has been applied on various
different levels within the power sector. Preventive maintenance scheduling has
been applied to a range of types of plant: nuclear [27], gas [5], hydro-electric [28]
and wind [29] among others. In addition to generation, distribution services have
had their maintenance schedules optimized. For example, transmission maintenance
has been optimized [30, 31]. The majority of papers consider the Generator
Maintenance Scheduling problem, which typically involves maintenance on a
number of equipment types across a number of power plants. Only seven of the
papers studied addressed preventive maintenance scheduling for single power
plants.

24.3.1 Multiple Generator Maintenance Scheduling

The optimal maintenance scheduling of multiple generators is imperative as gen-
erators govern the routines of other equipment and particularly because a number of
planning activities are based around this schedule [9]. The maintenance scheduling
of systems of power plants has been described as a ‘challenging optimization
problem,’ [14]; this is mainly due to the increasing complexity of models within
recent years and the enormous scale of the problem. In particular, the reliability of
the power supply for customers is crucial and hence this problem has received a lot
of academic interest since the first paper was produced.

Many very large scale power maintenance scheduling problems have been
proposed. In [28, 32, 33] the authors consider large scale systems with around 80
units including thermal, hydroelectric and nuclear plants. The author extends pre-
vious work in [29] to include maintenance scheduling of wind and hydroelectric
units, which are becoming increasingly important within the power generation
industry. Another large system is provided in [15]. This study looks at the
scheduling of 33 generation units and 179 transmission lines.

The IEEE Reliability Test System (RTS) has been widely used [10, 34, 35].
Work in [16] modifies and extends the IEEE RTS to include more units and 38
transmission maintenance lines.

The vast majority of papers consider the maintenance of between 20 and 35 units
[18, 30, 36, 37]. Wind and nuclear units are also considered in paper [18].
A comparison of results for various test cases is made by some papers [34, 38].
A much smaller system has been considered by [27], the system has only 4 units.

Studies have also considered the optimization of maintenance schedules for
various plant components. In [26] authors assume that the generating unit schedule
is fixed and they align the outages for 61 other maintenance tasks. In [11] authors
optimize a smaller scale problem for 42 pieces of equipment in total within 2
co-generation plants.
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24.3.2 Single Power Plant Maintenance Scheduling

The problem of optimizing the maintenance schedules of components within a
single power plant has also been studied within literature. The study in [5] considers
the gas turbine preventive maintenance scheduling problem; the gas turbine is
considered to be a deteriorating system. Authors in [23] consider the maintenance
schedules of the components of a nuclear power plant separately. These compo-
nents must be maintained and all possible scheduling combinations must be con-
sidered. The study in [39] looks at single nuclear plant subsystem availability and
similarly [40] optimizes the maintenance scheduling of nuclear power plant sub
systems. Work in [41] looks at tasks based in maintenance classes for subsystems of
a coal fired plant. Authors in [4] collect data from 18 turbines to determine ideal
maintenance intervals.

24.4 Problem Formulations

24.4.1 Objective Functions

Within the field of preventive maintenance scheduling, the vast majority of
papers acknowledge the importance of cost and reliability for the MS opti-
mization problem. These criteria are conflicting and this is particularly significant
when the system is maintained by an operator who is independent from the
generation company. Amongst the papers which were analyzed for this review,
all of the papers used cost or reliability or some combination as the basis of their
objective functions for optimization. Figure 24.2 indicates the proportion of

Fig. 24.2 A pie chart to
show the objective functions
of papers studied
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papers which use cost, reliability, both objectives and which compare each cri-
terion separately through test cases. From this pie chart it can be seen that cost is
used as a primary objective function by almost half of the papers, which is the
largest proportion.

24.4.1.1 Cost Minimization

Numerous studies consider cost minimization as the main objective for optimization
[27, 30, 31, 33, 38, 41–46]. Cost based objective functions fall under either profit
based or cost based objective functions. The cost based objective functions often
account for the cost of maintenance and the cost of production or operations [47],
whereas profit based objective functions take into consideration factors such as fuel
cost and electricity price.

