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An Erlang-Coxian-Based Method
for Modeling Accelerated Life
Testing Data

Haitao Liao, Ye Zhang and Huairui Guo

Abstract Accelerated life testing (ALT) can be used to expedite failures of a
product for predicting the product’s reliability under the normal operating condi-
tions. The resulting ALT data are often modeled by a probability distribution along
with a life-stress relationship. However, if the selected probability distribution
cannot adequately describe the underlying failure process, the resulting reliability
prediction would be misleading. It would be quite valuable if the distribution
providing an adequate fit to the ALT data can be determined automatically. This
chapter provides a new analytical method to assist reliability engineers in this
regard. Essentially, this method uses Erlang-Coxian (EC) distributions, which
belong to a particular subset of phase-type distributions, to characterize ALT data.
Such distributions are quite efficient for approximating many non-negative distri-
butions, such as Weibull, lognormal and gamma. The advantage of this method is
that the best fit to the ALT data can be obtained by gradually changing the model
structure, i.e., the number of phases of the associated continuous-time Markov
chain (CTMC). To facilitate the implementation of this method, two statistical
inference approaches are provided. First, a mathematical programming approach is
formulated to simultaneously match the moments of the EC-based ALT model to
the empirical moments at the corresponding test stress levels. This approach
resolves the feasibility issue of the method of moments. In addition, the maximum
likelihood estimation approach is presented, which can easily handle different types
of censoring in ALT. Both approaches are accompanied with a stopping criterion
for determining the number of phases of the resulting CTMC. Moreover, non-
parametric bootstrap method is used to construct the pointwise confidence interval
for the resulting reliability estimates. Numerical examples for constant-stress ALT
with Type-I and multiple censoring schemes are provided to illustrate the capability
of the method in modeling ALT data.
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Notation

ALT Accelerated life testing
AFT Accelerated failure time
AIC Akaike Information Criterion
Cdf Cumulative distribution function
pdf Probability density function
CTMC Continuous-time Markov chain
PH Phase-type
EC Erlang-Coxian
EM Expectation-maximization
LSE Least square estimate
MLE Maximum likelihood estimate
F(tZ) Cdf of failure time under stress Z
R(t; Z) Reliability function under stress Z
f(t; Z) Pdf of failure time under stress Z
h(t; Z) Hazard rate function under stress Z
r(Z; h) Function of stress Z
S Subgenerator matrix
kj The jth transition rate
pj The jth transition probability
p Initial probability
Mi

l The lth empirical moment under stress level i
si Censoring time at stress level i

d½0;si�ij
Indicator function for the jth failure time under stress level i

ei;l; si;l Excess and slack variables for the lth moment for stress level i
wi;l Weights assigned to the deviation from the lth moment for stress level i

11.1 Introduction

As technology advances, new products can be made quite reliable. For such a
product, it is difficult, if not impossible, to observe failures in a short time period
under the product’s normal operating conditions. Accelerated life testing (ALT) has
been widely used in industry as a viable tool for estimating the long-term reliability
of such a product. The basic idea of ALT is to expose some units of the product to
harsher-than-normal operating conditions to expedite failures. Based on the
resulting failure time data due to acceleration, a statistical model is developed and
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used to extrapolate the product’s long-term reliability under the normal operating
conditions.

Nonparametric methods are practical choices for estimating the reliability of a
product without assuming the underlying failure time distribution. The most pop-
ular ones are the Kaplan-Meier estimator and Breslow estimator [21]. However, it is
difficult to extend these methods for developing ALT models which require the
inclusion of various life-stress relationships for extrapolation in time and stresses.
As a result, the most popular methods in modeling ALT data are to develop
parametric models based on specified probability distributions with stress-
dependent parameters. Such methods, if properly applied, are quite efficient, and
the related statistical inference procedures, such as maximum likelihood estimation
(MLE) and least squares estimation (LSE), have been extensively studied and made
available to practitioners [9, 21, 23, 37].

Accelerated failure time (AFT) models are probably the most widely used
parametric ALT models. Mathematically, an AFT model for the cumulative dis-
tribution function (Cdf) F t; Zð Þ of failure time under a constant stress Z can be
expressed as [3]:

F t; Zð Þ ¼ 1� R t; Zð Þ ¼ F0ðrðZ; hÞtÞ; ð11:1Þ

where R t; Zð Þ is the corresponding reliability function, F0ð�Þ is the baseline Cdf,
and rðZ; hÞ is a deterministic function of Z. The model can also be expressed in
terms of the corresponding hazard function as:

h t; Zð Þ ¼ h0ðrðZ; hÞtÞrðZ; hÞ; ð11:2Þ

where h0ð�Þ is the corresponding baseline hazard function.
When using AFT models for reliability prediction, practitioners often face the

challenge of choosing a probability distribution that provides an adequate fit to the
collected ALT data. To determine the best model from several candidates, the
likelihood values or residual plots (e.g., Cox-Snell residuals) of these ALT models
can be considered. For relevant methods of goodness-of-fit tests, readers are
referred to Bagdonavičius and Nikulin [3]. Regarding more general ALT models,
Elsayed et al. [11] proposed the extended linear hazard regression model that is
capable of modeling various ALT data and includes many ALT models as special
cases. However, all these methods require the baseline Cdf’s (or equivalently the
baseline hazard functions) to be pre-specified. To assist engineers in modeling ALT
data, a generic method using a collection of versatile distributions would be
desirable for a wide range of engineering applications. It would be more attractive if
the distribution providing the best fit to the ALT data can be determined adaptively.

