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Abstract. Almost all the available strong designated verifier signature
(SDVS) schemes are either insecure or inefficient for practical implemen-
tation. Hence, an efficient and secure SDVS algorithm is desired. In this
paper, we propose an efficient strong designated verifier signature on
identity-based setting, we call it ID-SDVS scheme. The proposed scheme
is strong existentially unforgeable against adaptive chosen message and
adaptive chosen identity attack under standard assumptions, the hard-
ness of the decisional and computational Bilinear Diffie-Hellman Prob-
lem (BDHP). Though the unverifiability by a non-designated verifier and
the strongness are essential security properties of a SDVS, the proofs for
these properties are not provided in most of the literature on SDVS we
reviewed. We provide the proofs of unverifiability and of strongness of
the proposed scheme. Moreover, we show that the proposed scheme is
significantly more efficient in the view of computation and operation time
than the existing similar schemes.

Keywords: Strong designated verifier signature · Identity-based cryp-
tography · Bilinear Diffie-Hellman problem · Provable security

1 Introduction

Digital signature is a widely accepted tool for authentication in cryptography. The
general definition of digital signature in public key cryptography allows any user in
public to verify the authentication of the signature. However, in many situations,
like proposal of construction bidding, licensing software, electronic voting etc., the
signers may desire to sign a document for a particular receiver with control over
the verification of their signatures. In these applications, the signed message may
include crucial information between the signer and the verifier.

For such scenarios, Chaum et al. [3] introduced the undeniable signature
which allows a signer to have a control over the signature with the property
that verification of a signature requires the participation of the signer. But a
practical issue with such a signature is that the signer’s presence for verification
requires the signer to be online all the time. To overcome this complication,
Jakobsson et al. [7] proposed the concept of designated verifier signature (DVS),
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that transforms Chaum’s scheme [2] into non-interactive verification using a des-
ignated verifier proof. Their scheme allows the signer to convince the validity of
a statement to a particular verifier without allowing any third party to verify
the validity of that signature.

Saeednia et al. [14] pointed out that given a DVS, anybody can make sure that
there are only two potential signers. Hence, if the signatures may be captured on
the line before arriving at the designated verifier, then one can identify the signer,
since it is now sure that the verifier did not produce the signature. To overcome
this issue, they extended the notion of DVS with a property of strongness which
requires that to a third party, who is none of the signer or designated verifier, the
DVS from a signer A to a designated verifier B, is indistinguishable from a DVS
from any other signer C to some other verifier D. They call such a signature
strong designated verifier signature (SDVS).

1.1 Related Work

In 2004, Susilo et al. [15] proposed the first identity-based strong designated
verifier signature (ID-SDVS). Unforgeability of their scheme is based on the
Bilinear Diffie-Hellman (BDH) assumption. In 2006, Huang et al. [6] proposed a
short ID-SDVS scheme based on Diffie-Hellman key exchange protocol. The secu-
rity of their scheme relies on the Gap Bilinear Diffie-Hellman (GBDH) assump-
tion. Computation cost of the former scheme is more than double of the latter
one. However, the scheme in [6] is not strongly unforgeable since the signa-
ture of a message always remains the same and a replay attack is always pos-
sible and cannot be trivially avoided. Later, in 2008, Zhang et al. [16] proposed
another ID-SDVS scheme that is claimed to be non-delegatable, but in 2009,
Kang et al. [9] pointed out security flaws in [16] against the strongness property
of SDVS scheme. They observed that in [16], an outsider who eavesdrops an old
signature and can obtain some information that is to be used for the verifica-
tion of subsequent signatures. It has also been explained in [9], that how the
property of strongness in [16] does not fulfil their claim. In [9], they also pro-
posed another ID-SDVS scheme and an identity-based designated verifier proxy
signature (ID-DVPS). However, in 2010, Lee et al. [11] showed that the scheme
in [9] is universally forgeable. In 2009, Kang et al. [10] proposed another ID-SDVS
scheme which is more efficient than that in [9]. However, this construction was
also shown to be universally forgeable in [5].

1.2 Applications

The strong designated verifier signature has crucial applications in various real
world scenarios including the following:

1. Licensing software: Software companies use digitally signed keys as their soft-
ware license so that these keys can only be used by the person who has pur-
chased the product. The strong designated verifier signature on keys protects
illegal distribution of the software.
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2. Electronic voting : In electronic voting schemes, a voting center is required to
ensure that a vote has been counted in the final tally or not. The verification
of the center’s signature on the receipt is one way of doing so. But it should
also be taken in account that the voters must not have the ability to convince
a third party the nature of their votes they have casted. This may cause some
gain or threats by the parties depending upon the nature of the vote. To fulfil
this requirement in electronic voting schemes, the center’s signature should
be a strong designated verifier signature.

