
Chapter 21
Design for Zero-Maintenance

M. Farnsworth, R. McWilliam, S. Khan, C. Bell and A. Tiwari

Abstract This chapter looks at the concept of zero-maintenance, in particular how
it relates to design. It begins by defining what constitutes zero-maintenance, pre-
senting current research on the themes of autonomous maintenance and self-healing
and repair. A wider context of how zero-maintenance affects through-life engi-
neering services is also discussed with a focus on the no-fault found phenomenon.
Case studies are then presented for design strategies in self-healing electronics and
no-fault found and the failure of design. Finally, a design for zero-maintenance
process is outlined and discussed.

21.1 Introduction

Throughout the life time of products and large assets there is a persistent need for
numerous interventions in the form of targeted servicing in order to maintain
operation efficiency. Whether predictable by nature or triggered by unexpected
events, service support occurs at all stages of product lifetime—from initial con-
ception, design and manufacture to through-life operation and ultimately end-of-
life. Integral to many of these stages are processes intended to maintain the function
of the product with minimal cost overheads. These processes, whether integrated
into the product or else applied in the form of planned or unplanned maintenance,
are essential to maintaining sustained performance specifications from the product
in question. Conception and planning for maintenance-centric processes begins at
the design stage, but is all too often neglected in favour of more typical cost and
performance factors. However, new design considerations based around mitigating
against costs associated with product failure, maintenance and repair are emerging
that need to be brought into the fold of future product design. Such considerations
inevitably tie into both the cost and performance of products at some point along
their life-cycle chain.

M. Farnsworth (&) � R. McWilliam � S. Khan � C. Bell � A. Tiwari
Cranfield University, Cranfield, UK
e-mail: m.j.farnsworth@cranfield.ac.uk

© Springer International Publishing AG 2017
L. Redding et al. (eds.), Advances in Through-life Engineering Services,
Decision Engineering, DOI 10.1007/978-3-319-49938-3_21

349



This chapter investigates the philosophy of zero-maintenance i.e., the elimina-
tion of maintenance-centric costs, and its relation to through-life engineering ser-
vices for a range of high-value products and assets. The focus is centered on design,
and how information gathered from the through-life services chain can be used to
better inform design decisions, so as to ultimately mitigate or remove the need for
maintenance whilst continuing to address the traditional goals of reducing opera-
tional costs and improving performance.

21.2 Zero-Maintenance

The availability and performance of high-value assets is the key driver of
through-life engineering services (TES). Without these two factors manufacturers
that undertake such contracts will quickly lose revenue and credibility. Loss in
availability or drops in performance are highly correlated to system failure, either as
a result of direct damage or through degradation due to environmental factors or
operational use. Maintenance, either planned or unplanned is a service undertaken
to reduce such system failures or return them to original design specifications. An
alternative to the undertaking of maintenance is to design in capabilities for
self-healing and repair within the asset itself. These capabilities either provide much
needed resilience to damage, thus blunting the impact of any unforeseen event that
may have otherwise lead to damage, provide processes for repairing damage
autonomously or simply allow damaged functions to be replaced.

Together both standard maintenance and self-healing strategies form a powerful
approach to maintaining availability and performance. The philosophy of zero-
maintenance encompasses these two strategies to ultimately provide the elimination
of maintenance-centric costs, and its relation to through-life engineering services
for a range of high-value products and assets. The following sections discuss three
main topics surrounding zero-maintenance. The first focuses on the use of auton-
omy and autonomous systems to perform maintenance and remove human inter-
vention. The second on the strategy of self-healing and repair, and finally a broader
look at how a zero-maintenance effects wider through-life engineering services and
the phenomena of no-fault-found (NFF).

21.2.1 Autonomous Systems and Embedded Intelligence

The reliability of a mechanical system depends on its design, the quality of its
components, and its maintenance. However, maintenance is typically considered
during product design in an ad hoc, ineffective manner, leading to unnecessary
life-cycle costs [1].

Maintenance falls into three categories, corrective, preventative and
condition-based [2]. Equipment or large assets are often continually monitored with

350 M. Farnsworth et al.



regards to performance and when signals indicate the need for some form of
maintenance, action is taken. Preventative maintenance is based upon the
mean-time-to-failure (MTTF) value and maintenance is scheduled to occur when
required (time-based or usage-based). Occasionally failure can occur outside these
bounds and corrective action is taken to repair or maintain the asset.

