
Orr Dunkelman
Somitra Kumar Sanadhya (Eds.)

 123

LN
CS

 1
00

95

17th International Conference on Cryptology in India
Kolkata, India, December 11–14, 2016
Proceedings

Progress in Cryptology –
INDOCRYPT 2016

Lecture Notes in Computer Science 10095

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Orr Dunkelman • Somitra Kumar Sanadhya (Eds.)

Progress in Cryptology –

INDOCRYPT 2016
17th International Conference on Cryptology in India
Kolkata, India, December 11–14, 2016
Proceedings

123

Editors
Orr Dunkelman
University of Haifa
Haifa
Israel

Somitra Kumar Sanadhya
Indraprashtha Institute of Information
Technology (IIIT-D)

New Delhi
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-49889-8 ISBN 978-3-319-49890-4 (eBook)
DOI 10.1007/978-3-319-49890-4

Library of Congress Control Number: 2016957382

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Since its introduction in 2000, INDOCRYPT has been widely acknowledged as the
leading Indian venue for cryptography. As part of this tradition, INDOCRYPT 2016 was
held during December 11–14, in Kolkata. This was the fourth time the conference was
hosted Kolkata since its introduction by Prof. Bimal Roy. Past venues were held
throughout India: Kolkata (2000, 2006, 2012, 2016), Chennai (2001, 2004, 2007, 2011),
Hyderabad (2002, 2010), New Delhi (2003, 2009, 2014), Bangalore (2005, 2015),
Kharagpur (2008), and Mumbai (2013).

INDOCRYPT 2016 attracted 84 submissions from 20 different countries, out of
which 23 were selected at the end of a long review process: Most papers were reviewed
by at least three committee members, whereas papers co-authored by Program Com-
mittee members were reviewed by at least five reviewers. In addition to the 283 reviews
(produced with the aid of 91 additional reviewers), the Program Committee generated
223 comments during the discussion phase. We would like to express our sincere
gratitude to all the members of the Program Committee, as well as all the external
reviewers who helped in the challenging reviewing process.

The submission and review process was done using the iChair software package. We
wish to express our sincere gratitude to Thomas Baignères and Matthieu Finiasz for the
iChair software, which facilitated a smooth and easy submission and review process.

In addition to the 23 presentations of accepted papers, the attendees of INDOCRYPT
also enjoyed three invited talks given by leading experts. Claudio Orlandi (Denmark)
spoke about “Faster Zero-Knowledge Protocols for General Circuits and Applications”;
the talk by François-Xavier Standaert (Belgium) covered “Leakage-Resilient Symmetric
Cryptography”; and Tetsu Iwata (Japan) discussed “Breaking and Repairing Security
Proofs of Authenticated Encryption Schemes.”

Finally, we would like to thank the general chair, Prof. Bimal Roy, and the local
organizing team comprising members from the Applied Statistics Unit, the R.C. Bose
Center for Cryptology and Security at ISI Kolkata, and the Cryptology Research
Society of India.

December 2016 Orr Dunkelman
Somitra Sanadhya

Organization

General Chair

Bimal Roy Indian Statistical Institute Kolkata, India

Program Chairs

Orr Dunkelman University of Haifa, Israel
Somitra Sanadhya Indraprastha Institute of Information Technology

Delhi, India

Program Committee

Diego Aranha University of Campinas, Brazil
Jean-Philippe Aumasson Kudelski Security, Switzerland
Steve Babbage Vodafone Group, UK
Begül Bilgin KU Leuven, Belgium
Rishiraj Bhattacharya Indian Statistical Institute Kolkata, India
Céline Blondeau Aalto University, Finland
Andrey Bogdanov Technical University of Denmark, Denmark
Itai Dinur Ben-Gurion University of the Negev, Israel
Helena Handschuh Cryptography Research, USA and KU Leuven,

Belgium
Carmit Hazay Bar-Ilan University, Israel
Takanori Isobe Sony Corporation, Japan
Nathan Keller Bar-Ilan University, Israel
Tanja Lange Technische Universiteit Eindhoven, The Netherlands
Gaëtan Leurent Inria, France
Atefeh Mashatan Ryerson University, Canada
Florian Mendel Graz University of Technology, Austria
Katerina Mitrokotsa Chalmers University of Technology, Sweden
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep Mukhopadhyay IIT Kharagpur, India
David Naccache ENS, France
Michael Naehrig Microsoft Research, USA
Elisabeth Oswald University of Bristol, UK
Arpita Patra Indian Institute of Science, Bangalore
Thomas Peyrin Nanyang Technological University, Singapore
Axel Poschmann NXP Semiconductors, Germany
Vanishree Rao PARC, USA

Francisco
Rodríguez-Henríquez

CINVESTAV-IPN, Mexico

Bimal Roy Indian Statistical Institute Kolkata, India
Santanu Sarkar IIT Madras, India
Jean-Pierre Seifert Technische Universität Berlin, Germany
Sourav Sen Gupta Indian Statistical Institute Kolkata, India
François-Xavier Standaert UCL, Belgium
Muthuramakrishnan

Venkitasubramaniam
University of Rochester, USA

Xiaoyun Wang Tsinghua University, China

Additional Reviewers

Gora Adj
Shashank Agarwal
Gilad Asharov
Josep Balasch
Subhadeep Banik
Paulo S.L.M. Barreto
Rana Barua
Srimanta Bhattacharya
Johannes Blömer
Debrup Chakraborty
Suvradip Chakraborty
Ayantika Chatterjee
Amit Kumar Chauhan
Chien-Ning Chen
Ran Cohen
Deirdre Connolly
Somindu C.R.
Abhijit Das
Poulami Das
Thomas De Cnudde
David Derler
Sandra Díaz-Santiago
Ning Ding
Christoph Dobraunig
Luis J. Dominguez Perez
Tuyet Duong
Ratna Dutta
Romain Gay
Satrajit Ghosh
Siyao Gou
Lorenzo Grassi

Hannes Gross
Mike Hamburg
Shoichi Hirose
Harunaga Hiwatari
Mike Hutter
Dirmanto Jap
Mahabir Jhawar
Bhavana Kanukurthi
Mikko Kiviharju
Ilya Kizhvatov
François Koeune
Kim Laine
Bei Liang
Patrick Longa
Atul Luykx
Monosij Maitra
Subhamoy Maitra
Daniel Malinowski
Mark Marson
Takahiro Matsuda
Siang Meng Sim
Santos Merino del Pozo
Guillermo Morales-Luna
Pratyay Mukherjee
Sayantan Mukherjee
Mridul Nandi
Khoa Nguyen
Ruben Niederhagen
Eduardo Ochoa-Jiménez
Tobias Oder
Claudio Orlandi

Elena Pagnin
Sumit Kumar Pandey
Tapas Pandit
Sikhar Patranabis
Oxana Poburinnaya
Antigoni Polychroniadou
Somindu Ramanna
Guillaume Rambaud
Shantanu Rane
Joost Renes
Bastian Richter
Lil Rodríguez-Henríquez
Sushmita Ruj
Debapriya Basu Roy
Vishal Saraswat
Pascal Sasdrich
Tobias Schneider
Kyoji Shibutani
Igor Shparlinski
Danilo Šijačić
Deng Tang
Mehdi Tibouchi
Ayineedi Venkateswarlu
Vincent Verneuil
Qingju Wang
Benjamin Wesolowski
Alexander Wild
Bo-Yin Yang
Hong-Sheng Zhou

VIII Organization

Invited Talks

Leakage-Resilient Symmetric Cryptography -
Overview of the ERC Project CRASH, Part II

François-Xavier Standaert

ICTEAM Institute, Crypto Group, Université catholique de Louvain,
Ottignies-Louvain-la-Neuve, Belgium

fstandae@uclouvain.be

Abstract. Side-channel analysis is an important concern for the security of
cryptographic implementations, and may lead to powerful key recovery attacks if
no countermeasures are deployed. Therefore, various types of protection mech-
anisms have been proposed over the last 20 year. The first solutions in this
direction were typically aiming at reducing the amount of information leakage
directly at the hardware level, and independent of the algorithm implemented.
Over the years, a complementary approach (next denoted as leakage-resilience)
emerged, trying to exploit the formalism of modern cryptography in order to
design new constructions and security models in which the guarantees of prov-
able security can be extended from mathematical objects towards physical ones.
This naturally raises the question whether the formal results obtained in these
models are practically relevant (both in terms of performance and security)?

The development of sound connections between the formal models of
leakage-resilient (symmetric) cryptography and the practice of side-channel
attacks was one of the main objectives of the CRASH project funded by the
European Research Council. In this talk, I will survey a number of results we
obtained in this direction. For this purpose, I will start with a separation result for
the security of stateful and stateless primitives. I will then follow with a dis-
cussion of (i) pseudorandom building blocks together with the theoretical chal-
lenges they raise, and (ii) authentication, encryption and authenticated encryption
schemes together with the practical challenges they raise. I will finally conclude
by discussing emerging trends in the field of physically secure implementations.

The extended version of this abstract is available from [1].

Reference

1. http://perso.uclouvain.be/fstandae/PUBLIS/184.pdf

http://perso.uclouvain.be/fstandae/PUBLIS/184.pdf

Faster Zero-Knowledge Protocols for General
Circuits and Applications

Claudio Orlandi

Aarhus University, Aarhus, Denmark

Abstract. Zero-knowledge protocols (ZKP) [GMR85] are one of the corner-
stones of modern cryptography. In a nutshell, a ZKP allows a prover P (with a
secret input x) to persuade a verifier V that f(x) = 1 for some public function f,
without the V learning any other information about x.

A large body of literature has investigated the efficiency of ZKP for state-
ments with a rich algebraic structure, starting from Schnorr’s classic ZKP for
discrete logarithm [Sch89]. However, the lack of efficient ZKP for interesting,
non-algebraic statements (such as “I know x such that SHA - 256 (x) = y” for a
public y), has arguably prevented the application of ZKPs to real-world appli-
cations.

In this talk I will describe two recent ZKPs for arbitrary circuits, ZKGC
[JKO13] and ZKBoo [GMO16], together with their applications.

The first protocol (ZKGC), leveraging on the impressive advances in the
field of practically efficient secure two-party computation (2PC), proposes to
perform zero-knowledge from garbled Boolean circuits. As opposed to general
2PC (where many copies of the circuit must be garbled to achieve active
security), when constructing ZKP it is enough to garble and evaluate a single
circuit. Moreover, due to the nature of the application (since the verifier has no
secret input), more efficient special purpose privacy-free garbling schemes
[FNO15] can be used instead.

The second protocol instead (ZKBoo) follows a more classic “commit-
challenge-response” structure (i.e., is a Σ-protocol). In ZKBoo the prover
decomposes the computation of the function f in such a way that subsets of the
computation can be checked by the verifier without revealing any information
about the input to the computation, following the approach proposed by
[IKOS07].

ZKGC and ZKBoo both have interesting properties: ZKGC leads to smaller
proof sizes and, since it is based on garbled circuits, it can be combined very
naturally with pre-existing secure computation tools towards building interesting
applications such as: enforcing input validity in secure two-party computation
[Bau16, KMW16], attributed-based key exchange with general policies
[KKL+16], privacy-preserving credentials [CGM16], ZKPs for RAM programs
[HMR15], etc.

ZKBoo on the other hand is faster and can be used for both Boolean and
arithmetic circuits. Perhaps most importantly, ZKBoo can be made
non-interactive using the Fiat-Shamir [FS86] heuristic. This qualitative advan-
tage allows to use ZKBoo in applications such as (post-quantum) signature
schemes from symmetric-key primitives [DOR+16], blind certificate authorities
[WPaR16], etc.

It is exciting to see the growing number of applications which are enabled (or
benefit) by the advances in the realm of ZKPs, and it seems likely that future
research will make use of these tools in designing cryptographic solutions to
interesting problems.

From a technical point of view, the main bottleneck in ZKGC and ZKBoo is
their communication complexity, which in both cases is proportional to the
number of non-linear gates in f times the security parameter (resulting in proof
sizes in the order of hundreds of kylobytes for functions like SHA-1/256).
Whether and how we can overcome this is a major and very exciting research
question.

Acknowledgements. Research supported by: the Danish National Research Founda-
tion and The National Science Foundation of China (grant 61361136003) for the
Sino-Danish Center for the Theory of Interactive Computation; the European Union
Seventh Framework Programme ([FP7/2007-2013]) under grant agreement number
ICT-609611 (PRACTICE).

References

[Bau16] Baum, C.: On garbling schemes with and without privacy. In: Zikas, V., De Prisco, R.
(eds.) Security and Cryptography for Networks - 10th International Conference, SCN
2016, Amalfi, Italy, 31 August – 2 September 2016, Proceedings, pp. 468–485.
Springer, Switzerland (2016)

[CGM16] Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic and
non-algebraic statements with applications to privacy preserving credentials. In:
Robshaw, M., Katz, J. (eds.) Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2016,
Proceedings, Part III, pp. 499–530. Springer, Heidelberg (2016)

[DOR+16] Derler, D., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D.: Digital signa-
tures from symmetric-key primitives. In: Manuscript (2016)

[FNO15] Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) Advances
in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April
2015, Proceedings, Part II, pp. 191–219.Springer, Heidelberg (2015)

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology — CRYPTO
1986, pp. 186–194. Springer, Heidelberg (1986)

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for boolean
circuits. In: 25th USENIX Security Symposium, USENIX Security 16, Austin, TX,
USA, 10–12 August 2016, pp. 1069–1083 (2016)

[GMR85] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: Proceedings of the 17th Annual ACM Sym-
posium on Theory of Computing, 6–8 May 1985, Providence, Rhode Island, USA,
pp. 291–304 (1985)

Faster Zero-Knowledge Protocols for General Circuits and Applications XIII

[HMR15] Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of non-algebraic
statements with sublinear amortized cost. In: Gennaro, R., Robshaw M. (eds.)
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, 16–20 August 2015, Proceedings, Part II, pp. 150–169.
Springer, Heidelberg (2015)

[IKOS07] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the Thirty-ninth Annual ACM Sympo-
sium on Theory of Computing, STOC 2007, pp. 21–30. ACM (2007)

[JKO13] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS 2013, Berlin, Germany,
4–8 November 2013, pp. 955–966 (2013)

[KKL+16] Kolesnikov, V., Krawczyk, H., Lindell, Y., Malozemoff, A.J., Rabin, T.:
Attribute-based key exchange with general policies. CCS 2016 (2016). http://eprint.
iacr.org/2016/518

[KMW16] Katz, J., Malozemoff, A.J., Wang, X.: Efficiently enforcing input validity in secure
two-party computation. Cryptology ePrint Archive, Report 2016/184 (2016). http://
eprint.iacr.org/2016/184

[Sch89] Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: CRYPTO,
pp. 239–252 (1989)

[WPaR16] Wang, L., Pass, R., Shelat, A., Ristenpart, T.: Secure channel injection and anony-
mous proofs of account ownership. Cryptology ePrint Archive, Report 2016/925
(2016) http://eprint.iacr.org/2016/925

XIV C. Orlandi

http://eprint.iacr.org/2016/518
http://eprint.iacr.org/2016/518
http://eprint.iacr.org/2016/184
http://eprint.iacr.org/2016/184
http://eprint.iacr.org/2016/925

Contents

Public-Key Cryptography

Blending FHE-NTRU Keys – The Excalibur Property 3
Louis Goubin and Francisco José Vial Prado

Approximate-Deterministic Public Key Encryption from Hard
Learning Problems . 25

Yamin Liu, Xianhui Lu, Bao Li, Wenpan Jing, and Fuyang Fang

Adaptively Secure Strong Designated Signature . 43
Neetu Sharma, Rajeev Anand Sahu, Vishal Saraswat,
and Birendra Kumar Sharma

The Shortest Signatures Ever . 61
Mohamed Saied Emam Mohamed and Albrecht Petzoldt

Cryptographic Protocols

CRT-Based Outsourcing Algorithms for Modular Exponentiations. 81
Lakshmi Kuppusamy and Jothi Rangasamy

Verifiable Computation for Randomized Algorithm 99
Muhua Liu, Ying Wu, and Rui Xue

UC-secure and Contributory Password-Authenticated Group Key Exchange . . . 119
Lin Zhang and Zhenfeng Zhang

Side-Channel Attacks

Score-Based vs. Probability-Based Enumeration – A Cautionary Note 137
Marios O. Choudary, Romain Poussier, and François-Xavier Standaert

Analyzing the Shuffling Side-Channel Countermeasure
for Lattice-Based Signatures . 153

Peter Pessl

Implementation of Cryptographic Schemes

Atomic-AES: A Compact Implementation of the AES
Encryption/Decryption Core . 173

Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni

http://dx.doi.org/10.1007/978-3-319-49890-4_1
http://dx.doi.org/10.1007/978-3-319-49890-4_2
http://dx.doi.org/10.1007/978-3-319-49890-4_2
http://dx.doi.org/10.1007/978-3-319-49890-4_3
http://dx.doi.org/10.1007/978-3-319-49890-4_4
http://dx.doi.org/10.1007/978-3-319-49890-4_5
http://dx.doi.org/10.1007/978-3-319-49890-4_6
http://dx.doi.org/10.1007/978-3-319-49890-4_7
http://dx.doi.org/10.1007/978-3-319-49890-4_8
http://dx.doi.org/10.1007/978-3-319-49890-4_9
http://dx.doi.org/10.1007/978-3-319-49890-4_9
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10

Fast Hardware Architectures for Supersingular Isogeny Diffie-Hellman
Key Exchange on FPGA . 191

Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari-Kermani

AEZ: Anything-But EaZy in Hardware . 207
Ekawat Homsirikamol and Kris Gaj

Functional Encryption

Private Functional Encryption: Indistinguishability-Based Definitions
and Constructions from Obfuscation . 227

Afonso Arriaga, Manuel Barbosa, and Pooya Farshim

Revocable Decentralized Multi-Authority Functional Encryption 248
Hikaru Tsuchida, Takashi Nishide, Eiji Okamoto, and Kwangjo Kim

Symmetric-Key Cryptanalysis

On Linear Hulls and Trails. 269
Tomer Ashur and Vincent Rijmen

Related-Key Cryptanalysis of Midori . 287
David Gérault and Pascal Lafourcade

Some Proofs of Joint Distributions of Keystream Biases in RC4 305
Sonu Jha, Subhadeep Banik, Takanori Isobe, and Toshihiro Ohigashi

Practical Low Data-Complexity Subspace-Trail Cryptanalysis
of Round-Reduced PRINCE . 322

Lorenzo Grassi and Christian Rechberger

Foundations

On Negation Complexity of Injections, Surjections
and Collision-Resistance in Cryptography . 345

Douglas Miller, Adam Scrivener, Jesse Stern,
and Muthuramakrishnan Venkitasubramaniam

Implicit Quadratic Property of Differentially 4-Uniform Permutations 364
Theo Fanuela Prabowo and Chik How Tan

Secret Sharing for mNP: Completeness Results. 380
Mahabir Prasad Jhanwar and Kannan Srinathan

New Cryptographic Constructions

Receiver Selective Opening Security from Indistinguishability Obfuscation. . . 393
Dingding Jia, Xianhui Lu, and Bao Li

XVI Contents

http://dx.doi.org/10.1007/978-3-319-49890-4_11
http://dx.doi.org/10.1007/978-3-319-49890-4_11
http://dx.doi.org/10.1007/978-3-319-49890-4_12
http://dx.doi.org/10.1007/978-3-319-49890-4_13
http://dx.doi.org/10.1007/978-3-319-49890-4_13
http://dx.doi.org/10.1007/978-3-319-49890-4_14
http://dx.doi.org/10.1007/978-3-319-49890-4_15
http://dx.doi.org/10.1007/978-3-319-49890-4_16
http://dx.doi.org/10.1007/978-3-319-49890-4_17
http://dx.doi.org/10.1007/978-3-319-49890-4_18
http://dx.doi.org/10.1007/978-3-319-49890-4_18
http://dx.doi.org/10.1007/978-3-319-49890-4_19
http://dx.doi.org/10.1007/978-3-319-49890-4_19
http://dx.doi.org/10.1007/978-3-319-49890-4_20
http://dx.doi.org/10.1007/978-3-319-49890-4_21
http://dx.doi.org/10.1007/978-3-319-49890-4_22

Format Preserving Sets: On Diffusion Layers of Format Preserving
Encryption Schemes . 411

Kishan Chand Gupta, Sumit Kumar Pandey, and Indranil Ghosh Ray

Author Index . 429

Contents XVII

http://dx.doi.org/10.1007/978-3-319-49890-4_23
http://dx.doi.org/10.1007/978-3-319-49890-4_23

Public-Key Cryptography

Blending FHE-NTRU Keys – The Excalibur
Property

Louis Goubin and Francisco José Vial Prado(B)

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France

Francisco.vial-prado@uvsq.fr

Abstract. Can Bob give Alice his decryption secret and be convinced
that she will not give it to someone else? This is achieved by a proxy
re-encryption scheme where Alice does not have Bob’s secret but instead
she can transform ciphertexts in order to decrypt them with her own key.
In this article, we answer this question in a different perspective, rely-
ing on a property that can be found in the well-known modified NTRU
encryption scheme. We show how parties can collaborate to one-way-glue
their secret-keys together, giving Alice’s secret-key the additional ability
to decrypt Bob’s ciphertexts. The main advantage is that the proto-
cols we propose can be plugged directly to the modified NTRU scheme
with no post-key-generation space or time costs, nor any modification
of ciphertexts. In addition, this property translates to the NTRU-based
multikey homomorphic scheme, allowing to equip a hierarchic chain of
users with automatic re-encryption of messages and supporting homo-
morphic operations of ciphertexts. To achieve this, we propose two-party
computation protocols in cyclotomic polynomial rings. We base the secu-
rity in presence of various types of adversaries on the RLWE and DSPR
assumptions, and on two new problems in the modified NTRU ring.

1 Introduction

Is it possible to avoid betrayal in a hierarchic scenario? Imagine a chain of
users equipped with a public-key encryption scheme, where high level users can
decrypt ciphertexts intended to all lower level users in the chain. This is trivial
to construct using any public-key cryptosystem E : just transfer low-level secret-
keys to upper levels following the hierarchy. The evident drawback is that high-
level users can betray their children and distribute their secrets to other parties.
Using a proxy re-encryption procedure or multiple trapdoors is hence preferred,
because parents do not have direct knowledge of their children’s secrets. A proxy
re-encryption scheme is a cryptosystem that allows a public transformation of
ciphertexts such that they become decryptable to an authorized party. This is a
particular case of a cryptosystem allowing delegation of decryption, which finds
applications in mail redirection, for instance. In this article, we give a solution
to the betrayal issue in another perspective, relying on a new property we found
in the well-known modified NTRU encryption scheme, and which we refer to as
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 3–24, 2016.
DOI: 10.1007/978-3-319-49890-4 1

4 L. Goubin and F.J. Vial Prado

“Excalibur”. Basically, this feature allows to generate a secret-key that decrypts
encryptions under multiple public-keys and behaves like a regular key of the
cryptosystem.

1.1 The Excalibur Property

A public-key encryption scheme E = (Keygen,Enc,Dec) with plaintext space M
has the Excalibur property if there is an algorithm that allows two users Alice
and Bob with key-pairs (skold

A , pkold
A) and (skB , pkB) respectively to forge a new

key-pair for Alice (skA, pkA) such that

– Alice’s key skA can decrypt ciphertexts in Enc(pkA,M) ∪ Enc(pkB ,M).
– Bob cannot decrypt ciphertexts in Enc(pkA,M).
– Alice cannot generate a secret-key sk′

B that is able to decrypt ciphertexts in
Enc(pkB,M) but is not able to decrypt ciphertexts in Enc(pkA,M) (i.e. she
cannot give away access to Bob’s secret without leaking her own).

The intuition is that skA is a one-way expression of (skold
A , skB). As Alice owns

decryption rights over Bob’s ciphertexts, this can be seen as automatic proxy
re-encryption, in the sense that the re-encryption procedure is the identity. The
idea is to “glue” Alice and Bob secret-keys together, resulting on a master key
given to Alice. This Excalibur master key can be separated into factors only
by Bob, hence the name of the feature: Bob plays the role of young Arthur,
who is the only man in the kingdom able to separate Excalibur from the stone.
Moreover, Alice can glue her key to an upper user’s key, who inherits decryption
over Bob’s ciphertexts, and so forth, and if we suppose that no user is willing to
give away own secrets, this achieves automatic N–hop re-encryption and sets a
hierarchic chain.

We therefore have a scheme in which a single private-key can decrypt mes-
sages under multiple public-keys, and we will see that if a group of low-level
users cheated in the joint key generation of this private-key (in order to sabo-
tage or harden decryption), the secret-key holder may be able to trace it back to
the wrongdoers, by simply testing decryptions and looking at the private-key’s
coefficients. In a sense, this is the inverse setting of a public-key traitor tracing
scheme, where there are multiple secret-keys associated with a single public-key,
and such that if a group of users collude in creating a new private-key achieving
decryption with the public-key, it is possible to trace it to its creators, see for
instance [4].

Three main advantages of this property over the trivial transfer of keys, over
re-encryption schemes and over multiple trapdoor schemes are (i) there are no
extra space or time costs: as soon as the keys are blended, the resulting key-
pair acts as a fresh one and no ciphertext modification is necessary, (ii) our key
generation procedure can be plugged directly into the (multikey) NTRU-based
fully homomorphic encryption scheme, supporting homomorphic operations and
automatic N -hop re-encryption and (iii) a user with a powerful key does not need
to handle a “key ring” of secret-keys of her children; her key-pair (sk, pk) acts

Blending FHE-NTRU Keys – The Excalibur Property 5

as a regular NTRU key. In contrast, the classical proxy re-encryption scenario
is more flexible; a user can agree a decryption delegation at any moment to
any user, whereas in our proposal once the keys are blended, modifications in
hierarchy involve new key generations. This is why our proposal is more suitable
to a rigid pre-defined hierarchic scenario.

1.2 Modified NTRU

The NTRUEncrypt cryptosystem is a public-key encryption scheme whose secu-
rity is based on short vector problems on lattices. Keys and ciphertexts are
elements of the polynomial ring Z[X]/〈φ(x)〉 where φ(x) = xn − 1, and coeffi-
cients are considered modulo a large prime q. This scheme was defined in 1996
by Hoffstein, Pipher, Silverman and gained much attention since its proposal
because of its efficiency and hardness reductions. In [25], Stehlé and Steinfeld
provided modifications to the scheme in order to give formal statistic proofs,
which ultimately led to support homomorphic operations with an additional
assumption in [23]. Among these modifications, we highlight the change of ring
and parameters restrictions: R = Z[x]/〈φ(x)〉 where now φ(x) = xn + 1, n is a
power of 2 (hence φ is the 2n-th cyclotomic polynomial), and the large prime
modulus is such that xn +1 splits into n different factors over Fq (namely, q = 1
mod 2n). We will consider the modified NTRU scheme, but we believe that,
possibly via a stretching of parameters, the original NTRU may also exhibit the
Excalibur property.

1.3 Excalibur Key Generation

The way to glue two secret-keys is very simple: just multiply them together!
Indeed, the modified NTRU scheme offers a fruitful property: If one replaces a
secret-key with a small polynomial multiple of it, decryption still works. If this
polynomial multiple is itself a secret-key, then by symmetry decryption with the
resulting key will be correct in the union of ciphersets decryptable by one key or
another. However, addressing the main point of this article, parties must multiply
the involved polynomials using multiparty protocols, since they do not want to
trust individual secrets to each other. To achieve this joint key generation, we
rely on multiparty protocols in the polynomial ring Rq = Fq[x]/(xn + 1) in
both the secret and shared setting. To this end, we describe two multiplication
protocols between mutually distrusting Alice and Bob:

1. Secret Inputs Setting: Alice and Bob hold f, g ∈ Rq respectively. They
exchange random polynomials and at the end Alice learns fg + r ∈ Rq where
r is a random polynomial known by Bob, and Bob learns nothing.

2. Additively Shared Inputs Setting: Alice and Bob hold fA, gA ∈ Rq and
fB , gB ∈ Rq respectively such that f = fA + fB and g = gA + gB . They
exchange some random polynomials, and at the end Alice and Bob learn
πA, πB respectively such that πA + πB = fg ∈ Rq. Revealing πA or πB to
each other does not leak information about the input shares.

6 L. Goubin and F.J. Vial Prado

Let us illustrate how to use these protocols in Alice’s key generation. Suppose
that Bob keys were previously generated. Generating Alice’s secret-key is fairly
easy: Informally, if β ∈ Rq is Bob’s secret-key, let Alice and Bob sample random
αA, αB ∈ Rq respectively, with small coefficients. They perform the first protocol
on inputs f = αA and g = β, and Bob chooses r = αBβ. At the end, Alice learns
γ = αAβ +αBβ = αβ ∈ Rq, and Bob learns nothing. One may stop here and let
Alice compute her public-key pkA = 2hγ−1 ∈ Rq for suitable h ∈ Rq, but she
may cheat and generate other NTRU fresh keys (skA,′ pk′

A) and then distribute
freely Bob’s secret γ. This is why the public-key is also generated jointly, and
moreover, the public-key will be generated before the secret-key, this way Alice
must first commit to a public-key pkA.

1.4 Fully Homomorphic Encryption

Fully Homomorphic Encryption schemes allow public processing of encrypted
data. Since Gentry’s breakthrough in [10–12], there has been considerable effort
to propose FHE schemes that are efficient [1,2,7,14–18,20], secure [2,6,8,9,13],
and having other properties [7,9,13,19]. We highlight the existence of Multi-
key FHE schemes, in which some ciphertexts can only be decrypted with the
collaboration of multiple key-holders. This was first constructed in [23], and it
reduces the general multiparty computation problem to a particular instance.
We encourage the reader to see the latest version of this article.

All of the above schemes have a PPT encryption algorithm that adds random
“noise” to the ciphertext, and propose methods to add and multiply two cipher-
texts. With these methods they give an (homomorphic) evaluation algorithm of
circuits. The noise in ciphertexts grows with homomorphic operations (especially
with multiplication gates) and after it reaches a threshold, the ciphertext can no
longer be decrypted. Thus, only circuits of bounded multiplicative degree can
be evaluated: these schemes are referred to as leveled FHE schemes. Gentry pro-
posed a technique called “bootstrapping” that transform a ciphertext into one of
smaller noise that encrypts the same message, therefore allowing more homomor-
phic computations. This (algorithmically expensive) technique remains the only
known way to achieve pure FHE scheme from a leveled FHE scheme. In order to
do this, the decryption circuit of the leveled scheme must be of permitted depth
and the new scheme relies on non-standard assumptions.

Nevertheless, leveled FHE schemes with good a priori bounds on the multi-
plicative depth do satisfy most applications requirements, see [22,27]. We suggest
that the use of our protocols in the LATV scheme use the leveled version, but
as pointed out in [23], the scheme can be transformed into a fully homomorphic
scheme by boostrapping and modulus reduction techniques, both adaptable to
the use of Excalibur keys.

1.5 FHE and Bidirectional Multi-hop Re-encryption Paradigm

It has been widely mentioned (for instance in the seminal work [11]) that
a fully homomorphic encryption scheme allows bidirectional multi-hop proxy

Blending FHE-NTRU Keys – The Excalibur Property 7

re-encryption. The argument is similar to the celebrated bootstrapping
procedure: let c be an encryption of m using Bob’s secret-key sB . First pub-
lish τ , an encryption of sB under Alice’s public-key, then homomorphically run
the decryption circuit on c and τ , the result is an encryption of m decrypt-
able by Alice’s secret-key. However, we point out that this is pure re-encryption
only if Alice never gets access to τ , since she can decrypt and learn sB directly.
This restriction tackles the pure re-encryption definition, and in light of this
the NTRU-based FHE scheme with the Excalibur property may be a starting
point to clear out this paradigm (as it satisfies the pure definition, but fails to
be bidirectional).

1.6 Our Contributions

In this article, we propose a key generation protocol that allows to glue NTRU
secret-keys together in order to equip a hierarchic chain of users, such that a
given user has the ability to decrypt all ciphertexts intended to all lower users
in the chain, and she cannot give away secrets without exposing her own secret-
key. This procedure can be plugged directly into the (multikey) FHE-scheme
by Lopez-Alt et al., it is compatible with homomorphic operations and has no
space costs or ciphertext transformations, and important users do not have to
handle key rings. To achieve this, we describe two-party computations protocols
in cyclotomic polynomial rings that may be of independent interest. We base
the semantic security on the hardness of RLWE and DSPR problems, and the
semi-honest and malicious security in a new hardness assumption which we call
“Small Factors Assumption”. In this assumption we define the “Small GCD
Problem” and we show that any algorithm solving this problem can be used to
break the semantic security of the modified NTRU scheme.

2 Preliminaries

2.1 Notation

Let q be a large prime. We let the set {−�q/2�, . . . , �q/2�} represent the equiv-
alence classes of Z/qZ, and both notations [x]q or x mod q represent modular
reduction of x into this set. For a ring A, A× stands for the group of units (or
invertible elements) of A, 〈a〉 or (a) is the ideal generated by a ∈ A. Also, we
denote by Fk the finite field of k elements, for k = ql ∈ Z. The notation e ← ξ
indicates that the element e is sampled according to the distribution ξ, and
e

R←− S means that e was sampled from the set S using the uniform distribution.

Similarly, A
R⊂ S means that each a ∈ A was sampled uniformly at random on S.

Finally, let R
def
= Z[x]/(xn + 1), we identify an element of R with its coefficient

vector in Z
n, and for v(x) = v0 + v1x + · · · + vn−1x

n−1 in R, we denote by
||v||∞, ||v||2 its l∞, l2 norm respectively.

8 L. Goubin and F.J. Vial Prado

2.2 The Quotient Ring Rq

Operations in the modified NTRU scheme are between elements of Rq
def
=

Fq[x]/(xn + 1), the ring of polynomials modulo Φ2n(x) = xn + 1 (i.e. Φ2n is
the 2n–th cyclotomic polynomial) and coefficients in Fq, where n is a power of
2 and q is a large prime. Addition and multiplication of polynomials are per-
formed modulo Φ2n(x) and modulo q. The ring Rq is not a unique factorization
domain, in fact, small units of this ring serve as NTRU secret-keys. The Chinese
remainder theorem shows that the group of units is large, and thus y = ru ∈ Rq

where r ∈ Rq is a random element and u is a unit is a good masking of u: it is
unfeasible to recover u from y for large n. Let us collect some lemmas related to
the set of invertible elements of Rq.

Lemma 2.2.1. Let q ≥ 3 be a prime number and Φn(x) ∈ Z[x] be the n–th
cyclotomic polynomial. Then Φn(x) is irreducible over Fq if and only if q is a
generator of the group (Z/nZ)×.

Lemma 2.2.2. If n > 2 is a power of 2, then (Z/2nZ)× is not cyclic and there-
fore Φ2n(x) = xn + 1 is not irreducible over Fq. In addition, xn + 1 decomposes
into l distinct irreducible factors over Fq for prime q ≥ 3: Let (φi)l

i=1 ⊂ Fq[x]
respectively such that xn + 1 =

∏l
i=1 φi(x) over Fq. Then we have a ring iso-

morphism

π :
Fq[x]

(xn + 1)
→

l∏

i=1

Fq[x]
(φi(x))

where
Fq[x]

(φi(x))
� Fqdeg φi .

Corollary 2.2.3. Card(R×
q) =

∏l
i=1

(
qdeg φi − 1

)
.

The proofs are straightforward. In the original modifications in [25], q =
1 mod 2n and hence xn + 1 splits into n distinct linear factors, yielding
Card(Rq)× = (q − 1)n.

2.3 Bounded Gaussian Samplings on Z[x]/(xn + 1)

Let n be a power of 2 and q a prime number, R = R0
def
= Z[x]

(xn+1) and as before

Rq
def
= Fq[x]

(xn+1) . The modified NTRU scheme uses a particular distribution in Rq,
which we refer to as K-bounded by rejection Gaussian, serving to sample both
message noises and secret-keys. Definitions follow.

Definition 2.3.1. Let Gr be the Gaussian distribution over R, centered about 0
and of standard deviation r.

Sampling from Gr can be done in polynomial time, for instance approximating
with Irwin-Hall distributions. Consider the following definitions from [23]:

Definition 2.3.2. A polynomial e ∈ R is called K-bounded if ||e||∞ < K.

Blending FHE-NTRU Keys – The Excalibur Property 9

Definition 2.3.3. A distribution is called K-bounded over R if it outputs a
K-bounded polynomial.

Definition 2.3.4 [K-bounded by rejection Gaussian]. Let ḠK be the distribution
GK/

√
n that repeats sampling if the output is not K-bounded.

Lemma 2.3.5 (Expansion factors for φ(x) = xn + 1, from [23]). For any
polynomials s, t ∈ R,

||s · t mod φ(x)||2 ≤ √
n · ||s||2 · ||t||2,

||s · t mod φ(x)||∞ ≤ n · ||s||∞ · ||t||∞.

Corollary 2.3.6. Let χ be a K-bounded distribution over R and let s1, . . . , sl ←
χ. Then

∏l
i=1 si is (nl−1Kl)-bounded.

3 Modified NTRU Encryption

We review the modified NTRU encryption scheme as presented in [23], and we
insist on the multi-key property. The message space is {0, 1} and the ciphertext
space is Rq = Fq[x]

(xn+1) . Let q be a large prime, 0 < K � q, n be a power of 2
and ḠK be the K-bounded by rejection discrete Gaussian. A key-pair (sk, pk) is
a tuple of polynomials in Rq, the secret-key being K-bounded.

Keygen(1κ):

Step 1. Sample a polynomial f ← ḠK . Set sk = 2f + 1, if sk is not invertible in
Rq start again.
Step 2. Sample a polynomial g ← ḠK and set pk = 2g · sk−1 ∈ Rq.
Step 3. Output (sk, pk).

Enc(pk,m): Sample polynomials s, e ← ḠK . For message m ∈ {0, 1}, output
c = m + 2e + s · pk mod q.

Dec(sk, c): For a ciphertext c ∈ Rq, compute μ = c · sk ∈ Rq and output
m = μ mod 2.

3.1 The Multikey Property

We describe a decryption property that states that one can decrypt a ciphertext
with the secret-key required for decryption, or a small polynomial multiple of it.

Lemma 3.1.1. Let (f, h) ← Keygen(1κ), m ∈ {0, 1} and let c ← Enc(h,m).
Let θ ∈ R be a M -bounded polynomial satisfying θ mod 2 = 1. If M <
(1/72)(q/n2K2), then

Dec(f, c) = Dec(θ · f, c) = m.

Proof. There exist K-bounded polynomials s, e such that c = m + hs + 2e.
Decryption works since

[fc]q = [fm + fhs + 2fe]q = [fm + 2gs + 2fe]q

10 L. Goubin and F.J. Vial Prado

and supposing there is no wrap-around modulo q in the latter expression, we
have [fc]q mod 2 = fc mod 2 = m. If we replace f by θ · f and try to decrypt,
we have θfc = θfm + 2θgs + 2θfe, and then again, if there is no wrap-around
modulo q (i.e. if M is small enough), θfc mod 2 = m is verified. To ensure
that there is no wrap-around modulo q, one has to give an a priori relation
between K,n and M . In fact, using Corollary 2.3.6, we have ||gs||∞ < nK2 and
||fe||∞ < n(2K + 1)K, and thus

||fc||∞ < 2nK2 + 2n(2K + 1)K + K.

Decryption using f is correct if 2nK2 + 2n(2K + 1)K + K < q/2, and decryp-
tion using θf is correct if nM(2nK2 + 2n(2K + 1)K + K) < q/2. Therefore,
decryption using f is ensured by 36nK2 < q/2, decryption using θf is ensured
by 36n2MK2 < q/2. �

Corollary 3.1.2 [The multikey property]. Let (f1, h1) and (f2, h2) be valid keys,
m1,m2 ∈ {0, 1} and let c1 ← Enc(h1,m1), c2 ← Enc(h2,m2). Let f̃ ← f1 · f2 ∈
Rq. Then

Dec(f̃ , c1) = m1, Dec(f̃ , c2) = m2

provided that K is small enough,

Proof. Apply Lemma 3.1.1 with f = f1 and θ = f2 for the first equation and
f = f2, θ = f1 for the second. �

We can of course extend this facts to show that a highly composite key of
the form f̃ =

∏l
i=1 fi ∈ Rq can decrypt all messages decryptable by any of

fi: Just apply Lemma 3.1.1 with f = fi and θ = f̃/fi, provided good a priori
bounds: In fact ||f̃ ||∞ ≤ nl−1Kl, therefore decryption with this key is ensured
by nl−1Kl � q.

4 Hardness Assumptions

The modified NTRU-FHE scheme semantic security is based on the celebrated
Ring Learning With Errors problem (RLWE) and the new Small Polynomial
Ratio problem (SPR). For the original modified NTRU parameters, the deci-
sional SPR problem reduces to RLWE, but not a single homomorphic operation
can be assured. A stretch of parameters is needed to overcome this, though it
severely harms the statistic proofs of Stehlé and Steinfeld. The DSPR assumption
states that the decisional SPR problem with stretched parameters is computa-
tionally hard. We adopt this same assumption, and in addition, we base the
security of the honest-but-curious model on two problems that involve decom-
posing a polynomial into bounded factors. In the first, one wants to factorize a
polynomial in Rq into two K-bounded polynomials, given the information that
this is possible. In the second, one wants to extract a common factor of two
polynomials such that the remaining factors are K-bounded. We first describe
the DSPR assumption and then our “Small Factors” assumption.

Blending FHE-NTRU Keys – The Excalibur Property 11

4.1 Small Polynomial Ratio Problem, from [23]

In [25] Stehlé and Steinfeld based the security of the modified NTRU encryption
scheme on the Ring Learning With Errors (RLWE) problem [24]. They showed
that the public-key pk = 2g · sk−1 ∈ Rq is statistically close to uniform over Rq,
given that g and f ′ = (sk − 1)/2 were sampled using discrete Gaussians. Their
results holds if (a) n is a power of 2, (b) xn +1 splits over n distinct factors over
Rq (i.e. q = 1 mod 2n) and (c) the Gaussian error distribution has standard
deviation of at least poly(n)

√
q. However, these distributions seem too wide

to support homomorphic operations in the NTRU-FHE scheme. To overcome
this, authors in [23] defined an additional assumption which states that if the
Gaussian is contracted, it is still hard to distinguish between a public-key and a
random element of Rq (even if the statistic-closeness result does not hold).

Definition 4.1.1 [DSPR Assumption]. Let q ∈ Z be a prime integer and ḠK

denote the K-bounded discrete Gaussian distribution over R0 = Z[X]/(xn + 1)
as defined in Definition 2.3.4. The decisional small polynomial ratio assumption
says that it is hard to distinguish the following two distributions on Rq: (1)
A polynomial h = [2gf−1]q ∈ Rq where f ′, g were sampled with ḠK and f =

2f ′ + 1 is invertible over Rq, and (2) a polynomial u
R←− Rq sampled uniformly

at random.

Finally, in a work by Bos et al. [5], authors achieved to base the security
on RLWE alone, alas achieving multikey FHE for a constant number of keys, a
property inherent to any FHE scheme (as proved in the latest version of [23]).

4.2 Small Factorizations in the Quotient Ring

In addition to the RLWE and DSPR assumptions, we rely the semi-honest secu-
rity on the hardness of the following problems. Let us define the distribution Ḡ×

K

which samples repeatedly from ḠK until the output is invertible over Rq.

Small Factors Problem: Let a, b ← Ḡ×
K and let c(x) = a(x) · b(x) ∈ Rq. Find

a(x) and b(x), given c(x) and a test routine T : Rq → {0, 1} that outputs 1 if the
input is in {a, b} and 0 otherwise.

Ḡ×
K–GCD Problem: Let a, b ← Ḡ×

K , and y
R←− Rq. Let u(x) = a(x) · y(x) ∈ Rq

and v(x) = b(x) ·y(x) ∈ Rq. Find a(x), b(x) and y(x), given u(x), v(x) and a test
routine T : Rq → {0, 1} that outputs 1 if the input is in {a, b, y} and 0 otherwise.

Proposition 4.2.1. An algorithm solving the Ḡ×
K–GCD problem can be used to

break the semantic security of the NTRU scheme.

Proof. Given only a public-key of the form pk = [2ab−1]q where a is the secret-

key, sample p
R←− Rq and define (u′, v′) = (ab−1p, p). Define also T : Rq → {0, 1}

12 L. Goubin and F.J. Vial Prado

that for input α ∈ Rq, samples random r
R←− {0, 1}, checks if Dec(α,Enc(pk, r)) ?=

r and outputs 1 if α pass several such tests. Note that u′ = ay′ and v′ = by′ for
y = b′−1p, therefore seeding u′, v′, T to such algorithm outputs a, b, y′. �

Small Factors Assumption: For the modified NTRU parameters, it is unfea-
sible to solve the small factors problem.

In the absence of a formal proof, let us motivate the hardness of the small
factors problem. The SF problem is equivalent to solve a quadratic system of
equations over Fq with additional restrictions on the unknowns. Indeed, each
coefficient of c(x) is a quadratic form on coefficients of a(x), b(x):

ck =
n−1∑

i=0

aibk−i mod n · σk(i) mod q,

where σk(i) = +1 if i ≤ k and −1 otherwise, the unknowns ai, bj follow a
Gaussian distribution about 0 and are bounded in magnitude by K. As K � q,
one can consider the equations over the integers. This results in a Diophan-
tine quadratic system of n equations in 2n variables. Quadratic systems of m
equations with n unknowns can be the Achilles heel for strong cryptographic
primitives, as they can be attacked in the very overdetermined (m ≥ n(n−1)/2)
or very underdetermined (n ≥ m(m+1)) cases in fields with even characteristic.
In [26], authors adapt an algorithm of Kipnis-Patarin-Goubin [21] to odd char-
acteristic fields and show a gradual change between the determined case (m = n,
exp(m) runtime) and the massively underdetermined case (n ≥ m(m + 1),
poly(n) runtime). According to their analysis, our system (n = 2m) escapes
the polynomial-time scope. Let us write the system in clear:

∀i ∈ {0, . . . , n − 1}, ||ai||∞ < K and ||bi||∞ < K,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c0 = a0b0 − a1bn−1 − a2bn−2 − . . . − an−1b1,
c1 = a0b1 + a1b0 − a2bn−1 − . . . − an−1b2,
c2 = a0b2 + a1b1 + a2b0 − . . . − an−1b3,
...

cn−1 = a0bn−1 + a1bn−2 + a2bn−3 + . . . + an−1b0.

As this is an underdetermined system, the linearization Zi,j = aibj results in
a linear system with too many degrees of freedom to select the correct solution;
this is not better than guessing in the initial quadratic system. On the other
hand, this system presents cyclic anti-symmetry, which one could exploit to find
a solution. However, it is not clear how to use the additional symmetry to make
progress in finding solutions (this is also the case when trying to solve lattice
problems in the particular case of ideal lattices).

From another point of view, we are given an element c in the intersection
〈a〉 ∩ 〈b〉 of ideals of R = Z[x]/(xn + 1), and a test routine T : R → {0, 1} that
outputs 1 if the input is b and 0 otherwise (in our scenario, the test routine
is to simply try out the extracted key β = b via decryptions). An algorithmic

Blending FHE-NTRU Keys – The Excalibur Property 13

issue arises again: There is a degree of freedom of one ring unit in the small
factors problem, and an algorithm must exclude trivial factorizations of c: for
instance, if nothing was required for a and b other than invertibility, the size of
the candidates list for (a, b) is at least the number of units of Rq, since it contains
all pairs (a, b) = (cu, cu−1) for invertible u ∈ Rq. Using the K-boundedness of
a, b, the list is to be reduced rejecting all incorrect pairs. To optimize up the
rejection, we suggest a study of the distribution χ

def
= (ḠK)−1, which samples e

according to ḠK and then outputs e−1 ∈ Rq if e is invertible.

5 Two-Party Multiplication Protocols in Rq

In this section we introduce two protocols to jointly achieve multiplication in the
quotient ring between two mutually distrusting parties. We distinguish two set-
tings, the “secret inputs” (which is the classical MPC scenario) and the “shared
inputs” which supposes that both parties have additive shares of some elements.
The latter setting, however, can be regarded as a classical MPC computing a
quadratic expression of the inputs.

5.1 Secret Inputs Setting

Alice and Bob hold f ∈ Rq and g ∈ Rq respectively. The following protocol
allows them to multiply these elements: Alice will learn fg + r ∈ Rq where r
is a polynomial chosen by Bob. The reason of this is that if Alice learns fg,
she can compute g = fg/f . The utility of this protocol may seem questionable,
in the sense that it transfers Alice’s obliviousness from g to r, nevertheless we
will see that careful selection of r will allow the two parties to generate Alice’s
NTRU keys. This protocol is inspired on [3], where authors propose a protocol
to compute scalar products as a building block to perform much more complex
functionalities. It is detailed in Algorithm1.

Algorithm 1. TMP
Require: Alice holds f ∈ Rq, Bob holds g ∈ Rq. Let p, m be public integers.
Ensure: Alice learns fg + r ∈ Rq where Bob knows r ∈ Rq

1: Alice generates m random polynomials {f1, . . . , fm} R⊂ Rq such that
∑m

i=1 fi = f .

2: Bob generates m random polynomials {r1, . . . , rm} R⊂ Rq and r
def
=
∑m

i=1 ri.
3: for i = 1, . . . , m do
4: Alice generates a secret random number k, 1 ≤ k ≤ p.
5: Alice generates random polynomials v1, · · · , vp, sets vk = fi, and send all these

polynomials to Bob.
6: Bob computes the products and masks them: For all j = 1, . . . , p zi,j = vjg+ri.
7: Alice extracts zi,k = fig + ri from Bob with a 1–out–of–p OT protocol.
8: end for
9: Alice computes

∑m
i=1 zi,k = fg + r.

14 L. Goubin and F.J. Vial Prado

Note that throughout the protocol, Bob always computed products of random
polynomials, and to guess the value of f he has to perform ≈ pm additions.

Lemma 5.1.1. If it is not feasible to compute O(pm) additions in Rq, and if
the RLWE assumption holds for q, φ(x) = xn + 1 and uniform χ over Rq, TMP
securely outputs fg + r to Alice and r to Bob in the presence of semi-honest
parties.

Proof. In this model, both parties follow exactly the protocol but try to learn as
much information as possible from their transcript of the protocol. Let viewA,
viewB be the collection of learned elements by Alice and Bob respectively. We
have that viewB contains only polynomials v

(i)
j indistinguishable from uniform

(since they were sampled by semi-honest Alice), and these elements are inde-
pendent from Bob’s input, samplings, and computations. Therefore, to learn f ,
he needs to perform ≈ pm additions. On the other hand Alice wants to learn g
or r and she only has m pairs of the form (fi, fig + ri) (and the output which is
the component-wise sum of these), which by the RLWE assumption are indistin-
guishable from (fi, ui) for uniform ui. In other words, the view of each adversary
contains her input, her output, and a list of polynomials indistinguishable from
random by construction. We can construct simulators SA,SB of protocol TMP
for both parties, and it follows immediately that the views of Alice and Bob are
indistinguishable from the simulators. �

Remark. If both parties are malicious but they do not want to leak their own
inputs, at the end of the protocol they learn nothing about the other party’s
input.

This holds because Alice may deviate from the samplings, but she sends pm
random elements computationally hiding f , Bob will process these pm elements
(deviating as much as he wants from the actual required computation) and send
m elements computationally hiding g and r to Alice via the OT protocol, thus
Bob learns nothing. In this case, deviations from the protocol may cause the
output to be incorrect. We do not worry much about this as soon as Bob’s input
is safe, since we will see that it will result in invalid keys for Alice and the honest
party will know that the other is malicious.

5.2 Shared Inputs Setting

In this setting, two parties share two elements of Rq additively, and they want to
compute shares of the product of these elements. Let Alice and Bob hold xA, yA

and xB , yB respectively such that

x = xA + xB and y = yA + yB.

We propose a protocol SharedTMP, at the end of which Alice and Bob will learn
additive shares πA, πB respectively of the product:

πA + πB = xy ∈ Rq.

Blending FHE-NTRU Keys – The Excalibur Property 15

Algorithm 2. SharedTMP

Require: Alice holds (xA, yA) ∈ R2
q , Bob holds (xB , yB) ∈ R2

q such that x = xA +
xB , y = yA + yB

Ensure: Alice learns πA ∈ Rq, Bob learns πB ∈ Rq such that πA + πB = xy

1: Alice samples rA
R←− Rq, Bob samples rB

R←− Rq

2: Alice and Bob perform TMP(xA, yB) using Bob’s randomness rB , thus Alice learns
uA = xAyB + rB and Bob learns nothing.

3: Bob and Alice perform TMP(xB , yA) using Alice’s randomness rA, thus Bob learns
uB = xByA + rA and Alice learns nothing.

4: Alice computes the share πA = xAyA + uA − rA ∈ Rq

5: Bob computes the share πB = xByB + uB − rB ∈ Rq

Note that πA +πB = (xA +xB)(yA +yB) = xy. Since they only communicate
in steps 2 and 3, security is reduced to two independent instances of the TMP
protocol. We also have the following observation:

Lemma 5.2.1. Let Alice and Bob perform SharedTMP on some non-trivial
inputs, learning at the end πA and πB respectively. Even if Alice reveals πA

to Bob, he cannot deduce Alice’s inputs.

Proof. This follows directly from the randomness of uA − rA. �

6 Excalibur Key Generation

We present our main contribution, three protocols Keygenpk,Keygensk and a
validation protocol, to be performed by Alice and Bob that will generate the
public and the (blended) private-key of Alice, in that order. Let us first give
an informal outline of the protocol. Bob has already generated his key-pair
(β, 2hβ−1) ∈ Rq × Rq. They want to compute a new key-pair (skA, pkA) =
(αβ, 2g(αβ)−1) ∈ Rq ×Rq for Alice, which correctly decrypts encryptions under
pkB since it contains the factor β.

– Excalibur generation of pkA

1. They share polynomials α, g, r of Rq additively, such that α = 1 mod 2.
2. They perform SharedTMP to obtain shares of αr, gr. Alice reveals her

shares to Bob.
3. Bob computes 2(gr) · (αr)−1 · β−1 = 2g(αβ)−1 in Rq and broadcasts the

result.
– Excalibur generation of skA (to be performed after publication of pkA)

1. Let αA + αB = α denote the same additive sharing of α than in the
previous steps, where Alice holds αA and Bob holds αB . Alice and Bob
perform TMP on entries αA, β respectively, and Bob chooses r = αBβ as
the randomness in the protocol.

2. At the end of the protocol, Alice learns αAβ + r = αβ = skA ∈ Rq, and
Bob learns nothing.

16 L. Goubin and F.J. Vial Prado

– Validation protocol: Alice and Bob run tests to be convinced that the keys are
well formed and behave as claimed.

The protocols are described formally in Algorithms 3, 4 and 6.

Algorithm 3. Excalibur Keygenpk

Require: Bob already has his own key-pair (skB , pkB) = (β, 2hβ−1) ∈ Rq × Rq.
Ensure: A public-key for Alice pkA
1: Alice and Bob sample random shares of elements in Rq:

– Alice samples sA ← ḠK , rA
R←− Rq, gA ← ḠK

– Bob samples sB ← ḠK , rB
R←− Rq, gB ← ḠK

Let α = 2(sA + sB) + 1, r = rA + rB , g = gA + gB denote the shared elements.
2: Alice and Bob perform SharedTMP twice to obtain shares of z = α ·r and w = g ·r.

Alice reveals her shares, thus Bob learns z, w.
3: Bob checks: If z is not invertible in Rq, restart the protocol.
4: Bob computes 2w(zβ)−1 = 2g(αβ)−1 and publishes it as pkA, along with a NIZK

proof showing that z, w come from step 2 and that pkA is well-formed.
5: Alice verifies Bob’s proof. If it is not correct, abort the protocol.

If protocol Algorithm 3 was carried out properly, a ciphertext encrypted with
pkA is correctly decrypted by any secret-key having the factor αβ and reasonable
coefficient size. Remark that in step 2, Bob received the element z = α · r: this
does not allow to deduce a functional equivalent of the secret-key αβ, since r
has large coefficients. Also, chances are overwhelmingly high that this element
is in fact invertible in view of Sect. 2.2.

Algorithm 4. Excalibur Keygensk
Require: Bob’s secret-key β and the same sharing of α = 2(sA + sB) + 1 than in

protocol 3.
Ensure: A secret-key for Alice skA = αβ
1: Bob computes r := (2sB + 1)β ∈ Rq

2: Alice and Bob perform the protocol TMP(2sA, β), and Bob uses r as the random
polynomial. At the end Alice knows 2sAβ + r = αβ ∈ Rq.

Once the keys are generated, they must pass a series of decryption and a
well-formedness test. This is described in Algorithms 5 and 6. First, Alice checks
if her new secret-key works as expected, and then she convinces Bob, via a game
of decryptions that she is indeed capable of decrypting ciphertexts encrypted
under pkA and underpkB . As we will see, this validation protocol avoids malicious
activity.

Blending FHE-NTRU Keys – The Excalibur Property 17

Algorithm 5. Validation function (performed by Alice)
1: function Validate(skA, pkA, pkB)
2: for i from 1 to k do
3: μ

R←− {0, 1}
4: μ1 ← Dec(skA,Enc(pkA, μ))
5: μ2 ← Dec(skA,Enc(pkB , μ))
6: if μ1 �= μ or μ2 �= μ then output reject

7: end if
8: end for
9: if ||skA||∞ > n(2K + 1)2 or ||skA · pkB ||∞ > 2(2K + 1) then output size

warning

10: end if
11: output accept

12: end function

Algorithm 6. Validation protocol (performed by Alice and Bob)
Require: Alice holds (skA, pkA) and Bob holds (skB , pkB)
1: Alice runs Validate(skA, pkA, pkB). If the output is reject, abort.

2: Bob picks 2k random messages (m
(A)
1 , . . . , m

(A)
k) and (m

(B)
1 , . . . , m

(B)
k), and for

each i = 1, . . . , k he computes ciphertexts c
(A)
i = Enc(pkA, m

(A)
i), c

(B)
i =

Enc(pkB , m
(B)
i). He send all ciphertexts to Alice.

3: For each i = 1, . . . , k, Alice compute μ
(A)
i = Dec(skA, c

(A)
i), μ

(B)
i = Dec(skA, c

(B)
i).

She sends all plaintexts to Bob.
4: For each i = 1, . . . , k, Bob checks if μ

(A)
i = m

(A)
i and μ

(B)
i = m

(B)
i .

7 Security

We first discuss the honest-but-curious model, where the protocol is strictly
followed but parties try to learn secrets. Then we look at the malicious model,
where one party does not follow the protocol properly, in order to steal secrets
or to sabotage the key generation.

7.1 Honest-But-Curious Model

In this model, we suppose that Alice and Bob follow exactly the instructions in
Algorithms 3, 4, 5 and 6 but they try to learn about each other’s secret with all
collected information.

Proposition. If Alice is able to extract Bob’s key from the protocol, she can
solve the Small Factors Problem or the Ḡ×

K-GCD Problem. If Bob is able to
extract Alice’s key, he can solve the Ḡ×

K-GCD Problem.

18 L. Goubin and F.J. Vial Prado

Proof. Let us focus first in Bob’s chances on learning α (or a functional equiva-
lent of the form θ · α for small θ ∈ Rq). Recall that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pkB = 2hβ−1,
pkA = 2g(αβ)−1,
z = α · r,
w = g · r,
α = 2(sA + sB) + 1.

Let us focus on Bob’s view of the protocol:

V = {(sB , rB , gB , zB , wB , zA, wA, β, pkB), pkA, α · r, g · r} ⊂ Rq.

What Bob is curious about: Any element of the set

U = {α, g, r, sA, gA, rA} ⊂ Rq.

The parentheses in V indicate that he sampled or received the elements
contained, and the rest are results of joint computation. The knowledge of any
element in U allows Bob to deduce Alice’s secret-key α, and only the last three
elements pkA, α · r, g · r of V depend on elements in U . Thus, extracting α is
equivalent to solve the following system of equations in the unknowns (X,Y,Z) =
(α, r, g):

⎧
⎨

⎩

b1 = XY,
b2 = ZY,
b3 = ZX−1,

where b1 = α · r, b2 = g · r, b3 = βpkA/2. We can eliminate the third equation
noting that b1b3 = b2, and thus Bob faces the Small GCD Problem of Sect. 4.2.

Let us now focus in Alice chances of learning Bob’s secret.

Alice’s view of the protocol: W = {(sA, rA, gA, zA, wA), pkB , pkA, αβ} ⊂ Rq.
What Alice is curious about: Any element of the set

Q = {α, β, h, sB , {wB , zB}, {w, z}}.

First, extracting α or β directly from α·β is exactly the small factors Problem.
Using the only three sensitive elements of W , she faces the following system of
equations in (X,Y,Z) = (h, β, α)

⎧
⎨

⎩

a1 = XY −1,
a2 = (ZY)−1,
a3 = ZY,

where a1 = pkB/2, a2 = pkA/2g, a3 = αβ. After elimination of the third equation
since a3 = a−1

2 , Alice also faces the small GCD problem (actually, mapping
Y �→ Y −1, Z �→ Z−1 yields to the same gcd problem faced by Bob). �

Blending FHE-NTRU Keys – The Excalibur Property 19

7.2 Security Against One Malicious Party

We consider the presence of one malicious adversary, a party that deviates as
much as she wants from the protocol, but has a list of paramount objectives which
she is not willing to sacrifice. We suppose that one of the two parties strictly
follows the protocol and the other one is malicious, given the objectives below.
We consider the presence of only one somewhat malicious adversary, given that
both parties have concurrent objectives (for instance, Bob is trying to protect
his key, and Alice to extract it from the protocols). In other words,

What curious Alice wants:

(A1) A functional secret-key skA associated with pkA,
(A2) such that skA decrypts encryptions under pkB ,
(A3) protecting elements of U = {gA, rA, sA} from Bob and
(A4) to learn β.

What curious Bob wants:

(B1) To give Alice a functional secret-key skA associated with pkA with decryp-
tion rights on Enc(pkB ,M).

(B2) to protect elements of Q = {β, h, sB , {wB , zB}} from Alice,
(B3) (if malicious) overloading Alice’s secret-key skA to have large coefficients,

and
(B4) to learn α.

We will show that either the keys will be correctly generated or one party
will not fulfill all of her objectives.

Malicious Alice, Semi-honest Bob. Suppose that Bob is strictly following
the protocol and Alice may deviate from the protocol but wants to fulfill (A1)
to (A4). Let us summarize Alice’s participation in the key generation:

1. Samples sA ← ḠK , rA
R←− Rq, gA ← ḠK .

Trivial samplings of these elements may ultimately leak α to Bob. For
instance, if sA = 0, α = 2sB + 1, if rB = 0, z/rB = α, if gA = 0 g = w/gB .
Also, if sA or gA have large coefficients, there is risk of mod q wrap-around
in the decryption procedure with skA. As she is sampling only shares of ele-
ments, she cannot force algebraic relations with them: regardless of her sam-
ples, α, g, r will remain indistinguishable from random.

2. Participates in SharedTMP((2sA, rA), (2sB + 1, rB)) and learns zA, partici-
pates in SharedTMP((gA, rA), (gB , rB)) and learns wA, then sends zA, wA to
Bob.
As discussed in Sect. 5, TMP and SharedTMP are secure if Bob is honest,
in the sense that either Alice learns the correct output, or either she learns
indistinguishable from random elements, but she learns nothing about Bob’s
input. She is limited to alter the inputs of both instances of SharedTMPand
then giving wrong zA or wA to Bob. Nevertheless if she inputs different rA’s

20 L. Goubin and F.J. Vial Prado

in both protocols or if she changes the values of zA, wA before sending them
to Bob, from the linearity of shares and the randomness of Bob’s entries it fol-
lows that this sabotages the relation wz−1 = gα−1, needed for correctness of
decryption. In other words, in order to ensure (A1) and (A2), she is forced to
maintain the input rA for both instances of SharedTMPand send the correct
output to Bob.

3. Participates in TMP({2sA}, {2sB + 1}) and learns αβ.
If she uses the correct value of 2sA (i.e. the same as in step 2), she learns
the correct output αβ. If she inputs another value x �= 2sA, she does learn
a functional equivalent of Bob secret (namely, (x + 2sB + 1)β), but she is
not able to decrypt encryptions under the already published pkA, failing the
verification procedure.

Malicious Bob, Semi-honest Alice. Now suppose the inverse case, where
Alice follows the protocol strictly and Bob is protecting β and guessing α, devi-
ating as much as he wants from the protocol but fulfilling (B1) to (B4). We begin
by saying that (B3) is unavoidable (unless the presence of a zero-knowledge proof
that Bob’s polynomials are of the right size), but Alice can tell if Bob overloaded
the secret-key αβ simply looking at the coefficients. Let us now summarize Bob’s
participation in the key generation:

1. Samples sB ← ḠK , rB
R←− Rq, gB ← ḠK .

Trivial sampling may compromise sensible elements as before. He must ensure
the randomness of α, r if he wants to protect these elements, and on the other
hand Alice will know if he deviates from a K-bounded sampling (just looking
at the coefficients in α · β. Therefore, he gains nothing in deviating from a
K-bounded sampling.

2. Participates in SharedTMP((2sA, rA), (2sB + 1, rB)) and learns zB , partici-
pates in SharedTMP((gA, rA), (gB , rB)) and learns wB .
As noted in Sect. 5, because of Alice’s randomness in SharedTMP, either Bob
obeys the protocol an receive the correct outputs, either he deviates and
receives random outputs, from which he cannot deduce secret values and
which sabotage key generation. Also, if he uses different rB ’s in both instances,
Alice will not be able to decrypt since the decryption relation wz−1 = gα−1

is not fulfilled (and he remains oblivious of rA, not being able to force this
relation). Hence, he is forced to follow SharedTMP and use the same rB in
both instances if he wants to fulfill (B1).

3. Receives zA, wA, learning z, w. Checks if z is invertible and publishes pkA =
2w(zβ)−1. He then participates in TMP({2sA}, {2sB + 1}), chooses R =
(2sB + 1)β and learns nothing.
Suppose that he published pk′

A as Alice’s public-key and participated in the
TMP instance with generic values, indicated by an apostrophe. At the end,
Alice knows pk′

A and sk′
A. She will run the validate function of Algorithm 5

to check (i) if sk′
A has the expected coefficient size, (ii) if sk′

A ·pk′
A = 2g′ for a

vector g′ ∈ χ and (iii) if she is able to decrypt encryptions of messages under

Blending FHE-NTRU Keys – The Excalibur Property 21

pk′
A and pkB . If she is indeed able to decrypt encryptions under pkB , then

sk′
A contains the factor β, thus by randomness of sA, β′ = θβ and R′ = ωβ

for small θ and ω. Also, as long as the polynomials sk′
A and sk′

A · pk′
A are of

the right form, she does not care about how Bob computed pk′
A, as decryp-

tion of encryptions under pk′
A work as claimed. If on the contrary a single

decryption fails or if sk′
A or sk′

A · pk′
A have large coefficients, she can claim

one of the following Bob’s wrongdoings: Either he did not include β, either he
included θβ for too large θ, either he sabotaged entirely the key generation in
a change of input or inside a multiparty multiplication protocol. This allows
to conclude that if Bob fails to give what is expected, the output keys will
be rejected by Alice, who discovers Bob’s maliciousness after the validation
protocol Algorithm 6.

We should point out another strategy that Bob could maliciously try. When
generating Alice’s secret-key, he could simply ignore Alice’s input share 2sA,
and thus the protocol gives Alice the key sk′

A = α′β, for an α′ ∈ R×
q of Bob’s

choice. Bob, who received no output from the protocol, can reconstruct this key,
thus gaining Alice’s secret. However, this key will be rejected by Alice since it
cannot be associated with the previously generated pkA = 2g(αβ)−1. To avoid
this rejection, Bob should have published pk′

A = 2g′(α′β)−1 instead, but it is
easy to see that this publication would contradict the NIZK proof of step 4 of
Algorithm 3: Because of the way SharedTMP works, Bob has no way of choosing
α′ of his choice in the expression z = αr. In view of this, passing the validation
protocol with such a key is overwhelmingly unlikely.

8 Extensions

8.1 Chains of Keys

Suppose Alice and Bob perform the latter protocols, such that Alice has now a
private-key of the form skA = αβ where β is Bob’s secret-key. Alice can repeat
the protocol with a third user Charlie (with slight coefficients size modifications
at the validation protocol), who at the end receives a pair of keys of the form
(skC , pkC) = (αβγ, 2gC(αβγ)−1). As his secret-key contains the factors β and
αβ, he can decrypt both Bob’s and Alice’s ciphertexts. This shows that easy
modifications to the protocol allows to generate a chain of users, each one inher-
iting the previous user decryption rights. From Corollary 3.1.2, it is easy to see
that the length of such a chain is at most ≈ log(q/nK) to ensure decryptions
(this matches the maximum number of keys on the multikey LATV FHE scheme
for the same parameters). We point out that intersecting chains are also possible,
meaning that a user can glue her secret-keys to two or more upper-level users
and even if they collude they are not able to extract his key. This comes from
an easy generalization of our Ḡ×

K–GCD problem.

22 L. Goubin and F.J. Vial Prado

8.2 Plugging in LATV-FHE

Because of the form of an Excalibur key, i.e. (sk, pk) = (
∏r

i=1 αi, 2g
∏r

i=1 α−1
i),

the inclusion of our protocols into the Multikey FHE scheme from [23] is imme-
diate. The only missing element are the evaluation keys, which can be generated
easily by the secret-key holder after the (Excalibur) key generation: they are
“pseudo-encryptions” of the secret-key sk under the public-key pk. This achieves
a somewhat homomorphic encryption scheme in the chain of users, where in
addition they can combine ciphertexts generated by any public-key.

9 Conclusion

In this article, we proposed a new protocol to generate NTRU keys with addi-
tional decryption rights, allowing to form a hierarchic chain of users. We moti-
vated such a procedure because it avoids betrayal naturally, and since it applies
to the FHE-NTRU scheme, it may contribute to clear the bootstrapping-like
re-encryption paradigm, since it is to our knowledge the first FHE scenario fea-
turing (the pure definition of) proxy re-encryption. In this light, it concurs with
other proxy re-encryption schemes, as, while being rigid, ciphertext transforma-
tion is no necessary at all, since decryption rights are defined in key-generation
time. We used two-party computation protocols as building blocks, and relied the
semantic security on the well-known RLWE and DSPR assumptions, and secu-
rity in presence of semi-honest parties on a hardness assumption in cyclotomic
polynomial rings.

Acknowledgments. We would like to thank Pablo Schinke Gross for suggesting the
term Excalibur and the INDOCRYPT 2016 anonymous reviewers for their helpful
comments. This work has been supported in part by the FUI CRYPTOCOMP project.

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 1–20. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40041-4 1

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

3. Atallah, M.J., Du, W.: Secure multi-party computational geometry. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 165–179.
Springer, Heidelberg (2001). doi:10.1007/3-540-44634-6 16

4. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In: Wiener,
M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg
(1999). doi:10.1007/3-540-48405-1 22

5. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0 4

http://dx.doi.org/10.1007/978-3-642-40041-4_1
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/3-540-44634-6_16
http://dx.doi.org/10.1007/3-540-48405-1_22
http://dx.doi.org/10.1007/978-3-642-45239-0_4

Blending FHE-NTRU Keys – The Excalibur Property 23

6. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 50

7. Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based homomor-
phic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778,
pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 1

8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science. FOCS 2011, pp. 97–106. IEEE Computer Soci-
ety, Washington, DC (2011)

9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

10. Gentry, C.: Computing on encrypted data. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, p. 477. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-10433-6 32

11. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford, CA,
USA, aAI3382729 (2009)

12. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings
of the Forty-First Annual ACM Symposium on Theory of Computing. STOC
2009, pp. 169–178. ACM, New York (2009). http://doi.acm.org/10.1145/1536414.
1536440

13. Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In: Proceedings of the 2011 IEEE 52nd Annual Sym-
posium on Foundations of Computer Science, pp. 107–109. FOCS 2011. IEEE
Computer Society, Washington, DC (2011)

14. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 9

15. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homo-
morphic encryption. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485,
pp. 19–37. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32928-9 2

16. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 1

17. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 28

18. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 49

19. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-40041-4 5

20. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44371-2 31

http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-10433-6_32
http://dx.doi.org/10.1007/978-3-642-10433-6_32
http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-20465-4_9
http://dx.doi.org/10.1007/978-3-642-32928-9_2
http://dx.doi.org/10.1007/978-3-642-30057-8_1
http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://dx.doi.org/10.1007/978-3-662-44371-2_31

24 L. Goubin and F.J. Vial Prado

21. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X 15

22. Lauter, K., Lopez-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. Techical report (2014). http://research.microsoft.com/apps/pubs/default.
aspx?id=219979

23. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC, pp. 1219–1234
(2012)

24. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

25. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 4

26. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012)

27. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pat-
tern matching using somewhat homomorphic encryption. In: Proceedings of the
2013 ACM Workshop on Cloud Computing Security Workshop. CCSW 2013, pp.
65–76. ACM, New York (2013). http://doi.acm.org/10.1145/2517488.2517497

http://dx.doi.org/10.1007/3-540-48910-X_15
http://research.microsoft.com/apps/pubs/default.aspx?id=219979
http://research.microsoft.com/apps/pubs/default.aspx?id=219979
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-20465-4_4
http://doi.acm.org/10.1145/2517488.2517497

Approximate-Deterministic Public Key
Encryption from Hard Learning Problems

Yamin Liu1,2, Xianhui Lu1,2,3(B), Bao Li1,2,3, Wenpan Jing1,2,
and Fuyang Fang1,2,3

1 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing, China

2 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

{liuyamin,luxianhui,libao,jingwenpan,fangfuyang}@iie.ac.cn
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. We introduce the notion of approximate-deterministic public
key encryption (A-DPKE), which extends the notion of deterministic
public key encryption (DPKE) by allowing the encryption algorithm to
be “slightly” randomized. However, a ciphertext convergence property is
required for A-DPKE such that the ciphertexts of a message are gather-
ing in a small metric space, while ciphertexts of different messages can be
distinguished easily. Thus, A-DPKE maintains the convenience of DPKE
in fast search and de-duplication on encrypted data, and encompasses
new constructions. We present two simple constructions of A-DPKE,
respectively from the learning parity with noise and the learning with
errors assumptions.

