
UC-secure and Contributory
Password-Authenticated Group Key Exchange

Lin Zhang and Zhenfeng Zhang(B)

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{zhanglin,zfzhang}@tca.iscas.ac.cn

Abstract. The contributory property allows participants of group key
exchange fairly to engage in the generation of the random session key
rather than an entity or some part of members solely to determinate
it or force it to lie in an undesired distribution. In this paper, we put
forth a password-authenticated group key exchange (GPAKE) in which
principals cooperate to agree a strong session key just in possession of
a short password. The scheme realizes the optimality of contributory
property—full-contributiveness—as long as there is one honest party, the
uniform distribution of final session keys can be guaranteed. Moreover, it
reaches the security definitions in the well-known universal composability
(UC) framework under the random oracle model based on the one-more
gap Diffie-Hellman assumption. In particular, our scheme that achieves
these results with only two-round messages, has better performances on
round complexity in comparison with the existing UC-secure schemes.

Keywords: Group key exchange · Password-based protocols · Con-
tributiveness · Universal composability

1 Introduction

In recent decades, as electronic communications and information systems become
more and more complicated, applications, such as video- or tele-conferencing
involving multiple participants, are widespread throughout the Internet. In order
to satisfy the requirement of secure communication channels within the insecure
public network, it is necessary to design authenticated key exchange protocols
for groups of principals.

To date, a collection of schemes has been designed elegantly. Bresson, et al.
[10] is the first to usher in a formal model of security for group key exchange
protocols, and the first to give a concrete scheme with a rigorous proof. How-
ever, in their protocol, the number of communication rounds depends upon the
number of group members, so that this construction is impractical in the situ-
ation where the number of players is very large. Fewer rounds generally mean
easier implementation and more effective reducing to synchronization problems.
Subsequent to their work, several solutions [8,24] to constant-round protocol

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 119–134, 2016.
DOI: 10.1007/978-3-319-49890-4 7

120 L. Zhang and Z. Zhang

for group key exchange are provided and proven secure in formal models. In
addition, the desirable security goals of this kind of protocol not just focus on
resistance against the outsider adversary who lies outside of the target group and
seeks to get any information about the session key with observing and modifying
protocol messages. Additionally, a certain degree of security properties against
malicious insiders are expected in the designs of protocols. In Katz and Shin’s
work [23], they define the insider security for group key exchange protocols: one
prevents the adversary from determining the session key entirely, unless at least
there exists one corrupted party in the group.

Many schemes, including ones mentioned above, relies on possession of shared
keys with other peers or authentic public/private pairs. In some scenarios, pass-
words, the ubiquitous keys to on-line communications, are the proper alternative
in the group key exchanges, which benefits from password’s convenience and
low-cost. Namely, in the password-authenticated group key exchange (GPAKE),
members only share a low-entropy password that can be reliably remembered
by humans to bootstrap a high-entropy session key. Compared with other group
key exchange protocols, GPAKEs, as password-based protocols, bear additional
vulnerabilities to off-line dictionary attacks and the inevitable on-line dictio-
nary attacks because of relatively small dictionary space. Thus, how to resist
off-line attacks and restrict to adversaries eliminating at most one password per
party instance, is also the basic security requirement in designing password-
authenticated group key exchange protocols.

The first solution to the GPAKE is proposed by Bresson et al. [9]. Still, their
protocol’s round complexity is related to the number of group users. Abdalla
et al. [1,4] demonstrate the first password-based group key exchange protocols
in a constant number of rounds, in the random oracle /ideal cipher models
[7,25], and in the standard model, respectively. Later, they give provably secure
schemes [2,3] universal composability (UC) framework [15]. Recently, Xu et al.
[27] present an one-round scheme in the standard model, using indistinguishabil-
ity obfuscation as the main tool. Specifically, the works of [2,3] achieve a strong
notion of (t, n)-contributiveness which captures that no adversary can bias the
key if no more t players in the group of n players have been corrupted.

These schemes have shown important outcomes in GPAKE, yet much work
remains to be done to enhance the efficiency and practicality of existing schemes.
We focus on how to realize as few rounds as possible for the design of GPAKE
scheme, without the expense of desirable security involved in the preceding
description.

1.1 Our Contributions

In this literature, we put forward a UC-secure solution for password-
authenticated group key exchange protocol against the static adversary in the
password-only model, where the players do not have public keys authenticated by
a certificate authority, pre-shared symmetric keys or other auxiliary equipments.