Because the versatility of phase-type (PH) distributions naturally meets broad
requirements for parametric modeling of failure time data, we propose a generic
method using a specific and yet flexible subset of PH distributions, called
Erlang-Coxian (EC) distributions [28], to model ALT data. Both mathematical
programming and MLE approaches are developed for statistical inference.
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The contribution of this generic method to the body of ALT literature is twofold.
First, the use of EC distributions relaxes strong assumptions about the underlying
failure time distributions in developing AFT models. Moreover, the method is able
to achieve the best fit to the ALT data under a stopping criterion by adaptively
adjusting the number of phases of the associated continuous-time Markov chain
(CTMC).

The remainder of this chapter is organized as follows. Section 11.2 briefly
reviews the literature on ALT models and PH distributions. Section 11.3 introduces
the EC distributions and provides the mathematical formulation of the proposed
EC-based ALT model. The mathematical programming and MLE approaches to the
estimation of model parameters are presented in Sect. 11.4. Two simulation
examples and a case study are provided in Sect. 11.5 to illustrate the capability of
the EC-based ALT model for modeling ALT data. Finally, Sect. 11.6 concludes
this chapter.

11.2 Literature Review

Among various probability distributions, the exponential distribution has been
widely used in modeling ALT data. Typical examples include the models devel-
oped by Lawless and Singhal [16], Bai et al. [5], Bai and Chung [4], and Xiong
[36]. The obvious limitation of the exponential distribution is that it can only be
used for products with constant failure rates. To predict the reliability of a product
with time-dependent failure rate, Nelson [22], Meeker [20], Bhattacharyya and
Soejoeti [6], and Tang et al. [34] considered the Weibull distribution and different
stress loadings used in ALT experiments. Moreover, Kielpinski and Nelson [15]
developed ALT models based on the lognormal distribution and studied the opti-
mum test plans. Doksum and Hóyland [7], and Onar and Padgett [27] used the
inverse Gaussian distribution as the underlying distribution for ALT data. For
testing of hypotheses for different distributions and thorough literature reviews of
ALT models, readers are referred to Sethuraman and Singpurwalla [33], Escobar
and Meeker [12], and Elsayed [10]. Despite these guidelines, choosing adequate
distributions to fit ALT data is still a challenging task faced by engineers, and
sometimes the underlying distributions are quite complex or even unknown.

It would be useful if a collection of probability distributions can be used to
approximate those popular or even complex distributions arbitrarily closely so that
choosing adequate distributions for ALT analysis can be circumvented. Indeed, PH
distributions are quite versatile, which can be used for this purpose. Van Der
Heijden [35] derived the lower and upper bounds on the third moment of a positive
random variable when the squared coefficient of variation is between 0.5 and 1, and
characterized the two-phase Coxian distributions that correspond to these bounds.
Asmussen et al. [2] studied MLE for fitting PH distributions. An extended
expectation-maximization (EM) algorithm was developed to minimize the infor-
mation divergence in the density approximation case. Olsson [26] developed an EM
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algorithm to estimate the parameters of a PH distribution with fixed order from
right-censored and interval-censored data. Riska et al. [30] developed a method to
efficiently fit a long-tailed data set by partitioning the data set and fitting each
partition into a hyperexponential distribution using an EM algorithm. Osogami and
Harchol-Balter [28] provided closed-form solutions for mapping general distribu-
tions to quasi-minimal PH distributions (EC distributions) by matching their first
three moments. In the field of reliability engineering, PH distributions have been
used in modeling repairable systems. Sericola [32] proposed an algorithm to
compute the interval availability of a system where a two-state semi-Markov pro-
cess was used to model the system. An exponential distribution and a PH distri-
bution were assumed for the operational and nonoperational state, respectively.
Perez-Ocon and Montoro-Cazorla [29] studied the transient behavior of a system
with operational and repair times following PH distributions. Moreover,
Ruiz-Castro et al. [31] studied the availability and conditional failure probabilities
for different types of failures of a multi-component system subject to internal and
external repairable (or non-repairable) failures where the corresponding random
times follow PH distributions.

The brief literature review indicates that PH distributions have not been used in
modeling ALT data. To the best of our knowledge, this chapter demonstrates, for
the first time, the potential of using PH distributions for ALT data analysis.
Although the proposed model is developed based on a specific PH distribution, the
concept and statistical estimation methods can be naturally extended to other types
of PH models.

