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Abstract. The fair evaluation of leaking devices generally requires to
come with the best possible distinguishers to extract and exploit side-
channel information. While the need of a sound model for the leakages is
a well known issue, the risks of additional errors in the post-processing of
the attack results (with key enumeration/key rank estimation) are less
investigated. Namely, optimal post-processing is known to be possible
with distinguishers outputting probabilities (e.g. template attacks), but
the impact of a deviation from this context has not been quantified so
far. We therefore provide a consolidating experimental analysis in this
direction, based on simulated and actual measurements. Our main con-
clusions are twofold. We first show that the concrete impact of heuristic
scores such as produced with a correlation power analysis can lead to
non-negligible post-processing errors. We then show that such errors can
be mitigated in practice, with Bayesian extensions or specialized distin-
guishers (e.g. on-the-fly linear regression).

1 Introduction

Side-channel attacks are powerful tools to recover the secret keys of crypto-
graphic implementations. When an attacker has physical access to the device
(e.g. a smart card) running the cryptographic algorithm, he may extract infor-
mation using side-channels such as the power consumption or the electromag-
netic radiation related to the algorithm being executed. In the following, we
refer to this information as a trace or a leakage. Examples of attacks exploiting
this type of leakages include (but are not limited to) Kocher et al.’s Differential
Power Analysis (DPA) [11], Brier et al.’s Correlation Power Analysis (CPA) [3]
or Chari et al.’s Template Attack (TA) [4]. Applied on symmetric block ciphers,
they usually allow recovering information on independent parts of the full key
which we shall further call subkeys. Typically, an attacker obtains a probabil-
ity (or a score) for each of the possible value a subkey can take. In order to
recover the full key, he has to recombine the information from the different sub-
keys. In this context we can distinguish three cases. Firstly, if the attacker has
enough information on each subkey (i.e. the correct subkey is ranked first), he
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can recombine them by simply taking the most likely hypothesis for each subkey.
Secondly, if at least one subkey does not provide enough information, a search
into the key space needs to be performed. For this purpose, a key enumeration
algorithm can be used in order to output the full key in decreasing order of
likelihood [2,6,12,17–19,21]. The position of the actual key in this ordering will
be denoted as the rank. Finally, when the rank is beyond the attacker’s compu-
tational power (e.g. >250), a complete key enumeration is not possible anymore.
In that case, one can only estimate a bound on the rank using a rank estimation
algorithm, which requires knowledge of the actual key (thus is only suitable for
an evaluator) [1,8,10,17,18,22,23].

In this paper, we deal with the general issue of evaluating the security of
a leaking device in the most accurate manner. This is an important concern
since an error might lead to an overestimation of the rank and thus a false sense
of security. Sources of errors that can affect the quality of a side-channel secu-
rity evaluation have been recently listed in [18] and are summarized in Fig. 1,
where we can see the full process of a divide-and-conquer side-channel attack
from the trace acquisition to the full key recovery, along with the errors that
might be introduced. A typical (and well understood [9]) example is the case of
model errors, which can significantly affect the efficiency of the subkey recoveries.
Interestingly, the figure also suggests that some errors may only appear during
the enumeration/rank estimation phase of the side-channel security evaluation.
Namely, combination ordering errors, which are the core this study, arise from
the fact that combining the information obtained for different subkeys can be
easily done in a sound manner if the subkey distinguisher outputs probabilities
(which is typically the case of optimal distinguishers such as TA), while per-
forming this combination with heuristic scores (e.g. correlation values) is not
obvious. This is an interesting observation since it goes against the equivalence

Fig. 1. Errors & bounds in key enumeration and rank estimation.
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of TA and CPA (under the assumption that they use identical leakage models)
that holds for first-order side-channel attacks [15].