Keywords: Deterministic public key encryption · Learning parity with
noise · Learning with errors

1 Introduction

Deterministic Public Key Encryption. The provable security of determin-
istic public key encryption (DPKE) was initiated by Bellare, Boldyreva and
O’Neill in 2007 [4]. Different from the widely accepted notion of probabilistic
encryption [19], the encryption algorithm of DPKE does not require a fresh ran-
domness; consequently, given a plaintext, its ciphertext is unique. Hence DPKE
can serve as a candidate for efficiently searchable encryption, and supports de-
duplication over encrypted data.

Though DPKE can not satisfy most security requirements of randomized
public key encryption due to the deterministic encryption algorithm, Bellare,
Boldyreva and O’Neill defined an as-strong-as-possible security notion for
DPKE, called PRIV, over plaintext distributions with high min-entropy indepen-
dent of the public key. More security definitions and constructions of DPKE were
discussed in [5,6,13,17,33,35]. Currently DPKE can be instantiated from vari-
ous intractability assumptions, including lattice-related ones such as the learning
with errors assumption (LWE).
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 25–42, 2016.
DOI: 10.1007/978-3-319-49890-4 2

26 Y. Liu et al.

Hard Learning Problems. Generally, hard learning problems, such as LWE
and LPN (learning parity with noise), refer to learning a secret from several noisy
linear equations. LWE was introduced by Regev in [32]. It states that recovering
a secret s giving (A,b = As + e) is intractable, wherein A ∈ Z

m×n
q and s ∈ Z

n
q

are chosen at random, and e is picked from an error distribution, for appropriate
secret dimension n, number of samples m, and modulus q. The decisional version
of LWE states that (A,b = As + e) is computationally indistinguishable from
the uniform pair (A,u), and is equivalent to the search version. Syntactically,
LPN is LWE in the case of q = 2 with the errors being picked from the Bernoulli
distribution, however, LPN and LWE are different in many aspects.

The hardness of LWE is guaranteed by worst-case hard problems over lattices,
as shown in a series of literatures [11,29,32], and LPN is essentially the hard
problem of decoding a random binary linear code. In addition, both are believed
to be intractable even for quantum algorithms. Thus, it is desirable to instantiate
cryptographic primitives from them.

LWE is useful in the construction of various public key cryptographic primi-
tives, such as chosen-ciphertext secure encryption [31], identity-based encryption
[20], password-based authenticated key exchange [24], and in our interest, DPKE
[35]. The low-noise version of LPN has also been used to construct secure pub-
lic key encryption [1,16,21,23,34]. And recently, Yu and Zhang showed how to
obtain several public key cryptographic primitives from constant-noise LPN [38],
such as CPA/CCA secure encryption and oblivious transfer.

However, the syntax of hard learning problems seems incompatible with the
definition of DPKE since it involves a randomly sampled error item, which is
important to the intractability of the problems while causes a kind of nondeter-
minacy. Hence, current constructions of DPKE from LWE either take a detour
from lossy trapdoor functions (LTDF) [6,35], or use a deterministic variant of
LWE called learning with rounding (LWR) [12]. The construction of LTDF from
LWE are somewhat complicated [31]. The LWR-based constructions of DPKE
[3,37] are very simple, but to ensure the hardness of LWR, the modulus q should
be large enough [3,7]. Besides, as far as we know, currently there is no con-
struction of DPKE or even LTDF from LPN, and it is believed that there is no
“rounding version” of LPN [2].

Nevertheless, we try to address the problem in another way. Remember that
using the LWE assumption to instantiate another important cryptographic prim-
itive, the smooth projective hashing (SPH) [14], is also an open problem as
stated in [30]. In 2009, Katz and Vaikuntanathan defined a variant of SPH
called approximate smooth projective hashing , instantiated it with LWE,
and obtained the first password-based authenticated key exchange protocol from
a lattice-related assumption [24]. Thus, we believe that a similar solution should
work for the case of DPKE.

1.1 Our Contributions

Approximate-DPKE. We extend the definition of DPKE to allow some sort of
nondeterminacy while maintaining its advantages, by introducing the notion of
approximate-deterministic public key encryption (A-DPKE). Compared

Approximate-DPKE from Hard Learning Problems 27

with DPKE, in A-DPKE the encryption algorithm is “slightly” randomized,
thus there will be many ciphertexts corresponding to one message. However,
these ciphertexts are not scattered in the ciphertext space, instead they are
gathering in a small metric space. Moreover, ciphertexts of different plaintexts
are distributed “far enough” that they will not mix up. We call the property
ciphertext convergence , and with it A-DPKE preserves the advantages of
DPKE in encrypted search and de-duplication, since the ciphertexts of a given
message can be easily recognized without decryption.

A-DPKE can achieve the same security level of DPKE, namely, the PRIV-
series of security definitions. However, though the encryption algorithm of A-
DPKE is randomized, it cannot be as secure as probabilistic encryption due to
the ciphertext convergence property: encryptions of the same message can be
easily recognized while encryptions of different messages can be easily distin-
guished. It is a tradeoff between security and functionality just as in the case
of DPKE.

Then we can bring out simple and natural instantiations of A-DPKE from
hard learning problems.

A-DPKE from LPN. To the best of our knowledge, there is no constructions
of DPKE from the LPN assumption (neither low-noise nor constant-noise) so
far. However, by relaxing DPKE to A-DPKE, immediately we obtain a simple
construction of A-DPKE from low-noise LPN, using the trapdoor generation
techniques as in [23]. The secret key is a matrix T ∈ Z

m×m
2 , and the public

key is a pair of matrices (A,B = TA) ∈ (Zm×n
2)2. To encrypt a message m ∈

{0, 1}n, two ciphertext components are computed as c1 = Am + e, c2 = (B +
G)m + T̄e, where e, T̄ are small errors, and G is the generator matrix of an
efficiently decodeable binary linear code. We can see that though the encryption
is randomized, the Hamming distance of two ciphertexts of a message could
be small if the error items are small. By choosing proper parameters, both the
ciphertext convergence property and the security will hold.

A-DPKE from LWE. Further, we show a natural A-DPKE construction from
LWE. The public key is simply a matrix A ∈ Z

m×n
q generated with the trap-

door generation techniques from [28], and the secret key is the corresponding
trapdoor R. Then the encryption and decryption are simply the evaluation and
inversion of the LWE function. Note that a message m ∈ {0, 1}n is encrypted as
c = Am+e. By choosing the size of the error item e properly, the ciphertext con-
vergence property will hold. And the security is ensured by the hardness of LWE
for high min-entropy secrets [3,18]. Compared with the LWE-based DPKE via
LTDF, our A-DPKE is simpler in structure; and compared with the LWR-based
DPKE scheme, our LWE-based A-DPKE scheme can use smaller modulus q.

Organization. The rest of the paper is organized as follows. In Sect. 2 some
notations and preliminaries about lattice is introduced. In Sect. 3 the definition
of A-DPKE is given. In Sect. 4 and Sect. 5 the A-DPKE schemes from LPN and
LWE are constructed respectively. Finally, Sect. 6 is the conclusion.

28 Y. Liu et al.

2 Preliminaries

2.1 Notations

We use bold lower-case characters to denote vectors, such as x, and use bold
upper-case letters to denote matrices, such as X. If X is a set, then x

$← X
denotes that x is chosen from X uniformly at random. If X is a distribution,
then x

$← X denotes that x is randomly sampled according to X.
For a randomized algorithm A, x

$← A(·) denotes that x is assigned the output
of A. An algorithm is efficient if it runs in polynomial time in its input length.
A function f(λ) is negligible if it decreases faster than any polynomial of the
security parameter λ, and is denoted as f(λ) ≤ negl(λ).

The min-entropy of a random variable X is denoted as H∞(X) =
− log (max

x
PX(x)), wherein PX(x) = Pr[X = x]. X is called a k-source if

H∞(X) ≥ k.
The statistical distance between two random variables X and Y is Δ(X,Y) =

1
2 Σ

x
|PX(x) − PY (x)|, X and Y are statistically close if Δ(X,Y) ≤ ε(λ), and is

denoted as X
s≈ Y . X and Y are computationally indistinguishable if no efficient

algorithm can tell them apart given only oracle access, and is denoted as X
c≈ Y .

2.2 Lattices

A full-rank m-dimensional lattice Λ generated by a basis B = {b1, ...,bm} ∈
Z

m×m is defined as
Λ = L(B) = {Bx : x ∈ Z

m},

where b1, ...,bm are linearly independent.
The length of lattice vectors is measured with norms. By default the Euclid-

ean norm is used, i.e., ‖x‖2 =
√∑

x2
i , or solely denoted as ‖x‖. In some occasions

in this work, the infinity norm is also used, i.e., ‖x‖∞ = max xi. Obviously, for
an m-dimensional vector x, if ‖x‖∞ ≤ a, then ‖x‖2 ≤ √

ma; and if ‖x‖∞ ≥ a,
then ‖x‖2 ≥ a.

The length of the shortest nonzero vector in a lattice Λ is denoted by λ1(Λ).
Since lattice points are periodically arranged in every dimension, then λ1(Λ) is
the distance of two lattice points in the most “compact” dimension.

The LWE problem is essentially the bounded-distance decoding problem over
a full-rank m-dimensional q-ary integer lattice Λq(A) generated by a random
matrix A ∈ Z

m×n
q :

Λq(A) = {y ∈ Z
m : ∃s ∈ Z

n
q s.t. y = As mod q}.

3 Approximate-DPKE: Definition and Security

Here we define approximate-DPKE. Compared with the original DPKE defini-
tion, the main difference is that the encryption algorithm of A-DPKE is random-
ized. And compared with the definition of randomized PKE, A-DPKE has the

Approximate-DPKE from Hard Learning Problems 29

additional property of ciphertext convergence, i.e., the ciphertexts of a message
are distributed in a small metric space.

Definition 1. An approximate-deterministic public key encryption scheme A-
DPKE = (KG, ENC, DEC) consists of the following three algorithms:

– The probabilistic key generation algorithm: (pk, sk) $← KG(1λ).

– The probabilistic encryption algorithm: c
$← ENC(pk,m; r).

– The deterministic decryption algorithm: m ← DEC(sk, c).

And we further require that the encryption scheme should satisfy a “ciphertext
convergence” property, i.e., there are a function dis measuring the “distance” of
ciphertexts, and a distance parameter t, fulfilling the following requirements:

– For arbitrary two ciphertexts c1, c2 of a given plaintext m, there is dis(c1, c2) ≤
t.

– For arbitrary two ciphertext-plaintext pairs (c,m) and (c′,m′), there is
dis(c, c′) > t if m
= m′.

In the definition we explicitly contain the randomness r in the encryption
algorithm. In the following we sometimes omit it in occasions that the choice of
randomness is unimportant and just use Enc(pk,m).

The correctness requirement of A-DPKE involves two aspect. One is trivially
the decryption correctness, i.e., there should be DEC(sk,ENC(pk,m; r)) = m.
The other is the ciphertext convergence property, wherein the choices of the
metric function dis and parameter t depend on specific instantiations.

The definition of A-DPKE is a generalization of that of DPKE. Consider the
metric function dis to be the Hamming distance, e.g., the numbers of bit-wise
differences between two ciphertexts, and set the parameter t = 0, then a DPKE
certainly satisfies the ciphertext convergence property.

As to the security requirement, it is clear that A-DPKE can achieve existing
security requirements of DPKE, e.g., the PRIV security. The question is whether
it can be semantically secure [19]. The answer is NO, but the consequence is not
necessarily negative. On one side, though the encryption algorithm of A-DPKE
is randomized, it still can not achieve semantic security due to the ciphertext
convergence property. On the other side, with this property, A-DPKE preserves
the advantages of DPKE in searchable encryption and de-duplication, since the
ciphertexts of a certain message can be efficiently recognized without decryption,
given dis and t.

In the following we give the definition of PRIV-IND security [5,6] for A-
DPKE, which requires that the encryptions of messages from two different high
min-entropy distributions are indistinguishable.

Definition 2 (PRIV-IND security for A-DPKE). An approximate-
deterministic public-key encryption scheme Π = (KG,Enc,Dec) is PRIV-IND
secure if for any probabilistic polynomial time adversary A, for any efficiently
sampleable distributions {M0

λ}λ∈N and {M1
λ}λ∈N with sufficient min-entropy

30 Y. Liu et al.

H∞(M0
λ) ≥ k and H∞(M1

λ) ≥ k, there is (pk,Enc(pk,m0))
c≈ (pk,Enc(pk,m1)),

where (pk, sk) $← Gen(1λ), m0
$← M0

λ and m1
$← M1

λ.

In [37] Xie et al. defined a PRIV-INDr security for DPKE, which requires
that the encryption is indistinguishable from uniform. It is clear that PRIV-INDr
implies PRIV-IND. We also define the PRIV-INDr security for A-DPKE.

Definition 3 (PRIV-INDr security for A-DPKE). An approximate-
deterministic public-key encryption scheme Π = (KG,Enc,Dec) is PRIV-INDr
secure if for any probabilistic polynomial time adversary A, for any efficiently
sampleable distributions {Mλ}λ∈N with sufficient min-entropy H∞(Mλ) ≥ k,

there is (pk,Enc(pk,m))
c≈ (pk,u), where (pk, sk) $← Gen(1λ), m $← Mλ and

u $← Cλ, where Cλ is the ciphertext space.

Note that other forms of security definitions for DPKE can also be extended
to the A-DPKE case naturally, such as PRIV with respect to hard-to-invert
auxiliary information [13].

In the definition of PRIV security, the message blocks m0 and m1 contain
several (possibly correlated) messages. If the block size is restricted to be one,
then the security is called PRIV1 [4–6]. Full PRIV security in the standard
model is considered to be elusive [36], and currently the only known approach
to achieve it is the one proposed by Bellare and Hoang in [8], with the help of a
newly introduced strong assumption UCE (universal computational extractor)
[9]. Thus, in this work, we are satisfied with just the PRIV1 security.

4 A-DPKE from LPN

So far, there is no known constructions of DPKE from the learning parity with
noise assumption. Now we propose an A-DPKE scheme under the LPN assump-
tion, which depicts that the relaxation from deterministic to approximate-
deterministic is worthwhile.

4.1 Coding Theory

In the LPN based A-DPKE construction, we will use a linear code as a building
block. Thus some preliminaries about the coding theory are recalled below. The
notations and definitions mainly come from [26] by Meurer.

For x ∈ [0, 1], the q-ary entropy function is defined as Hq(x) = x
logq(q − 1) − x logq x − (1 − x) logq(1 − x). In particular, when q = 2, H(x) =
x log x − (1 − x) log(1 − x).

Definition 4 (Linear Code). A linear code C in a finite field Zq is a linear
subspace of the linear space Z

m
q . If the dimension of C is n, then C is called an

[m,n]-code. The ratio R = n
m is called the information rate of C.

Approximate-DPKE from Hard Learning Problems 31

In this work, we use linear codes in Z
m
2 . Given a generator matrix A ∈ Z

m×n
2 ,

a code C(A) = {c = As : s ∈ Z
n
2} is specified. An important parameter of a

code C is the minimum distance d(C), which is the minimum Hamming distance
between two distinct codewords, i.e., d(C) = min

c1 �=c2∈C
|c1 −c2| = min

c∈C\{0}
|c|. With

the relative Gilbert-Varshamov distance, a lower bound of d(C) can be estimated.

Definition 5 (Relative Gilbert-Varshamov distance). Let 0 < R < 1.
The relative Gilbert-Varshamov distance DGV(R) ∈ R is the unique solution in
0 ≤ x ≤ 1 − 1

q of the equation Hq(x) = 1 − R.

The following lemma from [26] shows the lower bound of a linear code C.

Lemma 1. Almost all linear codes meet the relative Gilbert-Varshamov dis-
tance, i.e., for almost all linear codes C of rate R it holds d(C) ≥ �DGV(R)m�.

4.2 The LPN Assumption

Then we recall the LPN assumption, wherein the error item is sampled from the
Bernoulli distribution Bρ with 0 < ρ < 1/2, i.e., Pr[x = 1 : x

$← Bρ] = ρ.

Definition 6 (Learning Parity with Noise). Let λ be the security parame-
ter, n = n(λ),m = m(λ) be integers, and ρ ∈ (0, 1/2) be the Bernoulli parameter.

The LPNn,m,ρ assumption states that, if we choose A $← Z
m×n
2 , s $← Z

n
2 , e ←

Bm
ρ ,u $← Z

m
2 , then the following distributions are computationally indistinguish-

able:
(A,As + e)

c≈ (A,u).

In standard LPN, the Bernoulli parameter ρ is a constant such as 1/10.
However, for the purpose of constructing PKE schemes, we mainly use a low-
noise variant of LPN contributed by Alekhnovich [1], in which ρ = Θ(1/

√
n).

And we still need another variant of LPN called Knapsack LPN (KLPN),
which is defined below.

Definition 7 (Knapsack LPN). Let λ be the security parameter, n =
n(λ),m = m(λ) be integers, and ρ ∈ (0, 1/2) be the Bernoulli parameter.

The KLPNm
n,m,ρ assumption states that, if we choose A $← Z

m×(m−n)
2 ,T $←

Bm×m
ρ ,u $← Z

m×(m−n)
2 , then the following distributions are computationally

indistinguishable:
(A,TA)

c≈ (A,u).

The equivalence of LPN and KLPN assumptions was stated in [23,27] with
the following lemma:

Lemma 2 [23]. For all algorithms B there exists an algorithm A that runs in
roughly the same time as B and AdvLPNn,m,ρ(A) ≥ 1

mAdvKLPNm
n,m,ρ

(B).

32 Y. Liu et al.

4.3 Construction 1: A-DPKE from LPN

Now we will describe the A-DPKE construction from LPN. Firstly we set the
parameters used in the construction. Some choices of parameters are similar to
those in [23].

– λ is the security parameter, n(λ),m(λ) are integers, where n = Θ(λ2) and
m ≥ 2n. Besides, m > 1400. For reasonable choices of the security parameter,
say λ ≥ 80, m > 1400 can be trivially met.

– 0 < c < 1/4 is a constant. And the Bernoulli parameter is ρ =
√

c/m.
β = 2

√
cm is a parameter used in the correctness proof of the construction.

– G ∈ Z
m×n
2 is the generator-matrix of a binary linear error-correcting code

C : Zn
2 → Z

m
2 with an efficient decoding algorithm DecodeG which corrects

up to αm errors with 4c < α ≤ 0.05.

Now the A-DPKE based on LPN is given below:

– KG(1λ): Choose T $← Bm×m
ρ , A $← Z

m×n
2 , and compute B = TA. Set sk = T

and pk = (A,B).
– Enc(pk,m; (e, T̄)): To encrypt a message m ∈ {0, 1}n, choose e $← Bm

ρ , T̄ $←
Bm×m

ρ , and compute

c1 = Am + e, c2 = (B + G)m + T̄e,

where G is the generator matrix of a binary linear code defined above as part
of the public parameter. Finally, set the ciphertext C = (c1, c2).

– Dec(sk,C): Parse C as (c1, c2). Compute y = c2 − Tc1 and set m =
DecodeG(y).

4.4 Correctness

To establish the correctness of Construction 1 over the specified parameter set-
tings, two lemmata from literatures are required. The first one is the Chernoff
Bound for bounding the Hamming weight of a vector constituted by indepen-
dent Bernoulli random variables, e.g., the weight of the error item in the first
component of the ciphertext.

Lemma 3 (Chernoff Bound). For d $← Bm
ρ and δ > 0,

Pr[|d| > (1 + δ)ρm] < e−min(δ,δ2)
3 ρm.

In our case, δ = 1. The other lemma is essentially from [23], bounding the
Hamming weight of the error item in the second component of the ciphertext.

Lemma 4 [23]. For e $← Bm
ρ with |e| ≤ 2ρm, T $← Bm×m

ρ , and 4c < α < 1,
there is

Pr
T

[|Te| >
α

2
m] < negl(λ).

Then we can establish the correctness of Construction 1 as an A-DPKE.

Approximate-DPKE from Hard Learning Problems 33

Theorem 1. Let λ be the security parameter, n,m, c, ρ, β, α and the error cor-
recting code G be defined above. Choose the distance function dis such that
dis(C1,C2) = |C1 − C2| = (|c1,1 − c1,2|, |c2,1 − c2,2|) denotes the Hamming
distance of two ciphertexts C1 = (c1,1, c1,2),C2 = (c2,1, c2,2), and set the para-
meter t = (t1, t2) = (2β, αm). Then the above construction is a correct A-DPKE
scheme.

Proof. The correctness includes the decryption correctness and the ciphertext
convergence.

– Decryption correctness.
Given a ciphertext C = (c1, c2), the decryption algorithm computes

y = c2 − Tc1 = Gm + (T̄ − T)e.

To ensure that DecodeG(y) correctly recovers m, the Hamming weight of the
error term (T̄ − T)e should be small, i.e., |(T̄ − T)e| ≤ αm.
With the parameters ρ =

√
c/m, β = 2

√
cm = 2ρm, and the Chernoff Bound

for δ = 1, the Hamming weight of e is bounded by β with overwhelming
probability. That is,

Pr
e

$←Bm
ρ

[|e| > β] ≤ e−ρm/3 = 2−Θ(
√

m).

Then with the triangular inequality and Lemma4 from [23], there is

|(T̄ − T)e| ≤ |T̄e| + |Te| ≤ αm,

with overwhelming probability. Thus, DecodeG(y) will recover m with over-
whelming probability.

– Ciphertext convergence.
• Given a message m, and its arbitrary two ciphertexts:

C1 = (c1,1 = Am + e1, c1,2 = (B + G)m + T̄1e1),

C2 = (c2,1 = Am + e2, c2,2 = (B + G)m + T̄2e2).

According to Lemmas 3 and 4, there is

dist(C1,C2) = (|c1,1 − c1,2|, |c2,1 − c2,2|)
= (|e1 − e2|, |T̄1e1 − T̄2e2|)
≤ (2β, αm),

with overwhelming probability, i.e., the ciphertexts of the same message
are close in Hamming distance.

34 Y. Liu et al.

• Given two different messages m and m′, and two ciphertexts of them:

C = (c1 = Am + e, c2 = (B + G)m + T̄e),

C′ = (c′
1 = Am′ + e′, c′

2 = (B + G)m′ + T̄′e′),

there is dist(C,C′) = (|c1 − c′
1|, |c2 − c′

2|).
Let us analyze the two components separately. Consider A as the gener-
ator matrix of a linear code C(A), then |A(m − m′)| is not less than the
minimum distance of C(A). With the triangular inequality and Lemma1,
there is

|c1 − c′
1| = |A(m − m′) + (e − e′)|

≥ |A(m − m′)| − |e − e′|
≥ d(C(A)) − 2β

≥ �DGV(
n

m
)m� − 2β

≥ DGV(
1
2
)m − 1 − 2β.

By a routine calculation based on Definition 5 there is DGV(12) > 0.11.
Since m > 1400 and c < 0.25, that is, c < 0.000179m, then 2β = 4

√
cm <

0.0536m. Hence there is

|c1 − c′
1| ≥ 0.11m − 1 − 0.0536m

= 0.0564m − 1
> 2β = t1.

Similarly, view U = B+G as the generator matrix of a linear code C(U),
then there is

|c2 − c′
2| = |U(m − m′) + (T̄e − T̄′e′)|

≥ |U(m − m′)| − |T̄e − T̄′e′|
≥ d(C(U)) − αm

≥ �DGV(
n

m
)m� − αm

≥ DGV(
1
2
)m − 1 − αm

> 0.11m − 1 − 0.05m

= 0.06m − 1
> 0.05m ≥ αm = t2.

Hence it holds that dis(C,C′) > (2β, αm), i.e., ciphertexts of different
messages are far enough in Hamming distance. ��

Approximate-DPKE from Hard Learning Problems 35

4.5 Security

Now we can show the PRIV1-INDr security of Construction 1.

Theorem 2. Let λ be the security parameter, n,m, c, ρ, β, α and the error cor-
recting code G be defined above. If the LPN assumption holds, then the above
construction is PRIV1-INDr secure for uniformly distributed messages.

Proof. Since for (pk, sk) $← KG(1λ), m $← {0, 1}n, e $← Bm
ρ , T̄ $← Bm×m

ρ , there
is

(pk,Enc(pk,m)) = ((A,B), (Am + e, (B + G)m + T̄e)) (1)
c≈ ((A,B′), (Am + e, (B′ + G)m + T̄e)) (2)
c≈ ((A,B′), (Am + e,Um + T̄e)) (3)
c≈ ((A,B′), (u1,u2)), (4)

where B′,U $← Z
m×n
2 ,u1,u2

$← Z
m
2 . Step 1 is straightforward. Step 2 follows

from the KLPN assumption. Step 3 is also natural since B′ is uniform. And step
4 follows from the LPN assumption. ��

5 A-DPKE from LWE

5.1 The LWE Assumption

Next we will show a natural construction of A-DPKE from the learning with
errors assumption. Firstly we recall the definition of (decisional) LWE.

Definition 8 (Learning with Errors [32]). Let λ be the security parameter,
n = n(λ),m = m(λ), q = q(λ) be integers, and χ = χ(λ) be a distribution

over Zq. The LWEn,m,q,χ assumption states that, if we choose A $← Z
m×n
q , s $←

Z
n
q , e ← χm,u $← Z

m
q , then the following distributions are computationally indis-

tinguishable:
(A,As + e)

c≈ (A,u).

Typically, the error distribution is the discrete Gaussian distribution over Zq

with appropriate variance, or the uniform distribution over a small interval [15].
The equivalent computational version of LWE states that getting the secret s

from (A,b = As + e) is hard. However, with the trapdoor generation technique
from [28], the secret s can be efficiently recovered.

Lemma 5 [28]. There is an efficient randomized algorithm GenTrap(1n, 1m, q)
that, given any integers n ≥ 1, q ≥ 2, and sufficiently large m = O(n log q),
outputs a parity-check matrix A ∈ Z

m×n
q and a ‘trapdoor’ R such that the dis-

tribution of A is negl(n)-far from uniform. Moreover, there are an efficient algo-
rithm Invert that with overwhelming probability over all random choices, does the
following:

36 Y. Liu et al.

– For b = As + e, where s ∈ Z
n
q is arbitrary and either ‖e‖ < q/O(

√
n log q)

or e ← DZm,αq for 1/α ≥ √
n log q · ω(

√
log n), the deterministic algorithm

Invert(R,A,b) outputs s and e.

Goldwasser et al. proved that LWE is hard even for non-uniform secret s
with hard-to invert auxiliary information f(s), provided that s has high min-
entropy and the modulus q is super-polynomial [18]. The size of the modulus q
was improved to be polynomial by Alwen et al. in [3] (in the appendix of its full
version) with the following definition and lemma.

Definition 9 (LWE with Weak and Leaky Secrets [3]). Let λ be the secu-
rity parameter, n = n(λ),m = m(λ), q = q(λ) be integer parameters, and χ be
a distribution over Zq. Let γ = γ(λ) ∈ (0, q/2) be an integer and k = k(λ) be a
real. The LWEWL(γ,k)

n,m,q,χ problem says that for any efficiently sampleable correlated
random variables (s, aux), where the support of s is the integer interval [−γ, γ]n

and H∞(s|aux) ≥ k, the following distributions are computationally indistin-
guishable:

(aux,A,As + e)
c≈ (aux,A,u),

where A $← Z
m×n
q ,u $← Z

m
q , e $← χm are chosen randomly and independently of

(s, aux).

The lemma below states that the hardness of LWE for weak and leaky sources
follows from that of the standard LWE.

Lemma 6 [3]. Let k, l,m, n, β, γ, σ, q be integer parameters and χ a distribution
(all parameterized by λ) such that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βγnm. Let

Ψσ be either:

– The discrete Gaussian distribution with standard deviation σ, or
– The uniform distribution over the integer interval [−σ, σ].

Assuming that the LWEl,m,q,χ assumption holds, the weak and leaky
LWEWL(γ,k)

n,m,q,Ψσ
-assumption holds if k ≥ (l + Ω(λ)) log q.

In our construction, we choose γ = 1, and use binary secrets s ∈ {0, 1}n.

5.2 A-DPKE from LWE

5.3 Construction 2: A-DPKE from LWE

The A-DPKE construction from LWE is shown below. Firstly we list the para-
meter settings:

– λ is the security parameter, and n(λ),m(λ), q(λ) are integers, with m ≥
2n log q. For simplicity, we let q be prime.

Approximate-DPKE from Hard Learning Problems 37

– Let Ψσ be a suitable error distribution with βnm < σ < min(q
16 , q

O(
√

n log q)
),

where β is the parameter for another error distribution χβ with which the
LWE assumption holds.

Then the encryption and decryption of A-DPKE are simply the evaluation
and inversion of the LWE function, using the trapdoor generation technique in
Lemma 5.

– KG(1λ). Run (A,R) $← GenTrap(1n, 1m, q). Set pk = A and sk = R.
– Enc(pk,m; e). To encrypt a message m ∈ {0, 1}n, compute c = Am+e, where

e ∈ Z
m is randomly sampled according to the distribution Ψσ.

– Dec(sk, c). Run (m, e) ← Invert(R,A, c), and output m.

5.4 Correctness

Intuitively, the encryption algorithm of Construction 2 encodes a message m
to a point near the lattice point As in the q-ary lattice Λq(A), and the offset
is the error size. Thus, to prove ciphertext convergence property, we need the
following lemma bounding the length of the shortest nonzero vector of Λq(A),
in the form of infinity norm.

Lemma 7 [20]. Let n and q be positive integers with q prime, and let
m ≥ 2n log q. Then for all but at most q−n fraction of A ∈ Z

m×n
q , we have

λ∞
1 (Λq(A)) ≥ q/4.

An immediate corollary explains the bound in the form of Euclidean norm.

Corollary 1. Let n and q be positive integers with q prime, and let m ≥ 2n log q.
Then for all but at most q−n fraction of A ∈ Z

m×n
q , we have λ2

1(Λq(A)) ≥ q/4.

Now we can show the correctness of Construction 2.

Theorem 3. Let λ be the security parameter, n = n(λ),m = m(λ), q = q(λ) be
integers, with m ≥ 2n log q and q being prime. Let Ψσ be the error distribution
with βnm < σ < min(q

16 , q
O(

√
n log q)

), thus ‖e‖ ≤ σ. Choose the distance function
dis such that dis(c1, c2) = ‖c1 − c2‖ denotes the distance of the two vectors
c1, c2 ∈ Z

m
q , and set the parameter t = 2σ. Then the above construction is a

correct A-DPKE scheme.

Proof.

– The decryption correctness follows from Lemma 5.
– Ciphertext convergence.

• Given a message m, and its arbitrary two ciphertexts c1 = Am+e1, c2 =
Am + e2, then there is

dis(c1, c2) = ‖c1 − c2‖
= ‖e1 − e2‖
≤ ‖e1‖ + ‖e2‖
≤ 2σ.

It means that the ciphertexts of the same message are close in Euclidean
distance.

38 Y. Liu et al.

• Given two different messages m,m′, and two ciphertexts of them, c =
Am + e, c′ = Am′ + e′. With Lemma 7 and Corollary 1 there is

dis(c, c′) = ‖c − c′‖
= ‖(Am − Am′) + (e − e′)‖
≥ λ2

1(Λq(A)) − 2σ

> q/4 − q/8
= 8/q > 2σ.

It means that the ciphertexts of different messages are far enough in
Euclidean distance. ��

5.5 Security

Now we show the PRIV1-IND security of Construction 2.

Theorem 4. Let λ be the security parameter, n = n(λ) ≥ λ, l = l(λ),m =
m(λ), q = q(λ) be integers, and χ be an efficiently sampleable distribution such
that Pr

x
$←χ

[|x| ≥ β] ≤ negl(λ) and σ ≥ βnm. Define Ψσ as in Lemma 6 and

choose e according to Ψσ. If the LWEl,m,q,χ assumption holds, then the above
construction is PRIV1-IND secure for all k-sources where k ≥ (l + Ω(λ)) log q.

Proof. The parameters are chosen such that the LWEWL(1,k)
n,m,q,Ψσ

-assumption holds.
Hence for any distributions M0

λ ,M1
λ over {0, 1}n with H∞(M0

λ) ≥ k and
H∞(M1

λ) ≥ k, there is

(pk,Enc(pk,m0; e0))
s≈ (B,Bm0 + e0) (1)
c≈ (B,u) (2)
c≈ (B,Bm1 + e1) (3)
s≈ (pk,Enc(pk,m1; e1)), (4)

wherein m0
$← M0

λ, m1
$← M1

λ, (pk, sk) $← Gen(1λ), e0, e1
$← Ψσ, B ← Z

m×n
q ,

and u $← Z
m
q . Step 1 and Step 4 follow with Lemma5, i.e., the trapdoor genera-

tion technique. Step 2 and Step 3 follow with Lemma6, i.e., the LWE assumption
with weak secret. ��
Remark 1. Xie et al. proposed a very simple DPKE scheme which is basically the
evaluation of inversion of the LWR function, by encrypting m as �Am�p where
p � q, but the security analysis requires the modulus q to be super-polynomial
[37]. Later, Alwen et al. improved the size of the modulus q to be polynomial,
and the size of q is roughly q ≥ 2βnm2. In our A-DPKE scheme, there is roughly
q ≥ βnm

3
2 , i.e., the modulus can be smaller.

Approximate-DPKE from Hard Learning Problems 39

Remark 2. Bellare et al. proved that with the trapdoor techniques in [28] the
LWE function is a lossy trapdoor function for uniform input distributions, but
they did not mention whether it is a secure DPKE [10] for high min-entropy
message distributions.

Remark 3. In fact we can prove the construction is PRIV1-IND secure with
respect to hard-to-invert auxiliary input [13], as long as the LWE with weak
and leaky secrets assumption holds. We only show the “weak” secret aspect for
simplicity.

6 Conclusion

In this work we proposed the notion of approximate-deterministic public key
encryption by generalizing the original definition of DPKE. A-DPKE maintains
the advantages of DPKE in applications such as searchable encryption and data
de-duplication, while allows new constructions from quantum-resistant assump-
tions. We presented two simple constructions of A-DPKE from hard learning
problems, e.g., LPN and LWE. The LWE based A-DPKE is as simple as the
DPKE scheme from the LWR assumption, with smaller modulus. And we believe
that the relaxation from deterministic to approximate-deterministic is meaning-
ful since previously there is no construction of DPKE from LPN.

To make the new concept practical, it is desirable to instantiate A-DPKE
with ring-based assumptions, such as ring-LPN [22] and ring-LWE [25]. However,
in the current work we have not addressed the problem, and leave it for future
work.

Acknowledgments. We are grateful to anonymous reviewers for their inspiring
comments. Besides, we thank Yuanyuan Gao and Jingnan He for helpful discus-
sions. Yamin Liu is supported by the National Natural Science Foundation of China
(No. 61502480). Xianhui Lu is supported the by National Natural Science Foundation
of China (No. 61572495, No. 61272534). Bao Li and Fuyang Fang are supported by the
National Natural Science Foundation of China (No. 61379137) and the National Basic
Research Program of China (973 project) (No. 2013CB338002).

References

1. Alekhnovich, M.: More on average case vs approximation complexity. In: FOCS
2003, pp. 298–307. IEEE (2003)

2. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate weak
pseudorandom functions in AC0 ◦ MOD2. In: ITCS 2014, pp. 251–259. ACM (2014)

3. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited
- new reductions, properties and applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40041-4 4

4. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 30

http://dx.doi.org/10.1007/978-3-642-40041-4_4
http://dx.doi.org/10.1007/978-3-642-40041-4_4
http://dx.doi.org/10.1007/978-3-540-74143-5_30

40 Y. Liu et al.

5. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 20

6. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryp-
tion, and efficient constructions without random oracles. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85174-5 19

7. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. ePrint Archive 2015/769 (2015)

8. Bellare, M., Hoang, V.T.: Resisting randomness subversion: fast deterministic and
hedged public-key encryption in the standard model. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 627–656. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46803-6 21

9. Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 398–415.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1 23

10. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 15

11. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC 2013, pp. 575–584. ACM (2013)

12. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 42

13. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
the auxiliary-input setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 543–560. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 31

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

15. Döttling, N., Müller-Quade, J.: Lossy codes and a new variant of the learning-with-
errors problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 18–34. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 2

16. Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptogra-
phy based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34961-4 30

17. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 33

18. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS 2010, pp. 230–240. Tsinghua University
Press (2010)

19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

http://dx.doi.org/10.1007/978-3-540-85174-5_20
http://dx.doi.org/10.1007/978-3-540-85174-5_19
http://dx.doi.org/10.1007/978-3-540-85174-5_19
http://dx.doi.org/10.1007/978-3-662-46803-6_21
http://dx.doi.org/10.1007/978-3-642-40084-1_23
http://dx.doi.org/10.1007/978-3-642-29011-4_15
http://dx.doi.org/10.1007/978-3-642-29011-4_15
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-22792-9_31
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-642-38348-9_2
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-642-34961-4_30
http://dx.doi.org/10.1007/978-3-642-28914-9_33
http://dx.doi.org/10.1007/978-3-642-28914-9_33

Approximate-DPKE from Hard Learning Problems 41

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: How to use a short basis: trapdoors for
hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206.
ACM (2008)

21. Damg̊ard, I., Park, S.: How practical is public-key encryption based on LPN? ePrint
Archive, 2012/699 (2012)

22. Heyse, S., Kiltz, E., Lyubashevsky, V., Paar, C., Pietrzak, K.: Lapin: an effi-
cient authentication protocol based on Ring-LPN. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 346–365. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34047-5 20

23. Kiltz, E., Masny, D., Pietrzak, K.: Simple chosen-ciphertext security from low-
noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 1

24. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT
2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10366-7 37

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

26. Meurer, A.: A coding-theoretic approach to cryptanalysis. Ph.D. dissertation thesis
(2012)

27. Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complex-
ity of LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 465–484. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 26

28. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

29. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In STOC 2009, pp. 333–342. ACM (2009)

30. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

31. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
2008, pp. 187–196. ACM (2008)

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005)

33. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38348-9 6

34. Sun, X., Li, B., Lu, X.: Cramer-shoup like chosen ciphertext security from LPN.
In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 79–95. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-17533-1 6

35. Wee, H.: Dual projective hashing and its applications — lossy trapdoor
functions and more. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 246–262. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 16

36. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
ITCS 2013, pp. 111–126. ACM (2013)

http://dx.doi.org/10.1007/978-3-642-34047-5_20
http://dx.doi.org/10.1007/978-3-642-34047-5_20
http://dx.doi.org/10.1007/978-3-642-54631-0_1
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-10366-7_37
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-22792-9_26
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-642-38348-9_6
http://dx.doi.org/10.1007/978-3-319-17533-1_6
http://dx.doi.org/10.1007/978-3-642-29011-4_16
http://dx.doi.org/10.1007/978-3-642-29011-4_16

42 Y. Liu et al.

37. Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based
encryption from lattices in the auxiliary-input setting. In: Visconti, I., Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32928-9 1

38. Yu, Y., Zhang, J.: Cryptography with auxiliary input and trapdoor from constant-
noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 214–243. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 9. ePrint
Archive, 2016/514

http://dx.doi.org/10.1007/978-3-642-32928-9_1
http://dx.doi.org/10.1007/978-3-642-32928-9_1
http://dx.doi.org/10.1007/978-3-662-53018-4_9

Adaptively Secure Strong Designated Signature

Neetu Sharma1, Rajeev Anand Sahu2, Vishal Saraswat2(B),
and Birendra Kumar Sharma1

1 PRS University, Raipur, India
neetus.crypto@gmail.com, sharmabk07@gmail.com

2 CRRao AIMSCS, Hyderabad, India
rajeevs.crypto@gmail.com, vishal.saraswat@gmail.com

Abstract. Almost all the available strong designated verifier signature
(SDVS) schemes are either insecure or inefficient for practical implemen-
tation. Hence, an efficient and secure SDVS algorithm is desired. In this
paper, we propose an efficient strong designated verifier signature on
identity-based setting, we call it ID-SDVS scheme. The proposed scheme
is strong existentially unforgeable against adaptive chosen message and
adaptive chosen identity attack under standard assumptions, the hard-
ness of the decisional and computational Bilinear Diffie-Hellman Prob-
lem (BDHP). Though the unverifiability by a non-designated verifier and
the strongness are essential security properties of a SDVS, the proofs for
these properties are not provided in most of the literature on SDVS we
reviewed. We provide the proofs of unverifiability and of strongness of
the proposed scheme. Moreover, we show that the proposed scheme is
significantly more efficient in the view of computation and operation time
than the existing similar schemes.

Keywords: Strong designated verifier signature · Identity-based cryp-
tography · Bilinear Diffie-Hellman problem · Provable security

1 Introduction

Digital signature is a widely accepted tool for authentication in cryptography. The
general definition of digital signature in public key cryptography allows any user in
public to verify the authentication of the signature. However, in many situations,
like proposal of construction bidding, licensing software, electronic voting etc., the
signers may desire to sign a document for a particular receiver with control over
the verification of their signatures. In these applications, the signed message may
include crucial information between the signer and the verifier.

For such scenarios, Chaum et al. [3] introduced the undeniable signature
which allows a signer to have a control over the signature with the property
that verification of a signature requires the participation of the signer. But a
practical issue with such a signature is that the signer’s presence for verification
requires the signer to be online all the time. To overcome this complication,
Jakobsson et al. [7] proposed the concept of designated verifier signature (DVS),
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 43–60, 2016.
DOI: 10.1007/978-3-319-49890-4 3

44 N. Sharma et al.

that transforms Chaum’s scheme [2] into non-interactive verification using a des-
ignated verifier proof. Their scheme allows the signer to convince the validity of
a statement to a particular verifier without allowing any third party to verify
the validity of that signature.

Saeednia et al. [14] pointed out that given a DVS, anybody can make sure that
there are only two potential signers. Hence, if the signatures may be captured on
the line before arriving at the designated verifier, then one can identify the signer,
since it is now sure that the verifier did not produce the signature. To overcome
this issue, they extended the notion of DVS with a property of strongness which
requires that to a third party, who is none of the signer or designated verifier, the
DVS from a signer A to a designated verifier B, is indistinguishable from a DVS
from any other signer C to some other verifier D. They call such a signature
strong designated verifier signature (SDVS).

1.1 Related Work

In 2004, Susilo et al. [15] proposed the first identity-based strong designated
verifier signature (ID-SDVS). Unforgeability of their scheme is based on the
Bilinear Diffie-Hellman (BDH) assumption. In 2006, Huang et al. [6] proposed a
short ID-SDVS scheme based on Diffie-Hellman key exchange protocol. The secu-
rity of their scheme relies on the Gap Bilinear Diffie-Hellman (GBDH) assump-
tion. Computation cost of the former scheme is more than double of the latter
one. However, the scheme in [6] is not strongly unforgeable since the signa-
ture of a message always remains the same and a replay attack is always pos-
sible and cannot be trivially avoided. Later, in 2008, Zhang et al. [16] proposed
another ID-SDVS scheme that is claimed to be non-delegatable, but in 2009,
Kang et al. [9] pointed out security flaws in [16] against the strongness property
of SDVS scheme. They observed that in [16], an outsider who eavesdrops an old
signature and can obtain some information that is to be used for the verifica-
tion of subsequent signatures. It has also been explained in [9], that how the
property of strongness in [16] does not fulfil their claim. In [9], they also pro-
posed another ID-SDVS scheme and an identity-based designated verifier proxy
signature (ID-DVPS). However, in 2010, Lee et al. [11] showed that the scheme
in [9] is universally forgeable. In 2009, Kang et al. [10] proposed another ID-SDVS
scheme which is more efficient than that in [9]. However, this construction was
also shown to be universally forgeable in [5].

1.2 Applications

The strong designated verifier signature has crucial applications in various real
world scenarios including the following:

1. Licensing software: Software companies use digitally signed keys as their soft-
ware license so that these keys can only be used by the person who has pur-
chased the product. The strong designated verifier signature on keys protects
illegal distribution of the software.

Adaptively Secure Strong Designated Signature 45

2. Electronic voting : In electronic voting schemes, a voting center is required to
ensure that a vote has been counted in the final tally or not. The verification
of the center’s signature on the receipt is one way of doing so. But it should
also be taken in account that the voters must not have the ability to convince
a third party the nature of their votes they have casted. This may cause some
gain or threats by the parties depending upon the nature of the vote. To fulfil
this requirement in electronic voting schemes, the center’s signature should
be a strong designated verifier signature.

1.3 Our Contribution

In this paper, we propose an efficient identity-based strong designated verifier
signature (ID-SDVS) scheme using bilinear pairing. Proposed scheme is existen-
tially unforgeable (resp. unverifiable) against adaptive chosen message and adap-
tive chosen identity attack under the computational (resp. decisional) Bilinear
Diffie-Hellman (BDH) assumption in the random oracle model. We also provide
a proof for the strongness property of the proposed scheme. We reviewed the
existing ID-SDVS schemes including [5,6,8–11,15,16] and noticed that most of
the papers on ID-SDVS were missing the full proofs of security which we tabu-
late in Table 1. Moreover, we show that the proposed scheme is upto 120 % more
efficient in the sense of computation and operation time than these schemes.

Table 1. Security proofs

Scheme Proof of unforgeability Proof of unverifiability Proof of strongness

Susilo et al. [15] � ✗ ✗

Huang et al. [6] ✗ ✗ ✗

Kancharla et al. [8] � ✗ ✗

Du et al. [5] � ✗ ✗

Zhang et al. [16] ✗ ✗ ✗

Kang et al. [9] ✗ ✗ ✗

Kang et al. [10] ✗ ✗ ✗

Lee et al. [11] � ✗ ✗

Our scheme � � �

1.4 Outline of the Paper

The rest of this paper is organized as follows. In Sect. 2, we introduce some
related mathematical definitions, problems and assumptions. In Sect. 3, we
present the formal definition of an identity-based strong designated verifier sig-
nature scheme and a formal security model for it. The proposed signature scheme
is presented in Sect. 4. In Sect. 5 we analyze the security of the proposed scheme
and in Sect. 6 we do an efficiency comparison with the state-of-art. Finally, in
Sect. 7 we conclude our work.

46 N. Sharma et al.

2 Preliminaries

A probabilistic polynomial time (PPT) algorithm is a probabilistic/randomized
algorithm that runs in time polynomial in the length of input. We denote by
y ← A(x) the operation of running a randomized or deterministic algorithm
A(x) and storing the output to the variable y. If X is a set, then v

$← X denotes
the operation of choosing an element v of X according to the uniform random
distribution on X. We say that a given function f : N → [0, 1] is negligible in
n if f(n) < 1/p(n) for any polynomial p for sufficiently large n. For a group G
and g ∈ G, we write G = 〈g〉 if g is a generator of G.

Definition 1 (Bilinear Map). Let G1 be an additive cyclic group with gen-
erator P and G2 be a multiplicative cyclic group. Let both the groups are of the
same prime order q. Then a map e : G1 × G1 → G2 is called a cryptographic
bilinear map if it satisfies the following properties.

Bilinearity: For all a, b ∈ Z
∗
q , e(aP, bP) = e(P, P)ab, or equivalently, for all

Q,R, S ∈ G1, e(Q+R,S) = e(Q,S)e(R,S) and e(Q,R+S) = e(Q,R)e(Q,S).
Non-degeneracy: There exists Q,R ∈ G1 such that e(Q,R) �= 1. Note that

since G1 and G2 are groups of prime order, this condition is equivalent to
the condition g := e(P, P) �= 1, which again is equivalent to the condition
that g := e(P, P) is a generator of G2.

Computability: There exists an efficient algorithm to compute e(Q,R) ∈ G2

for all Q,R ∈ G1.

Definition 2. A bilinear map parameter generator B is a PPT algorithm that
takes as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g〉 ← B(λ) (1)

where q, G1, G2, e, P and g are as in Definition 1.

Definition 3 (Bilinear Diffie-Hellman Problem). Given a security para-
meter λ, let 〈q, e : G1×G1 → G2, P, g〉 ← B(λ). Let BDH : G1 ×G1×G1 → G2

be a map defined by

BDH(X,Y,Z) = ω where X = xP, Y = yP, Z = zP and ω = e(P, P)xyz .

The bilinear Diffie-Hellman problem (BDHP) is to evaluate BDH(X,Y,Z) given
X,Y,Z

$← G1. (Without the knowledge of x, y, z ∈ Zq — obtaining x ∈ Zq, given
P,X ∈ G1 is solving the discrete logarithm problem (DLP)).

Definition 4. A BDHP parameter generator C is a PPT algorithm that takes
as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ) (2)

where q, G1, G2, e, P , g, X, Y and Z are as in Definition 3.

Adaptively Secure Strong Designated Signature 47

Definition 5 (Bilinear Diffie-Hellman Assumption). Given a security
parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). The bilinear
Diffie-Hellman assumption (BDHA) states that for any PPT algorithm A which
attempts to solve BDHP, its advantage

AdvC(A) := Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z) = BDH(X,Y,Z)]

is negligible in λ.

Definition 6 (Decisional Bilinear Diffie-Hellman Problem). Given a
security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z〉 ← C(λ). Let
ω

$← G2. The decisional bilinear Diffie-Hellman problem (DBDHP) is to decide if

ω = BDH(X,Y,Z) .

That is, if X = xP, Y = yP, Z = zP , for some x, y, z ∈ Zq, then the DBDHP is
to decide if

ω = e(P, P)xyz .

(Without the knowledge of x, y, z ∈ Zq — obtaining x ∈ Zq, given P,X ∈ G1 is
solving the discrete logarithm problem (DLP)).

Definition 7. A DBDHP parameter generator D is a PPT algorithm that takes
as input security parameter λ and outputs a tuple

〈q, e : G1 × G1 → G2, P, g,X, Y, Z, ω〉 ← D(λ) (3)

where q, G1, G2, e, P , g, X, Y , Z and ω are as in Definition 6.

Definition 8 (Decisional Bilinear Diffie-Hellman Assumption). Given
a security parameter λ, let 〈q, e : G1 × G1 → G2, P, g,X, Y, Z, ω〉 ← D(λ).
The bilinear Diffie-Hellman assumption (DBDHA) states that, for any PPT
algorithm A which attempts to solve DBDHP, its advantage

AdvD(A) := |Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z, ω) = 1]−
Prob[A(q, e : G1 × G1 → G2, P, g,X, Y, Z,BDH(X,Y,Z)) = 1]| (4)

is negligible in λ.

3 Identity-Based Strong Designated Verifier Signature

In this section we present the formal definition of an identity-based strong des-
ignated verifier signature (ID-SDVS) and formalize a security model for it.

48 N. Sharma et al.

3.1 Identity-Based Strong Designated Verifier Signature

In an ID-SDVS scheme, a signer with identity IDS intends to send a signed
message to a designated verifier with identity IDV such that no one other than
the designated verifier can verify the signature. An ID-SDVS scheme is consists
of the following five algorithms:

1. params ← Setup(λ): An algorithm run by the private key generator (PKG)
which takes as input a security parameter λ and outputs the public parame-
ters params and a master secret s of the system. In all the algorithms from
here onward, params will be considered as an implicit input.

2. (QID, SID) ← Key Extract(ID): An algorithm run by the (PKG) which takes
input identity ID and outputs its public and private key pair (QID, SID).

3. σ ← DVSign(SIDS , QIDV ,m): A probabilistic algorithm run by the signer that
takes as input the signer’s secret key SIDS , the designated verifier’s public key
QIDV and a message m to generate a signature σ.

4. b ← DVVer(SIDV , QIDS ,m, σ): A deterministic algorithm run by the verifier
that takes the verifier’s secret key SIDV , the signer’s public key QIDS , a message
m and a signature σ, and returns a bit b which is 1 if the signature is valid
and 0 if invalid.

5. σ̂ ← DVTrans(SIDV , QIDS ,m): A deterministic algorithm run by the verifier
that takes the verifier’s secret key SIDV , and the signer’s public key QIDS and
a message m to generate a signature σ̂.

3.2 Security Model for Identity-Based Strong Designated Verifier
Signature

An ID-SDVS scheme must satisfy the following security properties.

1. Correctness: If the signature σ on a message m is correctly computed by
a signer IDS , then the designated verifier IDV must be able to verify the cor-
rectness of the message-signature pair (m,σ). That is,

Prob[1 ← DVVer(SIDV , QIDS ,m,DVSign(SIDS , QIDV ,m))] = 1

2. Unforgeability : It is computationally infeasible to construct a valid ID-
SDVS signature without the knowledge of the private key of either the signer
or the designated verifier. We define below strong existential unforgeability
against an adaptive chosen message and adaptive chosen identities attack.

Definition 9 (Unforgeability). An ID-SDVS scheme is said to be strong
existential unforgeable against adaptive chosen message and adaptive chosen
identities attack if for any security parameter λ, no probabilistic polynomial
time adversary A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which runs in time t has a non-
negligible advantage

AdvSEUF-CID2-CMA2
ID-SDVS,A (λ) := εA(λ) := Prob[1 ← DVVer(SID∗

V , QID∗
S ,m∗, σ∗)]

against the challenger B in the following game:

Adaptively Secure Strong Designated Signature 49

1. Setup: The challenger B generates the system’s public parameter params for
security parameter λ.

2. Query Phase:
– The adversary A may request upto qH1 hash queries on its adaptively cho-

sen identities and upto qH2 hash queries on its adaptively chosen messages
and obtain responses from B acting as a random oracle.

– A may request upto qE key extraction queries on its adaptively chosen
identities and obtain the corresponding private keys.

– A may request upto qS signature queries on its adaptively chosen messages
and adaptively chosen identities for the signer and the designated verifier
and obtain a valid strong designated verifier signature.

– A may request upto qV verification queries on signatures on its adaptively
chosen messages m and adaptively chosen identities for the signer and the
designated verifier and obtain the verification result 1 if it is valid and 0
if invalid.

3. Output : Finally, A outputs a (message, signature) pair (m∗, σ∗) for identities
ID∗

S of the signer and ID∗
V of the designated verifier such that:

– A has never submitted ID∗
S or ID∗

V during the key extraction queries.
– σ∗ was never given as a response to a signature query on the message m∗

with the signer’s identity ID∗
S , and the designated verifier’s identity ID∗

V ;
– σ∗ is a valid signature on the message m∗ from a signer with identity ID∗

S ,
for a designated verifier with identity ID∗

V .

3. Unverifiability : It is computationally infeasible to verify the validity of an
ID-SDVS without the knowledge of the private key of either the signer or
the designated verifier. We define below existential designated unverifiability
against an adaptive chosen message and adaptive chosen identities attack.

Definition 10 (Unverifiability). An ID-SDVS scheme is said to be existential
designated unverifiable against adaptive chosen message and adaptive chosen
identities attack if for any security parameter λ, no probabilistic polynomial
time adversary A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which runs in time t has a non-
negligible advantage

AdvEDV-CID2-CMA2
ID-SDVS,A (λ) := εA(λ) := |Prob[A(QID∗

S , QID∗
V ,m∗, σ∗) = 1]−

Prob[A(QID∗
S , QID∗

V ,m∗,DVSign(SID∗
S , QID∗

V ,m∗)) = 1]| (5)

against the challenger B’s response σ∗ in the following game:

1. Setup: Similar to the unforgeability game in Definition 9.
2. Query Phase 1 : Similar to the unforgeability game in Definition 9.
3. Challenge: At some point, A outputs a message m∗ and identities ID∗

S of the
signer and ID∗

V of the designated verifier on which it wishes to be challenged
such that A has never submitted ID∗

S or ID∗
V during the key extraction queries.

The challenger B responds with a “signature” σ∗ and challenges A to verify
if it is valid or not.

50 N. Sharma et al.

4. Query Phase 2 : A continues its queries as in Query Phase 1 with an additional
restriction that now it cannot submit a verification query on σ∗.

5. Output : Finally, A outputs its guessed bit b∗ which is 1 if the signature is
valid and 0 if invalid.

4. Non-transferability : Given a signature σ on message m, it is infeasible for
any PPT adversary A to decide whether σ was produced by the signer or by
the designated verifier, even if A is also given the private keys of the signer
and the designated verifier. In other words, it is impossible for the designated
verifier to prove to an outsider that the signature is actually generated by the
signer.

Definition 11 (Non-transferability). An ID-SDVS scheme is said to be non-
transferable if the signature generated by the signer is computationally indistin-
guishable from that generated by the designated verifier, that is,

σ ← DVSign(SIDS , QIDV ,m) ≈ σ̂ ← DVTrans(SIDV , QIDS ,m) .

5. Strongness: Let σ ← DVSign(SIDS , QIDV ,m) be a signature on a message
m from a signer S to a designated verifier V. Strongness requires that σ
could have been produced by any other third party S∗ other than S for some
designated verifier V∗ other than V.

Definition 12 (Strongness). An ID-SDVS scheme is said to be strong des-
ignated if given σ ← DVSign(SIDS , QIDV ,m), anyone, say V∗, other than the
designated verifier V can produce identically distributed transcripts that are
indistinguishable from those of σ from someone, say S∗, except the signer S.
That is,

σ ← DVSign(SIDS , QIDV ,m) ≈ σ̂ ← DVTrans(SID∗
V , QID∗

S ,m) .

4 Proposed Scheme

We present here our efficient and secure ID-SDVS. As described in Sect. 3, the
proposed scheme consists of the following algorithms: Setup, Key Extract, Des-
ignated Signature, Designated Verification and Transcript Simulation.

Setup: In the setup phase, PKG on input security parameter λ, generates the
system’s master secret key s ∈ Z

∗
q and the system’s public parameters params

= (1λ, G1, G2, q, e,H1,H2, P, Ppub), where G1 is an additive cyclic group of
prime order q with generator P , G2 is a multiplicative cyclic group of prime
order q, and H1 : {0, 1}∗ −→ G1, H2 : {0, 1}∗ × G1 −→ Z

∗
q are two crypto-

graphic secure hash functions, and Ppub = sP ∈ G1 is system’s public key,
e : G1 × G1 −→ G2 is a bilinear map as defined in Sect. 2.

Key Extract: For a user with identity IDi ∈ {0, 1}∗, the PKG computes its
public key as QIDi = H1(IDi) ∈ G1 and corresponding private key as SIDi =
sQIDi

∈ G1.

Adaptively Secure Strong Designated Signature 51

Designated Signature: To sign a message m ∈ {0, 1}∗ which can be verified by
a designated verifier V, the signer S chooses a random r

$← Z
∗
q and computes

– U = rP ∈ G1;
– h = H2(m,U) ∈ Z

∗
q ;

– V = rPpub + hSIDS ∈ G1;
– σ = e(V,QIDV).

The strong designated verifier signature on message m is (U, σ) ∈ G1 × G2.
Designated Verification: On receiving a message m and a signature (U, σ), a

verifier first computes h = H2(m,U) ∈ Z
∗
q and accepts the signature if and

only if the following equality holds:

σ = e(U + hQIDS , SIDV) .

Transcript Simulation: The designated verifier V can produce the signature
σ̂ intended for itself, by performing the following: chooses an integer r̂

$← Z
∗
q

and computes
– Û = r̂P ∈ G1;
– ĥ = H2(m, Û) ∈ Z

∗
q ;

– V̂ = r̂P + ĥQIDS ∈ G1; and
– σ̂ = e(V̂ , SIDV).

5 Analysis of the Proposed Scheme

5.1 Correctness of the Proposed Scheme

The correctness of the scheme follows since if (U, σ) is a correctly generated
signature on a message m from a signer with identity IDS for a designated verifier
with identity IDV , then

e(U + hQIDS , SIDV) = e(rP + hQIDS , sQIDV)
= e(rPpub + hSIDS , QIDV)
= e(V,QIDV)
= σ .

5.2 Unforgeability

We now prove that the proposed ID-SDVS is unforgeable. That is, any third
party other than the signer and the designated verifier, cannot forge a valid
signature on an adaptively chosen message from an adaptively chosen signer’s
identity for an adaptively chosen designated verifier’s identity with non-negligible
probability. We show that if there exists a probabilistic polynomial time (PPT)
adaptive chosen message and adaptive chosen identity algorithm which can pro-
duce a forgery for the proposed ID-SDVS then there exists another PPT algo-
rithm which can use the forgery to solve the BDHP. In particular, we prove the
following theorem:

52 N. Sharma et al.

Theorem 1. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which breaks the unforgeability of the proposed
ID-SDVS scheme in time t with success probability εA(λ), then there exists a
PPT adversary B(εB(λ), t′) which solves BDHP with success probability at least

εB(λ) ≥
(
1 − 1

q2

)(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS(2
qH1(qH1 − 1)

)
εA(λ)

in time at most

t′ ≤ (qH1 + qE + 3qS + qV)SG1 + (qS + qV)Pe + qSOG1 + OG2 + SG2 + t

where SG1 (resp. SG2) is the time taken for one scalar multiplication in G1 (resp.
G2), OG1 (resp. OG2) is the time taken for one group operation in G1 (resp. G2),
and Pe is the time taken for one pairing computation.

Proof: Let for a security parameter λ, B is challenged to solve the BDHP for

〈q, e,G1, G2, P, aP, bP, cP 〉

where G1 is an additive cyclic group of prime order q with generator P , G2

is a multiplicative cyclic group of prime order q with generator e(P, P), and
e : G1 × G1 → G2 is a cryptographic bilinear map as described in Sect. 2.
a, b, c

$← Z
∗
q are unknown to B. The goal of B is to solve BDHP by computing

e(P, P)abc ∈ G2 using A, the adversary who claims to forge the proposed ID-
SDVS scheme. B simulates the security game for unforgeability with A as follows.

Setup: B generates the system’s public parameter

params = 〈q, e : G1 × G1 → G2, P, Ppub := cP,H1,H2〉

for security parameter λ where the hash functions H1 and H2 behave as
random oracles and responds to A’s queries as below.

H1-queries: To respond to the H1 queries, B maintains a list

LH1 = {(IDi ∈ {0,1}∗, ri ∈ Z
∗
q , Ri ∈ G1)

qH1
i=1}

which is initially empty. B randomly chooses two indices α, β ∈ [1, qH1] and
sets i = 0. When A makes an H1-query for an identity ID ∈ {0,1}∗, B
proceeds as follows.
1. If the query ID already appears in LH1 in some tuple (IDi, ri, Ri) then B

responds to A with H1(ID) = Ri ∈ G1;
2. otherwise B sets i = i + 1 and

– if i = α, B sets ri =⊥ and Ri = aP ;
– if i = β, B sets ri =⊥ and Ri = bP ;
– if i �= α, β, B chooses ri

$← Z
∗
q and sets Ri = riP ;

3. Finally B adds the tuple (IDi := ID, ri, Ri) to LH1 and responds to A
with H1(ID) = Ri.

Adaptively Secure Strong Designated Signature 53

H2-queries: To respond to the H2 queries, B maintains a list

LH2 = {((m,U) ∈ {0,1}∗ × G1, h ∈ Z
∗
q)}

which is initially empty. When A queries the oracle H2 on (m,U), B responds
as follows.
1. If the query (m,U) already appears in LH2 in some tuple (m,U, h) then

B responds with H2(m,U) = h ∈ Z
∗
q .

2. Otherwise B picks a random h ∈ Z
∗
q and adds the tuple (m,U, h) to LH2

and responds to A with H2(m,U) = h.
Key extraction queries: When A makes a private key query on identity ID, B

proceeds as follows.
1. Runs the above algorithm for responding to H1-query for identity ID and

obtains H1(ID) = Ri.
2. If i = α or β, B reports failure and halts.
3. If i �= α, β, B responds to A with the private key SID := riPpub on the

identity ID.
It can be verified that the provided private key SID = riPpub is a valid private
key for the user with identity IDi := ID since

riPpub = ricP = criP = cH1(ID) .

Note that B aborts the security game during a key extraction query with
probability 2

qH1
.

Signature queries: To respond to the signature queries, B maintains a list

LS = {(m� ∈{0,1}∗, IDS� ∈{0,1}∗, IDV � ∈{0,1}∗, x� ∈Z
∗
q , U� ∈G1, σ� ∈G2)

qS
�=1}

which is initially empty with � = 0. When A queries the signature on a
message m from a signer with identity IDS for a designated verifier with
identity IDV , B proceeds as follows.
1. If the query (m, IDS , IDV) already appears in LS in some tuple

(m�, IDS�, IDV �, x�, U�, σ�) then B responds to A with the signature
(U�, σ�).

2. Otherwise B sets � = � + 1 and runs the above algorithm for responding
to H1-query for identities IDS and IDV and obtains QIDS = H1(IDS) = Ri

and QIDV = H1(IDV) = Rj .
3. If {i, j} = {α, β}, B reports failure and halts.
4. If i �= α, β, B computes the private key for IDS , SIDS = riPpub , and proceeds

as follows.
– randomly chooses x� ∈ Z

∗
q ;

– sets U� = x�P ∈ G1;
– runs the H2-query algorithm to obtain h� = H2(m,U�) ∈ Z

∗
q ;

– sets V� = x�Ppub + h�SIDS ∈ G1;
– computes σ� = e(V�, QIDV).

54 N. Sharma et al.

5. Otherwise if j �= α, β, B computes the private key for IDV , SIDV = rjPpub ,
and proceeds as follows.

– randomly chooses x� ∈ Z
∗
q ;

– sets U� = x�P ∈ G1;
– runs the H2-query algorithm to obtain h� = H2(m,U�) ∈ Z

∗
q ;

– sets V� = x�P + h�QIDS ∈ G1;
– computes σ� = e(V�, SIDV).

6. Finally B adds the tuple (m�, IDS�, IDV �, x�, U�, σ�) to LS and responds to
A with the signature (U�, σ�).

Note that B aborts the security game during a signature query with proba-
bility 2

qH1 (qH1−1) .
Verification queries: When A makes a verification query on the signature (U, σ)

on a message m from a signer with identity IDS for a designated verifier with
identity IDV , B proceeds as follows.
1. B runs the above algorithm for responding to H1-query for identities IDS

and IDV and obtains H1(IDS) = Ri and H1(IDV) = Rj .
2. If j ∈ {α, β}, B reports failure and halts.
3. If j �= α, β, then B computes IDV ’s private key, SIDV = rjPpub , and pro-

ceeds as in the verification of the proposed scheme and responds to A
accordingly.

Note that B aborts the security game during a verification query with prob-
ability 2

qH1
.

Output: After A has made its queries, it finally outputs a valid signature (U∗, σ∗)
on a message m∗ from a signer with identity ID∗

S for a designated verifier with
identity ID∗

V with a non-negligible probability εA(λ) such that:
– A has never submitted ID∗

S or ID∗
V during the key extraction queries;

– (U∗, σ∗) was never given as a response to a signature query on the message
m∗ with the signer’s identity ID∗

S , and the designated verifier’s identity
ID∗

V ; and
– σ∗ = e(U∗ + h∗Q∗

IDS , S∗
IDV).

If A did not make H1-query for the identities ID∗
S and ID∗

V , then the prob-
ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} �= {α, β}, then B reports failure and terminates.

Solution to BDHP: Otherwise, as in the forking lemma [13], B repeats the game
with the same random tape for x� but with different choices of a random set for
H2-queries to obtain another forgery (U∗, σ′) on the message m∗ with h′ such
that h∗ �= h′ and σ∗ �= σ′. Then,

σ∗

σ′ =
e(U∗ + h∗QIDS , SIDV)
e(U∗ + h′QIDS , SIDV)

=
e(h∗QIDS , SIDV)
e(h′QIDS , SIDV)

=
e(QIDS , SIDV)h∗

e(QIDS , SIDV)h′

= e(QIDS , SIDV)(h
∗−h′) = e(aP, bcP)(h

∗−h′) = (e(P, P)abc)(h
∗−h′) . (6)

Adaptively Secure Strong Designated Signature 55

Let (h∗ −h′)−1 mod q = ĥ. Then, from the above equation, B solves the BDHP
by computing

e(P, P)abc = (σ∗/σ′)ĥ (7)

Probability calculation: If B does not abort during the simulation then A’s view
is identical to its view in the real attack. The responses to H1-queries and H2-
queries are as in the real attack, since each response is uniformly and indepen-
dently distributed in G1 and Z

∗
q respectively. The key extraction, signature and

verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS
. (8)

The probability that A did H1-query for the identities ID∗
S and ID∗

V and that
{ID∗

S , ID∗
V} = {IDα, IDβ} is

(
1 − 1

q2

)(2
qH1(qH1 − 1)

)
. (9)

Clearly B’s advantage εB(λ) for solving the BDHP, that is, the total proba-
bility that B succeeds to solve BDHP, is the product of A’s advantage εA(λ) of
forging the proposed ID-SDVS and the above two probabilities. Hence

εB(λ) ≥
(
1 − 1

q2

)(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS(2
qH1(qH1 − 1)

)
εA(λ) .

Time calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, signature queries and verification queries, qH1 + qH2 + qE + qS + qV .
Hence the maximum running time required by B to solve the BDHP is

t′ ≤ (qH1 + qE + 3qS + qV)SG1 + (qS + qV)Pe + qSOG1 + OG2 + SG2 + t

as B requires to compute one scalar multiplication in G1 to respond to H1 hash
query, one scalar multiplication in G1 to respond to key extraction query, three
scalar multiplications in G1 to respond to signature query, one scalar multiplica-
tion in G1 to respond to verification query; one pairing computation to respond
to signature query, one pairing computation to respond to verification query, one
group operation in G1 to respond to signature query, and, one group operation
in G2 and one scalar multiplication in G2 to output a solution of BDHP.

5.3 Unverifiability

We now prove that the proposed ID-SDVS is strongly designated. That is, any
third party other than the signer and the designated verifier, cannot verify the
validity of a signature from a signer for a designated verifier with non-negligible

56 N. Sharma et al.

probability. We show that if there exists a PPT adaptive chosen message and
adaptive chosen identity algorithm which can verify the proposed ID-SDVS, then
there exists another PPT algorithm which can use the earlier algorithm to solve
the DBDHP. In particular, we prove the following theorem:

Theorem 2. Given a security parameter λ, if there exists a PPT adversary
A(qH1 , qH2 , qE , qS , qV , εA(λ), t) which breaks the designated unverifiability of the
proposed ID-SDVS scheme in time t with success probability εA(λ), then there
exists a PPT adversary B(εB(λ), t′) which solves DBDHP with success probability
at least

εB(λ) ≥
(
1 − 1

q2

)(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS(2
qH1(qH1 − 1)

)
εA(λ)

in time at most

t′ ≤ (qH1 + qE + 3qS + qV)SG1 + (qS + qV)Pe + qSOG1 + SG1 + SG2 + Pe + t

where SG1 , SG2 , OG1 , OG2 and Pe are as defined in Theorem 1.

Proof: Let for a security parameter λ, B is challenged to solve the DBDHP for

〈q, e : G1 × G1 → G2, P, aP, bP, cP, ω〉

where G1 is an additive cyclic group of prime order q with generator P , G2

is a multiplicative cyclic group of prime order q with generator e(P, P), and
e : G1 × G1 → G2 is a cryptographic bilinear map as described in Sect. 2 and
ω

$← G2. a, b, c
$← Z

∗
q are unknown to B. The goal of B is to solve DBDHP

by verifying if e(P, P)abc = ω using A, the adversary who claims to forge the
proposed ID-SDVS scheme.

B simulates the security game for strongness with A by doing the Setup
and by responding the H1-queries, H2-queries, Key extraction queries, Signature
queries and Verification queries as in the security game for unforgeability.

Output: After A has made its queries, it finally outputs a message m∗, an identity
ID∗

S of a signer and an identity ID∗
V of a designated verifier on which it wishes to

be challenged.
If A did not make H1-query for the identities ID∗

S and ID∗
V , then the prob-

ability that verification equality holds is less than 1/q2. Thus, with probability
greater than 1 − 1/q2, both the public keys were computed using H1-oracle
and there exist indices i, j ∈ [1, qH1] such that ID∗

S = IDi and ID∗
V = IDj . If

{i, j} �= {α, β}, then B reports failure and terminates.

Solution to DBDHP: Otherwise, B
– chooses a random r

$← Z
∗
q ;

– sets U = rP ;

Adaptively Secure Strong Designated Signature 57

– sets h = H2(m∗, U);
– sets σ = e(bP, cP)rωh;

and challenges A to verify the validity of the signature (U, σ).
Then, the verification holds if and only if each of the following holds

σ = e(U + hQIDS , SIDV)

⇐⇒ e(bP, cP)rωh = e(rP + haP, bPpub)

⇐⇒ e(P, P)bcrωh = e(rP + haP, bcP)

⇐⇒ e(P, P)bcrωh = e(P, P)(r+ha)bc

⇐⇒ ωh = (e(P, P)abc)h

⇐⇒ ω = e(P, P)abc

Then, from the above equation, B solves the DBDHP by simply returning
the response of A to the strongness challenge.

Probability calculation: If B does not abort during the simulation then A’s view
is identical to its view in the real attack. The responses to H1-queries and H2-
queries are as in the real attack, since each response is uniformly and indepen-
dently distributed in G1 and Z

∗
q respectively. The key extraction, signature and

verification queries are answered as in the real attack.
The probability that B does not abort during the simulation is

(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS
. (10)

The probability that A did H1-query for the identities ID∗
S and ID∗

V and that
ID∗

S = IDα and ID∗
V = IDβ is

(
1 − 1

q2

)(2
qH1(qH1 − 1)

)
. (11)

Clearly B’s advantage εB(λ) for solving the DBDHP, that is, the total prob-
ability that B succeeds to solve DBDHP, is the product of A’s advantage εA(λ)
of breaking the strongness of the proposed ID-SDVS and the above two proba-
bilities. Hence

εB(λ) ≥
(
1 − 1

q2

)(
1 − 2

qH1

)qE+qV (
1 − 2

qH1(qH1 − 1)

)qS(2
qH1(qH1 − 1)

)
εA(λ) .

Time calculation: It can be observed that running time of the algorithm B is
same as that of A plus time taken to respond to the hash queries, key extraction
queries, signature queries and verification queries, that is, qH1+qH2+qE+qS+qV .
Hence the maximum running time required by B to solve the DBDHP is

t′ ≤ (qH1 + qE + 3qS + qV)SG1 + (qS + qV)Pe + qSOG1 + SG1 + SG2 + Pe + t

since during the query phase, B requires to compute the same operations as in
the security game for unforgeability and additionally, one scalar multiplication
in G1, one scalar multiplication in G2 and one pairing computation to output a
solution of DBDHP.

