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Abstract. We show completeness results for secret sharing schemes
realizing mNP access structures. We begin by proposing a new,
Euclidean-type, division technique for access structures. Using this new
technique we obtain several results in characterizing access structures for
efficient (unconditionally secure) secret sharing schemes:

– We show a useful transformation that achieves efficient schemes
for complex access structures using schemes realizing simple access
structures.

– We show that, assuming every access structure in P ∩ mono admits
efficient secret sharing, the existence of an efficient secret sharing
for an access structure in mNP that is also complete for mNP under
Karp/Levin monotone-reductions implies secret sharing schemes for
all of mNP.

– We finally improve upon the above completeness result by obtaining
the same under ordinary Karp/Levin reductions.

1 Introduction

Secret sharing schemes enable a dealer, holding a secret piece of information, to
distribute this secret among a set Pn = {P1, . . . , Pn} of n players such that only
some predefined authorized subsets of players can reconstruct the secret from
their shares. The (monotone) collection Γn ⊆ 2Pn of authorized sets that can
reconstruct the secret is called an access structure. The security of a secret shar-
ing scheme requires that any unauthorized set B of players, i.e., B /∈ Γn, pulling
its shares together and attempt to reconstruct the secret should fail with high
probability. Consequently, the security is termed unconditional (computational)
if the players are computationally unbounded (computationally bounded).

A secret sharing scheme realizing an access structure Γn over n players is
termed size-efficient, if the total length of the n shares is polynomial in n; semi-
efficient, if the share distribution is computable in poly(n) time; and efficient, if
both share distribution and reconstruction are computable in poly(n) time. The
notions of semi-efficiency and efficiency are stronger than size-efficiency.

A major problem in this field is the characterization of access structures in
terms of secret sharing schemes that they admit, where the security and efficiency
of the later is measured as a combination of the following:

– Unconditional/computational security, and
– size-efficiency/semi-efficiency/efficiency.
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 380–390, 2016.
DOI: 10.1007/978-3-319-49890-4 21



Secret Sharing for mNP: Completeness Results 381

For concrete characterization, now onwards, we use the term access structure
for referring to an infinite family of access structures Γ = {Γn}n∈N (for every
n, Γn is an access structure over Pn) and the term “scheme realizing Γ” for
referring to an infinite family of secret sharing schemes {Πn}n∈N such that for
every n, Πn realizes Γn.

Associating sets A ⊆ Pn with there characteristic vectors xA ∈ {0, 1}n, we
can define a language LΓ ⊆ {0, 1}∗ associated with an access structure Γ =
{Γn}n∈N. Namely, LΓ = ∪∞

n=1{xA ∈ {0, 1}n | A ∈ Γn}. An access structure
Γ = {Γn}n∈N is said to be in the complexity class P ∩ mono if the associated
language LΓ ∈ P ∩ mono. The Γ is said to be in mNP if LΓ ∈ mNP.

The question of access structures characterization has been widely studied.
The extensive work in this area can be divided under the following two category
of security: unconditional and computational. The most general class of access
structures with known characterization results under them are given below.

– Unconditional Security
• P ∩ mono: It has been extensively studied whether there exists efficient

secret sharing schemes for every access structures in P∩mono? In fact, it
is wide open if the same is true for all of mP - the class of access structure
strictly contained in P ∩ mono. With several schemes realizing different
classes of access structures [6–8,11,12,16], the most general class of access
structures in P∩mono that admit efficient perfect secret sharing are those
that can be described by a polynomial-size monotone span program [13].

• mNP: The question of obtaining unconditionally secure efficient schemes
for access structures in mNP was met with an impossibility result. Steven
Rudich observed that if NP �= coNP, then for Hamiltonian access structure
in NP there exists no semi-efficient secret-sharing scheme (specifically,
schemes with perfect privacy) [4].

– Computational Security
• P ∩ mono: It is known that the whole of mP admit efficient secret shar-

ing schemes that are computationally secure - assuming that one-way
functions exists [4,17].

• mNP: Komargodski, Naor and Yogev [14] showed semi-secret sharing
schemes for all of mNP (and therefore cover all of P ∩ mono), where
the reconstruction algorithm is polynomial-time if the NP-witnesses for
the authorized sets are given. Their scheme assumes existence of witness
encryption [9] for whole of NP and one-way functions.