A cost approach with the aim to minimize the total maintenance and production
costs has been considered within studies [4, 30, 31, 44, 48]. In addition to these
costs, [33] also considers the start-up costs within the objective function. In [45]
authors append transmission maintenance costs to generator maintenance costs and
operational costs. In [17] minimization of expected energy production cost is used
and maintenance costs are disregarded. On the other hand, [15, 41] consider the
minimization of maintenance costs to be their primary objective. In [49] a detailed
profit based approach is applied. A stochastic optimization method is applied to
deal with the uncertainties of electricity and fuel prices. Work in [24] uses the
minimization of Maintenance Investment Loss (MIL) as a profit criterion. Authors
in [43] set the sale of electricity according to market clearing price forecast, this is
used as an objective for maximization.

A combination of both profit and costs are considered in a number of studies. For
instance [27] consider the ‘spread,’ (the difference between energy price and the
cost of generation) for UK plants. Profit and cost based objective functions are
modelled individually and then compared in [5] for the sequential problem for-
mulation. The study concludes that the profit based formulation could potentially
improve profitability for the plant.

Other cost based objectives are proposed in a number of studies. For instance
utilization maximization in [11] could be considered as a cost based optimization
criteria as it effectively increases profitability. Study [41] also increases availability
of plant and reduces cost through optimization. Another cost based method pro-
posed by [38] is the ‘minimum possible disruption of an existing schedule’. In this
particular example an optimal schedule is devised and changes must be incorpo-
rated in the schedule in a way that minimizes the overall cost.
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24.4.1.2 Reliability Maximization

Reliability maximization is considered to be a highly significant objective function
for a number of different studies, particularly for the GMS problem. This objective
is considered by many papers [9, 18, 25, 34, 36, 37].

The GMS problem is to serve to a number of generators whilst ensuring that the
customer demand for electricity is met. The main objective function used for the
GMS problem is to level the reserve rate; the difference between the total capacity
of the available units and the demand [9]. If the demand is not met at any point in
time, this could result in power outages for customers and a poor reputation for the
provider. Thus the reliability of the supply is critical. Papers considering the GMS
problem account for levelling the reserve rate in some form and many consider it to
be a primary objective function [9, 17, 18, 21, 25, 36, 42].

Another form of reliability criteria for the GMS problem is the Loss of Load
Probability (LOLP); this has been applied by a number of papers [14, 20, 34, 42,
47]. This is defined as the likelihood that the system demand for electricity will
surpass the available capacity; this can be used to evaluate the risk for each indi-
vidual time period [34].

24.4.1.3 Combination Approaches

Approaches which combine a number of objective functions have been proposed
within literature such as weighting methods and vectors of objective functions.
A weighted sum method is used in two studies to combine objective functions and
coefficients [19, 47]. For example, [19] use the weighted method to minimize the
fuel and maintenance costs and to level the reserve rate. More than two objective
functions have also been proposed by a number of studies. In [50] authors simul-
taneously consider three objective functions: reliability maximization, fuel cost
minimization and constraint violation minimization. Similarly [16] use a triple
objective function consisting of reliability, risk and economic objectives.
A non-dominated solution set is created, hence it is concluded that the method is
preferable to a weighting method. In [24] the competing objectives for the servicing
and the generation company are both modelled as objectives.

24.4.1.4 Comparison Approaches

A number of studies using comparisons of cost and reliability criteria have also
been proposed. For instance cost and reliability have been considered separately as
objective functions and the results have been compared by [17, 47]. In [47] pro-
duction costs and reliability are compared and it is concluded that reliability is a
better objective function, as maximizing reliability simultaneously minimizes the
production costs. In [17] authors find that their proposed method performs well for
integer GAs irrespective of which objective function is applied.
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24.4.2 Constraints

It is suggested in [14] that constraints can be categorized into three main types:
power generation constraints, resource constraints and technological constraints.
Power generation constraints ensure that customer demand is met, resource con-
straints include manpower and inventory limitations and technological constraints
are applied by manufacturers on maintenance intervals. Figure 24.3 shows the
number of papers which apply each of the constraints. The constraints are split into
the sections by type.