The traditional image of maintenance is one consisting of Dull/Dangerous or
Dirty work. There is also a similarly negative connotation that maintenance is a
non-productive element to manufacturing that is only now changing. Maintenance is
known to have four characteristics that make undertaking it challenging.
Maintenance for a start is often non-uniform because one maintenance sub-operation
(removing bolt) may differ depending on the age of the asset (i.e rusted) that makes
any pre-programmed autonomous behavior difficult and requires human operators to
take uncertain actions outside of their possible knowledge. Second it can be
non-standardised, with different actions required depending on the type of asset
present, regardless of maintenance sub-operation. Therefore, removing and fitting
one type of disk brake pad may vary depending on the maker of the asset (i.e., train
undercarriage). Thirdly, maintenance is often irregular, with varying levels of
planned and unplanned maintenance which makes determining the right operators or
autonomous systems are in place at a given time difficult, particularly if such
autonomous maintenance systems can only perform a specific function (inspection,
manipulation) and are unable to multitask, something a human is often able to do to
meet an increasing workload though only if trained correctly. Finally, maintenance is
non-deterministic, because one maintenance sub-operation can change the state of
the target system and invoke a different sub-operation from the one that was
expected [3].

In the current climate there is a move towards introducing automation and
intelligence into a number of products or systems. This is understandable given the
benefits self-automation brings, be it the removal of humans from a particular
scenario leading to reduced costs or simply their removal from dangerous situations
or environments. For example in recent decades there has been an increasing use of
robots within manufacturing processes. The speed, power, availability, productiv-
ity, and improved accuracy of robots have had significant impact in reducing
manufacturing costs while improving production quality. A design for maintenance
philosophy that looks to improve the overall maintenance process either through
design of the asset itself or to aid in the design of external factors that may con-
tribute to the process in some way, i.e autonomous system solutions is needed [4].
These can incorporate not only characteristics that aid maintenance, particularly
with regards to automation, but also exhibit robustness and self-healing attributes.

A large number of maintenance tasks for example simply involve some level of
inspection and analysis and if required some form of action to be taken. When
considering autonomous maintenance the first step is to think on how this degree of
inspection and analysis can either be removed or done in situ within the asset itself.
The integration of sensors, for example and other forms of embedded intelligence

21 Design for Zero-Maintenance 351



can provide information to human operators without any form of interaction.
Equally they can be used as a tool to aid automation of maintenance by guiding
autonomous solutions or provide instruction on any steps that may be needed to
complete a particular maintenance task.

21.2.2 Self-healing and Self-repair

To be successful self-healing techniques must be designed to compensate for a
wide-variety of failure modes, thus overcoming some of the problems associated
with uncertainty. Although specific solutions are not suggested, proposed strategies
for developing a self-healing system should not focus on a finite number of
underlying causes. Instead the focus should be on how these causes manifest, how
they can be detected and ultimately how they can be corrected autonomously. To
achieve a self-repairing system, it is clear that the system must have an element of
self-awareness. Amor-Segan et al. [5] state that the ultimate aim is to develop a
system with “the ability to autonomously predict or detect and diagnose failure
conditions, confirm any given diagnosis, and perform appropriate corrective inter-
vention(s)”.

A general approach to self-healing applicable to most systems consists of a
number of specific steps, ‘Cause of Fault’, ‘Detection of Fault’, ‘Diagnosis’ and
‘Corrective Action’ [6]. Typically the 0th step, ‘Cause of Fault’, begins the process,
however in the scheme of things the cause is irrelevant in so much as the system
should be designed that any behavioral or functional changes are compensated for
through further actions. What follows next is the importance of the system to identify
the fault, often spatially, with regards to a specific component or region of interest
within the system. The ‘Detection of Fault’ step requires the ability for the system to
infer through changes in behavior, function or interpretation of internal or external
telemetric data the source of error. The degree of granularity will depend on the
amount, accuracy and detail of information retrieved and the systems ability to uses
this to come to a confident conclusion of the source fault. Next comes the ability to
further analyse the system, and gathered information to bring about a ‘Diagnosis’.
This is important when looking to initiate some form of corrective action and
therefore first be confirmed, to avoid undesirable events such as ‘good’ components
being unnecessarily removed or routed around. Finally ‘Corrective Action’will have
to be taken to bring back the system behavior back to original specifications, or at the
very least mitigate any effects damage may have produced [7–9].

The primary approach to self-repair in electronics involves furnishing the
associated circuitry with redundant resources that either mask fault conditions or
else remove fault logic, leaving only healthy logic. Redundancy may take three
primary forms of spatial, temporal and information redundancy. Spatial redundancy
involves the addition of spare physical resources that consume physical space. As
depicted in Fig. 21.1, this typically involves copying common resources and con-
necting them via voting logic. The voter arbitrates between the common resources

352 M. Farnsworth et al.



in order to form a majority output or condition that is passed onward to other
circuitry. Thus, fault events may be masked so that their presence does not cause
errors within the macro behavior.