1.1 Our Results

An important corollary of the main result of Komargodski, Naor and Yogev [14]
is the following completeness theorem for secret sharing schemes realizing mNP
access structures:

Theorem 1 [14]. Assume that one-way functions exists. Then existence of an
efficient computational secret sharing for an access structure in mNP that is also
complete for mNP under Karp/Levin reductions implies efficient computational
secret sharing scheme for every access structure in mNP.
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The above theorem was established using the following two results:

– A secret sharing scheme for an access structure Γ = {Γn}n∈N implies witness
encryption for the associated language LΓ .

– Completeness theorem of witness encryption: Using standard Karp/Levin
reductions between NP-complete languages, one can transform a witness
encryption for a single NP-complete language to a witness encryption scheme
for any other language in NP.

Beside one-way functions, the completeness result in Theorem 1, therefore,
is obtained based on the existence of witness encryption which in turn relies
on strong computational assumptions related to indistinguishability obfusca-
tion [2,3].

In this paper we obtain such completeness results for mNP access structures
assuming that efficient secret sharing schemes exists for access structures in
P∩mono. More importantly, our completeness results hold under reductions with
unconditional security. As a corollary, our completeness results also partially
resolve the following problem that was left open in [14]: Is there a way that can
use secret sharing scheme for access structures in P ∩ mono to achieve secret
sharing scheme for access structures in mNP?

In particular, this paper makes the following important contributions:

– Our foremost contribution lies in defining a new Euclidean-type division tech-
nique for access structures. Namely, for a given pair of access structures (more
like a pair of dividend and divisor), this new technique distill a list of access
structures, possibly simpler then dividend and divisor (more like a remain-
der). Unlike the ordinary Euclidean division for numbers, the remainder access
structures are not fixed and choosing them carefully is of great importance
as it allows for simplified reductions among schemes realizing these access
structures.

– We next illustrate the usefulness of our proposed division property by describ-
ing a transformation that achieves efficient secret sharing scheme for a given
access structure using secret sharing schemes for appropriately defined divisor
and remainder access structures.

– The above transformation helps us to achieve our first completeness theorem:
Namely we show that, assuming access structures in P ∩mono admit efficient
secret sharing, the existence of an efficient secret sharing for an access structure
in mNP that is also complete for mNP under Karp/Levin monotone-reductions
implies secret sharing schemes for all of mNP.

– The above completeness theorem is obtained for NP-completeness under
monotone-reductions. Removing the later restriction proved to be an impor-
tant achievement of our work. A clever construction of remainder access struc-
tures helped us to obtain our second completeness theorem: Namely we show,
assuming access structures in P ∩ mono admit efficient secret sharing, the
existence of an efficient secret sharing for an access structure in mNP implies
efficient secret sharing for all of mNP.
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2 Preliminaries

2.1 Access Structure and Its Complexity

Let Pn
def= {P1, . . . , Pn} be a set of n players. A collection Γ ⊆ 2Pn of subsets of

Pn is called monotone increasing if, A ∈ Γ and A ⊆ B ⊆ Pn implies B ∈ Γ . A
collection Γ ′ ⊆ 2Pn is called monotone decreasing if, A ∈ Γ ′ and B ⊆ A implies
B ∈ Γ ′.

Definition 1 (Access Structure). An access structure on Pn is a tuple
(Γn, Γ ′

n), where Γn, Γ ′
n ⊆ 2Pn , such that

– Γn is monotone increasing; Γ ′
n is monotone decreasing, and

– Γn ∩ Γ ′
n = ∅.

For an access structure (Γn, Γ ′
n), the collection Γ ′

n is often called an adversary
access structure. We call an access structure complete if, the adversary access
structure Γ ′

n complements Γn in full. We consider only complete access structures
in this paper and they are simply denoted by Γn.

Definition 2 (Complete Access Structure). An access structure (Γn, Γ ′
n) is

called complete if, Γ ′
n = 2Pn\Γn, i.e., Γn ∪ Γ ′

n = 2Pn .

An access structure Γn can be freely identified with its characteristic Boolean
function fΓn

: {0, 1}n → {0, 1}. To each set A ⊆ Pn associate a unique (charac-
teristic vector) vA = (vA

1 , . . . , vA
n ) ∈ {0, 1}n as follows: for every j in 1 ≤ j ≤ n,

vA
j = 1 iff Pj ∈ A. Define, DΓn

= {vA | A ∈ Γn} ⊆ {0, 1}n.