11.3 Mathematical Formulation of an EC-Based
ALT Model

A PH distribution describes the time to absorption of a CTMC defined on a
finite-state space [1]. Figure 11.1 shows two examples, where the time until
absorption to the respective absorbing state in each CTMC can be characterized by
a PH distribution. Essentially, such a CTMC with the specific structure can be
described by an infinitesimal generator matrix:

Q ¼ 0 0
S0 S

� �
; ð11:3Þ

where S is the subgenerator matrix consisting of the transition rates among transient
states and the ones for transitions into the absorbing state, and S0 ¼ �S1 in which

1 ¼ ð1; 1; . . .; 1Þ0 is a column vector of 1’s of appropriate dimensions.
Let T be the time to absorption of a k-phase CTMC and p ¼ ðp1; p2; . . .; pkÞ be

the initial distribution of the CTMC. The Cdf of T can be expressed as:
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F tð Þ ¼ 1� RðtÞ ¼ 1� p exp tSf g1; t� 0 ð11:4Þ

where exp tSf g is matrix exponential defined as:

exp tSf g ¼
X1
k¼0

1
k!
ðtSÞk: ð11:5Þ

The corresponding probability density function (pdf) is:

f tð Þ ¼ p exp tSf gS0; t� 0 ð11:6Þ

and the hazard function is given by:

h tð Þ ¼ f ðtÞ=ð1� FðtÞÞ ¼ p expftSgS0=ðp expftSg1Þ; t� 0: ð11:7Þ

In addition, the lth moment of the distribution can be expressed as:

E½Tl� ¼ ð�1Þll!p S�l1: ð11:8Þ

For examples, the CTMC in Fig. 11.1a results in a three-phase Erlang distri-
bution Eð3; kÞ with:

p ¼ ðp1; 0; 0Þ and S ¼
�k
0
0

k
�k
0

0
k
�k

24 35;
and the one in Fig. 11.1b gives a three-phase Coxian distribution
Cðk1; k2; k3; p1; p2Þ with:

Fig. 11.1 CTMCs whose absorption times define two different phase-type distributions
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p ¼ ðp1; 0; 0Þ and S ¼
�k1
0
0

p1k1
�k2
0

0
p2k2
�k3

24 35;
where 0\pi � 1, i ¼ 1; 2.

One of the most attractive properties of PH distributions is that the set of PH
distributions is dense in the set of nonnegative distributions [24]. In other words, in
theory, any nonnegative distribution can be approximated arbitrarily closely by a
PH distribution. The only limitation is that PH distributions are light-tailed, thus
may not be used as effective models for heavy-tailed distributions. Among different
subsets of PH distributions, Erlang distributions and Coxian distributions are
probably the most popular ones. They have been extensively studied in queueing
theory and widely used in healthcare such as survival analysis and modeling the
length of stay of patients in a hospital [18, 19].

An important aspect of mapping a general distribution to a PH distribution is to
select the type and the number of phases of the corresponding CTMC. For example,
for a data set (see Fig. 11.2a) generated from the Weibull(η = 1200, b = 1.5)

distribution, a three-phase Erlang distribution Eð3; bk ¼ 0:0026344Þ can be obtained
through an MLE approach, and the corresponding log-likelihood value is 76.91.
A three-phase Coxian:

Cðbk1 ¼ 0:00176; bk2 ¼ 0:00176; bk3 ¼ 41:20788; bp1 ¼ 1; bp2 ¼ 1Þ

can also be obtained with log-likelihood value of 77.79. Obviously, the three-phase
Coxian distribution, which turns out to be a hypoexponential distribution, provides
a better fit (see Fig. 11.2b).

(a) Weibull plot of ten data points (b) Results from fitted three-phase Erlang
and Coxian distributions 
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Fig. 11.2 Example for Weibull (η = 1200, b = 1.5)
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Before addressing the proposed EC-based ALT model, we first introduce the
following definitions regarding the determination of a subset of PH distributions
under certain estimation accuracy requirements [28].

Definition 1 Let E[Xl� be the lth moment of random variable X with distribution

G. The normalized lth moment mG
l of X for l = 2,3 is defined as: mG

2 ¼ E½X2�
ðE½X�Þ2 and

mG
3 ¼ E½X3�

E X½ �E½X2�.

Definition 2 A distribution G is well represented by a distribution F if F and
G agree on their first three moments. PH3 refers to the distributions that are well
represented by a PH distribution.

It is well known that a distribution G is in PH3 if and only if its normalized
moments satisfy mG

3 [mG
2 [ 1 [14]. Since any nonnegative random variable with

distribution G satisfies mG
3 �mG

2 � 1, almost all such distributions are in PH3.
Osogami and Harchol-Balter [28] introduced EC distributions that are quite

efficient for approximating PH3 distributions. Figure 11.3 shows the CTMC for a k-
phase EC distribution (k� 3), which consists of an Erlang Eðk � 2; k1Þ with k-2
phases and a two-phase Coxian Cðk2; k3; pcÞ, for which:

p ¼ ðp1; 0; . . .; 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Þ and S ¼

�k1 k1 0 � � � 0
0 �k1 k1 0 0
..
.