1.3 Our Contribution

In this paper, we propose an efficient identity-based strong designated verifier
signature (ID-SDVS) scheme using bilinear pairing. Proposed scheme is existen-
tially unforgeable (resp. unverifiable) against adaptive chosen message and adap-
tive chosen identity attack under the computational (resp. decisional) Bilinear
Diffie-Hellman (BDH) assumption in the random oracle model. We also provide
a proof for the strongness property of the proposed scheme. We reviewed the
existing ID-SDVS schemes including [5,6,8–11,15,16] and noticed that most of
the papers on ID-SDVS were missing the full proofs of security which we tabu-
late in Table 1. Moreover, we show that the proposed scheme is upto 120 % more
efficient in the sense of computation and operation time than these schemes.

Table 1. Security proofs

Scheme Proof of unforgeability Proof of unverifiability Proof of strongness

Susilo et al. [15] � ✗ ✗

Huang et al. [6] ✗ ✗ ✗

Kancharla et al. [8] � ✗ ✗

Du et al. [5] � ✗ ✗

Zhang et al. [16] ✗ ✗ ✗

Kang et al. [9] ✗ ✗ ✗

Kang et al. [10] ✗ ✗ ✗

Lee et al. [11] � ✗ ✗

Our scheme � � �

1.4 Outline of the Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce some
related mathematical definitions, problems and assumptions. In Sect. 3, we
present the formal definition of an identity-based strong designated verifier sig-
nature scheme and a formal security model for it. The proposed signature scheme
is presented in Sect. 4. In Sect. 5 we analyze the security of the proposed scheme
and in Sect. 6 we do an efficiency comparison with the state-of-art. Finally, in
Sect. 7 we conclude our work.
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2 Preliminaries

A probabilistic polynomial time (PPT) algorithm is a probabilistic/randomized
algorithm that runs in time polynomial in the length of input. We denote by
y ← A(x) the operation of running a randomized or deterministic algorithm
A(x) and storing the output to the variable y. If X is a set, then v

$← X denotes
the operation of choosing an element v of X according to the uniform random
distribution on X. We say that a given function f : N → [0, 1] is negligible in
n if f(n) < 1/p(n) for any polynomial p for sufficiently large n. For a group G
and g ∈ G, we write G = 〈g〉 if g is a generator of G.

Definition 1 (Bilinear Map). Let G1 be an additive cyclic group with gen-
erator P and G2 be a multiplicative cyclic group. Let both the groups are of the
same prime order q. Then a map e : G1 × G1 → G2 is called a cryptographic
bilinear map if it satisfies the following properties.

Bilinearity: For all a, b ∈ Z
∗
q , e(aP, bP ) = e(P, P )ab, or equivalently, for all

Q,R, S ∈ G1, e(Q+R,S) = e(Q,S)e(R,S) and e(Q,R+S) = e(Q,R)e(Q,S).
Non-degeneracy: There exists Q,R ∈ G1 such that e(Q,R) �= 1. Note that

since G1 and G2 are groups of prime order, this condition is equivalent to
the condition g := e(P, P ) �= 1, which again is equivalent to the condition
that g := e(P, P ) is a generator of G2.

Computability: There exists an efficient algorithm to compute e(Q,R) ∈ G2

for all Q,R ∈ G1.

Definition 2. A bilinear map parameter generator B is a PPT algorithm that
takes as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g〉 ← B(λ) (1)

where q, G1, G2, e, P and g are as in Definition 1.

Definition 3 (Bilinear Diffie-Hellman Problem). Given a security para-
meter λ, let 〈q, e : G1×G1 → G2, P, g〉 ← B(λ). Let BDH : G1 ×G1×G1 → G2

be a map defined by

BDH(X,Y,Z) = ω where X = xP, Y = yP, Z = zP and ω = e(P, P )xyz .

The bilinear Diffie-Hellman problem (BDHP) is to evaluate BDH(X,Y,Z) given
X,Y,Z

$← G1. (Without the knowledge of x, y, z ∈ Zq — obtaining x ∈ Zq, given
P,X ∈ G1 is solving the discrete logarithm problem (DLP)).

Definition 4. A BDHP parameter generator C is a PPT algorithm that takes
as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ) (2)

where q, G1, G2, e, P , g, X, Y and Z are as in Definition 3.
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Definition 5 (Bilinear Diffie-Hellman Assumption). Given a security
parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). The bilinear
Diffie-Hellman assumption (BDHA) states that for any PPT algorithm A which
attempts to solve BDHP, its advantage

AdvC(A) := Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z) = BDH(X,Y,Z)]

is negligible in λ.

Definition 6 (Decisional Bilinear Diffie-Hellman Problem). Given a
security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). Let
ω

$← G2. The decisional bilinear Diffie-Hellman problem (DBDHP) is to decide if

ω = BDH(X,Y,Z) .

That is, if X = xP, Y = yP, Z = zP , for some x, y, z ∈ Zq, then the DBDHP is
to decide if

ω = e(P, P )xyz .

(Without the knowledge of x, y, z ∈ Zq — obtaining x ∈ Zq, given P,X ∈ G1 is
solving the discrete logarithm problem (DLP)).