Definition 3 (Associated Boolean function). For access structure Γn, the
corresponding boolean function fΓn

: {0, 1}n → {0, 1} is defined as follows: for
x ∈ {0, 1}n, fΓn

(x) = 1 iff x ∈ DΓn
.

Clearly, the boolean function fΓn
is monotone. Associating access structures

Γn with their boolean functions fΓn
, we can associate a language LΓ ⊆ {0, 1}∗

to a family of access structures Γ = {Γn}n∈N.

Definition 4 (Associated Language). For an access structure Γ = {Γn}n∈N,
the corresponding language LΓ ⊆ {0, 1}∗ is defined as follows: LΓ = {x ∈
{0, 1}∗ | fΓ|x|(x) = 1}, where |x| denotes the length of the binary string x.

For any access structure Γ = {Γn}n∈N, the corresponding language LΓ is
clearly in the complexity class mono - the class of monotone languages.

Definition 5 (Access Structure Complexity). An access structure Γ =
{Γn}n∈N is said to be

1. in P ∩ mono if LΓ ∈ P ∩ mono,
2. in NP ∩ mono if LΓ ∈ NP ∩ mono.

It is a well known fact that, P ∩ mono �= mP [1,15], where the complexity
class mP denotes languages that admit monotone circuits of polynomial-size;
but NP∩mono = mNP [10], where mNP denotes the class of languages accepted
by polynomial-size monotone non-deterministic circuits. We will refer to access
strutures in NP ∩ mono by mNP access structures.
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2.2 Secret Sharing

An n-party secret sharing scheme involves n + 1 players: A dealer D, a set
Pn = {P1, . . . , Pn} of n participants, and an access structure Γn over P.
A secret sharing scheme for an arbitrary Γn allows the dealer to distribute shares
of a secret value such that

– Privacy: any unauthorized set B ⊆ P of participants, i.e., B /∈ Γn, must not
obtain any information on the secret from their collective shares.

– Reconstructability: any authorized coalitions A ⊆ P of participants, i.e.,
A ∈ Γn, must always reconstruct the secret from their collective shares.

Definition 6 (Secret Sharing). An n-party secret sharing for an access struc-
ture Γn over Pn = {P1, . . . , Pn} is a tuple Π =

(
Share,Rec, Σ,Σ1, . . . , Σn

)
such

that the following holds:

– Algorithms
• Share.Π: The share distribution algorithm Share.Π is a probabilistic algo-

rithm that, on input s ∈ Σ returns (Sh1, . . . ,Shn) $← Share.Π(s), where
Shi ∈ Σi, 1 ≤ i ≤ n.

• Rec.Π: The secret reconstruction algorithm Rec.Π is a deterministic
algorithm that on input (σ1, . . . , σn) ∈ ∏n

i=1(Σi ∪ {∗}) returns a value
σ ← Rec.Π(σ1, . . . , σn) where σ ∈ Σ ∪ {⊥}. The distinguished symbols ∗
and ⊥ have the following meanings: σi = ∗ means the ith share is miss-
ing, and ⊥ ← Rec.Π(σ1, . . . , σn) indicates that the algorithm is unable to
recover the underlying secret.

– Property
• Correctness: For every authorized set of players A ⊆ Pn, i.e., A ∈ Γn,

and for every s ∈ Σ, we have

Rec
(
Share.Π(s)A

)
= s (1)

where Share.Π(s)A restricts the n length vector (Sh1, . . . ,Shn) $← Share.
Π(s) to its A-entries, i.e., Share.Π(s)A = {Shi}Pi∈A.

• Security: The security of a secret sharing scheme is measured by the max-
imum probability with which a adversary A can win the following privacy
game - PrivacySS.

The game is played between the dealer D and an adversary A as follows:

1. A first picks a pair of secrets s0, s1 ∈ S, and gives them to D.
2. D chooses a random bit b ∈ {0, 1} and executes Share.Π(sb).
3. A queries shares of a set of participants B ⊆ P such that B /∈ Γn.
4. A outputs a guess b′ for b using the shares Share.Π(sb)B.