In the aspect of security models, this scheme is provably secure in the UC
framework by the help of random oracles under the one-more gap Diffie-Hellman

UC-secure and Contributory Password-Authenticated Group Key Exchange 121

assumption. Compared with the game-based security models, such as [6,9], not
only does the UC framework inherently provide the secure composition property,
but it also has conspicuous advantages in distribution of passwords. Specifically,
UC framework brings about strong composability properties: (1) UC-secure pro-
tocols remain secure even if many protocol instances (may be various kinds proto-
cols) execute concurrently, and (2) The powerful universal composition theorem
guarantees that they can be securely used as sub-routine protocols of other UC
protocols. Besides, rather ideal assumptions on passwords independently chosen
from pre-determined dictionary space in the game-based models, UC framework
designates the environment (i.e. the distinguisher) to provide passwords to par-
ties, which models arbitrary distributions and dependencies between passwords.
Thereout, it captures the cases in real-life settings where the honest parties with
incorrect but related passwords interacts with others—when a user obliviously
makes typos.

Furthermore, we incorporate the full-contributiveness property (or called as
(n, n)-contributiveness) into our rewritten ideal functionality for GPAKE, which
means that the adversary cannot bias the key if there exists at least one honest
player in the group, while our scheme has proven to be capable of realizing
it. In fact, the notion of contributiveness brings several advantages in group
key exchange protocols. First, it pledges each party equally contributes to the
session key, which makes one intuitively feel that key agreement is “fairer” than
key distribution. Second, it still results in high quality random keys even though
some malicious parties improperly choose their contributions. Third, it deters
the case where the insider adversary determinates session keys to specific values
known by an outsider adversary in advance, so that the latter can eavesdrop on
the later communications without the former’s direct divulging to them. To a
certain degree, the destructibility of the insider adversary is decreased.

An important measure of a protocol’s efficiency is the communication com-
plexity (number of protocol rounds) of the given protocol. Our protocol achieves
the properties above with only two rounds. It distinctly has better perfor-
mance on round complexity than the other UC-secure ones [2,3]. On the minus
side, our scheme also has to perform O(n) exponent calculations per member.

Table 1. Comparison of GPAKE schemes

Scheme Security Contributeness Model Rounds Computation

BCP [9] Game (1, n) RO&IC n O(n)

ABCP [1] Game (1, n) RO&IC 4 O(1)

AP [4] Game (1, n) Std 5 O(n)

ACCP [2] UC (n/2, n) RO&IC 5 O(n)

ACGP [3] UC (n, n) Std 6 O(n)

XHZ [27] Game (1, n) Std 1 iO1

Ours UC (n, n) RO 2 O(n)
1 The “iO” means a program indistinguishability obfuscator.

122 L. Zhang and Z. Zhang

However, according to the Moore’s laws which declare the computing power
grows faster than communication power, it is therefore an acceptable and reason-
able compromise trade communication power for computing power in a group key
exchange protocol. Comparison of some existing schemes for GPAKE is shown
in Table 1.

2 Security Definitions

In this section, we will begin by reviewing the UC framework and the general
split functionality. Then a detailed description of the ideal functionality for the
password-authenticated group key exchange and related discussion are followed.

2.1 Universal Composability Framework

Universal composability [15] is the definition of secure computation that con-
siders an execution of a protocol in the setting involving an environment Z, an
adversary and parties. This framework involves two worlds—the real world and
the ideal world. Z’s aim is to distinguish two worlds. For it, the environment
provides the inputs to the parties and observes their outputs. On one hand, as
usual, the real world consists of participants of the protocol and an adversary A
that controls the communication channel and potentially attacks protocols. On
the other hand, in the ideal world, there exists an entirely trusted entity F called
ideal functionality, and dummy participates of the target protocol simply hand
their inputs to F . The ideal adversary S directly interacts with F , and their
communication essentially models the information it can obtain and its abilities
to attack the protocols. Namely, the functionality describes the security goals
we expect. Intuitively, the adversary, with a variety of means of attacks, should
not learn more information than the functionality’s outputs to it. Thus, security
requires that, for any adversary A attacking a protocol ρ, there exists an ideal
adversary S such that no environment Z can distinguish the case that it is inter-
acting with A and parties in the real world, and the case which it is interacting
with S and a functionality F in the ideal world. If so, we say that ρ UC-realizes
F . From the point of view of the environment, the real-world protocol is at
least as secure as the ideal-world one. In particular, the universal composabil-
ity theorem guarantees that the protocol ρ continues to behave like the ideal
functionality F even if it is executed in an arbitrary network environment. The
complete details refer to [15].

2.2 Split Functionalities

In a network, without any authentication mechanism, an adversary of the net-
work can simply “disconnect” the parties completely, and engage in separate
executions with the other parties on behalf of the honest ones. Such an attack
is inevitable. Players cannot distinguish the case in which they interact with the
expected ones from the case where they interact with the adversary. Hence, in

UC-secure and Contributory Password-Authenticated Group Key Exchange 123

For a given functionality F , the split version sF proceeds as follows:

Initialization:

– Upon receiving (Init, sid) from Pi, send (Init, sid, Pi) to the adversary S.
– Upon receiving (Init, sid, Pi,H, sidH) from S, where H is the set of party

identities, check that Pi has sent (Init, sid) and that for all previous sets
H′, either (1) H = H′, sidH = sidH′ , or (2) H ∩ H′ = ∅, sidH �= sidH′ .
If so, record (H, sidH), send (Init, sid, sidH) to Pi, and initialize a new
instance of F with sidH, denoted as FH. Otherwise, ignore this message.