In general, the soundest way to evaluate security is to use a Bayesian
distinguisher (i.e. a TA) and to output probabilities. Yet, a possible concrete
drawback of such an attack is that it requires a good enough model of the leak-
ages Probability Density Function (PDF), i.e. some profiling. For this reason,
non-profiled (and possibly sub-optimal) attacks such as the CPA are also fre-
quently considered in the literature. As previously mentioned, distinguishers that
output probabilities allow a straightforward combination of the subkey informa-
tion. This is because probabilities are known to have a multiplicative relation-
ship. By contrast, the combination of heuristic scores does not provide such an
easy relationship, and therefore requires additional assumptions, which may lead
to combination ordering errors. This is easily illustrated with the following exam-
ple. Let us first assume two 1-bit subkeys k1 and k2 with probability lists [p11, p

2
1]

and [p12, p
2
2] with p11 >, p21 and p12 > p22. Secondly, let us assume the same subkeys

with score lists [s11, s
2
1] and [s12, s

2
2] with s11 >, s21 and s12 > s22. On the one hand,

it is clear that the most (respectively least) probable key is given by {p11, p
1
2} or

{s11, s
1
2} (respectively {p21, p

2
2} or {s21, s

2
2}). On the other hand, only probabilities

allow to compare the pair {p11, p
2
2} and {p21, p

1
2}. Since we have no sound way to

combine scores, we have no clue how to compare {s11, s
2
2} and {s21, s

1
2}.

In the following, we therefore provide an experimental case study allowing us
to discuss these combination ordering errors. For this purpose, we compare the
results of side-channel attacks with enumeration in the case of TA, CPA (possibly
including a bayesian extension [21]) and Linear Regression (LR) [20] and in
particular its non-profiled variant put forward in [7], using both simulations and
concrete measurements. Our main conclusions are that (i) combination ordering
errors can have a significant impact when the leakage model of the different
subkeys in an attack differ, (ii) bayesian extensions of the CPA can sometimes
mitigate these drawbacks, yet include additional assumptions that may lead to
other types of errors, (iii) “on-the-fly” linear regression is generally a good (and
more systematic) way to avoid these errors too, but come at the cost of a model
estimation phase, and (iv) only TA are guaranteed to lead to optimal results.
The rest of the paper is structured as follows. In Sect. 2, we present the different
attacks we analyse, together with a concise description of the key enumeration
and rank estimations algorithms. Then, in Sect. 3, we present our experimental
results. Conclusions are in Sect. 4.

2 Background

2.1 Attacks

This section describes the different attacks we used along with the tool for full key
recovery analysis. The first one we consider is the correlation power analysis [3],
along with its bayesian extension to produce probabilities. The second one is
the template attack [4]. The last one is the “on-the-fly” stochastic attack [7].
We target a b-bit master key k, where an attacker recovers information on Ns

subkeys k0, . . . , kNs−1 of length a = b
Ns

bits (for simplicity, we assume that a
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divides b). Our analysis targets the S-box computation (S) of a cryptographic
algorithm. That is, we apply a divide-and-conquer attack where a subkey k is
manipulated during a computation S(x ⊕ k) for an input x. Given n executions
with inputs x = (xi), i ∈ [1, n] (where the bold notation is for vectors), we record
(or simulate) the n side-channel traces l = (lx,k

i ) (e.g. power consumption),
corresponding to the computation of the S-box output value vx,k = S(x ⊕ k)
with key (subkey) k. We then use these traces in our side-channel attacks.

Correlation Power Analysis (CPA). From a given leakage model m� =
(mx,k�) (corresponding to a key hypothesis k�) and n traces l = (lx,k

i ), we
compute Pearson’s correlation coefficient ρ�

k = ρ(l,mx,k�) for all candidates k�

as shown by (1):

ρk� =
∑n

i=1(li − E(l)) · (mxi,k� − E(m�))
Std(l) · Std(m�)

, (1)

where E and Std denote the sample mean and standard deviation. If the attack
is successful, the subkey k = arg maxk�(ρk�) is the correct one. This generally
holds given a good model and a large enough number of traces. Concretely, our
following experiments will always consider CPA with a Hamming weight leakage
model, which is a frequent assumption in the literature [14], and was sufficient
to obtain successful key recoveries in our case study.