Temporal redundancy involves the repeated utilization of resources in time in
order to form a majority signal. This is depicted in Fig. 21.2, where the spatially
redundant circuit is reformed as a temporally redundant circuit, the primary
trade-offs being a reduction in performance and susceptibility to persistent fault
conditions.

An example of spatial redundancy applied selectively to a digital NAND gate (a
fundamental building block in digital electronics) is depicted in Fig. 21.3. In this

Input

(a) (b) (c)

Fig. 21.1 Concept of majority signals in spatial redundancy. a Discrete voter. b Abstract signal
arbitration. c Example of signal arbitration within electronic transistor circuit

System

Storage

VoterInput Output

Clock

System 01

System 02

System 03

VoterInput Output

Fig. 21.2 Fault masking within a spatial redundancy and b temporal redundancy blocks.
A temporary fault occurring within either design (represented by the lightning bolt) will not cause
output error. However, a persistent fault will compromise the temporal redundancy approach

21 Design for Zero-Maintenance 353



case, the redundancy scheme is chosen to achieve fault masking of specific fault
conditions (stuck off faults) while creating a current trigger in the event of stuck on
faults [10, 11]. The move towards utilizing redundant resources for self-repair is a
complex one due to the need for active detect and repair. However, there are further
examples that operate at the transistor level [12].

Besides current off-the-shelf ASICs, future nanoscale devices are fast
approaching and will require fresh approaches to fault tolerance and repair. They
will be able to support new levels of spatial density but there is debate over the best
strategies for achieving resilience [13]. In comparison to contemporary digital
electronics design, cell-based designs include bio-inspired evolvable hardware [14]
that mimics many properties of bio-cellular organisms including simple
inter-cellular actions (nearest neighbor communications), cell states governed by
DNA instructions (look up tables) and cellular homogeneity (massive arrays of
identical cells). Though this, cellular electronics gains the desirable characteristics
of self-organization and adaptation including the property of dependability [15].
The resulting hardware, governing rule sets and software configuration layers are
however complex in comparison to standard ASIC design, although there are
examples where resource and rule sets have been minimized where possible. Two
examples of this are the Plastic Cell Architecture [16] and convergent cellular
automata [17], both of which attempt to simplify cell complexity at the expense of
repair capability.

I1

I2

T1T2T3T4

T5 T6

T7 T8

(a) (b)

Fig. 21.3 Spatial redundancy strategy targeting ASIC circuitry. a Standard NAND gate
schematic. b Alternative NAND gate schematic supporting selective fault masking and active
fault repair trigger

354 M. Farnsworth et al.



21.2.3 Through-Life Engineering Services and No-Fault
Found

All systems are susceptible to faults and failures during service, but those faults
which occur and result in the No Fault Found (NFF) phenomenon are often
unanticipated during the design, sometimes because they occur within acceptable
operating tolerances. NFF can be described as a fault whose root cause cannot be
found. Therefore there are subsequent inherent diagnostic difficulties. A number of
mitigation strategies to combat NFF have been elaborated in literature [18–20], but
most are purely that, mitigation for when a potential NFF related failure occurs—
such as incorporating specialized test equipment. In truth though, the most sig-
nificant solution of NFF eradication would be to design and manufacture systems
that are increasingly immune to those unanticipated failures that result in NFF. This
requires enhanced systems understanding, improvements to the actual design
integrity and most importantly a robust mechanism for translating in-service failure
(and NFF) knowledge directly back into the design process.

21.2.3.1 In-Service Feedback for TES

NFF events encompass a whole range of products in service, many of which are
made up of legacy systems with well-defined operational support practices.
Disregarding the fact that the root cause of a NFF will begin with the failure of a
component (or unpredictable intermittent faults, which may be part of an inherent
design flaw), the end result is a diagnostic failure—that is the maintenance services
procedures, equipment, testing capability and guidelines for that equipment was
inadequate to isolate the problem. To reduce the NFF event rate for in-service
equipment, the conditions under which NFF problems occur need to be considered
in depth and investigations should focus on the following areas:

• Failure Knowledge Bases, novel FMECA tools and troubleshooting guides
specific for NFF to improve diagnostic success rates.

• Research to pinpoint where in the maintenance process is NFF occurring, for
example at a particular maintenance line, testing station, or under specific testing
equipment.

• Development of assessment tools to assess maintenance capability/effectiveness
which may include:

• Introduction of integrity testing as complimentary to standard ATE (functional)
testing procedures.