Definition 7. A DBDHP parameter generator D is a PPT algorithm that takes
as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g,X, Y, Z, ω〉 ← D(λ) (3)

where q, G1, G2, e, P , g, X, Y , Z and ω are as in Definition 6.

Definition 8 (Decisional Bilinear Diffie-Hellman Assumption). Given
a security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z, ω〉 ← D(λ).
The bilinear Diffie-Hellman assumption (DBDHA) states that, for any PPT
algorithm A which attempts to solve DBDHP, its advantage

AdvD(A) := |Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z, ω) = 1]−
Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,BDH(X,Y,Z)) = 1]| (4)

is negligible in λ.

3 Identity-Based Strong Designated Verifier Signature

In this section we present the formal definition of an identity-based strong des-
ignated verifier signature (ID-SDVS) and formalize a security model for it.
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3.1 Identity-Based Strong Designated Verifier Signature

In an ID-SDVS scheme, a signer with identity IDS intends to send a signed
message to a designated verifier with identity IDV such that no one other than
the designated verifier can verify the signature. An ID-SDVS scheme is consists
of the following five algorithms:

1. params ← Setup(λ): An algorithm run by the private key generator (PKG)
which takes as input a security parameter λ and outputs the public parame-
ters params and a master secret s of the system. In all the algorithms from
here onward, params will be considered as an implicit input.

2. (QID, SID) ← Key Extract(ID): An algorithm run by the (PKG) which takes
input identity ID and outputs its public and private key pair (QID, SID).

3. σ ← DVSign(SIDS , QIDV ,m): A probabilistic algorithm run by the signer that
takes as input the signer’s secret key SIDS , the designated verifier’s public key
QIDV and a message m to generate a signature σ.

4. b ← DVVer(SIDV , QIDS ,m, σ): A deterministic algorithm run by the verifier
that takes the verifier’s secret key SIDV , the signer’s public key QIDS , a message
m and a signature σ, and returns a bit b which is 1 if the signature is valid
and 0 if invalid.

5. σ̂ ← DVTrans(SIDV , QIDS ,m): A deterministic algorithm run by the verifier
that takes the verifier’s secret key SIDV , and the signer’s public key QIDS and
a message m to generate a signature σ̂.

3.2 Security Model for Identity-Based Strong Designated Verifier
Signature

An ID-SDVS scheme must satisfy the following security properties.

1. Correctness: If the signature σ on a message m is correctly computed by
a signer IDS , then the designated verifier IDV must be able to verify the cor-
rectness of the message-signature pair (m,σ). That is,

Prob[1 ← DVVer(SIDV , QIDS ,m,DVSign(SIDS , QIDV ,m))] = 1

2. Unforgeability : It is computationally infeasible to construct a valid ID-
SDVS signature without the knowledge of the private key of either the signer
or the designated verifier. We define below strong existential unforgeability
against an adaptive chosen message and adaptive chosen identities attack.

Definition 9 (Unforgeability). An ID-SDVS scheme is said to be strong
existential unforgeable against adaptive chosen message and adaptive chosen
identities attack if for any security parameter λ, no probabilistic polynomial
time adversary A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which runs in time t has a non-
negligible advantage

AdvSEUF-CID2-CMA2
ID-SDVS,A (λ) := εA(λ) := Prob[1 ← DVVer(SID∗

V , QID∗
S ,m∗, σ∗)]

against the challenger B in the following game:
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1. Setup: The challenger B generates the system’s public parameter params for
security parameter λ.

2. Query Phase:
– The adversary A may request upto qH1 hash queries on its adaptively cho-

sen identities and upto qH2 hash queries on its adaptively chosen messages
and obtain responses from B acting as a random oracle.

– A may request upto qE key extraction queries on its adaptively chosen
identities and obtain the corresponding private keys.

– A may request upto qS signature queries on its adaptively chosen messages
and adaptively chosen identities for the signer and the designated verifier
and obtain a valid strong designated verifier signature.

– A may request upto qV verification queries on signatures on its adaptively
chosen messages m and adaptively chosen identities for the signer and the
designated verifier and obtain the verification result 1 if it is valid and 0
if invalid.

3. Output : Finally, A outputs a (message, signature) pair (m∗, σ∗) for identities
ID∗

S of the signer and ID∗
V of the designated verifier such that:

– A has never submitted ID∗
S or ID∗

V during the key extraction queries.
– σ∗ was never given as a response to a signature query on the message m∗

with the signer’s identity ID∗
S , and the designated verifier’s identity ID∗

V ;
– σ∗ is a valid signature on the message m∗ from a signer with identity ID∗

S ,
for a designated verifier with identity ID∗

V .

3. Unverifiability : It is computationally infeasible to verify the validity of an
ID-SDVS without the knowledge of the private key of either the signer or
the designated verifier. We define below existential designated unverifiability
against an adaptive chosen message and adaptive chosen identities attack.