Studies considering a number of constraints have shown that the application of
constraints often reduces the objective function values. Authors in [49] demonstrate
that the risk constraint reduces the profit function. In [42] integer programming is
applied to a test case with exclusion, sequence and reserve constraints for two
objective functions; the impact of constraints on the objectives is demonstrated.
Authors in [30] consider two different case studies using reliability and transmission
security as different constraints, they show that there are significant impacts on the
costs when transmission limits are applied to the problem.
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Studies have fuzzifed the constraints so that the constraints are soft in order to
evaluate the trade-off between the constraints and the objective functions. For
example, authors in [21] fuzzify the manpower, maintenance window and geo-
graphical constraints. Similarly authors in [9] use a fuzzy evaluation function to
consider the flexibility of the manpower constraint and compare to alternative
methods. The fuzzy evaluation function is able to effectively deal with the trade-off
between reliability and manpower within the allowed flexibility.

A number of papers compare two objectives separately, setting one as a con-
straint and the other as an objective function [21, 40, 42, 47]. Some studies use cost
as the objective function and then formulate the reliability as a constraint, these are
under power generation constraints. The manpower constraint is the most common
constraint among all papers studied. Authors in [9] claim that requiring up to 5%
extra manpower might be allowable for a generation company as extra manpower
can be hired if this produces better solutions with respect to the objective functions.
Extra manpower can be costly for companies; hence the manpower constraint is a
cost based constraint. It is clear from the objective functions pie chart that cost is a
very significant factor for the optimization and this explains the large number of
papers considering manpower as a constraint.

Maintenance duration is defined as a technological constraint [14] and hence this
is a highly important constraint which cannot be overlooked by studies, hence it is
also considered by a large number of papers. Demand and supply is a power
generation constraint used to ensure that the power production is at least equal to
the electricity demand [33]; hence this is a reliability based constraint and is applied
by a number of papers.

24.5 Model Formulations

Almost all papers studied in this review formulate the maintenance scheduling
problem as a mathematical programming problem and then proceed to solve this
problem. The most common formulation is integer programming formulation which
has been widely used [9, 11, 19, 26, 30, 31, 33, 34, 38, 42, 49–51]. Other for-
mulations include dynamic programming [21] and discrete programming [18, 27]
among others. The first part of this section addresses how the problem has been
formulated mathematically and the second part addresses stochastic formulation of
evaluation functions which is an area of growing interest.

24.5.1 Schedule Formulations

Mathematical programming formulations such as integer programming, mixed
integer programming and dynamic programming and decomposition methods have
been mainly used to formulate models.
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24.5.1.1 Integer Programming Models

Integer programming and mixed integer programming formulations have been
proposed by a significant number of studies with several advantages. In [50] integer
programming is suggested to be a convenient approach to the resource allocation
problem; the main shortcoming is suggested to be the limited accuracy of power
system simulation as uncertainties cannot be modelled [47], in addition the method
exceeds computational limits. Conversely authors in [42] suggest that integer
programming approach is the only true optimization approach which is practical for
the problem.

Dopazo in [38] presented the first 0/1 integer programming representation for the
GMS problem. For each period and maintenance unit a binary integer is assigned.
One of the weaknesses of the approach is identified to be that only one constraint
can be applied at a time [30]; this approach has been applied by a number of studies
[11, 19, 31, 35, 42].

An alternative to the 0/1 integer programming representation is presented by [9];
in this approach integer variables can be used to represent the period in which
maintenance of each unit starts. Authors in [17] also apply this approach to find the
starting periods for each maintenance activity.

24.5.1.2 Dynamic Programming Models

In [47] authors claims that dynamic programming is best suited to the optimal
preventive maintenance scheduling problem; suggested due to the sequential nature
of the problem. In [14] it is agreed that dynamic programming can only be applied
to a problem which has previously been formulated as a sequential decision pro-
cess. In [21] authors formulate the problem as a dynamic programming problem
with fuzzy objective functions.