The adversary is said to win the game if b′ = b. We measure its success as

AdvPrivacySS(A) = 2 · Pr[b′ = b] − 1.
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Σ � s0, s1 ← A;

b
$← {0, 1};

(Sh1, . . . , Shn)
$← Share.Π(sb);

Γn �� B ← A;
{0, 1} � b′ ← A Share.Π(sb

)
B

)

Fig. 1. PrivacySS: The Privacy Game

Definition 7 (Privacy). A secret sharing scheme is said to have:

* Perfect-Privacy, when A is unbounded and AdvPrivacySS(A) = 0
* ε-Statistical Privacy, when A is unbounded and AdvPrivacySS(A) < ε, where ε > 0.
* Computational-Privacy, when A is a probabilistic polynomial time (PPT) algo-

rithm and AdvPrivacySS(A) < η(k), where η(·) is a negligible function, and k
denotes the underlying security parameter of the scheme1.

• Efficiency: Different measure of efficiency is used in the secret sharing liter-
ature. A secret sharing scheme Π is termed

* Size Efficient, if the total length of the n shares is polynomial in n.
* Semi Efficient, if the share distribution algorithm Share.Π is computable in

poly(n) time.
* Efficient, if both Share.Π and Rec.Π are computable in poly(n) time.

Definition 8 (Secret Sharing for Languages). A family of secret sharing
schemes Π = {Πn}n∈N is said to realize Γ = {Γn}n∈N if for every n ∈ N, Πn

realizes Γn. Then Π is also called a secret sharing scheme for the corresponding
language LΓ (see Definition 4).

Consequently, Π = {Πn}n∈N realizing Γ = {Γn}n∈N is said to be (size/semi)
efficient if for every n ∈ N, Πn realizing Γn is (size/semi) efficient.

In the following, all the secret sharing schemes that we will present are both
efficient and have perfect privacy.

3 A Division Property for Access Structures

For n,m ∈ N, consider the following access structures:

– Γn - an access structure over Pn = {P1, . . . , Pn}
– Δm - an access structure over Qm = {Q1, . . . , Qm}, and
– for every i in 1 ≤ i ≤ m, Γ

(i)
n - an access structure over Pn.

1 In this setting, the instantiations of n, |Σ|, Share.Π, Rec.Π and so on, admits an
additional parameter k.



386 M.P. Jhanwar and K. Srinathan

Definition 9. We say Γn mod Δm
def= {Γ

(1)
n , . . . , Γ

(m)
n } if, for every A ⊆ Pn the

set A mod Δm
def=

{
Qi ∈ Qm | A ∈ Γ

(i)
n

} ⊆ Qm satisfies the following property:

A ∈ Γn ⇐⇒ A mod Δm ∈ Δm (2)

The division property in Definition 9 closely resembles the ordinary Euclidean
division for integers, where Γn is dividend, Δm is divisor, and remainder is formed
by the list of access structures {Γ

(1)
n , . . . , Γ

(m)
n }. Clearly, the size (the number

of authorized sets) of each Γ
(i)
n is at most that of Γn. We will later see the

importance of obtaining smaller size (and therefore simpler) Γ
(i)
n ’s.

4 A Transformation

Theorem 2. Let Γn, Γ
(1)
n , . . . , Γ

(m)
n be access structures on Pn, and Δm be an

access structure on Qm such that Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }. Assume

1. ΠΔm
= (Share.ΠΔm

,Rec.ΠΔm
) is a perfect secret sharing scheme realizing

Δm, and
2. for every i in 1 ≤ i ≤ m, Π

Γ
(i)
n

= (Share.Π
Γ

(i)
n

,Rec.Π
Γ

(i)
n

) is a perfect secret

sharing realizing Γ
(i)
n

then there exists ΠΓn
- a perfect secret sharing scheme realizing Γn.