CPA with Bayesian Extension (BCPA). In order to improve the results of
key enumeration algorithms with CPA, we may use Fisher’s Z-transform (2) on
the correlation values ρk� obtained from the CPA attack (see above) [13]:

z(ρk�) =
1
2

log
1 + ρk�

1 − ρk�

· (2)

Under some additional assumptions, this transformation can help us trans-
form the vector of correlations into a vector of probabilities, which may be
more suitable for the key enumeration algorithms, hence possibly leading to
improved results.

More precisely, if we let zk� = z(ρk�) be the z-transform of the correlation
for the candidate key k�, then ideally we can exploit the fact that this value is
normally distributed, and compute the probability:

Pr[l|k�] = Nμz,σ2
z
(zk�), (3)

where
μz =

1
2

log
1 + ρ

1 − ρ

is the z-transform of the real correlation ρ and

σ2
z =

1
n − 3
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is the estimated variance for this distribution (with n the number of attack
samples). The main problem, however, is that we do not know the actual value
of the correlation ρ (for the correct and wrong key candidates), so we cannot
determine μz and σ2

z without additional assumptions.
A possible solution for the mean μz is to assume that the incorrect keys will

have a correlation close to zero (so the z-transform for these keys will also be
close to zero), while the correct key will have a correlation as far as possible
from zero. In this case, we can take the absolute value of the correlation values,
|ρk� |, to obtain zk� = z(|ρk� |). Then, we can use the normal cumulative density
function (cdf) CN 0,σ2

z
with mean zero to obtain a function that provides larger

values for the correct key (i.e. where the z-transform of the absolute value of the
correlation has higher values). After normalising this function, we obtain the
associated probability of each candidate k� as:

Pr(k�|l) =
CN 0, 1

n−3
(zk�)

∑2a−1
k′=0 CN 0, 1

n−3
(zk′)

· (4)

Alternatively, we can also use the mean of the transformed values z̄ = Ek�(zk�)
as an approximation for μz (since we expect that μz > z̄ > 0, so using this value
should lead to a better heuristic than just assuming that all incorrect keys have
a correlation close to zero).1
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Fig. 2. Assumptions for µz in the CPA Bayesian extension.

1 Yet another possible solution, which does not require knowledge of the key either, is
to assume that the absolute correlation will be the highest for the correct key candi-
date, so the z-transform of the absolute correlation should also be the highest. Then,
we can simply use the maximum among all the z-transformed values as the mean
of the normal distribution for the z-transformed data (i.e. µz = maxk�(zk�)), hence

obtaining Pr(k�|l) =
N

μz, 1
n−3

(zk� )

∑2a−1
k′=0

N
μz, 1

n−3
(zk′ )

. This did not lead to serious improvements

in our experiments, but might provide better results in other contexts.
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For illustration, Fig. 2 shows the evolution of the cdf-based probability func-
tion for these two choices of correlation mean (for an arbitrary variance of 0.01,
corresponding to 103 attack traces taken from the following section). Since in this
example, z̄ = 0.6, many incorrect keys have a correlation higher than 0.2. Hence,
in this case, the zero-mean assumption should lead to considerably worse results
than the z̄ assumption, which we consistently observed in our experiments. In
the following, we only report on this second choice.

Next, we also need an assumption for the variance σ2
z . While the usual (sta-

tistical) approach would suggest to use σ2
z = 1/(n − 3), we observed that in

practice, a variance σ2
z = 1 gave better results in our experiments. Since this

may be more surprising, we report on both assumptions, and next refer to the
attack using σ2

z = 1/(n − 3) as BCPA1 and to the one using σ2
z = 1 as BCPA2.