Definition 10 (Unverifiability). An ID-SDVS scheme is said to be existential
designated unverifiable against adaptive chosen message and adaptive chosen
identities attack if for any security parameter λ, no probabilistic polynomial
time adversary A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which runs in time t has a non-
negligible advantage

AdvEDV-CID2-CMA2
ID-SDVS,A (λ) := εA(λ) := |Prob[A(QID∗

S , QID∗
V ,m∗, σ∗) = 1]−

Prob[A(QID∗
S , QID∗

V ,m∗,DVSign(SID∗
S , QID∗

V ,m∗)) = 1]| (5)

against the challenger B’s response σ∗ in the following game:

1. Setup: Similar to the unforgeability game in Definition 9.
2. Query Phase 1 : Similar to the unforgeability game in Definition 9.
3. Challenge: At some point, A outputs a message m∗ and identities ID∗

S of the
signer and ID∗

V of the designated verifier on which it wishes to be challenged
such that A has never submitted ID∗

S or ID∗
V during the key extraction queries.

The challenger B responds with a “signature” σ∗ and challenges A to verify
if it is valid or not.
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4. Query Phase 2 : A continues its queries as in Query Phase 1 with an additional
restriction that now it cannot submit a verification query on σ∗.

5. Output : Finally, A outputs its guessed bit b∗ which is 1 if the signature is
valid and 0 if invalid.

4. Non-transferability : Given a signature σ on message m, it is infeasible for
any PPT adversary A to decide whether σ was produced by the signer or by
the designated verifier, even if A is also given the private keys of the signer
and the designated verifier. In other words, it is impossible for the designated
verifier to prove to an outsider that the signature is actually generated by the
signer.

Definition 11 (Non-transferability). An ID-SDVS scheme is said to be non-
transferable if the signature generated by the signer is computationally indistin-
guishable from that generated by the designated verifier, that is,

σ ← DVSign(SIDS , QIDV ,m) ≈ σ̂ ← DVTrans(SIDV , QIDS ,m) .

5. Strongness: Let σ ← DVSign(SIDS , QIDV ,m) be a signature on a message
m from a signer S to a designated verifier V. Strongness requires that σ
could have been produced by any other third party S∗ other than S for some
designated verifier V∗ other than V.

Definition 12 (Strongness). An ID-SDVS scheme is said to be strong des-
ignated if given σ ← DVSign(SIDS , QIDV ,m), anyone, say V∗, other than the
designated verifier V can produce identically distributed transcripts that are
indistinguishable from those of σ from someone, say S∗, except the signer S.
That is,

σ ← DVSign(SIDS , QIDV ,m) ≈ σ̂ ← DVTrans(SID∗
V , QID∗

S ,m) .

4 Proposed Scheme

We present here our efficient and secure ID-SDVS. As described in Sect. 3, the
proposed scheme consists of the following algorithms: Setup, Key Extract, Des-
ignated Signature, Designated Verification and Transcript Simulation.

Setup: In the setup phase, PKG on input security parameter λ, generates the
system’s master secret key s ∈ Z

∗
q and the system’s public parameters params

= (1λ, G1, G2, q, e,H1,H2, P, Ppub), where G1 is an additive cyclic group of
prime order q with generator P , G2 is a multiplicative cyclic group of prime
order q, and H1 : {0, 1}∗ −→ G1, H2 : {0, 1}∗ × G1 −→ Z

∗
q are two crypto-

graphic secure hash functions, and Ppub = sP ∈ G1 is system’s public key,
e : G1 × G1 −→ G2 is a bilinear map as defined in Sect. 2.

Key Extract: For a user with identity IDi ∈ {0, 1}∗, the PKG computes its
public key as QIDi = H1(IDi) ∈ G1 and corresponding private key as SIDi =
sQIDi

∈ G1.
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Designated Signature: To sign a message m ∈ {0, 1}∗ which can be verified by
a designated verifier V, the signer S chooses a random r

$← Z
∗
q and computes

– U = rP ∈ G1;
– h = H2(m,U) ∈ Z

∗
q ;

– V = rPpub + hSIDS ∈ G1;
– σ = e(V,QIDV ).

The strong designated verifier signature on message m is (U, σ) ∈ G1 × G2.
Designated Verification: On receiving a message m and a signature (U, σ), a

verifier first computes h = H2(m,U) ∈ Z
∗
q and accepts the signature if and

only if the following equality holds:

σ = e(U + hQIDS , SIDV ) .

Transcript Simulation: The designated verifier V can produce the signature
σ̂ intended for itself, by performing the following: chooses an integer r̂

$← Z
∗
q

and computes
– ̂U = r̂P ∈ G1;
– ̂h = H2(m, ̂U) ∈ Z

∗
q ;

– ̂V = r̂P + ̂hQIDS ∈ G1; and
– σ̂ = e(̂V , SIDV ).