58 N. Sharma et al.

5.4 Non-transferability

The proposed scheme achieves the property of non-transferability as defined in
Sect. 3. For this, we show that the transcripts simulated by the designated verifier
are indistinguishable from the signatures that he receives from the signer. In the
proposed scheme it can be observed that it is hard to distinguish the signature
(U, σ) on a message m by the signer from the signature (Û , σ̂) on the message
m by the designated verifier, that is, the distributions

U = rP ∈ G1

h = H2(m,U) ∈ Z
∗
q

V = rPpub + hSIDS ∈ G1

σ = e(V,QIDV)

and

Û = r̂P ∈ G1

ĥ = H2(m, Û) ∈ Z
∗
q

V̂ = r̂P + ĥQIDS ∈ G1

σ̂ = e(V̂ , SIDV)

are identical.

5.5 Strongness

The proposed scheme also achieves the property of strongness as defined in
Sect. 3. Let σ ← DVSign(SIDS , QIDV ,m). Then σ ← DVTrans(SID∗

V , QID∗
S ,m)

(where QID∗
S and SID∗

V are defined as in the following) since

σ = e(rPpub + hSIDS , QIDV)
= e(rPpub + hSIDS , xQID∗

V) where QIDV = xQID∗
V

= e(rxPpub + hxSIDS , QID∗
V)

= e(rPpub + r(x−1)Ppub + hxSIDS , QID∗
V)

= e(rPpub + r(x−1)hY + hxSIDS , QID∗
V) where Y = h−1Ppub

= e(rPpub + h(r(x−1)Y + xSIDS), QID∗
V)

= e(rPpub + hSID∗
S , QID∗

V) where SID∗
S = r(x−1)Y + xSIDS .

6 Comparative Analysis

Here, we compare our scheme with similar existing ID-SDVS schemes [8,11,15]
and show that our scheme is more efficient in the sense of computation and
operation time than these schemes.

For the computation of operation time in pairing-based scheme, to achieve the
1024-bit RSA level security, Tate pairing defined over the supersingular elliptic
curve E = Fp : y2 = x3 + x with embedding degree 2 was used, where q is
a 160-bit Solinas prime q = 2159 + 217 + 1 and p a 512-bit prime satisfying
p + 1 = 12qr, using MIRACL [12], a standard cryptographic library, and the
hardware platform is a PIV 3 GHZ processor with 512 M bytes memory and
the Windows XP operating system. For computation of operation time, we refer
to [4] where the operation time for various cryptographic operations have been
obtained. The OT(Operation Time) for one scalar multiplication is 6.38 ms, for

Adaptively Secure Strong Designated Signature 59

one exponentiation in G2 it is 5.31 ms, for one map-to-point hash function it
is 3.04 ms and for one pairing computation it is 20.04 ms. Other operations are
omitted in the following analysis since their computation cost is trivial, such as
the cost of an inverse operation over Z∗

q takes only 0.03 ms and one general hash
function takes less than 0.001 ms which are negligible with compare to the time
taken by the other operations.

To evaluate the total operation time in the efficiency comparison tables,
we use the method from [1,4]. In each of the two phases: signature generation
and verification, we compare the total number of scalar multiplications (SM),
exponentiations (E), map-to-point hash functions (H), bilinear pairings (P) and
the consequent operation time (OT) (Table 2).

Table 2. Efficiency comparision

Scheme SM E H P OT(ms)

Susilo et al. [15] 2 1 0 1 38.11

Kancharla et al.[8] 6 0 1 0 61.36

Lee et al. [11] 2 1 0 2 58.15

Our scheme 3 0 0 1 39.18

Signature Generation

Scheme SM E H P OT(ms)

Susilo et al. [15] 0 2 0 2 50.70

Kancharla et al.[8] 0 0 1 4 83.20

Lee et al. [11] 1 0 0 2 46.46

Our scheme 1 0 0 1 26.42

Verification

Scheme SM E H P OT(ms)

Susilo et al. [15] 2 3 0 3 88.81

Kancharla et al.[8] 6 0 2 4 144.56

Lee et al. [11] 3 1 0 4 104.61

Our scheme 4 0 0 2 65.60

Overall Scheme

7 Conclusion

In this paper, we have proposed a strong designated verifier signature scheme on
the identity-based setting. Our scheme is strong existentially unforgeable against
adaptive chosen message and adaptive chosen identity attack under standard
assumptions, the hardness of the computational and decisional Bilinear Diffie-
Hellman problems. We also provide a proof for the strongness property of our
scheme. Moreover, we do an efficiency comparison of our scheme with the existing
similar schemes. In the view of computational cost and operation time our scheme
is significantly more efficient than the existing schemes. The scheme is suitable
for the environments in which less computational cost with strong security is
required.

60 N. Sharma et al.

References

1. Cao, X., Kou, W., Xiaoni, D.: A pairing-free identity-based authenticated key
agreement protocol with minimal message exchanges. Inf. Sci. 180(15), 2895–2903
(2010)

2. Chaum, D.: Zero-knowledge undeniable signatures (extended abstract). In:
Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer,
Heidelberg (1991). doi:10.1007/3-540-46877-3 41

3. Chaum, D., Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990). doi:10.1007/
0-387-34805-0 20

4. Debiao, H., Jianhua, C., Jin, H.: An identity-based proxy signature schemes with-
out bilinear pairings. Ann. Telecommun. 66(11–12), 657–662 (2011)

5. Du, H., Wen, Q.: Attack on Kang et al.’s identity-based strong designated verifier
signature scheme. IACR Cryptology ePrint Archive, 2008:297 (2008)

6. Huang, X., Susilo, W., Mu, Y., Zhang, F.: Short (identity-based) strong designated
verifier signature schemes. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC
2006. LNCS, vol. 3903, pp. 214–225. Springer, Heidelberg (2006). doi:10.1007/
11689522 20

7. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9 13

8. Kancharla, P.K., Gummadidala, S., Saxena, A.: Identity based strong designated
verifier signature scheme. Informatica 18(2), 239–252 (2007)

9. Kang, B., Boyd, C., Dawson, E.: Identity-based strong designated verifier signature
schemes: attacks and new construction. Comput. Electr. Eng. 35(1), 49–53 (2009)

10. Kang, B., Boyd, C., Dawson, E.D.: A novel identity-based strong designated verifier
signature scheme. J. Syst. Softw. 82(2), 270–273 (2009)

11. Lee, J.-S., Chang, J.H., Lee, D.H.: Forgery attacks on Kang et al.’s identity-based
strong designated verifier signature scheme and its improvement with security
proof. Comput. Electr. Eng. 36(5), 948–954 (2010)

12. MIRACL. Multiprecision integer and rational arithmetic cryptographic library.
http://certivox.org/display/EXT/MIRACL

13. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

14. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier
signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971,
pp. 40–54. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24691-6 4

15. Susilo, W., Zhang, F., Mu, Y.: Identity-based strong designated verifier sig-
nature schemes. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP
2004. LNCS, vol. 3108, pp. 313–324. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27800-9 27

16. Zhang, J., Mao, J.: A novel ID-based designated verifier signature scheme. Inf. Sci.
178(3), 766–773 (2008)

http://dx.doi.org/10.1007/3-540-46877-3_41
http://dx.doi.org/10.1007/0-387-34805-0_20
http://dx.doi.org/10.1007/0-387-34805-0_20
http://dx.doi.org/10.1007/11689522_20
http://dx.doi.org/10.1007/11689522_20
http://dx.doi.org/10.1007/3-540-68339-9_13
http://certivox.org/display/EXT/MIRACL
http://dx.doi.org/10.1007/978-3-540-24691-6_4
http://dx.doi.org/10.1007/978-3-540-27800-9_27
http://dx.doi.org/10.1007/978-3-540-27800-9_27

The Shortest Signatures Ever

Mohamed Saied Emam Mohamed1(B) and Albrecht Petzoldt2

1 Technische Universität Darmstadt, Darmstadt, Germany
mohamed@cdc.informatik.tu-darmstadt.de

2 Kyushu University, Fukuoka, Japan
petzoldt@imi.kyushu-u.ac.jp

Abstract. Multivariate Cryptography is one of the main candidates for
creating post quantum public key cryptosystems. Especially in the area
of digital signatures, there exist many practical and secure multivariate
schemes. In this paper we present a general technique to reduce the signa-
ture size of multivariate schemes. Our technique enables us to reduce the
signature size of nearly all multivariate signature schemes by 10 to 15%
without slowing down the scheme significantly. We can prove that the
security of the underlying scheme is not weakened by this modification.
Furthermore, the technique enables a further reduction of the signature
size when accepting a slightly more costly verification process. This trade
off between signature size and complexity of the verification process can
not be observed for any other class of digital signature schemes. By apply-
ing our technique to the Gui signature scheme, we obtain the shortest
signatures of all existing digital signature schemes.

Keywords: Post quantum cryptography · Multivariate cryptography ·
Digital signatures · Signature size

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [18], DSA [10] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers arrive. The rea-
son for this is Shor’s algorithm [19], which solves number theoretic problems
like integer factorization and discrete logarithms in polynomial time on a quan-
tum computer. Therefore, one needs alternatives to those classical public key
schemes, which are based on hard mathematical problems not affected by quan-
tum computer attacks (so called post quantum cryptosystems). The increasing
importance of research in this area has recently been emphasized by a number
of authorities. For example, the American National Security Agency (NSA) has
recommended governmental organizations to change their security infrastruc-
tures from schemes like RSA to post quantum schemes [13] and the National
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 61–77, 2016.
DOI: 10.1007/978-3-319-49890-4 4

62 M.S.E. Mohamed and A. Petzoldt

Institute of Standards and Technologies (NIST) is preparing to standardize these
schemes [14].

According to [14], one of the main candidates for this standardization is
multivariate cryptography. Multivariate schemes are in general very fast and
require only modest computational resources, which makes them attractive for
the use on low cost devices like smart cards and RFID chips [2,3]. Additionally,
at least in the area of digital signatures, there exists a large number of practical
multivariate schemes [6,11,17].

In this paper we present a general technique to reduce the signature size
of multivariate signature schemes. The key idea of our strategy is to send only
a part of the signature to the receiver of a signed message. The verification
process consists in solving a multivariate quadratic system in a very small num-
ber of variables.

By our technique we can reduce the signature size of nearly every multivariate
signature scheme by 10 to 15% without increasing the key sizes or slowing down
the scheme significantly. Furthermore, we can prove that the security of the sig-
nature schemes is not weakened by our modifications. Moreover, we can achieve
a further reduction of the signature length when accepting a small increase of
the verification cost. This trade off is, to our knowledge, unique for multivariate
schemes and can not be observed for any other class of digital signature schemes.
By applying our technique to the Gui signature scheme of Asiacrypt 2015 [17],
we can reduce the signature size of this scheme to 110 bit (80 bit security), by
which we obtain the shortest signatures of all existing schemes.

Our technique is especially attractive in situations, in which the connec-
tion between the sender and the receiver is very slow. An example for this are
(wireless) sensor networks. In such systems, the actual messages are often very
short and therefore a major part of the communication consists of the signatures
itself. Reducing the signature length therefore reduces the communication cost
and speeds up the system significantly.

The rest of this paper is organized as follows. In Sect. 2, we give a short
overview of (wireless) sensor networks and show how these systems can be sped
up by our technique. Section 3 gives an overview of the basic concepts of mul-
tivariate cryptography and introduces two of the best known and most widely
studied multivariate signature schemes, namely the Rainbow and the HFEv-
signature schemes. Section 4 describes the most important methods for solving
systems of multivariate quadratic equations which can be used in the verification
process of our schemes. In Sect. 5 we present our technique in detail and show
that our modifications do not weaken the security of the underlying schemes.
Section 6 shows, for concrete parameter sets of Rainbow and HFEv-, which actual
reductions in terms of the signature size can be achieved by our technique. Fur-
thermore, in this section, we analyze the efficiency of our technique using a large
set of experiments. In Sect. 7 we show how to apply our technique to the Gui
signature scheme, which allows us to efficiently generate secure signatures of
size only 110 bit (80 bit security). Finally, Sect. 8 gives a short discussion of the
benefits of our technique and Sect. 9 concludes the paper.

The Shortest Signatures Ever 63

2 (Wireless) Sensor Networks

In this section we describe a possible application scenario for our technique. Since
we aim at reducing the signature size, our technique is especially attractive in
situations in which the connection between sender and receiver is very slow. An
example for this are (wireless) sensor networks.

Fig. 1. Sensor network

Let us assume that we have a number of small sensors, which report at regu-
lar intervals their status to a server (as shown in Fig. 1). The status messages
itself might be very short, but the messages have to be signed in order to pre-
vent adversaries to send false messages to the server. The single sensors have
only restricted computing, power and memory capacities. Therefore, multivari-
ate signature schemes are an attractive candidate to generate the above men-
tioned signatures. To do this, one has to store the private key of the multivariate
scheme on the sensor. For current multivariate schemes such as Gui, the size of
the private key is only 3 kB. If this is still too big for the sensor, the private key
can easily be stored as a random seed.

However, the main problem in our scenario is the slow connection between
the sensors and their server. Therefore, our goal is to reduce the communication
between the sensors and the server as far as possible. Since, in the upper status
messages, the message itself might be very short, the length of the signature plays
a major role. Now, multivariate scheme already generate relatively short signa-
tures (usually a few hundred bits). However, as we will show in Sect. 5, we can
reduce the length of multivariate signatures further, without weakening the secu-
rity of the scheme, increasing the key sizes or making the signature generation
process more costly. By doing so, we can reduce the amount of communication
and therefore speed up the system significantly.

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials. The security of multivariate schemes is based on the

64 M.S.E. Mohamed and A. Petzoldt

MQ Problem: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn, find a vector x̄ = (x̄1, . . . , x̄n) such that
p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic
polynomials over the field GF(2) [8].

To build a public key cryptosystem based on the MQ problem, one starts
with an easily invertible quadratic map F : Fn → F

m (central map). To hide
the structure of F in the public key, one composes it with two invertible affine
(or linear) maps S : Fm → F

m and T : Fn → F
n. The public key of the scheme

is therefore given by P = S ◦ F ◦ T : Fn → F
m. The private key consists of S, F

and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate public key
cryptosystems is not only based on the MQ-Problem but also on the EIP-
Problem (“Extended Isomorphism of Polynomials”) of finding the composition
of P [5].

In this paper we concentrate on multivariate signature schemes. For this we
require n ≥ m, which ensures that every message has a signature. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Fig. 2.

Fig. 2. General workflow of multivariate signature schemes

Signature Generation: To generate a signature for a document d, we use a hash
function H to compute a hash value w = H(d) ∈ F

m. After that, one computes
recursively x = S−1(w) ∈ F

m, y = F−1(x) ∈ F
n and z = T −1(y). The signature

of the document d is z ∈ F
n. Here, F−1(x) means finding one (of approximately

qn−m) pre-image of x under the central map F .

Verification: To check, if z ∈ F
n is indeed a valid signature for the document d,

we compute the hash value w = H(d) ∈ F
m and w′ = P(z) ∈ F

m. If w′ = w
holds, the signature is accepted, otherwise rejected.

Since the late 1980s, many multivariate schemes both for encryption and
digital signatures have been proposed. The first one was the Matsumoto-Imai

The Shortest Signatures Ever 65

cryptosystem [12], which was later extended to schemes like Sflash [16] and
HFE [15]. A different research direction lead to the development of multivariate
schemes such as UOV [11], Rainbow [6], enTTS [21] and SimpleMatrix [20].
Although several of these schemes have been broken due to newly developed
attacks, a number of multivariate schemes such as UOV, Rainbow and HFEv-
has withstood (for suitable parameter sets) cryptanalysis for more than 20 years
now. In the next two subsections, we introduce two of these schemes.

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [6] is one of the most promising and best studied
multivariate schemes. The scheme can be described as follows.

Let F be a finite field, n ∈ N and v1 < v2 < . . . < v� < v�+1 = n be a sequence
of integers. We set Oi = {vi + 1, . . . , vi+1} and Vi = {1, . . . , vi} (i = 1, . . . �).

Key Generation: The private key of the scheme consists of two invertible affine
maps S : Fm → F

m and T : Fn → F
n and a quadratic map F(x) = (f (v1+1)(x),

. . . , f (n)(x)) : Fn → F
m. Here, m = n − v1 is the number of components of F .

The components of the central map F are of the form

f (i) =
∑

k,l∈Vj

α
(i)
kl · xk · xl +

∑

k∈Vj ,l∈Oj

β
(i)
kl · xk · xl +

∑

k∈Vj∪Oj

γ
(i)
k · xk + η(i). (1)

Here, j is the only integer such that i ∈ Oj . The public key is the composed map
P = S ◦ F ◦ T : Fn → F

m.

Signature Generation: To generate a signature for a document d, one uses a
hash function H to compute the hash value w = H(d) ∈ F

m. After that, one
computes recursively x = S−1(w), y = F−1(x) and z = T −1(y). Here, F−1(x)
means finding one (of approximately qv1) pre-image of x under the central map
F . In the case of Rainbow, this is done as follows.

Algorithm 1. Inversion of the Rainbow central map
Input: Rainbow central map F , vector x ∈ F

m

Output: vector y ∈ F
n such that F(y) = x

1: Choose random values for the variables y1, . . . , yv1 and substitute these values into
the polynomials f (i) (i = v1 + 1, . . . , n).

2: for k = 1 to � do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the values

of the variables yi (i ∈ Ok).
4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i) (i ∈ {vk+1 +

1, . . . n}).
5: end for

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for y1, . . . , yv1

and start again.

66 M.S.E. Mohamed and A. Petzoldt

The signature of the document d is z ∈ F
n.

Signature Verification: To check if z ∈ F
n is indeed a valid signature for the

document d, one computes w = H(d) and w′ = P(z). If w′ = w holds, the
signature is accepted, otherwise rejected.

3.2 The HFEv- Signature Scheme

Another widely known construction is the HFEv- signature scheme, which is
often used as the basis of more advanced multivariate signature schemes such as
QUARTZ and Gui [17] (see Sect. 7).

Let F = Fq be a finite field with q elements and E be a degree n extension
field of F. Furthermore, we choose integers D, a and v. Let Φ be the canonical
isomorphism between F

n and E, i.e.

Φ(x1, . . . , xn) =
n∑

i=1

xi · Xi−1. (2)

The central map F of the HFEv- scheme is a map from F
v ×E to E of the form

F(X) =
qi+qj≤D∑

0≤i≤j

αij · Xqi+qj

+
qi≤D∑

i=0

βi(v1, . . . , vv) · Xqi

+ γ(v1, . . . , vv), (3)

with αij ∈ E, βi : F
v → E being linear and γ : F

v → E being a quadratic
function.

Due to the special form of F , the map F̄ = Φ−1 ◦ F ◦ Φ is a multivariate
quadratic map from F

n+v to F
n. To hide the structure of F̄ in the public key,

one combines it with two affine (or linear) maps S : Fn → F
n−a and T : Fn+v →

F
n+v of maximal rank.

The public key of the scheme is the composed map P = S ◦ F̄ ◦ T : Fn+v →
F

n−a, the private key consists of S, F and T .

Signature Generation: To generate a signature for a document d, we use a hash
function H to compute the hash value w = H(d) ∈ F

n−a. After that, the signer
performs the following three steps.

1. Compute a preimage x ∈ F
n of w under the affine map S.

2. Lift x to the extension field E (using the isomorphism Φ). Denote the result
by X.
Choose random values for the Vinegar variables v1, . . . , vv ∈ F and compute
FV = F(v1, . . . , vv).
Solve the univariate polynomial equation FV (Y) = X by Berlekamp’s algo-
rithm and compute y′ = Φ−1(Y) ∈ F

n. Set y = (y′||v1|| . . . ||vv).
3. Compute the signature z ∈ F

n+v of the document d by z = T −1(y).

Signature verification: To check if z ∈ F
n+v is indeed a valid signature for the

document d, we compute the hash value w = H(d) and w′ = P(z) ∈ F
n−a. If

w′ = w holds, the signature is accepted, otherwise rejected.

The Shortest Signatures Ever 67

4 Solving Multivariate Quadratic Systems

In this section we give a short overview of the most important techniques for
solving systems of multivariate quadratic equations that might be used in our
scheme.

4.1 The Relinearization Technique

In [11], Kipnis and Patarin proposed the Relinearization technique, which allows
to solve highly overdetermined multivariate quadratic systems in polynomial
time. In particular, a system can be solved by this technique if the number of
equations m is greater or equal to

m ≥ (n + 1) · (n + 2)
2

− 1. (4)

The idea can be described as follows:

1. Interpret each of the quadratic monomials xi · xj in the system as a new
variable xij .

2. Solve the resulting linear system by Gaussian Elimination.

If Eq. 4 holds, the linear system in step 2 has (in most cases) exactly one solution,
which directly yields the solution of the quadratic system.

4.2 Other Techniques

If the number n of variables in the system exceeds the upper bound given by
Eq. 4, the Relinearization method produces a huge set of fake solutions, which
are solutions to the linear system, but do not solve the original quadratic one. In
this case one has to use other methods to solve the quadratic system, for example
XL (see Algorithm 2) or a Gröbner Basis algorithm such as F4 or F5 [7].

Algorithm 2. XL-Algorithm
Input: Set of polynomials F = (f (1), . . . , f (m))
Output: vector x = (x1, . . . , xn) such that f (1)(x) = . . . = f (m)(x) = 0
1: for i = 1 to n do
2: Fix an integer D > 2.
3: Generate all polynomials h · f (j) with h ∈ Tn

D−2 and j = 1, . . . , m.
4: Perform Gaussian elimination on the set of all polynomials generated in the

previous step to generate one equation containing only xi.
5: If step 4 produced at least one univariate polynomial in xi, solve this polynomial

by e.g. Berlekamp’s algorithm.
6: Simplify the equations by substituting the value of xi.
7: end for
8: return x = (x1, . . . , xn)

68 M.S.E. Mohamed and A. Petzoldt

The XL Algorithm (“eXtended Linearization”) was proposed by Courtois
et al. in [4]. In order to solve a quadratic system F , the algorithm enlarges the
system by multiplying the polynomials f (i) ∈ F by all monomials of degree
d ≤ D − 2. By doing so, it obtains a large system F̃ of degree D polynomials.
The algorithm performs Gaussian Elimination on the system F̃ in order to find
a univariate polynomial which then can be solved by Berlekamp’s algorithm. In
this case, it substitutes the solution into F̃ to simplify the system.

However, if the degree D chosen in step 2 of the algorithm is too small,
the enlarged system F̃ will not contain a univariate polynomial. In this case
one has to increase the degree D and try again. The smallest degree for which
the XL algorithm outputs a solution of the system F is called the degree of
regularity dreg. This degree of regularity mainly determines the complexity of
the algorithm.

For our purposes we want the quadratic system F to be efficiently solvable.
In the following, we therefore only consider multivariate systems which can be
solved by the XL algorithm at degree 3 or 4. This directly yields an upper bound
on the number of variables in our systems. However, for multivariate quadratic
systems, it is a hard task to find explicit formulas for this upper bound. In Sect. 6,
we therefore try to find these upper bound for concrete instances of Rainbow
and HFEv- using a large number of experiments.

5 Reducing the Signature Size of Multivariate Schemes

In this section we present our technique to reduce the signature size of multivari-
ate schemes. Our technique can be applied to nearly all multivariate signature
schemes, including UOV [11], Rainbow [6], HFEv- [15] and TTS [21].

However, it is not possible to apply our technique directly to more advanced
multivariate signature schemes such as QUARTZ and Gui [17]. In order to reduce
the signature size of these schemes, we have to modify our technique slightly (see
Sect. 7).

Let ((S,F , T),P) be a key pair of a multivariate signature scheme.

Signature Generation: The sender of a message d uses his private key (S,F , T)
to compute a signature z ∈ F

n for the document d just as in the case of the
standard signature scheme. After that, he removes the last k F-elements from
the signature z to obtain a partial signature z̃ ∈ F

n−k and sends z̃ to the verifier.

Signature Verification: The receiver of a signed message checks if z̃ is indeed
part of a valid signature for the document d. To do this, he computes the hash
value w = H(d) ∈ F

m of the document d, substitutes the elements of the partial
signature z̃ into the public key P and uses one of the techniques described in
the previous section to solve the resulting system P̃(zn−k+1, . . . , zn) = w of m
quadratic equations in k variables. If the system has a solution, the signature z̃
is accepted, otherwise it is rejected.

Remark: Indeed we do not have to reconstruct the complete signature z ∈ F
n

by solving the system P̃(zn−k+1, . . . , zn) = w. Instead of this, it suffices to check

The Shortest Signatures Ever 69

whether the system has a solution. If we use the Relinearization technique for the
verification, it therefore suffices to bring the linearized system into row-echelon
form and check if the last equations (which contain only zero terms on the left)
hold. The reason for this is given by Proposition 1.

Algorithms 3 and 4 show the standard verification process for multivariate
schemes and our modified one in algorithmic form.

5.1 How to Choose the Parameter k?

In this section we consider the question how we should choose the number k
of F-elements removed from the original signature z. Increasing the number k
will lead to shorter signatures but increase the computational effort to check the
authenticity of a signature.

If (k+1)·(k+2)
2 − 1 ≤ m, the system P̃(x) = w from step 3 of Algorithm 3 can

be solved by the Relinearization technique (see Sect. 4.1). This means that we
can find a solution in polynomial time. Therefore we get

Proposition 1. Let (k+1)·(k+2)
2 − 1 ≤ m. Then the partial signature z̃ ∈ F

n−k

can not be found significantly faster than the full signature z ∈ F
n.

Proof. Let us assume that we have a valid partial signature z̃ ∈ F
n−k for a

document d. By substituting the elements of z̃ into the public key P we obtain
a system P̃ of m quadratic equations in k variables. Due to our assumption we
can solve this system and therefore recover the whole signature z in polynomial
time using the Relinearization technique (see Sect. 4.1).

Remark: The above proposition states that an attacker who is able to generate
a valid partial signature z̃ ∈ F

n−k can generate the whole signature z ∈ F
n

quasi without additional computational cost. This shows that the security of the
underlying signature schemes is not weakened by our modifications.

Algorithm 3. Standard Verification
Algorithm for Multivariate Schemes
Input: public key P, document d, sig-

nature z ∈ F
n

Output: boolean value TRUE or
FALSE

1: w = H(d) ∈ F
m

2: w′ = P(z)
3: if w′ = w then
4:
5: return TRUE
6: else
7: return FALSE
8: end if

Algorithm 4 . Modified Verification
Algorithm for Multivariate Schemes
Input: public key P, document d, partial

signature z̃ ∈ F
n−k

Output: boolean value TRUE or
FALSE

1: w = H(d) ∈ F
m

2: P̃ = P(z̃)
3: if IsConsistent (P̃(x) = w) = TRUE

then
4: return TRUE
5: else
6: return FALSE
7: end if

70 M.S.E. Mohamed and A. Petzoldt

From Eq. 4, we can derive the maximal number k of elements by which we
can reduce the length of the original signature z such that the partial signature
z̃ can be verified using the Relinearization technique by

k = �1
2

· (
√

9 + 8 · m − 3)
. (5)

In the following, we slacken this condition a bit. If (k+1)·(k+2)
2 − 1 > m, we can

not solve the system P̃(x) = w by the Relinearization technique any more and
therefore can not recover the whole signature z in polynomial time. However, if
the number k is not too large, we can solve the system P̃(x) = w by the XL
Algorithm at a very low degree (e.g. dreg ∈ {3, 4}). In this case, the computa-
tional effort of recovering the whole signature z is still very small. We therefore
come to the conjecture

Conjecture: If the system P̃(zn−k+1, . . . , zn) = w of m quadratic equations in
k variables can be solved by the XL Algorithm at degree 3 or 4, our technique
does not weaken the security of the underlying signature scheme.

Furthermore, in this case, the additional computational effort needed to verify
the reduced signature is still acceptable.

However, as already mentioned in Sect. 4.2, it is a hard task to find explicit
upper bounds for the parameter k such that the system P̃(x) = w can be solved
by the XL Algorithm at a given degree. In the next section we try to find, for
concrete instances of Rainbow and HFEv-, these upper bounds by performing a
large set of experiments.

6 Results

In this section we show, for concrete instances of the multivariate schemes Rain-
bow and HFEv-, the possible reduction of the signature size enabled by our tech-
nique. Furthermore we analyze the efficiency of our technique using a straight-
forward implementation of the schemes.

Table 1 shows, for the multivariate signature schemes Rainbow and HFEv-,
possible choices of the parameter k of our technique and the resulting reduction
in terms of the signature size of the schemes.

For every scheme and parameter set, the 7-th column of the table gives the
maximal values of the parameter k such that the partial signature z̃ can be ver-
ified by the Relinearization technique, the XL Algorithm with dreg = 3 and the
XL Algorithm with dreg = 4 respectively. While the first of these numbers can
be computed using formula 5, the values of k corresponding to the XL Algorithm
were obtained experimentally. In the 8-th column of the table we give first the
length of a standard signature (without reduction). The second number shows
the length of the shortest partial signature which can be verified using the Relin-
earization technique, while the third and fourth numbers show the lengths of the
shortest signatures that can be verified using the XL Algorithm at degree 3 and
4 respectively. The 9-th column shows the corresponding reduction factors.

The Shortest Signatures Ever 71

Table 1. Possible reduction of the signature length for rainbow and HFEv-

Security
level

Scheme Private key
size (kB)

Public key
size (kB)

Hash size
(bit)

verification
by

k Signature
size (bit)

Reduction
in %

80 Rainbow(GF(28)17,13,13) 19.9 25.1 208 standard 0 344 -

Relinearization 5 304 12

XL (dreg = 3) 10 264 23

XL (dreg = 4) 14 232 33

HFEv-(GF(7),62,8,2,2) 2.9 47.1 168 standard 0 192 -

Relinearization 9 165 14

XL (dreg = 3) 17 135 27

XL (dreg = 4) 23 126 34

100 Rainbow(GF(28),26,16,17) 44.4 59.0 264 standard 0 472 -

Relinearization 6 424 10

XL (dreg = 3) 12 384 19

XL (dreg = 4) 16 344 27

HFEv-(GF(7),78,8,3,3) 4.5 93.5 210 standard 0 243 -

Relinearization 11 216 14

XL (dreg = 3) 17 192 22

XL (dreg = 4) 24 171 30

In the case of the HFEv- signature scheme, we use GF(7) as the underlying
field. We store one element of GF(7) in 3 bits, while 5 elements of GF(7) can
be efficiently used to store 14 bits. To store a hash value of length 160 bit, we
therefore need 60 elements of GF(7), to store a hash value of 200 bit, we need
75 GF(7) elements.

As can be seen from Table 1 we can, in the case of HFEv-, get signatures
which are smaller than the input size of the scheme, even when restricting to
verifying the partial signatures with the Relinearization technique. But also for
the Rainbow scheme, our technique enables us to reduce the signature length by
up to 12%

When verifying the reduced signatures with the XL Algorithm (with dreg =
3), we can obtain a reduction of the signature length by 20–25%. When allowing
the XL Algorithm to reach degree 4, we can achieve reductions of up to 34%.

6.1 Efficiency of the Verification Process

To estimate the efficiency of the modified verification process, we created a
straightforward implementation of the Rainbow and HFEv- signature schemes
in MAGMA code. Our scheme runs on a single core of a server with 24 AMD
Opteron processors (2.4 GHz) and 128 GB of RAM. Table 2 shows the time
needed for the verification of a (partial) signature (average time of 10,000 veri-
fication processes).

As the table shows, there is no significant difference between the running
times of the standard verification process and the modified verification process
combined with the Relinearization technique. We therefore can achieve a reduc-
tion of the signature length by up to 15% at quasi no cost. A further reduction
of the signature length is possible if we accept an increase in the verification
time. We hence observe a trade off between signature size and efficiency of the
verification process, which, to our knowledge, is unique for multivariate signature
schemes and can not be observed for any other class of digital signature schemes.

72 M.S.E. Mohamed and A. Petzoldt

Table 2. Verification times for rainbow and HFEv- schemes with reduced signature
length

Security

level (bit)

Scheme Verification

by

k Signature

size (bit)

Reduction

in %

Verification

time (ms)

80 Rainbow(GF(28),17,13,13) standard 0 344 - 0.21

Relinearization 5 304 12 0.25

XL Algorithm (dreg = 3) 10 264 23 10.8

XL Algorithm (dreg = 4) 14 232 33 425.0

HFEv-(GF(7),62,8,2,2) standard 0 192 - 0.86

Relinearization 9 165 14 0.91

XL Algorithm (dreg = 3) 17 141 27 21.3

XL Algorithm (dreg = 4) 22 126 34 634.6

100 Rainbow(GF(28),26,16,17) standard 0 472 - 0.42

Relinearization 6 424 10 0.47

XL Algorithm (dreg = 3) 12 376 20 14.3

XL Algorithm (dreg = 4) 16 344 27 534.6

HFEv-(GF(7),78,8,3,3) standard 0 243 - 1.25

Relinearization 10 213 12 1.32

XL Algorithm (dreg = 3) 19 186 23 37.2

XL Algorithm (dreg = 4) 24 171 30 928.6

Fig. 3. Verification time (ms) for rainbow(17,13,13) and different values of k

Figure 3 shows this trade off for the example of the Rainbow signature scheme
with parameters (v1, o1, o2) = (17, 13, 13). In particular, we note that we can
achieve a reduction of the signature size of Rainbow by 5 byte (12%) at quasi no
cost. However, for larger values of k (i.e. solution of P̃(x) = w by the XL Algo-
rithm with dreg ∈ {3, 4}) the running time of the verification process increases
significantly. More experimental data regarding this trade off between signature
size and verification time can be found in Table 2.

The Shortest Signatures Ever 73

7 Application of Our Technique to Gui

The Gui signature scheme as proposed by Petzoldt et al. in [17] is currently
the multivariate signature scheme with the shortest signatures. In this section
we show how to apply our technique to Gui, by which we obtain the shortest
signatures of all currently existing signature schemes. However, due to the special
signature generation process of Gui, this can not be done straightforward. In
order to show this, we start with a short description of Gui.

The Gui signature scheme [17] is an extension of the HFEv- signature scheme
introduced in Sect. 3.2. Indeed, the public and private keys of Gui are just HFEv-
keys over GF(2) with specially chosen parameters n,D, a and v. The signature
generation process of Gui is very fast [17] and produces very short signatures
of size not more than 120 bit. However, due to the parameter choice of Gui,
the input length of the HFEv- scheme is only 90 bit. Therefore, it would be
possible for an attacker to come up with two messages d1 and d2 whose hash
values collide in these first 90 bits (birthday attack). To overcome this problem,
the authors of [17] developed a specially designed signature generation process
for their scheme. Roughly spoken, to generate a signature for a message d, Gui
computes r ∈ {3, 4} HFEv- signatures for different hash values of the document
d and combines them to a single Gui signature of length (n−a)+ r · (a+v) bits.
Algorithm 5 shows the signature generation process of Gui in algorithmic form.

In order to verify a Gui signature σ ∈ GF(2)(n−a)+r·(a+v), we have to evaluate
the public key of Gui r times (see Algorithm 6).

This repeated evaluation of the public key prevents us from applying our
technique to Gui directly. However, we are still able to reduce the signature size
of Gui by a + v bit.

Algorithm 5. Signature Generation Process of Gui
Input: Gui private key (S, F , T) message d, repetition factor r

Output: signature σ ∈ GF(2)(n−a)+r(a+v)

1: h ← SHA-256(d)
2: S0 ← 0 ∈ GF(2)n−a

3: for i = 1 to r do
4: Di ← first n − a bits of h
5: (Si, Xi) ← HFEv−−1(Di ⊕ Si−1)
6: h ← SHA-256(h)
7: end for
8: σ ← (Sr||Xr|| . . . ||X1)
9: return σ

In particular, while the original Gui signature σ is of the form σ =
(Sr,Xr, . . . , X1), we just transmit the partial signature σ̃ = (Sr,Xr, . . . , X2).
The modified verification algorithm of Gui works as shown in Algorithm 7.

74 M.S.E. Mohamed and A. Petzoldt

Algorithm 6 . Standard Verifica-
tion Algorithm of Gui
Input: Gui public key P, message

d, repetition factor r, signature
σ ∈ GF(2)(n−a)+r(a+v)

Output: boolean value TRUE or
FALSE

1: h ← SHA-256(d)
2: (Sr, Xr, . . . , X1) ← σ
3: for i = 1 to r do
4: Di ← first n − a bits of h
5: h ← SHA-256(h)
6: end for
7: for i = r − 1 to 0 do
8: Si ← P(Si+1||Xi+1) ⊕ Di+1

9: end for
10: if S0 = 0 then
11: return TRUE
12: else
13: return FALSE
14: end if

Algorithm 7 . Modified Verification
Algorithm of Gui
Input: Gui public key P, message d,

repetition factor r, partial signature
σ̃ ∈ GF(2)(n−a)+(r−1)·(a+v)

Output: boolean value TRUE or
FALSE

1: h ← SHA-256(d)
2: (Sr, Xr−1, . . . , X1) ← σ̃
3: for i = 1 to r do
4: Di ← first n − a bits of h
5: h ← SHA-256(h)
6: end for
7: for i = r − 1 to 1 do
8: Si ← P(Si+1||Xi+1) ⊕ Di+1

9: end for
10: P̃ ← P(S1)
11: if IsConsistent(P̃(x) = D1) then
12: return TRUE
13: else
14: return FALSE
15: end if

In our modified verification process, the hash values D1, . . . , Dr are com-
puted just as in the case of the original Gui scheme (line 3 to 6). We follow
the original verification process of Gui (see Algorithm 6) further to compute the
vectors Sr−1, . . . , S1 (line 7 to 9). After that, we substitute S1 into the public
key P (line 10) to obtain a system P̃ of n − a quadratic equations in a + v
variables. The signature σ̃ is accepted, if and only if the system P̃(x) = D1 has
a solution. For the parameters proposed in [17], this step can be performed by
the Relinearization technique (see Sect. 4.1) in polynomial time.

By our technique, we can therefore reduce the signature size of Gui from
(n−a)+ r · (a+v) bit to (n−a)+(r −1) · (a+v) bit. Table 3 shows the possible
reduction of the signature size for the four parameter sets proposed in [17]. As
the table shows, we can, for the parameters (n,D, a, v, r) = (95, 9, 5, 5, 3) (80 bit

Table 3. Possible reduction of the public key size for Gui

Security

level

Scheme Private key

size (kB)

Public key

size (kB)

Verification

by

k Signature

size (bit)

Reduction

in %

80 Gui(GF(2),96,5,6,6,4) 3.1 61.5 standard 0 126 -

Relinearization 13 113 10

Gui(GF(2),95,9,5,5,3) 3.0 59.2 standard 0 120 -

Relinearization 11 109 9

Gui(GF(2),94,9,4,4,4) 2.9 56.8 standard 0 122 -

Relinearization 9 113 7

120 Gui(GF(2),127,9,4,6,4) 5.2 139.2 standard 0 163 -

Relinearization 11 152 7

The Shortest Signatures Ever 75

security), obtain signatures of size 110 bit, which are the shortest signatures of
all existing schemes (both in the classical and the post quantum world). Note
that by our modifications the security of the scheme is not weakened at all (c.f.
Proposition 1), and the performance is not reduced significantly.

8 Discussion

The technique proposed in Sect. 5 of this paper enables us to reduce the signature
size of multivariate schemes in a very flexible way. In particular, as Fig. 3 shows,
we achieve a reduction of the signature size by 10–15% at quasi no cost and a
trade off between further reduction and the efficiency of the verification process.
Again we note that our modifications do not weaken the security of the schemes.

To our knowledge, this possibility to reduce the signature length without
extra cost is unique for multivariate signature schemes, and no other family
of signature schemes allows something similar. While, for some lattice based
signature schemes [9], there also exist techniques to reduce the signature size,
they are much less flexible than the proposed technique and require significant
extra computation.

Our technique can be applied to every standard multivariate signature
scheme such as UOV [11], Rainbow [6], HFEv- [15] and TTS [21] and, with
some modifications, to more advanced schemes such as QUARTZ and Gui [17],
too. Although, for these schemes, we can not reach as high reduction factors
as for Rainbow and HFEv-, we obtain, by applying our technique to Gui, the
shortest signatures of all existing signature schemes (both in the classical and
the post quantum world).

As demonstrated in Sect. 2 of this paper, our technique is especially suitable
in situations where the connection between sender and receiver is slow. In partic-
ular, if the original messages are very short (e.g. status messages of a node in a
sensor network) and therefore the signatures are a major part of the communica-
tion, our technique helps to reduce the communication cost and therefore speeds
up the system significantly. Furthermore, if the small sensors report their status
to a computationally powerful server, a slightly more complicated verification
process as implied by our technique should be no major problem.

9 Conclusion

In this paper we proposed a general technique to reduce the signature size of
multivariate schemes. Our technique enables us to decrease the signature size of
nearly all multivariate signature schemes such as Rainbow and HFEv- by up to
15%, without slowing down the verification process of the schemes significantly.
We can prove that the security of the underlying scheme is not weakened by
this modification. We can achieve a further reduction of the signature size when
accepting a slightly more costly verification process. Therefore, we observe a
trade off between signature length and the efficiency of the verification process,
which, to our knowledge, is unique for multivariate signature schemes.

76 M.S.E. Mohamed and A. Petzoldt

By applying our technique to the Gui signature scheme of [17], we obtain
signatures of size only 110 bit (80 bit security), which are the shortest signa-
tures of all existing digital signature schemes (both in the classical and the post
quantum world).

Acknowledgments. The first and the second authors are supported by the EU-
project PQCRYPTO ICT-645622 and JSPS KAKENHI 15F15350 respectively.

References

1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography.
Springer, Heidelberg (2009)

2. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 4

3. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 3

4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

5. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Advances in Information Security, vol. 25. Springer, New York (2006). doi:10.1007/
978-0-387-36946-4

6. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). doi:10.1007/11496137 12

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
Appl. Algebra 139, 61–88 (1999)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

9. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33027-8 31

10. Kravitz, D.: Digital signature algorithm. US Patent 5231668, July 1991
11. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X 15

12. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption. In: Barstow, D., Brauer, W., Brinch Hansen,
P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J.,
Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–
453. Springer, Heidelberg (1988). doi:10.1007/3-540-45961-8 39

13. Goodin, D.: NSA preps quantum-resistant algorithms to head off cryptoapoc-
alypse. http://arstechnica.com/security/2015/08/nsa-preps-quantumresistant-alg
orithms-to-head-o-crypto-apocolypse/

http://dx.doi.org/10.1007/978-3-540-85053-3_4
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/3-540-45539-6_27
http://dx.doi.org/10.1007/978-0-387-36946-4
http://dx.doi.org/10.1007/978-0-387-36946-4
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/978-3-642-33027-8_31
http://dx.doi.org/10.1007/3-540-48910-X_15
http://dx.doi.org/10.1007/3-540-45961-8_39
http://arstechnica.com/security/2015/08/nsa-preps-quantumresistant-algorithms-to-head-o-crypto-apocolypse/
http://arstechnica.com/security/2015/08/nsa-preps-quantumresistant-algorithms-to-head-o-crypto-apocolypse/

The Shortest Signatures Ever 77

14. National Institute of Standards and Technology: Report on Post Quan-
tum Cryptography. NISTIR draft 8105, http://csrc.nist.gov/publications/drafts/
nistir-8105/nistir 8105 draft.pdf

15. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

16. Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algo-
rithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307.
Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9 22

17. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48797-6 14

18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

19. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

20. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption.
In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38616-9 16

21. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryp-
tosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP
2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). doi:10.1007/
11506157 43

http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-45353-9_22
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-642-38616-9_16
http://dx.doi.org/10.1007/11506157_43
http://dx.doi.org/10.1007/11506157_43

Cryptographic Protocols

CRT-Based Outsourcing Algorithms
for Modular Exponentiations

Lakshmi Kuppusamy(B) and Jothi Rangasamy

Society for Electronic Transactions and Security (SETS), Chennai, India
{lakshdev,jothiram}@setsindia.net

Abstract. The problem of securely outsourcing cryptographic compu-
tations to the untrusted servers was formally addressed first by Hohen-
berger and Lysyanskaya in TCC 2005. They presented an algorithm
which outsources computation of modular exponentiations securely to
two non-interacting third-party servers but the checkability of third-
party computations has probability 1/2. Chen et al. improved this algo-
rithm for two non-colluding servers by increasing the checkability prob-
ability to 2/3. For real-world cryptographic applications it is desirable
that the checkability probability is 1 − ε, where ε becomes negligible for
appropriate parameter choices. Towards a more practical use, we present
an algorithm(s) for secure outsourcing of (simultaneous) modular expo-
nentiation(s) which can be seen as another application of the Chinese
remainder theorem (CRT). Interestingly the checkability probability of
our algorithm is 1 in the presence of two non colluding servers. Our algo-
rithm is superior in both efficiency and checkability compared to that of
the previously known schemes of the same kind. Finally we discuss the
potential practical applications for our outsourcing schemes, for example
computing the final exponentiation in pairings.

1 Introduction

Secure transmission of sensitive information is vital not only for government and
business sectors but also for individuals. In this information age, we perform
many operations such as banking transactions that need to send some sensitive
data over the Internet. Also the usage of mobile devices such as smart phones,
tablets and PDAs for executing critical transactions and communications brings
new challenges related to security and performance. Though the contemporary
computation had become pervasive, the need for customary security services such
as authentication and confidentiality remains the same. Adapting the public-key
and private-key cryptographic algorithms in combination could make the smart
devices useful in diverse applications. However the indispensable fundamental
operations such as pairing and modular exponentiation in public-key cryptosys-
tems could hinder the performance of such smart devices as they are usually
battery-powered and generally built with less space and/or less computational
power or both. Note that their battery life is inversely proportional to the amount
of computational work they get engaged.
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 81–98, 2016.
DOI: 10.1007/978-3-319-49890-4 5

82 L. Kuppusamy and J. Rangasamy

The desire to outsource (cryptographic) computation from a resource-limited
device to a vastly powerful server has been growing like never before. This is
due to the numerous contributing trends including the upsurge in the usage of
mobile devices and the advent of cloud computing. The delegation of expensive
computations to a (cloud) server could benefit the smart devices in two ways;
first it helps these computationally-poor devices realise all the public-key cryp-
tographic functionalities and second it helps to prolong their battery lifetime.
In an outsourcing scenario, one main requirement is that the amount of work
needed by the client to delegate and verify the output of the worker(s)1 should
be significantly cheaper than computing the function or value on its own.

1.1 Related Work

Secure outsourcing of expensive computations has been an active area of research
in cryptography [1–6]. Gentry’s discovery on fully homomorphic encryption
(FHE) [7] shows the possibility of outsourcing any computation to cloud by
keeping the secrets. However, there is no straightforward guarantee provided by
FHE to validate the correctness of the (cloud) server’s outputs. FHE has efficacy
but lacks efficiency and thus using FHE mechanisms in real-world cryptographic
applications would not be immediate. In recent years, verifiable delegation of
modular exponentiation, occurring predominantly in public-key cryptography
has been receiving considerable attention [8–12]. The work of Matsumoto et al.
[13] for outsourcing RSA computations with untrusted servers was shown to be
insecure by Nguyen and Shparlinski [14]. Motivated by this, Hohenberger and
Lysyanskaya [8] proposed a formal security definition of outsourcing that aims
to capture two important security properties, namely secrecy and checkability.
Often the computation tasks outsourced to these third party servers contains
secret inputs and/or outputs and thus, secrecy is the first major challenge to be
dealt with. Moreover a third-party server which we call a cloud server can be
potentially malicious. Hence the foremost requirement for an outsourcing scheme
is that it should be computationally infeasible for the cloud server to learn any-
thing about the secrets other than performing the computation task assigned
to it. Another requirement is checkability as the untrusted server could try to
cause failures by returning an invalid result. Therefore, there must be a way
for the outsourcing device to check the validity of the output returned by the
server. Note that this check must be efficient for the device than performing the
computation task by itself. For instance if computing modular exponentiation is
outsourced then the outsourcing device should validate server’s output by just
performing modular multiplications, additions and subtractions.

Two-Server Algorithms. Hohenberger and Lysyanskaya also gave the first
secure outsourcing algorithm for modular exponentiation using two untrusted
servers that are non colluding after deciding on an initial strategy. The running
time of the algorithm is O(log2n) which is an asymptotic improvement over the
1 We use the terms worker, program and oracle interchangeably to refer to the

untrusted server.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 83

1.5n multiplications required to compute an exponentiation (without outsourc-
ing) using the square-and-multiply algorithm. The probability of detecting an
error in the output of the oracles is 1/2. In ESORICS 2012, Chen et al. [10]
improved the Hohenberger-Lysyanskaya algorithm in terms of both efficiency
(reducing the number of oracle queries) and checkability (i.e., error detection
probability is 2/3). Chen et al. also proposed secure outsourcing algorithm for
simultaneous modular exponentiations in the two server model.

Single-Server Algorithms. Wang et al. [11] were the first to present a generic
outsourcing algorithm for the single untrusted program model with the error-
detection probability is 1/2 only. Chevalier et al. [15] found an attack in Wang
et al.’s scheme and claimed that fixing the attack makes the algorithm inefficient.
Further, Chevalier et al. showed that an optimal single server based outsourcing
algorithms would require a non-constant number of group operations. The algo-
rithms proposed in [15] are proven unconditionally secure only in the presence
of honest-but curious adversary and the checkability property is not considered
for security analysis in the untrusted server setting.

Kiraz and Uzunkol [16] proposed an algorithm to outsource single modular
exponentiation to a single untrusted server with adjustable checkablity probabil-
ity (close to 1) for the appropriate pre-determined parameter choices. However
the algorithm incurs significant communication overhead in terms of transmis-
sion of group elements to the server from the resource constrained device.

1.2 Our Motivation and Contributions

On one hand we have two-server based algorithms [8,10] to outsource modular
exponentiation that achieve error-detection probability of 1/2 and 2/3 respec-
tively. On the other hand Chevalier et al. [15] showed that the single-server
algorithm due to Wang et al. [11] violates the secrecy property. The new sin-
gle server based algorithms proposed in [15] does not provide error checkability
property and the security is analysed only in the presence of honest-but-curious
adversary. Though the algorithm by Kiraz and Uzonkol [16] enables the out-
sourcer to check the correctness of the result returned by the server, it suffers
from a significant communication overhead compared to the existing schemes.

If the checkability probability is less than 1 it means that the client is not able
to validate certain number of outputs corresponding to its queries to the server
and hence there is a possibility that the client device may not end up computing
the intended task. Thus the problem that remains to be solved is to design an
algorithm for secure outsourcing of modular exponentiations using untrusted
servers achieving both privacy, high checkability and minimal communication
between the resource constrained device and the server. Note that Dijk et al.’s
scheme [9] has checkability of 1 in a single untrusted server model, but it fails to
maintain the privacy of the inputs in queries. This motivates us to examine how
to securely outsource modular exponentiations while ensuring privacy and high
checkability. Our contributions in this paper are as follows.

84 L. Kuppusamy and J. Rangasamy

– First we present an algorithm to securely outsource variable-base variable-
exponent modular exponentiation for the two untrusted server model. Using
two non colluding untrusted servers, our algorithm achieves the checkability
probability 1, thereby making it error free. We then extend the scheme to the
case of simultaneous modular exponentiations while retaining all the advan-
tages of the single exponentiation case. We analyse the proposed algorithms in
the one-malicious security model of Hohenberger and Lysyanskaya and prove
that our algorithms are secure and checkable.

– Finally we show how to use our secure outsourcing algorithm for (simultane-
ous) modular exponentiations in various applications. Especially we consider
the delegation of the final exponentiation which is arguably the most expensive
operation in pairing computations.

Outline. The rest of the paper is organised as follows. In Sect. 2 we recall
the security definitions of Hohenberger and Lysyanskaya [8] which is described
in Appendix A for secure outsourcing schemes. In Sect. 3 we present our
secure outsourcing algorithm for single modular exponentiation using two non-
colluding servers and analyse the security of our outsourcing algorithms under
the Hohenberger-Lysyanskaya security model in Sect. 3.2. An algorithm to out-
source simultaneous modular exponentiations is described in Sect. 4. Section 5
discusses some applications for the proposed algorithms and Sect. 6 concludes
the paper.

2 Security Definitions

Hohenberger and Lysyanskaya [8] presented the first formal security definition
to the problem of secure outsourcing of computations from a computational
resource constrained device to an untrusted server. They gave a framework to
quantify the efficiency and checkability of the outsourced task. Chen et al. [10]
and Wang et al. [11] followed these security definitions to prove the security
properties of their algorithms. We briefly describe the Hohenberger-Lysyanskaya
model in this section and refer the reader to [8] for a complete description.

Adversarial Behaviour. Let Alg be a cryptographic algorithm executed by
two components: (i) a computationally weak and trusted component C (i.e., a
client); and (ii) a computationally powerful and untrusted component U invoked
by C through oracle queries. We say that (C,U) forms an outsource-secure imple-
mentation of an algorithm Alg = CU where C carries out the tasks by invoking U .

The adversary A = (E ,U ′
) is modeled as being categorized into two parts:

(i) the adversarial environment E that submits adversarially chosen inputs to
Alg; (ii) a malicious oracle U ′

operating instead of U . Note that both U and U ′

are invoked in the same manner to mirror the view of U during execution. It is
assumed that E and U after agreeing on a joint strategy initially, no longer have
a direct communication channel once they begin to interact with C. They can
only communicate with each other by passing messages through C.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 85

Input/Output Specifications. The inputs/outputs to the algorithm may
have the following information:

Secret information available only to C;
Protected information available to both C and E but should be kept secret

from U . Note that the protected information can be further categorized based
on whether the inputs are generated honestly or adversarially;

Unprotected information available to C, E and U .

An outsource algorithm Alg is defined to accept three inputs (secret, protected,
unprotected) and produce three outputs (secret, protected, unprotected). With
the above input/output specifications, a formal definition (Definition 1) due to
[8] is reproduced in Appendix A.

2.1 Outsource-Security Definitions

Informally, the outsource-security definition must satisfy the following security
requirements:

– Secrecy. The malicious environment E should not gain any knowledge about
the secret inputs and outputs of the algorithm Alg, even it has a joint strategy
agreed with the oracle U ′ initially. To achieve this property, the model assumes
that there exist a simulator S1 which simulates the view of E without access
to the secret inputs.

– Checkability. Any information that a malicious oracle U ′ learns about the
inputs to Alg by acting as an oracle to C instead of U , it can also learn without
that. To achieve this property, the model assumes that there exist a simulator
S2 which simulates the view of U ′ without access to the secret or protected
inputs.

To capture the above requirements formally, the outsource-security definitions
have been introduced by Hohenberger-Lysyanskaya [8] and are reproduced in
Appendix A through Definitions 2, 3, 4 and 5.

3 Secure Outsourcing of Modular Exponentiations
to Two Non-colluding Untrusted Servers

Adaptation of Hohenberger-Lysyanskaya algorithm by Chen et al. is the best
known algorithm in the related literature to securely outsource variable-base,
variable-exponent modular exponentiations in two non-colluding untrusted
servers model. The issue with their scheme is that the outsourcing party can-
not verify all the outputs of the server due to its design and this makes their
algorithm less suitable for practical use. In this section we present an algorithm
which preserves privacy of the inputs and achieves the checkability probabil-
ity 1. We denote our two-server outsourcing algorithm for single exponentiation
by 2EXP.

86 L. Kuppusamy and J. Rangasamy

3.1 2EXP: Secure Outsourcing Algorithm for Single Modular
Exponentiation

Let p and q be two primes such that q|(p−1). Then there exists a multiplicative
subgroup of Z∗

p of order q. The task of the client C is to compute ua mod p where
u ∈ Z

∗
p is a variable base and a ∈ Zq is a variable exponent. The task of oracles

{U1,U2} is to return the output ij mod k on input (i, j, k).
In our algorithm, to maintain the secrecy of the values u and a they are

computationally masked before being given as input to {U1,U2}. Unlike in the
previously known schemes, we mask u using the Chinese remainder theorem
(CRT). The details are as follows:

Pre-computation. The client C generates a table (T1) of pairs of the form
(ti, gti

1) for a fixed base g1 ∈ Z
∗
p. Whenever a new pair of the form (t, gt

1) is
needed, the client selects a small number of randomly chosen pairs in the table
and computes t by adding all the first arguments and gt

1 by multiplying all
the second arguments from the selected pairs. Similarly, the client C generates
another table, (T2) of pairs of the form (αi, g

αi
2) for a prime modulus r2 �= p

and a fixed base g2 ∈ Z
∗
r2

. By setting the parameters appropriately, both the
tables enable the client to generate a new pair (α, gα

i) for i = 1, 2 which incurs
small number of multiplications rather than the actual cost of performing
a modular exponentiation. The previously known related schemes use this
pre-processing method extensively despite calling them in different names;
RAND algorithm in [8], EBPV algorithm in [10], BPV+ or SMBL in [11]. This
technique was invented by Boyko et al. [17] and Nguyen et al. proved that a
pair generated using this method will be statistically indistinguishable from
a pair computed using a randomly chosen exponent [18]. As in [11] we use
the BPV+ technique to avoid online multiplications to produce new pairs. For
more details on BPV+, please refer to [11, Sect. 3.1]. Our algorithm 2EXP
proceeds as follows.

Masking u. Let n = pr1r2 for primes r1 and r2. (Note that for a sufficiently
large 3-prime modulus n there is no known polynomial time algorithm to
factor it into primes even if one of the primes, say p, is known [19].) Then
φ(n) = (p − 1)(r1 − 1)(r2 − 1). Choose h ∈ Z

∗
r1

. Compute (θ, gθ
1) using the

BPV+ technique. From CRT, we know that the following system of three
simultaneous congruences

x ≡ ugθ
1 mod p and x ≡ h mod r1 and x ≡ g2 mod r2

has a unique solution x mod n, which the client computes as below.

x = u · gθ
1 · r1 · r2 · (r−1

1 r−1
2 mod p) + h · r2 · p · (r−1

2 p−1 mod r1)
+ g2 · p · r1 · (p−1r−1

1 mod r2).
(1)

CRT-Based Outsourcing Algorithms for Modular Exponentiations 87

Masking a. In order to mask a, C invokes the BPV+ algorithm to get the pairs
(α, gα

2) and (β, gβ
2). Now C computes:

1. a1 = a − α;
2. a2 = a − β;

Queries to U1. Now C invokes the BPV+ algorithm to get the pair (t, gt
1) and

sends the following queries to U1 in random order:
1. (x, a1, n) → X1;
2. (x, β, n) → X2;
3. (gt

1,−aθ/t, p) → X4;
Queries to U2. Now C sends the following queries to U2 in random order:

1. (x, a2, n) → X3;
2. (gt

1,−aθ/t, p) → X5;
Verifying the correctness of {U1,U2}’s output.

1. C checks whether
gβ
2 mod r2

?= X2 mod r2. (2)

2. C checks whether

[X1 mod r2 · gα
2] mod r2

?= X2 · X3 mod r2. (3)

3. C checks whether
X4

?= X5 mod p. (4)

Recovering ua. If Eqs. 2, 3 and 4 hold, then C believes that all the values
X1, X2, X3, X4 and X5 have been computed correctly. This implies that
X2 · X3 · X4 ≡ ua mod p due to simultaneous system of congruences. If the
check fails, then C outputs an error message.

Remark 1. (Checkability) Note that all the queries output are checked by the
client and then only the output ua is computed. Hence the client now believes
that ua has been computed correctly. In the above algorithms, both p and n are
sent to both the servers U1 and U2 and thus reveal r1r2, but the servers do not
gain any advantage in knowing r1r2. Note that the correctness of the outputs
X1 X2 and X3 are checked using the client’s stored values gα

2 and gβ
2 and hence

the server trying to send bogus results can be detected.

3.2 Security and Efficiency Analysis

In this section, we analyse the security properties of the proposed algorithm
using the one malicious model of Hohenberger and Lysyanskaya [8].

Lemma 1 (Correctness). In the one malicious model, the algorithms (C,U1,U2)
are correct implementation of 2EXP, where the inputs (a, u, p) may be honest,
secret; or honest, protected; or adversarial protected.

88 L. Kuppusamy and J. Rangasamy

Proof. We know that for any integer m ≥ 0,

xm = {u · gθ
1 · r1 · r2 · (r−1

1 r−1
2 mod p) + h · r2 · p · (r−1

2 p−1 mod r1)
+ g2 · p · r1 · (p−1r−1

1 mod r2)}m

=
∑

k1+k2+k3=m

m!
k1!+k2!+k3!

Ak1Bk2Ck3

(5)

where A = u · gθ
1 · r1 · r2 · (r−1

1 r−1
2 mod p), B = h · r2 · p · (r−1

2 p−1 mod r1),
C = g2 · p · r1 · (p−1r−1

1 mod r2) and ki, 1 ≤ i ≤ 3 are non-negative integers. By
taking a reduction modulo r2 to both sides of Eq. 5, we obtain,

xm mod r2 = gm
2 mod r2, (6)

since all the terms except for the case k3 = m in the above summation vanishes.
Similarly, a reduction modulo p to both sides of Eq. 5, we obtain

xm mod p = um · gmθ
1 mod p; (7)

If one of Ui, i = 1, 2 performs honestly, then it easy to check whether

X4
?= X5 mod p. (8)

Also using Eqs. 6, and 7 we see that

X1 = xa1 mod n =
{

ua1ga1θ
1 mod p

ga1
2 mod r2

(9)

and

X2 = xβ mod n =
{

uβgβθ
1 mod p

gβ
2 mod r2

(10)

and

X3 = xa2 mod n =
{

ua2ga2θ
1 mod p

ga2
2 mod r2

(11)

Using the stored gβ
2 value, it is easy to see from Eq. 10 that X2 mod r2 = gβ

2 .
Once the value X2 is checked for correctness, then it is easy to check whether
X1 mod r2 ·gα

2 mod r2
?= X2 ·X3 mod r2 using Eqs. 9 and 11. If all the equalities

hold, then the desired result is obtained using reduction modulo p.

In the following theorem, we give a proof sketch to show that (C,U1,U2) is an
outsource-secure implementation of 2EXP, as per the Hohenberger-Lysyanskaya
security model.

Theorem 1 (Privacy). In the one malicious program model, the pair of algo-
rithms (C,U) is an outsource-secure implementation of 2EXP, where the input
(a, u, p) may be honest, secret; or honest, protected; or adversarial protected.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 89

Proof. Assume that A = (E ,U ′
1,U

′
2) be a probabilistic polynomial time (PPT)

adversary which interacts with the PPT algorithm C in the one malicious pro-
gram model.

Pair One: (E learns nothing) EVIEWreal ∼ EVIEWideal

If the input (a, u, p) is not honest, secret, the simulator S1 behaves the same
way as in the real experiment. If the input is honest, secret, then S1 behaves
as follows: S1 ignores the input it received in the ith round and chooses three
primes p∗, r∗

1 and r∗
2 of same size as p, r1 and r2 respectively and set n∗ = p∗r∗

1r
∗
2 .

The main task of S1 in the ith round is to outsource and verify the computation
of (u∗)a∗

, where u∗ and a∗ are chosen by S1 from the same distribution used
to choose u and a. S1 mask u∗ and a∗ the same way as in our algorithm using
appropriately chosen α∗, and β∗ and computes x∗, a∗

1 and a∗
2. Now, s1 query U ′

1

with the inputs (x∗, a∗
1, n

∗), (x∗, β∗, n∗) and (g∗t∗
1

1 , −a∗θ∗
t∗
1

, p∗). Then s1 query U ′
2

with the inputs (x∗, a∗
2, n

∗) and (g∗t∗
1

1 , −a∗θ∗
t∗
1

, p∗). S1 checks all the outputs as per
the algorithm description. If no error is detected, then S1 outputs Y i

p = ∅, Y i
u = ∅,

replacei = 0. That is, the output of the ideal process is set to (estatei, yi
p, y

i
u);

otherwise, S1 selects a random element r and outputs Y i
p =r, Y i

u =∅, replacei =1.

That is the output of the ideal process is set to (estatei, r, ∅). In both the cases,
S1 saves the appropriate states.

In real process, all the components (x, gt1
1 , a1, β, a2,

−aθ
t1

) in the queries made
by C are independently re-randomized to achieve computational indistinguisha-
bility. In the ideal process the values (x∗, g∗t∗

1
1 , a∗

1, β
∗, a∗

2,
−a∗θ∗

t∗
1

) are chosen uni-
formly at random from the same distribution. Hence, both in the real and the
ideal process, the input distributions to U ′

1 and U ′
2 are computationally indistin-

guishable. Now, consider the following scenarios:

– If either one of U ′
i behaves honestly in the ith round, then it perfectly executes

the algorithm 2EXP such that the outputs from U ′
i in the ideal experiment

matches. Therefore, the simulator S1 does not replace the output of 2EXP in
the real experiment (i.e., replacei = 0). Hence EVIEWi

real ∼ EVIEWi
ideal.

– If one of U ′
i is dishonest and outputs an incorrect value in round i, then it will

be detected by both C and S1 with probability 1 as all the ouptputs could be
validated. In the real experiment, the outputs from U ′

i are further processed as
in Eqs. 9, 10. Similarly, in the ideal experiment, S1 simulates with the random
value r. Hence, EVIEWi

real ∼ EVIEWi
ideal even if U ′

i is dishonest in the ith
round.

By the hybrid argument, it can be shown that EVIEWreal ∼ EVIEWideal.

Pair Two: (U ′
i learns nothing): UVIEWreal ∼ UVIEWideal

Let S2 be a PPT simulator that behaves in the same manner regardless of
whether the input (a, u, p) is honest, secret or honest, protected or adversarial
protected. That is, S2 ignores the input in the ith round, and makes queries
of the form (x∗, a∗

1, n
∗), (x∗, β∗, n∗), (x∗, a∗

2, n
∗), (g∗t∗

1
1 , −a∗θ∗

t∗
1

, p∗), accordingly to

90 L. Kuppusamy and J. Rangasamy

U ′
i . Then S2 saves both its state and U ′

’s state. Note that E can easily distin-
guish between these two experiments as the inputs to the experiment might
be honest, protected and adversarial protected. But it cannot communicate
this information to U ′

i . This is due to the fact that, in the ideal experiment,
the inputs are computationally blinded by C before being given as input to
U ′

i . In the ideal experiment, the simulator S2 always query the components
(x∗, g∗t∗

1
1 , a∗

1, β
∗, a∗

2,
−a∗θ∗

t∗
1

) that are selected uniform at random from the same

distribution. Hence UVIEWi
real ∼ UVIEWi

ideal for each round i. By the hybrid
argument, it can be shown that UVIEWreal ∼ UVIEWideal.

Theorem 2 (Checkability). In the one malicious program model, the above algo-
rithms (C,U1,U2) are an (3, 1)-outsource-secure implementation of 2EXP.

Proof. For an k−bit exponent a, the computation of ua mod p requires roughly
1.5k modular multiplications (MM) using square and multiply method. Note that
the computation of Eq. 12 and t−1 can be done offline. The online computations
could be as in Eqs. 2, 3 and for the computation of aθt−1. Thus our algorithm
2EXP requires 3 Modular Multiplications. Therefore our algorithm (C,U) is an
3−efficient implementation of 2EXP.

Since the third query (X4 and X5) is same for both the servers Ui, it is easy
to detect if one of the server exhibits malicious behaviour. The other outputs
X1,X2,X3 are validated by the client by reducing the values to modulo r2. If
the check passes then by simulataneous system of linear congruences, the client
computes the required result by reducing the values to modulo p. However, a
malicious server Ui outputs incorrect values without being detected by C provided
if it can find the modulus r2. That is, if the malicious Ui knows r2 and reduces
x to modulo r2 to obtain g2 then it can submit the results of X1,X2,X3 for the
base g2 instead of xi. As the client validates Ui’s output by reducing them to r2,
the validation goes through. But the values X1,X2,X3 will not help the client
to find ua as reducing Xi to modulo p will not lead to the value with base u.
Since the server knows p and r1 ∗ r2 through the input to the queries, it has to
solve the factorisation problem for r1 ∗ r2. That is it is evident from [19] that for
a sufficiently large 3-prime modulus n = p∗ r1 ∗ r2 there is no known polynomial
time algorithm to factor it into primes even if one of the primes, say p, is known.

Hence our algorithm is a 1-checkable implementation of 2EXP. Combining
the above arguments, we prove the theorem.

3.3 Comparison

Table 1 lists the number of operations performed by C in the previous out-
sourcing schemes that achieves both privacy and efficiency with two untrusted
servers. From the table, it is evident that our algorithm is superior in terms of
both the efficiency and checkability parameters. We use MM to denote modular
multiplication.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 91

Table 1. Comparison of outsourcing algorithms for single exponentiation

Exp Algorithm MMs Servers Queries to
U1 + U2

Checkability

ua Hohenberger-
Lysyanskaya [8]

6 O(RAND) +9 2 8 1/2

Chen et al. [10] 5 O(RAND) + 7 2 6 2/3

Ours 3 2 5 1

4 2GEXP: Algorithm to Outsource Simultaneous
Modular Exponentiations

Consider two primes p and q such that q|(p−1) and the multiplicative subgroup

of Z∗
p with order q. The task of C is to compute

s∏

i=1

uai
i mod p where ui ∈ Z

∗
p are

the variable bases and ai ∈ Zq are the variable exponents. The task of {U1,U2}
is to return the output ij mod k on input (i, j, k). Since C aims to protect the
values ui and ai for 1 ≤ i ≤ s from {U1,U2}, they are computationally blinded
before being given as input to {U1,U2}. As seen in Sect. 3.1, the variable-bases
ui are masked using CRT. Our algorithm is described as follows:

Pre-computation. We use the same pre-processing technique, namely the
BPV+ algorithm and primes r1 and r2 as in Sect. 3.1. The only difference
is that C needs to call it for each pair (ai, ui). Choose a base h ∈ Z

∗
r1

.
Masking ui. Compute (θi, g

θi
1), i = {1, . . . , s} using the BPV+ technique. Using

CRT for each i = {1, . . . , s} leads us to the following system of three simul-
taneous congruences

xi ≡ uig
θi
1 mod p and xi ≡ h mod r1 and xi ≡ g2 mod r2

and its unique solution xi mod n can be computed as

xi = ui · gθi
1 · r1 · r2 · (r−1

1 r−1
2 mod p) + h · r2 · p · (r−1

2 p−1 mod r1)
+ g2 · p · r1 · (p−1r−1

1 mod r2).
(12)

Masking ai. To blind ai(1 ≤ i ≤ s), C runs BPV+ 2s times to obtain the pairs
{(αi, g

αi
2)}s

i=1 and {(βi, g
βi

2)}s
i=1. Then C computes:

ai1 = ai − αi and ai2 = ai − βi.

Queries to U1. Now C invokes the BPV+ algorithm to get a pair (t, gt
1) and

sends the following queries to U1 in random order:
1. (xi, ai1, n) → Xi1;
2. (xi, βi, n) → Xi2;

3. (gt
1,

s∑

i=1

(−aiθi)/t, p) → X4;

92 L. Kuppusamy and J. Rangasamy

Queries to U2. Now C makes the following queries to U2 in random order:
1. (xi, ai2, n) → Xi3;

2. (gt
1,

s∑

i=1

(−aiθi)/t, p) → X5;

Verifying the correctness of {U1,U2} output.
1. C checks first if

s∏

i=1

gβi

2 mod r2
?=

s∏

i=1

Xi2 mod r2. (13)

2. C then checks whether
[

s∏

i=1

Xi1 mod r2 ·
s∏

i=1

gαi
2

]

mod r2
?=

s∏

i=1

(Xi2 · Xi3) mod r2. (14)

3. and
X4

?= X5 mod p. (15)

Recovering
s∏

i=1

uai
i . If Eqs. 13, 14 and 15 hold, then C believes that for 1 ≤ i ≤ s

all the values Xi1, Xi2, Xi3, Xi4 and Xi5 have been computed correctly. This

implies that
s∏

i=1

Xi2 ·Xi3 ·Xi4 ≡
s∏

i=1

uai
i mod p due to simultaneous system of

congruences. If the check fails, then C outputs an error message.

4.1 Security and Efficiency Analysis

The algorithms proposed in Sects. 3 and 4 depend on the same techniques to
mask the inputs (a, u). Thus, due to space limitation we do not repeat the
correctness lemma as in Lemma 1 and the proof of following theorem for the
simulataneous exponentiation case.

Theorem 3. In the one malicious program model, the pair of algorithms (C,U)
is an outsource-secure implementation of 2GEXP, where the input (ai, ui, p)
may be honest, secret; or honest, protected; or adversarial protected.

Theorem 4. In the one malicious program model, the above algorithms
(C,U1,U2) are an (3s, 1)-outsource-secure implementation of 2GEXP.

4.2 Comparison

Table 2 lists the number of operations performed by C in the previous outsourcing
schemes that achieves both privacy and efficiency with two untrusted servers.
From the table, it is evident that our algorithm is superior in terms of both the
efficiency and checkability parameters. We achieved 1−checkable property at the
cost of little communication overhead compared to the existing one. However we
could reduce the communication overhead with lesser checkability probability.
We use MM to denote modular multiplication.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 93

Table 2. Comparison of outsourcing algorithms for simultaneous exponentiation

Exp Algorithm MMs Servers Queries to
U1 + U2

Checkablity

s∏

i=1

uai
i Chen et al. [10] 5O(RAND) + 3s + 4 2 2s + 4 2/(s + 2)

Ours 3s 2 3s + 2 1

5 Potential Applications of Our Algorithms

In this section we identify and discuss the usefulness of our secure outsourcing
algorithms for single and simultaneous modular exponentiation.

5.1 Securely Offloading the Final Exponentiation in Pairings

Pairings have been widely used in cryptography and have become an important
and attractive research area. Given the advantages of pairing-based schemes,
recent studies focused on deploying them in various scenarios [20–22]. As the
usage of hand-held resourced-constrained devices grows exponentially, equipping
them with pairings may help the devices cater to variety of security services.
A typical pairing computation consists of two steps, namely the Miller’s algo-
rithm [23] and the final exponentiation. Research works focused to speed up pair-
ing computation are mainly about improving the complexity of Miller’s algorithm
and there are only few works related to speeding up the final exponentiation step
[24,25]. Now we will show how our secure outsourcing algorithms could benefit
the final exponentiation step.

Let us consider the Tate pairing, the most widely used pairing type. Consider
an elliptic curve E over a finite field Fq with k being the embedding degree.
For any two points P and Q on E(Fqk), The Tate pairing value at (P,Q) is

specified to be e(P,Q) = fr,P (Q)
qk−1

r where fr,P ∈ Fqk [x, y] is called as the
Miller function. Thus the final exponentiation in the Tate pairing is obtained
by raising an element in Fqk to the exponent (qk − 1)/r. We note that our
outsourcing algorithm for single exponentiation can be adapted to this setting
to securely offload the final exponentiation in full.