Computation:

– Upon receiving (Input, sid,m) from Pi, find the set H such that Pi ∈ H,
and forward m to FH.

– Upon receiving (Input, sid,H, Pj , m) from S, if FH exists and Pj /∈ H,
then forward m to FH as if coming from Pj . Otherwise, do nothing.

– When a copy FH generates an output m for party Pi ∈ H, send m to Pi.
if m is for a party Pj /∈ H or for S, sF sends the output to S.

Fig. 1. The split version of ideal functionality F

the work of [5], Barak et al. propose a new model based on split functionalities
which guarantees that this attack is the only one available to the adversary.

The split functionality is a generic construction based upon a normal ideal
functionality F . Its formal description can be found on Fig. 1. It models security
by allowing the adversary to carry out such an “attack” in the ideal world. In
the initialization stage, the adversary adaptively chooses subsets of the honest
parties’ H under two constraints: (1) these subsets are disjoint; (2) the adversary
must choose a unique session identifier sidH for each authentication set H. That
is, the subsets create a partition of the players. During the computation stage
of sF , each subset H activates a different and independent instance of the ideal
functionality F , denoted as FH. In each such execution, the parties Pi ∈ H
provide their own inputs, and the adversary S provides the inputs for all Pi /∈ H.
Similarly, the parties Pi ∈ H all receive their specified outputs as computed by
their copy of F . However, the adversary receives all of its own outputs, as well
as the outputs of the parties Pi /∈ H who are controlled by S. It’s important to
note that there is no interaction between different instances of F run by sF .

2.3 The Ideal Functionality for GPAKE

The formalized description of GPAKE’s ideal functionality FGPAKE is presented
in Fig. 2. In order to reduce repeated representations, assume that the ideal
functionality only takes notice of the first query or input for each sid and party,

124 L. Zhang and Z. Zhang

The functionality FGPAKE parameterized by the security parameter κ, inter-
acts with an adversary S and a ordered set of parties H = {P1, . . . , Pn}
(where n ≥ 3) via the following queries:

– Initialization. Upon receiving (NewSession, sid, Pi, pwi) from Pi, record
(sid, Pi, pwi), if Pi is honest, mark it fresh, and send (NewSession, sid, Pi)
to S. Otherwise, this record is marked as corrupted instead. If there ex-
ists n − 1 recorded tuples (sid, Pj , pwj) for Pj ∈ H\{Pi}, then record
(sid,H, ready) and send it to S.

– Key Generation. Upon receiving (NewKey, sid, Pi,H∗, sk∗) from S,
abort if there is no record of the form (sid,H∗, ready) or H �= H∗. Other-
wise, proceed for record (sid, Pi, pwi) as follows:

• If all the records whose identities belong to H∗ are corrupted, then
output (sid, sk∗) to player Pi.

• If this record is fresh, and there is a record (sid, Pj , pw′) with pw′ =
pwi, and a key sk′ was sent to Pj , then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length κ, and send
(sid, sk′) to Pi.

Either way, mark the record (sid, Pi, pwi) as completed.

Fig. 2. The ideal functionality FGPAKE

and subsequent ones for the same sid and party are straightly ignored. What’s
more, the session identifier sid are considered to be globally unique so that
several sessions running in parallel can be distinguished. Note that we take into
account the static corruption—the adversary could selectively designate and
corrupt some participants, but only prior to the beginning of a protocol instance.
From the corruption on, it not only obtains their inputs resulted from Z, and
also fully controls their behaviors in the following executions.

In the ideal world, the functionality FGPAKE interacts with an adversary S
(i.e. the simulator), n parties P1, . . . , Pn and the environment Z (through the
parties). Before beginning, Z chooses the passwords pwi (may be unequal) on
its own for participants, which captures the arbitrary password distribution,
including the case of making typos. As a bonus, this approach provides forward
secrecy for free, which preserve the security of session keys even if the password
is used for other purposes.

Though such a query (NewSession, sid, Pi, pwi), every party initiates a new
session with the expected ones in the group H. Then FGPAKE is triggered to create
the corresponding records, such as (sid, Pi, pwi), for them to store their inputs
locally, and labeled it as fresh. Actually, among these group members, some may
be impersonated or corrupted by the adversary S to take part in the protocol
instance with S’s own password attempt. In both cases, the records are marked
as corrupted. Once all the parties in the group H have sent NewSession queries,

UC-secure and Contributory Password-Authenticated Group Key Exchange 125

the ideal functionality FGPAKE stores a record (sid,H, ready), and informs the
adversary S with it as a notification. When the adversary S commences with
impersonating a party Pi with the NewSession query, it is allowed temporarily
to submit a character ⊥ instead of the password, and replenish it before sending
the corresponding NewKey query. This stipulation contributes to a more smooth
simulation in the security proof. In principle, after this phase, the parties basi-
cally wait for receiving the session keys.