For illustration, Fig. 3 shows the evolution of the cdf-based probability func-
tion for BCPA1 and BCPA2 with different number of attack samples. The blue
curve represents the BCPA2 method, which is invariant with the number of
attack samples. The green, red and black curves shows the impact of the num-
ber of attack samples on the cdf. As we can see, the slope becomes more and
more steep when the number of attack samples increases. This makes the key
discrimination harder since at some point the variance becomes too small to
explain the errors due to our heuristic assumption in the mean μz.
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Fig. 3. Normal CDF with mean z̄ = 0.6 for variance 1 (blue), variance 1
7

(green, 10
attack samples), variance 1

97
(red, 100 attack samples) and variance 1

497
(black, 500

attack samples). (Color figure online)

Summarizing, the formulae for the heuristics BCPA1 and BCPA2 are given
by Eqs. (5) and (6):

BCPA1 : Pr[k�|l] =
CN z̄, 1

n−3
(zk�)

∑2a−1
k′=0 CN z̄, 1

n−3
(zk′)

. (5)
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BCPA2 : Pr[k�|l] =
CN z̄,1(zk�)

∑2a−1
k′=0 CN z̄,1(zk′)

. (6)

Gaussian Template Attack (GTA). From a first set of profiling traces
lp = (lx,k

i ), the attacker estimates the parameters of a normal distribution. He
computes a model m = (mx,k�), where mx,k� contains the mean vector and
the covariance matrix associated to the computation of vx,k� . We consider the
approach where a single covariance is computed from all the samples [5]. The
probability associated to a subkey candidate k� is computed as shown by (7):

Pr[k�|l] =
n∏

i=1

Nmxi,k� (li)
∑2a−1

k′=0 Nmxi,k′ (li)
, (7)

where Nm is the normal probability density function (pdf) with mean and covari-
ance given by the model m.2 As mentioned in introduction, it is important to
note that combining probabilities from different subkeys implies a multiplicative
relationship. Since the division in the computation of Pr(k�|l) only multiplies all
the probabilities by a constant, this has no impact on the ordering when combin-
ing subkeys. We can simply omit this division, thus only multiplying the values
of Pr[li|k�] = Nmxi,k� (li). This may allow us to use an efficient template attack
based on the linear discriminant [5], adapted so we can use different plaintexts
(see Sect. 2.3 for more details).

Unprofiled Linear Regression (LR). Stochastic attacks [20] aim at approx-
imating the deterministic part of the real leakage function θ(vx,k) with a
model θ∗(vx,k) using a basis g(vx,k) = {g0(vx,k), . . . , gb(vx,k)} chosen by the
attacker. For this purpose, he uses linear regression to find the basis coeffi-
cients c = {c0, . . . , cb} so that the leakage function θ(vx,k) is approximated by
θ∗(vx,k) = c0 · g0(vx,k) + . . . + cb · gb(vx,k). The unprofiled version of this attack
simply estimates on the fly the models θ∗(vx,k�) for each key candidate [7]. The
probability associated to a subkey candidate k� is computed as shown by (8):

Pr[k�|l] =
Std(l − θ∗(vx,k�))−n

∑2a−1
k′=0 Std(l − θ∗(vx,k′))−n

, (8)

where Std denotes the sample standard deviation. As detailed in [21], a significant
advantage of this non-profiled attack is that is produces sound probabilities
without additional assumptions on the distribution of the distinguisher. So it
does not suffer from combination ordering errors. By contrast, it may be slower
to converge (i.e. lead to less efficient subkey recovery) since it has to estimate a
model on the fly. In our experiments, we consider two linear basis. The first one
uses the hamming weight (HW) of the sensitive value: g(vx,k) = {1,HW(vx,k)}.
The second one uses the bits of the sensitive value vx,k, denoted as bi(vx,k). We
refer to the first one as LRH and to the second one as LRL.
2 In our experiments with GTA, we only considered one leakage sample per trace, so

our distribution is univariate and the covariance matrix becomes a variance.
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2.2 Key Enumeration

After the subkey recovery phase of a divide-and-conquer attack, the full key is
trivially recovered if all the correct subkeys are ranked first. If this is not the case,
a key enumeration algorithm has to be used by the attacker in order to output
all keys from the most probable one to the least probable one. In this case, the
number of keys having a higher probability than the actual full key (plus one) is
called the key rank. An optimal key enumeration algorithm was first described
in [21]. This algorithm is limited by its high memory cost and its sequential
execution. Recently, new algorithms based on rounded log probabilities have
emerged [2,12,17,19]. They overcome these memory and sequential limitations
at the cost of non optimality (which is a parameter of these algorithms). Different
suboptimal approaches can be found in [6,18].