5 Analysis of the Proposed Scheme

5.1 Correctness of the Proposed Scheme

The correctness of the scheme follows since if (U, σ) is a correctly generated
signature on a message m from a signer with identity IDS for a designated verifier
with identity IDV , then

e(U + hQIDS , SIDV ) = e(rP + hQIDS , sQIDV )
= e(rPpub + hSIDS , QIDV )
= e(V,QIDV )
= σ .

5.2 Unforgeability

We now prove that the proposed ID-SDVS is unforgeable. That is, any third
party other than the signer and the designated verifier, cannot forge a valid
signature on an adaptively chosen message from an adaptively chosen signer’s
identity for an adaptively chosen designated verifier’s identity with non-negligible
probability. We show that if there exists a probabilistic polynomial time (PPT)
adaptive chosen message and adaptive chosen identity algorithm which can pro-
duce a forgery for the proposed ID-SDVS then there exists another PPT algo-
rithm which can use the forgery to solve the BDHP. In particular, we prove the
following theorem:
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Theorem 1. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which breaks the unforgeability of the proposed
ID-SDVS scheme in time t with success probability εA(λ), then there exists a
PPT adversary B(εB(λ), t′) which solves BDHP with success probability at least

εB(λ) ≥
(

1 − 1
q2

)(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS( 2
qH1(qH1 − 1)

)

εA(λ)

in time at most

t′ ≤ (qH1 + qE + 3qS + qV )SG1 + (qS + qV )Pe + qSOG1 + OG2 + SG2 + t

where SG1 (resp. SG2) is the time taken for one scalar multiplication in G1 (resp.
G2), OG1 (resp. OG2) is the time taken for one group operation in G1 (resp. G2),
and Pe is the time taken for one pairing computation.

Proof: Let for a security parameter λ, B is challenged to solve the BDHP for

〈q, e,G1, G2, P, aP, bP, cP 〉

where G1 is an additive cyclic group of prime order q with generator P , G2

is a multiplicative cyclic group of prime order q with generator e(P, P ), and
e : G1 × G1 → G2 is a cryptographic bilinear map as described in Sect. 2.
a, b, c

$← Z
∗
q are unknown to B. The goal of B is to solve BDHP by computing

e(P, P )abc ∈ G2 using A, the adversary who claims to forge the proposed ID-
SDVS scheme. B simulates the security game for unforgeability with A as follows.

Setup: B generates the system’s public parameter

params = 〈q, e : G1 × G1 → G2, P, Ppub := cP,H1,H2〉

for security parameter λ where the hash functions H1 and H2 behave as
random oracles and responds to A’s queries as below.

H1-queries: To respond to the H1 queries, B maintains a list

LH1 = {(IDi ∈ {0,1}∗, ri ∈ Z
∗
q , Ri ∈ G1)

qH1
i=1}

which is initially empty. B randomly chooses two indices α, β ∈ [1, qH1 ] and
sets i = 0. When A makes an H1-query for an identity ID ∈ {0,1}∗, B
proceeds as follows.
1. If the query ID already appears in LH1 in some tuple (IDi, ri, Ri) then B

responds to A with H1(ID) = Ri ∈ G1;
2. otherwise B sets i = i + 1 and

– if i = α, B sets ri =⊥ and Ri = aP ;
– if i = β, B sets ri =⊥ and Ri = bP ;
– if i �= α, β, B chooses ri

$← Z
∗
q and sets Ri = riP ;

3. Finally B adds the tuple (IDi := ID, ri, Ri) to LH1 and responds to A
with H1(ID) = Ri.
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H2-queries: To respond to the H2 queries, B maintains a list

LH2 = {((m,U) ∈ {0,1}∗ × G1, h ∈ Z
∗
q)}

which is initially empty. When A queries the oracle H2 on (m,U), B responds
as follows.
1. If the query (m,U) already appears in LH2 in some tuple (m,U, h) then

B responds with H2(m,U) = h ∈ Z
∗
q .

2. Otherwise B picks a random h ∈ Z
∗
q and adds the tuple (m,U, h) to LH2

and responds to A with H2(m,U) = h.
Key extraction queries: When A makes a private key query on identity ID, B

proceeds as follows.
1. Runs the above algorithm for responding to H1-query for identity ID and

obtains H1(ID) = Ri.
2. If i = α or β, B reports failure and halts.
3. If i �= α, β, B responds to A with the private key SID := riPpub on the

identity ID.
It can be verified that the provided private key SID = riPpub is a valid private
key for the user with identity IDi := ID since

riPpub = ricP = criP = cH1(ID) .

Note that B aborts the security game during a key extraction query with
probability 2

qH1
.

Signature queries: To respond to the signature queries, B maintains a list

LS = {(m� ∈{0,1}∗, IDS� ∈{0,1}∗, IDV � ∈{0,1}∗, x� ∈Z
∗
q , U� ∈G1, σ� ∈G2)

qS
�=1}

which is initially empty with � = 0. When A queries the signature on a
message m from a signer with identity IDS for a designated verifier with
identity IDV , B proceeds as follows.
1. If the query (m, IDS , IDV) already appears in LS in some tuple

(m�, IDS�, IDV �, x�, U�, σ�) then B responds to A with the signature
(U�, σ�).