Another common method is to split the exponent (qk − 1)/r accordingly so
that the the computation of final exponentiation is given by a finite product of
the following form h

∏s
i=1 gi

ri , where h is relatively easy part to compute and the
rest of the product is considered to be hard part. Since every gi being dependent
on P and Q is not a fixed element, the hard part of the final exponentiation can
be seen as a simultaneous exponentiation and thus our outsourcing algorithm
for simultaneous case may be used to securely offload the hard part of the final
exponentiation.

94 L. Kuppusamy and J. Rangasamy

5.2 Outsource-Secure Cryptographic Schemes and Primitives

In this section we recall the applications identified in the related litera-
ture for outsourcing algorithms for modular exponentiation. Hohenberger and
Lysyanskaya [8] showed how to use their outsourcing algorithm for the single
exponentiation to obtain outsource-secure Cramer-Shoup encryption [26] and
outsource-secure Schnorr signature [27,28] schemes. Chen et al. [10] demon-
strated the use of their outsourcing algorithm for simultaneous modular exponen-
tiation in cryptographic primitives such as chameleon hashing [29] and trapdoor
commitment [30]. Recently Wang et al. [11] showed evidence of advantages in
using an outsourcing algorithm for the simultaneous case in provable data pos-
session (PDP) [31] schemes for cloud storage. Since our algorithm is generic and
superior, it may provide more benefits when used in any of the above mentioned
cryptographic protocols.

6 Conclusion

We presented secure outsourcing algorithms for single and simultaneous modular
exponentiations. Our algorithms are superior compared to the existing schemes
with two servers. We then showed that the proposed algorithms meet the security
notions of the Hohenberger-Lysyanskaya security model. Finally we discussed
some interesting applications such as outsourcing of final exponentiation in pair-
ings. We leave open the problem of securely outsourcing modular exponentiations
using single untrusted server achieving checkability probability 1.

Appendix

A Security Defintions

Definition 1 (Algorithm with IO-outsource). The outsource algorithm
Alg obeys the input/output specification if it accepts five inputs and produces
three outputs. The honest entity generates the first three inputs and the last two
adversarially chosen inputs are generated by the environment E . The first three
inputs can be further classified based on the information about them available
to the adversary A = (E ,U). The first input is the honest, secret input which
is unknown to both E and U . The second input is the honest, protected input
which may be known by E , but is protected from U . The third input is the honest,
unprotected input which may be known by both E and U . The fourth input is the
adversarial, protected input which may be known by E , but is protected from U .
The fifth input is the the adversarial, protected input which may be known by E ,
but is protected from U . Similarly, the first, second and third outputs are called
secret, protected and unprotected outputs respectively.

Definition 2 (Outsource-security). A pair of algorithms (C,U) is said to be
an outsource-secure implementation of an algorithm Alg with IO-outsource if:

Correctness CU is a correct implementation of Alg.

CRT-Based Outsourcing Algorithms for Modular Exponentiations 95

Security For all probabilistic polynomial-time adversaries A = (E ,U ′), there
exist probabilistic expected polynomial-time simulators (S1,S2) such that the
following pairs of random variables are computationally indistinguishable.

Pair One (E learns nothing): EVIEWreal ∼ EVIEWideal.

The real process: This process proceeds in rounds. Assume that the honestly
generated inputs are chosen by a process I. The view that the adversarial
environment obtains by participating in the following process:

EVIEWi
real = {

(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k,EVIEWi−1

real, x
i
hp, x

i
hu

)
;

(
tstatei, ustatei, yi

s, y
i
p, y

i
u

) ← CU ′(ustatei−1)
(
tstatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
:

(
estatei, yi

p, y
i
u

)}
EVIEWreal = EVIEWi

realifstopi = TRUE.

In round i, The adversarial environment does not have access to the honest
inputs (xi

hs, x
i
hp, x

i
hu) that are picked using an honest, stateful process I. The

environment based on its view from last round, chooses the value of its estatei

variable that is used to recall what it did next time it is invoked. Then, among
the previously generated honest inputs, the environment chooses a input vector
(xji

hs, x
ji

hp, x
ji

hu) to give it to CU ′
. Observe that the environment can specify the

index ji of the inputs but not the values. The environment also chooses the
adversarial protected and unprotected input xi

ap and xi
au respectively. It also

chooses the boolean variable stopi that determines whether round i is the last
round in this process.

Then, CU ′
is run on inputs (tstatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au) where tstatei−1

is C’s previously saved state. The algorithm produces a new state tstatei for C
along with the secret yi

s, protected yi
p and unprotected yi

u outputs. The oracle
U ′ is given ustatei−1 as input and the current state in saved in ustatei. The
view of the real process in round i consists of estatei, and the values yi

p and
yi

u. The overall view of the environment in the real process is just its view in
the last round.c

The ideal process:
EVIEWi

ideal = {
(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k,EVIEWi−1

ideal, x
i
hp, x

i
hu

)
;

(
astatei, yi

s, y
i
p, y

i
u

) ← Alg
(
astatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
;

(
sstatei, ustatei, Y i

p , Y i
u, replacei

) ← SU ′(ustatei−1)
1

(
sstatei−1, xji

hp, x
ji

hu, xi
ap, x

i
au, yi

p, y
i
u

)
;

(
zi

p, z
i
u

)
= replacei

(
Y i

p , Y i
u

)
+

(
1 − replacei

) (
yi

p, y
i
u

)
:(

estatei, zi
p, z

i
u

)}
EVIEWideal = EVIEWi

idealifstopi = TRUE.

This process also proceeds in rounds. The secret input xi
hs is hidden from the

stateful simulator S1. But, the non-secret inputs produced by the algorithm

96 L. Kuppusamy and J. Rangasamy

that is run on all inputs of round i is given to S1. Now, S1 decides whether to
output the values (yi

p, y
i
u) generated by the algorithm Alg or replace them with

some other values (Y i
p , Y i

u). This replacement is captured using the indicator
variable replacei ∈ {0, 1}. The simulator is allowed to query the oracle U ′

which saves its state as in the real experiment.

Pair Two (U ′ Learns Nothing): UVIEWreal ∼ UVIEWideal.

The view that the untrusted entity U ′ obtains by participating in the real
process is described in pair one. UVIEWreal = ustateiifstopi = TRUE. The
ideal process:

UVIEWi
ideal = {

(
istatei, xi

hs, x
i
hp, x

i
hu

)
← I

(
1k, istatei−1

)
;

(
estatei, ji, xi

ap, x
i
au, stopi

) ← E
(
1k, estatei−1, xi

hp, x
i
hu, yi−1

p , yi−1
u

)
;

(
astatei, yi

s, y
i
p, y

i
u

) ← Alg
(
astatei−1, xji

hs, x
ji

hp, x
ji

hu, xi
ap, x

i
au

)
;

(
sstatei, ustatei

) ← SU ′(ustatei−1)
2

(
sstatei−1, xji

hu, xi
au

)
;

(
ustatei

)}
UVIEWideal = UVIEWi

idealifstopi = TRUE.

In the ideal process, the stateful simulator S2 is given with only the unprotected
inputs (xi

hu, xi
au), queries U ′. As before, U ′ may maintain state.

Definition 3 (α−efficient, secure outsourcing). A pair of algorithms (C,U)
is said to be an α−efficient implementation of an algorithm Alg if (C,U) is
an outsource secure implementation of algorithm Alg and for all inputs x, the
running time of C is ≤ an α− multiplicative factor of the running time of Alg(x)

Definition 4 (β−checkable, secure outsourcing). A pair of algorithms
(C,U) is a β−checkable implementation of an algorithm Alg if (C,U) is an out-
source secure implementation of algorithm Alg and for all inputs x, if U ′ deviates
from its advertised functionality during the execution of CU ′

(x), C will detect the
error with probability ≥ β

Definition 5 ((α, β)−outsource-security). A pair of algorithms (C,U) is said
to be an (α, β)−outsource-secure implementation of an algorithm Alg if they are
both α−efficient and β−checkable.

References

1. Abadi, M., Feigenbaum, J., Kilian, J.: On hiding information from an oracle. In:
Proceedings of the Second Annual Conference on Structure in Complexity Theory,
pp. 195–203. IEEE Computer Society (1987)

2. Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001).
doi:10.1007/3-540-45353-9 31

http://dx.doi.org/10.1007/3-540-45353-9_31

CRT-Based Outsourcing Algorithms for Modular Exponentiations 97

3. Girault, M., Lefranc, D.: Server-aided verification: theory and practice. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 605–623. Springer, Heidelberg
(2005). doi:10.1007/11593447 33

4. Wu, W., Mu, Y., Susilo, W., Huang, X.: Server-aided verification signatures: def-
initions and new constructions. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.)
ProvSec 2008. LNCS, vol. 5324, pp. 141–155. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88733-1 10

5. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

6. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: USENIX Security Symposium 2011. USENIX Association (2011)

7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, pp. 169–178. ACM (2009)

8. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30576-7 15

9. van Dijk, M., Clarke, D.E., Gassend, B., Suh, G.E., Devadas, S.: Speeding up
exponentiation using an untrusted computational resource. Des. Codes Cryptogr.
39(2), 253–273 (2006)

10. Chen, X., Li, J., Ma, J., Tang, Q., Lou, W.: New algorithms for secure outsourc-
ing of modular exponentiations. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 541–556. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33167-1 31

11. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely
outsourcing exponentiations with single untrusted program for cloud storage. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 326–343.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-11203-9 19

12. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourc-
ing of cryptographic computations. Cryptology ePrint Archive, Report 2014/748
(2014). http://eprint.iacr.org/

13. Matsumoto, T., Kato, K., Imai, H.: Speeding up secret computations with insecure
auxiliary devices. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 497–
506. Springer, Heidelberg (1990). doi:10.1007/0-387-34799-2 35

14. Nguyen, P.Q., Shparlinski, I.E.: On the insecurity of a server-aided RSA proto-
col. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 21–35. Springer,
Heidelberg (2001). doi:10.1007/3-540-45682-1 2

15. Chevalier, C., Laguillaumie, F., Vergnaud, D.: Privately outsourcing exponentia-
tion to a single server: cryptanalysis and optimal constructions. IACR Cryptology
ePrint Archive 2016/309 (2016)

16. Kiraz, M.S., Uzunkol, O.: Efficient and verifiable algorithms for secure outsourcing
of cryptographic computations. Int. J. Inf. Secur. 15(5), 519–537 (2016). doi:10.
1007/s10207-015-0308-7

17. Boyko, V., Peinado, M., Venkatesan, R.: Speeding up discrete log and factor-
ing based schemes via precomputations. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 221–235. Springer, Heidelberg (1998). doi:10.1007/
BFb0054129

http://dx.doi.org/10.1007/11593447_33
http://dx.doi.org/10.1007/978-3-540-88733-1_10
http://dx.doi.org/10.1007/978-3-540-88733-1_10
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-540-30576-7_15
http://dx.doi.org/10.1007/978-3-642-33167-1_31
http://dx.doi.org/10.1007/978-3-642-33167-1_31
http://dx.doi.org/10.1007/978-3-319-11203-9_19
http://eprint.iacr.org/
http://dx.doi.org/10.1007/0-387-34799-2_35
http://dx.doi.org/10.1007/3-540-45682-1_2
http://dx.doi.org/10.1007/s10207-015-0308-7
http://dx.doi.org/10.1007/s10207-015-0308-7
http://dx.doi.org/10.1007/BFb0054129
http://dx.doi.org/10.1007/BFb0054129

98 L. Kuppusamy and J. Rangasamy

18. Nguyen, P., Shparlinski, I., Stern, J.: Distribution of modular sums and the security
of the server aided exponentiation. In: Proceedings of the Workshop on Cryptog-
raphy and Computational Number Theory (CCNT 1999), Singapore, Birkhäuser,
pp. 257–268 (2001)

19. Hinek, M.: On the security of multi-prime RSA. http://cacr.uwaterloo.ca/
techreports/2006/cacr2006-16.pdf

20. Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 24–35. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12510-2 3

21. Guillevic, A.: Comparing the pairing efficiency over composite-order and prime-
order elliptic curves. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R.
(eds.) ACNS. LNCS, vol. 7954, pp. 357–372. Springer, Heidelberg (2013)

22. Scott, M.: Unbalancing pairing-based key exchange protocols. IACR Cryptology
ePrint Archive 2013/688 (2013). http://eprint.iacr.org/2013/688

23. Miller, V.S.: The weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

24. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.:
On the final exponentiation for calculating pairings on ordinary elliptic curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03298-1 6

25. Kim, T., Kim, S., Cheon, J.H.: On the final exponentiation in tate pairing compu-
tations. IEEE Trans. Inf. Theory 59(6), 4033–4041 (2013)

26. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003)

27. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990).
doi:10.1007/0-387-34805-0 22

28. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

29. Ateniese, G., Medeiros, B.: Identity-based chameleon hash and applications. In:
Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-27809-2 19

30. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bel-
lare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg
(2000). doi:10.1007/3-540-44598-6 26

31. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: Ning, P., di Vimercati,
S.D.C., Syverson, P.F. (eds.) ACM CCS 2007, pp. 598–609. ACM (2007)

http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
http://dx.doi.org/10.1007/978-3-642-12510-2_3
http://eprint.iacr.org/2013/688
http://dx.doi.org/10.1007/978-3-642-03298-1_6
http://dx.doi.org/10.1007/0-387-34805-0_22
http://dx.doi.org/10.1007/978-3-540-27809-2_19
http://dx.doi.org/10.1007/3-540-44598-6_26

Verifiable Computation for Randomized
Algorithm

Muhua Liu1,2, Ying Wu1,2, and Rui Xue1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{liumuhua,wuying,xuerui}@iie.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Verifiable computation enables a computationally weak
client to delegate the difficult computation to a more powerful cloud
server. When the client receives the returned result, it can verify the
correctness of the result. As a new computing model, it has been widely
studied. But, the previous works on verifiable computation was restricted
to the case where the target function was deterministic.

In this paper, we present a novel definition for verifiable computation
supporting randomized algorithms, which allows a resource constrained
client to outsource the computation of a randomized algorithm to an
untrusted server. We consider a new setting where the random string,
as the random input of the randomized algorithm, is generated by the
cloud server. In our security definition, it must guarantee that the server
can not tamper with the randomness which means that the generated
string is indistinguishable with a truly random string. Our construction is
based on indistinguishability obfuscation, constrained verifiable random
function and functional pseudorandom function.

Keywords: Verifiable computation · Randomized algorithms · Indistin-
guishability obfuscation

1 Introduction

Outsourced computation allows a client to outsource difficult computations to
a more powerful cloud server. The client can cost less resource to finish an
expensive computation. In the past years, outsourced computation has become
a very hot research area in cryptography. There are many new issues that we
should consider carefully. The first one is computation reliability. When the client
receives the result of an outsourced task, how to guarantee the correctness of
computation? After all, the server is not reliable or honest. It may make mistakes
for all kinds of reasons, such as an incorrect implementation of the algorithm or
returning a random result even for saving the computation time. In addition, the
key requirement is efficiency, which requires that the total running time of the

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 99–118, 2016.
DOI: 10.1007/978-3-319-49890-4 6

100 M. Liu et al.

client must be less than the time of computing on its own. Therefore, secure
outsourced computation has received widespread attention in cryptography.

Gennaro et al. [13] first introduced the notion of non-interactive verifiable
computation. They constructed a scheme based on Yao’s garbled circuit and
fully homomorphic encryption. Subsequently, there are many works [2,4,5,8,20]
for verifiable computation. However, the previous works on verifiable compu-
tation was restricted to the case the target function was deterministic. In this
work, we continue the research to move beyond deterministic algorithms, and
consider the case of randomized algorithms. Randomized algorithm has received
widespread application in cryptography, such as encryption algorithm, key gen-
eration algorithm. In the randomized algorithm, it needs to toss a random string
as the input of the algorithm. We consider a new case, and outsource the random-
ized algorithm to a server. To understand this problem, an illustrative example
is given as follows.

We show the necessity for verifiable computation for randomized algorithms
by giving an example of assessing some data by random sampling. A research
institute wants to assess the quality of teaching by random sampling of database
entries from each university. Due to the weak computation ability, the institute
delegates the assessment algorithm to a server. The server needs to sample a large
database, and then assess the sampled data. Therefore, the server should choose
some random strings to sample the assessment data, and then implement the
assessment algorithm. In this procedure, the research institute mainly concerns
two primaries:

– The institute wants to ensure that the cloud server can not decide the sampled
result, i.e. the random string generated by the server must be indistinguishable
with a real random string.

– The institute should cost less time than the time required for the institute to
execute the randomized algorithm by itself.

Think for another instance of basic algorithm in statistics such as Monte Carlo
methods. A client tries to search molecular configuration which satisfies a given
condition of energy by Monte Carlo method. In this procedure, it first needs to gen-
erate a random molecular configuration. Then, it generates a new molecular con-
figuration by randomly changing the coordinate of the particle, and computes the
energy of the new molecular configuration. Finally, it decides whether it accepts
this new molecular configuration. As far as we know, the more times the experi-
ment executes, the more accurate the results are. The client needs to interactive
with the server if it chooses the random string for each experiment. Therefore, it
delegates the execution of the algorithm to a more powerful server. All the random
strings of each experiment are chosen by the server.

In this work, we focus on the non-interactive verifiable outsourced compu-
tation for randomized algorithms. To construct a scheme which satisfies our
setting, we define verifiable outsourced computation for randomized algorithms
as follows. A randomized algorithm can be represented as a function f(x; r) with
two inputs, an evaluated point x and a random string r. Given an encoding σx

of the input x, the cloud server can compute an encoding σy of the evaluation

Verifiable Computation for Randomized Algorithm 101

f(x; r), where r is generated by the cloud server. After receiving the encod-
ing σy of f(x; r), the client can verify the correctness of the evaluation f(x; r).
We require that the returned results {f(x; ri)}t

i=1 are indistinguishable with the
results {f(x; r′

i)}t
i=1, where r′

i is true randomness, ri is generated by the cloud
server, and t is the number of computation required by the client. Sometimes, the
assessment results will be different for the same data due to the different random
strings. In order to increase the precision of assessment results, the institute may
require the server to implement the sample assessment algorithm many times.

1.1 Our Results

We give a formal definition based on the definition of Gennaro et al. [13]. We
then construct a verifiable computation scheme for randomized algorithms which
supports arbitrary probabilistic polynomial time algorithms. Selective security
is considered in our prove. Adaptive security can be obtained generically by
standard complexity leveraging.

We focus on the soundness security, which requires that an adversary can
not persuade a client to accept an incorrect output. The detailed definition is
given in Sect. 2.

In our construction, the core problem is to handle the secure generation of
the random string. In order to solve this problem, we construct an obfuscation
of a circuit which has a pseudorandom function’s key sk′ hardwired in it. On
input a value s, it outputs a pseudorandom value r. However, the secret key
sk′ can be hidden only if the obfuscator is a black box obfuscation [3], and the
indistinguishability obfuscator can not ensure the security of the pseudorandom
function’s key sk′. To overcome this issue, we use a constrained PRF key skS

to replace the key sk′ hardwired in the circuit, and introduce a new value to
the circuit, which can guarantee that the obfuscation of circuits implemented
identical functions are indistinguishable. By the pseudorandom property of the
constrained PRF at the constrained points, the cloud server can not distinguish
the pseudorandom value from a true random value.

To verify the correctness of random strings generated by the server, we use the
constrained verifiable random function, introduced by Fuchsbauer [11], to replace
the constrained random function. We modify the construction of Fuchsbauer [11],
and make it satisfy a new pseudorandom definition, where V.Eval(sk′, x) should
remain pseudorandomness even if an adversary is given the corresponding proof.
To verify the evaluation correctness of randomized function, we use functional
pseudorandom functions which were introduced by Boyle, Goldwasser and Ivan
[6]. In the key generation phase, we generate a functional key skf for the function
f(x; r), which allows one to evaluate a pseudorandom value on any y for which
there exists an pair (x, r) such that f(x; r) = y.

1.2 Related Work

Alwen et al. [1] studied functional encryption for randomized function. They
gave a construction of functional encryption for randomized functions based

102 M. Liu et al.

on the deterministic functional encryption. In another independent work, Goyal
et al. [17] presented the first definition and construction for functional encryption
which supported randomized functionalities. In their definitions, they not only
considered the dishonest decryptor, but also considered the dishonest encryptor.
They added security requirements to ensure that the encryptor can not improp-
erly tamper with the randomness used to the outputs. Komargodski et al. [18]
introduced a construction for any family of randomized functionalities in the
private key setting.

Choi et al. [7] presented a new notion which was called multi-client verifi-
able computation. It allows a set of clients to delegate the computation of a
function f over a joint inputs (x1, . . . , xn) to an untrusted server without inter-
acting with each other. Recently, Goldwasser et al. [15] proposed an alternative
construction based on multi-input functional encryption. Subsequently, Gordon
et al. [16] introduced a systematic study of multi-client verifiable computation
which satisfies a stronger security requirements. At first glance, the setting we
consider may seem similar to multi-client verifiable computation [7,15,16]. All
the inputs of the algorithm in the multi-client verifiable algorithm are generated
by the clients, while the random string is generated by the server in our setting.
Just like the second instance, the client needs not interact with the server in our
setting.

Gentry et al. [14] constructed the first outsourcing private random access
machine (RAM) computation scheme, which allows a client to privately out-
source arbitrary program executing to a remote server. In their construction,
every time, the client wants to run a new program execution on input x, he
needs to choose a fresh randomness r, and garbles (x, r) under the reusable
circuit garbling scheme. Therefore, their scheme does not satisfy our setting.

There are some verifiable computation schemes for some special functions,
such as polynomial functions, matrix computation. Fiore and Gennaro [9] pro-
posed two new protocols which supported to delegate large polynomials and
matrix computations. Papamanthou et al. [19] introduced a new model for veri-
fying dynamic computations, which was called signatures of correct computation.
Fiore et al. [10] proposed highly efficient schemes to delegate various classes of
polynomial functions, which included linear combinations, high-degree univari-
ate polynomials and multivariate quadratic polynomials.

1.3 Organization

The rest of this work is organized as follows. We introduce the definition of
verifiable computation for randomized algorithms in Sect. 2. Some basic building
blocks are given in Sect. 3. We present a construction for randomized algorithms
and give its security proof in Sect. 4.

2 Definitions

Throughout the paper, we denote the security parameter by λ ∈ N. A func-
tion negl(n) is negligible if for every positive polynomial function p(·) and all

Verifiable Computation for Randomized Algorithm 103

sufficiently large n, it holds that negl(n) < 1/p(n). x
R←− X denotes that the

element x is chosen uniformly at random from the set X. For n ∈ N, let
[n] = {1, . . . , n}.

2.1 Formal Definition of Verifiable Computation for Randomized
Algorithms

In this subsection, we give the formal definitions for verifiable computation for
randomized algorithms (or rand − VC).

A randomized algorithm can be implemented as an 2−ary function f that
takes a value and a random string as inputs:

f : X × R → Y.

We assume the random string are chosen randomly from the set R. Next, we
give the definitions of verifiable computation for randomized algorithms.

Syntax. A verifiable computation for randomized algorithms F consists of
four algorithms rand − VC = (KeyGen, ProbGen,Compute,Verify) :

– KeyGen(f, λ) → (pk, sk). This algorithm is run by the client. On input a
security parameter λ and a randomized algorithm which was implemented as
a function f , this algorithm generates a public key pk and a matching secret
key sk. The public key pk is used by the server to compute with, and the
secret key sk is kept private by the client.

– ProbGen(pk, x, t) → (σx, τx). This algorithm is run by the client. The problem
generation algorithm takes the public key pk, the function input x and the
number of computation t as input. It outputs a public value σx and a secret
value τx. The public value σx is given to the server to compute with, and the
secret value τx is kept private by the client to verify the correctness of returned
results.

– Compute(pk, σx) → σy. This algorithm is run by the server. This algorithm
takes as input the client’s public key pk and the encoded input σx. Then, it
chooses strings s1, . . . , st to generate the random inputs r1, . . . , rt, and outputs
an encoded version of the function’s output.

– Verify(sk, τx, σy) → y or ⊥. This algorithm is run by the client. On input
the secret key sk, the secret “decoding” τx, and the server’s output σy, the
verification algorithm outputs yi = f(x; ri), i = 1, . . . , t, or outputs ⊥ which
indicates that σy does not represent the valid outputs of f on x.

A verifiable computation scheme for randomized algorithm is correct if the
values produced by the key generation algorithm and the problem generation
algorithm allow an honest server to compute values which can verify success-
fully. In additional, we require that the distribution of the decoded output val-
ues is computationally indistinguishable from that obtained by sampling the
randomized functionality directly on the inputs. We give the formal definition
as follows:

104 M. Liu et al.

Definition 1 (Correctness). A verifiable computation for randomized algo-
rithm f is correct if for every x ∈ M, the following two distributions are com-
putationally indistinguishable:

– Real: Verify(sk, τx, σy) = {yi = f(x; ri)}tx
i=1, where:

• (pk, sk) ← KeyGen(f, λ),
• (σx, τx) ← ProbGen(sk, x, tx),
• σy ← Compute(pk, σx).

– Ideal: {f(x; ri)}tx
i=1, where ri

R←− R.

A verifiable computation scheme for randomized algorithms is secure if a
malicious server cannot persuade the verification algorithm to accept an incorrect
output. We consider selective security for randomized algorithms, which requires
that the adversary outputs the strings s1, . . . , st before outputting the challenge
value σx. The secure experiment ExpVerifyA [rand−VC, f, λ] is described as follows:

– The challenger represents the randomized algorithm as a function f(·; ·), and
runs (pk, sk) ← KeyGen(1λ, f). Then he returns pk to the adversary.

– The adversary can generate the encoding of multiple problem instances by
himself, and then, returns a challenge (x, t, s1, . . . , st).

– The challenger computes (σx, τx) ← ProbGen(pk, x, t), and returns the public
value σx.

– The adversary uses the challenge public value σx and the strings s1, . . . , st to
compute an evaluation value σ̂y.

– The challenger runs the algorithm Verify(sk, τx, σ̂y) and gets the output ŷ. If
ŷ �= ⊥1, and there exists an index j ∈ [t], for all rj ∈ R, s.t. ŷj �= f(x; rj), or
there exists an distinguisher D which can distinguish the results ŷ = {ŷj =

f(x; rj)}t
j=1 from {f(x; r′

j)}t
j=1, where r′

j
R←− R, the experiment outputs ‘1’,

else ‘0’.

Now, We define the selective security of the verifiable computation based on
the adversary’s success in the above experiment.

Definition 2 (Selective security). A verifiable computation scheme for ran-
domized algorithms rand − VC is selective secure for a function f , if for any
probabilistic polynomial time adversary A,

Pr[ExpVerifyA [rand − VC, f, λ] = 1] ≤ negl(λ) .

Adaptive Security. We give the description of adaptive security for verifiable
computation for randomized algorithms. Formally, adaptive security is defined in
the same manner as Definition 2, expect that the adversary A needs not choose
strings before the public value σx is computed by the challenger. In order to
avoid repetition, we omit the formal definition.

The last condition we considered for a randomized verifiable computation
scheme is that the verification stage costs less time than the time required to
compute the function from scratch.
1 It means that for all i ∈ [t], yi �= ⊥, where yi is the ith component of the vector ŷ.

Verifiable Computation for Randomized Algorithm 105

Definition 3 (Outsourceable). A rand − VC can be outsourced if it permits
efficient verification. That is to say, for any x and any σy, the time required for
Verify(sk, τx, σy) is o(T), where T is the time required to compute f(x).

Note that we just consider the time to verify the output and do not consider
the time to compute the key generation algorithm and the problem generation
algorithm (i.e., the encoding of the randomized algorithm itself, and the encod-
ing of the input). It is different with the previous definition of efficiency for
deterministic algorithms which requires the time of the encoding of the function
itself is in an amortized sense. Our definition also requires the encoding of input
itself can be amortized over many different randomized string evaluations.

3 Preliminaries

In this section, we give the definitions of various cryptographic primitives that
will be used in our construction. It contains indistinguishability obfuscation,
constrained verifiable random functions, and functional pseudorandom functions.

3.1 Indistinguishability Obfuscation

We present the formal definition of indistinguishability obfuscation following the
notion of Garg et al. [12].

Definition 4 (Indistinguishability Obfuscation(iO)) [12, Definition 4]. An
uniform PPT machine iO is called an indistinguishability obfuscator for a circuit
class {Cλ} if it satisfies the following conditions:

– (Correctness:) For all security parameters λ ∈ N, C ∈ Cλ, and inputs x, we
have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– (Indistinguishability:) For any (not necessarily uniform) PPT distinguisher
(Samp, D), there exists a negligible function negl such that the following holds:
if Pr[∀x, C0(x) = C1(x); (C0, C1, σ) ← Samp(1λ)] ≥ 1 − negl(λ), then:

|Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ) ← Samp(1λ)]

−Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ) ← Samp(1λ)]|
≤negl(λ).

In a recent work, Garg et al. [12] showed how to construct an indistinguisha-
bility obfuscator iO for the circuit class P/poly.

3.2 Constrained Verifiable Random Functions

In our construction, we will use the constrained verifiable random function
(VRF), which is a constrained pseudorandom function (PRF). Below we recall
their definition, which was proposed by Fuchsbauer [11]:

106 M. Liu et al.

Definition 5 (Constrained verifiable random functions). Let F : K×X →
Y × P be a function which is computed in polynomial time, where K is the
key space, X is the domain, Y is the range and P is the proof space. The
function F is said to be a constrained VRF with regard to the sets S ⊆
2X , if there exists a constrained-key space K′, and five poly-time algorithms
(V.Setup,V.Eval,V.Constrain,V.Prove,V.Verify) :

– V.Setup(1λ) → (sk′, vk′) : It takes the security parameter λ as input, and
outputs a pair of keys (sk′, vk′).

– V.Eval(sk′, x) → (y, π) : On input the secret key sk′ and a point x ∈ X , this
algorithm outputs a evaluation y and a proof π.

– V.Verify(vk′, x, y, π) → 0 or 1 : It takes the verifiable key vk′, the values x and
y, and the proof π as input, and outputs a bit ‘1’ or ‘0’, where ‘1’ indicates
that y = F (sk′, x).

– V.Constrain(sk′, S) → skS : On input the secret key sk′ and a set S ∈ S, it
outputs a constrained key skS ∈ K′.

– V.Prove(skS , x) → (y, π) : On input the constrained key skS and a point x, it
outputs a pair (y, π) ∈ Y × P ∪ {(⊥,⊥)}, where y is the function value and π
is the corresponding proof.

A constrained verifiable random function is required to satisfy the following
properties:

– Provability. For all λ ∈ N, (sk′, vk′) ← V.Setup(1λ), S ∈ S, skS ←
V.Constrain(sk′, S), x ∈ X and (y, π) ← V.Prove(skS , x), it holds that

• If x ∈ S, then (y, π) = V.Eval(sk′, x) and V.Verify(vk′, x, y, π) = 1;
• If x /∈ S, then (y, π) = (⊥,⊥).

which implies that for every x /∈ S,V.Prove(skS , x) = V.Eval(sk′, x), and for
every x /∈ S,V.Prove(skS , x) = (⊥,⊥).

– Uniqueness. For all λ ∈ N, all vk′ ∈ K, all x ∈ X , y0, y1 ∈ Y and π0, π1 ∈ P,
there is only one of the following condition satisfied:

• (y0, π0) = (y1, π1),
• V.Verify(vk′, x, y0, π0) = 1, or
• V.Verify(vk′, x, y1, π1) = 1,

which implies that for every x there is only one pair (y, π) such that F (sk′, x) =
(y, π).

– Pseudorandomness. We consider the following experiment ExpV RF
A (1λ, b)

for λ ∈ N:
• The challenger generates (sk′, vk′) by running the algorithm V.Setup(1λ).
• The challenger initializes three sets V , T and Q, and sets V := ∅, T :=

∅, Q := ∅, where V contains all the points that the adversary A can
evaluate, Q contains the points at which the adversary queries the evalu-
ation oracle, and T contains the pairs at which the adversary queries the
verifiable oracle.

• The adversary A is given the following oracle:
∗Query: Given an input x ∈ X , the challenger returns V.Eval(sk′, x) →

(y, π), and sets Q := Q ∪ {x};

Verifiable Computation for Randomized Algorithm 107

∗ Constrain: On input a set S ∈ S, the challenger returns skS ←
V.Constrain(sk′, S) and sets V := V ∪ S.

∗ Verify: On input a triple (x, y, π), the challenger returns the result of
V.Verify(vk′, x, y, π) and sets T := T ∪ {(x, y, π)}.

• The adversary A outputs a challenge point x∗ ∈ X . If x∗ ∈ V or x∗ ∈ Q,
the challenger returns ⊥. Else the challenger chooses a bit b ← {0, 1}:
If b = 0 then the challenger returns (y∗, π∗) ← Eval(sk′, x∗); else the
challenger chooses a random pair (y∗, π∗) from Y × P and returns the
pair (y∗, π∗) to the adversary.

• The adversary can also query the oracles of Query and Constrain. If
x∗ ∈ V or x∗ ∈ Q, then the oracles return ⊥. At last, the adversary
returns a bit b′ ∈ {0, 1}. We require that the adversary can not query the
verifiable oracle after he receives the challenge pair.

A constrained VRF is pseudorandom if for all PPT adversary A, it holds that:

|Pr[ExpV RF
A (1λ, b = 0) = 1] − Pr[ExpV RF

A (1λ, b = 1) = 1]| ≤ negl(λ).

Remark 1. Note that our definition of pseudorandom is different to [11]. In our
definition, the adversary is given another oracle which is used to verify the
correctness of evaluation. We require that the evaluation value keeps pseudo-
randomness even if the adversary gets the proof of evaluation. We modify the
construction of [11] and make it satisfy our definition of pseudorandomness. The
detailed construction and proof are given in Appendix A.

3.3 Functional Pseudorandom Functions

In this section, we recall the formal definition of functional pseudorandom func-
tions which was given by Boyle et al. [6].

Definition 6 (Functional PRF) [6, Definition 5.1]. A functional family of
PRFs F = {Fk : Dk → Rk} consists of three algorithms which are described
as follows:

– F.Setup(1λ) → (k, pp) : On input a security parameter λ, the algorithm F.Setup
outputs a PRF key k ∈ K: F (k, ·) : Dk → Rk, and some public information.

– F.KeyGen(k, f) → skf : On input a PRF key k ∈ K and function description
f : Af → Df , the algorithm F.KeyGen outputs a key skf , where Df is a subset
of Dk.

– F.Eval(skf , f, x) → F (k, f(x)) : On input key skf , the function description
f : Af → Df , and input x ∈ Af , then F.Eval outputs a PRF evaluation
F (k, f(x)).

A functional PRF must satisfy the following properties:

– Correctness: For any (efficiently computable) f : Af → Df ,∀x ∈ Af , it
holds that

Pr
[
F.Eval(skf , f, x)

= F (k, f(x)) : (k, pp) ← F.Setup(1λ),
∀skf ← F.KeyGen(k, f)

]

= 1 .

108 M. Liu et al.

– Pseudorandomness: Given a set of keys skf1 , . . . , skf�
, the evaluation of

F (k, y) should remain pseudorandom on all inputs y that are not in the range
of any of the function f1, . . . , f�. That is, for any PPT adversary A, the
advantage of A in the following experiment is negligible (for any polynomial
� = �(λ)):

• Setup: The challenger runs F.Setup(1λ) and gets a secret key k and the
public information pp.

• Key query: After receiving the public information pp, the adversary A
can repeatedly make the key generation queries:
∗ The adversary submits the function description fi to the challenger.
∗ The challenger runs skfi

← F.KeyGen(k, fi) and returns skfi
to the

adversary.
• Challenge: The challenger randomly picks a bit b ∈ {0, 1}, and returns

an oracle O to the adversary A. If b = 1, the challenger sets O = F (k, ·).
If b = 0, the challenger chooses a random function H : Dk → Rk and
constructs an oracle

O{fi}
k,H :=

{
F (k, y) if ∃i ∈ [�] and x s.t. fi(x) = y,

H(y) otherwise.

• Guess: A outputs a guess b′. The advantage of the adversary A in this
experiment is defined

AdvFPRF
A (1λ) := Pr[b = b′] − 1/2.

4 Construction

In this section we present our construction of the verifiable outsourced com-
putation for randomized algorithms. Let (V.Setup,V.Eval,V.Constrain,V.Prove,
V.Verify) be a constrained verifiable random function family. Let iO be
an indistinguishability obfuscator for all efficiently computable circuits. Let
(F.Setup,F.KeyGen,F.Eval) be a functional PRF family. f̂(x; r) represents the
function description of the randomized algorithm. We now proceed to describe
our scheme rand − VC = (KeyGen,ProbGen, Compute,Verify).

– KeyGen(f̂ , λ) → (pk, sk) :
1. Define a new function f(x; r) = x|r|f̂(x; r).
2. Choose a functional PRF key k ← F.Setup(1λ).
3. Run the key generation algorithm of functional PRF skf ←

F.KeyGen(k, f).
4. Set the public key as skf and the secret key as the functional PRF key

k, i.e. pk = (f, skf), sk = k.
– ProbGen(x, pk, t) → (σx, τx) :

1. Run the setup algorithm of constrained verifiable random function
(sk′, vk′) ← V.Setup(1λ).

Verifiable Computation for Randomized Algorithm 109

2. Construct a circuit PP = iO(G), where the circuit G is described in Fig. 1.
Note that G has the PRF key sk′ hardwired in it.

3. Set the public value σx = (x, t, PP) and the secret value τx = (vk′, x, t).
Size of Circuit G. In order to prove that rand − VC is security, we
require the circuit G to be padded with zeros such that |G| = |G∗|, where
the circuit G∗ is described later in Fig. 2.

– Compute(pk, σx) → σy :
1. Parse the public value σx = (x, t, PP), and the public key pk = (skf , f).
2. Choose the strings si, compute (si, ri, πi) = PP (si), yi,1 =

F.Eval(skf , f, x, ri) and f(x; ri) = x|ri|yi,2, for i = 1, . . . , t.
3. Return σy = ((s1, r1, π1, y1,1, y1,2), . . . , (st, rt, πt, yt,1, yt,2)).

– Verify(σy, τx, sk) → y or ⊥ :
1. It firstly checks the number of the tuples. if it is not equal to t, it rejects.
2. Else, for i = 1, . . . , t, it checks V.Verify(vk′, si, ri, πi)

?= 1, and
F (k, x|ri|yi,2)

?= yi,1, if not, it rejects, else it outputs y = (y1,2, . . . , yt,2).

Input: a string s
Constants: constrained VRF key sk′

(a) compute (r, π) ← V.Eval(sk′, s)
(b) output (s, r, π)

Fig. 1. Functionality G

Theorem 1. If (V.Setup,V.Eval,V.Constrain,V.Prove,V.Verify) is a constrained
VRF, then the proposed construction rand − VC satisfies correctness.

Proof. For a randomized algorithm A, it is represented as a function f̂(·; ·), which
has two inputs x and r. Consider the distribution Real1:{Verify(σy, τx, sk)},
where (pk, sk) ← KeyGen(1λ, f), (σx, τx) ← ProbGen(x, t, pk), σy ←
Compute(pk, σx). Similarly, consider the Ideal1 distribution {f(x; ri)}t

i=1, where
ri

R←− R.
We prove that that if the distribution Real1 and Ideal1 can be distinguished

by an adversary A with non-negligible advantage. Then, another adversary B can
be constructed to break the constrained VRF security with the same advantage.
We construct this algorithm as follows:

1. VRF challenger C chooses a bit b sampled uniformly at{0, 1}.
2. For i = 1 to t

(a) B sends si to the challenger C, and receives (ri, πi). If b = 0, (ri, πi) =
V.Eval(sk′, si), else (ri, πi) is chosen randomly.

(b) B computes yi = f(x; ri).
3. B sends y = (y1, . . . , yt) to A. If A guesses 0, B outputs 0; else B outputs 1.

110 M. Liu et al.

Note that if C returns the evaluation of constrained VRF, then B perfectly
simulates the real distribution, else it simulates the ideal distribution. We can
get that, if A can distinguish the two distributions with non-negligible advantage,
then the adversary B can break the security of constrained VRF with the same
advantage.

Theorem 2. If (V.Setup,V.Eval,V.Constrain,V.Prove,V.Verify) is a constrained
verifiable random function and (F.Setup,F.KeyGen,F.Eval) is a functional
pseudorandom function, then our construction is a secure outsourced compu-
tation scheme.

Proof. We consider selective verifiable security for rand − VC. Suppose there
exists an adversary A that can break the verifiable security, then there exists an
adversary B that can break the functional PRF security or the constrained VRF
security.

We first give the original security experiment which is described in the fol-
lowing:

Game 1. The first game is the original security game instantiated for our con-
struction.

1. Challenger represents the randomized algorithm as a function f̂(·; ·), which
has inputs x and r, and constructs a new function f(x, r) = x|r|f̂(x; r).

2. Challenger computes k ← F.Setup(1λ) and skf ← F.KeyGen(f, k), and returns
pk = (f, skf), sets sk = k.

3. A sends x∗ and the challenge random string s∗
1, . . . , s

∗
t to the challenger.

4. Challenger computes (sk′, vk′) ← V.Setup(1λ), and constructs a circuit
PP = iO(G), which is described in Fig. 1. Then it sends σx = (PP, x∗)
to the adversary.

5. The adversary A returns a value σy = ((s∗
1, r1, π1, y1,1,

y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)).

6. The adversary successes if V.Verify(vk′, s∗
j , rj , πj) = 1, F (k1, x∗|rj |yj,2) =

yj,1 for j = 1, . . . , t, and there exists an index i such that yi,2 �= f̂(x∗; ri),
or there exists an distinguisher D that can distinguish the two results y =
(y1,2, . . . , yt,2) and {f(x; r′

i)}t
i=1, where r′

i
R←− R.

There are two cases for forging an output σy = ((s∗
1, r1, π1,

y1,1, y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)) which can be verified successfully:

– Type 1 forgery: There exists an index j ∈ [t], such that
V.Verify(vk′, s∗

j , rj , πj) = 1, F (k, x∗|rj |yj,2) = yj,1, and f̂(x∗; rj) �= yj,2;
– Type 2 forgery: It satisfies that V.Verify(vk′, s∗

j , rj , πj) = 1,
F (k, x∗|rj |yj,2) = yj,1 for j = 1, . . . , t, and there exists an distinguisher D
that can distinguish the two results y = (y1,2, . . . , yt,2) and {f̂(x∗; r′

i)}t
i=1,

where r′
i

R←− R.

We first prove that the Type 1 forgery is not possible.

Verifiable Computation for Randomized Algorithm 111

Lemma 1. If there exists an adversary A that can output Type 1 forgery, then
there exists another adversary B that breaks the pseudorandomness of functional
PRF.

Proof. Suppose that the adversary outputs a forgery σy = ((s∗
1, r1, π1,

y1,1, y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)) that satisfies V.Verify(vk′, s∗

j , rj , πj) = 1,
F (k, x∗|rj |yj,2) = yj,1 for j = 1 . . . , t, and there exists an index i, such that
f(x∗; ri) �= yi,2.

First, we show that the adversary can not forge a random string due to
the uniqueness of the constrained VRF. Suppose that the adversary A out-
puts a forgery σy = ((s∗

1, r1, π1, y1,1, y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)) that satisfies

V.Verify(vk′, s∗
j , rj , πj) = 1, F (k, x∗|rj |yj,2) = yj,1 for j = 1, . . . , t, and there

exists an index i, such that (ri, πi) �= V.Eval(sk′, s∗
i), then we can construct

another adversary B1 that breaks the uniqueness of the constrained VRF. The
adversary B1 computes that (r′

i, π
′
i) = V.Eval(sk′, s∗

i) which must satisfy that
V.Verify(vk′, s∗

i , r
′
i, π

′
i) = 1. Because (ri, πi) �= (r′

i, π
′
i), it is contradictive to the

uniqueness of the constrained VRF.
Then, we construct a probabilistic polynomial time reduction algo-

rithm B2 that attacks the functional PRF security game. B2 first runs
the step 1, and sends the function f(x; r) = x|r|f̂(x; r) to the func-
tional PRF challenger. It receives back a functional key skf , runs the
steps 3–6, and gets σy = ((s∗

1, r1, π1, y1,1, y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)). If

the adversary successes, then it must satisfies V.Verify(vk′, s∗
j , rj , πj) = 1,

F (k, x∗|rj |yj,2) = yj,1 for j = 1, . . . , t, and there exists an index i, such that
f̂(x∗; ri) �= yi,2. We have shown that the string ri must be computed cor-
rectly due to the uniqueness of the constrained VRF. Because yi,2 �= f̂(x∗; ri),
we can get that x∗|ri|yi,2 does not belong the domain of f(x; r). Therefore,
B2 sends x∗|ri|yi,2 to the challenger of the functional PRF security game and
receives a challenge values y∗. If yi,1 = y∗, then B2 guesses ‘1’ to indicate that
y∗ = F (k, x∗|ri|yi,2); otherwise, it outputs ‘0’ to indicate that y∗ was chosen
randomly. Therefore, if A can forge an output with non-negligible probability,
then B2 must have non-negligible advantage against the security of the functional
PRF.

Lemma 2. If there exists an adversary A that can output Type 2 forgery,
then there exists another adversary B that breaks the pseudorandomness of the
constrained VRF.

Proof. To prove this lemma, we first define a sequence of experiments where the
first experiment is the original security experiment. Then we show that any poly-
time adversary can not distinguish the two neighbour games with non-negligible
advantage. The first experiment is given in the above, we describe the sequence
of experiments where each experiment is described by its modification from the
previous experiment.
Game 2

1. Challenger represents the randomized algorithm as a function f̂(·; ·), which
has inputs x and r, and constructs a new function f(x; r) = x|r|f̂(x; r).

112 M. Liu et al.

2. Challenger computes k ← F.Setup(1λ) and skf ← F.KeyGen(f, k), and returns
pk = (f, skf), sets sk = k.

3. A sends x∗ and the challenge random string s∗
1, . . . , s

∗
t to the challenger.

4. Challenger sets S ← {0, 1}∗\{s∗
1, . . . , s

∗
t }, computes (sk′, vk′) ← V.Setup(1λ),

skS ← V.Constrain(vk′, S), (z∗
j , π∗

j) = V.Eval(sk′, sj) for j = 1, . . . , t, and con-
structs a circuit PP = iO(G∗), where the circuit G∗ is described in Fig. 2. Note
that G∗ has the constrained key skS , the challenge random strings s∗

1, . . . , s
∗
t ,

the values z∗
1 , . . . , z∗

t and the corresponding proof π∗
1 , . . . , π∗

t hardwired in it.
Then it sends σx = (PP, x∗) to the adversary.

5. The adversary A returns a value σy = ((s∗
1, r1, π1, y1,1,

y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)).

6. The adversary successes if V.Verify(vk′, s∗
j , rj , πj) = 1, F (k1, x∗|rj |yj,2) = yj,1

for j = 1, . . . , t, and there exists an distinguisher D that can distinguish the
two results y = (y1,2, . . . , yt,2) and {f̂(x∗; r′

i)}t
i=1, where r′

i
R←− R.

Game 3

1. Challenger represents the randomized algorithm as a function f̂(·; ·), which
has inputs x and r, and constructs a new function f(x; r) = x|r|f̂(x; r).

2. Challenger computes k ← F.Setup(1λ) and skf ← F.KeyGen(f, k), and returns
pk = (f, skf), sets sk = k.

3. A sends x∗ and the challenge random string s∗ to the challenger.
4. Challenger sets S ← {0, 1}∗\{s∗

1, . . . , s
∗
t }, computes (sk′, vk′) ← V.Setup(1λ),

skS ← V.Constrain(vk′, S), chooses random strings z∗
1 , . . . , z

∗
t

R←− R, and the

proofs π∗
1 , . . . , π

∗
t

R←− P, and constructs a circuit PP = iO(G∗), where the cir-
cuit G∗ is described in Fig. 2. Note that G∗ has the constrained VRF key skS ,
the challenge random strings s∗

1, . . . , s
∗
t , the values z∗

1 , . . . , z∗
t and the proofs

π∗
1 , . . . , π

∗
t hardwired in it. Then it sends σx = (PP, x∗) to the adversary.

5. The adversary A returns a value σy = ((s∗
1, r1, π1, y1,1,

y1,2), . . . , (s∗
t , rt, πt, yt,1, yt,2)).

6. The adversary successes if V.Verify(vk′, s∗
j , rj , πj) = 1, F (k1, x∗|rj |yj,2) = yj,1

for j = 1, . . . , t, and there exists an distinguisher D that can distinguish the
two results y = (y1,2, . . . , yt,2) and {f̂(x∗; r′

i)}t
i=1, where r′

i
R←− R.

Lemma 3. If iO is an indistinguishability obfuscator, Game 1 and Game 2 are
computationally indistinguishable.

Proof. Note that the only difference in Game 1 and Game 2 is that in the former
game, we output σx = (PP = iO(G), x∗), while in the later game, we output
σx = (PP = iO(G∗), x∗). In order to prove that for any probabilistic polynomial
time adversary, it can not distinguish the two games. We need to show that the
two circuits have the identical function. That is to say, the two circuits iO(G)
and iO(G∗) output the same value when they take the same value as input.
Then, we can get that iO(G) and iO(G∗) are computationally indistinguishable,
which would imply Game 1 and Game 2 are computationally indistinguishable.

Verifiable Computation for Randomized Algorithm 113

Input: a string s
Constants: constrained VRF key skS , the challenge random strings s∗

1, . . . , s
∗
t , the

evaluation values z∗
1 , . . . , z∗

t and the corresponding proofs π∗
1 , . . . , π∗

t

(a) if there exists an index i, such that s = s∗
i , then outputs (s∗

i , z
∗
i , π∗

i);
(b) else, compute (r, π) = V.Prove(skS , s);
(c) output (s, r, π)

Fig. 2. Functionality G∗

Now, we prove that the two circuits have identical input-output behaviour.
We only discuss the situation t = 1. The situation of t ≥ 2 can be proved via
a standard hybrid argument. Considering the two following cases: s �= s∗ and
s = s∗. First, we can get that V.Eval(sk′, s) = V.Prove(skS , s) = (r, π) from
the property of constrained VRF. Second, G computes (r, π) ← V.Eval(sk′, s∗),
and G∗ outputs the hard-wired value (z∗, π∗), when s = s∗. Note that (r, π) =
(z∗, π∗), therefore G(s) = G∗(s).

Lemma 4. Assuming (V.Setup,V.Eval,V.Verify,V.Constrain, V.Prove) is a con-
strained VRF, Game 2 and Game 3 are computationally indistinguishable.

Proof. We give a probabilistic polynomial time reduction algorithm B that
attacks the constrained VRF security game. B first runs steps 1–2, receives a
value x and challenge strings s∗

1, . . . , s
∗
t , and submits S ← {0, 1}∗\{s∗

1, . . . , s
∗
t }

to the constrained VRF challenger. It receives a punctured key skS and chal-
lenge values ((z∗

1 , π∗
1), . . . , (z

∗
t , π∗

t)). It runs step 4 for A as in Game 2. If the
adversary A wins, then B guesses ‘1’ to indicate that (z∗

i , π∗
i) = V.Eval(sk′, s∗

i)
for i = 1, . . . , t; otherwise, it outputs ‘0’ to indicate that (z∗

i , π∗
i)t

i=1 are cho-
sen randomly. We observe that when (z∗

i , π∗
i)t

i=1 is generated as F (sk′, s∗
i) for

i = 1, . . . , t, then B gives exactly the view of Game 2 to A. Otherwise if
(z∗

i , π∗
i)t

i=1 are chosen randomly, the view is of Game 3. Therefore, if A can
distinguish the Game 2 and Game 3 with non-negligible advantage, B must have
the same advantage against the security of the constrained VRF.

Lemma 5. If (V.Setup,V.Eval,V.Verify,V.Constrain,V.Prove) is a constrained
verifiable random function and (F.Setup, F.KeyGen,F.Eval) is a functional
pseudorandom function, then the adversary can successfully break the security
of this scheme with negligible probability in the Game 3.

Proof. We observe that the outputs z∗
1 , . . . , z

∗
t are chosen randomly in Game 3.

Therefore, for any adversary, they can not distinguish the results y =
(y1,2, . . . , yt,2) = (f̂(x∗; z∗

1), . . . , f̂(x∗; z∗
t)) and (f̂(x∗; r′

1), . . . , f̂(x∗; r′
t)), where

r′
j

R←− R, j = 1, . . . , t.

114 M. Liu et al.

Efficiency. To be a verifiable computation scheme for randomized algorithm,
we require that rand − VC must satisfy the property of outsourceable as in
Definition 3. Since our Verify algorithm requires one verifiable computation of
constrained VRF and a PRF computation, the running time is independent of
the algorithm f(·; ·).

5 Conclusion

In this work, we introduced a new notion for verifiable computation for random-
ized algorithms and give a construction from the constrained verifiable random
function, functional pseudorandom function and indistinguishability obfuscation.

Our work leaves one open interesting problem. Can we construct a verifi-
able computation scheme for randomized algorithm without indistinguishability
obfuscation? After all, indistinguishability obfuscation is not efficient. If it can
be constructed, the problem generation algorithm will not be in the amortized
sense.

Acknowledgment. This work is supported by the “Strategic Priority Research
Program” of the Chinese Academy of Sciences, Grants No. XDA06010701, National
Natural Science Foundation of China (No. 61402471, 61472414, 61170280), and IIE’s
Cryptography Research Project.

A Modified Construction of Constrained VRF

A.1 Assumption

Let G be a group generator, which takes the security parameter 1λ and n ∈ N

as input, and outputs a sequence of groups G = (G1, . . . ,Gn) of prime order p.
Suppose that gi ∈ Gi is the generator of the i-th group. For all i, j ≥ 1 and
i + j ≤ n, there exists a map ei,j : Gi × Gj → Gi+j such that ∀α, β ∈ Zp :
ei,j(ga

i , gb
j) = (gab

i+j).
Next, we recall the n-MDDH assumption, which is proposed by

Fuchsbauer [11].

Definition 7 (n-MDDH Assumption) [11, Assumption 1]. Let G be a genera-
tor of multilinear groups, and let (p, g,G = (G1, . . . ,Gn)) ← G(1λ, n), where g is
the generator of G1. We say that the n-multilinear Decisional Diffie-Hellman (n-
MDDH) assumption is hard for G if for random c1, . . . , cn+1 ← Zp and T ← Zp

and for every PPT adversary A:

|Pr[A(1λ,G, g, gc1, . . . , gcn+1 , g
∏

j∈[n+1] cj

n) = 1]−
Pr[A(1λ,G, g, gc1, . . . , gcn+1 , gT

n) = 1]| ≤ negl(λ).

Verifiable Computation for Randomized Algorithm 115

A.2 Construction

The construction of constrained VRF is given in [11, p. 8]. We modify it and
describe the new construction in the following:

– V.Setup(1λ, 1n) → (sk′, vk′) : On input a security parameter λ and a
length n, the setup algorithm runs G(1λ, n) and gets a sequence of groups
G1, . . . ,Gn, g1, . . . , gn of prime order p, where g1, . . . , gn is defined the gen-
erators of G = (G1, . . . , Gn) respectively. Then, it chooses γ ← Zp and
(d1,0, d1,1), . . . , (dn,0, dn,1) ← Z

2
p randomly and sets R = gγ and Di,b = gdi,b

for i ∈ [n] and b ∈ {0, 1}. The VRF secret key and verifiable key are defined as

vk′ = (G, {Di,b}i∈[n],b∈{0,1}, γ)

sk′ = (G, R, {Di,b}i∈[n],b∈{0,1}, {di,b}i∈[n],b∈{0,1})

– V.Eval(sk′, x) → (y, π) : On input a value x ∈ X = {0, 1}n, it outputs a
function value y and a proof π as follows:

y = g
γ
∏

i∈[n] di,xi
n , π = g

∏
i∈[n] di,xi

n

– V.Verify(vk′, x, y, π) → 0 or 1 : On input the pair (x, y, π), this algorithm

first computes D(x) = g
∏

i∈[n] di,xi
n by applying the multilinear maps to

(D1,x1 , . . . , Dn,xn
). Then, it verifies the following equations:

D(x) = π, πγ = y.

If it holds, the algorithm outputs 1, else, outputs 0.
– V.Constrain(sk′,v) → skv : Let V = {i ∈ [n]|vi �=?} be the set of indices

for which the input bit is fixed to 0 or 1. On input the secret key sk′

and a vector v ∈ {0, 1, ?}n, where v is described the constrained domain
Sv = {x ∈ {0, 1}n|∀i ∈ [n] : xi = vi ∨ vi =?}, It computes skv =
(G, R, {Di,b}i∈[n],b∈{0,1}, kv), with kv defined as follows:

• If |V | > 1, then it computes kv = (g|V |−1)
∏

i∈V di,xi .
• If V = {j}, then it sets kv = dj,vj

.
• If V = ∅, then it sets kv = {di,b}i∈[n],b∈{0,1}, i.e. skv = sk′.

– V.Prove(skv, x) → (y, π) : Let V = {i ∈ [n]|vi �=?} and let V̄ = {i ∈ [n]|vi =?}
be its complement. If xi �= vi for some i ∈ V , then it returns (⊥,⊥); else
it applies the multilinear maps to ({Di,xi

}i∈V̄ , R) and computes DV̄ (x) =
(g|V̄ |+1)

γ
∏

i∈V̄ di,xi .

• If |V | > 1, then it computes π = g
∏

i∈[n] di,xi
n and

y = e(DV̄ (x), kv) = e((g|V |−1)
∏

i∈V di,xi , (g|V̄ |+1)
γ
∏

i∈V̄ di,xi) = g
γ
∏

i∈[n] di,xi
n .

116 M. Liu et al.

• If V = {j}, then it computes π = g
∏

i∈[n] di,xi
n and

y = DV̄ (x)kv = ((g|V̄ |+1)
γ
∏

i∈V̄ di,xi)dj,vj = g
γ
∏

i∈[n] di,xi
n .

• If V = ∅, the computation of (y, π) is similar to the evaluation algorithm.
Finally, it outputs V.Prove(skv, x) = (y, π).

The properties of provability and uniqueness can be verified easily, we omit
the detailed procedures.

Theorem 3. If there exists a PPT adversary A that can break the pseudo-
randomness of the modified construction with non-negligible advantage, then
there exists another PPT adversary B that breaks the n-multilinear decisional
Diffie-Hellman assumption with non-negligible advantage.

Here we show the intuition of the proof. In our proof, we just consider the
selective security of PRF in which the adversary is required to output a challenge
point before he queries the oracles. Suppose that x∗ is the challenge point. If
the adversary A can break the pseudorandonness of the modified construction
with non-negligible advantage, we construct another adversary B that breaks
the n-MDDH assumption. B chooses a sequence random values z1, . . . , zn

R←−
Zp and sets R = gcn+1 ,Di,x∗

i
= gci and Di,1−x∗

i
= gzi . When A queries the

oracles (query, constrain and verify) on input x �= x∗, there must exists a bit j
such that xj �= x∗

j . Because B knows the value of zj , it can answer the oracle

queries. Finally, the adversary B returns (y = T, π = g
∏

i∈[n] ci

n), where T is

either g
∏

i∈[n+1] ci

n or a random element from Gn. If the adversary A guesses ‘1’,
then B outputs ‘1’, which indicates that T = g

∏
i∈[n+1] ci

n . Otherwise, B outputs
‘0’ to indicate that T is chosen randomly. Therefore, if A can distinguish the
randomness of this experiment with non-negligible advantage, B can break the
security of the MDDH assumption with non-negligible probability.

References

1. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S.,
Wilson, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: Proceedings of 14th IMA International Confer-
ence on Cryptography and Coding, IMACC 2013, Oxford, UK, 17–19 December
2013, pp. 65–84 (2013)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: efficient
verification via secure computation. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
152–163. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2 14

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

http://dx.doi.org/10.1007/978-3-642-14165-2_14
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1

Verifiable Computation for Randomized Algorithm 117

4. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applica-
tions to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27954-6 19

5. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 7

6. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54631-0 29

7. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-36594-2 28

8. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14623-7 26

9. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: The ACM Conference on Computer
and Communications Security, CCS 2012, Raleigh, NC, USA, 16–18 October 2012,
pp. 501–512 (2012)

10. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, 3–7 November 2014, pp. 844–855
(2014)

11. Fuchsbauer, G.: Constrained verifiable random functions. In: Abdalla, M., Prisco,
R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 95–114. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-10879-7 7

12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29
October 2013, Berkeley, CA, USA, pp. 40–49 (2013)

13. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 25

14. Gentry, C., Halevi, S., Raykova, M., Wichs, D.: Outsourcing private RAM compu-
tation. In: 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014, pp. 404–413 (2014)

15. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A.,
Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 32

16. Gordon, S.D., Katz, J., Liu, F., Shi, E., Zhou, H.: Multi-client verifiable compu-
tation with stronger security guarantees. IACR Cryptol. ePrint Arch. 2015, 142
(2015)

17. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
325–351. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7 13

http://dx.doi.org/10.1007/978-3-642-27954-6_19
http://dx.doi.org/10.1007/978-3-642-27954-6_19
http://dx.doi.org/10.1007/978-3-642-22792-9_7
http://dx.doi.org/10.1007/978-3-642-54631-0_29
http://dx.doi.org/10.1007/978-3-642-36594-2_28
http://dx.doi.org/10.1007/978-3-642-14623-7_26
http://dx.doi.org/10.1007/978-3-319-10879-7_7
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-14623-7_25
http://dx.doi.org/10.1007/978-3-642-55220-5_32
http://dx.doi.org/10.1007/978-3-662-46497-7_13

118 M. Liu et al.

18. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 352–377. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46497-7 14

19. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-36594-2 13

20. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28914-9 24

http://dx.doi.org/10.1007/978-3-662-46497-7_14
http://dx.doi.org/10.1007/978-3-642-36594-2_13
http://dx.doi.org/10.1007/978-3-642-28914-9_24
http://dx.doi.org/10.1007/978-3-642-28914-9_24

UC-secure and Contributory
Password-Authenticated Group Key Exchange

Lin Zhang and Zhenfeng Zhang(B)

Trusted Computing and Information Assurance Laboratory,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{zhanglin,zfzhang}@tca.iscas.ac.cn

Abstract. The contributory property allows participants of group key
exchange fairly to engage in the generation of the random session key
rather than an entity or some part of members solely to determinate
it or force it to lie in an undesired distribution. In this paper, we put
forth a password-authenticated group key exchange (GPAKE) in which
principals cooperate to agree a strong session key just in possession of
a short password. The scheme realizes the optimality of contributory
property—full-contributiveness—as long as there is one honest party, the
uniform distribution of final session keys can be guaranteed. Moreover, it
reaches the security definitions in the well-known universal composability
(UC) framework under the random oracle model based on the one-more
gap Diffie-Hellman assumption. In particular, our scheme that achieves
these results with only two-round messages, has better performances on
round complexity in comparison with the existing UC-secure schemes.

Keywords: Group key exchange · Password-based protocols · Con-
tributiveness · Universal composability

1 Introduction

In recent decades, as electronic communications and information systems become
more and more complicated, applications, such as video- or tele-conferencing
involving multiple participants, are widespread throughout the Internet. In order
to satisfy the requirement of secure communication channels within the insecure
public network, it is necessary to design authenticated key exchange protocols
for groups of principals.

To date, a collection of schemes has been designed elegantly. Bresson, et al.
[10] is the first to usher in a formal model of security for group key exchange
protocols, and the first to give a concrete scheme with a rigorous proof. How-
ever, in their protocol, the number of communication rounds depends upon the
number of group members, so that this construction is impractical in the situ-
ation where the number of players is very large. Fewer rounds generally mean
easier implementation and more effective reducing to synchronization problems.
Subsequent to their work, several solutions [8,24] to constant-round protocol

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 119–134, 2016.
DOI: 10.1007/978-3-319-49890-4 7

120 L. Zhang and Z. Zhang

for group key exchange are provided and proven secure in formal models. In
addition, the desirable security goals of this kind of protocol not just focus on
resistance against the outsider adversary who lies outside of the target group and
seeks to get any information about the session key with observing and modifying
protocol messages. Additionally, a certain degree of security properties against
malicious insiders are expected in the designs of protocols. In Katz and Shin’s
work [23], they define the insider security for group key exchange protocols: one
prevents the adversary from determining the session key entirely, unless at least
there exists one corrupted party in the group.

Many schemes, including ones mentioned above, relies on possession of shared
keys with other peers or authentic public/private pairs. In some scenarios, pass-
words, the ubiquitous keys to on-line communications, are the proper alternative
in the group key exchanges, which benefits from password’s convenience and
low-cost. Namely, in the password-authenticated group key exchange (GPAKE),
members only share a low-entropy password that can be reliably remembered
by humans to bootstrap a high-entropy session key. Compared with other group
key exchange protocols, GPAKEs, as password-based protocols, bear additional
vulnerabilities to off-line dictionary attacks and the inevitable on-line dictio-
nary attacks because of relatively small dictionary space. Thus, how to resist
off-line attacks and restrict to adversaries eliminating at most one password per
party instance, is also the basic security requirement in designing password-
authenticated group key exchange protocols.

The first solution to the GPAKE is proposed by Bresson et al. [9]. Still, their
protocol’s round complexity is related to the number of group users. Abdalla
et al. [1,4] demonstrate the first password-based group key exchange protocols
in a constant number of rounds, in the random oracle /ideal cipher models
[7,25], and in the standard model, respectively. Later, they give provably secure
schemes [2,3] universal composability (UC) framework [15]. Recently, Xu et al.
[27] present an one-round scheme in the standard model, using indistinguishabil-
ity obfuscation as the main tool. Specifically, the works of [2,3] achieve a strong
notion of (t, n)-contributiveness which captures that no adversary can bias the
key if no more t players in the group of n players have been corrupted.

These schemes have shown important outcomes in GPAKE, yet much work
remains to be done to enhance the efficiency and practicality of existing schemes.
We focus on how to realize as few rounds as possible for the design of GPAKE
scheme, without the expense of desirable security involved in the preceding
description.

1.1 Our Contributions

In this literature, we put forward a UC-secure solution for password-
authenticated group key exchange protocol against the static adversary in the
password-only model, where the players do not have public keys authenticated by
a certificate authority, pre-shared symmetric keys or other auxiliary equipments.

In the aspect of security models, this scheme is provably secure in the UC
framework by the help of random oracles under the one-more gap Diffie-Hellman

UC-secure and Contributory Password-Authenticated Group Key Exchange 121

assumption. Compared with the game-based security models, such as [6,9], not
only does the UC framework inherently provide the secure composition property,
but it also has conspicuous advantages in distribution of passwords. Specifically,
UC framework brings about strong composability properties: (1) UC-secure pro-
tocols remain secure even if many protocol instances (may be various kinds proto-
cols) execute concurrently, and (2) The powerful universal composition theorem
guarantees that they can be securely used as sub-routine protocols of other UC
protocols. Besides, rather ideal assumptions on passwords independently chosen
from pre-determined dictionary space in the game-based models, UC framework
designates the environment (i.e. the distinguisher) to provide passwords to par-
ties, which models arbitrary distributions and dependencies between passwords.
Thereout, it captures the cases in real-life settings where the honest parties with
incorrect but related passwords interacts with others—when a user obliviously
makes typos.

Furthermore, we incorporate the full-contributiveness property (or called as
(n, n)-contributiveness) into our rewritten ideal functionality for GPAKE, which
means that the adversary cannot bias the key if there exists at least one honest
player in the group, while our scheme has proven to be capable of realizing
it. In fact, the notion of contributiveness brings several advantages in group
key exchange protocols. First, it pledges each party equally contributes to the
session key, which makes one intuitively feel that key agreement is “fairer” than
key distribution. Second, it still results in high quality random keys even though
some malicious parties improperly choose their contributions. Third, it deters
the case where the insider adversary determinates session keys to specific values
known by an outsider adversary in advance, so that the latter can eavesdrop on
the later communications without the former’s direct divulging to them. To a
certain degree, the destructibility of the insider adversary is decreased.

An important measure of a protocol’s efficiency is the communication com-
plexity (number of protocol rounds) of the given protocol. Our protocol achieves
the properties above with only two rounds. It distinctly has better perfor-
mance on round complexity than the other UC-secure ones [2,3]. On the minus
side, our scheme also has to perform O(n) exponent calculations per member.

Table 1. Comparison of GPAKE schemes

Scheme Security Contributeness Model Rounds Computation

BCP [9] Game (1, n) RO&IC n O(n)

ABCP [1] Game (1, n) RO&IC 4 O(1)

AP [4] Game (1, n) Std 5 O(n)

ACCP [2] UC (n/2, n) RO&IC 5 O(n)

ACGP [3] UC (n, n) Std 6 O(n)

XHZ [27] Game (1, n) Std 1 iO1

Ours UC (n, n) RO 2 O(n)
1 The “iO” means a program indistinguishability obfuscator.

122 L. Zhang and Z. Zhang

However, according to the Moore’s laws which declare the computing power
grows faster than communication power, it is therefore an acceptable and reason-
able compromise trade communication power for computing power in a group key
exchange protocol. Comparison of some existing schemes for GPAKE is shown
in Table 1.

2 Security Definitions

In this section, we will begin by reviewing the UC framework and the general
split functionality. Then a detailed description of the ideal functionality for the
password-authenticated group key exchange and related discussion are followed.

2.1 Universal Composability Framework

Universal composability [15] is the definition of secure computation that con-
siders an execution of a protocol in the setting involving an environment Z, an
adversary and parties. This framework involves two worlds—the real world and
the ideal world. Z’s aim is to distinguish two worlds. For it, the environment
provides the inputs to the parties and observes their outputs. On one hand, as
usual, the real world consists of participants of the protocol and an adversary A
that controls the communication channel and potentially attacks protocols. On
the other hand, in the ideal world, there exists an entirely trusted entity F called
ideal functionality, and dummy participates of the target protocol simply hand
their inputs to F . The ideal adversary S directly interacts with F , and their
communication essentially models the information it can obtain and its abilities
to attack the protocols. Namely, the functionality describes the security goals
we expect. Intuitively, the adversary, with a variety of means of attacks, should
not learn more information than the functionality’s outputs to it. Thus, security
requires that, for any adversary A attacking a protocol ρ, there exists an ideal
adversary S such that no environment Z can distinguish the case that it is inter-
acting with A and parties in the real world, and the case which it is interacting
with S and a functionality F in the ideal world. If so, we say that ρ UC-realizes
F . From the point of view of the environment, the real-world protocol is at
least as secure as the ideal-world one. In particular, the universal composabil-
ity theorem guarantees that the protocol ρ continues to behave like the ideal
functionality F even if it is executed in an arbitrary network environment. The
complete details refer to [15].

2.2 Split Functionalities

In a network, without any authentication mechanism, an adversary of the net-
work can simply “disconnect” the parties completely, and engage in separate
executions with the other parties on behalf of the honest ones. Such an attack
is inevitable. Players cannot distinguish the case in which they interact with the
expected ones from the case where they interact with the adversary. Hence, in

UC-secure and Contributory Password-Authenticated Group Key Exchange 123

For a given functionality F , the split version sF proceeds as follows:

Initialization:

– Upon receiving (Init, sid) from Pi, send (Init, sid, Pi) to the adversary S.
– Upon receiving (Init, sid, Pi,H, sidH) from S, where H is the set of party

identities, check that Pi has sent (Init, sid) and that for all previous sets
H′, either (1) H = H′, sidH = sidH′ , or (2) H ∩ H′ = ∅, sidH �= sidH′ .
If so, record (H, sidH), send (Init, sid, sidH) to Pi, and initialize a new
instance of F with sidH, denoted as FH. Otherwise, ignore this message.

Computation:

– Upon receiving (Input, sid,m) from Pi, find the set H such that Pi ∈ H,
and forward m to FH.

– Upon receiving (Input, sid,H, Pj , m) from S, if FH exists and Pj /∈ H,
then forward m to FH as if coming from Pj . Otherwise, do nothing.

– When a copy FH generates an output m for party Pi ∈ H, send m to Pi.
if m is for a party Pj /∈ H or for S, sF sends the output to S.

Fig. 1. The split version of ideal functionality F

the work of [5], Barak et al. propose a new model based on split functionalities
which guarantees that this attack is the only one available to the adversary.

The split functionality is a generic construction based upon a normal ideal
functionality F . Its formal description can be found on Fig. 1. It models security
by allowing the adversary to carry out such an “attack” in the ideal world. In
the initialization stage, the adversary adaptively chooses subsets of the honest
parties’ H under two constraints: (1) these subsets are disjoint; (2) the adversary
must choose a unique session identifier sidH for each authentication set H. That
is, the subsets create a partition of the players. During the computation stage
of sF , each subset H activates a different and independent instance of the ideal
functionality F , denoted as FH. In each such execution, the parties Pi ∈ H
provide their own inputs, and the adversary S provides the inputs for all Pi /∈ H.
Similarly, the parties Pi ∈ H all receive their specified outputs as computed by
their copy of F . However, the adversary receives all of its own outputs, as well
as the outputs of the parties Pi /∈ H who are controlled by S. It’s important to
note that there is no interaction between different instances of F run by sF .

2.3 The Ideal Functionality for GPAKE

The formalized description of GPAKE’s ideal functionality FGPAKE is presented
in Fig. 2. In order to reduce repeated representations, assume that the ideal
functionality only takes notice of the first query or input for each sid and party,

124 L. Zhang and Z. Zhang

The functionality FGPAKE parameterized by the security parameter κ, inter-
acts with an adversary S and a ordered set of parties H = {P1, . . . , Pn}
(where n ≥ 3) via the following queries:

– Initialization. Upon receiving (NewSession, sid, Pi, pwi) from Pi, record
(sid, Pi, pwi), if Pi is honest, mark it fresh, and send (NewSession, sid, Pi)
to S. Otherwise, this record is marked as corrupted instead. If there ex-
ists n − 1 recorded tuples (sid, Pj , pwj) for Pj ∈ H\{Pi}, then record
(sid,H, ready) and send it to S.

– Key Generation. Upon receiving (NewKey, sid, Pi,H∗, sk∗) from S,
abort if there is no record of the form (sid,H∗, ready) or H �= H∗. Other-
wise, proceed for record (sid, Pi, pwi) as follows:

• If all the records whose identities belong to H∗ are corrupted, then
output (sid, sk∗) to player Pi.

• If this record is fresh, and there is a record (sid, Pj , pw′) with pw′ =
pwi, and a key sk′ was sent to Pj , then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length κ, and send
(sid, sk′) to Pi.