When receiving (NewKey, sid, Pi,H∗, sk∗) query from the adversary S, the
ideal functionality FGPAKE is instructed to release the session key to Pi. Note that
H∗ is the set of participants that is specified by the adversary and may not be
equal to H in the NewSession queries. When H = H∗, the computation happen
within pre-assigned members, while H �= H∗ means that the adversary intro-
duces outsiders (may be fictional entities) into the group to replace some honest
ones. The latter case is forbidden in our definition. Besides, if there no exists a
ready record for H∗, i.e. members of H∗ do not entirely join this session, FGPAKE

also abort this execution. Unlike previous key exchange functionalities [16,23], in
that if one of NewSession records is corrupted the adversary is given the ability
to fully determine the resulting session key into sk∗, ours deprives of this ability
of S unless all parties are corrupted simultaneously. By this definition, we inte-
grate the full-contributiveness property in the functionality. Participants shall
share the same, uniformly distributed session keys with whom have the match-
ing password. Namely, FGPAKE has to traverse the records and the session keys
sent to some parties, and return the corresponding ones. If no one is found out,
FGPAKE chooses a random value from the range of session keys. In consideration
of implicit authentication, the protocol will not end up with the case where no
key is established for parties unless the inevitable abortions occur.

When FGPAKE outputs the session key to the specified party, the correspond-
ing NewSession record is marked as completed to avoid undesired on-line guessing
attacks from S even after the authentication has ended.

2.4 Discussions

For the completeness of the ideal functionality, the adversary S should be acqui-
escently allowed to abort the instance at any time to capture some trivial cases.
For instance, in the real network, the attackers can always delay, hijack messages
or revise them into irregular formats in the communication channel, resulting in
a failed session among parties.

In our context of the ideal functionality FGPAKE, the TestPwd query is com-
pletely abandoned, since split functionality has modeled the adversary’s active
attacks which enable it to take apart in the group. In the view of security analysis,
the simulator does have to learn the results whether the passwords are matching,
which is totally left to the functionality along with generation of session keys.
Moreover, an outsider should not get the final results of protocol executions
without the later communications in realistic scenarios.

In the UC framework, as per the formalism of [15], assume that multiple pro-
tocol instances are running concurrently. As the case in the real world, numerous

126 L. Zhang and Z. Zhang

execution instances often invoke the same common random strings or random
oracles. Roughly, we have to consider the multi-session extension ̂F through the
JUC theorem [18]. We refer to [16,18] for more discussions.

3 Our GPAKE Scheme

The basic idea of this protocol is inspired by Jarecki et al’s (verifiable) oblivious
pseudorandom functions (V-OPRF) in [21,22] and Camenisch et al’s construc-
tions for distributed password verification protocol of [12], and then utilized
to build our GPAKE scheme. Briefly, each participant Pi ∈ {P1, . . . , Pn} has
the shared password pwi, along with its own ephemeral secret key xi. The ses-
sion key computed by parties for session and sub-session identifiers sid, ssid is
H2(sid, ssid,H1(sid, pwi)X), where X =

∑n
i=1 xi mod q, and H1,H2 are hash

functions. In order to get this value, each party chooses ri ←R Z
∗
q to blind the

password hash ai := (H1(sid, pwi))ri and sends the result to the others. When
(bi,j := a

xj

i)j∈[n], j �=i are returned, it can compute vi := (axi
i ·

∏n
j=1, j �=i bj,i)1/ri =

H1(sid, pwi)X . Simultaneously, Pi proceed to the similar power operation to
{aj}j �=i from the others with its own secret key xi. Nevertheless, such simple
proposition of GPAKE cannot reach the UC-security in the unauthenticated
channel. Hence, we provide other primitives, such as the zero-knowledge proof
of knowledge and the extra hash function to ensure the simulator that the par-
ticipants always use the coincident public/secret keys, and also to help it extract
the secret key for simulation. More details are presented as follows.

3.1 Concrete Construction

Let G be a multiplicative group of prime order q with the generator g generated
through an algorithm of parameters generation by the security parameter κ. The
hash functions H1 : {0, 1}∗ × {0, 1}∗ → G, H2 : {0, 1}∗ ×G×G → {0, 1}2κ and
H3 : {0, 1}∗ × {0, 1}∗ ×G → {0, 1}κ are modeled as random oracles. The public
parameters also consist of the common random strings crs for the zero-knowledge
proofs of knowledge. PK denotes the non-interactive proof of knowledge (which
is formally defined by Camenisch et al. [11,14]), showing yi = gxi ∧ (bi,j =
axi

j)j∈[n], j �=i.
Assume that the actual members are known in advance, and we simply denote

them as P1, . . . , Pn according to a certain order. In a protocol instance, the par-
ties communicate over an unauthenticated broadcast channel, where messages
can be arbitrarily observed, modified, and delayed by the adversary A. Particu-
larly, the adversary can corrupt or impersonate the valid ones to join the group
as an insider with its own password attempt.