24.5.1.3 Decomposition Approaches

Bender’s decomposition method has been applied to maintenance scheduling
problems by splitting the original problem into a master and a sub problem [33].
This method can be used after a problem is formulated as an integer programming
problem. Authors in [17] claim that a disadvantage of the decomposition approach
is that it cannot accurately simulate power system operation due to the curse of
dimensionality. In [31] Bender’s decomposition is applied to the preventive
maintenance scheduling problem. This approach is extended by authors in [33] to
also include the transmission and network constraints.
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24.5.2 Stochastic Formulations

The application of stochastic methods to evaluate solutions, as an alternative to
deterministic methods, within maintenance scheduling optimization has grown
within recent years. Studies have used these methods to deal with the uncertainty
involved in reliability and costs for preventive maintenance scheduling. These
uncertainties of the preventive maintenance scheduling problem for power plants
render the optimization problem more complex.

In [35] the Weibull distribution is used to model the failure rate due to component
deterioration and the exponential distribution is used to model the random failure
rate. Similarly authors in [20] introduce a stochastic objective function to consider
daily load variation and random outages. In [24] unavailability of the system is
modelled using the Weibull distribution. Within [21] the membership functions of
both objectives are fuzzified to deal with the uncertainty in the maintenance
scheduling problem. Monte Carlo Simulation has been considered by [49]; it used to
model the uncertainty for the price of fuel energy. The results show that for particular
units, the use of stochastic prices considerably reduces the maintenance hours.

The use of methods such as discrete event simulation to deal with dynamic
uncertainties has arisen in other fields for preventive maintenance scheduling. This
could also be applied to the preventive maintenance scheduling problem for power
plants to explicitly deal with the uncertainties in prices, reliability, load variation
and random outages. These stochastic methods will become increasingly important
with the uncertainty related to renewable energy sources.

24.6 Optimization Techniques

A range of optimization methods have been explored within studies to optimize the
maintenance schedules within the power industry. The pie chart in Fig. 24.4 shows
the different optimization methods used to solve the maintenance scheduling
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problem. Artificial intelligence methods are the most common method; Genetic
Algorithms were used in 7 studies. Direct methods have also been applied to solve
mathematical programming formulations. Hybrid methods have been used by 7 of
the studies, to combine artificial intelligence, heuristic and direct methods; this is an
area of growing research. Other methods include dimensionality reduction and
Tabu Search among others.

24.6.1 Direct Methods

Various algorithms have been applied in literature to solve mathematical pro-
gramming formulations directly for Integer Programming (IP) and Dynamic
Programming (DP) formulations. In [34] authors claim that mathematical pro-
gramming optimization methods such as IP and DP suffer from the curse of
dimensionality and they cannot deal with nonlinearity and non-differentiability of
objective functions. Authors using DP focus on reducing the computation time
required. Authors using IP use various branch and bound type methods to solve
their formulations.

24.6.1.1 Integer Programming

IP formulations are generally solved using enumeration techniques such as branch
and bound algorithms. In [11] LINGO is used to model and solve the mixed integer
programming problem. Authors in [29, 30, 33], also solve directly using GAMS
software and [42] solves directly using PP/MS program. The author in [32] uses the
simplex method to solve the 0/1 IP problem.

In [38] the authors used an extension of an implicit enumeration technique using
a decision tree for the whole system where each branch is a solution; this method is
combined with a heuristic method. In [35] a decision tree based approach is also
used. A branch and bound algorithm is also applied in [51].

24.6.1.2 Dynamic Programming

A number of papers acknowledge that the computational time required for DP
optimization is a disadvantage for this approach. In [47] the author agrees that the
limitation for DP is the computational time.

Approaches have been proposed to deal with the problem of large computation
times for this approach. In [47] a dimensionality reduction method, DPSA
(Dynamic Programming by Successive Approximations), is applied to deal with the
large computation time. The algorithm then iteratively keeps a set of solutions
constant and then optimizes the remaining variables.
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In [21] the author notes that the calculations do not need to occur in real time.
The fuzzy dynamic programming approach is applied with objective functions and
constraints replaced by membership values.

24.6.1.3 Heuristic Methods

Heuristic methods have been applied in a number of studies, as they use a rule of
thumb type approach to search for a solution [42]. In [17] the author suggests that
heuristic methods can solve some of the limitations of mathematical programming
methods by splitting the problem into units and then scheduling activities
sequentially. In [9] authors note that heuristics require significant operator input and
may not even find solutions which are feasible. Although [14] states that literature
indicates that heuristics are still widely in use.