Either way, mark the record (sid, Pi, pwi) as completed.

Fig. 2. The ideal functionality FGPAKE

and subsequent ones for the same sid and party are straightly ignored. What’s
more, the session identifier sid are considered to be globally unique so that
several sessions running in parallel can be distinguished. Note that we take into
account the static corruption—the adversary could selectively designate and
corrupt some participants, but only prior to the beginning of a protocol instance.
From the corruption on, it not only obtains their inputs resulted from Z, and
also fully controls their behaviors in the following executions.

In the ideal world, the functionality FGPAKE interacts with an adversary S
(i.e. the simulator), n parties P1, . . . , Pn and the environment Z (through the
parties). Before beginning, Z chooses the passwords pwi (may be unequal) on
its own for participants, which captures the arbitrary password distribution,
including the case of making typos. As a bonus, this approach provides forward
secrecy for free, which preserve the security of session keys even if the password
is used for other purposes.

Though such a query (NewSession, sid, Pi, pwi), every party initiates a new
session with the expected ones in the group H. Then FGPAKE is triggered to create
the corresponding records, such as (sid, Pi, pwi), for them to store their inputs
locally, and labeled it as fresh. Actually, among these group members, some may
be impersonated or corrupted by the adversary S to take part in the protocol
instance with S’s own password attempt. In both cases, the records are marked
as corrupted. Once all the parties in the group H have sent NewSession queries,

UC-secure and Contributory Password-Authenticated Group Key Exchange 125

the ideal functionality FGPAKE stores a record (sid,H, ready), and informs the
adversary S with it as a notification. When the adversary S commences with
impersonating a party Pi with the NewSession query, it is allowed temporarily
to submit a character ⊥ instead of the password, and replenish it before sending
the corresponding NewKey query. This stipulation contributes to a more smooth
simulation in the security proof. In principle, after this phase, the parties basi-
cally wait for receiving the session keys.

When receiving (NewKey, sid, Pi,H∗, sk∗) query from the adversary S, the
ideal functionality FGPAKE is instructed to release the session key to Pi. Note that
H∗ is the set of participants that is specified by the adversary and may not be
equal to H in the NewSession queries. When H = H∗, the computation happen
within pre-assigned members, while H �= H∗ means that the adversary intro-
duces outsiders (may be fictional entities) into the group to replace some honest
ones. The latter case is forbidden in our definition. Besides, if there no exists a
ready record for H∗, i.e. members of H∗ do not entirely join this session, FGPAKE

also abort this execution. Unlike previous key exchange functionalities [16,23], in
that if one of NewSession records is corrupted the adversary is given the ability
to fully determine the resulting session key into sk∗, ours deprives of this ability
of S unless all parties are corrupted simultaneously. By this definition, we inte-
grate the full-contributiveness property in the functionality. Participants shall
share the same, uniformly distributed session keys with whom have the match-
ing password. Namely, FGPAKE has to traverse the records and the session keys
sent to some parties, and return the corresponding ones. If no one is found out,
FGPAKE chooses a random value from the range of session keys. In consideration
of implicit authentication, the protocol will not end up with the case where no
key is established for parties unless the inevitable abortions occur.

When FGPAKE outputs the session key to the specified party, the correspond-
ing NewSession record is marked as completed to avoid undesired on-line guessing
attacks from S even after the authentication has ended.

2.4 Discussions

For the completeness of the ideal functionality, the adversary S should be acqui-
escently allowed to abort the instance at any time to capture some trivial cases.
For instance, in the real network, the attackers can always delay, hijack messages
or revise them into irregular formats in the communication channel, resulting in
a failed session among parties.

In our context of the ideal functionality FGPAKE, the TestPwd query is com-
pletely abandoned, since split functionality has modeled the adversary’s active
attacks which enable it to take apart in the group. In the view of security analysis,
the simulator does have to learn the results whether the passwords are matching,
which is totally left to the functionality along with generation of session keys.
Moreover, an outsider should not get the final results of protocol executions
without the later communications in realistic scenarios.

In the UC framework, as per the formalism of [15], assume that multiple pro-
tocol instances are running concurrently. As the case in the real world, numerous

126 L. Zhang and Z. Zhang

execution instances often invoke the same common random strings or random
oracles. Roughly, we have to consider the multi-session extension F̂ through the
JUC theorem [18]. We refer to [16,18] for more discussions.

3 Our GPAKE Scheme

The basic idea of this protocol is inspired by Jarecki et al’s (verifiable) oblivious
pseudorandom functions (V-OPRF) in [21,22] and Camenisch et al’s construc-
tions for distributed password verification protocol of [12], and then utilized
to build our GPAKE scheme. Briefly, each participant Pi ∈ {P1, . . . , Pn} has
the shared password pwi, along with its own ephemeral secret key xi. The ses-
sion key computed by parties for session and sub-session identifiers sid, ssid is
H2(sid, ssid,H1(sid, pwi)X), where X =

∑n
i=1 xi mod q, and H1,H2 are hash

functions. In order to get this value, each party chooses ri ←R Z
∗
q to blind the

password hash ai := (H1(sid, pwi))ri and sends the result to the others. When
(bi,j := a

xj

i)j∈[n], j �=i are returned, it can compute vi := (axi
i ·∏n

j=1, j �=i bj,i)1/ri =
H1(sid, pwi)X . Simultaneously, Pi proceed to the similar power operation to
{aj}j �=i from the others with its own secret key xi. Nevertheless, such simple
proposition of GPAKE cannot reach the UC-security in the unauthenticated
channel. Hence, we provide other primitives, such as the zero-knowledge proof
of knowledge and the extra hash function to ensure the simulator that the par-
ticipants always use the coincident public/secret keys, and also to help it extract
the secret key for simulation. More details are presented as follows.

3.1 Concrete Construction

Let G be a multiplicative group of prime order q with the generator g generated
through an algorithm of parameters generation by the security parameter κ. The
hash functions H1 : {0, 1}∗ × {0, 1}∗ → G, H2 : {0, 1}∗ ×G×G → {0, 1}2κ and
H3 : {0, 1}∗ × {0, 1}∗ ×G → {0, 1}κ are modeled as random oracles. The public
parameters also consist of the common random strings crs for the zero-knowledge
proofs of knowledge. PK denotes the non-interactive proof of knowledge (which
is formally defined by Camenisch et al. [11,14]), showing yi = gxi ∧ (bi,j =
axi

j)j∈[n], j �=i.
Assume that the actual members are known in advance, and we simply denote

them as P1, . . . , Pn according to a certain order. In a protocol instance, the par-
ties communicate over an unauthenticated broadcast channel, where messages
can be arbitrarily observed, modified, and delayed by the adversary A. Particu-
larly, the adversary can corrupt or impersonate the valid ones to join the group
as an insider with its own password attempt.

When a protocol execution begins, each party randomly chooses a blinding
factor ri and ephemeral secret key xi from Z

∗
q , and then generates the blinded

password hash ai := (H1(sid, pwi))ri and the ephemeral public key yi := gxi ,
respectively. By the end of this round, it computes a hash to the values ai and
yi, i.e. hi := H2(sid, ai, yi). Then each party broadcasts 〈Pi, ai, hi〉 to others.

UC-secure and Contributory Password-Authenticated Group Key Exchange 127

Shared information: Generator g of group G. Hash functions H1, H2, H3.
Common reference strings for proofs of knowledge crs.

Information held by Pi: Password pwi.
==

Round 1:

1). Choose xi ←R Z
∗
q and generate yi := gxi ;

2). Pick ri ←R Z
∗
q and compute ai := (H1(sid, pwi))ri ;

3). Make a hash hi := H2(sid, ai, yi);
4). Broadcast 〈Pi, ai, hi〉.

Round 2:

1). On receiving 〈Pj , aj , hj〉 from all Pj ∈ SP\{Pi}, compute bi,j := axi
j ,

and set ssid := (a1, h1)|| . . . ||(an, hn);
2). Produce the non-interactive proof of knowledge πi;
3). Broadcast

〈
Pi, yi, (bi,j)j∈[n],j �=i, πi

〉
.

Key Generation:

1). Upon receiving
〈
Pj , (bj,k)k∈[n],k �=j , πj

〉
from all Pj ∈ SP\{Pi}, check

hj = H2(sid, aj , yj) and continue. If not, abort this instance;
2). Verify (πj)j∈[n],j �=i, and abort if one of them is invalid;
3). Compute vi := (axi

i · ∏n
j=1,j �=i bj,i)1/ri , and then output the session

key ski := H3(sid, ssid, pwi, vi);

Fig. 3. The description of our GPAKE protocol for each party Pi

Note that the sub-session identifier is defined as messages received in this round
ssid := a1, h1|| . . . ||an, hn, which be included in the subsequent hash evaluations.
Specifically, it means that parties are partitioned by the shared messages among
them. The purpose of usage of H2 is, during the formal security proof, to embed
the one-more gap Diffie-Hellman problem in the next round rather than this
round when the group has not partitioned by the adversary yet (Fig. 3).

In the second round, each party computes blinded responses bi,j := axi
j for

the others in this group using its ephemeral secret key xi. Moreover, it is required
to generate a non-interactive zero-knowledge proof of knowledge PK that bi,j is
generated correctly using yi’s discrete logarithm. That is,

πi := PK{xi : yi = gxi ∧ (bi,j = axi
j)j∈[n], j �=i}

Note that these zero-knowledge proofs should be on-line extractable, since the
simulator S needs to extract the adversary’s ephemeral secret keys to obtain
the solutions to the one-more gap Diffie-Hellman problem in the simulation of

128 L. Zhang and Z. Zhang

random oracle H3. It ends this round communication with broadcasting the
message

〈
Pi, yi, (bi,j)j∈[n], j �=i, πi

〉
to the other participants.

In the end, the parties check the hash values and the proofs of knowledge.
As soon as a value received by Pi doesn’t be verified correctly, it aborts this
instance and outputs nothing. Otherwise, it computes the key material vi :=
(axi

i · ∏n
j=1, j �=i bj,i)1/ri and the session key ski := H3(sid, ssid, pwi, vi), outputs

(sid, ssid, sk), and terminates this session.
Throughout this scheme, the hash values in the first round and the proofs

of knowledge play important roles in ensuring the full-contributory property.
For the existence of hash values and proofs of knowledge, it is impossible for
a malicious party Pi adaptively to choose its ephemeral secret key xi after it
gets

∏n
j=1, j �=i H1(sid, pwi)xj . Namely, even if there is only one honest party, the

remaining n − 1 ones still cannot have the sum of secret keys depend on its.
Remarkably, this scheme achieves the implicit authentication by only two

rounds communications among the participants. Using general techniques, such
as the hash values of session key materials along with new tags, it is easy to get
explicit authentication at the cost of one more round messages.

In the scheme, PK is a non-interactive transformation of a proof of knowl-
edge with the Fiat-Shamir heuristic [19] in the random oracle model. It can be
extended to be online-extractable, by verifiably encrypting the witness with a
public key defined in the common reference string. The witness can be extracted
from the CRS by the simulator without rewinding by decrypting the ciphertext.
A practical instantiation is given by the CPA-secure version of Camenisch and
Shoup’s encryption scheme [13], which is secure under the DCR assumption [26].

4 Security Analysis

In this section, we prove the security of our scheme utilizing the (N,Q) one-more
gap Diffie-Hellman assumption, which states that for the group G there no exists
polynomial-time adversary A so that the following probability is non-negligible:

Prob[A(·)k,DDH(·)(g, gk, g1, . . . , gN) = {(gjs , g
k
js)|s = 1, . . . , Q + 1}]

where k ∈ Z
∗
q and Q is the number of the queries A makes to the (·)k oracle.

Moreover, A’s other inputs g1, . . . , gN are assumed to be sampled from G.
We can draw a conclusion for the GPAKE scheme in this theorem below:

Theorem 1. Under the one-more gap Diffie-Hellman assumption in G, if
the zero-knowledge proofs involved are online extractable, then the password-
authenticated group key exchange presented in Sect. 3 securely realizes ŝFGPAKE

under static corruptions in the (FCRS,FRO)-hybrid model.

In order to prove this theorem, it is an ideal-world adversary (i.e. simulator)
S that needs to be constructed such that an arbitrary environment Z cannot
distinguish between protocol executions in the ideal world and ones in the real
world, which is described in Sect. 4.1. Then, in Sect. 4.2, we demonstrate the
indistinguishability between two worlds through a sequence of games.

UC-secure and Contributory Password-Authenticated Group Key Exchange 129

4.1 Description of Simulator

The simulator S not only interacts with the functionality FGPAKE in the ideal
world, but also acts as honest parties and environment Z against a copy of the
real-world adversary A invoked by S internally, and provide it a simulated real
world. Moreover, S faithfully forwards all messages between A and Z.

Simulating Random Oracles and Common Random Strings. When the
simulator receives the queries to random oracles H1, H2 and H3, it chooses ran-
dom values from appropriate ranges to provide answers, and then records inputs
and outputs. Here, S is allowed to maintain a list Λ to store them, which is also
helpful to ensure the consistency of simulated random oracles. The simulator
answers A’s queries and updates the lists according to the rules which are analo-
gous to the description in Fig. 4. Particularly, the random oracle H3 is answered
by the help of NewKey queries in some points.

Furthermore, the simulated common reference string is chosen by S for the
adversary A as FCRS presented in the AppendixA.2. S runs the initial simulator
for proofs of knowledge and gets (crs, τ). S sets the common reference string
to crs and locally stores τ as the trapdoor for generating simulated PKs and
extracting the adversary’s witnesses.

Simulating the Party Pi. Once receiving (Init, sid, Pi) and (NewSession,
sid, Pi) from the functionality, the simulator S randomly samples an element
gi from the group G, and then sets ai := gi, due to the fact that it has no access
to the correct password for the honest party Pi. And it randomly chooses the
value hi from {0, 1}∗

H2
. Such messages from honest participants are delivered to

the adversary A in the simulated real world.
The adversary A can make its decision about the subgroups participants

belong to, on account of lack of strong authentication assumptions. It sends the
first flow to target parties on behalf of ones it wants to impersonate (or they
have been corrupted since the beginning of the session). These subgroups Hs are
defined according to the messages (ai, hi)i∈[n] in the first round. S forwards these
Hs, which make a partition of all parties, to the split functionality. Namely, the
players in the same session receive and share the same (ai, hi)i∈[n]. The simulator
S also sends NewSession queries for the corrupted parties or ones in disguise
correspondingly. Note that the simulator might have no knowledge about the
latter’s passwords in this moment, and thus it has to pass (NewSession, sid, Pj ,⊥)
for the dishonest party Pj to the ideal functionality instead. Moreover, we assume
that the simulator is permitted to fill in the blanks later.

During the second round, on the behalf of honest parties, S just follows
the protocol description to send

〈
Pi, yi, (bi,j)j∈[n], j �=i, πi

〉
back to A in the

broadcast channel, where πi is a simulated one, and H2 is programmed as
hi := H2(sid, ai, yi). Finally, S makes a call (NewKey, sid, Pi,⊥) to F̂GPAKE.

To make the session keys indistinguishable in the view of Z, the simulator
deals with A’s queries H3(sid, ssid, pwj , vj) for some party Pj as follows. If
vj �= H1(sid, pwj)Σx∗

l +Σxk , where xk results from an honest party Pk, while x∗
l

130 L. Zhang and Z. Zhang

is extracted from the proofs of knowledge provided by the dishonest one Pl, S
just return a random value. Otherwise, S fills the blank ⊥ in Pj ’s NewSession

record with pwj , and sends (NewKey, sid, Pj ,⊥) to F̂GPAKE, and then obtain sk.
Finally, it sets H3(sid, ssid, pwj , vj) := sk and output it to A.

4.2 Sequence of Games

Here, via a sequence of games Gi, we will prove that the real world with the
arbitrary A and the ideal world with F̂GPAKE and S as defined above are indis-
tinguishable in the view of environment Z. This needs to be stressed that, the
simulator S “magically” obtains the inputs of honest parties provided by Z in
the intermediate games, but they are no longer needed at the end of simulation.
Following is the sequence of concrete games:

Game G0: Let G0 be the real-world game. As we noted above, the simulator S
“magically” receives inputs from Z, and just simply runs the real-world protocol
executions for all the honest parties.

Game G1: It is identical to G0, except that we change the generation of crs
and proofs of knowledge in the protocol. More specifically, on one hand, the
common random strings are replaced with the simulated ones, and S knows the
secret keys. On the other hand, whenever the honest parties perform the proofs
of knowledge, S provides the simulated ones instead. The indistinguishability
between them follows from the zero-knowledge properties of the proof system.

Game G2: Since G2, S begins to simulate the hash functions H1, H2 and H3

instead of the real ones. It is distinguishable with the previous game in the view
of the environment Z, if there happen collisions that multiple inputs of oracles
correspond to an output. Obviously, this case occurs with negligible probability,
due to the birthday paradox.

Game G3: Let G3 be the modification of G2, where the honest party Pi replaces
a normal ai := H1(sid, pwi)ri with a random element gi from G in the first
round. Actually, in the previous game, ri is randomly chosen from Z

∗
q by Pi

locally without leakage to the adversary A. Therefore, H1(sid, pwi)ri cannot be
distinguished from the random gi, from Z’s view.

Game G4: Compared with G3, the simulator S makes the party Pi output sk
which F̂GPAKE forwards to it after the NewKey query, rather than the normal
value H3(sid, ssid, pwi, vi). Only by querying the H3(·) oracle can the environ-
ment distinguish between these two outputs. Concretely, When the adversary
A makes a query (sid, ssid, pwj ,H1(sid, pwj)Σx∗

l +Σxk), S interacts with the
functionality F̂GPAKE, and obtains the proper output value sk as the response.
Besides, We define an event Γ that the adversary A queries the oracle H3(·)
on the input (sid, ssid, pwj ,H1(sid, pwj)Σx∗

l +Σxk) without communicating with
some honest parties of H, which gives rise to an abort in G4, since S has to
send (NewKey, sid, Pj ,H∗,⊥) to the functionality, where H∗ �= H. It is observed

UC-secure and Contributory Password-Authenticated Group Key Exchange 131

that, provided that the event Γ does not occur, the environment is not able to
distinguish between two cases.

Here, by the help of reduction from the one-more gap Diffie-Hellman problem,
we conclude that the event Γ just happens with a negligible probability. Given an
instance of the one-more gap Diffie-Hellman problem (Q, g, y = gk, g1, . . . , gN),
we revise the simulator’s behaviors as follows. Before the beginning, the simulator
initializes a counter c(k) := 0 modeling the number of times that the (·)k oracle is
invoked and a set of pairs of the form (z, zk), where z is in {g1, . . . , gN}, denoted
as T (k) := ∅. It uses the challenges g1, . . . , gN as the responses to H1(·) queries
instead of random values from G, and as the value aj for the honest party Pj to
the other members in the first round.

In the second round, without loss of generality, assume that there exists s
(s ≥ 1) honest parities in the target group H, the simulator randomly samples
s − 1 values from Z

∗
q and implicitly sets kt = k − ∑s

i=1,i �=t ki for a honest party
Pt. Note that S has no access to kt, but it still can provide the Pt’s ephemeral
public key yt := y/(

∏s
i=1,i �=t gki). If aj is the first round message sent to Pt, the

simulator calls the (·)k oracle to compute bt,j := ak
j /(

∏s
i=1,i �=t aki

j) and simulates
the proof of knowledge πt using the trapdoor τ corresponding to the specified
CRS. Moreover, once the oracle (·)k is invoked, it increases the counter c(k). For
the other honest ones, the simulations proceeds as before. When A later queries
H2(sid, ssid, pwi, vi), the simulator invokes the DDH oracle to check whether it
satisfies vi = H1(sid, pwi)k+Σx∗

l . If so, it adds (H1(sid, pwi), vi/H1(sid, pwi)Σx∗
l)

to the set T (k). Once the event c(k) < |T (k)|, which the adversary never com-
municates with Pt since the end of the first round but submits an appropriate H3

query corresponding the solution, occurs, the simulator S addresses the one-more
gap DH problem by returning the set T (k).

Now, the ideal-world is identical to G4, except that S no longer owns the
specified inputs from Z. Thus, the proof of theorem is completed.

Acknowledgement. We would like to thank the anonymous reviewers for their bene-
ficial comments. This work is supported by the National Natural Science Foundation of
China (No. U1536205, 61170278) and the National Basic Research Program of China
(No.2013CB338003).

A Auxiliary Ideal Functionalities

In this section, we list the formal ideal functionalities of random oracles and
common random strings used as setup assumptions in our work.

A.1 Random Oracles

The random oracle model (e.g. [7]) captures an idealization of a hash function.
In particular, it allows only black-box access and cannot be “predicted” without
explicitly evaluating it. The outputs are uniformly selected random strings of
specified size. We present the random oracle functionality FRO that has been
defined by Hofheinz and Müller-Quade [20] in Fig. 4.

132 L. Zhang and Z. Zhang

FRO proceeds as follows, running on security parameter κ, with parties
P1, . . . , Pn and an adversary S:

– FRO keeps a list L (which is initially empty) of pairs of bitstrings.
– Upon receiving a value (RO, sid,m), where m ∈ {0, 1}∗ from some party

Pi or from S, do:
• If there is a pair (m, h̃) for some h̃ ∈ {0, 1}κ in the list L, set h := h̃;
• If there is no such pair, choose uniformly h ∈ {0, 1}κ and store the

pair (m, h) in L.
Once h is set, reply to the activating machine (i. e., either Pi or S) with
(RO, sid, h).

Fig. 4. The ideal functionality FRO

A.2 Common Reference Strings

The common reference string functionality FCRS [15,17] captures that a common
string drawn from a pre-specified distribution D can be accessible by all parties
in the system, including the adversary. Furthermore, it guarantees that no party
can be aware of the information related to the process of generating this string.
The functionality illustrated in Fig. 5 results from the 2005 version of [15].

The functionality FCRS running on distribution D proceeds as follows:

– When receiving input (CRS, sid) from party P , first verify that sid =
(P, sid′) where P is a set of identities, and that P ∈ P; else ignore
the input. Next, if there is no value r recorded then choose and record
r

R←− D. Finally, send a public delayed output (CRS, sid, r) to P .

Fig. 5. The ideal functionality FCRS

References

1. Abdalla, M., Bresson, E., Chevassut, O., Pointcheval, D.: Password-based group
key exchange in a constant number of rounds. In: Yung, M., Dodis, Y., Kiayias, A.,
Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 427–442. Springer, Heidelberg
(2006). doi:10.1007/11745853 28

2. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Password-authenticated
group key agreement with adaptive security and contributiveness. In: Preneel, B.
(ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 254–271. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02384-2 16

http://dx.doi.org/10.1007/11745853_28
http://dx.doi.org/10.1007/978-3-642-02384-2_16

UC-secure and Contributory Password-Authenticated Group Key Exchange 133

3. Abdalla, M., Chevalier, C., Granboulan, L., Pointcheval, D.: Contributory
password-authenticated group key exchange with join capability. In: Kiayias, A.
(ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 142–160. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19074-2 11

4. Abdalla, M., Pointcheval, D.: A scalable password-based group key exchange pro-
tocol in the standard model. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 332–347. Springer, Heidelberg (2006). doi:10.1007/11935230 22

5. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005). doi:10.1007/11535218 22

6. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 11

7. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

8. Boyd, C., Nieto, J.M.G.: Round-optimal contributory conference key agreement.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer,
Heidelberg (2003). doi:10.1007/3-540-36288-6 12

9. Bresson, E., Chevassut, O., Pointcheval, D.: Group Diffie-Hellman key exchange
secure against dictionary attacks. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 497–514. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 31

10. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security, pp. 255–264. ACM (2001)

11. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 25

12. Camenisch, J., Lehmann, A., Neven, G.: Optimal Distributed Password Verifica-
tion. In: Proceedings of the 22nd ACM Conference on Computer and Communi-
cations Security, pp. 182–194. ACM (2015)

13. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

15. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science, pp.
136–145. IEEE (2001)

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005). doi:10.1007/11426639 24

17. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-
party and Multi-party Secure Computation. In: Proceedings of the Thirty-fourth
Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM (2002)

18. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 16

http://dx.doi.org/10.1007/978-3-642-19074-2_11
http://dx.doi.org/10.1007/11935230_22
http://dx.doi.org/10.1007/11535218_22
http://dx.doi.org/10.1007/3-540-45539-6_11
http://dx.doi.org/10.1007/3-540-36288-6_12
http://dx.doi.org/10.1007/3-540-36178-2_31
http://dx.doi.org/10.1007/978-3-642-01001-9_25
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/11426639_24
http://dx.doi.org/10.1007/978-3-540-45146-4_16
http://dx.doi.org/10.1007/978-3-540-45146-4_16

134 L. Zhang and Z. Zhang

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

20. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using ran-
dom oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-24638-1 4

21. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: how to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy, pp. 276–291 (2016)

22. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45608-8 13

23. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols.
In: Proceedings of the 12th ACM Conference on Computer and Communications
Security, pp. 180–189. ACM (2005)

24. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45146-4 7

25. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). doi:10.
1007/3-540-45708-9 3

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

27. Xu, J., Hu, X.-X., Zhang, Z.-F.: Round-optimal password-based group key
exchange protocols in the standard model. In: Malkin, T., Kolesnikov, V.,
Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 42–61.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-28166-7 3

http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-24638-1_4
http://dx.doi.org/10.1007/978-3-662-45608-8_13
http://dx.doi.org/10.1007/978-3-540-45146-4_7
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-45708-9_3
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-319-28166-7_3

Side-Channel Attacks

Score-Based vs. Probability-Based
Enumeration – A Cautionary Note

Marios O. Choudary1(B), Romain Poussier2, and François-Xavier Standaert2

1 University Politehnica of Bucharest, Bucharest, Romania
marios.choudary@cs.pub.ro

2 ICTEAM - Crypto Group, Université Catholique de Louvain,

Louvain-la-Neuve, Belgium

Abstract. The fair evaluation of leaking devices generally requires to
come with the best possible distinguishers to extract and exploit side-
channel information. While the need of a sound model for the leakages is
a well known issue, the risks of additional errors in the post-processing of
the attack results (with key enumeration/key rank estimation) are less
investigated. Namely, optimal post-processing is known to be possible
with distinguishers outputting probabilities (e.g. template attacks), but
the impact of a deviation from this context has not been quantified so
far. We therefore provide a consolidating experimental analysis in this
direction, based on simulated and actual measurements. Our main con-
clusions are twofold. We first show that the concrete impact of heuristic
scores such as produced with a correlation power analysis can lead to
non-negligible post-processing errors. We then show that such errors can
be mitigated in practice, with Bayesian extensions or specialized distin-
guishers (e.g. on-the-fly linear regression).

1 Introduction

Side-channel attacks are powerful tools to recover the secret keys of crypto-
graphic implementations. When an attacker has physical access to the device
(e.g. a smart card) running the cryptographic algorithm, he may extract infor-
mation using side-channels such as the power consumption or the electromag-
netic radiation related to the algorithm being executed. In the following, we
refer to this information as a trace or a leakage. Examples of attacks exploiting
this type of leakages include (but are not limited to) Kocher et al.’s Differential
Power Analysis (DPA) [11], Brier et al.’s Correlation Power Analysis (CPA) [3]
or Chari et al.’s Template Attack (TA) [4]. Applied on symmetric block ciphers,
they usually allow recovering information on independent parts of the full key
which we shall further call subkeys. Typically, an attacker obtains a probabil-
ity (or a score) for each of the possible value a subkey can take. In order to
recover the full key, he has to recombine the information from the different sub-
keys. In this context we can distinguish three cases. Firstly, if the attacker has
enough information on each subkey (i.e. the correct subkey is ranked first), he

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 137–152, 2016.
DOI: 10.1007/978-3-319-49890-4 8

138 M.O. Choudary et al.

can recombine them by simply taking the most likely hypothesis for each subkey.
Secondly, if at least one subkey does not provide enough information, a search
into the key space needs to be performed. For this purpose, a key enumeration
algorithm can be used in order to output the full key in decreasing order of
likelihood [2,6,12,17–19,21]. The position of the actual key in this ordering will
be denoted as the rank. Finally, when the rank is beyond the attacker’s compu-
tational power (e.g. >250), a complete key enumeration is not possible anymore.
In that case, one can only estimate a bound on the rank using a rank estimation
algorithm, which requires knowledge of the actual key (thus is only suitable for
an evaluator) [1,8,10,17,18,22,23].

In this paper, we deal with the general issue of evaluating the security of
a leaking device in the most accurate manner. This is an important concern
since an error might lead to an overestimation of the rank and thus a false sense
of security. Sources of errors that can affect the quality of a side-channel secu-
rity evaluation have been recently listed in [18] and are summarized in Fig. 1,
where we can see the full process of a divide-and-conquer side-channel attack
from the trace acquisition to the full key recovery, along with the errors that
might be introduced. A typical (and well understood [9]) example is the case of
model errors, which can significantly affect the efficiency of the subkey recoveries.
Interestingly, the figure also suggests that some errors may only appear during
the enumeration/rank estimation phase of the side-channel security evaluation.
Namely, combination ordering errors, which are the core this study, arise from
the fact that combining the information obtained for different subkeys can be
easily done in a sound manner if the subkey distinguisher outputs probabilities
(which is typically the case of optimal distinguishers such as TA), while per-
forming this combination with heuristic scores (e.g. correlation values) is not
obvious. This is an interesting observation since it goes against the equivalence

Fig. 1. Errors & bounds in key enumeration and rank estimation.

Score-Based vs. Probability-Based Enumeration 139

of TA and CPA (under the assumption that they use identical leakage models)
that holds for first-order side-channel attacks [15].

In general, the soundest way to evaluate security is to use a Bayesian
distinguisher (i.e. a TA) and to output probabilities. Yet, a possible concrete
drawback of such an attack is that it requires a good enough model of the leak-
ages Probability Density Function (PDF), i.e. some profiling. For this reason,
non-profiled (and possibly sub-optimal) attacks such as the CPA are also fre-
quently considered in the literature. As previously mentioned, distinguishers that
output probabilities allow a straightforward combination of the subkey informa-
tion. This is because probabilities are known to have a multiplicative relation-
ship. By contrast, the combination of heuristic scores does not provide such an
easy relationship, and therefore requires additional assumptions, which may lead
to combination ordering errors. This is easily illustrated with the following exam-
ple. Let us first assume two 1-bit subkeys k1 and k2 with probability lists [p11, p

2
1]

and [p12, p
2
2] with p11 >, p21 and p12 > p22. Secondly, let us assume the same subkeys

with score lists [s11, s
2
1] and [s12, s

2
2] with s11 >, s21 and s12 > s22. On the one hand,

it is clear that the most (respectively least) probable key is given by {p11, p
1
2} or

{s11, s
1
2} (respectively {p21, p

2
2} or {s21, s

2
2}). On the other hand, only probabilities

allow to compare the pair {p11, p
2
2} and {p21, p

1
2}. Since we have no sound way to

combine scores, we have no clue how to compare {s11, s
2
2} and {s21, s

1
2}.

In the following, we therefore provide an experimental case study allowing us
to discuss these combination ordering errors. For this purpose, we compare the
results of side-channel attacks with enumeration in the case of TA, CPA (possibly
including a bayesian extension [21]) and Linear Regression (LR) [20] and in
particular its non-profiled variant put forward in [7], using both simulations and
concrete measurements. Our main conclusions are that (i) combination ordering
errors can have a significant impact when the leakage model of the different
subkeys in an attack differ, (ii) bayesian extensions of the CPA can sometimes
mitigate these drawbacks, yet include additional assumptions that may lead to
other types of errors, (iii) “on-the-fly” linear regression is generally a good (and
more systematic) way to avoid these errors too, but come at the cost of a model
estimation phase, and (iv) only TA are guaranteed to lead to optimal results.
The rest of the paper is structured as follows. In Sect. 2, we present the different
attacks we analyse, together with a concise description of the key enumeration
and rank estimations algorithms. Then, in Sect. 3, we present our experimental
results. Conclusions are in Sect. 4.

2 Background

2.1 Attacks

This section describes the different attacks we used along with the tool for full key
recovery analysis. The first one we consider is the correlation power analysis [3],
along with its bayesian extension to produce probabilities. The second one is
the template attack [4]. The last one is the “on-the-fly” stochastic attack [7].
We target a b-bit master key k, where an attacker recovers information on Ns

subkeys k0, . . . , kNs−1 of length a = b
Ns

bits (for simplicity, we assume that a

140 M.O. Choudary et al.

divides b). Our analysis targets the S-box computation (S) of a cryptographic
algorithm. That is, we apply a divide-and-conquer attack where a subkey k is
manipulated during a computation S(x ⊕ k) for an input x. Given n executions
with inputs x = (xi), i ∈ [1, n] (where the bold notation is for vectors), we record
(or simulate) the n side-channel traces l = (lx,k

i) (e.g. power consumption),
corresponding to the computation of the S-box output value vx,k = S(x ⊕ k)
with key (subkey) k. We then use these traces in our side-channel attacks.

Correlation Power Analysis (CPA). From a given leakage model m� =
(mx,k�) (corresponding to a key hypothesis k�) and n traces l = (lx,k

i), we
compute Pearson’s correlation coefficient ρ�

k = ρ(l,mx,k�) for all candidates k�

as shown by (1):

ρk� =
∑n

i=1(li − E(l)) · (mxi,k� − E(m�))
Std(l) · Std(m�)

, (1)

where E and Std denote the sample mean and standard deviation. If the attack
is successful, the subkey k = arg maxk�(ρk�) is the correct one. This generally
holds given a good model and a large enough number of traces. Concretely, our
following experiments will always consider CPA with a Hamming weight leakage
model, which is a frequent assumption in the literature [14], and was sufficient
to obtain successful key recoveries in our case study.

CPA with Bayesian Extension (BCPA). In order to improve the results of
key enumeration algorithms with CPA, we may use Fisher’s Z-transform (2) on
the correlation values ρk� obtained from the CPA attack (see above) [13]:

z(ρk�) =
1
2

log
1 + ρk�

1 − ρk�

· (2)

Under some additional assumptions, this transformation can help us trans-
form the vector of correlations into a vector of probabilities, which may be
more suitable for the key enumeration algorithms, hence possibly leading to
improved results.

More precisely, if we let zk� = z(ρk�) be the z-transform of the correlation
for the candidate key k�, then ideally we can exploit the fact that this value is
normally distributed, and compute the probability:

Pr[l|k�] = Nμz,σ2
z
(zk�), (3)

where
μz =

1
2

log
1 + ρ

1 − ρ

is the z-transform of the real correlation ρ and

σ2
z =

1
n − 3

Score-Based vs. Probability-Based Enumeration 141

is the estimated variance for this distribution (with n the number of attack
samples). The main problem, however, is that we do not know the actual value
of the correlation ρ (for the correct and wrong key candidates), so we cannot
determine μz and σ2

z without additional assumptions.
A possible solution for the mean μz is to assume that the incorrect keys will

have a correlation close to zero (so the z-transform for these keys will also be
close to zero), while the correct key will have a correlation as far as possible
from zero. In this case, we can take the absolute value of the correlation values,
|ρk� |, to obtain zk� = z(|ρk� |). Then, we can use the normal cumulative density
function (cdf) CN 0,σ2

z
with mean zero to obtain a function that provides larger

values for the correct key (i.e. where the z-transform of the absolute value of the
correlation has higher values). After normalising this function, we obtain the
associated probability of each candidate k� as:

Pr(k�|l) =
CN 0, 1

n−3
(zk�)

∑2a−1
k′=0 CN 0, 1

n−3
(zk′)

· (4)

Alternatively, we can also use the mean of the transformed values z̄ = Ek�(zk�)
as an approximation for μz (since we expect that μz > z̄ > 0, so using this value
should lead to a better heuristic than just assuming that all incorrect keys have
a correlation close to zero).1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F
va

lu
e

mean 0
mean 0.675

Fig. 2. Assumptions for µz in the CPA Bayesian extension.

1 Yet another possible solution, which does not require knowledge of the key either, is
to assume that the absolute correlation will be the highest for the correct key candi-
date, so the z-transform of the absolute correlation should also be the highest. Then,
we can simply use the maximum among all the z-transformed values as the mean
of the normal distribution for the z-transformed data (i.e. µz = maxk�(zk�)), hence

obtaining Pr(k�|l) =
N

μz, 1
n−3

(zk�)

∑2a−1
k′=0

N
μz, 1

n−3
(zk′)

. This did not lead to serious improvements

in our experiments, but might provide better results in other contexts.

142 M.O. Choudary et al.

For illustration, Fig. 2 shows the evolution of the cdf-based probability func-
tion for these two choices of correlation mean (for an arbitrary variance of 0.01,
corresponding to 103 attack traces taken from the following section). Since in this
example, z̄ = 0.6, many incorrect keys have a correlation higher than 0.2. Hence,
in this case, the zero-mean assumption should lead to considerably worse results
than the z̄ assumption, which we consistently observed in our experiments. In
the following, we only report on this second choice.

Next, we also need an assumption for the variance σ2
z . While the usual (sta-

tistical) approach would suggest to use σ2
z = 1/(n − 3), we observed that in

practice, a variance σ2
z = 1 gave better results in our experiments. Since this

may be more surprising, we report on both assumptions, and next refer to the
attack using σ2

z = 1/(n − 3) as BCPA1 and to the one using σ2
z = 1 as BCPA2.

For illustration, Fig. 3 shows the evolution of the cdf-based probability func-
tion for BCPA1 and BCPA2 with different number of attack samples. The blue
curve represents the BCPA2 method, which is invariant with the number of
attack samples. The green, red and black curves shows the impact of the num-
ber of attack samples on the cdf. As we can see, the slope becomes more and
more steep when the number of attack samples increases. This makes the key
discrimination harder since at some point the variance becomes too small to
explain the errors due to our heuristic assumption in the mean μz.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Correlation

C
D

F
va

lu
e

var 1
var 10 trcs
var 100 trcs
var 500 trcs

Fig. 3. Normal CDF with mean z̄ = 0.6 for variance 1 (blue), variance 1
7

(green, 10
attack samples), variance 1

97
(red, 100 attack samples) and variance 1

497
(black, 500

attack samples). (Color figure online)

Summarizing, the formulae for the heuristics BCPA1 and BCPA2 are given
by Eqs. (5) and (6):

BCPA1 : Pr[k�|l] =
CN z̄, 1

n−3
(zk�)

∑2a−1
k′=0 CN z̄, 1

n−3
(zk′)

. (5)

Score-Based vs. Probability-Based Enumeration 143

BCPA2 : Pr[k�|l] =
CN z̄,1(zk�)

∑2a−1
k′=0 CN z̄,1(zk′)

. (6)

Gaussian Template Attack (GTA). From a first set of profiling traces
lp = (lx,k

i), the attacker estimates the parameters of a normal distribution. He
computes a model m = (mx,k�), where mx,k� contains the mean vector and
the covariance matrix associated to the computation of vx,k� . We consider the
approach where a single covariance is computed from all the samples [5]. The
probability associated to a subkey candidate k� is computed as shown by (7):

Pr[k�|l] =
n∏

i=1

Nmxi,k� (li)
∑2a−1

k′=0 Nmxi,k′ (li)
, (7)

where Nm is the normal probability density function (pdf) with mean and covari-
ance given by the model m.2 As mentioned in introduction, it is important to
note that combining probabilities from different subkeys implies a multiplicative
relationship. Since the division in the computation of Pr(k�|l) only multiplies all
the probabilities by a constant, this has no impact on the ordering when combin-
ing subkeys. We can simply omit this division, thus only multiplying the values
of Pr[li|k�] = Nmxi,k� (li). This may allow us to use an efficient template attack
based on the linear discriminant [5], adapted so we can use different plaintexts
(see Sect. 2.3 for more details).

Unprofiled Linear Regression (LR). Stochastic attacks [20] aim at approx-
imating the deterministic part of the real leakage function θ(vx,k) with a
model θ∗(vx,k) using a basis g(vx,k) = {g0(vx,k), . . . , gb(vx,k)} chosen by the
attacker. For this purpose, he uses linear regression to find the basis coeffi-
cients c = {c0, . . . , cb} so that the leakage function θ(vx,k) is approximated by
θ∗(vx,k) = c0 · g0(vx,k) + . . . + cb · gb(vx,k). The unprofiled version of this attack
simply estimates on the fly the models θ∗(vx,k�) for each key candidate [7]. The
probability associated to a subkey candidate k� is computed as shown by (8):

Pr[k�|l] =
Std(l − θ∗(vx,k�))−n

∑2a−1
k′=0 Std(l − θ∗(vx,k′))−n

, (8)

where Std denotes the sample standard deviation. As detailed in [21], a significant
advantage of this non-profiled attack is that is produces sound probabilities
without additional assumptions on the distribution of the distinguisher. So it
does not suffer from combination ordering errors. By contrast, it may be slower
to converge (i.e. lead to less efficient subkey recovery) since it has to estimate a
model on the fly. In our experiments, we consider two linear basis. The first one
uses the hamming weight (HW) of the sensitive value: g(vx,k) = {1,HW(vx,k)}.
The second one uses the bits of the sensitive value vx,k, denoted as bi(vx,k). We
refer to the first one as LRH and to the second one as LRL.
2 In our experiments with GTA, we only considered one leakage sample per trace, so

our distribution is univariate and the covariance matrix becomes a variance.

144 M.O. Choudary et al.

2.2 Key Enumeration

After the subkey recovery phase of a divide-and-conquer attack, the full key is
trivially recovered if all the correct subkeys are ranked first. If this is not the case,
a key enumeration algorithm has to be used by the attacker in order to output
all keys from the most probable one to the least probable one. In this case, the
number of keys having a higher probability than the actual full key (plus one) is
called the key rank. An optimal key enumeration algorithm was first described
in [21]. This algorithm is limited by its high memory cost and its sequential
execution. Recently, new algorithms based on rounded log probabilities have
emerged [2,12,17,19]. They overcome these memory and sequential limitations
at the cost of non optimality (which is a parameter of these algorithms). Different
suboptimal approaches can be found in [6,18].

2.3 Rank Estimation

Rank estimation algorithms are the tools associated to key enumeration from an
evaluation point-of-view. Taking advantage of the knowledge of the correct key,
they output an estimation of the full key rank which would have been outputted
by a key enumeration algorithm with an unbounded computational power. The
main difference with key enumeration algorithms is that they are very fast and
allow to estimate a rank that would be unreachable with key enumeration (e.g.
2100). These algorithms have attracted some attention recently, as suggested by
various publications [1,8,10,17,18,22,23]. For convenience, and since our follow-
ing experiments are in an evaluation context, we therefore used rank estimation
to discuss combination ordering errors. More precisely, we used the simple algo-
rithm of Glowacz et al. [10] (using [1] or [17] would not affect our conclusions since
these references have similar efficiencies and accuracies). With this algorithm, all
our probabilities are first converted to the log domain (since the algorithm uses
an additive relationship between the log probabilities). Then, for each subkey,
the algorithm uses a histogram to represent all the log probabilities. The subkey
combination is done by histogram convolution. Finally, the estimated key rank
is approximated by summing up the number of keys in each bin from the last
one to the one containing the actual key. We apply the same method for the
correlation attacks, thus assuming a multiplication relationship for these scores
too. Admittedly, and while it seems a reasonable assumption for the bayesian
extension of CPA, we of course have no guarantee for the standard CPA. Note
also that in this case the linear discriminant approach for template attacks in [5]
becomes particularly interesting, because the linear discriminant is already in the
logarithm domain, so can be used directly with the rank estimation algorithm,
while providing comparable results to a key enumeration algorithm using prob-
abilities derived from the normal distribution. Hence, this algorithm also avoids
all the numerical problems related to the multivariate normal distribution when
using a large number of leakage samples.

Score-Based vs. Probability-Based Enumeration 145

3 Experiments

In order to evaluate the results of the different attack approaches, we first ran
simulated experiments. We target the output of an AES S-box leading to 16
univariate simulated leakages of the form HW(S(xi ⊕ ki)) + Ni for i ∈ [0, 15].
HW represents the hamming weight function and Ni is a random noise following
a zero-mean Gaussian distribution. For a given set of parameters, we study the
full key rank using 250 attack repetitions, and compute the ranking entropy as
suggested by [16]. By denoting Ri the rank of the full key for a given attack,
we compute the expectation of the logarithm of the ranks given by Ei(log2(Ri))
(and not the logarithm of the average ranks3 equals to log2(Ei(Ri))). The rank-
ing entropy is closer to the median than the mean which gives smoother curves.
However, we insist that using one or the other metric does not change the con-
clusions of our experiments.

3.1 Simulations with Identical S-Box Leakages

We first look at the case where the noise is constant for all attacked bytes,
meaning Ni = Nj (we used a noise variance of 10). We want to investigate if
the full key rank is impacted by the way an attacker produces his probabilities
or scores. Figure 4 (left) shows the full key rank in function of the number of
attack traces for the different methods. One can first notice the poor behavior
of BCPA1 (in red). Although it starts by working slightly better than CPA
(in blue), it quickly becomes worse.

This is due to the variance that quickly becomes too small and does not allow
to discriminate between the different key hypotheses. Secondly, we see that CPA
and BCPA2 give very similar results in term of full key success rate. This can
be explained since the noise level is constant for the different subkeys in this
experiment. Hence, they are equally difficult to recover which limits the combi-
nation ordering errors. Thirdly, both LRH (purple) and LRL (purple, dashed)
are not impacted by combination ordering errors. However, they suffer from the
need to estimate a model. As expected, their slower convergence impacts LRL
more, because of its large basis. By contrast, LRH produces the same results as
the CPA and BCPA2. This suggest that the estimation errors due to a slower
model convergence are more critical than the ordering errors in this experiment.
(Note that none of the models suffer from assumption errors in this section,
since we simulate Hamming weight leakages). Finally, the GTA (in black) pro-
vides the best result overall. Since the GTA is not impacted by combination
ordering errors nor by model convergence issues, this curve can be seen as an
optimal reference.

3 Using the ranking entropy lowers the impact of an outlier when averaging the result of
many experiments. As an example, let’s assume that an evaluator does 4 experiments
where the key is ranked 1 three times and 224 one time. The ranking entropy would
be equal to 6 while the logarithm of the average ranks would be equal to 22, thus
being more affected by the presence of an outlier.

146 M.O. Choudary et al.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

number of attack traces

k
ey

ra
n
k
(l

o
g
2
)

CPA

BCPA1

BCPA2

GTA

LRH

LRL

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

number of attack traces

su
b
k
ey

su
cc

es
s

ra
te

CPA based

GTA

LRH

LRL

Fig. 4. Key rank (left) and success rate for the byte 0 (right) for constant noise variance
in function of the number of attack traces for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)

For completeness, Fig. 4 (right) shows the success rates of the different meth-
ods for the byte 0 (other key bytes lead to similar results in uur experiments were
the SNR of different S-boxes was essentially constant). The single byte success
rate does not suffer from ordering errors. Thus, this figure is a reference to com-
pare the attack efficiencies before these errors occur. As expected, all the CPA
methods (in blue) provide the same single byte success rate. More interestingly,
we see that CPA methods, GTA (in black) and LRH (in purple) provide a quite
similar success rate. This confirms that the differences in full key recovery for
these methods are mainly due to ordering errors in our experiment. By contrast,
LRL (in purple, dashed) provides the worst results because of a slower model
estimation.

Overall, this constant noise (with correct assumptions) scenario suggests that
applying a bayesian extension to CPA is not required as long as the S-boxes
leak similarly (and therefore the combination ordering errors are low). In this
case, model estimation errors are dominating for all the non-profiled attacks.
(Of course, model assumption errors would also play a role if incorrect assump-
tions were considered).

3.2 Simulations with Different S-Box Leakages

We are now interested in the case where the noise level of each subkey is con-
siderably different4. To simulate such a scenario, we chose very different noise
levels in order to observe how these differences affect the key enumeration.
Namely, we set the noise variances of the subkeys to [20, 10, 5, 4, 2, 1, 0.67, 0.5,
0.33, 0.25, 0.2, 0.17, 0.14, 0.125, 0.11, 0.1]. The results of the subkey recoveries for

4 This could happen for example in a hardware implementation of a cryptographic
algorithm, where each S-box lookup could involve different transistors.

Score-Based vs. Probability-Based Enumeration 147

each subkey will now differ because of the different noise levels. Figure 5 shows
the rank of the different methods in function of the number of attack traces
for this case. The impact of the combination ordering errors is now higher, as
we can see from the gap between the different methods. BCPA1 is still worse
than CPA, but this time with a bigger gap. Interestingly, we now clearly see an
improvement when using the BCPA2 over the CPA (gain of roughly 210 up to 40
attack traces). Moreover, the gap between BCPA2 and GTA remains the same
as it was in the constant noise experiments as soon as the key rank is lower than
280. This confirms the good behavior of the BCPA2 method, which limits the
impact of the ordering errors.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

number of attack traces

k
ey

ra
n
k
(l

o
g
2
)

CPA

BCPA1

BCPA2

GTA

LRH

LRL

Fig. 5. Key rank (y coordinate) in function of the number of attack traces (x coor-
dinate) with different noise variance for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)

As for the linear regression, we again witness the advantage of a good starting
assumption (with the difference between LRL and LRH). More interestingly, we
see that for large key ranks, LRH leads to slightly better results than BCPA2,
which suggests that combination ordering errors dominate for these ranks. By
contrast, the two methods become again very similar when the rank decreases
(which may be because of lower combination ordering errors or model conver-
gence issues). And of course, GTA still works best.

We again provide the single bytes success rates for both byte 0 (left) and
byte 8 (right) in Fig. 6. The gap between all the methods tends to be similar as
in the constant noise case, where the CPAs, GTA and LRH perform similarly
and LRL is less efficient. This confirms that the differences between the constant
and different noise scenarios are due to ordering errors.

Overall, this experiment showed that the combination ordering errors can be
significant in case the S-boxes leak differently. In this case, Bayesian extensions
gain interest. BCPA2 provides a heuristic way to mitigate this drawback. Linear
regression is a more systematic alternative (since it does not require assumptions
in the distribution of the distinguisher).

148 M.O. Choudary et al.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

number of attack traces

su
b
k
ey

su
cc

es
s

ra
te

CPA based

GTA

LRH

LRL

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

number of attack traces

CPA based

GTA

LRH

LRL

Fig. 6. Success rate (y coordinate) in function of the number of attack traces (x coor-
dinate) for the byte 0 (left) and the byte 8 (right) (different noise variance case) for
the different attack methods. CPA-like (blue), GTA (black), LRH (purple) and LRL
(dashed purple). (Color figure online)

3.3 Actual Measurements

In order to validate our results, we ran actual attacks on an unprotected software
implementation of the AES 128, implemented on a 32-bits ARM microcontroller
(Cortex-M4) running at 100 MHz. We performed the trace acquisition using a
Lecroy WaveRunner HRO 66 ZI oscilloscope running at 200 megasamples per
second. We monitored the voltage variation using a 4.7 Ω resistor set in the
supply circuit of the chip. We acquired 50,000 profiling traces using random
plaintexts and keys. We also acquired 37,500 attack traces (150 traces per attack
with 250 repetitions). For each AES execution, we triggered the measurement
at the beginning of the encryption and recorded approximately the execution of
one round. The attacks target univariate samples selected using a set of profiling
traces as the one giving the maximum correlation with the Hamming weight of
the S-box output.

Figure 7 again shows the key rank in function of the number of attack traces
for the different attacks against the Cortex-M4 microcontroller. Interestingly, we
can still see a small improvement when using the BCPA2 method over the CPA
(around 25). Looking at the linear regression results suggests that the Hamming
weight model is reasonably accurate in these experiments (since LRH is close
to GTA). Yet, we noticed that the correlation values for each S-box varied by
approximately 0.1 around an average value of 0.45. We conjecture that this 25

factor comes from small combination ordering errors. The figure also confirms the
good behavior of the BCPA2 and LRH methods. By contrast, LRL is now even
slower than BCPA1, which shows that the model estimation errors dominate in
this case.

Once more, Fig. 8 shows the individual success rates for bytes 0 and 15.
It confirms a that the different distinguishers behave in a similar way as in

Score-Based vs. Probability-Based Enumeration 149

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

number of attack traces

k
ey

ra
n
k
(l

o
g
2
)

CPA

BCPA1

BCPA2

GTA

LRH

LRL

Fig. 7. Key rank (y coordinate) in function of the number of attack traces (x coordi-
nate) on the cortex-m4 microcontroller for the different attack methods. CPA (blue),
BCPA1 (red), BCPA2 (green), GTA (black), LRH (purple) and LRL (dashed purple).
(Color figure online)

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

number of attack traces

su
b
k
ey

su
cc

es
s

ra
te

CPA based

GTA

LRH

LRL

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

number of attack traces

CPA based

GTA

LRH

LRL

Fig. 8. Success rate (y coordinate) in function of the number of attack traces (x coor-
dinate) for the byte 0 (left) and the byte 15 (right) (cortex-m4 microcontroller case) for
the different attack methods. CPA-like (blue), GTA (black), LRH (purple) and LRL
(dashed purple). (Color figure online)

simulations and therefore that the differences between the CPAs, GTA and LRH
are again dominated by ordering errors. It also confirms that the errors from the
LRL method come from model estimation.

Eventually, we stress again that the results would have been different if the
real leakages were less close to the Hamming weight leakage function. In that
case, model assumption errors would have additionally affected the efficiency of
the non-profiled attacks.

150 M.O. Choudary et al.

3.4 Additional Heuristics

Before concluding, we note that various other types of heuristics could be
considered to manipulate the scores produced by a CPA. For example, we
assumed a multiplicative relation for those scores, but since we do not know
how to combine them in a theoretically sound manner, one could also try to use
other heuristics for the subkeys combinations in this case (such as summing the
scores, summing the square of the scores, . . .). We made some experiments in
this direction, without any significant conclusions. These alternative heuristics
sometimes came close to the efficiency of BCPA2 or LRH, but never provided
better results.

4 Conclusions

Evaluating the security level of a leaking device is a complex task. Various types
of errors can limit the confidence in the evaluation results, including the model
assumption and estimation errors discussed in [9], and the combination order-
ing errors discussed in this paper. Overall, our results suggest that using GTA
remains the method of choice to evaluate the worst-case security level of a leak-
ing device (both to avoid incorrect a priori assumptions on the model and for
optimal enumeration/rank estimation). Yet, good heuristics also exist for non-
profiled attacks, in particular BCPA2 and LRH in our experiments.

Concretely, our results lead to the informal conclusion that model estimation
and assumption errors usually dominate over combination ordering errors. This
conclusion should be amplified for more complicated attacks (e.g. higher order
attacks against masked implementations) where the model estimation is gener-
ally more challenging. So while being aware of combination ordering errors is
important from a theoretical point-of-view, our experiments suggest that they
are rarely the bottleneck in a security evaluation (which incidentally confirms
previous works in the field, where enumeration and rank estimation were based
on heuristic scores).

Acknowledgments. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the
CHIST-ERA project SECODE and by the ERC project 280141. Marios O. Choudary
has been funded in part by University Politehnica of Bucharest, Excellence Research
Grants Program, UPB – GEX 2016, contract number 17.

References

1. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive,
2015:221 (2015)

2. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. IACR Cryptology ePrint
Archive, 2015:795 (2015)

Score-Based vs. Probability-Based Enumeration 151

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

5. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Heidelberg (2014).
doi:10.1007/978-3-319-08302-5 17

6. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm
for multi-dimensional side-channel attacks. IACR Cryptology ePrint Archive,
2015:1236 (2015)

7. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

8. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

9. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 26

10. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

12. Longo, J., Martin, D.P., Mather, L., Oswald, E., Sach, B., Stam, M.: How low can
you go? using side-channel data to enhance brute-force key recovery. Cryptology
ePrint Archive, Report 2016/609 (2016). http://eprint.iacr.org/

13. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 18

14. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

15. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

16. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation
of the key rank distribution in the context of side channel evaluations. IACR Cryp-
tology ePrint Archive, 2016:491 (2016)

17. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in paral-
lel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 13

18. Poussier, R., Grosso, V., Standaert, F.-X.: Comparing approaches to rank esti-
mation for side-channel security evaluations. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 125–142. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-31271-2 8

19. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank
estimation) using histograms: an integrated approach. IACR Cryptology ePrint
Archive, 2016:571 (2016)

http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-642-55220-5_26
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-540-24660-2_18
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-319-31271-2_8
http://dx.doi.org/10.1007/978-3-319-31271-2_8

152 M.O. Choudary et al.

20. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

21. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

22. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 8

23. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to deter-
mine whether limited side channel information enables key recovery. In: Joye,
M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-16763-3 13

http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-319-16763-3_13

Analyzing the Shuffling Side-Channel
Countermeasure for Lattice-Based Signatures

Peter Pessl(B)

IAIK, Graz University of Technology, Graz, Austria
peter.pessl@iaik.tugraz.at

Abstract. Implementation security for lattice-based cryptography is
still a vastly unexplored field. At CHES 2016, the very first side-channel
attack on a lattice-based signature scheme was presented. Later, shuffling
was proposed as an inexpensive means to protect the Gaussian sampling
component against such attacks. However, the concrete effectiveness of
this countermeasure has never been evaluated.

We change that by presenting an in-depth analysis of the shuffling
countermeasure. Our analysis consists of two main parts. First, we per-
form a side-channel attack on a Gaussian sampler implementation. We
combine templates with a recovery of data-dependent branches, which
are inherent to samplers. We show that an adversary can realistically
recover some samples with very high confidence.

Second, we present a new attack against the shuffling countermeasure
in context of Gaussian sampling and lattice-based signatures. We do not
attack the shuffling algorithm as such, but exploit differing distributions
of certain variables. We give a broad analysis of our attack by consider-
ing multiple modeled SCA adversaries.

We show that a simple version of shuffling is not an effective coun-
termeasure. With our attack, a profiled SCA adversary can recover the
key by observing only 7 000 signatures. A second version of this counter-
measure, which uses Gaussian convolution in conjunction with shuffling
twice, can increase side-channel security and the number of required sig-
natures significantly. Here, roughly 285 000 observations are needed for
a successful attack. Yet, this number is still practical.

Keywords: Lattice-based cryptography · BLISS · Side-channel
analysis · Countermeasures

1 Introduction

Quantum computers are a serious threat to a majority of currently in-use public-
key cryptosystems. Although powerful enough quantum computers might not
be available in the near future, their possible advent causes concerns and has
already led to official recommendations from government bodies, such as the
NSA [16,22]. Furthermore, standardization agencies are starting to investigate
post-quantum alternatives [6]. Very recently, also Google began experimenting
with post-quantum key-exchange algorithms in their Chrome browser [1,3].
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 153–170, 2016.
DOI: 10.1007/978-3-319-49890-4 9

154 P. Pessl

Lattice-based cryptography is a very promising candidate for the post-
quantum world. It proved to be very versatile and offers practical realizations
of many public-key building blocks. When it comes to digital signatures, the
Bimodal Lattice Signature Scheme (BLISS), which was presented by Ducas, Dur-
mus, Lepoint, and Lyubashevsky [7] at CRYPTO 2013, is an attractive option.
This is due to its efficiency both in terms of runtime and parameter sizes. Sig-
nature and public key sizes are in the range of current RSA moduli, which is a
significant improvement over many earlier proposals.

There already exists a large body of work targeting efficient implementation
of lattice-based primitives. Even when only considering BLISS, these range from
hardware implementations [18] to microcontrollers [17,19] and PCs [23]. How-
ever, up until very recently the implementation-security aspect was pretty much
neglected. The first side-channel attack on a lattice-based signature scheme,
namely BLISS, was presented at CHES 2016 by Groot Bruinderink et al. [10].
They use a cache attack to recover some of the outputs of a Gaussian sampling
algorithm. By combining information from multiple signatures and respective
identified samples, they are able to recover the key. Note that Gaussian samplers
play an integral part in most lattice-based schemes and their implementations.
Hence, this type of attack might be applicable to a multitude of settings.

Shuffling was proposed by Saarinen [21] as a countermeasure against such an
attack. Instead of securing the sampler itself, which would come at a hefty price,
one could simply generate n Gaussian samples using an unprotected implemen-
tation and then randomly permute them. Shuffling is easy to implement and has
a relatively low runtime overhead. This makes it especially attractive for use in
low-resource devices, such as microcontrollers. However, the concrete security
gains achieved by shuffling have thus far never been analyzed. As a consequence,
convincing security arguments are still sorely lacking.

Our Contribution. In this paper, we tackle the above problem and present an
in-depth analysis of shuffling in context of lattice-based signatures. Our analysis
consists of two main parts, a side-channel analysis and a new attack on shuffling.

In the first part, we perform a side-channel attack on a Gaussian sampler
implementation running on an ARM microcontroller. Our attack combines two
methods. First, we recover the control flow of the sampling procedure. As sam-
plers, including the one used by us, require data-dependent branches and are
not inherently constant runtime, this already allows to narrow down the pos-
sible samples. And second, we use templates to uniquely identify the sampled
value. While this attack is not able to identify all samples, it can recover certain
values with very high confidence.

In the second part of our shuffling analysis, we present a new attack on the
countermeasure. We perform an un-shuffling, i.e., reassign some recovered sam-
ples to the corresponding part of the signature output. After having collected
enough matching pairs over multiple signatures, we can recover the private sign-
ing key. We stress that we do not attack the shuffling algorithm as such, we do
not even consider its leakage in our analysis. Instead, we exploit the difference

Analyzing the Shuffling Countermeasure for Lattice Signatures 155

in distributions of Gaussian samples (high standard deviation) and a specific
key-dependent intermediate (low standard deviation).

As we aim for a broad analysis, we evaluate this attack given several modeled
side-channel adversaries. They are largely based on the previous side-channel
analysis, but to test the theoretical boundaries of the countermeasure we also
include an ideal attacker who is able to recover all samples. We also consider two
different versions of the shuffling countermeasure. Our analysis shows that the
simpler variant does not provide a noteworthy increase in side-channel security.
Our ideal attacker succeeds using only 40 signatures. With 7 000 signatures,
the modeled adversary which is closest to our side-channel analysis can also
easily recover the key. However, the second shuffling version, which uses Gaussian
convolution and shuffles twice, can increase the number of observed signatures
required for an attack significantly. Yet, with around 260 000 signatures (for both
mentioned adversaries) an attack is still practical and possible1.

Finally, note that while we focus on BLISS, Gaussian sampling is required
for most lattice-based schemes. Thus, the shuffling countermeasure and also our
attack could be used for a wide range of implementations.

Outline. In Sect. 2, we recall BLISS, discrete Gaussians and proposed sam-
plers. Then, in Sect. 3 we discuss previous work on SCA and countermeasures
on BLISS. We evaluate the side-channel leakage of a concrete Gaussian sam-
pler implementation in Sect. 4. Using the results of this side-channel analysis, we
present an attack on the shuffling countermeasure and also discuss its outcome
in Sect. 5. Finally, we conclude in Sect. 6.

2 BLISS and Gaussian Samplers

We now give a brief description of BLISS [7]. We then go on and describe the
discrete Gaussian distribution and methods to sample from it.

2.1 BLISS - Bimodal Lattice Signatures

The most efficient instantiation of BLISS works with polynomials over the ring
Rq = Zq[x]/〈xn + 1〉. We will later use the fact that the multiplication of two
polynomials a,b ∈ Rq can be written as a matrix-vector product, i.e., ab =
aB = bA, where the columns of matrices A,B are negacyclic rotations of a and
b, respectively.

Key generation and signature verification do not play a role in our later
analysis, here we refer to [7]. Signature generation is described in Algorithm1. It
takes as input a message μ, a public key A, and a private key S = (s1, s2), with s1
a polynomial with exactly δ1n coefficients in {±1}, δ2n coefficients in {±2}, and
all other elements being 0. First, two noise polynomials y1,y2 are sampled from
a discrete Gaussian distribution Dσ. The intermediate u is hashed together with
the message, where H outputs a bit vector c of length n and (small) hamming

1 These numbers assume recoverability of bit b for each signature (cf. Sect. 5.3).

156 P. Pessl

Algorithm 1. BLISS Signature Algorithm
Input: Message μ, public key A = (a1, q − 2), private key S = (s1, s2)
Output: A signature (z1, z

†
2, c)

1: y1 ← Dn
σ , y2 ← Dn

σ

2: u = ζ · a1y1 + y2 mod 2q
3: c = H(�u�d mod p||μ)
4: Sample a uniformly random bit b
5: z1 = y1 + (−1)bs1c
6: z2 = y2 + (−1)bs2c
7: Continue with some probability f(Sc, z), restart otherwise (see [7])
8: z†

2 = (�u�d − �u − z2�d)
9: return (z1, z

†
2, c)

weight κ. The noise polynomials are then added to s1c and s2c, respectively.
A subsequent rejection-sampling step prevents leakage of the key. Finally, the
compressed signature is returned2. Throughout this paper, we use the BLISS-I
parameter set [7] given in Table 1. It provides a security level of 128 bit.

Table 1. BLISS-I parameter set

n q σ δ1, δ2 κ d

512 12289 215.73 0.3, 0 23 10

2.2 Discrete Gaussians

We denote with Dσ the discrete Gaussian distribution with standard deviation σ
and zero mean; we use y ← Dσ for variables sampled from this distribution. The
probability-mass function Dσ(x) = ρσ(x)/ρσ(Z), with ρσ(x) = exp(−x2

2σ2) and
the normalization constant ρσ(Z) =

∑∞
k=−∞ ρσ(k). With Dn

σ , we denote the
n-dimensional extension. Samples from Dn

σ can simply be generated by indepen-
dently sampling n times from Dσ.

Implementation of Gaussian Samplers. The emergence of lattice-based
cryptography and its reliance on discrete Gaussian noise led to a large number of
proposed sampler architectures. Apart from generic methods like rejection sam-
pling and inversion sampling, these also include, e.g., the Knuth-Yao random
walk [8], the Ziggurat method [4], and arithmetic coding [21].

Compared to lattice-based public-key encryption [14], the standard devia-
tion required for BLISS is relatively high. This makes samplers requiring large
precomputed tables less attractive, especially for constrained devices and their
usually low storage capacities. For this reason, Pöppelmann et al. [18] proposed
an optimized sampler which is based on the inversion method. Since their app-
roach is tailored for low-resource devices and also an ideal candidate for use with
2 The constants ζ, d, p are used for compression purposes. For details, see [7].

Analyzing the Shuffling Countermeasure for Lattice Signatures 157

the shuffling countermeasure, we use their algorithm in our work and now give
a more detailed description.

For inversion sampling, one first precomputes a cumulative distribution
table (CDT), i.e., a table T [y] = P(x < y|x ← D+

σ) for y ∈ [0, τσ]. Here, τ
denotes the tail-cut factor which is required due to the infinite support of Dσ.
Thanks to symmetry of Dσ, sampling can be easily reduced to sampling from
the one-sided distribution D+

σ with support [0, τσ] and then sampling a random
sign bit. As the statistical distance to a true discrete Gaussian must be kept low,
the entries of T need to be stored with a very high precision, e.g., 128 bit.

For actual sampling, one generates a uniformly random r ∈ [0, 1) and returns
the y satisfying T [y] ≤ r < T [y + 1] (using a binary search in T). To reduce
the table size and speed up sampling, Pöppelmann et al. propose the following
optimizations. They save memory by using Gaussian convolution. They set k =
11, σ′ = σ/

√
1 + k2 ≈ 19.53 and sample two values y′, y′′ ← Dσ′ . They then

combine them to y ← Dσ by setting y = ky′ + y′′. Furthermore, they speed
up sampling by using a byte-oriented guide table I. Each entry I[r0] stores
the smallest interval (minr0 ,maxr0) with T [minr0] ≤ r0/256 and T [maxr0] ≥
(r0 + 1)/256. By using this table, the range for the following binary search can
be immediately reduced to the interval [minr0 ,maxr0).

The detailed sampling procedure is given in Algorithm2. It uses a byte-
wise approach, where Tj [i] denotes the j-th byte of T [i]. To save memory, the
table T is stored in floating-point representation, using a mantissa table M and
an exponent table E. For efficiency reasons Pöppelmann et al. actually store
T [y] = P(x ≥ y|x ← D+

σ), i.e., T [0] = 1 and T [y] > T [y + 1]. This is accounted
for in the binary-search part. For further explanations we refer to [18].

Algorithm 2. CDT Sampler using Guide Tables [18]
Input: Guide table I, mantissa table M , exponent table E
Output: A value y′ sampled according to Dσ′

1: Sample a uniformly random byte r0
2: [min, max] = I[r0]
3: i = (min + max)/2, j = 0, k = 0
4: while max-min > 1 do
5: t = Tj [i], with Tj [i] = Mj−E[i][i] or 0
6: if t > rj then
7: min = i, i = (i + max)/2, j = 0
8: else if t < rj then
9: max = i, i = (min + i)/2, j = 0

10: else
11: j = j + 1
12: if k < j then
13: Sample uniformly random byte rj , k = j
14: Sample a uniformly random bit s
15: if s then return −i
16: else return i

158 P. Pessl

3 Side-Channel Attacks and Countermeasures
for Gaussian Sampling

When analyzing the components of BLISS for side-channel weaknesses, the
Gaussian sampler appears to be a critical and especially hard to protect part.
To the best of our knowledge, none of the samplers given in the previous section
inherently feature a constant runtime or a complete absence of data-dependent
branches. Thus, it should not come as a huge surprise that the first reported side-
channel attack on lattice-based signatures, which we will now discuss, targets
samplers. We will then also state possible countermeasures, including shuffling.

3.1 A Cache Attack on BLISS

At CHES 2016, Groot Bruinderink et al. [10] presented the first side-channel
attack on BLISS. They perform a cache attack, i.e., observe time differences
caused by the CPU cache, to partially recover the Gaussian noise vector y1.
They analyze the susceptibility of two sampler implementations to such attacks
in depth3.

Their attack proceeds as follows. First, they need to observe the creation of
multiple signatures (zj , cj), where zj refers to only the first signature polynomial
z1 of the j-th signature. They then focus on line 5 of Algorithm1, i.e., z1 =
y1 + (−1)bs1c. For each recovered Gaussian sample, an attacker can create an
equation of form:

zji = yji + (−1)bj 〈s1, cji〉 (1)

Here, i denotes the index of the recovered Gaussian sample in the signature. zji

and yji are the i-th coefficients of z1 and y1 in the j-th signature. cji denotes the
i-th column of Cj , which is the matrix used in the matrix-vector representation
of polynomial multiplication.

The cache attack does not reveal the random but secret bit b. Therefore,
Groot Bruinderink et al. keep only those equations which satisfy zji = yji, i.e.,
where 〈s1, cji〉 = 0 and thus the value of b is irrelevant. They then build a matrix
L where the columns are the filtered cji. This matrix satisfies s1L = 0. The key
s1 can then be found in the kernel-space of L. s2 can be reconstructed by using
the relation between public and private key.

Groot Bruinderink et al. also consider a scenario where the information on the
samples is not exact, but instead a small error is possible. Here, they formulate
a lattice problem and use lattice-reduction techniques for key recovery.

3.2 Countermeasures

Protecting samplers from attacks like the one above seems to be difficult. While
there exist methods for constant-runtime and protected sampling, they come
at a hefty performance impact (see, e.g., [2]). Also, there do exist alternatives

3 Further sampler architectures are discussed in the full version of [10].

Analyzing the Shuffling Countermeasure for Lattice Signatures 159

to using (high-precision) Gaussian noise. However, they either do not apply to
signature schemes [1] or they are suboptimal in terms of security or signature
size [7,11].

Instead of protecting the sampler itself, one could also simply use an unpro-
tected (or somewhat protected) sampler implementation to generate n samples
and then randomly permute them. This breaks the connection between time
of sampling and index in the signature and thus makes attacks more difficult.
This shuffling countermeasure was first proposed by Roy et al. [20], albeit in the
context of lattice-based public-key encryption. Recently, Saarinen [21] proposed
a variant that uses shuffling twice (in conjunction with Gaussian convolution)
for use in BLISS. However, neither Roy nor Saarinen provided an analysis of
this countermeasure. Thus, its true effectiveness has still been unknown. Below
we describe the simple and the two-stage shuffling approaches, where we use
Gaussian convolution for both setups. We will later evaluate these two shuffling
variants in terms of security.

Single-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = Shuffle(ky′ + y′′)

Two-Stage Shuffling: y′,y′′ ← Dn
σ′ , y = k · Shuffle(y′) + Shuffle(y”)

4 A Side-Channel Attack on a Gaussian Sampler

Before evaluating the shuffling countermeasure, it is important to understand
how much information on Gaussian samples a side-channel attacker can realisti-
cally expect. For this reason, we now present a side-channel analysis of a sampler
implementation. Recall that Gaussian sampling is a random process that does
not involve any keying material. Also, its output is typically used only once.
Hence, we are limited to single-trace SPA-style attacks.

4.1 Implementation and Measurement Setup

For our experiments, we implemented the Gaussian sampling procedure proposed
by Pöppelmann et al. [18] in software. The contents of all required lookup-tables
are directly taken from their open-sourced BLISS FPGA implementation. Note
that our analysis focuses solely on sampling from Dσ′ (Algorithm 2), i.e., we do
not use any leakage stemming from the Gaussian convolution step.

As a target platform, we chose a Texas Instruments MSP432 (ARM Cortex-
M4F) microcontroller on a MSP432P401R LaunchPad development board4. For
pseudo-random number generation we used the on-chip hardware AES accel-
erator in counter mode. While this setup is likely susceptible to DPA attacks
[12,15], we do not use any leakage of the AES execution.

In our attack we exploit the EM side channel. As shown in Fig. 1, we placed
a Langer RF-B 3-2 near-field probe in proximity to the external core-voltage
regulation circuitry. Note that for this setup, no spatial profiling of on-chip EM
leakage is required. Also, we expect the results of power measurements to be
4 The design files of this development board are available online [24].

160 P. Pessl

Fig. 1. Measurement setup. The EM probe is placed directly to the left of the external
core-voltage regulation circuitry.

somewhat similar. For our evaluation, we use a dedicated trigger that signals the
start of a sampling procedure. Real-world attackers do not have this option and
need to detect the 1024 calls to Algorithm 2 required for sampling y1. Such adver-
saries can use, e.g., trace alignment in combination with the methods described
in the next section.

4.2 Reconstructing the Control Flow

When analyzing Algorithm2, it becomes obvious that the data-dependent
branches offer a lot of information on the sampled value. In fact, the return value
can be uniquely determined by the first random byte r0 and the control flow.