2. Otherwise B sets � = � + 1 and runs the above algorithm for responding
to H1-query for identities IDS and IDV and obtains QIDS = H1(IDS) = Ri

and QIDV = H1(IDV) = Rj .
3. If {i, j} = {α, β}, B reports failure and halts.
4. If i �= α, β, B computes the private key for IDS , SIDS = riPpub , and proceeds

as follows.
– randomly chooses x� ∈ Z

∗
q ;

– sets U� = x�P ∈ G1;
– runs the H2-query algorithm to obtain h� = H2(m,U�) ∈ Z

∗
q ;

– sets V� = x�Ppub + h�SIDS ∈ G1;
– computes σ� = e(V�, QIDV ).
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5. Otherwise if j �= α, β, B computes the private key for IDV , SIDV = rjPpub ,
and proceeds as follows.

– randomly chooses x� ∈ Z
∗
q ;

– sets U� = x�P ∈ G1;
– runs the H2-query algorithm to obtain h� = H2(m,U�) ∈ Z

∗
q ;

– sets V� = x�P + h�QIDS ∈ G1;
– computes σ� = e(V�, SIDV ).

6. Finally B adds the tuple (m�, IDS�, IDV �, x�, U�, σ�) to LS and responds to
A with the signature (U�, σ�).

Note that B aborts the security game during a signature query with proba-
bility 2

qH1 (qH1−1) .
Verification queries: When A makes a verification query on the signature (U, σ)

on a message m from a signer with identity IDS for a designated verifier with
identity IDV , B proceeds as follows.
1. B runs the above algorithm for responding to H1-query for identities IDS

and IDV and obtains H1(IDS) = Ri and H1(IDV) = Rj .
2. If j ∈ {α, β}, B reports failure and halts.
3. If j �= α, β, then B computes IDV ’s private key, SIDV = rjPpub , and pro-

ceeds as in the verification of the proposed scheme and responds to A
accordingly.

Note that B aborts the security game during a verification query with prob-
ability 2

qH1
.

Output: After A has made its queries, it finally outputs a valid signature (U∗, σ∗)
on a message m∗ from a signer with identity ID∗

S for a designated verifier with
identity ID∗

V with a non-negligible probability εA(λ) such that:
– A has never submitted ID∗

S or ID∗
V during the key extraction queries;

– (U∗, σ∗) was never given as a response to a signature query on the message
m∗ with the signer’s identity ID∗

S , and the designated verifier’s identity
ID∗

V ; and
– σ∗ = e(U∗ + h∗Q∗

IDS , S∗
IDV ).

If A did not make H1-query for the identities ID∗
S and ID∗

V , then the prob-
ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1 ] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} �= {α, β}, then B reports failure and terminates.

Solution to BDHP: Otherwise, as in the forking lemma [13], B repeats the game
with the same random tape for x� but with different choices of a random set for
H2-queries to obtain another forgery (U∗, σ′) on the message m∗ with h′ such
that h∗ �= h′ and σ∗ �= σ′. Then,

σ∗

σ′ =
e(U∗ + h∗QIDS , SIDV )
e(U∗ + h′QIDS , SIDV )

=
e(h∗QIDS , SIDV )
e(h′QIDS , SIDV )

=
e(QIDS , SIDV )h∗

e(QIDS , SIDV )h′

= e(QIDS , SIDV )(h
∗−h′) = e(aP, bcP )(h

∗−h′) = (e(P, P )abc)(h
∗−h′) . (6)
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Let (h∗ −h′)−1 mod q = ĥ. Then, from the above equation, B solves the BDHP
by computing

e(P, P )abc = (σ∗/σ′)ĥ (7)

Probability calculation: If B does not abort during the simulation then A’s view
is identical to its view in the real attack. The responses to H1-queries and H2-
queries are as in the real attack, since each response is uniformly and indepen-
dently distributed in G1 and Z

∗
q respectively. The key extraction, signature and

verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS
. (8)

The probability that A did H1-query for the identities ID∗
S and ID∗

V and that
{ID∗

S , ID∗
V} = {IDα, IDβ} is

(

1 − 1
q2

)( 2
qH1(qH1 − 1)

)

. (9)

Clearly B’s advantage εB(λ) for solving the BDHP, that is, the total proba-
bility that B succeeds to solve BDHP, is the product of A’s advantage εA(λ) of
forging the proposed ID-SDVS and the above two probabilities. Hence

εB(λ) ≥
(

1 − 1
q2

)(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS( 2
qH1(qH1 − 1)

)

εA(λ) .