Although when we talk about influencing (or modifying) a complex system’s
design for the specific purpose of reducing the impact of NFF, designers need to be
clear on what actually needs to be changed in the design. For example, does the
system need to be completely redesigned with the aim of increased robustness to
make it more fault tolerant? This may have a negative impact on material choices or

21 Design for Zero-Maintenance 355



weight/size restrictions. Or should they change the design so that any faults man-
ifested on the system are accurately detected and located with confidence?

It is the latter of these two questions that would focus on design for testability
(DFT). DFT is not a new area of research and it is well accepted that DFT could
substantially reduce the effort and cost of testing and supporting a product.
However, what is not being done is quantifying the burden of NFF, identifying the
root causes, understanding the impact of NFF related faults on coupled systems and
feeding this back into the design process with mitigation of NFF becoming a
serious DFT goal. The key challenges to address here are:

• Development of design guidelines and standards to improve system designs
which incorporate the reduction of NFF as a design goal for improved
testability.

• Research into the relationships between system design characteristics and NFF
related attributes such as rate of false alarms, fraction of faults isolated to
improve design for testability.

• Modelling of complex interactions between system/subsystem/components and
their physics of failure.

• Modelling of intermittent failures (identified as the number 1 root cause of NFF)
from a fundamental perspective including standardised testing equipment and
procedures.

• Developments of a NFF burden/rate predictor for new designs or NFF trending
process for in-service systems.

• NFF specific maintenance cost models for design justification.
• In-service monitoring and feedback into design and manufacture.

The fact is that technicians around the world are discovering novel causes of
failures on a daily basis. These are being labelled as novel because they have never
before been experienced or observed for that particular system, and certainly were
not anticipated during the design phase. The reason many failures are not predicted
during the design stage is because the system is expected to be operating within a
specific set of operational and environmental envelopes a breach of which would
signal a predictable failure. However, these novel failures, occur in-service and
within the designed operational tolerances making them unpredictable and difficult
to diagnose and usually resulting in NFF events.

21.3 Case Studies

21.3.1 Self-healing Electronics

Most electronics self-repair strategies have focused on application specific inte-
grated circuit (ASIC) design that includes the popular field programmable gate
arrays (FPGAs). The general goal is to combine fault masking and active mitigation
strategies on flexible programmable platforms that support online and offline
hardware reconfiguration [21]. However, conventional software-configurable

356 M. Farnsworth et al.



processors must also operate reliably in the presence of faults and their
fixed-architecture is therefore enhanced using fault masking strategies involving
spatial and information redundancy [22].

Perhaps the most tried and tested reconfiguration strategies involve radiation
hardening for space applications. This is due to increased understanding of single
event upsets (SEUs) that occur within the Van Allen belt as well as the long-term
survivability of deep space and inter-planetary missions. Traditional radiation
hardening methods depend upon radiation absorbing materials that add weight and
cost. Instead, self-repair through functional redundancy has become desirable,
especially when strategies are supported by off the shelf electronics. Prediction and
quantification of survivability is a current challenge involving complex reliability
modelling to understand the efficacy of redundant resources [23] as well practical
experimental validation platforms [24].

A particular example that utilizes the reconfigurability of FPGAs is the
Self-testing ARea (STAR) strategy [25] that relies upon creating localized,
dynamically changing areas within the active FPGA fabric that quarantine the logic
within and perform detailed self-test and repair algorithms. This proceeds while the
rest of the FPGA fabric is functioning as normal. The principle is depicted in
Fig. 21.4 although this strategy approaches the ideal of complete online self-test

Fig. 21.4 Depiction of the STAR self-repair method for FPGAs

21 Design for Zero-Maintenance 357



and repair within electronics, there are a number of tradeoffs that typify the chal-
lenges of zero-maintenance in general:

• The STAR overhead is considerable and includes the roving configuration logic,
test and reconfiguration logic and coordination logic that typically takes the
form of an external processor.

• Fault response time is dependent upon the time taken to perform a full test and
repair sweep. In [26], Parris estimates the typical sweep time to be the order of
1 s for a modest FPGA device. However, the estimation also predicts sweep
times in excess of 17 s for larder state of the art FPGAs. This may represent an
unacceptable latency period for some applications.

• Overall throughput of the device is reduced due to the spatial redundancy
overhead. In the example given in [25], this amounted to 16% reduction that
would impact overall application performance. Given that zero-maintenance
extends to applications where performance versus cost is crucial (e.g., the
automotive industry), performance throughput represents an additional design
overhead that must be factored.

A further complexity is the need for verification of fault repair circuitry of any
self-repair strategy. This presents unique challenges, since the current state of the
circuit depends on the history of fault events and thus becomes difficult to predict.
To help ascertain valid behavior, deterministic fault injection and testing may be
performed [27] to quantify the circuit response to specific fault conditions and
complemented by probabilistic models where possible [23].