We recover the control flow using a trace-matching approach. For each pos-
sible conditional jump, we record a reference trace by computing the mean of
multiple profiling traces at select points in time (in some cases just a single
point) near the first occurrence of this branch. During the attack, we then com-
pare these references to the attack trace by computing the mean of squared
differences. Figure 2 illustrates that for some branches, the most information
lies within a time shift of subsequent operations. In these cases, we use a sin-
gle reference and match them at both locations. We then use the case with the
lowest score. We repeat this matching process until the algorithm exits. The
position of the respective next matching process is determined on basis of the
previously taken branches. The final branch detection then also reveals the sign
of the sampled value.

With the described method, we can reconstruct the control flow with perfect
accuracy. This should not be surprising, when, e.g., observing the huge trace
differences illustrated in Fig. 2.

Note that, while we use device profiling for deriving the reference traces,
there exist non-profiled alternatives. An attacker could, e.g., build the references
on the fly after a visual inspection of a limited number of traces. Alternatively,
he could use a clustering approach for determining the branches.

Analyzing the Shuffling Countermeasure for Lattice Signatures 161

350 400 450 500

0

20

40

60

Fig. 2. Demonstration of a timing difference stemming from a branch inside the first
loop iteration. After around cycle 420, the trace for T1[i] > r1 (blue, solid) trails by 8
clock cycles. (Color figure online)

4.3 Determining the Sampled Values via Templates

In order to uniquely determine the sampled value, we recover the value of r0 using
a template attack [5]. For each possible control flow (up to a certain depth), we
built templates for each value of r0 that can potentially result in this flow. The
points-of-interest for the attack were determined using a t-test, as proposed by
Gierlichs et al. [9]. We limited the maximum number of used points to 8.

The outcome of the template attack is depicted in Fig. 3. There we show a
histogram of the maximum classification probabilities. In our implementation,
the guide-table lookup already yields the final sample for 206 values of r0. As
seen in Fig. 3a, we cannot determine the correct samples with high confidence
in these cases. As our later analysis on the shuffling countermeasure requires
such a high confidence, we have to discard these samples. This situation changes
in cases that require a single comparison step in the binary-search algorithm,
Fig. 3b shows that 6.5% of these samples can be determined with probability
close to 1.

If more than a single comparison is required, then the template attack can
recover the sampled value almost perfectly. The overall success rate here is 99.5%.
If we discard the 1% of samples whose probability is lower than 0.90, then the
success rate reaches 99.9%.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

(a) No comparisons

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

(b) 1 comparison

Fig. 3. Results of the template attacks for no or 1 comparison

162 P. Pessl

5 An Analysis of the Shuffling Countermeasure

In this section, we give an in-depth analysis of the shuffling countermeasure.
First, we give a brief discussion on its cost. Afterwards, we present an attack
that can circumvent this countermeasure, albeit at the cost of requiring a higher
number of recorded signatures. We state the performance of this attack with
regards to several modeled side-channel adversaries and variations of the coun-
termeasure.

5.1 Cost

We evaluated the cost of shuffling by implementing the Fisher-Yates shuffling
algorithm [13]. When run at 48 MHz, which is the maximum for our MSP432
evaluation platform, shuffling a vector of n = 512 entries took 1.5 ms. For com-
parison, sampling an element from Dn

σ′ , which requires 512 calls to Algorithm 2,
needs about 2.5 ms. For creating a single signature, 4 elements of Dn

σ′ need to
be sampled. The shuffling operation is called either 2 or 4 times, depending on
whether single-stage or two-stage shuffling is used. In the latter case, the total
runtime of sampling is increased by 57%, which is still relatively little when it
comes to SCA countermeasures.

5.2 Considered Attackers

In order to allow a broad analysis of the shuffling countermeasure and to achieve
easier reproducibility, we do not directly use the outcome of the attack described
in Sect. 4. Instead, we use the results as a basis to model three side-channel
adversaries. Each one is based on a different assumption on his capabilities. Note
that all following descriptions are in context of sampling from the “small” Dσ′

and thus Algorithm 2, which is called 2048 times during signature generation. We
do not use any leakage from the multiplication with k, the addition for Gaussian
convolution, and even the shuffling algorithm itself. We do so to keep the analysis
as generic and implementation-independent as possible.

A1 - perfect SCA adversary. This attacker is able to recover all generated
samples. We use this adversary to evaluate the theoretical limits of the shuf-
fling countermeasure.

A2 - profiled SCA adversary. This attacker is able to profile the device and
perform a template attack. We assume that the attacker can correctly deter-
mine the entire control flow and is able to correctly classify all samples which
required at least 2 comparisons in the binary-search step. For the analysis,
we make a further simplification and only use samples with absolute above
a certain threshold. This threshold is set so that all samples larger than it
require at least 2 comparisons. All samples at and below the threshold are
considered to be unknown.

Analyzing the Shuffling Countermeasure for Lattice Signatures 163

A3 - non-profiled SCA adversary. This attacker is not able to profile and
thus cannot perform a template attack. However, he is still able to reconstruct
the control flow. All samples which are not uniquely determined by the control
flow are considered to be unknown.

Adversary A2 is closest to the side-channel analysis given in the previous
section. However, in this model we do not use any potentially classified sam-
ples which used only a single comparison (cf. Figure 3b) or the small portion of
samples requiring 2 comparisons but being below the threshold. In return, we
also ignore the very small error probability and assume that all reconstructed
samples are correct.

For our particular BLISS parameter set and sampler implementation, we have
the following concrete implications. For A2, the above mentioned threshold is 47,
i.e., we say that the adversary can correctly classify all samples with absolute
value larger than 47. Approximately 1.5% of the samples from Dσ′ meet this
restriction. The adversary A3 can correctly classify all samples with absolute
value larger than 54, which amounts to only 0.53% of all samples.

For each modeled adversary, we also evaluate two sub-scenarios with regards
to the secret bit b used for computing (−1)bs1c. First, we consider the case that
the adversary can recover this bit with side-channel measurements using, e.g.,
methods akin to Sect. 4.2. And second, we also evaluate the case that this bit
is unknown.

5.3 Attack Without Shuffling

For key recovery, we use the relation also exploited by Groot Bruinderink et al.
(cf. Sect. 3.1). We gather equations of the form zji = yji + (−1)bj 〈s1, cji〉 and
then solve the resulting linear system. We do not consider error correction and
require that these equations are correct.

If the entire y1 is known, which is the case for adversary A1, and no shuffling
is used, then key recovery is trivial and requires only a single signature. s1 (or
−s1) can be computed by solving the linear system given as z1 −y1 = (−1)bs1c
for any value of b. Attackers A2 and A3 require multiple signatures in order to
recover the key, even in the non-shuffled scenario. As our sampling procedure
combines two samples y′, y′′ ← Dσ′ to y = ky′ +y′′, we can only recover samples
y where the side-channel information reveals both y′ and y′′. Hence, A2 can
recover a portion of 0.0152 ≈ 2.2 · 10−4 of all samples, whereas for A3 this
quantity decreases to 2.2 · 10−5.

If the bj are recoverable by using side-channel information, then we can com-
bine n equations zji = yji + (−1)bj 〈s1, cji〉 into a linear system which can then
simply be solved for the key s1. The expected number of signatures required to
gather n = 512 classified samples and corresponding signature values is roughly
4 400 for A2 and 36 000 for A3. Note that in this non-shuffled scenario, the
differences between A2 and the SCA from Sect. 4, i.e., not using all classifiable
samples, have a significant impact. With that data we would require only around
1 000 signatures to mount this attack.

164 P. Pessl

If the bj are unknown, then, like also done in [10], we only use those equations
where zji = yji and thus 〈s1, cji〉 = 0. Then, one can search for the key s in
the kernel of the matrix composed by the cji. As seen in Fig. 4a, 〈s1, cji〉 = 0
holds for about 15% of all samples, thus the number of required traces needs
to be multiplied by 6.6. Hence, 29 000 and 239 000 signatures are required for
A2 and A3, respectively. In the remainder of this paper, we give the signature
requirements for both cases of b. We state the requirements with a known b first,
followed by the unknown case in parentheses.

5.4 An Attack on Shuffling - Basic Concept

If the elements of y1 are shuffled after sampling, then the above attack is not
directly applicable. To still use it, we first need to do an un-shuffling, i.e., we
need to re-assign recovered Gaussian samples to their respective index in the
signature and thus to the correct zi ∈ z1.

We do that by exploiting the differing (coefficient-wise) distributions of s1c
and y1, they are shown in Fig. 4. The distribution of s1c, which we denote with
Xsc, was estimated using a histogram approach, whereas y1 follows Dn

σ . Observe
that the standard deviation of y1 is much larger than that of s1c. Thus, we can
say that z1 ≈ y1.

-15 -10 -5 0 5 10 15
0

0.05

0.1

0.15

0.2

-1000 -500 0 500 1000
0

1

2
10-3

Fig. 4. Comparison of the coefficient-wise distribution of s1c (Xsc) and y (Dn
σ)

We use this relation as basis of our attack. If we know one particular coeffi-
cient y of y1 but not its position due to shuffling, then we can test all coefficients
of the public z1 for proximity to y. If only a single zi ∈ z1 is “close” to y, then
we can assign y to the position of zi and compute zi − y to retrieve the value
of (−1)b〈s1, ci〉. As actual metric for closeness, we use Xsc(zi − y). Observe that
this approach is expected to succeed mostly for large absolute values of y and
thus zi, i.e., in the tail of Dσ. Due to the high dimension n = 512, there will be
many similar values of y and zi near the center, thus a unique assignment will
not be possible in those cases.

5.5 Attack Details

The previous description of our attack is relatively informal, we now give a more
in-depth explanation. For now, consider the case of single-stage shuffling, we
adapt the approaches to the two-stage variant later on.

Analyzing the Shuffling Countermeasure for Lattice Signatures 165

Given two values zi and y, we define zi ∼ y as the event that zi and y belong
to the same index i in the signature. Without considering knowledge of other
processed values, we have a likelihood P(zi ∼ y) = Xsc(zi − y).

When now given the public z1 and a single sample y of y1, we can compute,
for each zi ∈ z1, P(zi ∼ y|z1). We do that by using Bayes’ theorem with uniform
prior, i.e., P(zi ∼ y|z1) = P(zi − y)/

∑
zj∈z1

P(zj − y). Analogously, for a single
zi and a fully reconstructed but shuffled y1, we can compute P(zi ∼ yj |y1).

We perform this analysis on every possible combination of y and zi. Thus,
we compute a likelihood matrix L ∈ (n × n), with Li,j = Xsc(zi − yj). After-
wards, we apply the Bayesian step to both the columns and the rows of this
matrix in order to derive the aforementioned conditional probabilities. Then,
we combine both normalized matrices by taking their maximum, i.e., we set
P(zi ∼ yj) = max(P(zi ∼ yj |z1),P(zi ∼ yj |y1)). In other words, we both search
for zi that fit to only one y, and y that fit to only one zi. Finally, for each
zi ∈ z1, we pick the most likely y as argmaxyj

P(zi ∼ yj). This shuffling analysis
is repeated for each recorded signature.

The previously discussed key-recovery algorithm requires errorless informa-
tion. Thus, we keep only pairs of (zi, y) that match with very high probability; we
set the threshold to 0.99. Even so, matching errors cannot be entirely excluded.
However, a small number of errors can be corrected by gathering slightly more
than n = 512 equations, and then performing the key-recovery procedure multi-
ple times, each time using a random subset of the collected equations. Alterna-
tively, one could use the lattice-based techniques discussed by Groot Bruinderink
et al. [10].

Merging Equal y . For key-recovery we compute zi − y for each recovered pair
(zi, y). Here, the actual index of y is irrelevant, only the value of y needs to be
correct. Consequently, if y1 contains multiple copies of the same value, then they
can be treated as a single entity.

We use this observation as follows. We create a vector u which contains
the unique elements of y1. We then compute P(zi ∼ uj |u). For that, we use
the number of times each uj appears in u as prior probabilities (instead of the
uniform distribution). For y ← Dσ, the average number of unique elements in
y is 377. For y′ ← Dσ′ only 92 elements are unique on average. Especially in
the latter case, the merging of equal y′ increases the rate of matches and also
decreases the computation time of the subsequent analysis. From now on, we
will always use this optimization implicitly.

Note that merging equal values of z1 is not useful. As already hinted by
always using subscripts, each zi is coupled to one specific ci, i.e., a negacyclic
rotation of the signature part c.

Results on Single-Stage Shuffling. We evaluated our described attack
against (single-stage) shuffling by running it with 220 signatures. The results
for A1 are shown in Fig. 5. 2.5% of all samples match with a probability of at
least 0.99. With this number, only 40 (264) signatures are required to gather
n = 512 equations. As expected, the successfully matched y lie in the tail of D′

σ

(Fig. 5b).

166 P. Pessl

0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

0.08

(a) Histogram of maximum matching
probabilities.

-1500 -1000 -500 0 500 1000 1500

0

0.05

0.1

(b) Histogram of the value of success-
fully matched y

Fig. 5. Result for the attack on single-stage shuffling, attacker A1

For A2 and A3, we do not know the entire y1 and so did not compute
P(zi ∼ yj |y1). When only using P(zi ∼ y|z1), we can match a proportion of
1.4·10−4 (A2) and 2.2·10−5 (A3) of all samples. This translates to requiring 7 000
(46 000) and 46 000 (301 000) signatures, respectively. The number of expected
errors in n = 512 equations is well below 1 for all considered adversaries.

When compared to the signature requirements without shuffling, one can
observe only a marginal increase. All numbers are well low enough to be practical,
thus shuffling once is not an effective countermeasure.

5.6 Adaptation to Two-Stage Shuffling

For two-stage shuffling, the y′,y′′ are independently permuted. Thus, we cannot
compute any elements of y1 in straight-forward manner which makes the attack
from above not directly applicable. A similar one, however, is still possible; we
now state the required modifications. As the sampling (and shuffling) process
proceeds in two steps, we also adapt a two-stage approach in the attack.

Assume we are given z1 and the shuffled y′,y′′, with y1 = ky′+y′′ and hence
z1 = ky′ + y′′ + (−1)bs1c. We first aim at finding matching pairs for elements
of z1 and y′. Afterwards, for each pair (zi, y

′), we compute zi − ky′ and then
match this difference with the elements of the second vector y′′. We now explain
the details of this process.

First Stage. The first part differs from the previous attack mainly as in we
now test the proximity of elements of z1 to those of ky′. As z1 − ky′ = y′′ +
(−1)bs1c, we cannot test proximity with regards to Xsc. Instead, we could use
the distribution of an x = x1 + x2, with x1 ← Dσ′ and x2 ← Xsc. We denote it
as Xsc+Dσ′ . However, as the attacker has (at least partial) knowledge on y′′, this
would be suboptimal. Hence, we set (with some abuse of notation) x2 ← y′′, i.e.,
randomly chosen elements from y′′. We call the resulting distribution Xsc+y′′ and
use it to fill our likelihood matrix L with Li,j = Xsc+y′′(zi−ky′

j). The remainder
of the analysis, i.e., the Bayesian steps and picking the maximum, are then the
same. Finally, all samples matched with probability greater than 0.99 are fed to
the second stage of the recovery.

Analyzing the Shuffling Countermeasure for Lattice Signatures 167

For A2 and A3, we require additional modifications. First, we cannot compute
Xsc+y′′ , as y′′ is only partially known. Instead, we construct a hybrid distribution
that merges Dσ′ (for all unknown samples up to the threshold of 47 and 54,
respectively) and the known samples of y′′. Then, unlike in the single-stage
attack, we would also like to compute (or rather estimate) P(zi ∼ y′

j |y′) despite
not having the full y′. We do so by introducing a dummy sample y′

d, which
represents all (unknown) samples below the model threshold. Thus, we test if
zi matches with any of the known y′

j or with any element below the threshold.
We set the likelihood of y′

d as in (2), the remaining steps are then equivalent to
those of A1.

P(zi ∼ y′
d) =

threshold∑

y=−threshold

Xsc+Dσ′ (zi − y) (2)

Second Stage. In the second stage, we test each pair (zi, y
′
i) found in the

previous stage with the elements of y′′. We do so by computing zi − ky′
i and

then testing for proximity to the elements of y′′ with regards to Xsc.
Even for A1, the expected number of matched pairs per signature in the first

stage is relatively small. Thus, we cannot compute P((zi − ky′
i) ∼ y′′

j |(z1 − ky′))
and are left with P((zi − ky′

i) ∼ y′′
j |y′′). Like in the first stage, A2 and A3 only

have partial knowledge of y′′. We use the same trick as above and introduce a
dummy sample y′′

d representing all elements below the modeled threshold of 47
and 55, respectively. Here we use (3) and then again perform the Bayesian step
and a filtering of the most probable matches.

P((zi − ky′
i) ∼ y′′

d) =
threshold∑

y=−threshold

Xsc(zi − ky′
i − y) (3)

Results on Two-Stage Shuffling. Like earlier, we evaluated our described
attack against two-stage shuffling by running it with 220 signatures. For our ideal
adversary A1, we can match 0.26% of samples in the first stage (with probability
greater than 0.99). Out of the found pairs, 0.15% can also be matched in the
second stage. This results in requiring 260 000 (1 710 000) signatures in order to
find n = 512 equations.

Interestingly, the losses incurred by the restrictions of A2 are relatively small.
We can match 0.25% in the first and 0.15% of samples in the second stage.
With 285 000 (1 880 000), the number of required signatures is virtually identi-
cal to the previous case. As to be expected, A3 performs worse. The matching
rates decrease to 0.18% and 0.10%, respectively. This results in requiring 575 000
(3 800 000) signatures.

Discussion. Apparently, two-stage shuffling can increase the number of required
signatures for an attack significantly and thus can be considered an effective
countermeasure. For A1, for instance, 260 000 (1 710 000) instead of the previous
40 (264) signatures are required. However, while the given numbers are high,
they are still within reach for a dedicated attacker.

This large increase could be explained as follows. For single-stage shuffling,
we tested elements from Dσ, with σ ≈ 215, against a distance of Xsc. For the

168 P. Pessl

two-stage attack, the ratio of the matched standard deviations is much smaller.
For instance, in the second stage we match elements from Dσ′ , with σ′ ≈ 19.5,
against the same Xsc. As a result, the matchable samples are even further out in
the tail of Dσ′ and so less frequent than was the case for single-stage shuffling.
This also explains the compared to A1 maybe surprisingly small losses of A2
and A3. These adversaries can only recover a small number of samples, but the
ones they can find are already in tail Dσ′ and thus more likely to be usable.
Obviously, the effect of smaller difference of deviations is amplified by requiring
two matching steps. So, we can only rewind shuffling for indizes i where both y′

i

and y′′
i are outliers.

6 Conclusion

Our work shows that shuffling is, at least if done correctly, an effective and
cheap countermeasure in the context of lattice-based signatures. However, while
it can drastically increase the attack complexity, relying on two-stage shuffling
alone might not be enough to protect against attacks on Gaussian samplers. The
reported signature requirements for attacks are still practical, at least in the case
of a recoverable b. In this regard, recall that we did not use leakage from either
multiplication with k and addition of two samples in the Gaussian convolution,
the shuffling itself, or from the PRNG. This information can be used to further
decrease the number of required signatures. Thus, a mix of countermeasures and
reducing the leakage of the sampling algorithm itself is necessary for sufficient
protection. For future work, we plan to further investigate and improve the
attack technique. Our goal is to eliminate the impact of an unknown b, i.e., to
use the same number of signatures as in the known-b case.

Acknowledgements. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under grant number 845589 (SCALAS). We would also like to
thank Leon Groot Bruinderink for his valuable input.

References

1. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 327–343.
USENIX Association, Berkeley (2016)

2. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: SP 2015, pp.
553–570. IEEE Computer Society (2015)

3. Braithwaite, M.: Experimenting with post-quantum cryptography, July 2016.
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

4. Buchmann, J., Cabarcas, D., Göpfert, F., Hülsing, A., Weiden, P.: Discrete ziggu-
rat: a time-memory trade-off for sampling from a gaussian distribution over the
integers. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282,
pp. 402–417. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 20

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://dx.doi.org/10.1007/978-3-662-43414-7_20

Analyzing the Shuffling Countermeasure for Lattice Signatures 169

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

6. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: NISTIR 8105 DRAFT, Report on Post Quantum Cryptography, February 2016.
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir 8105 draft.pdf

7. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

8. Dwarakanath, N.C., Galbraith, S.D.: Sampling from discrete Gaussians for lattice-
based cryptography on a constrained device. Appl. Algebra Eng. Commun. Com-
put. 25(3), 159–180 (2014)

9. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). doi:10.1007/11894063 2

10. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). doi:10.1007/978-3-662-53140-2 16

11. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33027-8 31

12. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 1

13. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, vol.
2, 3rd edn., pp. 145–146. Addison-Wesley, Salt Lake (1998). Chap. 3

14. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19074-2 21

15. Moradi, A., Hinterwälder, G.: Side-channel security analysis of ultra-low-power
FRAM-based MCUs. In: Mangard, S., Poschmann, A.Y. (eds.) COSADE
2015. LNCS, vol. 9064, pp. 239–254. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-21476-4 16

16. NSA/IAD. CNSA Suite and Quantum Computing FAQ, January 2016.
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/
algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm

17. Oder, T., Pöppelmann, T., Güneysu, T.: Beyond ECDSA and RSA: lattice-based
digital signatures on constrained devices. In: DAC 2014, pp. 110:1–110:6. ACM
(2014)

18. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures
on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 20

19. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-Bit ATxmega microcontrollers. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-22174-8 19

http://dx.doi.org/10.1007/3-540-36400-5_3
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://dx.doi.org/10.1007/11894063_2
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1007/978-3-642-33027-8_31
http://dx.doi.org/10.1007/978-3-540-74735-2_1
http://dx.doi.org/10.1007/978-3-642-19074-2_21
http://dx.doi.org/10.1007/978-3-319-21476-4_16
http://dx.doi.org/10.1007/978-3-319-21476-4_16
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1007/978-3-662-44709-3_20
http://dx.doi.org/10.1007/978-3-662-44709-3_20
http://dx.doi.org/10.1007/978-3-319-22174-8_19

170 P. Pessl

20. Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and side chan-
nel secure discrete gaussian sampling. Cryptology ePrint Archive, Report 2014/591
(2014). http://eprint.iacr.org/2014/591

21. Saarinen, M.-J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures: engineering a side-channel resistant post-quantum signature scheme with
compact signatures. Cryptology ePrint Archive, Report 2016/276 (2016). http://
eprint.iacr.org/2016/276

22. Schneier, B.: NSA plans for a post-quantum world, August 2015. https://www.
schneier.com/blog/archives/2015/08/nsa plans for a.html

23. strongSwan. strongSwan 5.2.2 Released (2015). https://www.strongswan.org/
blog/2015/01/05/strongswan-5.2.2-released.html

24. Texas Instruments. MSP432P401R LaunchPad. http://www.ti.com/tool/
msp-exp432p401r

http://eprint.iacr.org/2014/591
http://eprint.iacr.org/2016/276
http://eprint.iacr.org/2016/276
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
https://www.strongswan.org/blog/2015/01/05/strongswan-5.2.2-released.html
http://www.ti.com/tool/msp-exp432p401r
http://www.ti.com/tool/msp-exp432p401r

Implementation
of Cryptographic Schemes

Atomic-AES: A Compact Implementation
of the AES Encryption/Decryption Core

Subhadeep Banik1(B), Andrey Bogdanov2, and Francesco Regazzoni3

1 Temasek Labs, Nanyang Technological University, Singapore, Singapore
bsubhadeep@ntu.edu.sg

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark
anbog@dtu.dk

3 ALARI, University of Lugano, Lugano, Switzerland
regazzoni@alari.ch

Abstract. The implementation of the AES encryption core by Moradi
et al. at Eurocrypt 2011 is one of the smallest in terms of gate area.
The circuit takes around 2400 gates and operates on an 8 bit datapath.
However this is an encryption only core and unable to cater to block
cipher modes like CBC and ELmD that require access to both the AES
encryption and decryption modules. In this paper we look to investigate
whether the basic circuit of Moradi et al. can be tweaked to provide dual
functionality of encryption and decryption (ENC/DEC) while keeping
the hardware overhead as low as possible. As a result, we report an 8-bit
serialized AES circuit that provides the functionality of both encryption
and decryption and occupies around 2645 GE with a latency of 226
cycles. This is a substantial improvement over the next smallest AES
ENC/DEC circuit (Grain of Sand) by Feldhofer et al. which takes around
3400 gates but has a latency of over 1000 cycles for both the encryption
and decryption cycles.

Keywords: AES 128 · Serialized implementation

1 Introduction

There has been extensive research into the construction of compact implemen-
tations of lightweight block ciphers. This line of research has essentially evolved
along two different lines. The first aims to construct proprietary lightweight
block ciphers by optimizing one or several parameters in the design spectrum,
as has been evidenced by numerous such designs proposed in the past few years:
HIGHT [21], KATAN [11], Klein [18], LED [19], Noekeon [13], Present [7],
Piccolo [28], Prince [8], Simon/Speck [6] and TWINE [30]. The second aims
at attempting to implement standardized ciphers like AES 128 [14] in a light-
weight fashion.

There have been several lightweight implementations of AES proposed in
literature. Some results like [20] and [10] aim for compact implementations in
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 173–190, 2016.
DOI: 10.1007/978-3-319-49890-4 10

174 S. Banik et al.

ASIC and FPGA platforms respectively (however the work in [20] is for an
encryption only core). The works in [23] and [31] aim at lowering critical path
and increasing throughput. And the works in [3] and [5] aim to implement circuits
with low energy consumption per encryption operation.

For compact implementations of the dual encryption/decryption circuit, the
following results are known. In [27], the authors propose a 32-bit serial architec-
ture with optimized tower field implementation of the S-box and a combinator-
ial optimization of the Mixcolumn circuit. The size of this implementation was
around 5400 GE (gate equivalents, i.e. area occupied by an equivalent number
of 2-input NAND gates). The “Grain of Sand” implementation [17] by Feldhofer
et al. constructs an 8-bit serialized architecture with circuit size of around 3400
GE but a latency of over 1000 cycles for both encryption and decryption. Very
recently in [24], the authors report an 8-bit serial implementation that takes
1947/2090 GE for the encryption/decryption circuits respectively. This imple-
mentation makes use of intermediate register files that can be synthesized in the
ASIC flow using memory compilers.

The implementation by Moradi et al. in [26] with size equal to 2400 GE
and encryption latency of 226 cycles is one of the smallest known architectures
for AES. The design combines 8-bit and 32-bit serial datapaths in a manner
that achieves a surprisingly compact implementation. The design uses scan flip-
flops for constructing the registers for the state update and key schedule, a
trick that saves 1 GE per flip-flop used. This implementation also uses a 32
bit Mixcolumn circuit instead of the 8-bit serialized structure of [17], because
the authors argue that any savings in area achieved by an 8-bit serial circuit is
offset by the additional registers required to store its output. Finally since each
round function in this circuit is implemented in 21 cycles, the control system
is made using a 21 cycle LFSR that generates all timing signals accordingly.
However this circuit is an encryption-only core, and therefore can not be used to
implement modes like CBC [16], COPA [2], ELmD [15], POET [1] that require
access to both AES encryption and decryption functionalities. Therefore area-
wise the three smallest known circuits that perform the dual functionalities of
both encryption and decryption are

A. Grain of Sand implementation [17] at 3400 GE
B. 8-bit serial implementation in [24] at 4037 GE
C. 32-bit serial implementation in [27] at 5400 GE.

Moreover the Grain of Sand implementation has a latency of over 1000 cycles
for both the encryption and decryption operations and so for efficient lightweight
implementation of all modes that require access to both AES encryption and
decryption it is critical to have an architecture that is both lightweight and
incurs minimal latency.

1.1 Contribution and Organization

In this paper we present Atomic-AES, an 8-bit serial architecture that performs
the dual functionality of encryption and decryption, and has a circuit size of

Atomic-AES: A Compact Implementation of the AES Core 175

around 2645 GE and latency of 226 cycles for both encryption and decryption
operations. The circuit is closely related to the 8-bit encryption only serial archi-
tecture presented in [26], and in fact our architecture has the following additional
logic components over the basic circuit proposed by Moradi et al.

1. 2 additional 8-bit multiplexers in the state datapath,
2. 3 additional 8-bit xor gates in the key datapath,
3. 24 additional and gates in the key datapath,
4. 1 additional 8-bit multiplexer, 1 additional 8-bit xor gate, 16 additional and

gates during state-key addition,
5. Other additional logic required to implement

a. S-box and its inverse,
b. Mixcolumn and its inverse,
c. Round constants and their inverses.

The paper is organized in the following manner. Section 2 gives some back-
ground and description of the architecture presented in [26]. This would be ben-
eficial for the self-sufficiency and better understanding of this paper. Section 3,
describes the architecture and functioning of Atomic-AES in details, and high-
lights some issues related to its implementation. Section 4 tabulates all implemen-
tation results and compares it with previous architectures present in literature.
Section 5 concludes the paper.

2 Background and Preliminaries

In Fig. 1, a pictorial description of the architecture in [26] is given. As can be
seen the basic elements of storage are the 16 byte sized registers made of scan
flip-flops in the state and key path respectively, used to store the intermediate

Fig. 1. The 8-bit serial architecture in [26]

176 S. Banik et al.

states and roundkeys. Each round function is calculated in 21 cycles and so it
is important to understand how the data is maneuvered through the registers
during this period.1

Let us label the 21 cycles per round by the integers 0 to 20. The encryption
process starts with the addition of the whitening key and the S-box computation
of the first round function. In order to do so the finite sate machine (FSM) gen-
erating the round signals is initialized to cycle number 5. So in cycles numbered
5 to 20 (i.e. the very first 16 cycles) the following transformations take place:

Cycles 5 to 20: The 8 bit chunks of plaintext and key are respectively filtered
out of the main state and key multiplexers respectively. They are xored, and
the resultant signal fed to the S-box. The output of the S-box is fed to the
bottom most multiplexer in the state path (marked by SBIN), from where
it is shifted serially forward in the next round. Effectively, after the cycle 20
is completed, the state registers would store the value S(PT ⊕ K), where
S(·) denotes the bytewise application of the AES S-box function. In the same
period the 8 bit chunk of the Key is input to key register marked “33”, from
where it is serially forwarded in the next round, much like in the state register.
Therefore, at the end of cycle 20, the Key registers hold the value of the initial
whitening key.

After this the cycle counter is automatically reset to 0, and each 21 cycle round
function is executed 10 times, thus accounting for a total latency of 16+21∗10 =
226. During this period the order of operations is as follows:

Shiftrow → Mixcolumn → Add roundkey + S-box of next round

To clarify, let us see the cyclewise description of the data movement:

Cycle 0: This cycle is reserved for the Shiftrow operation. Since each 8-bit
register in the state and key paths are constructed using scan flip-flops, they
have two input data ports which they filter depending on a select signal.
As can be seen in Fig. 1, the state registers are connected to facilitate the
Shiftrow operation during cycle 0. The key register is “frozen” in this cycle
and so no data movement takes place.2

Cycles 1 to 4: The Mixcolumn operation is performed during these 4 cycles.
The Mixcolumn circuit used in this architecture is a {0, 1}32 → {0, 1}32 logic
block, and so data from leftmost column (registers marked 00, 10, 20, 30) of
the state is fed as input to the Mixcolumn circuit. In the subsequent cycle
the Mixcolumn output is driven into the rightmost column (registers marked
03, 13, 23, 33). This operation carried out over 4 cycles computes the Mix-
column over the entire state. Note that this operation is bypassed in the 10th
encryption round as the Mixcolumn function is omitted in the final round.

1
Another important point to note is that this particular architecture interprets the AES input
vectors in a row major fashion i.e. the first four bytes are placed in the first row, the second four
bytes in the second row so on. Most AES implementations use a column major ordering.

2
One way to achieve this is to use a gated clock which does not present a leading edge during the
shiftrow period.

Atomic-AES: A Compact Implementation of the AES Core 177

During this period, the non-linear function of the Keyschedule operation is
computed in the Key registers. Recall that the non linear operation in the
AES Keyschedule is given as

F (K3) = S(K3 ≪ 8) ⊕ RCONi,

where K3 denotes the third column of the current roundkey, ≪ denotes
the left rotate operation and RCONi is the ith round constant (note that
the round constant is added to the most significant byte of S(K3 ≪ 8)).
(K3 ≪ 8) is a 32 bit value and so S(K3 ≪ 8) implies the S-box function
applied to each of the 4 bytes of the input. In order to implement the rotation
operation, the data is taken from the output of the key register marked “13”
and fed to the S-box. Although the architecture uses only one S-box, in cycles
1 to 4, the state path operations do not use the S-box circuit and so the key
path S-box operations can be done in this period. The S-box output is xored to
the output of the register “00” and the round constant and, in the next cycle
is driven into the register marked “30”. Note that since there is “vertical”
movement of data in the key registers in this period, at the end of cycle 4,
the four columns of the key register store the values K0 ⊕F (K3),K1,K2,K3

respectively, where Ki denotes the ith column of the current roundkey.
Cycles 5 to 20: The bytes of state and roundkey are respectively taken out of

the registers marked “00” of both the state and key paths and xored together
and fed to the S-box. The output of the S-box is again driven into the bottom
most state register “33” and serially shifted forward in the subsequent rounds.
This sequence of operations is exactly similar as the ones performed in the
very first 16 cycles, with the only exception that an intermediate state and
roundkey chunks are xored instead of the raw plaintext and key.
The operations in the Key register are a little more interesting during this
period. Note that in order to perform roundkey addition during these cycles,
the data emanating from key register “00” be equal to the current roundkey.
However we have seen that at the end of cycle 4 the columns of the key
registers hold the value K0 ⊕F (K3),K1,K2,K3. Note that if K0,K1,K2,K3

and L0, L1, L2, L3 denote the 4 columns of the current and next roundkey
then we have

L0 = K0 ⊕ F (K3), L1 = K1 ⊕ L0, L2 = K2 ⊕ L1, L3 = K3 ⊕ L2.

Thus at the end of cycle 4, only the 0th column holds the correct next round-
key L0. The problem is solved by having an extra xor gate taking inputs from
the registers “00” and “01” and output feeding into “00”. Since the movement
of data is switched to “horizontal”, this helps to perform on the fly addition
as the key chunks are driven out of the “00” register. The addition is however
not executed at cycles 8, 12, 16, 20 by zeroing the SELXOR signal because
as previously noted, the 0th column already has the required roundkey. Also
after the roundkey addition, each 8-bit key is circularly shifted back into the
key registers through register “33” in order to facilitate the operations in the
next round function.

178 S. Banik et al.

The ith round in this architecture computes the Substitution layer for the
(i + 1)th AES encryption round. This being so, in the tenth and final encryp-
tion round the only operations that need be performed are Shiftrows and the
final roundkey addition. Thus in the tenth round, the Mixcolumn operation
is bypassed in cycles 1–4 and the output ciphertext is available just after the
roundkey addition from cycles 5 through 20.

3 Atomic-AES: Architecture and Dataflow

We will now present a full description of the proposed architecture for Atomic-
AES which provides dual functionalities for encryption and decryption. A dia-
gram for the proposed architecture is presented in Fig. 2. The architecture builds
on the basic circuit in [26], and so the functioning of the circuit during encryption
is exactly as described in Sect. 2.

3.1 Issues with the Decryption Circuit

In order to accommodate decryption operation in the basic circuit of [26], there
are some principal difficulties. We will list them one by one:

1. Shiftrows/Inverse Shiftrows: During the Shiftrow operation the data in
the ith row is left-rotated by i bytes (0 ≤ i ≤ 3). Hence the Inverse Shiftrow
operation would require the i-byte right-rotation of the ith row data. However
in order to accommodate the Inverse Shiftrow and forward Shiftrow simul-
taneously would potentially require another multiplexer at the input of each
8-bit state register.

2. Forward/Inverse Keyschedule: The AES Keyschedule basically has as a
non-linear shift register like structure, and it is obvious that the key regis-
ter structure in [26] was explicitly constructed to accommodate its unique
mathematical structure, and at the same time produce the current round-
key in an 8-bit serial fashion. It is not immediately clear how the Inverse
Keyschedule could be arranged in such a circuit without increasing the circuit
size significantly.

3. Sequence of Operations During Decryption: The circuit in [26] requires
21 cycles to complete a round function, with the order of operations being:
Shiftrows, Mixcolumn followed by Add roundkey and the S-box layer of the
following round. It is however not clear what order of operations would achieve
the most efficient circuit for decryption. If one chooses to have roughly the
same order of operations i.e. Inverse Shiftrows, Inverse Mixcolumn followed
by Add roundkey and Inverse S-box, then as per the specification of the
Decryption function, we would require the Inverse Mixcolumn of the round-
key as well (as described in [27]). This would most likely require additional
cycles to compute the Inverse Mixcolumn of the roundkey and thus increase
the latency.

Atomic-AES: A Compact Implementation of the AES Core 179

MIXCOLUMN/INVMIXCOLUMN
SB

O
X
/

R
ou
nd
K
ey

R
ou
nd
K
ey

SB
O
X

−1

K
E
Y

T
E
X
T

E
N
C

O
U
T

D
E
C

O
U
T

St
at
e
O
U
T

SB
I
N

SB
O
U
T

SB
I
N

32

SB
O
U
T

M
C

I
N

32

8

St
at
e
O
U
T

SE
L
A
K

1

SE
L
A
K

2

SE
L
X
O
R

SE
L
E
D

SE
L
R
C

R
C
/R
C

−1

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

00
01

02
03

10
11

12
13

20
21

22
23

30
31

32
33

Fig. 2. The AES 8 bit Encryption/Decryption architecture for Atomic-AES

180 S. Banik et al.

3.2 Inverse Shiftrow

An efficient Encryption/Decryption circuit would need to address all the above
issues judiciously. To begin with let us address the issue of Shiftrow/Inverse
Shiftrow. We make the following observations before proceeding:

Observation 1: For the 0th and the 2nd rows of the AES state, Shiftrow and
Inverse Shiftrow bring about the same transformation.

Observation 2: For the 1st and the 3rd rows of the AES state, Shiftrow and
Inverse Shiftrow bring about opposite transformations. Which is to say, that
the Shiftrow operation on the 1st row brings about the same transformation
as the Inverse Shiftrow on the 3rd row and vice versa.

A careful examination of the architecture in [26] reveals that each 8-bit reg-
ister (constructed with scan flip-flops) accepts two inputs (see Fig. 1): one from
the register immediately to its right (the rightmost register accepts its input
from the leftmost register of the row below it), this connection is to facilitate
the serial loading and unloading of the bytes in the state during cycles 5 to
20. The other input facilitates the transfer of data during they Shiftrow cycle.
However, for the first three registers of the 1st row (i.e. “10”, “11” and “12”)
the two inputs are actually the same. So in order to accommodate the Inverse
Shiftrow, the second input connection of these three registers can be rewired
(see Fig. 2) just like in the third row (since the Inverse Shiftrow of the first and
Forward Shiftrow of the third row are actually identical transformations). For
the last register of this row i.e. “13”, an extra multiplexer with input from “10”
is required. And that solves the problem for the first row.

For the 3rd row, the situation is even more straightforward. One of the direct
results of Observation 2 , is that the first input connection for the registers
“30”, “31” and “32” (used primarily for serial loading of data) can be used for
the dual purpose of performing Inverse Shiftrow. This being the case there is
no need for rewiring the inputs. However just as in the 1st row, for register
“33”, an extra multiplexer with input from register “30” is required. Also as
per Observation 1 , no change in wiring or logic is required in the 0th and 2nd

rows. In Table 1, we summarize the input connections for the first and third row
state registers during the various operation stages. For example during serial

Table 1. Input connections to the 1st and 3rd row state registers during various stages
of the operation. (SL: Serial Loading, SR: Shiftrow, ISR: Inverse Shiftrow)

Register SL SR ISR # Register SL SR ISR

Row 1 Row 3

1 10 11 11 13 1 30 31 33 31

2 11 12 12 10 2 31 32 30 32

3 12 13 13 11 3 32 33 31 33

4 13 20 10 12 4 33 DECOUT 32 30

Atomic-AES: A Compact Implementation of the AES Core 181

loading/unloading, register ‘13’ accepts data coming from register ‘20’, whereas
it takes data from ‘10’/‘12’ during Shiftrow/Inverse Shiftrow respectively. As
seen in Fig. 2, the register ‘33’ takes data from the DECOUT pin during the
serial loading phase (i.e. cycles 5 to 20).

3.3 Inverse Keyschedule

To recall, if K0,K1,K2,K3 and L0, L1, L2, L3 denote the 4 columns of the current
and next roundkey then we have

L0 = K0 ⊕ F (K3), L1 = K1 ⊕ L0, L2 = K2 ⊕ L1, L3 = K3 ⊕ L2.

During decryption, the roundkeys are generated in reverse order and so in the
context of decryption, L = L0, L1, L2, L3 is essentially the current roundkey and
K = K0,K1,K2,K3 is the key to be generated in the subsequent round. So we
rewrite the above relation as

K3 = L2 ⊕ L3

K2 = L1 ⊕ L2

K1 = L0 ⊕ L1

K0 = F (K3) ⊕ L0 = F (L2 ⊕ L3) ⊕ L0

So in order to have an Encryption/Decryption circuit we need an architecture
around the key registers that can both (a) generate L given K as input and (b)
generate K given L as input. The basic architecture in [26] all ready achieves
(a) and so we need accommodate (b) i.e. the roundkey generation mechanism
during decryption. We offer the following solution. Place three 8-bit xor gates in
the 3rd row of Key registers in the following way (refer to Fig. 2).

1. For 1 ≤ i ≤ 2, the xor gate takes inputs from the key registers “3i” and
“3 i + 1” and feeds its output into register “3i”.

2. The third xor gate takes inputs from the registers “33” and the current round-
key byte and feeds its output into register “33”.

3. For each of these xor gates, the input coming from register “3i” is anded with
a SELED signal. This is done so that serial loading and unloading can be done
when required by simply zeroing the SELED signal.

To understand how the Inverse Keyschedule works let us look at the flow of data
in cycles 5 to 20. For the purpose of simplification let L0i, L1i, L2i, L3i denote
the 4 key bytes in the column Li, and similarly let K0i,K1i,K2i,K3i denote the
4 key bytes in the column Ki. Note that the signal SELED is made 1 only during
cycles 8, 12, 16, 20 of the decryption phase. The flow of data has been explained
in Fig. 3.

It can be seen that at cycle 8, the three rightmost key registers in the bot-
tommost row have the key bytes L00, L01, L02. At this point SELED is set to 1.
Thus in the next cycle the bottommost key row would contain the bytes

182 S. Banik et al.

L00

5

L01

6

L00 L02

7

L03

8

L02L01L00 L01L00

L10

9 10 11 12

K03K02K01L00 L11L10K03K02K01

L00

L12L11L10K03K02

K01L00

L13L11K03

K02K01

L12L10

L00

13 14

L20K13K12K11L10

K03K02

L21L20K13K12K11

L10K03K01L00 K02K01

L00

SELED = 1

Fig. 3. Data flow in the key registers during Decryption

L00, K01 = L00 ⊕ L01, K02 = L01 ⊕ L02, K03 = L02 ⊕ L03 respectively. Sim-
ilar additions occur at cycles 12, 16 and 20 and as a result at the beginning of
cycle 0 of the next round the four columns of the key register would have the val-
ues L0,K1,K2,K3 respectively. Thereafter in cycles 1 to 4, F (K3) is computed
in the same manner as described in the encryption cycles and added to L0 in the
first column. And as a result at the beginning of cycle 5, the key columns con-
tain K0 = L0 ⊕ F (K3),K1,K2,K3 which is the complete next roundkey. Since
the complete roundkey is already available, the SELXOR signal controlling the
xor gate in the topmost row is zeroed as the roundkeys are serially driven out for
the add roundkey operation. Thus all the functionalities of Inverse Keyschedule
are completely accommodated using this architecture. Furthermore the complete
decryption roundkey is available from cycles 5 through 20, which is incidentally
the period during which we perform the add roundkey operation.

3.4 Sequence of Operations

Unlike ciphers like Midori [4], Prince [8] and Noekeon [13], AES was not designed
as an efficiently implementable involutive cipher. As a result, the sequence of
operations during the encryption and decryption flow are quite different. The
sequence of operation during the encryption flow is as follows:

1. Add whitening key.
2. Rounds 1 to 9

A. Substitution layer, B. Shiftrows, C. Mixcolumn, D. Add roundkey
3. Round 10

A. Substitution layer, B. Shiftrows, C. Add roundkey

Atomic-AES: A Compact Implementation of the AES Core 183

As previously mentioned, the 21 cycle encryption phase is arranged as Shiftrow
→ Mixcolumn → Add roundkey + Substitution layer of next round. The
decryption flow of operations must exactly be opposite of encryption. Since the
Shiftrows/Inverse Shiftrows can be commuted with S-box/Inverse S-box oper-
ation respectively, we can go with the following composition of one decryption
round (also used in the architecture in [27]):

Inverse Shiftrow → Inverse Mixcolumn → Add roundkey + Inverse S-box

This sequence is attractive in this particular architecture because it has exactly
the same order of operations as in encryption, and so it does not need too many
changes in the underlying control system that produces select signals for the
various multiplexers in the circuit. However as mentioned in [27], this sequence
essentially swaps the order of Add roundkey and Inverse Mixcolumn operations.
Since Mixcolumn and hence also Inverse Mixcolumn are linear functions, this
requires the Inverse Mixcolumn function to be operated on the current roundkey
before using it during the Add roundkey operation (since MC−1(X + K) =
MC−1(X)+MC−1(K)). There are two ways to achieve this: a) use an additional
circuit for Inverse Mixcolumns or b) spend extra cycles to compute the Inverse
Mixcolumn of the current roundkey. Option a increases circuit size and option
b increases latency.

In this paper we propose an alternate sequence of the decryption cycle that
compromises on neither the circuit size nor latency. We propose the following
flow:

Inverse Mixcolumn → Inverse Shiftrow → Inverse S-box + Add roundkey

Since this sequence of operations is essentially the mirror inverse of the AES
encryption round function, no swapping of Add roundkey and Inverse Mixcolumn
is needed, and that obviates the need to calculate the Inverse Mixcolumn of
the roundkey. To better explain the operations, let us present a cycle by cycle
breakdown of the 21 cycle decryption round function. The decryption starts with
the addition of the whitening key. The finite sate machine (FSM) generating the
round signals is again initialized to cycle number 5. So in cycles numbered 5 to
20 (i.e. the very first 16 cycles) the following transformations take place:

Cycles 5 to 20: The 8 bit chunks of ciphertext and key are respectively filtered
out of the main state and key multiplexers respectively. They are xored, and
the resultant signal fed to the state registers. Note that in the corresponding
encryption stage, we additionally calculated the S-box of the first round.
Hence in order to accommodate both encryption and decryption we need a
multiplexer after the S-box circuit as shown in Fig. 2. The Key bytes are input
to key register “33”, from where it is serially forwarded in the next round.
However as mentioned in the previous subsection, the SELED signal is set to
1 at rounds 8, 12, 16, 20 due to which at beginning of the next phase, the
Key four register columns hold the value L0,K1,K2,K3 respectively.

184 S. Banik et al.

After this the cycle counter is automatically reset to 0, and each 21 cycle round
function is executed 10 times. Since the data flow in the key registers have already
explained in the previous subsection, we concentrate on the state register.

Cycles 0 to 3: These cycles perform the Inverse Mixcolumn operation on the
state columns, in exactly the same way forward Mixcolumn is executed in the
encryption stage in cycles 1 to 4. However only in the very first round the
Inverse Mixcolumn operation is bypassed, as required in AES decryption.

Cycle 4: This cycle is reserved for the Inverse Shiftrow operation.
Cycles 5 to 20: The bytes of state are taken out from register “00” and input

into the combined forward and reverse S-box circuit to compute the Inverse
S-box operation. The output of the S-box is then xored with the current
roundkey byte from the key register “00” and circulated serially back into
the state registers via the register marked “33”. Note that the order of S-box
and Add roundkey in the decryption phase is exactly the opposite as the
encryption phase. As a result we employ two 8-bit xor gates, one before and
one after the S-box circuit, for key addition in the encryption and decryption
stages respectively. The xor gate inputs are controlled by and gates as shown
in Fig. 2, in order to bypass the addition operation as required.

In the tenth and final round, the decrypted plaintext is made available from
cycles 5 through 20 after the add roundkey operation. The above process is
explained pictorially in Fig. 4. We now describe some of the components used in
the circuit.

ENCRYPTION 0 1-4 5-20

0 1-4 5-20

5-20

DECRYPTION

0-3 4

Add Whitening Key + S-box of 1st round

Store Key serially

Add roundkey + S-box of next round

Compute roundkey + Store it serially

State

Key

State

Key

Round

0

1-10

Round

0

1-10

0

1-10
State

Key

Shiftrow

Frozen

Mixcolumn

Compute F (K3)

Store Key serially (with SELED=1 at 8,12,16,20)

Store Key serially (with SELED=1 at 8,12,16,20)

Add Whitening Key

Inverse S-box + Add roundkey

Frozen Compute F (K3)

Mixcolumn−1 Shiftrow−1

Fig. 4. Operation sequences in the Encryption/Decryption stages

Atomic-AES: A Compact Implementation of the AES Core 185

3.5 S-Box

Over the years, there has been substantial research into compact circuit imple-
mentations of the AES S-box [9,12,25,27,32]. Almost all of them use the under-
lying algebraic structure of the AES S-box, that essentially combines an affine
transformation with an inverse computation over the AES finite field. However
the architecture due to Canright [12] remains one of the smallest in terms of
circuit size for the combined Forward and Inverse S-box, and thus this is the
architecture we chose for the combined S-box/Inverse S-box circuit.

3.6 Mixcolumn/Inverse Mixcolumn

In [27], the authors use the following decomposition of the Inverse Mixcolumn
matrix to achieve an efficient implementation:

⎛

⎜
⎜
⎝

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

4 0 4 0
0 4 0 4
4 0 4 0
0 4 0 4

⎞

⎟
⎟
⎠

The xxtime (i.e. multiplication by 4) operation in AES finite field can be imple-
mented in 5 xor gates as shown (b6 ⊕ b7 is computed just once and the output
is reused to construct the 5th LSB)

xxtime(b7, b6, . . . , b0) �→ b5, b4, b3 ⊕ b7, b2 ⊕ b6 ⊕ b7 , b1 ⊕ b6, b0 ⊕ b7, b6 ⊕ b7 , b6

Using this implementation of xxtime, the authors proposed a construction of
Inverse Mixcolumns using 193 xor gates and a 32 bit multiplexer. However a more
efficient implementation is due to Paulo Barreto, which factorizes the Inverse
Mixcolumn matrix as:

⎛

⎜
⎜
⎝

14 11 13 9
9 14 11 13
13 9 14 11
11 13 9 14

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

5 0 4 0
0 5 0 4
4 0 5 0
0 4 0 5

⎞

⎟
⎟
⎠

To implement the above circuit, we simply premultiply the input column by the
Circulant(5, 0, 4, 0) matrix as follows:

y3 = xxtime(x3 ⊕ x1) ⊕ x3, y2 = xxtime(x2 ⊕ x0) ⊕ x2

y1 = xxtime(x3 ⊕ x1) ⊕ x1, y0 = xxtime(x2 ⊕ x0) ⊕ x0

where X = (x3, x2, x1, x0) and Y = (y3, y2, y1, y0) are the input and output
columns of the multiplication block. The multiplication block takes exactly 58
xor gates. Thereafter we choose either X for Mixcolumns or Y for Inverse Mix-
columns, and input the resultant to the AES Mixcolumn circuit, as shown in
Fig. 5. Since the Mixcolumn circuit can be efficiently implemented in 108 gates,
the combined circuit takes 108 + 58 = 166 xor gates and a 32 bit multiplexer
which is more efficient than the construction in [27].

186 S. Banik et al.

Multiply By
⎡

⎢
⎢
⎣

5 0 4 0
0 5 0 4
4 0 5 0
0 4 0 5

⎤

⎥
⎥
⎦

AES

Mixcolumn

ENC/DEC

MC IN
MCOUT

Fig. 5. Mixcolumn/Inverse Mixcolumn circuit

3.7 Round Constants and Control System

We use LUT based round constants. If r is the current round number, then
the encryption operation uses LUT(r), while the decryption operation uses
LUT(11 − r). The two signals can be input to an 8-bit multiplexer so that one
can be chosen over the other as required. To further optimize, one can instead
place a multiplexer before the LUT and choose between the 4-bit constants r and
11 − r, and use the resultant signal as input to the LUT. Since this requires only
a 4-bit multiplexer, it saves us additional area equivalent to a 4-bit multiplexer.
Furthermore, all control signals are generated using a 21 cycle LFSR as described
in [26].

4 Performance Evaluation

In order to perform a fair performance evaluation, we implemented the circuit
using VHDL. Thereafter the following design flow was adhered to for all the
circuits: a functional verification at the RTL level was first done using Mentor
Graphics Modelsim software. The designs were synthesized using the standard
cell library of the 90 nm and 65 nm logic process of STM (CORE90GPHVT
v 2.1.a and CORE65LPLVT v 5.1) with the Synopsys Design Compiler, with
the compiler being specifically instructed to optimize the circuit for area.
A timing simulation was done on the synthesized netlist to confirm the cor-
rectness of the design, by comparing the output of the timing simulation with
known test vectors. The switching activity of each gate of the circuit was col-
lected while running post-synthesis simulation. The average power was obtained
using Synopsys Power Compiler, using the back annotated switching activity.
The results are tabulated in Table 2.

We outline some of the essential lightweight metrics of the known implemen-
tations of encryption/decryption architectures of AES and compare it with our
own. Energy consumption was listed rather than power as it is a measure of the
total electrical work done during one encryption/decryption. Since the circuits

Atomic-AES: A Compact Implementation of the AES Core 187

Table 2. Performance comparison of Atomic-AES with previous architectures in litera-
ture (Figures separated by ‘/’ indicate corresponding figures for encryption/decryption,
E: Encryption only, ED: ENC/DEC)

Architecture Type Library Area
(GE)

Latency
(cycles)

Energy
(nJ)

TPmax

(Mbps)

1 8-bit Serial [26] E UMC 180 nm 2400 226 8.4 -

2 Grain of Sand [17] ED Philips 350 nm 3400 1032/1165 46.4/52.4 9.9/8.8

3 8-bit Serial [24] ED 22 nm 4037 336/216 3.9/2.5 432/671

4 32-bit Serial [27] ED 110 nm 5400 54/54 - 311

5 Atomic-AES ED STM 90nm 2645 226/226 3.3 94.4

STM 65nm 2976 226/226 2.2 57.8

in Table 2 are implemented using different CMOS logic processes, there are most
likely to be wide variations in energy consumption and maximum throughput.
For example the throughput of [24] is quite high as it is implemented using the
standard cell library of the 22 nm CMOS logic process which is faster than the
other logic processes listed in the table. The throughput of [27] is also high as it
is a 32-bit serial circuit and thus has considerably lower latency.

In Fig. 6, we present a componentwise breakdown of the circuit size. We use
clock gating to generate the clock for the Key registers, since the data movement
has to be frozen for one cycle. Apart from the multiplexers included in the
implementation of the combined Forward and Inverse S-box, Mixcolumn and
Round Constants, a quick glance at Fig. 2, tells us that we need

27.7%

Key Registers (734 GE)

27.7%

State Registers (732 GE)

12.2%

Mixcolumn (323 GE)

9.6%

S-box (253 GE)

17.2%

Muxes+Xors+And gates (455 GE)

5.6%

Control System (148 GE)

Fig. 6. Area requirements of the individual components

188 S. Banik et al.

1. Six 8-bit multiplexers around the state register, one 32-bit multiplexer to
bypass the Mixcolumn circuit, one 8-bit multiplexer after the S-box, and
two 8-bit multiplexers to filter the raw key/plaintext (ciphertext) and the
roundkey/state byte respectively.

2. Apart from this six 8-bit xors around the key registers and two 8-bit xors
during state-key addition.

3. One input of five out of the six xor gates is controlled by an and gate.

This adds up to around 455 GE for the multiplexers, xor, and gates in the circuit.
The LSFR based control system and the round constants take around 148 GE.
Adding up, this leads to 2645 GE for the entire circuit.

5 Conclusion

In this work, we present a compact architecture for AES that performs the
dual function of encryption and decryption. Such architectures are useful in
lightweight construction of block cipher modes that require access to both the
encryption and decryption modules. We build upon the encryption only archi-
tecture of [26] and show that certain judicious alterations in logic and wiring
can transform the architecture to perform encryption and decryption simultane-
ously. Our circuit has a size of 2645 GE and has a latency of 226 cycles for both
encryption and decryption operations. This is a substantial improvement over
the Grain of sand implementation that has an area of 3400 GE but a latency of
over 1000 cycles for both encryption and decryption.

Acknowledgement. The authors would like to thank the anonymous reviewers who
helped improve the quality and presentation of this paper.

References

1. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., Mcgrew, D., Wenzel,
J.: The POET Family of On-Line Authenticated Encryption Schemes. Submission
to the CAESAR competition. https://competitions.cr.yp.to/round1/poetv101.pdf

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
AES-COPA v. 1. Submission to the Caesar Compedition. http://competitions.cr.
yp.to/round1/aescopav1.pdf

3. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 178–194. Springer, Heidelberg (2016). doi:10.1007/978-3-319-31301-6 10

4. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

5. Banik, S., Bogdanov, A., Regazzoni, F., Isobe, T., Hiwatari, H., Akishita, T.:
Round gating for low energy block ciphers. In: IEEE Hardware Oriented Secu-
rity and Trust (HOST), pp. 55–60 (2016)

https://competitions.cr.yp.to/round1/poetv101.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://competitions.cr.yp.to/round1/aescopav1.pdf
http://dx.doi.org/10.1007/978-3-319-31301-6_10
http://dx.doi.org/10.1007/978-3-662-48800-3_17

Atomic-AES: A Compact Implementation of the AES Core 189

6. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The simon and speck families of lightweight block ciphers. In: IACR eprint archive.
https://eprint.iacr.org/2013/404.pdf

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

8. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

9. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptology 26, 28–312 (2013)

10. Chodowiec, P., Gaj, K.: Very compact FPGA implementation of the AES algo-
rithm. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 319–333. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6 26

11. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 20

12. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

13. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON.
http://gro.noekeon.org/Noekeon-spec.pdf

14. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

15. Datta, N., Nandi, M.: ELmD v1.0. Submission to the Caesar Compedition. https://
competitions.cr.yp.to/round1/elmdv10.pdf

16. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. NIST
Special Publication 800–38A. http://csrc.nist.gov/publications/nistpubs/800-38a/
spp.800-38a.pdf

17. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEEE Proc. Inf. Secur. 152(1), 13–20 (2005)

18. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-25286-0 1

19. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

20. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and imple-
mentation of low-area and low-power AES encryption hardware core. In: DSD, pp.
577–583 (2006)

21. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a new block cipher suitable
for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 46–59. Springer, Heidelberg (2006). doi:10.1007/11894063 4

https://eprint.iacr.org/2013/404.pdf
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-540-45238-6_26
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://gro.noekeon.org/Noekeon-spec.pdf
https://competitions.cr.yp.to/round1/elmdv10.pdf
https://competitions.cr.yp.to/round1/elmdv10.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/spp.800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/spp.800-38a.pdf
http://dx.doi.org/10.1007/978-3-642-25286-0_1
http://dx.doi.org/10.1007/978-3-642-23951-9_22
http://dx.doi.org/10.1007/11894063_4

190 S. Banik et al.

22. Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green
cryptography: a comparison of lightweight ciphers from the energy viewpoint.
In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 23

23. Lutz, A.K., Treichler, J., Gürkaynak, F.K., Kaeslin, H., Basler, G., Erni, A., Reich-
muth, S., Rommens, P., Oetiker, S., Fichtner, W.: 2Gbit/s hardware realizations
of RIJNDAEL and SERPENT: a comparative analysis. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 144–158. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 12

24. Mathew, S., Satpathy, S., Suresh, V., Anders, M., Kaul, H., Agarwal, A., Hsu, S.,
Chen, G., Krishnamurthy, R.K.: 340 mV-1.1V, 289 Gbps/W, 2090-gate nanoAES
hardware accelerator with area-optimized encrypt/decrypt GF(24)2 polynomials
in 22 nm tri-gate CMOS. IEEE J. Solid-State Circ. 50, 1048–1058 (2015)

25. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the rijndael S-box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30574-3 22

26. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

27. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 15

28. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23

29. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol.
4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74619-5 12

30. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

31. Ueno, R., Morioka, S., Homma, N., Aoki, T.: A high throughput/gate AES hard-
ware architecture by compressing encryption and decryption datapaths. In: Gier-
lichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 538–558.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 26

32. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF (28)
inversion circuit based on redundant GF arithmetic and its application to AES
design. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp.
63–80. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 4

http://dx.doi.org/10.1007/978-3-642-33027-8_23
http://dx.doi.org/10.1007/3-540-36400-5_12
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/3-540-45682-1_15
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-662-53140-2_26
http://dx.doi.org/10.1007/978-3-662-48324-4_4

Fast Hardware Architectures for Supersingular
Isogeny Diffie-Hellman Key Exchange on FPGA

Brian Koziel1(B), Reza Azarderakhsh2, and Mehran Mozaffari-Kermani3

1 Texas Instruments, Dallas, USA
kozielbrian@gmail.com

2 CEECS Department, I-SENSE FAU, Boca Raton, USA
razarderakhsh@fau.edu

3 EME Department, RIT, Rochester, USA
mmkeme@rit.edu

Abstract. In this paper, we present a constant-time hardware imple-
mentation that achieves new speed records for the supersingular isogeny
Diffie-Hellman (SIDH), even when compared to highly optimized Haswell
computer architectures. We employ inversion-free projective isogeny for-
mulas presented by Costello et al. at CRYPTO 2016 on an FPGA. Mod-
ern FPGA’s can take advantage of heavily parallelized arithmetic in Fp2 ,
which lies at the foundation of supersingular isogeny arithmetic. Further,
by utilizing many arithmetic units, we parallelize isogeny evaluations to
accelerate the computations of large-degree isogenies by approximately
57%. On a constant-time implementation of 124-bit quantum security
SIDH on a Virtex-7, we generate ephemeral public keys in 10.6 and
11.6 ms and generate the shared secret key in 9.5 and 10.8 ms for Alice
and Bob, respectively. This improves upon the previous best time in the
literature for 768-bit implementations by a factor of 1.48. Our 83-bit
quantum security implementation improves upon the only other imple-
mentation in the literature by a speedup of 1.74 featuring fewer resources
and constant-time.

Keywords: Post-quantum cryptography · Elliptic curve cryptography ·
Isogeny-based cryptography · Field programmable gate array

1 Introduction

Post-quantum cryptography (PQC) has been gaining a large amount of interest
in the wake of NIST’s announcement to standardize post-quantum cryptosys-
tems for use by the US government [1]. Fears of the emergence of a quantum
computer that could break today’s current cryptosystems and expose a wealth of
private information have been increasing the demand for systems to be quantum-
safe. Notably, Shor’s algorithm [2] could be used in conjunction with a quan-
tum computer to quickly break elliptic curve cryptography (ECC) and RSA.
Fortunately, such computers do not currently exist, but it is unclear how long
this will last. As such, there is a need to consider viable alternatives to today’s
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 191–206, 2016.
DOI: 10.1007/978-3-319-49890-4 11

192 B. Koziel et al.

popular cryptosystems before the next major quantum computing breakthrough.
Similar to ECC, isogeny-based cryptography also uses points on an elliptic curve
to provide security. However, as opposed to security based on the difficulty to
factor large point multiplications (which is the case for ECC), isogeny-based
cryptography has security based on the difficulty to compute isogenies between
supersingular elliptic curves. Currently, this is considered difficult even for quan-
tum computers. An isogeny can be thought of as a unique algebraic map from
one elliptic curve to another elliptic curve that satisfies group homomorphism.
With the emergence of the supersingular isogeny Diffie-Hellman protocol from
Jao and De Feo [3] in 2011, numerous aspects of the protocol have also been
studied. Most recently, Costello, Longa, and Naehrig [4] have proposed projec-
tive isogeny formulas, which effectively eliminate the numerous inversions in the
SIDH protocol and allow for a constant-time implementation. This is naturally
immune to most types of simple power analysis and timing analysis. Although
the SIDH protocol has been slower than other quantum-resistant schemes, it
does feature smaller keys, smaller signatures, and forward secrecy, making it a
viable candidate in NIST’s PQC standardization workshop. In this paper, we
provide the first implementation of the projective isogeny formulas presented in
[4] on reconfigurable hardware. This constant-time implementation features 83-
bit and 124-bit quantum security. Field programmable gate arrays (FPGA) can
take advantage of a large amount of parallelism in basic arithmetic in the exten-
sion field Fp2 as well as the computation of large-degree isogenies. Aside from
presenting a new speed record for SIDH, the goal of this paper is to show that
hardware architectures can take advantage of the large amount of parallelism in
SIDH and make it more viable in NIST’s PQC workshop. The main contribu-
tions of this paper can be summarized as follows: (i) First constant-time SIDH
implementation on reconfigurable hardware, 83-bit and 124-bit quantum secu-
rity levels, utilizing projective isogeny formulas featured in [4], (ii) This SIDH
implementation is approximately 50% faster than any other implementation in
the literature. (iii) New approach to parallelizing isogeny evaluations to speed-up
large-degree isogeny computations by over a factor of 1.5.

2 Preliminaries

Here, we briefly discuss the basis for isogeny-based cryptography. The isogeny-
based Diffie-Hellman key exchange was first published by Rostovtsev and Stol-
bunov in [5]. This was originally defined over ordinary elliptic curves and was
thought to feature quantum resistance. However, Childs, Jao, and Stolbunov [6]
discovered a quantum algorithm to compute isogenies between ordinary curves in
subexponential time. Later, David Jao, Luca De Feo, and Jerome Plut adapted
the isogeny-based key exchange to be over supersingular elliptic curves in [3,7],
which features no known quantum attack. As we review elliptic curve and isogeny
theory, we point the reader to [8] for a much more in-depth explanation of elliptic
curve theory.

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 193

Double Point
Multiplication

Public SIDH
Parameters

Alice’s Private Keys

Isogeny Computation

Ephemeral Public
Key to Bob

Isogenous Curve

Image of Bob’s Basis

Input Curve

Alice’s
Basis

Bob’s
Basis

Fig. 1. Alice’s first round computations for the SIDH protocol

SIDH Protocol: In the SIDH scheme, Alice and Bob decide on a smooth
isogeny prime p of the form �aA�bB ·f ±1 where �A and �B are small primes, a and
b are positive integers, and f is a small cofactor to make the number prime. They
further decide on a base supersingular elliptic curve E0(Fq) where q = p2. Over
this starting supersingular curve E0, Alice and Bob pick the bases {PA, QA} and
{PB , QB} which generate the torsion groups E0[�eAA] and E0[�eBB], respectively,
such that 〈PA, QA〉 = E0[�eAA] and 〈PB , QB〉 = E0[�eBB]. The SIDH protocol pro-
ceeds as follows. Alice and Bob each perform a double-point multiplication with
two selected private keys that span Z/�aZ and Z/�bZ, respectively. This gener-
ates a secret kernel point on each side that is used to efficiently perform a large-
degree isogeny. In the first round, Alice calculates φA : E → EA/〈mAPA+nAPA〉
and Bob calculates φB : E → EB/〈mBPB + nBPB〉, where m and n are
the party’s secret keys. For the first round, the opposite party’s basis points
are pushed through the isogeny. At the end of the first round, Alice and Bob
each exchange their new supersingular elliptic curve and the basis points of
the opposite party on that new curve. With the exchanged information, Alice
computes φBA : EB → EBA/〈mAφB(PA) + nAφB(PA)〉 and Bob computes
φAB : EA → EAB/〈mBφA(PB) + nBφA(PB)〉. The two now share isomorphic
curves with a common j-invariant that can be used as a shared secret. We illus-
trate the computations necessary for the first round from the perspective of
Alice in Fig. 1. A round can essentially be broken down into a double point
multiplication and a large-degree isogeny computation.

Optimizations to the SIDH Protocol: The supersingular isogeny Diffie-
Hellman protocol was first proposed by David Jao and Luca De Feo in [3] in
2011. Since then it has been interesting to see how further papers have improved
the protocol. The two main papers that have improved the protocol are [7]
by De Feo, Jao, and Plut and [4] by Costello, Longa, and Naehrig. Here, we
highlight the main protocol optimizations that we adapt. As introduced in [7],
we utilize points on Montgomery curves [9] and optimize arithmetic around
them. We define a Montgomery curve, E, as the set of all points (x, y) that
satisfy E(A,B) : By2 = x3 + Ax2 + x and a point at infinity. When the value
A24 = (A + 2)/4 is known, these curves feature extremely fast point arithmetic
along their Kummer line, (x, y) → (X : Z), where x = X/Z. Isogenies still
work for this representation because P and −P generate the same set subgroup
of points. This reduces the total number of computations as the y-coordinate does

194 B. Koziel et al.

not need to be updated for point arithmetic or when the point is pushed to a new
curve by evaluating an isogeny. Projective isogeny formulas over Montgomery
curves were introduced in [4]. These formulas projectivize the curve equation
with a numerator and denominator, similar to projective point arithmetic. We
define a projective Montgomery curve, Ê, as the set of all points (x, y) that satisfy
Ê(Â,B̂,Ĉ) : B̂y2 = Ĉx3+Âx2+ Ĉx and a point at infinity. In this representation,

the corresponding affine Montgomery curve would have coefficients A = Â/Ĉ
and B = B̂/Ĉ. To perform a double point multiplication, we specify that one
of Alice and Bob’s secret keys is 1, as introduced in [7]. Costello et al. [4] also
greatly simplified the starting parameters for SIDH by proposing to use the
starting Montgomery curve E0/Fp2 : y2 = x3 + x. By specifying points in the
base field and trace-zero torsion subgroup, the first round of the SIDH protocol
can be performed as a Montgomery [9] ladder followed by a point addition,
with all operations in Fp. The second round of the protocol involves a double-
point multiplication with elements in Fp2 . For this, we utilize the 3-point ladder
proposed in [7] that computes P + mQ in log2(m) steps. Each step requires 2
point additions and 1 point doubling. We closely follow the projective isogeny
formulas presented in [4] for isogenies of degree �Alice = 4 and �Bob = 3. For the
first round, we push the Kummer coordinates of the other party’s basis P , Q,
and Q−P through the large-degree isogeny rather than the projective version of
P and Q to remove a point subtraction before the 3-point ladder. As proposed
by [10], large-degree isogenies can be decomposed into a chain of smaller degree
isogeny computations and computed iteratively. From a base curve E0 and point
R of order �e, we compute a chain of �-degree isogenies: Ei+1 = Ei/〈�e−i−1Ri〉,
φi : Ei → Ei+1, Ri+1 = φi(Ri). This problem can be visualized as an acylic
graph, which is shown in Fig. 3 in Sect. 4.3. In Fig. 4 in Sect. 4.3, we further
illustrate a sample strategy to compute each of the �-degree isogenies at the
peak of the triangle by saving points at certain nodes to a point queue.

SIDH Protocol Parameters: To make our implementation comparable to
the first hardware implementation of affine SIDH in [11] and the first software
implementation of projective SIDH in [4], we chose to test our architecture over
the primes p503 = 22503159 − 1 and p751 = 23723239 − 1. These primes offer 83
and 124 bits of quantum security, respectively.

Similar to the strategy proposed by Costello et al. [4], we begin with a simple
Montgomery curve, technically also a short Weierstrass curve: E0/Fp2 : y2 =
x3 + x. To determine generator points for the torsion subgroups �eAA and �eBB ,
we again turn to Costello et al.’s method [4]. For the �eAA -torsion points PA

and QA, we find a point PA ∈ E0(Fp)[�eAA] as [f�eBB](z,
√

z3 + z), where z is the
smallest positive integer such that

√
z3 + z ∈ Fp and PA has order �eAA . We apply

a distortion map over E0 to PA to find QA such that it is the endomorphism
τ : E0(Fp2) → E0(Fp2),(x+0i, y+0i) → (−x+0i, 0+iy). Thus, QA = τ(PA). The
�eBB -torsion points are found in a similar matter. We find PB ∈ E0(Fp)[�eBB] as
[f�eAA](z,

√
z3 + z), where z is the smallest positive integer such that

√
z3 + z ∈

Fp and PB has order �eBB . Lastly, QB = τ(PB). For the selected primes, our
starting parameters are given in Table 1.

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 195

Table 1. SIDH public parameters

Curve: E0/Fp2 : y2 = x3 + x

Prime Classical/quantum
security (bits)

PA PB

p503 = 22503159 − 1 125/83 [3159](14,
√

143 + 14) [2250](6,
√

63 + 6)

p751 = 23723239 − 1 186/124 [3239](11,
√

113 + 11) [2372](6,
√

63 + 6)

3 Proposed Architectures for Isogeny Computations

In this section, we investigate the design of an SIDH core, focusing on optimizing
finite-field addition and multiplication. The goal is to design a scalable architec-
ture that features a secure and efficient implementation of SIDH. The proposed
projective SIDH formulas presented in [4] make it reasonable to exclude a dedi-
cated inversion module. Further, the simplification of the SIDH parameters allow
for a reduction of the number of registers to store the SIDH parameters as well
as the ability to perform Montgomery’s powering ladder [9] in a base field rather
than the 3-point differential Montgomery ladder over a quadratic field first pro-
posed in [3]. In fact, the Montgomery ladder used to perform the first double
point multiplication for both Alice and Bob may demonstrate a slight advan-
tage to implementing a more efficient squaring unit. However, this squaring unit
would not see much action as it is only used in the ladder of the first round of
the key exchange and inversion. A dedicated squaring unit was not implemented
for this paper, but should be investigated in the future. The high level design
of the isogeny core is depicted in Fig. 2. This core features a single adder unit,
multiplier unit with replicated multipliers, dual-port RAM file for registers, and
a program ROM file for the controls. The RAM file contained 256 values in
Fp, or 256 m-bit entries. For our implementations, m = 512 and m = 752 for
the choices of p503 and p751, noted in Sect. 2. The RAM file contains constants
for the parameters of the protocol, intermediate values within the protocol, and
intermediate values for Fp2 computations. The major constants that are initially
put into the RAM file are the constants 0, 1, 2, 4−1, and 6, the base Montgomery

Public SIDH
Parameters Controller

ALU

Adder/
Subtractor

Multiplier/
Squarer

Dual-Port
Block
RAM

ROM

Fig. 2. Proposed High-level architecture of an SIDH core

196 B. Koziel et al.

curve coefficients A, B, and A24, and the basis points PA, QA, QA − PA, PB ,
QB , QB −PB . There are more intermediate values necessary for higher key sizes
as the graph traversal of the large degree isogeny is more expansive, but 256
values is more than enough, even for 768-bit SIDH, which allows more flexibility
and optimization with routines. The program ROM contains the controls for the
adder, multiplier, and RAM for every cycle for various SIDH routines (listed in
Sect. 4.4). The size of the program ROM unit depends on the number of repli-
cated multipliers as more multipliers will allow for fewer clock cycles. A stall
counter was added to the control unit to diminish the impact of stall cycles that
fill the program ROM.