When a protocol execution begins, each party randomly chooses a blinding
factor ri and ephemeral secret key xi from Z

∗
q , and then generates the blinded

password hash ai := (H1(sid, pwi))ri and the ephemeral public key yi := gxi ,
respectively. By the end of this round, it computes a hash to the values ai and
yi, i.e. hi := H2(sid, ai, yi). Then each party broadcasts 〈Pi, ai, hi〉 to others.

UC-secure and Contributory Password-Authenticated Group Key Exchange 127

Shared information: Generator g of group G. Hash functions H1, H2, H3.
Common reference strings for proofs of knowledge crs.

Information held by Pi: Password pwi.
==

Round 1:

1). Choose xi ←R Z
∗
q and generate yi := gxi ;

2). Pick ri ←R Z
∗
q and compute ai := (H1(sid, pwi))ri ;

3). Make a hash hi := H2(sid, ai, yi);
4). Broadcast 〈Pi, ai, hi〉.

Round 2:

1). On receiving 〈Pj , aj , hj〉 from all Pj ∈ SP\{Pi}, compute bi,j := axi
j ,

and set ssid := (a1, h1)|| . . . ||(an, hn);
2). Produce the non-interactive proof of knowledge πi;
3). Broadcast

〈

Pi, yi, (bi,j)j∈[n],j �=i, πi

〉

.

Key Generation:

1). Upon receiving
〈

Pj , (bj,k)k∈[n],k �=j , πj

〉

from all Pj ∈ SP\{Pi}, check
hj = H2(sid, aj , yj) and continue. If not, abort this instance;

2). Verify (πj)j∈[n],j �=i, and abort if one of them is invalid;
3). Compute vi := (axi

i ·
∏n

j=1,j �=i bj,i)1/ri , and then output the session
key ski := H3(sid, ssid, pwi, vi);

Fig. 3. The description of our GPAKE protocol for each party Pi

Note that the sub-session identifier is defined as messages received in this round
ssid := a1, h1|| . . . ||an, hn, which be included in the subsequent hash evaluations.
Specifically, it means that parties are partitioned by the shared messages among
them. The purpose of usage of H2 is, during the formal security proof, to embed
the one-more gap Diffie-Hellman problem in the next round rather than this
round when the group has not partitioned by the adversary yet (Fig. 3).

In the second round, each party computes blinded responses bi,j := axi
j for

the others in this group using its ephemeral secret key xi. Moreover, it is required
to generate a non-interactive zero-knowledge proof of knowledge PK that bi,j is
generated correctly using yi’s discrete logarithm. That is,

πi := PK{xi : yi = gxi ∧ (bi,j = axi
j)j∈[n], j �=i}

Note that these zero-knowledge proofs should be on-line extractable, since the
simulator S needs to extract the adversary’s ephemeral secret keys to obtain
the solutions to the one-more gap Diffie-Hellman problem in the simulation of

128 L. Zhang and Z. Zhang

random oracle H3. It ends this round communication with broadcasting the
message

〈

Pi, yi, (bi,j)j∈[n], j �=i, πi

〉

to the other participants.
In the end, the parties check the hash values and the proofs of knowledge.

As soon as a value received by Pi doesn’t be verified correctly, it aborts this
instance and outputs nothing. Otherwise, it computes the key material vi :=
(axi

i ·
∏n

j=1, j �=i bj,i)1/ri and the session key ski := H3(sid, ssid, pwi, vi), outputs
(sid, ssid, sk), and terminates this session.

Throughout this scheme, the hash values in the first round and the proofs
of knowledge play important roles in ensuring the full-contributory property.
For the existence of hash values and proofs of knowledge, it is impossible for
a malicious party Pi adaptively to choose its ephemeral secret key xi after it
gets

∏n
j=1, j �=i H1(sid, pwi)xj . Namely, even if there is only one honest party, the

remaining n − 1 ones still cannot have the sum of secret keys depend on its.
Remarkably, this scheme achieves the implicit authentication by only two

rounds communications among the participants. Using general techniques, such
as the hash values of session key materials along with new tags, it is easy to get
explicit authentication at the cost of one more round messages.

In the scheme, PK is a non-interactive transformation of a proof of knowl-
edge with the Fiat-Shamir heuristic [19] in the random oracle model. It can be
extended to be online-extractable, by verifiably encrypting the witness with a
public key defined in the common reference string. The witness can be extracted
from the CRS by the simulator without rewinding by decrypting the ciphertext.
A practical instantiation is given by the CPA-secure version of Camenisch and
Shoup’s encryption scheme [13], which is secure under the DCR assumption [26].