Time calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, signature queries and verification queries, qH1 + qH2 + qE + qS + qV .
Hence the maximum running time required by B to solve the BDHP is

t′ ≤ (qH1 + qE + 3qS + qV )SG1 + (qS + qV )Pe + qSOG1 + OG2 + SG2 + t

as B requires to compute one scalar multiplication in G1 to respond to H1 hash
query, one scalar multiplication in G1 to respond to key extraction query, three
scalar multiplications in G1 to respond to signature query, one scalar multiplica-
tion in G1 to respond to verification query; one pairing computation to respond
to signature query, one pairing computation to respond to verification query, one
group operation in G1 to respond to signature query, and, one group operation
in G2 and one scalar multiplication in G2 to output a solution of BDHP.

5.3 Unverifiability

We now prove that the proposed ID-SDVS is strongly designated. That is, any
third party other than the signer and the designated verifier, cannot verify the
validity of a signature from a signer for a designated verifier with non-negligible
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probability. We show that if there exists a PPT adaptive chosen message and
adaptive chosen identity algorithm which can verify the proposed ID-SDVS, then
there exists another PPT algorithm which can use the earlier algorithm to solve
the DBDHP. In particular, we prove the following theorem:

Theorem 2. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which breaks the designated unverifiability of the
proposed ID-SDVS scheme in time t with success probability εA(λ), then there
exists a PPT adversary B(εB(λ), t′) which solves DBDHP with success probability
at least

εB(λ) ≥
(

1 − 1
q2

)(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS( 2
qH1(qH1 − 1)

)

εA(λ)

in time at most

t′ ≤ (qH1 + qE + 3qS + qV )SG1 + (qS + qV )Pe + qSOG1 + SG1 + SG2 + Pe + t

where SG1 , SG2 , OG1 , OG2 and Pe are as defined in Theorem 1.

Proof: Let for a security parameter λ, B is challenged to solve the DBDHP for

〈q, e : G1 × G1 → G2, P, aP, bP, cP, ω〉

where G1 is an additive cyclic group of prime order q with generator P , G2

is a multiplicative cyclic group of prime order q with generator e(P, P ), and
e : G1 × G1 → G2 is a cryptographic bilinear map as described in Sect. 2 and
ω

$← G2. a, b, c
$← Z

∗
q are unknown to B. The goal of B is to solve DBDHP

by verifying if e(P, P )abc = ω using A, the adversary who claims to forge the
proposed ID-SDVS scheme.

B simulates the security game for strongness with A by doing the Setup
and by responding the H1-queries, H2-queries, Key extraction queries, Signature
queries and Verification queries as in the security game for unforgeability.

Output: After A has made its queries, it finally outputs a message m∗, an identity
ID∗

S of a signer and an identity ID∗
V of a designated verifier on which it wishes to

be challenged.
If A did not make H1-query for the identities ID∗

S and ID∗
V , then the prob-

ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1 ] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} �= {α, β}, then B reports failure and terminates.

Solution to DBDHP: Otherwise, B
– chooses a random r

$← Z
∗
q ;

– sets U = rP ;
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– sets h = H2(m∗, U);
– sets σ = e(bP, cP )rωh;

and challenges A to verify the validity of the signature (U, σ).
Then, the verification holds if and only if each of the following holds

σ = e(U + hQIDS , SIDV )

⇐⇒ e(bP, cP )rωh = e(rP + haP, bPpub)

⇐⇒ e(P, P )bcrωh = e(rP + haP, bcP )

⇐⇒ e(P, P )bcrωh = e(P, P )(r+ha)bc

⇐⇒ ωh = (e(P, P )abc)h

⇐⇒ ω = e(P, P )abc

Then, from the above equation, B solves the DBDHP by simply returning
the response of A to the strongness challenge.

Probability calculation: If B does not abort during the simulation then A’s view
is identical to its view in the real attack. The responses to H1-queries and H2-
queries are as in the real attack, since each response is uniformly and indepen-
dently distributed in G1 and Z

∗
q respectively. The key extraction, signature and

verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS
. (10)

The probability that A did H1-query for the identities ID∗
S and ID∗

V and that
ID∗

S = IDα and ID∗
V = IDβ is

(

1 − 1
q2

)( 2
qH1(qH1 − 1)

)

. (11)

Clearly B’s advantage εB(λ) for solving the DBDHP, that is, the total prob-
ability that B succeeds to solve DBDHP, is the product of A’s advantage εA(λ)
of breaking the strongness of the proposed ID-SDVS and the above two proba-
bilities. Hence

εB(λ) ≥
(

1 − 1
q2

)(

1 − 2
qH1

)qE+qV (

1 − 2
qH1(qH1 − 1)

)qS( 2
qH1(qH1 − 1)

)

εA(λ) .