21.3.2 No-Fault-Found and the Failure of Design

One key area that is related to system’s design and NFF that is often overlooked is
how that system is utilized by the user. For example, is the user operating the
system incorrectly because of inadequate training or has the system been designed
without the end user in mind? This design issue is a major contributor to the NFF
issue across multiple industries. To highlight the case we can consider the consumer
electronics industry where the annual bill for NFF returns is in the billions of
dollars.

The major impact area for operators due to no fault found device returns is that
when customers buy a smartphone, it’s increasingly likely that it is a replacement
for an existing device. Their expectation is that the new device will perform at least
as fast as their old device and also other devices owned by friends and family. If
those expectations aren’t met because that particular combination of device,
application and OTT suffers from wasted data, the customer will return the device
as “faulty”. The operator then spends time and money testing the device without
discovering any faults, and has to resell the device as “refurbished” at a lower

358 M. Farnsworth et al.



margin. This increases their support costs and makes the device less profitable for
them.

If a device is not functioning as expected, even with a user error fault, the reason
for not obtaining the expected functionality must be identified. One of the under-
lying reasons for devices being returned as NFF is that the user often has the device
configured incorrectly, has misunderstood the device’s capabilities or functionality,
or there is an underlying hardware/software design problem that is having a sec-
ondary ‘fault’ affect—but that design root cause is not obvious. The user will be
required to often contact a service representative who will talk them through a
troubleshooting process; however, this can create a frustrated customer when the
help and advice provided is not solving the issue. The service representative is not
aware of how the device is currently being used and in what conditions, or if the
customer is providing the correct information—although this could be rectified
through real-time analysis of available data. The cost of service representatives
could also be significantly reduced if this real-time analysis for use in device
troubleshooting could be delivered directly to the device, allowing the user to
identify the nature of the problem.

There is no doubt that the very nature of the NFF problem has its roots firmly
embedded within inadequacies present in the design process. This is in no way
laying the NFF blame on designers, they will design to the required specifications
which almost certainly will not include any reference to NFF—in fact most may not
even be aware of any in-service issues that could enhance their designs. In order to
eradicate NFF at the design stage this needs to change. Designers need to be
provided with information and knowledge captured in the field and more emphasis
placed on improved predictability of system usage and operating environments in
order to reduce the probability of unanticipated faults occurring. This is no easy task
and many of the challenges highlighted in this chapter still remain far from
resolved. In addition to this, designers need to be turning their attentions to
enhancing the testability of systems. This will ensure that access to test points is
easy, appropriate test equipment for the task is identified and the overall test
coverage of the system is enhanced. If you cannot test a system then you cannot
diagnose it, and NFF will always prevail. Finally, the often overlooked contributor
to NFF is how the interaction between the user and system is managed. Systems
should always be designed with the user in mind with full training and support to
avoid confusion and incorrect operation resulting in perceived faults that again lead
to a category of NFF.

21.4 Design for Zero-Maintenance

Systems fail inevitably, in particular complex systems that work across long time
scales and within harsh environments. There is no getting around this fact, and as a
result mitigation strategies have to be put into place in order return the system to
preferably an optimal state. These strategies cover a wide range of fields, services

21 Design for Zero-Maintenance 359



and technical solutions. The most typical comes in the form of maintenance, with
processes and actions designed to return function, reduce further degradation and
preemptively look to halt future failure. Design also plays a significant role, with a
complex struggle in designing solutions that meet cost and performance require-
ments but also are resilient to damage and robust enough to perform to specifica-
tions over the lifetime of the system. The design choices made ultimately affect the
performance of the system over its lifetime and how much maintenance is required
to sustain this level of performance. The probability of failure of the system or
components within the system is naturally also strongly correlated with their design.

Therefore, it is crucial that at the design stage all possible sources or events that
lead to failure are understood for the targeted solution. It is also important to
understand what the maintenance requirements will be for the targeted design so
informed decisions can be made so as to improve its maintainability and resilience
to failure. Figure 21.5 outlines a process wheel for the designing in of zero
maintenance strategies. The challenge for the designer begins with an under-
standing of the initial problem or set of problems they wish to overcome.