0 �k1 . .
. . .

. ..
.

0 . .
.

k1 0
..
. . .

. �k1 k1 0
0 0 �k2 pck2

0 � � � � � � 0 �k3

266666666664

377777777775
:

ð11:9Þ

The idea of creating an EC distribution is that a two-phase Coxian distribution
can well represent any distribution that has high second and third moments while an
Erlang distribution has only two free parameters and has the least normalized
second moment among all the PH distributions with a fixed number of phases.
Therefore, such a k-phase EC distribution can represent probability distributions in

Fig. 11.3 CTMC whose absorption time defines a k-phase EC distribution
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a wide range of variability using only a small number of phases. This is quite
important in developing an ALT model, which needs additional parameters for
quantifying the life-stress relationship.

Following Eqs. (11.1) and (11.4), the proposed EC-based ALT model (essen-
tially an AFT model) for a product’s failure time under stress level Z can be
expressed as:

F t; Zð Þ ¼ F0 r Z; hð Þtð Þ ¼ 1� p exp r Z; hð ÞtSf g1; t� 0; ð11:10Þ

where S is given in Eq. (11.9), and p is set to be ð1; 0; . . .; 0Þ throughout this
chapter.

The corresponding pdf is given by:

f t; Zð Þ ¼ r Z; hð Þp exp r Z; hð Þt Sf g S0; t� 0; ð11:11Þ

and the hazard function is:

h t; Zð Þ ¼ r Z; hð Þp expfr Z; hð ÞtSgS0=ðp expfr Z; hð ÞtSg1Þ; t� 0: ð11:12Þ

In addition, the corresponding lth moment under stress level Z can be expressed
as:

E½Tl
Z � ¼ �1ð Þl rðZ; hÞð Þ�ll!pS�l1: ð11:13Þ

To use such an EC-based ALT model in practice, it is necessary to determine the
number of phases of the EC distribution adaptively based on the collected ALT data
and estimate all the parameters. Effective solutions to these issues will make the
proposed model more flexible in fitting ALT data than existing parametric models.

11.4 Statistical Inference Methods

This section addresses two statistical inference methods for estimating the
parameters H ¼ ½k1; k2; k3; pc; h� of an EC-based ALT model. In particular, a
constant-stress ALT experiment with Type-I censoring is considered. Let si be the
censoring time under stress level Zi, i ¼ 1; 2; . . .;m, ni be the total number of units
tested under Zi, tij be the recorded failure/censoring time of unit j tested under Zi.

11.4.1 Use of Mathematical Programming

For complete ALT data, the lth empirical moment of failure times under stress level
Zi can be calculated by: Mi

l ¼ ð1=niÞ
Pni

j¼1 t
l
ij. For the case of Type-I censoring,
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the corresponding empirical moments can be calculated using the idea of data
augmentation [25]:

Mi
l ¼

1
ni

Xni
j¼1

d½0;si�ij tlij þð1� d½0;si�ij Þ si þ
Z 1

0

1� Fðxþ si; ZiÞ
1� Fðsi; ZiÞ dx

� �l
 !" #

;

ð11:14Þ

where,

d½0;si�ij ¼ f1; if tij\si; 0; otherwiseg,
R1
0 1� Fðxþ si; ZiÞ½ �= 1� Fðsi; ZiÞ½ �dx is

the mean residual life of a unit tested under Zi and censored at time si, and Fð�; ZiÞ
is given by Eq. (11.10).

The traditional method of moments set several population moments equal to the
corresponding empirical moments and solve those equations simultaneously for the
model parameters. To overcome the feasibility issue of this method by allowing
deviations, the mathematical formulation for determining the matching EC-based
ALT model with the least number of phases (i.e., k) can be expressed as a math-
ematical programming problem (P1):

ðP1Þ min
k

k

ðSP1Þ
min

h; k1; k2; k3; pc
fsi;l; ei;lg; i 2 f1; . . .;Mg; l 2 f1; 2; 3g

gk ¼
PM
i¼1

P3
l¼1

xð1Þ
i;l si;l þxð2Þ

i;l ei;l
� �

Subject to
�ðrðZi;hÞÞ�11!pS�11�Mi

1
Mi

1
¼ ei;1 � si;1; for i ¼ 1; . . .;m; ½1st moment]

ðrðZi;hÞÞ�22!pS�21�Mi
2

Mi
2

¼ ei;2 � si;2; for i ¼ 1; . . .;m; ½2nd moment]
�ðrðZi;hÞÞ�33!pS�31�Mi

3
Mi

3
¼ ei;3 � si;3; for i ¼ 1; . . .;m; ½3rd moment]

ei;1 � 0; ei;2 � 0; ei;3� 0; for i ¼ 1; . . .;m;
si;1 � 0; si;2 � 0; si;3 � 0; for i ¼ 1; . . .;m;

k1 � 0; k2 � 0; k3 � 0; pc � 0;
Subject to

gk � eE;
k 2 f3; 4; . . .g;

ð11:15Þ

where ei;l is the “excess” variable in the lth moment for stress level Zi, si;l is the

corresponding slack variable, xð1Þ
i;l and xð2Þ

i;l are the weights assigned to the devi-

ation from the lth moment (the conceived importance of the deviation), and ~E is the
pre-specified overall tolerance.