3.1 Finite Field Adder

Finite-field addition computes the sum C = A + B, where A,B,C ∈ Fp. If the
sum C is greater than p, then there is a reduction by performing the subtraction
C = C −p to have C ∈ Fp. A similar situation occurs for finite-field subtraction,
C = A−B, where A,B,C ∈ Fp. An adder can be used as a subtractor if the sec-
ond operands input bits are flipped. The input operands to our adder/subtractor
were selected with two 3:2 multiplexers. Operand 1 could be a value from port
A of the RAM, the result from the adder/subtractor, or result from the multi-
plier. Operand 2 could be a value from port B of the RAM, zero, or the prime.
Based on the interface between the RAM unit and the adder/subtractor mod-
ule, which incurs delays from the register file logic and the 3:2 multiplexer into
the adder/subtractor module, we decided to split the addition/subtraction into
multiple cycles by cascading multiple, smaller adder/subtractors. We tried to
match the critical path delay of the adder with that of the multiplier to ensure
that both modules operated efficiently. Our smaller adder/subtractor units were
based around 256-bit addition and subtraction. In practice, we utilized 252-bit
and 251-bit adder/subtractor units for p503 and one 250-bit and two 251-bit
adder/subtractor units for p751. Xilinx’s default IP was used to create these
blocks. Partial sums and operands were pipelined to achieve a high-throughput
adder/subtractor. An addition or subtraction was finished in 2 cycles for p503
and 3 cycles for p751.

3.2 Field Multiplier

Finite-field multiplication computes the product C = A×B, where A,B,C ∈ Fp.
Since the product is double the size of the inputs, a reduction must be performed
so that the product is still within the field. The two known multiplier architec-
tures targeting smooth isogeny primes are in [11,12]. Both utilize Montgomery
[13] multiplication and reduction to efficiently perform the large modular mul-
tiplications. Montgomery multiplication performs a modular multiplication by
transforming integers to m-residues, or the Montgomery domain, and perform-
ing multiplications with this representation. Montgomery multiplication con-
verts time-consuming trial divisions to shift operations, which is simple to do
in hardware. At the end of computations, the result can be converted out of

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 197

Algorithm 1. High-Radix Montgomery Multiplication Algorithm [15]

Input: M = p, M ′ = −M−1mod p, A =
∑m+2

i=0 (2k)iai, ai ∈ {0, 1 . . . 2k − 1}, am+2 = 0

B =
∑m+1

i=0 (2k)ibi, bi ∈ {0, 1 . . . 2k − 1}, M = (M ′ mod 2k)M =
∑m+1

i=0 (2k)imi

A,B < 2M ; 4M < 2km, R = 2�log2p�

1. S0 = 0
2. for i = 0 to m + 2 do

3. qi = (Si) mod 2k

4. Si+1 = (Si + qiM)/2k + aiB
5. end for
6. return Sm+3 = A × B × R−1 mod M

the Montgomery domain with a single Montgomery multiplication. Algorithm1
demonstrates the Montgomery reduction procedure. In [12], the authors present
an efficient method for modular multiplication over smooth isogeny primes of the
form p = 2 · 2a3b − 1 by using the representation A = a12a3b + a22a/23b/2 + a3,
determining smaller partial products, and then performing an efficient division
with some precalculations. The results appear interesting for a software imple-
mentation, achieving a 62% speed-up in modular reduction and 43% speed-up
in modular multiplication. However, the hardware architecture for the multipli-
cation algorithm appears to suffer. For a 768-bit prime, the Virtex-6 architec-
ture required 11,924 registers and 12,790 lookup-tables, while operating at only
31 MHz and taking 236 cycles per modular multiplication. The other modular
multiplier in [11] featured a systolic Montgomery multiplier based on [14]. Using
a 216 radix for a 1024-bit modular multiplication, the basic multiplier proposed
in [14], operates at a clock frequency of 101.86 MHz, requires 5,709 slices and 131
DSP48’s, and performs a modular multiplication in 199 clock cycles, all on a Vir-
tex2 Pro. Further, this multiplier can perform 2 multiplications simultaneously.
This already runs rings over the multiplier proposed in [12]. The target of this
implementation is a high-throughput and fast multiplier. The implementation
in [11] improved this systolic multiplier to allow higher throughput by featuring
interleaving multiplications approximately 2/3 of the multiplication latency as
well as one fewer stage in the systolic array. Thus, this allows for a 99 cycle
multiplication and 68 cycle interleaving for a 512-bit multiplication.

Ultimately, we chose to go with the same interleaved systolic Montgomery
multiplier proposed in [11]. This multiplier utilizes the high-radix Montgomery
multiplication procedure, which is shown in Algorithm1. As was originally pro-
posed in [14], we can use a systolic architecture to perform the iterative compu-
tations in Algorithm 1. Consider a systolic array of m + 2 processing elements
that each compute Si+1 = (Si + qimj)/2k + aibj , where j is the number of
the processing element in the array. We can effectively setup a “pump” that
pushes ai and qi = (Si)mod 2k from processing element j to processing element
j + 1. Thus, to perform the high-radix Montgomery multiplication, we start by
pushing a 0 through the systolic arrays so that q0 = 0. Following that, we push

198 B. Koziel et al.

ai through the processing elements, such that it performs aibj and adds that
result to (Si + qimj)/2k in each processing element. Essentially, each process-
ing element performs qimj and aibj in parallel, and then performs a 4-operand
addition with qimj , aibj , Si, and a carry. After m+3 cycles, the least significant
k-bit word of the result is ready. The last word is ready after 3m + 7 cycles.
Interestingly, for a given multiplication, only half of the processing elements are
used on a specific cycle. Thus, we can use a single multiplier architecture to
handle two multiplications simultaneously, at the cost of multiplexers on the
input and output that cycle between an even or odd multiplication. The design
in [11] features an interleaved version of [14]. As one multiplication is finishing
up, the earlier processing elements are no longer in use. Thus, we can inter-
leave multiplications every 2m + 3 cycles by gradually filling in these processing
elements whose previous task just finished. As is also noted in [11], M̄ = M
since M ′ = 1 for SIDH primes of the form 2ea�ebb f − 1, which is applicable to
both of our test primes. This simplification reduces the total size of the systolic
array by one processing element and reduces the latency by 3 cycles. Since a
DSP48 block effectively computes up to an 18×18 multiplication, we decided to
make our Montgomery multiplier with radix 216. Using this, we calculated the
latency of multiplication and interleaving. For p503, a multiplication required
99 cycles and multiplications could be interleaved 68 cycles into a multiplica-
tion. For p751, a multiplication required 144 cycles and multiplications could be
interleaved every 98 cycles. We also implemented a larger multiplier unit that
featured replicated multiplier units. Multiplications are the main bottleneck in
the finite-field operations given by the smooth isogeny primes. As such, we imple-
mented a first-in-first-out circular buffer. Multiplication instructions are issued
cyclically starting from multiplier 0 to multiplier 2n − 1 for n dual multipliers.
This comes at the cost of a large multiplexer of size 2n:log22n for the output.

4 Parallelizing SIDH

This section details our attempt to maximize the throughput of our architecture
throughout the SIDH protocol. Since we used the same even-odd multiplier as
[11], we scheduled our instructions with a greedy algorithm that incurs stalls if
a multiplication is not on the right even-odd cycle.

4.1 Scheduling

Our program ROM features many different routines such as a small scalar point
multiplication or isogeny evaluation of degree 4. Each instruction is 26 bits long
and proceeds as follows: bits 0–7 determine the address for port A of the RAM,
bits 8–15 determine the address for port B of the RAM, bit 16 signals a write to
port A, bits 17–19 indicate the adder operation, bit 20 indicates a read from both
RAM ports, bits 21–22 indicate multiplier operation, bits 23 and 24 indicate if
operand A and B, respectively, should point to the address of the final point
in the isogeny point queue, and bit 25 indicates if the previous bits are a stall
counter. We utilized a greedy algorithm to assemble our own assembly code that

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 199

consists of addition, subtraction, multiplication, and squaring in Fp or Fp2 to
26-bit aligned instructions. It is assumed that every routine starts on an even
cycle. Since a store is the final instruction in a routine, we also reset the multiplier
even odd at the last cycle of a routine so that the next routine starts on an
even cycle from the multiplier’s perspective. Every instruction was compiled in
order, so if an instruction needed the result from a previous instruction, then
pipeline stalls were incurred until that value was ready. The greedy algorithm
to schedule each operation would check that the RAM, addition, or multiplier
unit were available for the particular instruction. For instance, an addition in
Fp could be scheduled if the memory unit at time t, addition unit at time t +
mem latency,addition unit at time t + mem latency+add latency, and memory
unit at time t + mem latency + 2 ∗ add latency were each available, as the entire
operation must go through that exact sequence. Based on the specifications of the
dual-port RAM unit, memory load operations require 2 cycles and memory write
operations require 1 cycle. The add latency is 2 cycles for p503 and 3 cycles for
p751. The multiplication and multiplication interleave delays are 99 cycles and 68
cycles for p503, respectively, and 144 cycles and 98 cycles for p751, respectively.
If a multiplication occurred on the wrong even odd cycle, we reschedule the
operations by pushing the multiplication a single cycle forward, and pushing
any previous instructions that are not a load or multiply by 1 or more cycles,
according to the algorithm provided by [11].

4.2 Extension Field Arithmetic

As was previously stated, SIDH operates in the extension field Fp2 . For this
extension field, we use the irreducible polynomial x2 + 1, applicable to SIDH
primes of the form 2ea�ebb f − 1. With this, we propose reduced arithmetic in Fp2

based on fast arithmetic in Fp. These equations were made in a Karatsuba-like
fashion to reduce the total number of multiplications and squarings. Let i =

√−1
be the most significant Fp in Fp2 . Let A,B ∈ Fp2 and a0, b0, a1, b1 ∈ Fp, where
A = a0 + ia1 and B = b0 + ib1 Then we define the extension field arithmetic Fp2

in terms of Fp as: A + B = a0 + b0 + i(a1 + b1), A − B = a0 − b0 + i(a1 − b1),
A×B = (a0+a1)(b0−b1)+a0b1−a1b0+i(a0b1+a1b0), A2 = (a0+a1)(a0−a1)+
i2a0a1, A−1 = (a0 − ia1)(a2

0 + a2
1)

−1. Based on these representations, parallel
calculations could easily be performed for a single operation in Fp2 . For instance,
three separate multiplications in Fp could be carried out simultaneously for the
calculation of a multiplication in Fp2 . With other non-dependent instructions
in the scheduling, many multipliers can be used in parallel. Unfortunately, an
inversion in Fp was difficult to parallelize, and suffered as a result. We utilized
a k-ary method with k = 4 to perform Fermat’s little theorem for inversion. We
were able to parallelize the generation of the windows 1, 2, 3, · · · , 2k−1, but after
that, the inversion was done serially. k squarings were done in serial followed by
a multiplication. The inversion added many lines to the program ROM, and was
difficult to parallelize, showing that there may still be some merit to having a
dedicated inversion unit.

200 B. Koziel et al.

Point mult
by

Apply -
isogeny

Input point

Get -isogeny

Point in queue

Fig. 3. Acyclic graph structure for performing isogeny computation of �6.

4.3 Scheduling Isogeny Computations and Evaluations

Large-degree isogeny calculations were performed by traversing a large directed
acyclic graph in the shape of a triangle to the leaves, where a smaller degree
isogeny was computed. This is illustrated in Fig. 3. From a node in the graph,
a point multiplication by � moves to the left and an evaluation of a �-isogeny
moves to the right. Based on the cost of an isogeny evaluation and point multi-
plication, there exists an optimal strategy that traverses the graph to the leave
with the minimal computational cost. Notably, an optimal strategy is composed
of two optimal sub-strategies. Thus, by recursively optimizing sub-strategies,
the overall strategy is determined. We calculated the optimal strategy with the
Magma code provided by [4]. In this code, we used the relative ratio of a single
point multiplication by � and half of a single �-isogeny evaluation to create an
optimal strategy that emphasized point evaluations. In our implementation, we
utilize a recursive function to compute the large-degree isogeny with an opti-
mal strategy. We utilized a look-up-table in ROM to hold the optimal strategy
and efficiently traverse the acyclic graph. A queue was used to keep track of
multiple points on the current curve. As isogenies were computed, these points
were pushed through the isogenous mapping to the corresponding point on the
new curve. As a method for further parallelization, we noticed that isogeny
evaluations have typically been carried out iteratively. Thus, we attempted to
parallelize the evaluations by adding additional isogeny evaluation functions for
when there were 2 points, 3 points, · · · , up to 9 points in the queue. Specifi-
cally, there were no data dependencies between isogeny evaluations of any of the
points in the queue. Thus, our assembly code reordered many instructions in
a row that had no limiting data dependency, similar to unrolling the loop in a
software implementation. We unrolled a max of 6 iterations of the loop at a time
to ensure that enough hardware registers were available to hold intermediate
values. We found this greatly increase the speed of our isogeny computations.
For instance, this method reduced the total time to compute all 4 large-degree
isogenies from 7.15 million cycles to 4.54 million cycles for p751 and 4 replicated
multipliers. We provide an example of isogeny evaluation parallelization in Fig. 3.

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 201

Consider computing an �6-degree isogeny. Following an �-degree isogeny compu-
tation, each point in the point queue is pushed through the isogenous mapping.
We do this in parallel to utilize our hardware results more effectively. The par-
allelization is much more evident in larger degree isogeny computations. For
instance, there is an average of 4.2 points in Alice’s queue after each isogeny
computation in our p751 implementation. Parallelization of isogeny evaluation
could also be applicable to multi-core CPU implementations of SIDH. Our par-
ticular hardware implementation was able to parallelize the isogeny evaluations
because of the number of multipliers that were readily available. In a software
implementation, the multiplication and addition arithmetic might be complex
and consume most of the arithmetic units. However, because there is no data
dependency, the task to push all of the points through the isogeny could be
divided among different cores. For instance, consider pushing 8 points through
an isogenous mapping in a quad-core CPU. Each core could evaluate an isogeny
for 2 points in the queue to better take advantage of resources. Of course, there
would be overhead in distributing the task, but a nice speedup could be achieved
when there are several points in the queue.

-point mult (x6) -iso eval (x3) -iso eval (x2)

-iso eval (x2) -iso eval

-point mult (x2) -iso eval (x2)

-point mult

-iso eval

Fig. 4. Performing an isogeny computation of �6 with a sample strategy and
parallel isogeny evaluations.

4.4 Total Cost of Routines

Here, we break up the relative costs of routines within our implementation of
the SIDH protocol. Table 2 contains the results of various routines, which closely
follows the formulas provided in [4]. Ã, S̃, and M̃ refer to addition, squaring, and

202 B. Koziel et al.

Table 2. Cost of major routines for p751

Routine Ops in Fp2 #ops in Latency for n mults (cc)

(Ã) (S̃) (M̃) Protocol 2 4 6 8 10

Mont. Ladder Step (Fp) 9 4 5 751 619 495 495 495 495

3-point Ladder Step 14 6 9 751 2181 1329 1120 972 908

Mont Quadruple 11 4 8 1276 1874 1306 1151 1151 1151

Mont Triple 15 5 8 1622 1954 1289 1124 1145 1145

Get 4 Isog 7 5 0 370 586 386 367 363 363

Eval 4 Isog 6 1 9 14 1655 1461 1225 1221 1147

Eval 4 Isog (3 times) 18 3 27 255 4537 2855 2104 1917 1642

Eval 4 Isog (5 times) 30 5 45 98 7427 4212 3036 2489 2215

Eval 4 Isog (7 times) 42 7 63 16 10543 6293 4674 4168 3716

Get 3 Isog 8 3 3 478 833 496 471 434 434

Eval 3 Isog 2 2 6 12 1252 1001 812 810 734

Eval 3 Isog (3 times) 6 6 18 309 3442 2026 1461 1306 1103

Eval 3 Isog (5 times) 10 10 30 112 5638 3123 2229 1776 1535

Eval 3 Isog (7 times) 14 14 42 72 7972 4411 3154 2667 2389

Fp2 Inversion (Fp) 2 757 196 4 142307 142059 142059 141973 141973

multiplication, respectively, in Fp2 . Routines with a note of (Fp) count operations
in Fp.

– Mont. Ladder Step (Fp): We perform a single step of the Montgomery ladder
[9] in Fp, which requires 1 point addition and 1 point doubling.

– 3-point Ladder Step: We perform a single step of the 3-point Montgomery
ladder [7], which requires 2 point additions and 1 point doubling.

– Mont Quadruple/Triple: We perform a scalar point multiplication by 4 in the
case of quadrupling and scalar point multiplication by 3 in the case of tripling.

– Get � Isog : We compute an isogeny of degree �. Alice operates over isogenies
of degree 4 and Bob operates over isogenies of degree 3.

– Eval � Isog (x times): We push points through the isogenous mapping from
their old curve to their new curve. This code is unrolled x times from 1 point
to 9 points.

– Fp2 inversion (Fp): We compute the inverse of an element using Fermat’s little
theorem.

5 FPGA Implementations Results and Discussion

The SIDH core was compiled with Xilinx Vivado 2015.4 to a Xilinx Virtex-7
xc7vx690tffg1157-3 board. All results were obtained after place-and-route. The
area and timing results of our SIDH core are shown in Table 3. We focused on
3–5 replicated multipliers in our design to ensure the parallelism in SIDH could

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 203

Table 3. Implementation results of SIDH architectures on a Xilinx Virtex-7
FPGA

Type # Mults Area Time SIDH/s

FFs # LUTs # Slices # DSPs # BRAMs Freq

(MHz)

Latency

(cc × 106)

Total time

(ms)

p503 6 26,659 19,882 8,918 192 40 181.4 3.80 20.9 47.8

8 32,541 23,404 11,205 256 37.5 186.8 3.63 19.4 51.5

10 39,446 28,520 12,962 320 34.5 175.9 3.48 19.8 50.5

p751 6 36,728 25,975 11,801 282 47 177.3 8.21 46.3 21.6

8 46,857 32,726 15,224 376 45.5 182.1 7.74 42.5 23.5

10 56,979 40,327 18,094 470 44 172.6 7.41 42.9 23.3

be taken advantage of. The implementation was optimized to reduce the net
delay to maximize the clock frequency. These are constant-time results. Our
SIDH parameters are discussed in Sect. 2. As these results show, the architec-
tures continue to reduce the total number of clock cycles for SIDH, even at
10 multipliers. This is primarily a result of the parallelism achieved in isogeny
evaluation and the 3-point ladder. Furthermore, the architecture appears fairly
scalable. Moving from a 503-bit prime to a 751-bit prime did not have much
impact on the maximum frequency of the device and added a small proportion
of additional resources. For 5 multipliers under the 751-bit prime, approximately
16.71% of the Virtex-7’s slices were occupied. Many more resources could be used
to attempt more parallelization, but the clock frequency may suffer as a result,
which is evident in our implementations of 5 replicated dual-multipliers.

Comparison to Previous Works: The only other hardware implementation
is [11], which served as an introductory look into the SIDH protocol on hard-
ware. We provide a rough comparison for 3 replicated multipliers at the 512-bit
security level in Table 4. Our architecture performs an entire SIDH key-exchange
approximately 1.61 times faster than that of [11]. This is most likely a result of
using the new projective isogeny formulas as well as parallelism in the isogeny
evaluations. In terms of area, our architecture requires about 15% less flip-flops,
look-up-tables, and slices, but requires about 1.5 times as many 36k block RAM
modules.

Table 4. Hardware comparison of SIDH architectures on a Virtex-7 with 3
replicated multipliers

Work Prime

(bits)

Area Time

FFs # LUTs # Slices # DSPs # BRAMs Freq

(MHz)

Latency

(cc × 106)

Total time

(ms)

Koziel et al. [11] 511 30,031 24,499 10,298 192 27 177 5.967 33.7

This work 503 26,659 19,882 8,918 192 40 181.4 3.80 20.9

204 B. Koziel et al.

Overall, this is to be expected as our architecture does not include an inver-
sion unit. In [11], the Fp2 inversion required about 1886 cycles for each isogeny
computation. Our isogeny computations did not require this expensive opera-
tion and we were able to parallelize the projective isogeny evaluations that are
more complex than their affine isogeny couterparts. The difference in prime sizes
does not make much of a difference for area because both are based on a radix
216 multiplier. Most importantly, our implementation is constant-time and the
previous one is not, which provides security against simple power analysis and
timing attacks. Next, we look at the overall speed of this implementation com-
pared to the state-of-the-art, shown in Tables 5 and 6, which demonstrate the
fastest SIDH implementations over approximately 512 and 768-bit keys. These
feature approximately 85 and 128-bits of quantum security, respectively. We
compare against our implementations with 4 replicated dual-multipliers, which
featured the fastest times for our results. These benchmarks have shown that
the total time of the SIDH protocol has continued to drop since its inception by
Jao and De Feo in [3]. Our 512-bit implementation operated approximately 74%
faster than the previous best implementation in hardware in [11]. These results
are approximately 48% faster than those of [4], despite the powerful nature of
Haswell architectures. Smaller SIDH implementations on ARM also exist [17],
but these utilize far fewer resources so it is difficult to make a fair comparison.

Table 5. Comparison to the software implementations of SIDH over 512-bit
keys

Work Platform Smooth isogeny Time (ms)

Alice Bob Alice Bob Total

Prime Rnd 1 Rnd 1 Rnd 2 Rnd 2 Time

Jao et al. [3] 2.4GHz Opt 225331617 − 1 365 318 363 314 1360

Jao et al. [7] 2.4GHz Opt 22583161186 − 1 28.1 28.0 23.3 22.7 102.1

Azarderakhsh et al. [16] 4.0GHz i7 22583161186 − 1 - - - - 54.0

Koziel et al. [11] Virtex-7 225331617 − 1 9.35 8.41 8.53 7.41 33.70

This work (M = 2 × 4) Virtex-7 22503159 − 1 4.83 5.25 4.41 4.93 19.42

Table 6. Comparison to software implementations of SIDH over 768-bit keys

Work Platform Smooth isogeny Time (ms)

Alice Bob Alice Bob Total

Prime Rnd 1 Rnd 1 Rnd 2 Rnd 2 Time

Jao et al. [7] 2.4GHz Opt 22583161186 − 1 65.7 54.3 65.6 53.7 239.3

Azarderakhsh et al. [16] 4.0GHz i7 238632422 − 1 - - - - 133.7

Costello et al. [4] 3.4GHz i7 23723239 − 1 15.0 17.3 13.8 16.8 62.9

This work (M = 2 × 4) Virtex-7 23723239 − 1 10.6 11.6 9.5 10.8 42.5

Fast Hardware for Supersingular Isogeny Diffie-Hellman on FPGA 205

6 Conclusion

Overall, this paper served as the first constant-time hardware implementation of
the supersingular isogeny Diffie-Hellman protocol over projective isogeny formu-
las. As our results show, our architecture is scalable and is even faster than the
previously fastest implementations of the protocol on Haswell PC architectures.
Hardware can take advantage of much more parallelism in Fp2 operations and
isogeny evaluations over standard software. Our implementation runs at 48%
faster than a Haswell architecture running an optimized C version of the same
SIDH protocol. By removing the multitude of inversions in the protocol, this new
implementation features a faster constant-time performance with less resources
than the previous best hardware implementation in the literature. Isogeny-based
cryptography represents one possible solution to the impending quantum com-
puting revolution because it features forward-secrecy, small keys, and resembles
current protocols based on classical ECC.

Acknowledgment. This material is based upon work supported by the NSF CNS-
1464118 and NIST 60NANB16D246 grants awarded to Reza Azarderakhsh.

References

1. Chen, L., Jordan, S.: Report on Post-Quantum Cryptography. NIST IR 8105 (2016)
2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-

toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS
1994), pp. 124–134 (1994)

3. Jao, D., Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071,
pp. 19–34. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25405-5 2

4. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814,
pp. 572–601. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 21

5. Rostovtsev, A., Stolbunov, A.: Public-Key Cryptosystem Based on Isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006)

6. Childs, A., Jao, D., Soukharev, V.: Constructing Elliptic Curve Isogenies in Quan-
tum Subexponential Time (2010)

7. De Feo, L., Jao, D., Plut, J.: Towards quantum-resistant cryptosystems from super-
singular elliptic curve isogenies. J. Math. Crypt. 8(3), 209–247 (2014)

8. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer,
New York (1992)

9. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48, 243–264 (1987)

10. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Report
2006, 291 (2006)

11. Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-Quantum Cryptogra-
phy on FPGA Based on Isogenies on Elliptic Curves. Cryptology ePrint Archive,
Report 2016, 672 (2016). http://eprint.iacr.org/2016/672

12. Karmakar, A., Roy, S., Vercauteren, F., Verbauwhede, I.: Efficient finite field multi-
plication for isogeny based post quantum cryptography. In: International Workshop
on the Arithmetic of Finite Fields, WAIFI 2016, to appear

http://dx.doi.org/10.1007/978-3-642-25405-5_2
http://dx.doi.org/10.1007/978-3-662-53018-4_21
http://eprint.iacr.org/2016/672

206 B. Koziel et al.

13. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput.
44(170), 519–521 (1985)

14. McIvor, C., McLoone, M., McCanny, J.V.: High-radix systolic modular multipli-
cation on reconfigurable hardware. In: IEEE International Conference on Field-
Programmable Technology, pp. 13–18, December 2005

15. Orup, H.: Simplifying quotient determination in high-radix modular multiplication.
In: Proceedings of the 12th Symposium on Computer Arithmetic, ARITH 1995,
pp. 193–199. IEEE Computer Society, Washington (1995)

16. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography, AsiaPKC 2016, pp. 1–10. ACM,
New York (2016)

17. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Mozaffari-Kermani, M.: NEON-
SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key
exchange protocol on ARM. In: 15th International Conference on Cryptology and
Network Security, CANS (2016)

AEZ: Anything-But EaZy in Hardware

Ekawat Homsirikamol and Kris Gaj(B)

Electrical and Computer Engineering Department,
George Mason University, Fairfax, VA, USA

{ehomsiri,kgaj}@gmu.edu

Abstract. We provide the first hardware implementation of AEZ, a
third-round candidate to the CAESAR competition for authenticated
encryption. Complex, optimized for software, and impossible to imple-
ment in a single pass, AEZ poses significant obstacles for any hardware
realization. Still, we find that a hardware implementation of AEZ is
quite feasible. On Xilinx Virtex-6 FPGAs, our single-core design has a
throughput exceeding 3.4 Gbit/s, and uses about 4600 LUTs and about
1250 CLB slices. In terms of the throughput to area ratio, this per-
formance places it on the 12th position among 28 CAESAR candidate
families benchmarked during Round 2 of the competition (assuming the
key size of at least 96 bits, and the limit on the message size equal to
211 − 1 bytes). At the same time, AEZ targets a stronger notion of secu-
rity against the cipher misuse than all other algorithms implemented and
ranked ahead of it in the Round 2 hardware benchmarking study.

Keywords: Authenticated ciphers · AEAD · CAESAR · FPGA · Hard-
ware · MRAE

1 Introduction

Authenticated encryption (AE) has become the preferred approach, in most set-
tings, for achieving symmetric encryption. This paper describes the first hard-
ware implementation of AEZ [9,10], a new AE scheme that targets an unprece-
dentedly strong security notion. Let us back up and provide a bit of context.

The AE Goal. An AE scheme takes in a key, a nonce, associated data (AD),
and a plaintext. For majority of schemes, it returns a ciphertext and a tag. For
some schemes, such as AEZ, it returns just a ciphertext (which is then typically
longer than the plaintext). Decryption reverses the process, using the same key,
nonce, and associated data (AD), as well as the ciphertext and, optionally, the
tag returned by encryption, as an input. It returns either a plaintext or an
indication of invalidity. There are two aims. Confidentiality requires ciphertexts
to be computationally indistinguishable from random bits, while authentication
assures that no one should be able to produce new and valid ciphertexts without
knowing the key.

At present, there are just two widely used AE schemes, CCM and GCM.
Both are standardized by ISO and NIST, but neither is particularly modern,
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 207–224, 2016.
DOI: 10.1007/978-3-319-49890-4 12

208 E. Homsirikamol and K. Gaj

efficient, or versatile. To address this, the CAESAR competition for AE schemes
began in 2012, attracting some 57 submissions [5].

The AEZ Scheme. AEZ [9,10] is one of the more unusual CAESAR candidates.
Where many submissions tried to excel in hardware efficiency, software efficiency,
or both, AEZ focused on a new and unusually strong security notion. That goal,
robust authenticated encryption (RAE), guarantees all that a conventional AE
scheme does and more. First, it must work as well as possible even if nonces do
repeat. That is the goal of misuse-resistant authenticated encryption (MRAE)
[15]. But an RAE scheme goes further, achieving this as-good-as-possible behav-
ior for any choice of ciphertext expansion (how much longer a ciphertext is than
a plaintext), including none at all.

The Cost of RAE. Proponents of RAE and MRAE think that schemes
designed to meet these ends will be easier to use and less prone to misuse.
But achieving these goals comes at a cost, starting with the fact that they
can’t be achieved by any one-pass scheme. (A one-pass scheme reads each input
and writes each out left-to-right, employing a constant amount of memory.) To
encrypt, you must make two passes over the plaintext or employ a buffer as big
as the plaintext is long. This is no doubt the reason why, despite the importance
of nonce-reuse security, very few CAESAR candidates tried to achieve MRAE.
The only Round 2 schemes the authors are aware of are AEZ, Deoxys, HS1-
SIV, and Joltik. The comparison among the four of the above schemes in terms
of security is beyond the scope of this paper. However, for fairness, it should
be mentioned that the security provided by AEZ has a birthday bound of 264

blocks, limited by the state size of the algorithm, which is among the lowest
among the Round 2 CAESAR candidates. That means that there are easy dis-
tinguishing and forging attacks by the time the adversary queries AEZ with
about 264 blocks of message, AD, or nonce. However, the users are protected
against these attacks by staying below 248 bytes of data (about 280 TB), by
that time, they need to rekey. Increasing this birthday bound was clearly and
explicitly a non-goal for the designers of AEZ [10, p. 13]. On the hardware bench-
marking side, no VHDL/Verilog implementations of the nonce misuse resistant
variants of Deoxys and Joltik, compliant with the CAESAR Hardware API, have
been reported to date.

Achieving RAE (which, again, goes beyond MRAE) is an especially tall
order, encompassing the ability to encipher arbitrary-length strings. AEZ aims
to achieve this with about the efficiency of AES-CTR. The result is the most
complicated symmetric encryption scheme we know. AEZ’s description spans 1.5
pages of dense pseudocode (excluding the definition of the AES round function
and Blake2b) [10].

After explaining that AEZ’s name was meant to suggest both authenticated
encryption (AE) and easy (EZ), its authors warn that the alleged easiness refers
only to ease of use. “Writing software for AEZ is not easy,” they write, “while
doing a hardware design for AEZ is far worse” [10, p. 2]. After some interac-
tion with us, the AEZ designers added in that “From the hardware designer’s

AEZ: Anything-But EaZy in Hardware 209

perspective, AEZ’s name might seem ironic, the name better suggesting anti-
easy, the antithesis of easy, or anything-but easy” [10, pp. 2–3]. We note that a
prior attempt at implementing AEZ by a Master-level student did not succeed,
the designer concluding that AEZ was “hardly suitable for hardware” [3, p. 30].

Contributions. In this paper we overcome these difficulties and develop a fully-
functional hardware realization of AEZ. Our realization conforms to the CAE-
SAR Hardware API used in the CAESAR competition [11]. We implement every-
thing in the AEZ spec except for the parts that handle arbitrary key lengths,
arbitrary ciphertext expansion, and vector-valued AD. Please note that we are
not aware of any other Round 2 CAESAR candidate offering arbitrary ciphertext
expansion and vector-valued AD.

Our implementation achieves roughly the same throughput as the comparable
implementation of AES-GCM, and takes almost the same area as the compa-
rable implementation of OCB. In terms of the throughput to area ratio, our
design ranks no. 12 out of 28 benchmarked Round 2 families (assuming the key
size greater or equal to 96, and the limit on the message size equal to 211 − 1
bytes). It trails AES-GCM, only because of the larger area. It outperforms many
other AES-based CAESAR candidates, such as CLOC, ELmD, OCB, AES-OTR,
SILC, POET, AES-COPA and SHELL.

2 AEZ Overview

AEZ is built on a generalized block cipher, Encipher. This object is like a conven-
tional block cipher except that (1) you can feed it any number of bytes (which
will get enciphered into the same number of bytes), and (2) you can also provide
a tweak, which, in this case, is a vector of strings. The tweak is a non-secret value
that individualizes the permutation associated to the key.

To create an RAE scheme from its generalized block cipher, AEZ does the
following: it takes the input M and it appends to it τ zero bits, where τ is the
ciphertext expansion the user wants. Our realization assumes τ = 128. Then
you encipher. The result is the final ciphertext. To decrypt with AEZ, reverse
the process, deciphering the ciphertext to get an augmented message. If the
last τ bits of this augmented message is anything but the all-zero string, the
ciphertext is invalid. Otherwise, the rest is the plaintext. For both enciphering
and deciphering one uses a tweak that consists of three components (assuming
a string-valued AD): an encoding of the ciphertext expansion τ , the nonce N ,
and the AD A.

Figure 1 describes the generalized block cipher Encipher. The message, M , is
already assumed to be extended with τ zeros that we wish to encipher. Initially,
attend only to the top-left and top-right portions of the diagram, and assume
that M = M1M

′
1 · · · MmM ′

mMuMvMxMy has a multiple of 32 bytes (but at least
64 bytes). Each subscripted variable is 16 bytes.

The boxes labeled by pairs (j, i) in the diagram show the application of a
tweakable block cipher (TBC). The key is always K, the key we wish to encipher

210 E. Homsirikamol and K. Gaj

Fig. 1. Illustration of AEZ enciphering, adapted (with permission) from Fig. 5 of the
AEZ spec [10]. Rectangles with pairs of numbers are tweakable block ciphers, the pair
being that tweak (the key, always K, is not shown). Top row: enciphering a message M
of (32 or more bytes) with AEZ-core. The i-block (top left) is used for the bulk of the
message, but the xy-block (top right) comprises the last 32 bytes, while the uv-block
(top middle) comprises the prior 0–31 bytes. (The picture shows a uv-block of 17–
31 bytes.) The string X is computed via X ← X1 ⊕ · · · ⊕ Xm ⊕ Xu ⊕ Xv; if Xu or
Xv is undefined then this term is omitted in computing X. The string Y is computed
analogously. Bottom left: AEZ-hash computes Δ =

⊕
Δi from a vector-valued tweak

encoding the ciphertext expansion τ , the nonce N , and the AD A. Its i-th component
Z1 · · · Z� is hashed as shown. Bottom right: AEZ-hash, when operating on a string
M = L R of 16–31 bytes. More rounds are used if M has 1–15 bytes.

under, while the pair in the box is the tweak. Thus the box labeled (1, 1) maps K
and the 16-byte M ′

1 to an unnamed 16-byte value that is xor’ed with M1 to get
another 16-byte value, which is fed into the block cipher labeled (0, 0), and so
on. The figure’s caption should make the notation clear.

The middle-top portion of the diagram hints at what happens when the
plaintext is not a multiple of 32 bytes. For all other AE schemes we know,
messages that are not multiples of the block size give rise to a final fragment
that includes all the leftover bytes of the message. For AEZ, any leftover bytes
form the penultimate chunk instead. This is useful because it ensures that, when
16 or fewer zero bytes are appended to the end of a message, they will always land
in a specific block, rather than spanning two. If we want to shortcut the rejection
of invalid messages, this feature has a potential to simplify the implementation.

AEZ: Anything-But EaZy in Hardware 211

To encipher messages with fewer than 32 bytes, one bypasses the top row
of Fig. 1 completely and runs the Feistel network shown at the bottom right
instead, splitting the message M into equal-length halves. This algorithm is
called AEZ-tiny; the top row is AEZ-core. The two-algorithm approach, one for
short messages and another for longer ones, mirrors a large body of crypto-
graphic work in which techniques for “format preserving encryption” (FPE) do
not resemble the modes of operation for a “wideblock block cipher.”

The TBC used in AEZ is based on AES4 and AES10, which are 4 or 10 round
versions of AES. The first is depicted in Fig. 1 as a (j, i)-labeled rectangle for
j ≥ 0; the second is a (j, i)-labeled square for j = −1. Neither uses the AES key
schedule. In the end, the bulk of the work for enciphering 32 bytes from a long
message—one “column” from the top-left of the figure—is the 20 AES rounds
associated to the five AES4-based TBC calls. So 10 AES rounds per 16 bytes,
the same overhead as AES itself.

One further detail concerns the processing of the empty message M = ε,
which AEZ gives special attention to since this is a fairly natural way to realize
a message authentication code, the string that is authenticated being the AD.

Among the pleasant characteristics of AEZ is that only the forward direc-
tion of the TBC is ever needed, and enciphering and deciphering are virtually
identical. Our hardware design benefits from these choices.

3 Hardware Implementation Challenges

AEZ is the most challenging CAESAR candidate to implement in hardware. The
reasons for this are summarized below.

Three Algorithms in One. AEZ defines three substantially different algo-
rithms: (a) AEZ-prf to process empty messages, (b) AEZ-tiny to process mes-
sages of the size smaller than 32 - authenticator length (in bytes) (= 16 bytes
for recommended values of parameters), and (c) AEZ-core to process all remain-
ing message sizes. Although these algorithms share the same major building
block, TBC, they have a very different internal structure, and implementation
requirements. A hardware designer is faced with the decision to either implement
these algorithms separately (without resource sharing), which may substantially
increase the circuit area, but simplifies scheduling and control, or base the imple-
mentation on a single instance of TBC, which has the opposite implications. In
our design, we chose the latter approach in order to address the already quite
substantial area requirements of AEZ.

Two-Passes. As shown in Fig. 1, AEZ-core requires two passes. The first pass
is used to calculate S, which is a function of the nonce (public message number),
all blocks of the associated data, all blocks of the message, the authenticator
length τ , and the key. In the second pass, S is used in calculations involving all
message blocks. A hardware designer is faced with the decision to either repeat

212 E. Homsirikamol and K. Gaj

approximately 40 % of computations involving all message blocks, already done
in the first pass, or to store intermediate results of the size of the entire mes-
sage in internal memory. In order to avoid a substantial performance penalty,
and keeping in mind that (a) packet sizes in modern communication protocols
are relatively small (typically at or below 1500 bytes), and (b) modern FPGAs
contains large blocks of memory, which often remain unused by the main crypto-
graphic and data processing tasks, we have decided to follow the latter approach.

Input Re-Blocking. In a typical hardware implementation of an authenti-
cated cipher, input blocks are provided to the cipher module sequentially, one
by one. Only one block is processed at a time. All blocks, except the last one
have the same length. The last block is often just padded, and then processed
similarly (although rarely identically) as other blocks. After each message block
is processed, the corresponding ciphertext block leaves the cipher module. As
shown in Fig. 1,

– in AEZ-tiny, the blocks L and R have variable length depending on the size of
the message, |M |,

– in AEZ-core, the blocks Mu and Mv have variable length depending on the
size of the message, |M |. On top of that (a) neither of these blocks is the last
block of the message, and (b) for certain message lengths |Mu| = 0. As a result,
the implementation of AEZ must internally create and process blocks of data
of unconventional sizes, which amounts to input “re-blocking”. In hardware,
such operation requires variable shifts and rotations, as well as clearing (also
known as masking) of variable-size fragments of a block. All these functions
have quite substantial area requirements. Additionally, “re-blocking” often
requires simultaneous processing of at least two subsequent message blocks,
before any of the corresponding ciphertext blocks is released.

Treatment of Incomplete Blocks. The treatment of incomplete blocks is a
particularly complex operation in AEZ. As already mentioned in the previous
section, these blocks are not the last blocks of the message, and in spite of
that still require padding. Additionally, as shown in Fig. 1, they also require
substantially different parameters j and i of the Tweakable Block Cipher (Ej,i

K).

Need for Pre-computations. In order to support the efficient implementation
of TBC, the precomputations are highly desirable. The time of these precompu-
tations and the amount of memory required to store the precomputed look-up
tables is dependent on the maximum size of the message and the maximum size
of associated data. See Sect. 4.2 for details.

Scheduling. As a result of all the aforementioned factors, the complexity of
scheduling and the subsequent difficulty of developing a controller for the hard-
ware implementation of AEZ exceeds the difficulty of any other symmetric cryp-
tographic algorithm the authors are aware of, including all other two-pass CAE-
SAR candidates.

AEZ: Anything-But EaZy in Hardware 213

4 Design Architecture

4.1 Interface, Protocol, and Design Parameters

Our implementation is based on the CAESAR Hardware API for Authenticated
Ciphers, specified in [11], and its Appendix [7]. This API specifies both the
interface and the detailed protocol for communication with the core. On top of
that, for high-speed implementations, the authors of this API suggest the use
of a top-level design, shown in Fig. 2, and provide the corresponding supporting
codes implementing the Pre-Processor, Post-Processor, and CMD FIFO. Our
implementation takes full advantage of these resources.

Our hardware design is fully optimized for the maximum throughput to area
ratio. Its API and performance makes it suitable for use as a part of practical
industry-grade systems based on standard bus interfaces such as ARM AXI-4
(Advanced eXtensible Interface 4) [2].

The hardware design presented in this paper aims to be as complete as the
software implementation for the Round 2 version of AEZ (v4), developed by
the AEZ team [13,14]. One significant difference between the software API and
the hardware API is as follows: In the software API [1], the only output from
authenticated encryption is the Ciphertext, denoted as c, of the length clen. In
our hardware API, the output from authenticated encryption is divided into the
Ciphertext and the Tag. In case of AEZ, which does not explicitly specify the
tag, the tag is understood as follows. For non-empty messages, the tag is a result
of enciphering a sequence of zeros, called an authenticator, of the length of τ
bits, using the AEZ Encipher algorithm. For empty messages, the tag is a result
of calculating the special AEZ-prf function of nonce, associated data, and the
authenticator length τ .

The supported parameters are: key length = 384 bits, nonce length = 96 bits,
authenticator length (denoted as ABYTES for the length in bytes and τ for the
length in bits) = tag length = 16 bytes = 128 bits, maximum AD = 210 − 1 bytes,
and maximum message/ciphertext size = 211 − 1 bytes. The maximum sizes of
the message, ciphertext, and AD were chosen to support the maximum length
of the Ethernet v2 packets [12], equal to 1500 bytes. Additionally our choices

Post

Out
Data

Two−Pass
FIFO

FIFO
CMD

Public
Data In

AEAD

Processor

Control
CipherCore (AEZ)

Datapath
Processor

Pre

Secret
Data In

Fig. 2. Top-level design of a two-pass authenticated cipher.

214 E. Homsirikamol and K. Gaj

limit the amount of memory required to implement the Two-Pass FIFO. All
these choices are fully compliant with the official CAESAR Hardware API for
Authenticated Ciphers, approved by the CAESAR Committee [11].

Our design supports both authenticated encryption and authenticated
decryption operation, in such a way that only one of these two operations
can be executed at a time (half-duplex). This way our design demonstrates the
algorithm’s ability to share resources between encryption and decryption. Key
scheduling, padding and handling of incomplete blocks is implemented fully in
hardware. The result of the decrypted message authentication (Success or Fail-
ure) is calculated within the core itself. Any unused portions of the last words
of outputs are cleared (filled with zeros) before releasing these words outside of
the cipher core.

The secret data input ports, used to enter the key, are separated from the
public data input ports, used to enter all remaining data. The Public Data Input
(PDI) and Data Output (DO) ports have the data port width equal to 64 bits,
the Secret Data Input (SDI) port has the width of 32 bits. Our implementation
has only one clock and supports only one input stream at a time.

4.2 Tweakable Block Cipher

Design. AEZ is built on top of the Tweakable Block Cipher (TBC) denoted
as Ej,i

K . In Fig. 1, each call to TBC is denoted as a rectangle with parameters
(j, i). The parameter j has discrete integer values −1, 0, 1, and 2 for processing
message blocks, and values greater or equal to 3 for processing of nonce and
associated data. The parameter i has values varying between 0 and m. For
processing of messages, the dependence between the message length (in bytes)
and m is as follows: 32 · (m+1) ≤ message length < 32 · (m+2). For processing
of messages, m + 1, is the number of complete 32-byte message block pairs in
Message extended with the 16-byte authenticator. For processing of AD, l is
the number of complete 16-byte blocks of AD. When processing incomplete AD
blocks, as well as when j = 0 or −1, i is set to special values shown in Fig. 1.

The block diagram of the TBC module is shown in Fig. 3. Primary ports of
the module are shown in bold font: X is the data input, Y is the result, K is
the key. The shaded region is used to calculate Δ, which is a variable dependent
on the key K and the parameters j and i. The remaining region is used to
perform AES calculations on X ⊕Δ, and an optional XOR of the result of these
calculations with Δ.

In the shaded region, the x2 module represents the Galois field multiplica-
tion by two. I-RAM and J-RAM are two memories used as look-up tables for the
precomputed expressions of the form of 2P I and 2PJ , where P = 0..15. The T
register is used to store intermediate values used for the initialization of I-RAM
and J-RAM. The Δi+1 register is used for computing the proper value of Δ to be
used by the unshaded region.

Based on the pseudocode of AEZ [10, p. 7] and our assumption about the
size of Nonce (96 bits), Δ can take the following values:

AEZ: Anything-But EaZy in Hardware 215

AES

I
J
L

ROM

3
0

6 2

x2

44

4

0 1

round

+3
6

3

x2

i

i+1

0

0

1 2 3 4

0 1

0 0 1

0
1

I−RAM

0
1
2

384

5
4

type

rkey

L

J

I

L

J−RAM

addr

addr

I J

210

x2

T

State

X

Y

K

BN

bn

Fig. 3. Block diagram of TBC. Buses have the width of 128 bits unless specified other-
wise.

– iJ for j = −1, 1 ≤ i ≤ 5
– iI for j = 0, i = 0, 1, 2, 4, 5, 6
– (23+�(i−1)/8� + ((i − 1) mod 8))I for j = 1, 2, 1 ≤ i ≤ m
– 2j−3L for j = 4, 5, i = 0
– 2j−3L ⊕ (23+�(i−1)/8� ⊕ ((i − 1) mod 8))J for j = 3, 5, 1 ≤ i ≤ l.

where,

– j = 3, 4, and 5 are used only inside of AEZ-hash(K,T), where T = ([τ] 128,
N, A).

– (j = 3, i = 1) is used to process the authenticator length, expressed using
128-bits, [τ] 128.

– (j = 4, i = 0) is used only to process a 96-bit Nonce, N, i.e., one incomplete
block.

– (j = 5, i ≥ 0) is used only to process AD, which may include an incomplete
block (for which i = 0).

Under the assumption that the maximum AD size is 210 − 1 bytes and the
maximum message size is 211−1 bytes, the maximum value of bn = i−1 is equal
to max(bn) = max(i−1) = max(m−1, l−1) = max(l−1) = � 210−1

24 �−1 = 26−1.
Thus, max(3 + � i−1

8 �) = 3 + � 26−1
8 � = 3 + 7 = 10 ≤ 15.

The total number of clock cycles required to pre-compute Δ is based on the
number of clock cycles required to calculate the longest possible Δ term, shown
in Eq. (1).

Δ ← 2j−3L ⊕ (23+�(i−1)/8� ⊕ ((i − 1) mod 8))J (1)

216 E. Homsirikamol and K. Gaj

The generalization of Eq. (1) to encompass all possible values of j is shown in
Eq. (2), where Init = 2j−3L or 0, bn = i − 1, and A = I, J , or 0.

Δ ← Init ⊕ (bn mod 8)A ⊕ (23+�bn/8�)A (2)

Further transformation to convert all terms into 2P representation is shown in
Eq. (3), where bn[b] represents the bit location of bn.

Δ ← Init ⊕ (bn[0])A ⊕ (2 · bn[1])A ⊕ (4 · bn[2])A ⊕ (23+bn[6:3])A (3)

Each term in Eq. (3) requires one clock cycle to calculate. As a result, the
maximum number of clock cycles necessary to calculate Δ is 5.

In the unshaded region, the Δi register is used to store the computed Δ for
the final, conditional ⊕ Δ operation. This register also frees up the Δi+1 register
in the shaded region to allow the pre-computation of Δ for the next input block.

The State register is used to store an intermediate value of the state, used
as an input to the combinational AES round transformation, denoted by AES,
or as an output from the entire TBC function. I, J, and L registers hold three
separate 128-bit portions of the 384-bit K. These values serve as round keys to
the AES round module. The output of ROM is used to select each round key using
the 4-bit round signal and the 2-bit type signal. The type is used to select a key
set (k1, k2, or K). The reader should refer to the pseudocode of AEZ, algorithm
Ej, i
K (X), for the exact meaning of k1 and k2 [10, p. 7]. The total number of clock

cycles required to compute the AES-based transformation, AES10k, AES4k, or
AES4kj

, is equal to the number of AES rounds plus 1. Thus, depending on a
particular transformation, this number is equal to either 5 or 11 clock cycles.

Operation. During the one-time pre-calculations, dependent only on the key
K, the I, J , and L registers are initialized with the appropriate portions of K.
Then, the RAM modules in the shaded region are filled with 2P · A, where A =
I or J , and P = 0..15. The initialization of I-RAM is achieved by loading I to the
T register. The T value is then doubled during each of the subsequent 15 clock
cycles. All intermediate values of T are stored at the consecutive locations of
I-RAM. The counter round, incremented from 0 to 15, is used to address I-RAM
during these pre-computations. The same procedure is used for the initialization
of J-RAM.

Once the look-up tables stored in I-RAM and J-RAM are initialized, the
processing of inputs X can start. A typical operation for each 128-bit block
X is separated into two stages. The first stage, located in the shaded region of
the block diagram, pre-computes the value of Δ, which is dependent on the val-
ues of i, j, and K. The second stage, located in the unshaded region, uses the
calculated Δ to perform the AES-based computations. The operations of these
two stages are categorized into different modes of operation depending on the
input parameters j and i, as shown Table 1.

The two stages operate in tandem, with specific actions determined by the
mode, dependent on the values of j and i, and used by the controller. In case the

AEZ: Anything-But EaZy in Hardware 217

Table 1. Modes of operation for TBC. Note: α = 23+bn[6:3]A where A = I or J . Final-
ization denotes the final XOR with Δ.

Mode (j, i) First stage (pre-computation) Second stage (main round)

Init I or J α Round Key Finalization

0 (0, x) 0 I No 4 k1 No

1 (1, x) 0 I Yes 4 k1 No

2 (2, x) 0 I Yes 4 k2 No

3 (3, 1) L J Yes 4 k1 Yes

4 (4, 0) 2L J No 4 k1 Yes

5 (5, 0) 4L J No 4 k1 Yes

6 (5, x) 4L J Yes 4 k1 Yes

7 (−1, x) 0 J No 10 K No

second stage requires a much longer computation time (mode = 7), the subse-
quent operation of the first stage is stalled until the second stage is completed.
For each mode of operation, the first stage begins its operation from the initial-
ization of the Δi+1 register with the Init value. If j > 0 and i > 0, Δi+1 is then
XORed with (bn mod 8) A = 2bn[0]A⊕2bn[1]A⊕2bn[2]A using three clock cycles.
In the last clock cycle of the first stage computations, Δi+1 is XORed with α.

The second stage, in the first clock cycle, XORs the pre-computed Δ value
with the input X. The remaining clock cycles are spent on computing the AES
rounds. Finalization is performed in the last clock cycle, if required.

Both stages operate in parallel, with the second stage performing calculations
dependent on the current inputs X, j, and i, and the first stage performing
calculations dependent on the next set of inputs j and i.

4.3 CipherCore

The CipherCore Datapath of AEZ is shown in Fig. 4. In order to limit the size of
this block diagram and preserve its readability, control signals, serving as inputs
to majority of medium-level components, such as TBC, NPAD, MASK and PAD, are
not explicitly shown in this diagram.

TBC is the main encryption module. Its internal structure and operation is
described in Sect. 4.2. This module serves as a focal point for all processing needs
in our design. It processes 128 bits of data at a time (half of a block pair for
message/ciphertext and a full block for associated data). The surrounding logic
is used to facilitate the transfer of data and storage of intermediate results for the
main processor. The following description summarizes the usage of the primary
auxiliary units.

The T register holds data that is being operated on by TBC. It is also used as
a temporary register to store intermediate values when data shifting is required.
The XY register holds the accumulated value of Δ from Fig. 1 or Δ ⊕ XY where
XY = XY1 ⊕ . . . ⊕ XYm ⊕ XYu ⊕ XYv and XY = X for the first pass, and Y
for the second pass.

218 E. Homsirikamol and K. Gaj

bdi

MASK

Byte
Barrel

Rotator

==?

==?

round
tiny

123 0567 4

2 1 0

10 32
2

0

LSHF4

0
1PAD

1 2 30

95
0

0
1
2

0

0

2 1 0

0

01

01

msg_auth_valid

0
10

XYHash

0

0
1
2

0

0 1

bdo

XY

S

L

L

T

O

TBC

0

X6

key

0
4

0

NPAD

0
1

fdo

fdi
fdi

τ

bdo

bdi

bdi

(tag)

bdi

(npub)

(data)

(data)

(data)

(exp_tag)

Fig. 4. The CipherCore Datapath of AEZ. Buses have the width of 128 bits unless
specified otherwise.

The S register is used to hold the S value calculated at the end of the first
pass, during processing of Mx and My, as shown in Fig. 1. The O register is used
to hold any output that needs to be delayed in order for the output format to
be the same as in the software implementation. The NPAD module performs 10*
padding for the 96-bit nonce. The MASK and PAD modules are used to perform
masking and padding operations required during processing of the last-but-one
message block pair with indices u and v, as well as during AEZ-Tiny operations.

The Byte Barrel Rotator module is a variable rotation module. It can
rotate by any integer multiple of a full byte. LSHF4 is a 4-bit left shifter used
only for the AEZ-Tiny operation. It is required when an input block is of an odd
size in bytes, and data needs to be split at a boundary of a nibble.

5 Timing Analysis

5.1 Latency

The design latency is given by Eq. (4). It is a function of THash, TPRF , TTiny

and TCore, shown in Eqs. (5), (6), (7), and (8), respectively. TCore is a function of

AEZ: Anything-But EaZy in Hardware 219

TFull, TUV , and TXY shown in Eqs. (9), (10), and (11), respectively. In all these
equations |AD| and |M | represent the lengths of AD and message, respectively,
in bits.

The detailed formulas are important, as they allow the accurate timing analy-
sis for multiple AD and message sizes, and not only for the case of long messages.

Latency = Tkeysetup + THash + TPRF + TTiny + TCore

= 36 + THash + TPRF + TTiny + TCore

(4)

THash = 15 +
⌈ |AD|

128

⌉

· 5 (5)

TPRF =

{
0, if |M | > 0
14, otherwise

(6)

TTiny =

{
0, if |M | ≥ 128
49, otherwise

(7)

TCore =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if |M | < 128
12 + TXY , elif |M | = 128
12 + TUV + TXY , elif (|M | − 128) < 256
12 + TFull + TXY , elif (|M | − 128) mod 256 = 0
12 + TFull + TUV + TXY , otherwise

(8)

TFull = 25 ·
⌊ |M | − 128

256

⌋

+ 5 (9)

TUV = 11 ·
⌈

(|M | − 128) mod 256
128

⌉

+ 13 +

{
2, if (|M | − 128) mod 256 = 128
4, otherwise

(10)

TXY =

{
38, if (|M | − 128) mod 256 > 0
32, otherwise

(11)

In Fig. 5, we illustrate the quite complex dependence of the (a) latency in
clock cycles, and (b) number of clock cycles per byte, on the size of the message in
bytes, assuming an empty AD. Based on Fig. 5(b), the number of clock cycles per
byte reaches the close-to-optimal performance already at message sizes around
50 bytes.

220 E. Homsirikamol and K. Gaj

(a) Latency vs. Message Size (b) Cycle-per-byte vs. Message Size

Fig. 5. The AEZ hardware module latency and the number of cycles per byte as a
function of the message size for |AD| = 0

5.2 Throughput

Throughput for authenticated encryption and decryption of long messages is
given by Eqs. (12) and (13). Equation (12) applies when |M | = 0, and |AD| � 0,
where � denotes “much bigger”. It is based on the time it takes to perform the
AEZ Hash operation (bottom left diagram of Fig. 1). Similarly, Eq. (13) applies
when |AD| = 0, and |M | � 0. It is based on the time it takes to perform AEZ
Core operation on a full block pair (top left diagram of Fig. 1).

ThroughputAD =
128
5

· ClkFreq. (12)

ThroughputM =
256
25

· ClkFreq. (13)

6 Benchmarking in Hardware

6.1 Hardware Results and Comparison with Other CAESAR
Candidates

The resource utilization and the maximum clock frequency of the main compo-
nents of AEZ on Virtex-6 FPGA is shown in Table 2. The TBC module requires
about 48 % of the flip-flops and 37 % of the total LUTs as compared to the
CipherCore module. The speed of the design is reduced by a factor of 8 % when
the unit is integrated with the surrounding logic. The complete unit with the
CAESAR Hardware API support (AEAD) requires an additional 15 % of flip-
flops and 10 % of LUTs, on top of the resources required by the CipherCore
module. The maximum frequency of operation remains exactly the same.

The comparison with all other Round 2 CAESAR candidates (except Tiaoxin),
using the same hardware API, is summarized in Table 3. All results have been
obtained using exactly the same FPGA device and FPGA tool versions. Bench-
marking involved the optimization of tool options using ATHENa [8], with the

AEZ: Anything-But EaZy in Hardware 221

Table 2. Components analysis of AEZ unit on Virtex-6 xc6vlx240tff1156-3 FPGA
device

Resource utilization Frequency

FFs LUTs (MHz)

TBC 927 1527 362

CipherCore 1983 4166 335

AEAD 2347 4597 335

same optimization scheme and effort applied to all candidates. The source of these
results is the ATHENa database of results [6], reporting FPGA performance for
all implementations of Round 2 candidates submitted for benchmarking in June–
August 2016. Each Round 2 CAESAR candidate family (except Tiaoxin) is rep-
resented in this study by one or more variants recommended by the submitter
teams. For all the candidates and AES-GCM, the throughput is based on either
encryption or decryption throughput, whichever is lower. Only the performance
of the best variant in terms of the Throughput to Area ratio is reported in [6] and
in Table 3, with LUTs used as a primary Area metric.

Since based on the CAESAR Hardware API [11], the implementations of
single-pass authenticated ciphers are expected to support all message lengths
≤232 − 1, and implementations of two-pass authenticated ciphers are expected
to support all lengths ≤211−1, it is natural and fair to compare implementations
of both types of ciphers for the maximum message length common for both types
of ciphers, which is 211 − 1.

Additionally, 2 Kbytes is a practical limit for majority of secure networking
protocols, such as IPSec – a primary target for high-speed hardware implemen-
tations of authenticated encryption. Authenticated encryption without interme-
diate tags is in general not a good match for applications requiring protection of
large volumes of data-at-rest, due to large access times for reading and writing.

The implementers of 7 single-pass authenticated ciphers included in our
comparison (AES-GCM, Deoxys, Joltik, OCB, OMD, PAEQ, and SCREAM)
specifically supported the two possible maximum AD/message lengths. All cor-
responding results presented in Table 3 have been generated with the choice of
the maximum AD/message equal to 211 −1. This choice has appeared to benefit
in a noticeable way only the two of them, OCB and OMD, using a precomputed
look-up table, with the size dependent on the maximum AD/message length.

For the remaining candidates, we contacted the designers of the implemen-
tations listed in Table 3, and asked them explicitly whether they see any way
of optimizing their designs (in terms of area and/or maximum clock frequency)
in case the maximum AD/message length is smaller or equal to 211 − 1. None
of the designers responded positively to this question. Similarly, our own analy-
sis and preliminary results led to the conclusion that the maximum benefit in
terms of the throughput to area ratio, resulting from applying a lower limit on
the AD/message length, is not likely to exceed 3 % for any of the remaining
one-pass Round 2 CAESAR candidates.

222 E. Homsirikamol and K. Gaj

Table 3. Comparison with other CAESAR candidates, with key sizes greater or equal
to 96 bits, on Virtex 6 FPGA.

Frequency

(MHz)

Throughput

(Mbit/s)

Area TP/A

(LUTs) (SLICEs) (Mbit/s/

LUTs)

(Mbit/s/

SLICEs)

1 MORUS 179.7 46002 3898 1216 11.801 37.831

2 ACORN 347.7 11127 1194 421 9.319 26.430

3 TriviA-ck 300.2 19213 2310 895 8.317 21.467

4 ICEPOLE 304.0 44464 5734 1995 7.754 22.288

5 AEGIS 203.1 52001 7980 2143 6.516 24.266

6 Ketje 229.5 7345 1270 456 5.783 16.107

7 NORX 170.5 16368 2968 1022 5.515 16.016

8 ASCON 361.0 5134 1620 489 3.169 10.499

9 STRIBOB 276.1 11750 4839 1376 2.428 8.539

10 Keyak (River) 163.6 7417 6234 1751 1.190 4.236

AES-GCM 278.3 3239 3175 1053 1.020 3.076

11 Deoxys (NR-128-128) 327.3 2793 3142 951 0.889 2.937

12 AEZ 335.3 3434 4597 1246 0.747 2.756

13 CLOC 254.6 2963 3983 1154 0.744 2.568

14 ELmD 247.5 3168 4302 1607 0.736 1.971

15 OCB 292.7 3122 4249 1348 0.735 2.316

16 PRIMATEs-GIBBON 224.0 1280 1807 653 0.708 1.960

17 Joltik (NR-128-64) 439.9 880 1292 524 0.681 1.679

18 Minalpher 280.9 1831 2879 1104 0.636 1.659

19 PAEQ 258.9 4537 8328 2300 0.545 1.973

20 AES-OTR 256.9 2741 5102 1385 0.537 1.979

21 SCREAM 170.4 1039 2052 834 0.506 1.246

22 Pi-Cipher 170.0 1740 3535 1077 0.492 1.616

23 SILC 280.7 1562 3378 989 0.462 1.579

24 PRIMATEs-HANUMAN 225.1 693 1769 626 0.392 1.107

25 POET 231.2 2959 7695 2444 0.385 1.211

26 HS1-SIV 221.7 2769 8392 2219 0.330 1.248

27 AES-COPA 214.9 2500 7754 2358 0.322 1.060

28 OMD 242.2 940 3562 1243 0.264 0.756

29 AES-JAMBU (SIMON) 209.8 186 1376 453 0.135 0.411

30 SHELL 16.3 522 81197 22830 0.006 0.023

On top of that, both single-pass and two-pass algorithms require exter-
nal memory for the complete functionality, including the temporary storage of
decrypted message. In an optimized implementation of the entire system includ-
ing a two-pass AEAD core, the Two-Pass FIFO and the Output FIFO could be
implemented using the same resources. The amount of logic (LUTs) required to
multiplex between these two functions of an external memory would be negligible
compared to the size of the entire system.

As a result, we believe that the need for an external Two-Pass FIFO, imple-
mented using dedicated FPGA resources, such as Block RAMs, does not put
two-pass algorithms in any noticeable disadvantage that could affect the rank-
ing of the candidates (especially to the extent higher than other, more important
factors, such as different designer skills and coding styles, different amount of
time and effort spent on optimization, etc.)

AEZ: Anything-But EaZy in Hardware 223

Based on the results presented in [6], it is fair to say that AEZ outperforms
all AES-based CAESAR candidates, other than AEGIS and Deoxys, such as
CLOC, ELmD, OCB, AES-OTR, SILC, POET, AES-COPA and SHELL. Our
implementation also outperforms the implementation of the only other two-pass
Round 2 candidate variant, reported in [6], HS1-SIV. Our implementation of
AEZ beats the equivalent implementation of HS1-SIV by a factor of 1.23 in
terms of Throughput, 1.83 in terms of Area, and a combined factor of 2.26 in
terms of the Throughput/Area ratio. Its Throughput to Area ratio is lower only
than that of 11 mostly permutation-based algorithms, none of which fulfills the
requirements of robust authenticated encryption (RAE), or even misuse-resistant
authenticated encryption (MRAE).

6.2 Comparison with the Optimized Software Implementation

The preliminary results of the software benchmarking using SUPERCOP place
AEZ among the top 5 authenticated ciphers on the amd64-architecture platforms
[4]. The software benchmark of the optimized software implementation, available
at [13], was done on a Skylake-S Intel Core i5-6600 3.3 GHz. The compiler and
compilation flags used were: GCC 5.5 with “-march=native -O3”. The optimized
software implementation was able to achieve the performance of 0.64 cycles-per-
byte, equivalent to the throughput of 41.25 Gbit/s for long messages. Comparing
to our hardware AEZ core performance on Virtex-6 FPGA, the software is able
to achieve approximately 12 times higher throughput, while running at about
10 times higher clock frequency.

Clearly, an optimized software implementation of an AES-based authenticated
cipher, running on a modern microprocessor, can easily outperform the corre-
sponding single-core hardware implementation, not just for AEZ, but for majority
of other CAESAR candidates. However, one must remember that the hardware
resources required by a modern microprocessor, as well as power and energy con-
sumption, are likely much higher than resources required by a single core of AEZ.

On modern FPGAs and All-Programmable Systems on Chip (such as Xilinx
Zynq), multiple AEZ cores can be placed and run in parallel to either hard or soft
embedded microprocessor core (such as ARM or MicroBlaze). Their availability
would free the microprocessor to perform other critical tasks. It would also allow
significantly outperforming a single dedicated microprocessor core. For example,
the largest Xilinx Virtex-6 FPGA (XC6VLX760) can host up to 95 AEZ Cores,
reaching throughput in excess of 326 Gbit/s.

Results of software implementations of AEZ on multiple other platforms,
including ARM, can be found in [4].

7 Conclusions

We have developed an efficient implementation of AEZ that outperforms com-
parable implementations of the majority of other AES-based Round 2 CAESAR
candidates. It places 12th in terms of the Throughput to Area ratio, in the rank-
ing of 28 candidates participating in the hardware benchmarking study (assum-
ing the maximum message length of 211 − 1 bytes), and is outperformed only

224 E. Homsirikamol and K. Gaj

by single-pass, mostly permutation-based algorithms. Our preliminary analysis
strongly suggests that AEZ can outperform majority of the CAESAR candi-
dates and the current standard, AES-GCM, in software, approximately match
the performance of AES-GCM in hardware, and at the same time offer a new
unprecedented level of resistance against the cipher misuse.

References

1. Caesar call for submissions, final, January 2014. https://competitions.cr.yp.to/
caesar-call.html

2. ARM: AMBA Specifications. http://www.arm.com/products/system-ip/amba-spe
cifications.php

3. Arnould, C.: Towards developing ASIC and FPGA architectures of high-
throughput CAESAR candidates. Master’s thesis, ETH Zurich, March 2015

4. Bernstein, D.J., Lange, T. (eds.): eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, October 2016. https://bench.cr.yp.to

5. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness: Cryptographic Competitions, January 2016. http://competitions.cr.
yp.to/index.html

6. Cryptographic Engineering Research Group (CERG) at GMU: GMU ATHENa
Database of Results, July 2015. https://cryptography.gmu.edu/athenadb/fpga
auth cipher/rankings view

7. Cryptographic Engineering Research Group (CERG) at GMU: Addendum to the
CAESAR Hardware API v1.0, June 2016. https://cryptography.gmu.edu/athena/
index.php?id=CAESAR

8. Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster,
B.Y.: ATHENa - automated tool for hardware evaluation: toward fair and com-
prehensive benchmarking of cryptographic hardware using FPGAs. In: 20th Inter-
national Conference on Field Programmable Logic and Applications - FPL 2010,
pp. 414–421. IEEE (2010)

9. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ
and the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46800-5 2

10. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v4.1: Authenticated Encryption by
Enciphering, October 2015. http://web.cs.ucdavis.edu/∼rogaway/aez/aez.pdf

11. Homsirikamol, E., Diehl, W., Ferozpuri, A., Farahmand, F., Yalla, P., Kaps, J.P.,
Gaj, K.: CAESAR Hardware API. Cryptology ePrint Archive, Report 2016/626
(2016). http://eprint.iacr.org/2016/626

12. Hornig, C.: A standard for the transmission of IP datagrams over ethernet net-
works. STD 41, RFC Editor, April 1984

13. Krovetz, T.: AEZ v4.1 aes-ni version, October 2015. http://www.cs.ucdavis.edu/
∼rogaway/aez

14. Krovetz, T.: AEZ v4.1 reference code, September 2015. http://www.cs.ucdavis.
edu/∼rogaway/aez

15. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
http://www.arm.com/products/system-ip/amba-specifications.php
http://www.arm.com/products/system-ip/amba-specifications.php
https://bench.cr.yp.to
http://competitions.cr.yp.to/index.html
http://competitions.cr.yp.to/index.html
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://dx.doi.org/10.1007/978-3-662-46800-5_2
http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://eprint.iacr.org/2016/626
http://www.cs.ucdavis.edu/~rogaway/aez
http://www.cs.ucdavis.edu/~rogaway/aez
http://www.cs.ucdavis.edu/~rogaway/aez
http://www.cs.ucdavis.edu/~rogaway/aez
http://dx.doi.org/10.1007/11761679_23

Functional Encryption

Private Functional Encryption:
Indistinguishability-Based Definitions
and Constructions from Obfuscation

Afonso Arriaga1(B), Manuel Barbosa2, and Pooya Farshim3

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
afonso.delerue@uni.lu

2 HASLab - INESC TEC, DCC FC University of Porto, Porto, Portugal
mbb@dcc.fc.up.pt

3 ENS, CNRS & Inria, PSL Research University, Paris, France
pooya.farshim@gmail.com

Abstract. Private functional encryption guarantees that not only the
information in ciphertexts is hidden but also the circuits in decryption
tokens are protected. A notable use case of this notion is query privacy
in searchable encryption. Prior privacy models in the literature were
fine-tuned for specific functionalities (namely, identity-based encryp-
tion and inner-product encryption), did not model correlations between
ciphertexts and decryption tokens, or fell under strong uninstantiabil-
ity results. We develop a new indistinguishability-based privacy notion
that overcomes these limitations and give constructions supporting dif-
ferent circuit classes and meeting varying degrees of security. Obfusca-
tion is a common building block that these constructions share, albeit
the obfuscators necessary for each construction are based on different
assumptions. In particular, we develop a composable and distribution-
ally secure hyperplane membership obfuscator and use it to build an
inner-product encryption scheme that achieves an unprecedented level
of privacy, positively answering a question left open by Boneh, Raghu-
nathan and Segev (ASIACRYPT 2013) concerning the extension and
realization of enhanced security for schemes supporting this functionality.

Keywords: Function privacy · Functional encryption · Obfuscation ·
Keyword search · Inner-product encryption

1 Introduction

Standard notions of security for public-key functional encryption [16,22] do not
cover important use cases where, not only encrypted data, but also the circuits
(functions) associated with decryption tokens contain sensitive information. The
typical example is that of a cloud provider that stores an encrypted data set cre-
ated by Alice, over which Bob wishes to make advanced data mining queries.
Functional encryption provides a solution to this use case: Bob can send a decryp-
tion token to the cloud provider that allows it to recover the result of computing
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 227–247, 2016.
DOI: 10.1007/978-3-319-49890-4 13

228 A. Arriaga et al.

a query over the encrypted data set. Standard security notions guarantee that
nothing about the plaintexts beyond query results are revealed to the server.
However, they do not guarantee that the performed query, which may for exam-
ple contain a keyword sensitive to Bob, is hidden from the server.

1.1 Function Privacy

Function privacy is an emerging new notion that aims to address this problem.
The formal study of this notion begins in the work of Boneh et al. [14], where
the authors focused on identity-based encryption (IBE) and presented the first
constructions offering various degrees of privacy. From the onset, it became clear
that formalizing such a notion is challenging, even for simple functionalities such
as IBE, as the holder of a token for circuit C may encrypt arbitrary messages
using the public key, and obtain a large number of evaluations of C via the
decryption algorithm. Boneh et al. therefore considered privacy for identities
with high min-entropy. In general, however, the previous observation implies
that (non-trivial) function privacy can only be achieved as long as the token
holder is unable to learn C through such an attack, immediately suggesting a
strong connection between private functional encryption and obfuscation.

Boneh et al. [14,15] give indistinguishability-based definitions of function
privacy for IBE and subspace membership (a generalization of inner-product
encryption). Roughly speaking, the IBE model imposes that whenever the token
queries of the adversary have high min-entropy (or form a block source), decryp-
tion tokens will be indistinguishable from those corresponding to identities
sampled from the uniform distribution. For subspace membership, the defini-
tion requires the random variables associated with vector components to be a
block source.

Tokens for high-entropy identities, however, rarely exist in isolation and are
often available in conjunction with ciphertexts encrypted for the very same iden-
tities. To address this requirement, the same authors [14] proposed an enhanced
model for IBE in which the adversary also gets access to ciphertexts encrypted
for identities associated with the challenge tokens. This model was subsequently
shown in [5] to be infeasible under the formalism of Boneh et al., as correlations
with encrypted identities can lead to distinguishing attacks, e.g. via repetition
patterns. (We will discuss this later in the paper.) Although the model can be
salvaged by further restricting the class of admissible distributions, it becomes
primitive-specific and formulating a definition for other functionalities is not
obvious (and indeed a similar extension was not formalized for subspace mem-
bership in [15]). Additionally, this model also falls short of capturing arbitrary
correlations between encrypted messages and tokens, as it does not allow an
adversary to see ciphertexts for identities which, although correlated with those
extracted in the challenge tokens, do not match any of them.

Very recently, Agrawal et al. [1] have put forth a model for functional encryp-
tion that aims to address this problem with a very general UC-style definition
(called “wishful security”). The core of the definition is an ideal security notion
for functional encryption, which makes it explicit that both data privacy and

Private Functional Encryption 229

function privacy should be simultaneously enforced. However, not only is this
general simulation-based definition difficult to work with, but also aiming for it
would amount to constructing virtual black-box obfuscation, for which strong
impossibility results are known [6,20]. Indeed, the positive results of [1] are
obtained in idealized models of computation.