The first step is to identify the requirements of the system to maintain its
function over its life cycle. This is in relation to known faults and possible failure
modes, and any processes for maintenance that are necessary for the system to
maintain its function to original specifications. It is likely that future design choices
further own in the design cycle will introduce additional requirements, however for
now it can be ignored. Once the designer has available to him a list of requirements
they can begin to reassess which of these requirements can be removed or avoided
through a simple design change. In step 2 a designer can begin to prune away
certain requirements. It may not be necessary to perform certain inspection practices

Zero
Maintenance

Se

lec
tio
n

St
ep

3:
Str
ate

gy

Ste
p2

:R
eq
ui
re
m
en

ts

Pr
un

in
g

Step 1: Life
Cyc

le

Requirem
ent

s

Generati
on

Step 4: ProcessAnalysis

Step
5: Concept

Generation

Fig. 21.5 Design for zero-maintenance process wheel

360 M. Farnsworth et al.



for example if a sensor can replace the role of a human engineer. Careful consid-
eration should occur during this step as it can greatly reduce the number of miti-
gation strategies integrated into the system. Step 3 forces the designer to make a
decision on what direction they wish to take with regards to particular mitigation
strategy, whether it is some form of self-healing or repair, or whether outside agents
in the form of autonomous systems will provide a solution. Often this will be
dictated by the particular failure mode or source of fault, and the component within
the system it is related to. Once a strategy has been decided the next step is an
analysis of the likely fault process or in the case of maintenance the steps required
performing the specific task. Understanding the functional requirements necessary
to perform a specific strategy can allow designers to identify alternative design
choices to aid the fault recovery or maintenance process. The use of autonomous
solutions for example mobile robots can be greatly aided if thought is given into
how they may undertake certain maintenance or fault reduction tasks, for example
inspection can be helped if diagnostic information is easy to access, or maintenance
sites that do not require manipulation to open. Step 5 brings us to concept gener-
ation, where for each particular lifecycle requirement, the chosen strategy and
functional requirements a designer can look to develop a number of solutions.
Finally the designer has to look at the integration of all solutions into a single
system and evaluate how such strategies may or may not affect each other. This
may result in a different strategy or concept being pursued, or alternatively it may
help identify shared functional requirements between mitigation strategies.

When looking to design in electronics self-repair capability its impact is felt not
only in the electronic modules, but also the wider system (or sub-systems) given the
pervasiveness of electronic and electrical circuits within modern engineering
products. In the most extreme cases this brings survivability concepts into the fray
across many design levels as shown in Fig. 21.6. Key metrics become fault
capacity; latency and repair time become central in the role of electronic
sub-systems to assist in securing continued operation in the presence of failures.

With respect to the above example, the performance metrics that need to be
considered in design for self-repair are summarized in Table 21.1. Importantly, all
such metrics must be considered at the various design stages and fully understood
with respect to the strategies under consideration.

Not included in this particular design wheel is an important topic discussed
previously, identifying design choices linked with through-life engineering services
and their impact. During manufacturing the impact that process variations have on
final product quality may cause unanticipated system failures and, in order to
address the root causes of such service failures, it is necessary to develop analytical
methods based on inter-loop modelling which integrates data from different phases
of lifecycle with product and process models. Such a method exists [28] and is
summarised below.

21 Design for Zero-Maintenance 361



Table 21.1 Important performance metrics pertaining to self-repair capability in electronic
systems

Metric Description

Response Fault coverage Refers to fractional area of overall circuit that protected and
diversity of faults that can be handled

Fault
granularity

Minimum design layer at which faults can be
detected/addressed

Fault capacity Number of remaining faults that can be sustained by
mitigation strategy

Performance
reduction

Loss of application performance due to self-maintenance
operations

Latency Timed required for recovery

Resources Resource
overhead

Number of additional components needed over and above
basic design

Resource
re-use

Achieving efficient consumption of redundant resources
(active methods)

Energy usage Energy consumed during recovery and consumed by
additional resources overall

Diagnostic Reporting Discrimination and reporting of fault events at multiple
system levels

Remaining
lifetime

Indication of remaining operational hours after which faults
will no longer be handled

Logging Capacity to store a log of fault history and classification

FPGA fabric and 
bitstream (e.g., STAR), 

New configurable ASICs 
(e.g., SABRE)

Configurable / adaptable 
cells: Q-cells, CCA, P-cells

Super voters, super logic 
gates, fault buses and 

registers

Masking / fine-grained majority signals Device 
level

Fault 
detection

Logic cells

Reconfiguration

Upper application 
software layers

Fig. 21.6 Example hierarchical approach for self-repair focusing on electronic design

362 M. Farnsworth et al.



The loops of a self-resilient production system are classified as intra-loop and
inter-loop based on the availability of data from same or different phases of the
product lifecycle respectively. Figure 21.7 shows the closed-loop framework. The
intra loop refers to integration of data with product and process models from the
same phase of the product lifecycle such as SPC that uses manufacturing data for
monitoring purposes. The inter-loop refers to integration of data with product or
process models obtained from more than one phase of the lifecycle such as
addressing service failures.