2.3 Rank Estimation

Rank estimation algorithms are the tools associated to key enumeration from an
evaluation point-of-view. Taking advantage of the knowledge of the correct key,
they output an estimation of the full key rank which would have been outputted
by a key enumeration algorithm with an unbounded computational power. The
main difference with key enumeration algorithms is that they are very fast and
allow to estimate a rank that would be unreachable with key enumeration (e.g.
2100). These algorithms have attracted some attention recently, as suggested by
various publications [1,8,10,17,18,22,23]. For convenience, and since our follow-
ing experiments are in an evaluation context, we therefore used rank estimation
to discuss combination ordering errors. More precisely, we used the simple algo-
rithm of Glowacz et al. [10] (using [1] or [17] would not affect our conclusions since
these references have similar efficiencies and accuracies). With this algorithm, all
our probabilities are first converted to the log domain (since the algorithm uses
an additive relationship between the log probabilities). Then, for each subkey,
the algorithm uses a histogram to represent all the log probabilities. The subkey
combination is done by histogram convolution. Finally, the estimated key rank
is approximated by summing up the number of keys in each bin from the last
one to the one containing the actual key. We apply the same method for the
correlation attacks, thus assuming a multiplication relationship for these scores
too. Admittedly, and while it seems a reasonable assumption for the bayesian
extension of CPA, we of course have no guarantee for the standard CPA. Note
also that in this case the linear discriminant approach for template attacks in [5]
becomes particularly interesting, because the linear discriminant is already in the
logarithm domain, so can be used directly with the rank estimation algorithm,
while providing comparable results to a key enumeration algorithm using prob-
abilities derived from the normal distribution. Hence, this algorithm also avoids
all the numerical problems related to the multivariate normal distribution when
using a large number of leakage samples.
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3 Experiments

In order to evaluate the results of the different attack approaches, we first ran
simulated experiments. We target the output of an AES S-box leading to 16
univariate simulated leakages of the form HW(S(xi ⊕ ki)) + Ni for i ∈ [0, 15].
HW represents the hamming weight function and Ni is a random noise following
a zero-mean Gaussian distribution. For a given set of parameters, we study the
full key rank using 250 attack repetitions, and compute the ranking entropy as
suggested by [16]. By denoting Ri the rank of the full key for a given attack,
we compute the expectation of the logarithm of the ranks given by Ei(log2(Ri))
(and not the logarithm of the average ranks3 equals to log2(Ei(Ri))). The rank-
ing entropy is closer to the median than the mean which gives smoother curves.
However, we insist that using one or the other metric does not change the con-
clusions of our experiments.

3.1 Simulations with Identical S-Box Leakages

We first look at the case where the noise is constant for all attacked bytes,
meaning Ni = Nj (we used a noise variance of 10). We want to investigate if
the full key rank is impacted by the way an attacker produces his probabilities
or scores. Figure 4 (left) shows the full key rank in function of the number of
attack traces for the different methods. One can first notice the poor behavior
of BCPA1 (in red). Although it starts by working slightly better than CPA
(in blue), it quickly becomes worse.

This is due to the variance that quickly becomes too small and does not allow
to discriminate between the different key hypotheses. Secondly, we see that CPA
and BCPA2 give very similar results in term of full key success rate. This can
be explained since the noise level is constant for the different subkeys in this
experiment. Hence, they are equally difficult to recover which limits the combi-
nation ordering errors. Thirdly, both LRH (purple) and LRL (purple, dashed)
are not impacted by combination ordering errors. However, they suffer from the
need to estimate a model. As expected, their slower convergence impacts LRL
more, because of its large basis. By contrast, LRH produces the same results as
the CPA and BCPA2. This suggest that the estimation errors due to a slower
model convergence are more critical than the ordering errors in this experiment.
(Note that none of the models suffer from assumption errors in this section,
since we simulate Hamming weight leakages). Finally, the GTA (in black) pro-
vides the best result overall. Since the GTA is not impacted by combination
ordering errors nor by model convergence issues, this curve can be seen as an
optimal reference.