Proof: The secret sharing scheme ΠΓn
can be described as follows:

– Share.ΠΓn
: The share distribution algorithm distributes a secret s among play-

ers in Pn = {P1, . . . , Pn} as follows:
• Compute (s1, . . . , sm) $← Share.ΠΔm

(s)

• For every i in 1 ≤ i ≤ m, compute (si1, . . . , sin) $← Share.Π
Γ

(i)
n

(si)
The player Pj , for every j in 1 ≤ j ≤ n, gets the following share:

Pj ← (s1j , s2j , . . . , smj)

– Rec.ΠΓn
: For every authorized set A ∈ Γn, the players in A pull together

their respective shares and reconstruct the secret as follows. Let A mod Δm =
{Qi1 , . . . , Qir} ⊆ Qm, for some r in 1 ≤ r ≤ m. By the definition of
A mod Δm, A ∈ Γ

(ij)
n , j in 1 ≤ j ≤ r, and therefore players in A recon-

struct intermediate shares sij ’s using reconstruction algorithm Rec.Π
Γ

(ij)
n

’s
respectively. As A mod Δm is in Δm, the secret is finally reconstructed by
computing s ← Rec.ΠΔm

(si1 , . . . , sir ).
– Privacy: Secret is perfectly hidden from the combined shares of any unautho-

rized set A′ /∈ Γn. Let A′ mod Δm = {Qi1 , . . . , Qiu} and it does not belongs
to Δm. The players in A′ can compute intermediate shares sij ’s, 1 ≤ j ≤ u,
of the secret s. But these shares {si1 , . . . , siu} will not reveal any information
(perfectly hidden) about s as {Qi1 , . . . , Qiu} /∈ Δm.
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5 Completeness Under Monotone-Reductions

Theorem 3. Assume access structures in P∩mono admit efficient secret shar-
ing. Then existence of an efficient secret sharing for an access structure in mNP
that is also complete for mNP under Karp/Levin monotone-reductions implies
secret sharing schemes for all of mNP.

Proof: Let Δ = {Δm}m∈N be an access structure in mNP that is also com-
plete for mNP under monotone-reductions and suppose it admits an efficient
secret sharing scheme. Consider an arbitrary access structure Γ = {Γn}n∈N

from mNP. We now show, for every n ∈ N, Γn admits an efficient secret sharing
scheme. For any fix n, there exists (completeness of Δ) an m ∈ N such that Γn

is monotone-reducible to Δm, i.e., there exists a polynomial time computable
monotone function KR : 2Pn → 2Qm such that the following holds:

∀A ⊆ Pn, A ∈ Γn ⇐⇒ KR(A) ∈ Δm. (3)

Define, for every i in 1 ≤ i ≤ m, an access structure Γ
(i)
n over Pn as follows:

For i ∈ [m], Γ (i)
n =

{
A ⊆ Pn | Qi ∈ KR(A)

}
. (4)

The theorem follows by proving the following claims (see Theorem 2):

Claim 1: Each Γ
(i)
n is in P ∩ mono, 1 ≤ i ≤ m

Claim 2: Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }.

Proof of Claim 1: We first show Γ
(i)
n is monotone, i.e., for every A,B ⊆ Pn with

Γ
(i)
n � A ⊆ B, we show B ∈ Γ

(i)
n . Firstly, Qi ∈ KR(A) as A ∈ Γ

(i)
n . Secondly,

the monotone property of KR map implies KR(A) ⊆ KR(B). These two mean
that Qi ∈ KR(B), implying B belongs to Γ

(i)
n .

We now show Γ
(i)
n is in P. For any set A ⊆ Pn, A ∈ Γ

(i)
n iff Qi ∈ KR(A). But,

KR is a polynomial time computable function and therefore computing KR(A)
is efficient, implying Γ

(i)
n is in P.

Proof of Claim 2: We now prove Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }, i.e., for every

A ⊆ Pn, A ∈ Γn iff A mod Δm ∈ Δm. But

A mod Δm = {Qi ∈ Qm | A ∈ Γ (i)
n }

= {Qi ∈ Qm | Qi ∈ KR(A)}
= KR(A)

Therefore, for every set A ⊆ Pn

A ∈ Γn
eqn−3⇐⇒ KR(A) ∈ Δm

⇐⇒ A mod Δm ∈ Δm

This completes the proof.
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6 Completeness Without Monotone-Reductions