4 Security Analysis

In this section, we prove the security of our scheme utilizing the (N,Q) one-more
gap Diffie-Hellman assumption, which states that for the group G there no exists
polynomial-time adversary A so that the following probability is non-negligible:

Prob[A(·)k,DDH(·)(g, gk, g1, . . . , gN) = {(gjs , g
k
js)|s = 1, . . . , Q + 1}]

where k ∈ Z
∗
q and Q is the number of the queries A makes to the (·)k oracle.

Moreover, A’s other inputs g1, . . . , gN are assumed to be sampled from G.
We can draw a conclusion for the GPAKE scheme in this theorem below:

Theorem 1. Under the one-more gap Diffie-Hellman assumption in G, if
the zero-knowledge proofs involved are online extractable, then the password-
authenticated group key exchange presented in Sect. 3 securely realizes ̂sFGPAKE

under static corruptions in the (FCRS,FRO)-hybrid model.

In order to prove this theorem, it is an ideal-world adversary (i.e. simulator)
S that needs to be constructed such that an arbitrary environment Z cannot
distinguish between protocol executions in the ideal world and ones in the real
world, which is described in Sect. 4.1. Then, in Sect. 4.2, we demonstrate the
indistinguishability between two worlds through a sequence of games.

UC-secure and Contributory Password-Authenticated Group Key Exchange 129

4.1 Description of Simulator

The simulator S not only interacts with the functionality FGPAKE in the ideal
world, but also acts as honest parties and environment Z against a copy of the
real-world adversary A invoked by S internally, and provide it a simulated real
world. Moreover, S faithfully forwards all messages between A and Z.

Simulating Random Oracles and Common Random Strings. When the
simulator receives the queries to random oracles H1, H2 and H3, it chooses ran-
dom values from appropriate ranges to provide answers, and then records inputs
and outputs. Here, S is allowed to maintain a list Λ to store them, which is also
helpful to ensure the consistency of simulated random oracles. The simulator
answers A’s queries and updates the lists according to the rules which are analo-
gous to the description in Fig. 4. Particularly, the random oracle H3 is answered
by the help of NewKey queries in some points.

Furthermore, the simulated common reference string is chosen by S for the
adversary A as FCRS presented in the AppendixA.2. S runs the initial simulator
for proofs of knowledge and gets (crs, τ). S sets the common reference string
to crs and locally stores τ as the trapdoor for generating simulated PKs and
extracting the adversary’s witnesses.

Simulating the Party Pi. Once receiving (Init, sid, Pi) and (NewSession,
sid, Pi) from the functionality, the simulator S randomly samples an element
gi from the group G, and then sets ai := gi, due to the fact that it has no access
to the correct password for the honest party Pi. And it randomly chooses the
value hi from {0, 1}∗

H2
. Such messages from honest participants are delivered to

the adversary A in the simulated real world.
The adversary A can make its decision about the subgroups participants

belong to, on account of lack of strong authentication assumptions. It sends the
first flow to target parties on behalf of ones it wants to impersonate (or they
have been corrupted since the beginning of the session). These subgroups Hs are
defined according to the messages (ai, hi)i∈[n] in the first round. S forwards these
Hs, which make a partition of all parties, to the split functionality. Namely, the
players in the same session receive and share the same (ai, hi)i∈[n]. The simulator
S also sends NewSession queries for the corrupted parties or ones in disguise
correspondingly. Note that the simulator might have no knowledge about the
latter’s passwords in this moment, and thus it has to pass (NewSession, sid, Pj ,⊥)
for the dishonest party Pj to the ideal functionality instead. Moreover, we assume
that the simulator is permitted to fill in the blanks later.

During the second round, on the behalf of honest parties, S just follows
the protocol description to send

〈

Pi, yi, (bi,j)j∈[n], j �=i, πi

〉

back to A in the
broadcast channel, where πi is a simulated one, and H2 is programmed as
hi := H2(sid, ai, yi). Finally, S makes a call (NewKey, sid, Pi,⊥) to ̂FGPAKE.

To make the session keys indistinguishable in the view of Z, the simulator
deals with A’s queries H3(sid, ssid, pwj , vj) for some party Pj as follows. If
vj �= H1(sid, pwj)Σx∗

l +Σxk , where xk results from an honest party Pk, while x∗
l

130 L. Zhang and Z. Zhang

is extracted from the proofs of knowledge provided by the dishonest one Pl, S
just return a random value. Otherwise, S fills the blank ⊥ in Pj ’s NewSession

record with pwj , and sends (NewKey, sid, Pj ,⊥) to ̂FGPAKE, and then obtain sk.
Finally, it sets H3(sid, ssid, pwj , vj) := sk and output it to A.