Within the design phase, product simulation generates data on design parameters
that satisfy a set of pre-defined functional requirements. Design changes and
optimization is then achieved by modelling the relationship between critical design
parameters, functional requirements and critical process variables. During the
manufacturing phase, the intra-loop consists of continuous data on the design
parameters and process variables obtained using in-line and/or off-line measure-
ments of products and processes during production. The intra-loop in manufac-
turing is used to address out-of tolerance failures. The monitoring capability can be
further integrated with process models to enhance the intra-loop capability of the
production systems for fault diagnosis and adjustments. An intra-loop in service
consists of warranty data and failure data which are analysed to send feedback to
OEMs for setting economic warranty reimbursements to customers, estimating field
reliability of products and changing design to address service failures. Warranty
data is also used to improve performance of service centres by generating
pre-alerting rules to diagnose product failures from customer complaints.

The Design-Manufacturing inter-loop integrates information from manufactur-
ing with design to evaluate and improve diagnosability. By integrating manufac-
turing and service information together, design parameters can be defined to
identify and isolate in-tolerance fault regions. In the Manufacturing-Service
inter-loop, the Functional manufacturing and service information is integrated to
identify and isolate in-tolerance fault regions. For the Design-Service inter-loop,
there is the need for an analytical method capable of identifying root causes of
service failures by integrating warranty failures with design models.

CAD/CAM/CAPP Station 1 Station N

Intra-loop: Design Intra-loop: Manufacturing

Warranty Data

Intra-loop: Service

Fig. 21.7 Framework for a closed loop lifecycle model [28]

21 Design for Zero-Maintenance 363



References

1. Hernandez G, Seepersad CC, Mistree F (2002) Designing for maintenance: a game theoretic
approach. Eng Optim 34:561–577

2. Mobley RK (2002) An introduction to predictive maintenance. Butter-Heinemann, pp 2–5
3. Akrout H, Anson D, Bianchini G, Neveur A, Trinel C, Farnsworth M, Tomiyama T (2013)

Maintenance task classification: towards automated robotic maintenance for industry.
Procedia CIRP 11:367–372

4. Farnsworth M, Tomiyama T (2014) Capturing, classification and concept generation for
automated maintenance tasks. CIRP Ann Manuf Technol. http://dx.doi.org/10.1016/j.cirp.
2014.03.093

5. Amor-Segan ML, McMurran R, Dhadyalla G, Jones RP (2007) Towards the self-healing
vehicle. Automotive electronics. In: 3rd institution of engineering and technology conference.
IET, pp 1–7

6. Farnsworth M, Bell C, Tomiyama T, Khan S (2014) Autonomous maintenance for
through-life engineering. In: Redding L, Roy R (eds) Through-life engineering services,
decision engineering. doi:10.1007/978-3-319-12111-6_23

7. Farnsworth M, Tiwari A, Dorey R (2014) Modelling, simulation and optimisation of a
piezoelectric energy harvester. Procedia CIRP 22:142–147

8. Farnsworth M, Tiwari A (2015) Modelling, simulation and analysis of a self-healing energy
harvester. Procedia CIRP 38:271–276

9. Bell C, Farnsworth M, Knowles J, Tiwari A (2015) Self-repairing design process applied to a
4-bar linkage mechanism. Proc Inst Mech Eng Part B: J Eng Manuf

10. Schiefer P, *McWilliam R, *Purvis A (2014) Fault tolerant quadded logic cell structure with
built-in adaptive time redundancy. Procedia CIRP 22:127–31

11. McWilliam R, Schiefer P, Purvis A (2015) Experimental validation of a resilient electronic
logic design with autonomous fault discrimination/masking. Procedia CIRP

12. Koal T, Ulbricht M, Vierhaus HT (2013) Virtual TMR schemes combining fault tolerance and
self repair. In: 2013 Euromicro conference on digital system design (DSD), pp 235–242

13. Han J, Leung E, Liu L, Lombardi F (2014) A fault-tolerant technique using quadded logic and
quadded transistors. IEEE Trans Very Large Scale Integr VLSI Syst PP(99):1–1

14. Tyrrell AM (2016) Fault tolerant applications. In: Evolvable hardware [Internet]. Springer,
Berlin [cited 2016 Apr 22], pp 191–207. (Natural Computing Series). http://link.springer.com/
chapter/10.1007/978-3-662-44616-4_7

15. Tyrrell AM, Greensted AJ (2013) Evolving dependability. J Emerg Technol Comput Syst
[Internet] [cited 2013 Feb 20] 3(2). http://doi.acm.org/10.1145/1265949.1265953