This mathematical programming problem consists of two stages. For a given
value of k, a sub-problem SP1 is solved to obtain the minimal value of gk , which
corresponds to the best matching EC-based ALT model with the k phases. The
procedure is continued until the first value of k and the corresponding EC-based
ALT model are found, which satisfies the overall tolerance constraint. Note that the
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size of matrix S increases as the value of k increases, which only increases the
number of phases in Erlang E(k-2, k1) without increasing the number of parameters.
Despite the simplicity in terms of formulation, the challenge of using this approach
is that extensive computational effort is required in finding the solution that satisfies
those nonlinear constraints. Moreover, this approach may not result in the desirable
optimality properties of MLE.

11.4.2 Use of MLE Approach

The MLE approach has been widely used in modeling ALT because of its capa-
bility of handling different types of censoring. In particular, for ALT data with
Type-I censoring, the log-likelihood function lnL can be expressed as:

ln LðH ¼ k1; k2; k3; pc; h½ �Þ

¼
Xm
i¼1

Xni
j¼1

d 0;si½ �
ij ln f tij; Zi

	 
	 
þð1� d½0;si�ij Þ ln 1� Fðtij; ZiÞ
	 
h i

¼
Xm
i¼1

Xni
j¼1

d 0;si½ �
ij ln r Zi; hð Þp exp r Zi; hð ÞtijS

� �
S0

	 

þ ð1� d½0;si�ij Þ ln p exp r Zi; hð ÞtijS

� �
1

	 

ð11:16Þ

For a case with random censoring, the log-likelihood function can be obtained

by replacing d½0;si�ij by dij ¼ f1; if tijis a failure time; 0; otherwiseg for each tij. The
MLEs of the model parameters can be obtained by maximizing the log-likelihood
function. In practice, different optimization algorithms, such as Quasi-Newton and
Nelder-Mead algorithms, can be used.

A practical issue is to determine the number of phases in the EC-based ALT
model. For such model selection problems under the framework of MLE, the
Akaike Information Criterion (AIC) has been widely used. The AIC for an
EC-based ALT model can be expressed as:

AIC ¼ 2q� 2lnLðk1; k2; k3; pc; hÞ; ð11:17Þ

where q is the number of parameters which is the same for EC-based ALT models
with different numbers of phases when the number of parameters in h is fixed. As a
result, using AIC in determining the best EC-based ALT model is equivalent to
comparing the log-likelihood values of those candidate models. Note that the
likelihood-ratio test is widely used for testing nested models, which is not appro-
priate in determining the number of phases in EC-based ALT models because
different EC-based ALT models with different numbers of phases essentially have
the same number of parameters.
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11.4.3 Method for Constructing Confidence Intervals

To quantify the uncertainty in parameter estimates Ĥ and the consequent reliability
estimates, a nonparametric bootstrap method is proposed to construct the interested
confidence intervals. This is a sample-reuse method, which can be used when no
efficient alternatives are both tractable and sufficiently accurate. For EC-based ALT
models, this may be the case.

In this chapter, the bootstrap procedure is used to construct pointwise confidence
intervals for reliability function (or Cdf). This procedure is developed based on the
method described by Efron and Tibshirani [8]. The detailed steps are as follows:

1. Each sample (say bootstrap sample j) consisting of ni data points for each stress
level Zi is obtained by sampling, with replacement, from the original ALT data.

2. Parameters Ĥ are estimated based on each bootstrap sample. For the mathe-
matical programming approach, the new bootstrap estimates Ĥj are calculated

by solving the sub-problem SP1 in Eq. (11.15). For the MLE approach, Ĥj is
obtained by maximizing Eq. (11.16).

3. Compute the corresponding reliability function using Eq. (11.10), given the
bootstrap estimate Ĥ

4. Repeat Steps 1–3 for B (say 5000) times to obtain a set of reliability estimates at
time t as:

fcR1ðtÞ;cR2ðtÞ; � � � ;cRBðtÞg:

5. Sort the set in increasing order for each desired time to give:

fdR½1� ðtÞ;dR½2� ðtÞ; � � � ;dR½B� ðtÞg:

6. Determine the lower and upper bounds of pointwise 100(1-a)% confidence
interval for reliability function as:

½dR½v� ðtÞ;dR½u� ðtÞ�;

where v ¼ aB=2½ �þ and u ¼ ð1� a=2ÞB½ � þ .