4.2 Sequence of Games

Here, via a sequence of games Gi, we will prove that the real world with the
arbitrary A and the ideal world with ̂FGPAKE and S as defined above are indis-
tinguishable in the view of environment Z. This needs to be stressed that, the
simulator S “magically” obtains the inputs of honest parties provided by Z in
the intermediate games, but they are no longer needed at the end of simulation.
Following is the sequence of concrete games:

Game G0: Let G0 be the real-world game. As we noted above, the simulator S
“magically” receives inputs from Z, and just simply runs the real-world protocol
executions for all the honest parties.

Game G1: It is identical to G0, except that we change the generation of crs
and proofs of knowledge in the protocol. More specifically, on one hand, the
common random strings are replaced with the simulated ones, and S knows the
secret keys. On the other hand, whenever the honest parties perform the proofs
of knowledge, S provides the simulated ones instead. The indistinguishability
between them follows from the zero-knowledge properties of the proof system.

Game G2: Since G2, S begins to simulate the hash functions H1, H2 and H3

instead of the real ones. It is distinguishable with the previous game in the view
of the environment Z, if there happen collisions that multiple inputs of oracles
correspond to an output. Obviously, this case occurs with negligible probability,
due to the birthday paradox.

Game G3: Let G3 be the modification of G2, where the honest party Pi replaces
a normal ai := H1(sid, pwi)ri with a random element gi from G in the first
round. Actually, in the previous game, ri is randomly chosen from Z

∗
q by Pi

locally without leakage to the adversary A. Therefore, H1(sid, pwi)ri cannot be
distinguished from the random gi, from Z’s view.

Game G4: Compared with G3, the simulator S makes the party Pi output sk
which ̂FGPAKE forwards to it after the NewKey query, rather than the normal
value H3(sid, ssid, pwi, vi). Only by querying the H3(·) oracle can the environ-
ment distinguish between these two outputs. Concretely, When the adversary
A makes a query (sid, ssid, pwj ,H1(sid, pwj)Σx∗

l +Σxk), S interacts with the
functionality ̂FGPAKE, and obtains the proper output value sk as the response.
Besides, We define an event Γ that the adversary A queries the oracle H3(·)
on the input (sid, ssid, pwj ,H1(sid, pwj)Σx∗

l +Σxk) without communicating with
some honest parties of H, which gives rise to an abort in G4, since S has to
send (NewKey, sid, Pj ,H∗,⊥) to the functionality, where H∗ �= H. It is observed

UC-secure and Contributory Password-Authenticated Group Key Exchange 131

that, provided that the event Γ does not occur, the environment is not able to
distinguish between two cases.

Here, by the help of reduction from the one-more gap Diffie-Hellman problem,
we conclude that the event Γ just happens with a negligible probability. Given an
instance of the one-more gap Diffie-Hellman problem (Q, g, y = gk, g1, . . . , gN),
we revise the simulator’s behaviors as follows. Before the beginning, the simulator
initializes a counter c(k) := 0 modeling the number of times that the (·)k oracle is
invoked and a set of pairs of the form (z, zk), where z is in {g1, . . . , gN}, denoted
as T (k) := ∅. It uses the challenges g1, . . . , gN as the responses to H1(·) queries
instead of random values from G, and as the value aj for the honest party Pj to
the other members in the first round.

In the second round, without loss of generality, assume that there exists s
(s ≥ 1) honest parities in the target group H, the simulator randomly samples
s − 1 values from Z

∗
q and implicitly sets kt = k −

∑s
i=1,i �=t ki for a honest party

Pt. Note that S has no access to kt, but it still can provide the Pt’s ephemeral
public key yt := y/(

∏s
i=1,i �=t gki). If aj is the first round message sent to Pt, the

simulator calls the (·)k oracle to compute bt,j := ak
j /(

∏s
i=1,i �=t aki

j) and simulates
the proof of knowledge πt using the trapdoor τ corresponding to the specified
CRS. Moreover, once the oracle (·)k is invoked, it increases the counter c(k). For
the other honest ones, the simulations proceeds as before. When A later queries
H2(sid, ssid, pwi, vi), the simulator invokes the DDH oracle to check whether it
satisfies vi = H1(sid, pwi)k+Σx∗

l . If so, it adds (H1(sid, pwi), vi/H1(sid, pwi)Σx∗
l)

to the set T (k). Once the event c(k) < |T (k)|, which the adversary never com-
municates with Pt since the end of the first round but submits an appropriate H3

query corresponding the solution, occurs, the simulator S addresses the one-more
gap DH problem by returning the set T (k).

Now, the ideal-world is identical to G4, except that S no longer owns the
specified inputs from Z. Thus, the proof of theorem is completed.

Acknowledgement. We would like to thank the anonymous reviewers for their bene-
ficial comments. This work is supported by the National Natural Science Foundation of
China (No. U1536205, 61170278) and the National Basic Research Program of China
(No.2013CB338003).

A Auxiliary Ideal Functionalities

In this section, we list the formal ideal functionalities of random oracles and
common random strings used as setup assumptions in our work.