16. Nagami K, Oguri K, Shiozawa T, Ito H, Konishi R (1998) Plastic cell architecture: towards
reconfigurable computing for general-purpose. In: IEEE symposium on FPGAs for custom
computing machines, 1998 proceedings, pp 68–77

17. McWilliam R, Schiefer P, Purvis A (2015) Creating self-configuring logic with built-in
resilience to multiple-upset events. Proc Inst Mech Eng Part B J Eng Manuf [Internet] [cited
2015 Oct 26]. http://pib.sagepub.com/content/early/2015/10/01/0954405415611607

18. Khan S, Phillips P, Jennions I, Hockley C (2014) No fault found events in maintenance
engineering part 1: current trends, implications and organizational practices. Reliab Eng Syst
Saf 123:183–195. http://dx.doi.org/10.1016/j.ress.2013.11.003

19. Khan S, Phillips P, Hockley C, Jennions I (2014) No fault found events in maintenance
engineering part 2: root causes, technical developments and future research. Reliab Eng Syst
Saf 123:196–208. http://dx.doi.org/10.1016/j.ress.2013.10.013

20. Soderholm P (2007) A system view of the no fault found (NFF) phenomenon. Reliab Eng
Syst Saf 92(1):1–14

21. Cheatham JA, Emmert JM, Baumgart S (2006) A survey of fault tolerant methodologies for
FPGAs. ACM Trans Autom Electron Syst. 11(2):501–533

364 M. Farnsworth et al.

http://dx.doi.org/10.1016/j.cirp
http://dx.doi.org/10.1007/978-3-319-12111-6_23
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-662-44616-4_7
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-662-44616-4_7
http://doi.acm.org/10.1145/1265949.1265953
http://pib.sagepub.com/content/early/2015/10/01/0954405415611607
http://dx.doi.org/10.1016/j.ress.2013.11.003
http://dx.doi.org/10.1016/j.ress.2013.10.013


22. Patel A, Prakash K (2010) Fault-tolerant features of modern processors—a case study.
University of Wisconsin-Madison

23. Liu Y, Trivedi KS (2006) Survivability quantification: the analytical modeling approach. Int J
Perform Eng 2(1):29–44

24. Kastensmidt FL, Reis R (2010) Fault-tolerance techniques for SRAM-Based FPGAs.
Softcover reprint of hardcover 1st edn. Springer, 198 p

25. Emmert J, Stroud C, Skaggs B, Abramovici M Dynamic fault tolerance in FPGAs via partial
reconfiguration. IEEE Comput Soc [cited 2012 Apr 25], pp 165–174. http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=903403&tag=1

26. Parris MG, Sharma CA, Demara RF (2011) Progress in autonomous fault recovery of field
programmable gate arrays. ACM Comput Surv 43(4):31:1–31:30

27. Validation resilient logic units by automated fault injection–solutions—national instruments
[Internet] [cited 2016 Jun 26]. http://sine.ni.com/cs/app/doc/p/id/cs-17146

28. Pal A, Franciosa P, Ceglarek D (2014) Root cause analysis of product service failures in
design—a closed-loop lifecycle model approach. Procedia CIRP 21:165–170

29. de Novaes Kucinskis F, Ferreira MGV (2010) Taking the ECSS autonomy concepts one step
further. In: SpaceOps 2010 conference “Delivering on the Dream” Hosted by NASA Mars
[Internet] [cited 2015 Apr 14], pp 25–30. http://arc.aiaa.org/doi/pdf/10.2514/6.2010-2364

30. Lee J, Ni J, Djurdjanovic D, Qiu H, Liao H (2006) Intelligent prognostics tools and
e-maintenance. Comput Ind 57(6):476–489

21 Design for Zero-Maintenance 365

http://ieeexplore.ieee.org/xpls/abs_all.jsp%3farnumber%3d903403%26tag%3d1
http://ieeexplore.ieee.org/xpls/abs_all.jsp%3farnumber%3d903403%26tag%3d1
http://sine.ni.com/cs/app/doc/p/id/cs-17146
http://arc.aiaa.org/doi/pdf/10.2514/6.2010-2364

	21 Design for Zero-Maintenance
	Abstract
	21.1 Introduction
	21.2 Zero-Maintenance
	21.2.1 Autonomous Systems and Embedded Intelligence
	21.2.2 Self-healing and Self-repair
	21.2.3 Through-Life Engineering Services and No-Fault Found
	21.2.3.1 In-Service Feedback for TES


	21.3 Case Studies
	21.3.1 Self-healing Electronics
	21.3.2 No-Fault-Found and the Failure of Design

	21.4 Design for Zero-Maintenance
	References