11.5 Numerical Examples

In this section, we provide three examples to illustrate the capability of EC-based
ALT models in analyzing ALT data. In the first two examples, complete and Type-I
censored ALT data are simulated respectively from two popular parametric ALT
models: (1) Inverse-Power-Law-Weibull model, and (2) Arrhenius-Lognormal
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model. The corresponding EC-based ALT models are developed using the math-
ematical programming method, and their estimation accuracy is studied.
Afterwards, a case study is presented to demonstrate the use of the proposed
EC-based ALT model and MLE method in predicting the reliability of a type of
miniature lamps under the use condition based on randomly censored ALT data.

11.5.1 Complete Data from an Inverse-Power-Law-Weibull
ALT Model

In the first example, a set of ALT data is generated from an inverse-power-
law-Weibull ALT model with Cdf: Fðt; ZiÞ ¼ 1� expð�ðt=gðZiÞÞbÞ, where the
shape parameter b ¼ 1:5 and the scale parameter depends on stress level Zi in the
form of gðZiÞ ¼ 1200Z�2

i . This ALT model is a special case of AFT model. Three
stress levels (m = 3): Z1 ¼ 1, Z2 ¼ 2, and Z3 ¼ 3, are considered in the hypothetic
ALT experiment. At each stress level, ten units are tested to failure resulting in
complete ALT data. Table 11.1 shows the data and the empirical moments.
Figure 11.4a shows the empirical Cdf’s for the simulated data and the Cdf’s of the
presumed ALT model for visual comparison. One can see that the empirical Cdf’s
significantly differ from the Cdf’s of the presumed ALT model because of the
randomness and small sample size of the ALT experiment. Without assuming a
Weibull-based ALT model, it is more reasonable to develop an ALT model in a
generic way that matches the ALT data as much as possible.

To estimate the model parameters of the EC-based ALT model through the
mathematical programming method, we solve the nonlinear programming problem
P1, where i = 1, 2, 3, and the corresponding empirical moments:

Mi
l ¼ ð1=niÞ

Xni
j¼1

tlij; l ¼ 1; 2; 3;

Table 11.1 ALT data generated from F(t;Zi) = 1 − exp (-(t/(1200Zi
−2))1.5)

Stress
level

Failure times in hours Empirical moments Ml
t

1st 2nd 3rd

Z1 = 1 473.9 531.5 624.9 724.4 856.8 11318.8 1613526.0 2645512056.1

1198.7 1367.3 1686.6 1706.3 2217.3

Z2 = 2 52.5 103.1 112.5 120.3 230.1 195.1 45529.2 11686756.3

231.1 241.0 259.8 265.0 335.6

Z3 = 3 21.1 34.6 46.9 77.1 81.1 80.9 7859.4 844147.5

87.6 94.6 97.9 130.8 137.5
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calculated for the ith stress level are given in the last three columns of Table 11.1,
the weights assigned to the deviation from the lth moment are:

xð1Þ
1;1 ¼ xð1Þ

2;1 ¼ xð1Þ
3;1 ¼ xð2Þ

1;1 ¼ xð2Þ
2;1 ¼ xð2Þ

3;1 ¼ 1;

xð1Þ
1;2 ¼ xð1Þ

2;2 ¼ xð1Þ
3;2 ¼ xð2Þ

1;2 ¼ xð2Þ
2;2 ¼ xð2Þ

3;2 ¼ 0:5;

xð1Þ
1;3 ¼ xð1Þ

2;3 ¼ xð1Þ
3;3 ¼ xð2Þ

1;3 ¼ xð2Þ
2;3 ¼ xð2Þ

3;3 ¼ 0:25;

respectively, and the tolerance level eE is set to be 0.35. Moreover, the life-stress
relationship is assumed to be r Zi; h ¼ ½a0; a1�ð Þ ¼ a0Z

a1
i . Solving this problem

using the interior-point algorithm yields parameter estimates:

bk1 ; bk2 ; bk3 ; bpc ; ba0 ; ba1h i
¼ 41:520; 41:657; 41:504; 0:584; 0:0000969; 2:443½ �;

for which k = 5 and g�5 ¼ 0:3394\~E. The deviations of the resulting EC-based
ALT model in the first three moments under different stress levels are given in
Table 11.2. Each percentage error is calculated by: (moment of the EC-based ALT
model - empirical moment)/empirical moment. One can see that the mathematical
programming method provides quite accurate moment matching results.
Figure 11.4b compares the empirical Cdf’s for the simulated data and the Cdf’s

Fig. 11.4 4 Plots for ALT data generated from: F(t; Zi) = 1 – exp (−t(/(1200Zi
−2))1.5)

Table 11.2 Deviations of the
EC-based ALT model from
the first three empirical
moments

Stress level Percentage deviations from the
empirical moments

1st (%) 2nd (%) 3rd (%)

Z1 = 1 0.00 –1.17 0.00

Z2 = 2 7.38 18.54 40.94

Z3 = 3 –3.84 –5.26 0.00
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estimated using the EC-based ALT model. It is clear that the Cdf estimates match
the empirical Cdf’s very well. To quantify the estimation uncertainty, the 95%
confidence intervals of the Cdf’s estimated using the EC-based ALT model (see
Fig. 11.5) are also calculated using the bootstrap method addressed in Sect. 11.4.3.