In [38] a heuristic method called fathoming is used to search through the
branches until each branch can no longer contain optimal solutions. In [41] a
heuristic maintenance class based approach is applied to perform corrective and
preventive maintenance to achieve cost effective maintenance intervals.

24.6.2 Artificial Intelligence Methods

A variety of Artificial Intelligence (AI) approaches have been applied in literature
as alternatives to heuristic methods. For example Genetic Algorithms (GAs) are
applied by 7 studies.

GAs are a well-established population based evolutionary search method.
Various studies attempt to reduce the computation time associated with GAs.
Authors in [17] propose modifications to the GA such as string reversal and
reciprocal exchange mutation. The modifications proposed are shown to improve
the computational performance of the algorithm and perform better than DP. In [18]
the authors attempts to reduce the computation time by proposing a code specific
constraint transparent process to deal with the heavy computation time. The results
show improved computation time compared to binary GA approaches. In [16] the
author uses the NSGAII algorithm to perform multi-objective optimization. This
approach ensures reliability and power economy are both maximized simultane-
ously. In [39] the author proposes an Advanced Progressive Real Coded Genetic
Algorithm (APRCGA), where the chromosomes consist of real numbers which are
later converted into integers to represent solutions. In [37] authors apply a GA
approach to move outages from periods of low reliability to high reliability.

Other evolutionary computation methods have been applied such as Simulated
Annealing (SA) and Particle Swarm Optimization (PSO); the results have been
compared to empirical and exact results to assess performance. In [25] a multi stage
SA optimization process is applied; the approach was compared to an enumeration
method with a near global optimal solution being found. Authors in [36] also apply
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SA to compare different cooling schedules, neighbourhood move operators and
hybrid approaches in an attempt to improve the traditional SA. Authors in [23]
propose a non-periodic PSO based approach and use continuous values within the
search space. In [52] a modified PSO (MPSO) algorithm is used to reduce the
number of control parameters for the algorithm. Authors in [53] apply a revised
PSO with capability to deal with inequality and equality constraints using a penalty
function. An Improved Binary Particle Swarm Optimization (IBPSO) method is
applied in [24] to avoid premature convergence and to improve the search quality of
the traditional PSO.

Other methods include Ant Colony Optimization (ACO) algorithm [48], a clonal
selection algorithm based on the Artificial Immune System [46] and a Teaching
Learning Based Optimization algorithm [45].

24.6.3 Hybrid Methods

Hybrid methods have been increasingly applied in recent years; these methods
combine the advantages of different approaches such as AI and heuristic methods.
The proposed hybrid methods are generally found to outperform existing methods.

Hybrid methods involving SA are particularly popular. Authors in [20] compare
GA and GA/SA hybrid approaches; the hybrid method produces the fastest con-
vergence speed and both methods are shown to lead to the same results. In [19]
authors also use a GA/SA hybrid approach using an encoding and decoding
method. This method is shown to create remarkably shorter computation times than
the SA approach and produce better convergence and results than the GA approach.
In [54] it is found that by applying the GA/SA hybrid approach each individual
solution can be improved by SA, and similarly to [19] the convergence of the
GA/SA algorithm is superior to the convergence of the GA method alone.
Investigation of hybrid local search and SA method in [36] finds that the solution
quality can be improved through application of this hybrid method.

In [34] the authors apply a Hill Climbing Technique (HCT) and a hybrid
Extremal Optimization and GA method (EO/GA) and compare the results. The
EO/GA technique is shown to be superior in both cases with respect to the average
objective function values. In [43] results are compared from a hybrid PSO/GA
method and a PSO/Shuffled Leap Frog algorithm with other methods; the conclu-
sion is that the Shuffled Leap frog hybrid is an efficient and robust optimization
strategy.

A different combination of DP formulation and GAs is applied in [21]. This
combination of dynamic programming, GAs and fuzzification is shown to produce
optimal maintenance schedules for a given test case. In [15] an evolutionary pro-
gramming method is applied to find a near optimal solution and subsequently a
Hill-Climbing method is used to ensure the feasibility of solutions is maintained.
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24.6.4 Other Methods

Several other optimization techniques have been identified and used within studies
to solve scheduling optimization problems.