3 Using the ranking entropy lowers the impact of an outlier when averaging the result of
many experiments. As an example, let’s assume that an evaluator does 4 experiments
where the key is ranked 1 three times and 224 one time. The ranking entropy would
be equal to 6 while the logarithm of the average ranks would be equal to 22, thus
being more affected by the presence of an outlier.
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Fig. 4. Key rank (left) and success rate for the byte 0 (right) for constant noise variance
in function of the number of attack traces for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)

For completeness, Fig. 4 (right) shows the success rates of the different meth-
ods for the byte 0 (other key bytes lead to similar results in uur experiments were
the SNR of different S-boxes was essentially constant). The single byte success
rate does not suffer from ordering errors. Thus, this figure is a reference to com-
pare the attack efficiencies before these errors occur. As expected, all the CPA
methods (in blue) provide the same single byte success rate. More interestingly,
we see that CPA methods, GTA (in black) and LRH (in purple) provide a quite
similar success rate. This confirms that the differences in full key recovery for
these methods are mainly due to ordering errors in our experiment. By contrast,
LRL (in purple, dashed) provides the worst results because of a slower model
estimation.

Overall, this constant noise (with correct assumptions) scenario suggests that
applying a bayesian extension to CPA is not required as long as the S-boxes
leak similarly (and therefore the combination ordering errors are low). In this
case, model estimation errors are dominating for all the non-profiled attacks.
(Of course, model assumption errors would also play a role if incorrect assump-
tions were considered).

3.2 Simulations with Different S-Box Leakages

We are now interested in the case where the noise level of each subkey is con-
siderably different4. To simulate such a scenario, we chose very different noise
levels in order to observe how these differences affect the key enumeration.
Namely, we set the noise variances of the subkeys to [20, 10, 5, 4, 2, 1, 0.67, 0.5,
0.33, 0.25, 0.2, 0.17, 0.14, 0.125, 0.11, 0.1]. The results of the subkey recoveries for

4 This could happen for example in a hardware implementation of a cryptographic
algorithm, where each S-box lookup could involve different transistors.
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each subkey will now differ because of the different noise levels. Figure 5 shows
the rank of the different methods in function of the number of attack traces
for this case. The impact of the combination ordering errors is now higher, as
we can see from the gap between the different methods. BCPA1 is still worse
than CPA, but this time with a bigger gap. Interestingly, we now clearly see an
improvement when using the BCPA2 over the CPA (gain of roughly 210 up to 40
attack traces). Moreover, the gap between BCPA2 and GTA remains the same
as it was in the constant noise experiments as soon as the key rank is lower than
280. This confirms the good behavior of the BCPA2 method, which limits the
impact of the ordering errors.
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Fig. 5. Key rank (y coordinate) in function of the number of attack traces (x coor-
dinate) with different noise variance for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)

As for the linear regression, we again witness the advantage of a good starting
assumption (with the difference between LRL and LRH). More interestingly, we
see that for large key ranks, LRH leads to slightly better results than BCPA2,
which suggests that combination ordering errors dominate for these ranks. By
contrast, the two methods become again very similar when the rank decreases
(which may be because of lower combination ordering errors or model conver-
gence issues). And of course, GTA still works best.

We again provide the single bytes success rates for both byte 0 (left) and
byte 8 (right) in Fig. 6. The gap between all the methods tends to be similar as
in the constant noise case, where the CPAs, GTA and LRH perform similarly
and LRL is less efficient. This confirms that the differences between the constant
and different noise scenarios are due to ordering errors.