Theorem 4. Assume access structures in P ∩ mono admit efficient secret
sharing. Then existence of an efficient secret sharing for an access struc-
ture in mNP that is also complete for mNP under ordinary (not necessarily
monotone) Karp/Levin reductions implies efficient secret sharing for all those
Γ = {Γn}n∈N ∈ mNP that satisfy the following: for every n there exists a kn ∈ N

such that Γn = Bkn
∪ {A ⊆ Pn | |A| ≥ kn + 1}, where Bkn

is a subset of
Akn

def= {A ⊆ Pn | |A| = kn}.
Proof: Let Δ = {Δm}m∈N be an access structure in mNP that is also complete
and it admits an efficient secret sharing scheme. Consider an arbitrary access
structure Γ = {Γn}n∈N from mNP satisfying the following: for every n there
exists a kn ∈ N such that Γn = Bkn

∪ {A ⊆ Pn | |A| ≥ kn + 1}, where Bkn

is a subset of Akn
, the set of all kn-size subsets of Pn. We now show that Γn

admits efficient secret sharing scheme for every n ∈ N. For any fix n, there exists
(completeness of Δ) m ∈ N such that Γn is Karp/Levin reducible to Δm, i.e.,
there exists a polynomial time computable function KR : 2Pn → 2Qm with the
following property:

∀A ⊆ Pn, A ∈ Γn ⇐⇒ KR(A) ∈ Δm. (5)

We now define, for every i in 1 ≤ i ≤ m, an access structure Γ
(i)
n on Pn as

follows:

Γ (i)
n =

{
A ⊆ Pn | Qi ∈ KR(A) ∧ |A| = kn

} ∪ {A ⊆ Pn | |A| ≥ kn + 1} (6)

It is easy to see that, for every i in 1 ≤ i ≤ m, Γ
(i)
n is in P∩mono. To prove the

theorem, it suffices to show (by Theorem 2) that Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n },

i.e., for every A ⊆ Pn, A ∈ Γn iff A mod Δm ∈ Δm. We consider the following
exhaustive cases.

– |A| < kn: Clearly, A /∈ Γn and A mod Δm = ∅ /∈ Δm, and therefore A ∈ Γn

iff A mod Δm ∈ Δm holds true.
– |A| ≥ kn + 1: In this case, A ∈ Γn and A mod Δm = Qm ∈ Δm, and therefore

A ∈ Γn iff A mod Δm ∈ Δm holds true.
– |A| = k: Finally, in this case

A mod Δm = {Qi ∈ Qm | A ∈ Γ (i)
n }

= {Qi ∈ Qm | (Qi ∈ KR(A) ∧ |A| = kn) ∨ (|A| ≥ kn + 1)}
= {Qi ∈ Qm | Qi ∈ KR(A)}
= KR(A)

Hence, A ∈ Γn
eqn−5⇐⇒ KR(A) ∈ Δm ⇐⇒ A mod Δm ∈ Δm.

Corollary 1. Assume access structures in P∩mono admit efficient secret shar-
ing. Then existence of an efficient secret sharing for an access structure in mNP
implies efficient secret sharing for all of mNP.
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Proof: It suffices (by Theorem 4) to prove the following: the class of access
structures Γ = {Γn}n∈N ∈ mNP as described in Theorem 4 cover whole of mNP.
This follows by a technique developed in [5]. We now show access structures in
mNP are in one-one correspondence with access structures of the type described
in Theorem 4.

Let Γ̂ = {Γ̂n}n∈N be an arbitrary access structure in mNP. For every n ∈ N,
we now define, based on Γ̂n, an access structure Γ̃2n. First identify Γ̂n with the set
LΓ̂n

⊆ {0, 1}n. Now define Γ̃2n over a set of 2n players P̃2n = {Pi,b}1≤i≤n;b∈{0,1}:

Γ̃2n = Bn ∪ {A ⊆ P̃2n | |A| ≥ n + 1}

where the collection Bn consists of precisely the following n-size subsets of P̃2n:
for every x = (x1, . . . , xn) ∈ LΓ̂n

, the set {P1,x1 , . . . , Pn,xn
} is in Bn. Clearly,

the complexity of checking whether a set A ⊆ P̃2n is in Γ̃2n is exactly the
complexity of deciding the membership in LΓ̂n

. However LΓ̂ = {LΓ̂n
}n∈N is in

mNP (as Γ̂ ∈ mNP) and so Γ̃ = {Γ̃2n}n∈N is in mNP. Finally, Γ̃ = {Γ̃2n}n∈N is
clearly of the type described in Theorem 4. This proves the corollary.
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