11.5.2 Type-I Censored Data from an Arrhenius-Lognormal
ALT Model

A set of censored ALT data is generated from an Arrhenius-lognormal ALT model
Fðt; ZiÞ ¼ U ðln t � uðZiÞÞ=rð Þ, where r ¼ 1:5 and the location parameter u
depends on stress level Zi in the form of uðZiÞ ¼ lnð50Þþ 5=Zi. Again, three stress
levels: Z1 ¼ 1, Z2 ¼ 2, and Z3 ¼ 3 are considered with ten units for each level. The
censoring times at these stress levels are 80000, 6000, and 3000, respectively.
Table 11.3 shows the simulated ALT data.

To develop an EC-based ALT model using the mathematical programming
method, the weights assigned to the deviation from the lth empirical moment are
again set to be:

xð1Þ
1;1 ¼ xð1Þ

2;1 ¼ xð1Þ
3;1 ¼ xð2Þ

1;1 ¼ xð2Þ
2;1 ¼ xð2Þ

3;1 ¼ 1;

xð1Þ
1;2 ¼ xð1Þ

2;2 ¼ xð1Þ
3;2 ¼ xð2Þ

1;2 ¼ xð2Þ
2;2 ¼ xð2Þ

3;2 ¼ 0:5;

xð1Þ
1;3 ¼ xð1Þ

2;3 ¼ xð1Þ
3;3 ¼ xð2Þ

1;3 ¼ xð2Þ
2;3 ¼ xð2Þ

3;3 ¼ 0:25;

Fig. 11.5 Cdf estimates using the EC-based model and 95% bootstrap confidence intervals
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respectively, and the tolerance level ~E is set to be 0.95, which is determined through
trial and error. Moreover, the life-stress relationship is assumed to be
r Zi; h ¼ ½a0; a1�ð Þ ¼ a0 expð�a1Z�1

i Þ. Unlike in the first example, the empirical
moments in this example cannot be calculated directly from the data. Instead,
Eq. (11.14) needs to be used, which depends on the model parameters to be esti-
mated. By solving the corresponding nonlinear programming problem similar to
Eq. (11.15), the parameters of the EC-based ALT model are estimated as:

½ bk1 ; bk2 ; bk3 ; bpc ; ba0 ; ba1 � ¼ 15:798; 209:5; 1799:7; 0:382; 0:0013; 5:895½ � for which
k = 5 and g�7 ¼ 0:9357\~E. Table 11.4 shows the empirical moments calculated
using Eq. (11.14) for the three stress levels and the deviations of the resulting
EC-based ALT model in the corresponding moments. One can see that the devi-
ations are well balanced across different stress levels as well as the corresponding
moments.

11.5.3 Case Study

ALT has been widely used in evaluating the reliability of microelectronics [13, 38].
In this section, the ALT data reported by Liao and Elsayed [17] is used to illustrate
the use of the proposed ALT model in practice. The purpose of this ALT experi-
ment is to estimate the reliability of a type of miniature lamps under the use
condition: 2 V. The highest operating voltage of the lamp is 5 V. It is well known

Table 11.3 Censored ALT data generated from Fðt; ZiÞ ¼ U ðln t � lnð50Þ � 5=ZiÞ=1:5ð Þ
Stress level Failure times in hours (“+”: censored unit)

Z1 = l 2267.9 4758.9 10341.6 11700.3

17300.1 24762.7 79694.3 80000+

80000+ 80000+

Z2 = 2 84.1 376.2 403.9 584.5 915.8

1642.1 2435.5 5259.2 5689.4 6000+

Z3 = 3 102.5 125.0 168.7 287.1 334.9

338.1 775.4 1967.7 2971.1 3000+

Table 11.4 Deviations of the EC-based ALT model from the first three empirical moments

Stress
level

Empirical moments Ml
t Percentage deviations

from Ml
t

1st 2nd 3rd 1st (%) 2nd (%) 3rd (%)

Z3 = 1 1.147 	 l05 4.155 	 l010 1.784 	 l016 18.33 –1.63 –10.07

Z2 = 2 2.817 	 l03 1.862 	 l07 1.601 	 1011 17.95 –9.27 –27.4

Z3 = 3 1.349 	 103 5.488 	 l06 2.991 	 l010 3.50 –38.85 –63.01
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that the coil temperature of an incandescent lamp during operation is mainly due to
the electric current.

Three constant voltage levels were utilized in the experiment: 5, 3.5, and 2 V.
Table 11.5 gives the observed failure times and censoring times under the three
stress levels. It is worth pointing out that the test under 3.5 V was randomly
censored and the one under 2 V was Type-I censored. To avoid making an
assumption on the underlying distribution, such as Weibull and Lognormal, we use
the proposed EC-based ALT model to predict the reliability of this type of
miniature lamps.