Deterministic solvers have been considered in the place of stochastic AI methods
such as GAs. In [26] the authors use a Tabu Search algorithm for scheduling of
outage tasks. This approach has a fast search speed and produces diversified
solutions avoiding local optima.

Approaches which consider the problem to be continuous instead of discrete
have also been considered. In [55] a sequential continuous approach to the gas
turbine maintenance problem is proposed. The results indicate decreasing mainte-
nance intervals as the turbine ages to ensure reliability.

Other approaches have also been considered within studies. Lagrangian
Relaxation is applied in [49] to decompose the problem into tractable scenarios. In
[4] a dimensionality reduction method is used to compare maintenance intervals
and replacement rates.

24.7 Discussion

Through analysis of the chosen papers, a number of key deductions and trends can
be identified; these are detailed as follows in section order.

The first trend identified was a significant increase in interest over the recent
years. Figure 24.3 shows an increase in the number of papers produced per decade,
indicating a strong increase in research in optimization of power plant preventive
maintenance scheduling over recent years. This review focusses on papers where
different optimization methods are applied; hence it can be seen that there is more
research in application of different optimization methods in recent years.

Analyzing problem formulations has led to some key observations. The most
common objective function considered is the cost objective function; this includes
optimization of profit and maintenance and operational costs. Studies also combine
and compare these objectives [5, 27]. Reliability is considered to be a vital objective
function and the levelling of the reserve rate is used by a number of papers to ensure
that demand is met at all times [9, 33, 34]. The conflict between reliability and cost
has been acknowledged; it is more significant when the maintenance and operation
are carried out by different companies [52]. The conflict between these objectives
has been explicitly dealt with in a number of papers, which combine and compare
results for these objective functions.

The most common constraint used within literature is the manpower constraint
as this involves costs; it is often formulated as a soft constraint enabling solution
flexibility. On the other hand technological constraints such as durations are hard
constraints as these are formulated based on manufacturer requirements. Constraints
are also used by some papers to compare 2 main objective functions, where one is
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set as an objective and the other as a constraint and vice versa. The application of
constraints to the optimization problem is shown to reduce the objective function
values in a number of papers [30, 42, 49].

The vast majority of papers formulate the model as mathematical programming
models. IP and DP in particular are the main formulations for the MS problem.

An increase in the use of stochastic methods to evaluate solutions, as opposed to
deterministic methods, has also been observed. In particular, in [50] a growing
importance given to the explicit treatment of the non-deterministic parameters is
noted. In [20] deterministic and stochastic methods are compared and it is con-
cluded that stochastic methods can evaluate the risk involved with deteriorating
equipment. A few other studies have begun to use stochastic parameters in some
form [4, 5, 35].

The increasing use of multi-objective optimization and hybrid optimization
methods has been observed. In [13] it is identified that the literature of
multi-objective scheduling is much sparser than that of single objective scheduling
and that since 1995 there has been an increasing interest in the area. For instance, in
[50] a multi-objective optimization approach with the branch and bound method is
applied, in [17] authors use a GA with two objectives. Hybrid methods have also
been increasingly applied in recent years [19, 20, 54]. These areas of multi objective
and hybrid optimization are an interesting area for future research.

A research gap has been identified in the use of stochastic methods to model the
MS problem. Discrete Event Simulation has not been used for modelling the MS
within the power industry although it has been applied within other industries. The
explicit treatment of uncertain parameters using Discrete Event Simulation could be
an interesting application. The application of Discrete Event Simulation with multi
objective hybrid optimization is a novel and exciting area for research. These
prospective areas for research could provide results with a number of benefits for
power generation companies.

24.8 Conclusions

This study has reviewed papers in preventive maintenance scheduling of equipment
for power plants. This paper presents up to date detailed review of papers within
power plant preventive maintenance scheduling with details of objective functions,
constraints, model formulation and optimization methods. Significant conclusions,
trends and a research gap have been identified from the literature. Trends such as
the increasing use of stochastic parameters and a growing use of hybrid methods
and multi objective optimization have been noted. Research has not been carried
out to apply Discrete Event Simulation with optimization to power plant preventive
maintenance scheduling. Combining these various research gaps could generate
interesting results and revelations. These are excellent opportunities to be exploited
in future research.
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