Overall, this experiment showed that the combination ordering errors can be
significant in case the S-boxes leak differently. In this case, Bayesian extensions
gain interest. BCPA2 provides a heuristic way to mitigate this drawback. Linear
regression is a more systematic alternative (since it does not require assumptions
in the distribution of the distinguisher).
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Fig. 6. Success rate (y coordinate) in function of the number of attack traces (x coor-
dinate) for the byte 0 (left) and the byte 8 (right) (different noise variance case) for
the different attack methods. CPA-like (blue), GTA (black), LRH (purple) and LRL
(dashed purple). (Color figure online)

3.3 Actual Measurements

In order to validate our results, we ran actual attacks on an unprotected software
implementation of the AES 128, implemented on a 32-bits ARM microcontroller
(Cortex-M4) running at 100 MHz. We performed the trace acquisition using a
Lecroy WaveRunner HRO 66 ZI oscilloscope running at 200 megasamples per
second. We monitored the voltage variation using a 4.7 Ω resistor set in the
supply circuit of the chip. We acquired 50,000 profiling traces using random
plaintexts and keys. We also acquired 37,500 attack traces (150 traces per attack
with 250 repetitions). For each AES execution, we triggered the measurement
at the beginning of the encryption and recorded approximately the execution of
one round. The attacks target univariate samples selected using a set of profiling
traces as the one giving the maximum correlation with the Hamming weight of
the S-box output.

Figure 7 again shows the key rank in function of the number of attack traces
for the different attacks against the Cortex-M4 microcontroller. Interestingly, we
can still see a small improvement when using the BCPA2 method over the CPA
(around 25). Looking at the linear regression results suggests that the Hamming
weight model is reasonably accurate in these experiments (since LRH is close
to GTA). Yet, we noticed that the correlation values for each S-box varied by
approximately 0.1 around an average value of 0.45. We conjecture that this 25

factor comes from small combination ordering errors. The figure also confirms the
good behavior of the BCPA2 and LRH methods. By contrast, LRL is now even
slower than BCPA1, which shows that the model estimation errors dominate in
this case.

Once more, Fig. 8 shows the individual success rates for bytes 0 and 15.
It confirms a that the different distinguishers behave in a similar way as in
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Fig. 7. Key rank (y coordinate) in function of the number of attack traces (x coordi-
nate) on the cortex-m4 microcontroller for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)
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Fig. 8. Success rate (y coordinate) in function of the number of attack traces (x coor-
dinate) for the byte 0 (left) and the byte 15 (right) (cortex-m4 microcontroller case) for
the different attack methods. CPA-like (blue), GTA (black), LRH (purple) and LRL
(dashed purple). (Color figure online)

simulations and therefore that the differences between the CPAs, GTA and LRH
are again dominated by ordering errors. It also confirms that the errors from the
LRL method come from model estimation.

Eventually, we stress again that the results would have been different if the
real leakages were less close to the Hamming weight leakage function. In that
case, model assumption errors would have additionally affected the efficiency of
the non-profiled attacks.
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3.4 Additional Heuristics

Before concluding, we note that various other types of heuristics could be
considered to manipulate the scores produced by a CPA. For example, we
assumed a multiplicative relation for those scores, but since we do not know
how to combine them in a theoretically sound manner, one could also try to use
other heuristics for the subkeys combinations in this case (such as summing the
scores, summing the square of the scores, . . . ). We made some experiments in
this direction, without any significant conclusions. These alternative heuristics
sometimes came close to the efficiency of BCPA2 or LRH, but never provided
better results.

4 Conclusions

Evaluating the security level of a leaking device is a complex task. Various types
of errors can limit the confidence in the evaluation results, including the model
assumption and estimation errors discussed in [9], and the combination order-
ing errors discussed in this paper. Overall, our results suggest that using GTA
remains the method of choice to evaluate the worst-case security level of a leak-
ing device (both to avoid incorrect a priori assumptions on the model and for
optimal enumeration/rank estimation). Yet, good heuristics also exist for non-
profiled attacks, in particular BCPA2 and LRH in our experiments.

Concretely, our results lead to the informal conclusion that model estimation
and assumption errors usually dominate over combination ordering errors. This
conclusion should be amplified for more complicated attacks (e.g. higher order
attacks against masked implementations) where the model estimation is gener-
ally more challenging. So while being aware of combination ordering errors is
important from a theoretical point-of-view, our experiments suggest that they
are rarely the bottleneck in a security evaluation (which incidentally confirms
previous works in the field, where enumeration and rank estimation were based
on heuristic scores).
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