To facilitate data analysis, we standardize the stress levels by defining
Zi ¼ ½Vi � V0�=½VH � V0�, where V0 ¼ 2 V and VH ¼ 5 V. As a result, we have:
Z1 ¼ 1, Z2 ¼ 0:5, and Z3 ¼ 0. The life-stress relationship is assumed to be char-
acterized by:

r Zi; hð Þ ¼ expða0Za1
i Þ: ð11:18Þ

Because the data set contains different types of censoring times, we use the MLE
method introduced in Sect. 11.4.2 for statistical inference. Table 11.6 shows the
MLEs of parameters for different EC-based ALT models with different numbers of
phases. By comparing the log-likelihood values, the EC-based ALT model with
k = 7 phases is selected after balancing the prediction accuracy and the complexity
of the models

Figure 11.6 illustrates the statistical fittings of the resulting EC-based ALT
model for the three test stress levels. The empirical Cdf (ecdf using Kaplan-Meier
method) of the lamp under each voltage level is presented in Fig. 11.6a. Compared
to the corresponding empirical Cdf’s, this model exhibits satisfactory prediction
capability. This can also be verified by examining the Cox-Snell residual plot
presented in Fig. 11.6b, where the residuals can be easily tested against the

Table 11.5 ALT data of miniature lamps [17]

Stress
level (V)

Failure times in hours (“+’’: censored unit)

5 20.5 22.3 23.2 24.7 26 34.1 39.6 41.8 43.6 44.9 47.7

61.6 62.1 65.5 70.8 87.8 118.3 120.1 145.4 157.4 180.9 187.7

204 206.7 213.9 215.2 218.7 254.1 262.6 293 304 313.7 314.1

317.9 337.7 430.2

3.5 37.8 43.6 51.1 58.6 65.5 65.9 75.6 82.5 88.1 89 106.6

113.1 121.1 121.5 128.3 151.8 171.7 181 202.7 211.7 230.7 249.9

275.6 285 296.2 358.5 379.8 434.5 493.1 506.4 561.1 570 577.7

876.3 890+ 890+ 890+ 922 941+ 941+

2 223.1 254 316.7 560.2 679 737 894.4 930.5+ 930.5+ 930.5+

930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+ 930.5+

930.5+ 930.5+ 930.5+ 930.5+
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exponential distribution with mean of one (the straight line with slope of one going
through the origin). Figure 11.7 shows the predicted reliability function, pdf and
hazard rate of the lamp under the normal operating condition. The corresponding
95% bootstrap confidence interval for reliability function is also presented. The
mean-time-to-failure can be easily obtained as 2397.2 h by setting l = 1 in
Eq. (11.13).

Fig. 11.6 Illustration of statistical fittings of the resulting model

Table 11.6 MLEs of parameters for different EC-based ALT models with different numbers of
phases (k)

Values of k MLEs of parameters Log-likelihood InL

3: E(1, k1) and
C(k2, k3, pc)

a0 = 2.9091; a1 = 0.5762;
k1 = 0.0026; k2 = 0.0026;
k3 = 0.0003; pc = 0.6730;

–518.5038

4: E{2, k1) and C(k2, k3, pc) a0 = 2.8807; a1 = 0.5730;
k1 = 0.0045; k2 = 0.0045;
k3 = 0.0003; pc = 0.6980;

–516.4058

5: E(3, k1) and C(k2, k3, pc) a0 = 2.8182; a1 = 0.5693;
k1 = 0.0068; k2 = 0.0068;
k3 = 0.0004; pc = 0.7269;

–515.4942

6: E(4, k1) and C(k2, k3, pc) a0 = 2.7463; a1 = 0.5747;
k1 = 0.0097; k2 = 0.0097;
k3 = 0.0004; pc = 0.7545;

–515.0856

7: E(5, k1)
and C(k2, k3, pc)

a0 = 2.6863; a1 = 0.5866;
k1 = 0.0150; k2 = 0.0072;
k3 = 0.0004; pc = 0.7700;

–514.8846
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11.6 Concluding Remarks

This chapter introduces a generic method for modeling ALT data using EC dis-
tributions, which belong to an important subset of PH distributions. Without
assuming other particular probability distributions for failure times, such as
extreme-value distributions, lognormal distribution, and gamma distributions, this
method leads to an EC-based ALT model which can well represent the underlying
failure time distribution that may be difficult to verify or even unknown. To
automatically determine the model structure, both a mathematical programming
approach and an MLE approach are developed for adaptively determining the
number of phases and estimating the model parameters. The numerical examples
demonstrate that the proposed generic method indeed provides practitioners, par-
ticularly in the area of microelectronics, with a convenient statistical tool for
modeling ALT data. To the best of our knowledge, this is the first attempt to
demonstrate the potential of using PH distributions in ALT data analysis.

Acknowledgements This work is supported in part by the U.S. National Science Foundation
under grants CMMI-1238301 and CMMI-1635379.

Fig. 11.7 Predicted reliability function with 95% confidence intervals, pdf, and hazard rate under
2 V using the resulting EC-based ALT model
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