A.1 Random Oracles

The random oracle model (e.g. [7]) captures an idealization of a hash function.
In particular, it allows only black-box access and cannot be “predicted” without
explicitly evaluating it. The outputs are uniformly selected random strings of
specified size. We present the random oracle functionality FRO that has been
defined by Hofheinz and Müller-Quade [20] in Fig. 4.

132 L. Zhang and Z. Zhang

FRO proceeds as follows, running on security parameter κ, with parties
P1, . . . , Pn and an adversary S:

– FRO keeps a list L (which is initially empty) of pairs of bitstrings.
– Upon receiving a value (RO, sid,m), where m ∈ {0, 1}∗ from some party

Pi or from S, do:
• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}κ in the list L, set h := h̃;
• If there is no such pair, choose uniformly h ∈ {0, 1}κ and store the

pair (m, h) in L.
Once h is set, reply to the activating machine (i. e., either Pi or S) with
(RO, sid, h).

Fig. 4. The ideal functionality FRO

A.2 Common Reference Strings

The common reference string functionality FCRS [15,17] captures that a common
string drawn from a pre-specified distribution D can be accessible by all parties
in the system, including the adversary. Furthermore, it guarantees that no party
can be aware of the information related to the process of generating this string.
The functionality illustrated in Fig. 5 results from the 2005 version of [15].

The functionality FCRS running on distribution D proceeds as follows:

– When receiving input (CRS, sid) from party P , first verify that sid =
(P, sid′) where P is a set of identities, and that P ∈ P; else ignore
the input. Next, if there is no value r recorded then choose and record
r

R←− D. Finally, send a public delayed output (CRS, sid, r) to P .

Fig. 5. The ideal functionality FCRS

References

1. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group
key exchange in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006). doi:10.1007/11745853 28

2. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Password-authenticated
group key agreement with adaptive security and contributiveness. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 254–271. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02384-2 16

http://dx.doi.org/10.1007/11745853_28
http://dx.doi.org/10.1007/978-3-642-02384-2_16

UC-secure and Contributory Password-Authenticated Group Key Exchange 133

3. Abdalla, M., Chevalier, C., Granboulan, L., Pointcheval, D.: Contributory
password-authenticated group key exchange with join capability. In: Kiayias, A.
(ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 142–160. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19074-2 11

4. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 332–347. Springer, Heidelberg (2006). doi:10.1007/11935230 22

5. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). doi:10.1007/11535218 22

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

8. Boyd, C., Nieto, J.M.G.: Round-optimal contributory conference key agreement.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer,
Heidelberg (2003). doi:10.1007/3-540-36288-6 12

9. Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie-Hellman key exchange
secure against dictionary attacks. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 497–514. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 31

10. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, pp. 255–264. ACM (2001)

11. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 25

12. Camenisch, J., Lehmann, A., Neven, G.: Optimal Distributed Password Verifica-
tion. In: Proceedings of the 22nd ACM Conference on Computer and Communi-
cations Security, pp. 182–194. ACM (2015)

13. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science, pp.
136–145. IEEE (2001)

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005). doi:10.1007/11426639 24

17. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-
party and Multi-party Secure Computation. In: Proceedings of the Thirty-fourth
Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM (2002)

18. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 16

http://dx.doi.org/10.1007/978-3-642-19074-2_11
http://dx.doi.org/10.1007/11935230_22
http://dx.doi.org/10.1007/11535218_22
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-36288-6_12
http://dx.doi.org/10.1007/3-540-36178-2_31
http://dx.doi.org/10.1007/978-3-642-01001-9_25
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/978-3-540-45146-4_16
http://dx.doi.org/10.1007/978-3-540-45146-4_16

134 L. Zhang and Z. Zhang

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

20. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24638-1 4

21. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy, pp. 276–291 (2016)

22. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45608-8 13

23. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols.
In: Proceedings of the 12th ACM Conference on Computer and Communications
Security, pp. 180–189. ACM (2005)

24. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 7

25. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 3

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

27. Xu, J., Hu, X.-X., Zhang, Z.-F.: Round-optimal password-based group key
exchange protocols in the standard model. In: Malkin, T., Kolesnikov, V.,
Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 42–61.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-28166-7 3

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-24638-1_4
http://dx.doi.org/10.1007/978-3-662-45608-8_13
http://dx.doi.org/10.1007/978-3-540-45146-4_7
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-319-28166-7_3

	UC-secure and Contributory Password-Authenticated Group Key Exchange
	1 Introduction
	1.1 Our Contributions

	2 Security Definitions
	2.1 Universal Composability Framework
	2.2 Split Functionalities
	2.3 The Ideal Functionality for GPAKE
	2.4 Discussions

	3 Our GPAKE Scheme
	3.1 Concrete Construction

	4 Security Analysis
	4.1 Description of Simulator
	4.2 Sequence of Games

	A Auxiliary Ideal Functionalities
	A.1 Random Oracles
	A.2 Common Reference Strings

	References