Time calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, signature queries and verification queries, that is, qH1+qH2+qE+qS+qV .
Hence the maximum running time required by B to solve the DBDHP is

t′ ≤ (qH1 + qE + 3qS + qV )SG1 + (qS + qV )Pe + qSOG1 + SG1 + SG2 + Pe + t

since during the query phase, B requires to compute the same operations as in
the security game for unforgeability and additionally, one scalar multiplication
in G1, one scalar multiplication in G2 and one pairing computation to output a
solution of DBDHP.
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5.4 Non-transferability

The proposed scheme achieves the property of non-transferability as defined in
Sect. 3. For this, we show that the transcripts simulated by the designated verifier
are indistinguishable from the signatures that he receives from the signer. In the
proposed scheme it can be observed that it is hard to distinguish the signature
(U, σ) on a message m by the signer from the signature (̂U, σ̂) on the message
m by the designated verifier, that is, the distributions

U = rP ∈ G1

h = H2(m,U) ∈ Z
∗
q

V = rPpub + hSIDS ∈ G1

σ = e(V,QIDV )

and

̂U = r̂P ∈ G1
̂h = H2(m, ̂U) ∈ Z

∗
q

̂V = r̂P + ̂hQIDS ∈ G1

σ̂ = e(̂V , SIDV )

are identical.

5.5 Strongness

The proposed scheme also achieves the property of strongness as defined in
Sect. 3. Let σ ← DVSign(SIDS , QIDV ,m). Then σ ← DVTrans(SID∗

V , QID∗
S ,m)

(where QID∗
S and SID∗

V are defined as in the following) since

σ = e(rPpub + hSIDS , QIDV )
= e(rPpub + hSIDS , xQID∗

V ) where QIDV = xQID∗
V

= e(rxPpub + hxSIDS , QID∗
V )

= e(rPpub + r(x−1)Ppub + hxSIDS , QID∗
V )

= e(rPpub + r(x−1)hY + hxSIDS , QID∗
V ) where Y = h−1Ppub

= e(rPpub + h(r(x−1)Y + xSIDS ), QID∗
V )

= e(rPpub + hSID∗
S , QID∗

V ) where SID∗
S = r(x−1)Y + xSIDS .

6 Comparative Analysis

Here, we compare our scheme with similar existing ID-SDVS schemes [8,11,15]
and show that our scheme is more efficient in the sense of computation and
operation time than these schemes.

For the computation of operation time in pairing-based scheme, to achieve the
1024-bit RSA level security, Tate pairing defined over the supersingular elliptic
curve E = Fp : y2 = x3 + x with embedding degree 2 was used, where q is
a 160-bit Solinas prime q = 2159 + 217 + 1 and p a 512-bit prime satisfying
p + 1 = 12qr, using MIRACL [12], a standard cryptographic library, and the
hardware platform is a PIV 3 GHZ processor with 512 M bytes memory and
the Windows XP operating system. For computation of operation time, we refer
to [4] where the operation time for various cryptographic operations have been
obtained. The OT(Operation Time) for one scalar multiplication is 6.38 ms, for
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one exponentiation in G2 it is 5.31 ms, for one map-to-point hash function it
is 3.04 ms and for one pairing computation it is 20.04 ms. Other operations are
omitted in the following analysis since their computation cost is trivial, such as
the cost of an inverse operation over Z∗

q takes only 0.03 ms and one general hash
function takes less than 0.001 ms which are negligible with compare to the time
taken by the other operations.

To evaluate the total operation time in the efficiency comparison tables,
we use the method from [1,4]. In each of the two phases: signature generation
and verification, we compare the total number of scalar multiplications (SM),
exponentiations (E), map-to-point hash functions (H), bilinear pairings (P) and
the consequent operation time (OT) (Table 2).

Table 2. Efficiency comparision

Scheme SM E H P OT(ms)

Susilo et al. [15] 2 1 0 1 38.11

Kancharla et al.[8] 6 0 1 0 61.36

Lee et al. [11] 2 1 0 2 58.15

Our scheme 3 0 0 1 39.18

Signature Generation

Scheme SM E H P OT(ms)

Susilo et al. [15] 0 2 0 2 50.70

Kancharla et al.[8] 0 0 1 4 83.20

Lee et al. [11] 1 0 0 2 46.46

Our scheme 1 0 0 1 26.42

Verification

Scheme SM E H P OT(ms)

Susilo et al. [15] 2 3 0 3 88.81

Kancharla et al.[8] 6 0 2 4 144.56

Lee et al. [11] 3 1 0 4 104.61

Our scheme 4 0 0 2 65.60

Overall Scheme

7 Conclusion

In this paper, we have proposed a strong designated verifier signature scheme on
the identity-based setting. Our scheme is strong existentially unforgeable against
adaptive chosen message and adaptive chosen identity attack under standard
assumptions, the hardness of the computational and decisional Bilinear Diffie-
Hellman problems. We also provide a proof for the strongness property of our
scheme. Moreover, we do an efficiency comparison of our scheme with the existing
similar schemes. In the view of computational cost and operation time our scheme
is significantly more efficient than the existing schemes. The scheme is suitable
for the environments in which less computational cost with strong security is
required.
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