1.2 Contributions

The above discussion highlights the need for a general and convenient definition
of privacy that incorporates arbitrary correlations between decryption tokens
and encrypted messages, and yet can be shown to be feasible without rely-
ing on idealized models of computation. The first contribution of our work is
an indistinguishability-based definition that precisely models arbitrary correla-
tions for general circuits. Our definition builds on a framework for unpredictable
samplers and unifies within a single definition all previous indistinguishability-
based notions.

The second contribution of the paper is four constructions of private func-
tional encryption supporting different classes of circuits and meeting varying
degrees of security: (1) a simple and functionality-agnostic construction shown
to be secure in the absence of correlated messages, (2) a more evolved and
still functionality-agnostic construction (taking advantage of recent techniques
from [4]) that achieves function privacy with respect to a general class of sam-
plers that we call concentrated; (3) a conceptually simpler construction spe-
cific for point functions achieving privacy in the presence of correlated messages
beyond all previously proposed indistinguishability-based security definitions;
(4) a construction specific for point functions that achieves our strongest notion
of privacy (but relies on a more expressive form of obfuscation than the previous
construction). We also develop an obfuscator for hyperplane membership that,
when plugged into the second construction above gives rise to a private inner-
product encryption scheme, answering a question left open by Boneh et al. [15]
on how to define and realize enhanced security (i.e., privacy in the presence of
correlated messages) for schemes supporting this functionality.

The unpredictability framework. At the core of our definitional work lies
a precise definition characterizing which distributions over circuits and what
correlated side information can be tolerated by a private FE scheme. We build
on ideas from obfuscation [8,10], functional encryption [16,22] and prior work
in function privacy [1,5,14,15] to define a game-based notion of unpredictability
for general functions. Our definition allows a sampler S to output a pair of
circuit vectors (C0,C1) and a pair of message vectors (m0,m1) with arbitrary
correlations between them, along with some side information z. Unpredictability
then imposes that no predictor P interacting with oracles computing evaluations
on these circuits and messages can find a point x such that C0(x) �= C1(x). (We
do not impose indistinguishability, which is stronger, results in a smaller class
of unpredictable samplers, and hence leads to weaker security.) The predictor
P sees z and the outputs of the sampled circuits on the sampled messages.

230 A. Arriaga et al.

It can run in bounded or unbounded time, but it can only make polynomially
many oracle queries to obtain additional information about the sampled circuits
and messages. To avoid attacks that arise in the presence of computationally
unpredictable auxiliary information [9] we adopt unbounded prediction later in
our analyses.

This formalism fixes the unpredictability notion throughout the paper. We
can then capture specific types of samplers by imposing extra structural require-
ments on them. For instance, we may require the sampler to output a bounded
number of circuits and messages, or include specific data in the auxiliary informa-
tion, or do not include any auxiliary information at all. A sampler outputting cir-
cuits and messages comes to hand to model the privacy for functional encryption.
We emphasize that our definition intentionally does not require the messages to
be unpredictable. Further discussion on this choice can be found in Sect. 3.

The PRIV model. Building on unpredictability, we put forth a new indistingui-
shability-based notion of function privacy. Our notion, which we call PRIV, bears
close resemblance to the standard IND-CPA model for functional encryption: it
comes with a left-or-right LR oracle, a token-extraction TGen oracle and the
goal of the adversary is to guess a bit. The power of the model lies in that
we endow LR with the ability to generate arbitrary messages and circuits via
an unpredictable sampler. Trivial attacks are excluded by the joint action of
unpredictability and the usual FE legitimacy condition, imposing equality of
images on left and right. The enhanced model of Boneh et al. [14] falls in as a
special case where the sampler is structurally restricted to be a block source.
But our definition goes well beyond this and considers arbitrary and possibly
low-entropy correlations. Furthermore, since unpredictability is not imposed on
messages, PRIV implies IND-CPA security, and consequently it also guarantees
anonymity for primitives such as IBE and ABE [16]. Correlated circuits may be
“low entropy” as long as they are identical on left and right, and since previous
definitions adopted a real-or-random definition, they had to exclude this pos-
sibility. By giving the sampler the option to omit, manipulate and repeat the
messages, our security notion implies previous indistinguishability-based notions
in the literature, including those in [1,5,14,15].

2 Preliminaries

2.1 Notation

We denote the security parameter by λ ∈ N and assume it is implicitly given to
all algorithms in unary representation 1λ. We denote the set of all bit strings of
length � by {0, 1}� and the length of a string x by |x|. The bit complement of a
string x is denoted by x. We use the symbol ε to denote the empty string. A vector
of strings x is written in boldface, and x[i] denotes its ith entry. The number of
entries of x is denoted by |x|. For a finite set X, we denote its cardinality by |X|
and the action of sampling a uniformly random element x from X by x ←$ X.
For a random variable X we denote its support by [X]. For a circuit C we denote

Private Functional Encryption 231

its size by |C|. We call a real-valued function μ(λ) negligible if μ(λ) ∈ O(λ−ω(1))
and denote the set of all negligible functions by Negl. Throughput the paper ⊥
denotes a special failure symbol outside the spaces underlying a cryptographic
primitive. We adopt the code-based game-playing framework. As usual “ppt”
stands for probabilistic polynomial time.

Circuit families. Let MSp := {MSpλ}λ∈N and OSp := {OSpλ}λ∈N be two
families of finite sets parametrized by a security parameter λ ∈ N. A circuit
family CSp := {CSpλ}λ∈N is a sequence of circuit sets indexed by the security
parameter. We assume that for all λ ∈ N, all circuits in CSpλ share a common
input domain MSpλ and output space OSpλ. We also assume that membership
in sets can be efficiently decided. For a vector of circuits C = [C1, . . . ,Cn] and
a vector of messages m = [m1, . . . ,mm] we define C(m) to be an n × m matrix
whose ijth entry is Ci(mj). When OSpλ = {0, 1} for all values of λ we call the
circuit family Boolean.

2.2 Functional Encryption

Syntax. A functional encryption scheme FE associated with a circuit family
CSp is specified by four ppt algorithms as follows. (1) FE.Gen(1λ) is the setup
algorithm and on input a security parameter 1λ it outputs a master secret key
msk and a master public key mpk; (2) FE.TGen(msk,C) is the token-generation
algorithm and on input a master secret key msk and a circuit C ∈ CSpλ outputs
a token tk for C; (3) FE.Enc(mpk,m) is the encryption algorithm and on input
a master public key mpk and a message m ∈ MSpλ outputs a ciphertext c; (4)
FE.Eval(c, tk) is the deterministic evaluation algorithm and on input a ciphertext
c and a token tk outputs a value y ∈ OSpλ or failure symbol ⊥.

We adopt a computational notion of correctness for FE schemes and require
that no ppt adversary is able to produce a message m and a circuit C
that violates the standard correctness property of the FE scheme (that is,
FE.Eval(FE.Enc(mpk,m),FE.TGen(msk,C)) �= C(m)), even with the help of an
(unrestricted) token-generation oracle. We also adopt the standard notion of
IND-CPA security [16,22] where an adversary with access to a token-generation
oracle cannot distinguish encryptions of messages m0, m1 under the standard
restriction that it cannot obtain a decryption token for a circuit C for which
C(m0) �= C(m1).

Correctness. We will adopt a game-based definition of computational cor-
rectness for FE schemes which has been widely adopted in the literature [2]
and suffices for the overwhelming majority of use cases. Roughly speaking, this
property requires that no efficient adversary is able to come up with a message
and a circuit which violates the correctness property of the FE scheme, even
with the help of an (unrestricted) token-generation oracle. Formally, scheme FE
is computationally correct if for all ppt adversaries A

Advcc
FE,A(λ) := Pr

[
CCA

FE(1
λ)

] ∈ Negl,

232 A. Arriaga et al.

CCA
FE(1

λ):

(msk,mpk) ←$ FE.Gen(1λ)

(m,C) ←$ ATGen(mpk)
c ←$ FE.Enc(mpk,m)
tk ←$ FE.TGen(msk,C)
y ←$ FE.Eval(c, tk)
return (y �= C(m))

TGen(C):

tk ←$ FE.TGen(msk,C)
return tk

IND-CPAA
FE(1

λ):

(msk,mpk) ←$ FE.Gen(1λ)
b ←$ {0, 1}
b′ ←$ ALR,TGen(mpk)
return (b = b′)

LR(m0,m1):

c ←$ FE.Enc(mpk,mb)
MList ← (m0,m1) : MList
return c

TGen(C):

tk ←$ FE.TGen(msk,C)
TList ← C : TList
return tk

Fig. 1. Left: Computational correctness of FE. Right: IND-CPA security of FE.

where game CCA
FE(1

λ) is shown in Fig. 1 on the left. Perfect correctness corre-
sponds to the setting where the above advantage is required to be zero.

Security. A functional encryption scheme FE is IND-CPA secure [16,22] if for
any legitimate ppt adversary A

Advind-cpa
FE,A (λ) := 2 · Pr

[
IND-CPAA

FE(1
λ)

] − 1 ∈ Negl,

where game IND-CPAA
FE(1

λ) is defined in Fig. 1 on the right. We say A is
legitimate if for all messages pairs queried to the left-or-right oracle, i.e., for
all (m0,m1) ∈ MList, and all extracted circuits C ∈ TList we have that
C(m0) = C(m1). The IND-CPA notion self-composes in the sense that security
against adversaries that place one LR query is equivalent to the setting where
an arbitrary number of queries is allowed. It is also well known that IND-CPA
security is weaker than generalizations of semantic security for functional encryp-
tion [7], but strong impossibility results for the latter have been established.

3 Unpredictable Samplers

The privacy notions that we will be developing in the coming sections rely on
multistage adversaries that must adhere to certain high-entropy requirements
on the sampled circuits. Rather than speaking about specific distributions for
specific circuit classes, we introduce a uniform treatment for any circuit class
via an unpredictability game. Our framework allows one to introduce restricted
classes of samplers by imposing structural restrictions on their internal operation
without changes to the reference unpredictability game. Our framework extends
that of Bellare et al. [8] for obfuscators and also models the challenge-generation
phase in private functional encryption in prior works [1,5,14,15].

Syntax. A sampler for a circuit family CSp is an algorithm S that on input
the security parameter 1λ and possibly some state information st outputs a pair
of vectors of CSpλ circuits (C0,C1) of equal dimension, a pair of vectors of
MSpλ messages (m0,m1) of equal dimension, and some auxiliary information
z. We require the components of the two circuit (resp., message) vectors to be

Private Functional Encryption 233

encoded as bit strings of equal length. Input st may encode information about the
environment where the sampler is run (e.g., the public parameters of a higher-
level protocol) and z models side information available on the sampled circuits
or messages.

In the security games we will be considering later on, the goal of adversary will
be to distinguish which of two circuit distributions produced by an unpredictable
sampler was used to form some cryptographic data (e.g., an obfuscated circuit
or an FE token). Our unpredictability definition formalizes the intuition that
by examining the input/output behavior of the sampled circuits on messages
of choice, the evaluation of legitimate circuits of choice on sampled messages,
and the evaluation of sampled circuits on sampled messages, a point leading to
differing outputs on some pair of sampled circuits cannot be found. Drawing a
parallel to the functional encryption setting, once decryption tokens or encrypted
messages become available, the tokens can be used by a legitimate adversary
to compute the circuits underneath on arbitrary values, including some special
messages that are possibly correlated with the circuits.

Unpredictability. A legitimate sampler S is statistically unpredictable if for
any unbounded legitimate predictor P that places polynomially many queries

Advpred
S,P (λ) := Pr

[
PredP

S (1λ)
]

∈ Negl,

where game PredP
S (1λ) is shown in Fig. 2. Sampler S is called legitimate if

C0(m0) = C1(m1) in game PredP
S (1λ). Predictor P is legitimate if C(m0) =

C(m1) for all queries made to the Func oracle.1

PredP
S (1λ):

(st, st′) ←$ P1(1
λ)

(C0,C1,m0,m1, z) ←$ S(st)

m ←$ PFunc
2 (1λ,C0(m0), z, st′)

return (C0(m) �= C1(m))

Func(m,C):

return (C0(m),C(m0))

Fig. 2. Game defining unpredictability of a sampler S against P = (P1,P2).

We emphasize that the winning condition demands component-wise inequal-
ity of circuit outputs. In particular the predictor is not considered successful if
it outputs a message which leads to different outputs on different circuit indices.

1 We do not impose that C0(m) = C1(m) within the Func oracle as this is exactly
the event that P is aiming to invoke to win the game. The restriction we do impose
allows for a sampler to be unpredictable while possibility outputting low-entropy
messages that might even differ on left and right.

234 A. Arriaga et al.

A number of technical choices have been made in devising this definition. By
the legitimacy of the sampler C0(m0) = C1(m1) and hence only one of these
values is provided to the predictor. Furthermore, since the goal of the predictor
is to find a differing input, modifying the experiment so that Func returns
C1(m) (or both values) would result in an equivalent definition. Our definition
intentionally does not consider unpredictability of messages. Instead, one could
ask the predictor to output either a message that results in differing evaluations
on challenge circuits or a circuit that evaluates differently on challenge messages.
This would, however, lead to an excessively restrictive unpredictability notion
and excludes many circuit samplers of practical relevance.

A number of special classes of samplers can be defined by imposing structural
restrictions on their internal operation. In particular, definitions of high-entropy
and block source samplers for keywords [14], block sources for inner products [15],
and circuit sampler distributions used in various obfuscation definitions can be
seen as particular cases within this framework.

4 Obfuscators

An obfuscator for a circuit family CSp is a uniform ppt algorithm Obf that
on input the security parameter 1λ and the description of a circuit C ∈ CSpλ

outputs the description of another circuit C. We require any obfuscator to satisfy
the following two requirements.

Functionality preservation: For any λ ∈ N, any C ∈ CSpλ and any m ∈
MSpλ, with overwhelming probability over the choice of C ←$ Obf(1λ,C) we
have that C(m) = C(m).

Polynomial slowdown: There is a polynomial poly such that for any λ ∈ N,
any C ∈ CSpλ and any C ←$ Obf(1λ,C) we have that |C| ≤ poly(|C|).
Security definitions for obfuscators can be divided into the indistingui-

shability-based and simulation-based notions. Perhaps the most natural notion
is the virtual black-box (VBB) property [6], which requires that whatever can be
computed from an obfuscated circuit can be also simulated using oracle access to
the circuit. Here, we consider a weakening of this notion, known as virtual grey-
box (VGB) security [10,11] that follows the VBB approach, but allows simulators
to run in unbounded time, as long as they make polynomially many queries to
their oracles; we call such simulators semi-bounded. Below we present a self-
composable strengthening of this notion where the VGB property is required to
hold in the presence of multiple obfuscated circuits.

In the context of security definitions for obfuscators, we consider samplers
that do not output any messages. Furthermore, we call a sampler one-sided if
its sampled circuits are identical on left and right with probability 1.

Composable VGB. An obfuscator Obf is composable VGB (CVGB) secure if
for every ppt adversary A there exists a semi-bounded simulator Sim such that
for every ppt one-sided circuit sampler S the advantage

Private Functional Encryption 235

Advcvgb
Obf,S,A,Sim(λ) :=

∣
∣
∣Pr

[
CVGB-RealS,A

Obf (1λ)
]

− Pr
[
CVGB-IdealS,Sim

Obf (1λ)
]∣
∣
∣ ∈ Negl,

where games CVGB-RealS,A
Obf (λ) and CVGB-IdealS,Sim

Obf (λ) are shown in Fig. 3.

CVGB-RealS,A
Obf (1λ):

(C, z) ←$ S(1λ, ε)

C ←$ Obf(1λ,C)

b ←$ A(1λ,C, z)
return b

CVGB-IdealS,Sim
Obf (1λ):

(C, z) ←$ S(1λ, ε)

b ←$ SimFunc(1λ, 1|C|, z)
return b

Func(m):

return C(m)

DIS,A
Obf (1λ):

b ←$ {0, 1}
b′ ←$ ASam(1λ)
return (b = b′)

Sam(st):

(C0,C1, z) ←$ S(1λ, st)

C ←$ Obf(1λ,Cb)

return (C, z)

Fig. 3. Games defining the CVGB and DI security of an obfuscator.

By considering samplers that only output a single circuit we recover the
standard (worst-case) VGB property. The VBB property corresponds to the
case where the simulator is required to run in polynomial time. Average-case
notions of obfuscation correspond to definitions where the circuit samplers are
fixed. A result of Bitansky and Canetti [10, Proposition A.3] on the equivalence
of VGB with and without auxiliary information can be easily shown to also hold
in the presence of multiple circuits, from which one can conclude that CVGB
with auxiliary information is the same as CVGB without auxiliary information.

We also introduce the following adaptation of an indistinguishability-based
notion of obfuscation introduced in [10] for point functions.

Distributional indistinguishability. An obfuscator Obf is DI secure if, for
every unpredictable ppt sampler S and every ppt adversary A,

Advdi
Obf,S,A(λ) := 2 · Pr

[
DIS,A

Obf (1λ)
]

− 1 ∈ Negl,

where game DIS,A
Obf (1λ) is defined in Fig. 3.

The above definition strengthens the one in [10] and gives the sampler the
possibility to leak auxiliary information to the adversary. In particular, we can
consider the case where images of an (internally generated) vector of messages
that are correlated with the circuits are provided to A. (Our constructions will
rely on this property for point obfuscators.) Throughout the paper we consider
DI adversaries that place a single query to the Sam oracle. Security with respect
to all ppt and statistically unpredictable samplers can be shown to be equivalent
to a variant definition where the adversary is run after the sampler and st is set
to the empty string ε.

We recover the definition of indistinguishability obfuscation (iO) [19] when
samplers are required to output a single circuit on left and right and include these

236 A. Arriaga et al.

two circuits explicitly in z. Differing-inputs obfuscation (diO) [3] is obtained if
the predictor is also limited to run in polynomial time.

It has been shown that, for point functions, the notions of CVGB and DI
(without auxiliary information) are equivalent [10, Theorem 5.1]. Following a
similar argument to the first part of the proof in [10, Theorem 5.1], we can show
that CVGB for any circuit family implies distributional indistinguishability even
with auxiliary information for the same circuit family. Hence, our notion of DI
obfuscation is potentially weaker than CVGB. This proof crucially relies on the
restriction that samplers are required to be unpredictable in the presence of
unbounded predictors. The proof of the converse direction in [10, Theorem 5.1]
uses techniques specific to point functions and we leave a generalization to wider
classes of circuits for future work.

Proposition 1 (CVGB =⇒ DI). Any CVGB obfuscator for a class of circuits
CSp is also DI secure with respect to all statistically unpredictable samplers for
the same class CSp.

Hyperplane membership. Let CSp := {CSpd
p} be a set circuit family of hyper-

plane membership testing functions that is defined for each value of the security
parameter λ such that there is a λ-bit prime p and a positive integer d. Every cir-
cuit C ∈ CSpd

p is canonically represented by a vector a ∈ Z
d
p and returns 1 if and

only if the input vector x ∈ Z
d
p is orthogonal to a, i.e., C[a](x) := 1 iff 〈x,a〉 = 0.

Canetti et al. [17] presented a virtual black-box obfuscator for the hyper-
plane membership functionality, which works as follows. Let G be a group of
prime order p for which the SVDDH assumption [17] holds. To obfuscate the
hyperplane membership circuit represented by a vector a, sample a generator g
uniformly at random from G, compute gi ← ga[i] for 1 ≤ i ≤ d, and construct
the circuit that, given a vector x, returns 1 if and only if

∏d
i=1 g

x[i]
i is equal

to G’s identity element. (Note that
∏d

i=1 g
x[i]
i = g〈a,x〉, so this is the case if

〈a,x〉 = 0.) We assume that the resulting obfuscated circuit is canonically rep-
resented by (g1, . . . , gd), generated as described above. This same construction
satisfies distributional indistinguishability under a generalization of the SVDDH
assumption, a DDH-style assumption we present in Fig. 4. In order to avoid
attacks similar to the one described in [9] that puts a one element instance of
SVDDH with arbitrary auxiliary information (or AI-DHI assumption, as referred
to by [9]) in contention with the existence of VGB obfuscators supporting specific
classes of circuits, we assume that our generalized SVDDH assumption holds only
in the presence of random auxiliary information. This immediately translates to
an obfuscator that tolerates the same type of leakage, which is enough to serve
as a candidate to instantiate our functionality-agnostic constructions and obtain
private inner-product encryption schemes, from which it is known how to derive
expressive predicates that include equality tests, conjunctions, disjunctions and
evaluation of CNF and DNF formulas (among others) [21].

Private Functional Encryption 237

AssumptionS,A,G,t,d,poly(1
λ):

b ←$ {0, 1}; z ←$ {0, 1}poly(λ)

(w0,w1) ←$ S(1λ, z, ε)
g ←$ Gt

Mb ←

⎡
⎢⎢⎢⎢⎣

g[1]wb[1][1] . . . g[1]wb[1][d]

.

g[t]wb[t][1] . . . g[t]wb[t][d]

⎤
⎥⎥⎥⎥⎦

b′ ←$ A(Mb, z)
return (b = b′)

Fig. 4. Game defining a DDH-style computational assumption.

5 Function Privacy: A Unified Approach

We now define what function privacy for general functional encryption schemes
means and derive the model specific to keyword search schemes by restriction to
point circuit families. Our definition follows the indistinguishability-based app-
roach to defining FE security and comes with an analogous legitimacy condition
that prevents the adversary from learning the challenge bit simply by extracting
a token for a circuit that has differing outputs for the left and right challenge
messages. The model extends the IND-CPA game via a left-or-right (LR) oracle
that returns ciphertexts and tokens for possibly correlated messages and cir-
cuits. Since the adversary in this game has access to tokens that depend on the
challenge bit, we use the unpredictability framework of Sect. 3 to rule out trivial
guess attacks.

The game follows a left-or-right rather than a real-or-random formulation of
the challenge oracle [1,5,14,15] as this choice frees the definition from restrictions
that must be imposed to render samplers compatible with uniform distribution
over circuits. In particular, it allows the sampler to output low-entropy circuits as
long as they are functionally-equivalent on left and right. It also allows analyzing
security under repetitions of functionally-equivalent circuits in the presence of
correlated messages, which until now were properties captured separately by
unlinkability [5] and enhanced security [14], and never considered together, not
even for the simple case of point functions.

The sampler allows us to model, within a single game, (a) token-only adver-
sarial strategies via samplers that output no message, as the non-enhanced secu-
rity model in [14] and those in [5,15]; (b) adversarial strategies that admit simple
correlations between encrypted messages and extracted circuits, as the enhanced
security model in [14] for point circuits that allows the adversary to obtain
ciphertexts that match the tokens; (c) adversarial strategies that admit arbi-
trary correlations between extracted circuits and encrypted messages (i.e., not
only exact matches).

238 A. Arriaga et al.

PRIVA,S
FE (1λ):

(msk,mpk) ←$ FE.Gen(1λ)
b ←$ {0, 1}
b′ ←$ ALR,TGen(mpk)
return (b = b′)

LR(st):

(C0,C1,m0,m1, z) ←$ S(st)
TList ← TList : (C0,C1)
MList ← MList : (m0,m1)
tk ←$ FE.TGen(msk,Cb)
c ←$ FE.Enc(mpk,mb)
return (tk, c, z)

TGen(C):

TList ← TList : (C,C)
tk ←$ FE.TGen(msk,C)
return tk

Fig. 5. Game defining enhanced privacy of a functional encryption scheme FE.

Our model is functionality-agnostic and unifies all previous
indistinguishability-based models in this area. When restricted to point circuits
or inner-products families, it gives rise to a new privacy notion that offers sig-
nificant improvements over those in prior works [5,14,15].

PRIV security. A functional encryption scheme FE is PRIV secure if, for every
unpredictable ppt sampler2 S and every ppt adversary A

Advpriv
FE,A,S(λ) := 2 · Pr

[
PRIVA,S

FE (1λ)
]

− 1 ∈ Negl,

where game PRIVA,S
FE (1λ) is defined in Fig. 5. We exclude adversaries (A,S)

that attempt to trivially win the PRIV game via decryption tokens, by either
extracting them explicitly via the token-generation oracle, or implicitly via the
left-or-right oracle. Formally, the pair (A,S) is legitimate if, with overwhelming
probability ∀(C0,C1) ∈ TList ,∀(m0,m1) ∈ MList : C0(m0) = C1(m1).

Note also that for two sampler classes S1 and S2 with S1 ⊂ S2 security with
respect to samplers in S2 is a stronger security guarantee that one for those only
in S1. In particular a stronger restriction on sampler classes results in a weaker
definition. Since the definition self-composes for internally stateless samplers, we
assume that the adversary places a single query to the LR oracle in the remainder
of the paper.

Restricted PRIV and PRIV-TO. We call an adversary token-only if S does
not output any messages, and call the resulting security notion PRIV-TO. Note
that, for token-only adversaries, the additional legitimacy constraint above is
redundant. We call an adversary restricted if for every second-phase TGen
query C2 there is a first-phase TGen query C1 such that C2(mb) = C1(mb)
for b ∈ {0, 1}. Intuitively, this amounts to imposing that images exposed via
second-stage queries (i.e., those placed after receiving the challenge) can reveal
no more than the images obtained in the first stage (i.e., from queries placed
before receiving the challenge). We call the resulting security notion Res-PRIV.

2 We limit samplers to ppt because in proving the security of our constructions, sam-
plers are used to construct computational adversaries against other schemes. In
general, one could consider unbounded samplers.

Private Functional Encryption 239

We emphasize that the Res-PRIV model inherits many of the strengths of the
full PRIV model such as arbitrary correlations and a wide range of adaptive
token queries.3

On revealing images. The outputs of challenge circuits on challenge messages
can be always computed by the adversary, and by imposing equality of images we
ensure that they do not lead to trivial distinguishing attacks. (This is similar to
the legitimacy condition in FE security models.) It is however less clear why these
image values should be explicitly provide to the predictor in the unpredictability
game, even when they are equal for left and right circuits-messages pairs. To see
this, consider the sampler that for a random word w outputs

w0 = w, w1 = w, m0,i :=

{
w if w[i] = 1;
w otherwise,

and m1,i :=

{
w if w[i] = 1;
w otherwise.

Note that C[w0](m0,i) = C[w1](m1,i) = w[i] and hence the images are equal
on left and right. Word w0 can be recovered bit by bit from the image values
C[wb](m0,i) and computing 1 − C[wb](w0) would then reveal the challenge bit b.
Finally, without access to the images C[w0](m0,i) the sampler can be shown to
be unpredictable as w is chosen randomly. On the other hand, in the presence of
images, the sampler is trivially predicable. This counterexample is similar to that
briefly discussed in [5] and can be modified to show that the enhanced model of
Boneh et al. [14] for the so-called (k1, . . . , kT)-distributions is not achievable.

Relations among notions. Clearly PRIV implies its weaker variant
Res-PRIV, which in turn implies PRIV-TO. It is not too difficult to see that
PRIV also implies IND-CPA.4 A noteworthy consequence of this is that for
all-or-nothing functionalities (such as PEKS, IBE or ABE) any PRIV-secure
construction is also index hiding (aka. anonymous), whereby ciphertexts do not
leak any information about their intended recipients (i.e., about tokens that
may permit recovering the payload). Res-PRIV would imply a restricted ana-
logue of IND-CPA (where images in the second phase should match one in the
first phase), which for point functions is equivalent to the standard IND-CPA
model. IND-CPA security does not imply PRIV-TO: consider an IND-CPA-
secure scheme that is modified to append circuits in the clear to their tokens.
PRIV-TO does not imply IND-CPA either: consider a PRIV-TO-secure scheme
that is modified to return messages in the clear with ciphertexts. (Note that
these separations hold even for point functions.) Fig. 6 summarizes relations
among notions of security.

3 When the restriction here is imposed on the IND-CPA model for point function, the
resulting model remains as strong as the full IND-CPA model.

4 Consider a sampler which does not output any circuits and simply returns (pos-
sibly low-entropy) messages included in the state st passed to it. This sampler is
trivially unpredictable. Furthermore, the legitimacy conditions in the two games
exactly match.

240 A. Arriaga et al.

PRIV PRIV-TO

CPA

PRIV-TO ∧ CPA

ResPRIV

ResPRIV ∧ CPA

Fig. 6. Relations among security notions for private functional encryption. The dot-
ted implication only holds for keyword search schemes as weak (aka. restricted) and
standard IND-CPA security models are equivalent for point circuits.

6 Constructions

6.1 The Obfuscate-Extract (OX) Transform

Our first construction formalizes the intuition that obfuscating circuits before
computing a token for them will provide some form of token privacy.

The OX transform. Let Obf be an obfuscator supporting a circuit family CSp
and let FE be a functional encryption scheme supporting all polynomial-size
circuits. We construct a functional encryption scheme OX[FE,Obf] via the OX
transform as follows. Setup, encryption and evaluation algorithms are identical to
those of the base functional encryption scheme. The token-generation algorithm
creates a token for the circuit that results from obfuscating the extracted circuit,
i.e., OX[FE,Obf].TGen(msk,C) := FE.TGen(msk,Obf(1λ,C)). Correctness of this
construction follows from those of its underlying components. We now show that
this construction yields function privacy against PRIV-TO adversaries. Since
PRIV-TO does not imply IND-CPA security—see the discussion in Sect. 5—we
establish IND-CPA security independently. The proof of the following theorem
is straightforward and results from direct reductions to the base FE and Obf
schemes used in the construction.

Theorem 1 (OX is PRIV-TO ∧ IND-CPA). If obfuscator Obf is DI secure,
then scheme OX[FE,Obf] is PRIV-TO secure. Furthermore, if FE is IND-CPA
secure OX[FE,Obf] is IND-CPA secure.

We note that this proof holds for arbitrary classes of circuits and arbitrary
(circuits-only) samplers. Using the composable VGB point-function obfuscator
of Bitansky and Canetti [10] and any secure functional encryption scheme that
is powerful enough to support one exponentiation and one equality test (e.g.,
supports NC1 circuits) we obtain a private keyword search scheme in the pres-
ence of tokens for arbitrarily correlated keywords. If the underlying functional
encryption scheme supports the more powerful functionality that permits attach-
ing a payload to the point, one obtains a PRIV-TO anonymous identity-based
encryption scheme where arbitrary correlations are tolerated. In this case, on
input (ID,m), the functionality supported by the underlying FE scheme would

Private Functional Encryption 241

return m if C(ID) = 1, where C was sampled from Obf(C[ID�]) during token
generation; it would return ⊥ otherwise.

The above theorem shows that DI is sufficient to build a PRIV-TO scheme.
It is however easy to see that the existence of a single-circuit DI obfuscator is
also necessary. Indeed, given any PRIV-TO scheme FE we can DI-obfuscate a
single circuit C by generating a fresh FE key pair, and outputting FE.Eval(·, tk)
where tk is a token for C.

Proposition 2 (PRIV-TO vs. DI). A PRIV-TO-secure functional encryption
for a circuits family CSp exists if a DI obfuscator for CSp exists. Conversely,
a single-circuit DI obfuscator for CSp exists if a PRIV-TO-secure functional
encryption for CSp exists.

A similar line of reasoning shows that the extractor-based constructions of
private FE by Boneh et al. [14] and Arriaga et al. [5] give rise to single-circuit
DI obfuscators for point functions for the specific classes of samplers considered
in those works.

Agrawal et al. [1] have proposed a simulation-based definition of privacy that
strikes a different balance between practical relevance and feasibility. However,
the definition in [1] implies VBB obfuscation, which is known to be feasible only
for restricted classes of circuits [12], in idealized models of computation [13,18]
or with restricted forms of auxiliary information. The above proposition shows
that our model is closer to the weaker form of DI obfuscation, which as shown in
Proposition 1 is implied by VGB (and hence VBB) obfuscation, and is therefore
more amenable to instantiations in the standard model.

6.2 The Trojan-Obfuscate-Extract (TOX) Transform

We now present a generic construction that achieves Res-PRIV security for a
class of samplers that we call concentrated. To this end, we build on the ideas
from [4] on converting selective to adaptive security and achieving simulation-
based security from IND-CPA security for FE schemes.

The TOX transform. Given a symmetric encryption scheme SE, a general-
purpose obfuscator Obf and a functional encryption FE for all circuits, our
Trojan-Obfuscate-Extract (TOX) transform operates as follows. The master pub-
lic key of the scheme is the same as that of the base FE scheme. Its master secret
key includes a symmetric key k and the master secret key for the base FE scheme.
To encrypt a message m we call the base FE encryption routine on (0, 0λ,m). To
generate a token for a circuit C, we first generate an obfuscation C̄ ←$ Obf(C),
a ciphertext c ←$ SE.Enc(k, 0n) and construct the following circuit.

Troj[C̄, c](b, k,m) :=
{
C̄(m) if b = 0;
C∗(m) if b = 1, where C∗ = SE.Dec(k, c).

Finally, we extract a token for Troj[C̄, c]. Evaluation simply invokes the corre-
sponding operation in the underlying FE.

242 A. Arriaga et al.

The correctness and IND-CPA security of this construction follow easily from
the correctness and IND-CPA security of the underlying functional encryption
scheme via straightforward reductions. Intuitively, during the normal operation
of the scheme, the tokens in the construction will simply evaluate an obfuscation
of the extracted circuit. In the proof of privacy, however, we will take advantage of
the fact that a totally independent circuit can be hidden inside the token within
the symmetric encryption ciphertext, and unlocked by a message containing
the correct symmetric decryption key. For the proof to go through, the hidden
circuit must be carefully selected so that the legitimacy condition is observed
throughout. In order to meet this latter restriction, we consider the following
constrained class of samplers.

Concentrated samplers. We say a sampler S is S∗-concentrated if for all st,
all CSpλ-vectors C we have that

Pr [C(m0) = C(m1) �= C(m∗)] ∈ Negl and Pr [C0(m0) �= C∗(m∗)] ∈ Negl,

where the probability space of these is defined by operations (C∗,m∗) ←$

S∗(z,C) and (C0,C1,m0,m1, z) ←$ S(st).
Concentration is a property independent of unpredictability and we will be

relying on both in our construction. Unpredictability is used in the reduction
to the DI assumption. Concentration guarantees the existence of a sampler S∗

that generates circuits C∗ and messages m∗ which permit decoupling circuits
and messages in the security proof. Intuitively, quantification over all C means
that adversarially generated circuits will lead to image matrices that collide
with those leaked by the sampler with overwhelming probability. The additional
restriction on C∗(m∗) guarantees that one can switch from the honest branch
of challenge tokens to one corresponding to the trojan branch. Both of these
properties are important to guarantee legitimacy when making a reduction to
the security of the FE scheme. We however need to impose that legitimacy also
holds for second-phase TGen queries as well, and this is where we need to
assume Res-PRIV security: the extra legitimacy condition allows us to ensure
that by moving to m∗ the legitimacy condition is not affected in the second phase
either. Finally, an important observation is that, because we are dealing with
concentrated samplers, our security proof goes through assuming obfuscators
that need only tolerate random auxiliary information.

Theorem 2 (TOX is Res-PRIV). If obfuscator Obf is DI secure, SE is
IND-CPA secure and FE is IND-CPA secure, then scheme TOX[FE,Obf,SE] is
Res-PRIV secure with respect to concentrated samplers.

Proof. The proof proceeds via a sequence of three games as follows.

Game0: This game is identical to Res-PRIV: challenge vector Cb is extracted
and mb is encrypted for a random bit b and for all TGen queries, string 0n

is encrypted using SE in the trojan branch.
Game1: In this game, instead of 0n we encrypt the circuits queried to the (first or

second-phase) TGen oracle under a symmetric key k∗ in the trojan branch.

Private Functional Encryption 243

In the challenge phase, we sample (C∗,m∗) ←$ S∗(z,C), where C are all
first-phase TGen queries, and encrypt C∗ under k∗ for the challenge circuits
in the trojan branch. This transition is negligible down to IND-CPA security
of SE.

Game2: In this game, instead of encrypting (0, 0,mb) we encrypt (1, k∗,m∗)
in the challenge phase where the latter is generated using S∗(z,C). We
reduce this hop to the IND-CPA security of FE. We generate a key k∗,
answer first-stage TGen queries using the provided TGen oracle and encrypt
circuits under k∗ in the trojan branch to get st. We run S(st) and get
(C0,m0,C1,m1, z). We then run S∗(z,C), where C are all first-phase TGen
queries, to get (C∗,m∗). We prepare challenges tokens by encrypting C∗

under k∗ in the trojan branch and using the provided TGen oracle we gen-
erate the challenge tokens. We query the provided LR on (0, 0,mb) and
(1, k∗,m∗) and receive the corresponding vector of ciphertexts. Second-stage
TGen queries are handled using provided TGen oracle and k∗. Finally, we
return the same bit that the distinguisher returns. Legitimacy of first-stage
TGen queries follows from the first condition on concentration that with high
probability C(mb) = C(m∗). For the challenge tokens, this follows from the
second concentration requirement that Cb(mb) = C∗(m∗). For the second-
stage queries we rely on the restriction on the adversary. Recall that in the
Res-PRIV model, any second-stage queries must have an image vector which
matches one for a first-stage query. Since the first-stage images match those
on m∗ (and hence are legitimate), the second-stage ones will be also legiti-
mate. We output (b′ = b) where the distinguisher outputs b′. As a result of
this game, the challenge messages no longer depend on b. It is easy to see that
according to the IND-CPA challenge bit this reduction interpolates between
games Game1 and Game2.

Game3: In this game we use C1 in challenge token generation even if b = 0.
We show this hop in unnoticeable down to the security of the obfuscator.
We sample an FE key pair and a symmetric key and simulating the first-
stage TGen queries for the adversary as before. We define a DI sampler that
outputs the circuits that the Res-PRIV sampler outputs, but extends the
circuit list to include another copy of C1 on both sides. This sampler also
outputs as auxiliary information z′ the original auxiliary information output
by the PRIV sampler, extended with the random coins used to generate
the FE key, the symmetric key, and to run the first stage of the adversary
(this will allow the second stage DI adversary to reconstruct the keys and
first stage TGen queries). It follows that this sampler is unpredictable as
long as the Res-PRIV sampler is. When we receive the obfuscations and
z′, we generate (C∗,m∗) ←$ S∗(z,C), where C are all first-phase TGen
queries. We form the challenge tokens using the received obfuscations and
C∗, taking the C1 obfuscations from the duplicated part of the challenge,
and the C0 obfuscations from the original part (these can now be either C0

or C1 depending on the external challenge bit). Challenge ciphertexts are
generated by encrypting m∗ (rules of Game2). We answer the second-stage
TGen queries using the FE key and the symmetric key. We return whatever

244 A. Arriaga et al.

the distinguisher returns. It is easy to see that according to the DI challenge
bit this reduction interpolates between games Game2 and Game3.

In Game3 both the challenge tokens and challenge ciphertexts are independent
of the bit b and hence the advantage of any adversary is 0. �

Examples. Consider keyword samplers which output high-entropy keywords
and messages with arbitrary image matrices. All such samplers are concentrated
around a sampler S∗ that outputs uniformly random keywords and messages
subject to the same image pattern. The second concentration condition is imme-
diate and the first follows from the fact that all messages and circuits have high
entropy and C is selectively chosen.

As another example, consider hyperplane membership circuits C[v](w) that
return 1 iff 〈v,w〉 = 0 (mod p) for a prime p. Samplers which output n vectors
vi ∈ Z

d
p and m messages wi ∈ Z

d
p where all vector entries have high entropy

can be easily shown to be unpredictable. Given the corresponding n × m image
matrix, whenever d(n+m) > nm, a high-entropy pre-image to the image matrix
can be sampled as the system will be underdetermined. Under this condition,
the second requirement needed for concentration is met, and the first condition
follows as this pre-image is high entropy and C is selectively chosen. This obser-
vation implies that a DI obfuscator for the hyperplane membership problem, as
that of Canetti et al. [17] shown in Sect. 4, will immediately yield a private func-
tional encryption scheme for the same functionality under arbitrary correlations
via the TOX construction, a problem that was left open in [15].

6.3 The Disjunctively-Obfuscate-Extract (DOX) Transform

Our third construction is specific to point functions, and besides being sim-
pler and more efficient, can tolerate arbitrary correlations between challenge
keywords and encrypted messages. Put differently this construction removes
the concentration restriction on samplers. For this construction we require a
functional encryption scheme that supports the OR composition of two DI-
secure point obfuscations. The composable VGB point obfuscator of Bitansky
and Canetti [10] implies that the required DI point obfuscator exists. Further-
more, we also rely on a standard functional encryption scheme that supports
the evaluations of four group operations in a DDH group (corresponding to the
disjunction of two point function obfuscations), which is a relatively modest
computation. We are, however, unable to lift the mild second-stage restriction.

The DOX transform. Let Obf be an obfuscator supporting a point cir-
cuit family CSp over message space MSp. Let FE be a functional encryp-
tion scheme supporting general circuits, and let PRP be a pseudorandom
permutation. We construct a keyword search scheme KS for keyword space
WSp = MSp via the Disjunctively-Obfuscate-Extract (DOX) transform as fol-
lows. The key-generation algorithm samples a PRP key k ←$ K(1λ) and an FE
key pair (msk,mpk) ←$ FE.Gen(1λ). It returns ((k,msk),mpk). The encryption

Private Functional Encryption 245

operation is identical to that of the FE scheme. The test algorithm is identical
to the evaluation algorithm of FE. The token-generation algorithm computes
FE.TGen(msk,Obf(1λ,C[w])∨Obf(1λ,C[E(k,w)])). The FE-extracted circuits are
two-point circuits implemented as the disjunction of two obfuscated point func-
tions. One of the points will correspond to the searched query, whereas the other
point will be pseudorandom and will be only used for proofs of security.

The proof of Res-PRIV security of this construction involves an intricate
game hopping argument, in order to deal with all possible correlations allowed
by the Res-PRIV model (which are the same as those allowed by full PRIV).
We refer to the full version of this paper for a detailed description and security
analysis of this construction.

6.4 The Verifiably-Obfuscate-Encrypt-Extract (VOEX) Transform

Our last construction lifts the second-stage restriction at the cost of relying on
more expressive forms of obfuscators. The novelty in this construction resides
in the observation that, in order to offer the keyword search functionality, it
suffices to encrypt information that enables equality checks between words and
messages to be carried out. In our fourth construction we encode a message m as
an obfuscation of the point function C[m]. Concretely, we obfuscate words before
extraction and messages before encryption. Equality with w can be checked using
a circuit D[w] that on input an obfuscated point function Obf(C[m]) returns
Obf(C[m])(w). We emphasize that D[w] is not a point function. We also need
to ensure that an attacker cannot exploit the D[w] circuits by, say, encrypting
obfuscations of malicious circuits of its choice. We do this using NIZK proofs to
ensure the outputs of the point obfuscator are verifiable: one can publicly verify
that an obfuscation indeed corresponds to some point function. To summarize,
our construction relies on a DI obfuscator supporting point functions C[m](w) :=
(m = w) and circuits D[w](C) := C(w) and a general-purpose FE. The circuits
C[m] and D[w] were used negatively by Barak et al. [6] to launch generic attacks
against VBB and VGB obfuscators. Here, the restrictions imposed on legitimate
PRIV samplers ensure that these attacks cannot be carried out in our setting,
and obfuscators supporting them can be used positively to build private FE
schemes. The detailed description of the scheme and its security analysis can be
found in the full version of this paper.

Acknowledgements. Afonso Arriaga was supported by the National Research Fund,
Luxembourg (AFR Grant No. 5107187). Manuel Barbosa was funded by project
“NanoSTIMA: Macro-to-Nano Human Sensing: Towards Integrated Multimodal Health
Monitoring and Analytics/NORTE-01-0145-FEDER-000016”, which is financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF). Pooya Farshim was supported in part by grant ANR-14-CE28-0003
(Project EnBid).

246 A. Arriaga et al.

References

1. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: On the practical security of inner product functional
encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46447-2 35

2. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency
properties, relation to anonymous IBE, and extensions. J. Cryptol. 21(3), 350–391
(2008)

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive, Report 2013/689 (2013)

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to
adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 32

5. Arriaga, A., Tang, Q., Ryan, P.: Trapdoor privacy in asymmetric searchable
encryption schemes. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT
2014. LNCS, vol. 8469, pp. 31–50. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06734-6 3

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

7. Barbosa, M., Farshim, P.: On the semantic security of functional encryption
schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
143–161. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36362-7 10

8. Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way
function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata, T.
(eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 102–121. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45608-8 6

9. Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leak-
age and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563,
pp. 542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0 20

10. Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation.
J. Cryptol. 27(2), 317–357 (2014)

11. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 108–125. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44381-1 7

12. Brakerski, Z., Rothblum, G.N.: Black-box obfuscation for d-CNFs. In: ITCS 2014,
pp. 235–250. ACM (2014)

13. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 1

14. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40084-1 26

http://dx.doi.org/10.1007/978-3-662-46447-2_35
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-662-48000-7_32
http://dx.doi.org/10.1007/978-3-319-06734-6_3
http://dx.doi.org/10.1007/978-3-319-06734-6_3
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-642-36362-7_10
http://dx.doi.org/10.1007/978-3-662-45608-8_6
http://dx.doi.org/10.1007/978-3-662-49099-0_20
http://dx.doi.org/10.1007/978-3-662-44381-1_7
http://dx.doi.org/10.1007/978-3-642-54242-8_1
http://dx.doi.org/10.1007/978-3-642-40084-1_26

Private Functional Encryption 247

15. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 14

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

17. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane member-
ship. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11799-2 5

18. Canetti, R., Vaikuntanathan, V.: Obfuscating branching programs using black-box
pseudo-free groups. IACR Cryptology ePrint Archive, Report 2013/500 (2013)

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
2013, pp. 40–49. IEEE Computer Society (2013)

20. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS 2005, pp. 553–562. IEEE Computer Society (2005)

21. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. J. Cryptol. 26(2), 191–224 (2013)

22. O’Neill, A.: Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, Report 2010/556 (2010)

http://dx.doi.org/10.1007/978-3-642-42033-7_14
http://dx.doi.org/10.1007/978-3-642-42033-7_14
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-642-11799-2_5

Revocable Decentralized Multi-Authority
Functional Encryption

Hikaru Tsuchida1(B), Takashi Nishide2, Eiji Okamoto2, and Kwangjo Kim3

1 NEC Corporation, 1753, Shimonumabe, Nakahara-Ku,
Kawasaki, Kanagawa 211-8666, Japan

h-tsuchida@bk.jp.nec.com
2 Faculty of Engineering, Information and Systems, University of Tsukuba,

1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
{nishide,okamoto}@risk.tsukuba.ac.jp

3 Computer Science Department, KAIST, 291 Daehak-ro, Yuseong-gu,
Daejeon 305-701, Korea

kkj@kaist.ac.kr

Abstract. Attribute-Based Encryption (ABE) is regarded as one of the
most desirable cryptosystems realizing data security in the cloud storage
systems. Functional Encryption (FE) which includes ABE and the ABE
system with multiple authorities are studied actively today. However,
ABE has the attribute revocation problem. In this paper, we propose a
new revocation scheme using update information, i.e., revocation patch
(not update key), in which an encryptor does not need to care about
the revocation list. We propose an FE scheme with multiple authori-
ties and no central authority supporting revocation by using revocation
patch. Our proposal realizes the revocation on the attribute level. More
precisely, we introduce the new concept, i.e., the revocation on the cat-
egory level that is a generalization of attribute level. We prove that our
construction is adaptively secure against chosen plaintext attacks and
static corruption of authorities based on the decisional linear (DLIN)
assumption.

Keywords: Functional encryption · Access control · Multiple
authorities · Revocation · Attribute-level

1 Introduction

1.1 Background

In recent years, outsourcing data storage to cloud service providers has been
increasing. Due to this change, there are frequent leaks of confidential data in
cloud storage system. Therefore, data security in the cloud server is required.
Attribute-Based Encryption (ABE) [3,6,9,13,14,19,22] is regarded as one of the

This work was completed while the corresponding author was a graduate student at
University of Tsukuba.

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 248–265, 2016.
DOI: 10.1007/978-3-319-49890-4 14

Revocable Decentralized Multi-Authority Functional Encryption 249

most desirable cryptosystems realizing data security in the cloud storage systems.
ABE systems can provide data security and access control without a trusted
server by using access policies and associated attributes among ciphertexts and
private keys. For example, if the data owner encrypts data with an access policy
like (“the sales department” OR (“the development department” AND “chief”)),
only a staff member in the sales department and a chief of the development
department can decrypt the data in a Ciphertext-Policy ABE (CP-ABE) system.
Furthermore, Functional Encryption (FE) [5,16,18] which includes ABE and the
ABE system with multiple authorities [6,13,14,18] are proposed.

However, CP-ABE has the attribute revocation problem. For example, if a
staff member in the sales department got fired and still has a decryption key
related to the attribute of “the sales department” illegally, he/she may be able
to decrypt encrypted data associated with an access policy related to “the sales
department”. Accordingly, a CP-ABE system needs a user (attribute) revocation
scheme. In previous research, there are two types of revocation schemes: indirect
revocation [4,11,21] and direct revocation [1]. The former scheme requires an
update key for revocation issued by an authority, but an encryptor does not
have to care about a revocation list in the indirect revocation system. The latter
scheme can revoke users without using an update key because an encryptor
specifies revoked users for ciphertexts by using the revocation list which may be
specified and given by the authority or may be specified freely by the encryptor.
In other words, in the direct revocation system, an encryptor has to care about
a revocation list. That is, in indirect (direct) revocation, users are revoked by
an authority (encryptor resp.). The direct revocation with multiple authorities
was already proposed in [10], but the indirect one is not proposed.

To achieve attribute-level revocation, encryptors will expect that individual
authorities such as universities and government maintain revocation lists rather
than specifying the revocation list for ciphertexts by themselves. Furthermore,
it is also desirable that a new cryptosystem has expressiveness of access policies
(e.g. an FE system) and practical attribute management (e.g. multi-authority
ABE system). For this reason, we propose FE with multiple authorities support-
ing indirect revocation, i.e., an encryptor does not have to care about revoca-
tion list.

1.2 Our Results

We propose a new revocation scheme using what we call revocation patch, patch
revocation scheme, by combining indirect revocation and Decentralized Multi-
Authority Functional Encryption (DMA-FE) [18] (which realizes non-monotone
access structures using inner-product relations with multiple authorities and no
central authority), i.e. the first DMA-FE scheme supporting indirect revocation.
Our proposed scheme realizes the revocation on the category level that is a
generalization of indirect revocation on the attribute level. (For more information
about revocation on the attribute level, see the full version of this paper [23].)

Here, we give the intuitive explanation of how to specify revocation with a
toy example of revocation on the category level in our scheme. Suppose that,

250 H. Tsuchida et al.

the attribute category t1 includes the attribute values At1 , A
′
t1 , A

′′
t1 and the

attribute category t2 includes the attribute values Bt2 , B
′
t2 , B

′′
t2 . We would

like to specify (¬At1 ∧ ¬Bt2) as a ciphertext policy as described below. Then,
we specify revocation information in the ciphertext on the category level, as,
for example, ((¬At1 ∧ t1[vt1]) ∧ (¬Bt2 ∧ t2[vt2])). Here, (¬At1 ∧ t1[vt1]) means
that the decryptor needs to have attribute of t1 except At1 , i.e., needs to have
A′

t1 or A′′
t1 . Moreover, the decryptor’s attribute of t1 needs to be not revoked

before issuing the revocation patch of version vt1 by the authority that manages
attribute category t1. (¬Bt2 ∧ t2[vt2]) means the similar condition about t2 as for
t1. If we would like to specify a non-monotone access structure for a ciphertext,
the revocation information is required to be on the category level, not attribute
level. The revocation on the attribute level considers that the user’s attribute
which is associated with an access policy is valid or revoked, but does not consider
the other attributes of the category to which the user’s attribute belongs. For
this reason, our scheme supporting non-monotone access control realizes the
revocation on the category level, rather than attribute level. We also prove that
our construction is adaptively secure against chosen plaintext attacks and static
corruption of authorities based on the DLIN assumption. (We note that DMA-
FE [18] of Okamoto and Takashima does not achieve the security against static
corruption of authorities.)

We show a comparison with previous works in Tables 1 and 2. In Table 1,
LSSS means Linear Secret Sharing Scheme. In Table 2, SD method means Sub-
set Difference method in [15]. Std. model, GBGM and ROM mean standard

Table 1. Comparison with previous works

Schemes Authority

(central authority)

Policy Access structure

AI09 [2] Single Key-Policy Monotone (LSSS)

DDM15 [7] Single Key-Policy Non-monotone (LSSS)

H15 [10] Multiple (Y) Ciphertext-Policy Monotone (LSSS)

L12 [13] Multiple (N) Ciphertext-Policy Monotone (LSSS)

OT13 [18] Multiple (N) Ciphertext-Policy Non-monotone (LSSS & Inner-Product)

This work Multiple (N) Ciphertext-Policy Non-monotone (LSSS & Inner-Product)

Table 2. Comparison with previous works (cont.)

Schemes Revocation Revocation level Security model Assumption

AI09 [2] Direct/Indirect (CS method) User level selective (Std. model) DBDH

DDM15 [7] Direct (SD method) User level full (Std. model) DLIN

H15 [10] Direct User level full+ (GBGM & ROM) -

L12 [13] - - full+ (ROM) DLIN

OT13 [18] - - full (ROM) DLIN

This work Patch (CS method) Category level full+ (ROM) DLIN

Revocable Decentralized Multi-Authority Functional Encryption 251

model, generic bilinear group model and random oracle model, respectively. The
“full” and “full+” mean “adaptively payload-hiding against chosen plaintext
attacks” and “adaptively payload-hiding against chosen plaintext attacks and
static corruption of authorities”. DBDH means the Decisional Bilinear Diffie-
Hellman assumption. Tables 1 and 2 show that our proposal has expressiveness
of access policy and practical attribute management. It also shows that our
proposed scheme realizes that each of the authorities is able to revoke user’s
attribute by themselves (not an encryptor).

1.3 Key Techniques

Overview. Our scheme is based on DMA-FE [18]. In DMA-FE [18], there are
roughly two types of ciphertexts: the encrypted message and the headers for
access control. Only the user who has attribute keys associated with the access
policy can restore the secret (or session key) from the headers and decrypt the
encrypted message by using it. We add keys and headers for attribute revo-
cation to DMA-FE [18] by introducing the basis of dual pairing vector spaces
(DPVS) for attribute revocation. Due to this, only the user who has attribute
keys associated with the access policy and keys for attribute revocation which
are not revoked can get the message. A key for attribute revocation is like an
attribute key in DMA-FE [18], so an attribute vector is embedded in a key for
attribute revocation. Each key for attribute revocation is tied to every attribute
key. Therefore, if the key for attribute revocation is revoked, the attribute key
to which it is tied also becomes the invalid key.

How to Revoke. We realize a mechanism that we call patch that provides the
same functionality as indirect revocation by using DPVS and devising the encod-
ing of an attribute vector like a full binary tree. In the patch revocation scheme,
an attribute authority prepares a full binary tree of users for every attribute
category and issues the latest revocation patch associated with a covering node
of the full binary tree (by running PUpdate algorithm) when the event of user’s
attribute revocation occurred. The revocation patch is the update information
and equivalent to update keys in indirect revocation. Issuing the latest revocation
patches of each attribute by each attribute authority realizes the revocation on
the category level. When an encryptor generates the ciphertext with the access
policy, he/she obtains the latest revocation patches of each attribute associated
with the access policy and applies it to the ciphertext, i.e., makes the headers
for attribute revocation by using the latest revocation patches. If the product
of attribute vector (which represents the user’s label) in the key for attribute
revocation and the header’s attribute vector (which represents the path of the
covering node) is not zero, the key for attribute revocation is revoked.

Comparison Between Patch Revocation and Indirect Revocation. If
there are many decryptors, the patch revocation scheme is superior to the indi-
rect revocation scheme because the patch revocation scheme can reduce the com-
munication cost and process of decryptors. For details of comparison between
patch revocation and indirect revocation, see the full version of this paper [23].

252 H. Tsuchida et al.

How to Prove Security. We employ the Dual System Encryption (DSE)
methodology in [18] to prove the adaptive security. However, we cannot apply
the DSE directly because the attacker of our proposal can request user’s attribute
keys and keys for attribute revocation that satisfy the challenge access structure
(but some user’s private key is revoked). That is, we cannot use the key query
restriction in the security proof straightforwardly. To solve this problem, we use
the secret sharing and the proof methodology in [7]. Furthermore, to prove the
security against the static corruption of authorities, we use the technique in [13].

1.4 Related Works

ABE (with Single Authority): Sahai and Waters introduced Fuzzy Identity-
Based Encryption (FIBE) [22] that is a special type of ABE. The only access
structure supported in FIBE is “threshold”. In FIBE, ciphertexts and user’s
private key are associated with a set of attributes ω and both a threshold para-
meter d and another set of attributes ω′, respectively. Then, if |ω ∩ ω′| ≥ d
holds, the user can decrypt ciphertexts and get the plaintext. Some ABE is
studied and developed actively after [22] is introduced. ABE can provide data
security and access control without a trusted server by using access policies and
associated attributes among ciphertexts and user’s private keys. Key-Policy ABE
(KP-ABE) [9] introduced by Goyal et al. is the scheme that supports an access
structure in user’s private key. CP-ABE [3] introduced by Bethencourt et al. is
the scheme that supports an access structure in ciphertexts. Ostrovsky et al. [19]
proposed a scheme that supports non-monotone access structure where negated
attributes are available. In recent years, FE [5,16] including ABE is proposed.

Multi-Authority ABE: Chase proposed the first multi-authority ABE [6] that
extends FIBE. After that, Müller et al. proposed the multi-authority ABE [14]
that extends CP-ABE. In recent years, Lewko proposed an adaptively secure
multi-authority CP-ABE against static corruption of authorities [12,13] and
Okamoto and Takashima proposed multi-authority functional encryption with-
out a central authority (DMA-FE) [18].

Revocation: Boldyreva et al. introduced the IBE supporting revocation by
update key [4]. After that, Sahai et al. proposed the ABE supporting revocation
by update keys and updating ciphertext [21]. Recently, Lee et al. introduced a
new cryptographic primitive realizing a time-evolution mechanism [11], in other
words, Lee et al. proposed a new revocation scheme with modularity. Meanwhile,
Attrapadung et al. proposed the ABE supporting revocation without update
keys which specifies revoked users for ciphertexts directly [1]. Attrapadung et
al. also proposed the ABE supporting (user-level) direct/indirect revocation [2].
Qian et al. proposed the KP-ABE supporting direct revocation and achieving
adaptive security in composite order bilinear groups [20]. González-Nieto et al.
proposed the full-hiding revocable predicate encryption supporting direct revo-

Revocable Decentralized Multi-Authority Functional Encryption 253

cation where the revocation list is hidden specified for ciphertexts [8]1. Datta
et al. proposed the (unbounded) KP-ABE supporting direct revocation by using
a subset difference method in prime order bilinear groups [7]. Horváth proposed
multi-authority ABE (with a central authority) which specifies revoked users for
ciphertexts directly [10].

1.5 Notations

We follow the notations in [11,18].
When A is a random variable or distribution, y

R←− A denotes that y is ran-
domly selected from A according to its distribution. When A is a set, y

U←− A
denotes that y is uniformly selected from A. We denote the finite field of order
q by Fq, and Fq \ {0} by F

×
q . A vector symbol denotes a vector representation

over Fq, e.g., �x denotes (x1, . . . , xn) ∈ F
n
q . For two vectors �x = (x1, . . . , xn)

and �v = (v1, . . . , vn), �x · �v denotes the inner-product
∑n

i=1 xivi. The vector �0 is
abused as the zero vector in F

n
q for any n. XT denotes the transpose of matrix X.

A bold face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈
V(i = 1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the sub-
space generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN) and
B

∗ := (b∗
1, . . . , b

∗
N), (x1, . . . , xN)

B
:=

∑N
i=1 xibi and (y1, . . . yN)

B∗ :=
∑N

i=1 yib
∗
i .

For a format of attribute vectors �n := (d;nA,1, . . . , nA,d, nR,1, . . . , nR,d) that
indicates dimensions of vector spaces, �ef,t,j denotes the canonical basis vector

(

j−1
︷ ︸︸ ︷
0, . . . , 0, 1,

nf,t−j
︷ ︸︸ ︷
0, . . . , 0) ∈ F

nf,t
q for f = A,R; t = 1, . . . , d; j = 1, . . . , nf,t, where f and

t represent the functionality (A represents the access control and R represents
the revocation) and the attribute authority. GL(n,Fq) denotes the general linear
group of degree n over Fq.

For a string L ∈ {0, 1}n, let L[i] be the ith bit of, L, and L|i be the prefix
of L with i−bit length. For example, if L = 010, then L[0] = ∗, L[1] = 0, L[2] =
1, L[3] = 0, and L|0 = ∗, L|1 = 0, L|2 = 01, L|3 = 010.

1.6 Preliminaries

We use DPVS introduced by Okamoto and Takashima [16] and general predicates
(non-monotone access structures using inner-product relations). We also use the
subset-cover revocation framework introduced by Naor et al. [15]. For these
preliminaries, see the full version of this paper [23].

1 The scheme of [8] can hide the revocation list (i.e., identities of revoked users) spec-
ified for ciphertexts in a provably secure way, but an encryptor needs to care about
revocation lists. We note that an encryptor does not have to care about the revo-
cation list in the schemes supporting indirect revocation [4,11,21] and our scheme.
However, we note that the aim of the indirect revocation [4,11,21] and our scheme
is not to hide the revocation list specified for ciphertexts in a provably secure way.

254 H. Tsuchida et al.

2 Revocable Decentralized Multi-Authority Functional
Encryption (R-DMA-FE)

2.1 Definitions of R-DMA-FE

Definition 1 (Revocable Decentralized Multi-Authority Functional
Encryption). A revocable decentralized multi-authority functional encryption
(R-DMA-FE) scheme consists of the following algorithms. These are random-
ized algorithms except for Dec.

1. GSetup(1λ)
The GSetup algorithm takes as input a security parameter λ and outputs a
global parameter gparam.

2. ASetup(gparam, t, nA,t, Nmax,t, ϕt)
The ASetup algorithm takes as input a global parameter gparam, an attribute
authority (or category) t (1 ≤ t ≤ d), a dimension of attribute vector space
nA,t, the maximum number Nmax,t of users for the attribute in the category
t and the upper bound ϕt for the number of subsets in the cover. It outputs
an attribute-authority public key apkt, an attribute-authority secret key askt,
an revocation public key rpkt and an revocation secret key rskt.

3. PUpdate(t, rpkt, rskt, r�vt
, vt)

The PUpdate takes as input an attribute authority (or category) t, a revocation
public key rpkt, a revocation secret key rskt, the latest revocation list r�vt

2

and the latest version number for the revocation patch vt. It outputs the latest
revocation patch CPvt

.
4. KeyGen(gparam, t, askt, rskt, gid, �xA,t)

The KeyGen takes as input a global parameter gparam, an attribute authority
(or category) t, a revocation secret key rskt, the user gid and an attribute
vector �xA,t. It outputs the user secret key uskgid,(t,�xA,t),rt where rt represents
the number of return (after gid’s (t, �xA,t) revocation3).

5. Enc({apkt, rpkt,CPvt
},m, S)

The Enc takes as inputs a set of public keys from relevant authorities
{apkt, rpkt}, a set of the latest revocation patches from relevant authorities
{CPvt

}, a message m ∈ GT , and an access structure S. It outputs a cipher-
text ctS,{vt}.

6. Dec(gparam, {apkt, rpkt, uskgid,(t,�xA,t),rt}, ctS,{vt})
The Dec takes as inputs a set of public keys from relevant authorities
{apkt, rpkt} and secret keys {uskgid,(t,�xA,t),rt} corresponding to user gid and
pair of attributes and number of return after revocation {((t, �xA,t), rt)} and a
ciphertext ctS,{vt}. It outputs a message m or a special symbol ⊥.

An R-DMA-FE scheme should have the following correctness property: for
all security parameter λ, all attribute sets Γ := {(t, �xA,t)}, all gid, all the
number of return (after gid’s (t, �xt,A) revocation) rt, all messages m, all
2 We define a user’s attribute revocation list with its version vt: r�vt ⊆ {1, . . . , Nmax,t}.
3 We assume that a revoked user can become unrevoked again (possibly several times)

after the user was revoked.

Revocable Decentralized Multi-Authority Functional Encryption 255

access structures S and all the latest revocation lists r�vt
, it holds that m =

Dec(gparam, {apkt, rpkt, uskgid,(t,�xA,t)∈Γ,rt}, ctS,{vt}) with overwhelming probabil-
ity, if S accepts Γ and ∀δ related with Γ , i.e., �1 ∈ span〈Mδ〉 s.t. Mδ :=
(Mj)γ(j)=1, there exists no j s.t. FindNode(gidi, (t, �xA,t), rt) ∈ r�vt

∈ {r�vt
}t

4

and ρ(j) = (t, �xA,t) or ¬(t, �xA,t), where

gparam
R←− GSetup(1λ),

(apkt, askt, rpkt, rskt)
R←− ASetup(gparam, t, nA,t, Nmax,t, ϕt),

CPvt

R←− PUpdate(t, rpkt, rskt, r�vt
, vt),

uskgid,(t,�xA,t),rt
R←− KeyGen(gparam, t, askt, rskt, gid, �xA,t),

ctS,{vt}
R←− Enc({apkt, rpkt,CPvt

},m,S),

We let S be the set of authorities. We assume each attribute is assigned to one
authority and an attribute is considered to be of the form of (t, �xt). For simplicity,
we also assume that each authority manages only one attribute category.5

Definition 2 (Security of R-DMA-FE). For an adversary, we define
AdvR−DMA−FE,PHCA

A (λ) to be the advantage in the following experiment for any
security parameter λ. An R-DMA-FE scheme is adaptively payload-hiding secure
against chosen plaintext attacks and static corruption of authorities if the advan-
tage of any polynomial-time adversary is negligible:

Setup

Given 1λ, the challenger gives gparam R←− GSetup(1λ) to adversary A. A spec-
ifies a set S ′ ⊂ S of corrupt authorities, where S(:= {1, . . . , d}) is the set of
all the authorities in the system. For good authority t ∈ S \ S ′, the chal-
lenger runs (apkt, askt, rpkt, rskt)

R←− ASetup(gparam, t, nA,t, Nmax,t, ϕt) and
gives {apkt, rpkt}t∈S\S′ to A.

Phase 1

The adversary is allowed to issue a polynomial number of queries,
(gid, (t, �xA,t)), to the challenger or oracle KeyGen(gparam, t, askt, rskt, ·, ·) for
private keys, attribute secret key uskgid,(t,�xA,t),rt, where t is an attribute cate-
gory belonging to a good authority, gid is an global identifier and rt is the num-
ber of return after gid’s (t, �xA,t) revocation.6 The adversary is also allowed

4 Here, we define FindNode : {0, 1}∗ × {(t, �xA,t)} × N ∪ {0} → {1, . . . , Nmax,t}. The
FindNode is not a priori function. An attribute authority assigns (gid, (t, �xA,t), rt)
to the FindNode(gid, (t, �xA,t), rt)-th leaf node newly and uniquely every time the
user key is issued. We remark that an attribute authority can decide how to
choose a leaf by itself as long as the assignment is unique. Then, let “user u”
in the subset-cover revocation framework equal FindNode(gid, (t, �xA,t), rt). That is,
FindNode(gid, (t, �xA,t), rt) = u ∈ {1, . . . , Nmax,t}.

5 We note that actually each authority can manage several attribute categories.
6 For example, a user is initially unrevoked, and the user may be revoked. If the user

becomes unrevoked again, then rt is 1.

256 H. Tsuchida et al.

to issue a polynomial number of queries, ({(gid, (t, �xA,t), rt)}t∈S\S′ , vt), to the
challenger or oracle PUpdate(t, rpkt, rskt, {FindNode(·, ·, ·)}, ·) for revocation
patch CPvt

. Note that the adversary is allowed to query only one revocation
patch for each t and vt.

Challenge

Let Γgidi
:= {(t, �xA,t)}(i = 1, . . . , ν) be the queries set to the KeyGen oracle

with gidi. The adversary submits two messages m(0),m(1), an access structure
S := (M,ρ) and the pair of revocation lists for relevant good authorities and
the number of version {(RLt, vt) | RLt := {(gid, (t, �xA,t), rt)}}t∈S\S′ . We note
that for a valid matrix (i.e., matrix used to specify an access structure by using
a linear secret sharing scheme) in the security game, the rows associated with
corrupt authorities cannot include the target vector �1 in their span. The access
structure and revocation history must satisfy at least one of the following
restrictions for each i:

Restriction I
Γgidi

∪ Γ ′ must fail to satisfy S, where Γ ′ := {(t′, �xA,t′) | t′ ∈ S ′}.
Restriction II

∀δ related with Γgidi
∪ Γ ′, when S accepts δ, i.e., �1 ∈ span〈Mδ〉 s.t.

Mδ := (Mj)γ(j)=1, there exists j s.t. FindNode(gidi, (t, �xA,t), rt) ∈
r�vt

= {FindNode(rlt) | rlt ∈ RLt} for any rt and uskgidi,(t,�xA,t),rt

which is given to A, t ∈ S \ S ′, ρ(j) = (t, �xA,t) or ¬(t, �xA,t).
The adversary must also give the challenger the public keys and the revoca-
tion patches for any corrupt authorities whose attributes appear in the access
structure. Given it, the challenger flips a random coin b

U←− {0, 1}, and sends
the adversary ct

(b)
S,{vt}(obtained by running PUpdate and Enc).

Phase 2

The adversary is allowed to issue a polynomial number of queries,
(gid, (t, �xA,t)), to the challenger or oracle KeyGen(gparam, t, askt, rskt, ·, ·) for
private keys, user secret key uskgidi,(t,�xA,t),rt subject to the same restric-
tion as before. The adversary is also allowed to issue a polynomial num-
ber of queries, ({(gid, (t, �xA,t), rt)}t∈S\S′ , vt), to the challenger or oracle
PUpdate(t, rpkt, rskt, {FindNode(·, ·, ·)}, ·) for revocation patch CPvt

subject to
the same restriction as before.

Guess

The adversary outputs a guess b′ of b.

The advantage of an adversary A in the above game is defined as
AdvR−DMA−FE,PHCA

A (λ) := |Pr[b′ = b] − 1/2| for any security parameter λ. An
R-DMA-FE scheme is adaptively payload-hiding secure against chosen plaintext
attacks and static corruption of authorities if all polynomial time adversaries
have at most a negligible advantage in the above game.

Revocable Decentralized Multi-Authority Functional Encryption 257

Remark: We show toy examples of adversary’s key queries. Suppose that, there
are three attribute authorities t1, t2 and t3. t1, t2 and t3 manage each attribute
At1 , Bt2 , and Ct3 respectively. We would like to specify (At1 ∧Bt2)∨ (At1 ∧Ct3)
as the challenge access structure.
Case 1. If the adversary gets the valid attribute key of At1 , the security game
can be continued. The adversary follows the restriction I.
Case 2. If the adversary gets the valid attribute key of At1 and the revoked
key of Bt2 , the security game can be continued. The adversary follows not the
restriction I but the restriction II.
Case 3. If the adversary gets the valid attribute keys of At1 and Ct3 and the
revoked key of Bt2 , the security game is aborted. The adversary’s keys satisfy
not (At1 ∧ Bt2) but (At1 ∧ Ct3). That is, the adversary does not follow the
restriction I or II. The restriction II means that the adversary must have at least
one revoked attribute key for each combination of attribute keys which satisfies
the challenge access structure. If the adversary has the valid attribute key of At1

and the revoked keys of Bt2 and Ct3 , the security game can be continued. The
adversary follows not the restriction I but the restriction II.

2.2 Construction

Our proposal is based on DMA-FE [18], so we follow the notations in [18].
We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v)

or ρ(i) := ¬(t, �v), where ρ is given in access structure S := (M,ρ). In the
proposed scheme, we assume that ρ̃ is injective for S := (M,ρ) with cipher-
text ctS,{vt}. In the description of the scheme, we assume that input vector
�xf,t := (xf,t,1, . . . , xf,t,nf,t

) is normalized such that xf,t,1 := 1. (If �xf,t is not nor-
malized, we can change it to a normalized one by (1/xf,t,1) · �xf,t assuming that
xf,t,1 is non-zero). In addition, we assume that input vector �vR,ρ̃(i),vρ̃(i),j :=
(vR,ρ̃(i),vρ̃(i),j,1, . . . , vR,ρ̃(i),vρ̃(i),j,2hρ̃(i)+4) satisfies that vR,ρ̃(i),vρ̃(i),j,2hρ̃(i)+4 �= 0.
We use the notations in [23] (which is the full version of this paper) for
DPVS, e.g., (x1, . . . , xN)

B
, (y1, . . . , yN)

B∗ for xi, yi ∈ Fq, and �ef,t,j . For
matrix, X := (χi,j)i,j=1,...,N ∈ F

N×N
q and element v in N−dimentional V,

X(v) denotes
∑N,N

i=1,j=1 χi,jφi,j(v) using canonical maps {φi,j}. Similarly, for

matrix (ϑi,j) := (X−1)T , (X−1)T (v) :=
∑N,N

i=1,j=1 ϑi,jφi,j(v). It holds that e

(X(x), (X−1)T (y)) = e(x,y) for any x,y ∈ V. In this paper, f(∈ {A,R}) is the
subscript related to each functionality, that is, f = A is the subscript related
to access control functionality and f = R is related to revocation functionality.
The mapping ψt : {0, 1}∗ × {(t, �xA,t)} × (N ∪ {0}) → {0, 1}ht takes a user’s
global identifier gid, user’s attribute (t, �xA,t) and the number of return (after
gid’s (t, �xA,t) revocation) rt, and outputs a user’s label Lgid,(t,�xA,t),rt assigned
to the leaf node of a user binary tree managed by an attribute authority t,
where ht represents the height of the user binary tree. The one-to-one mapping
Φt : {∗, 0, 1} × {0, . . . , ht} → {3, . . . , 2ht + 3} takes 0, 1 (assigned to the edges
of the user binary tree managed by an attribute authority t) or ∗ (assigned to
the root node of it) and the depth of it, then outputs the positions of non-zero

258 H. Tsuchida et al.

elements of the vector �vR,ρ̃(i),vρ̃(i),j . For example, Φt(∗, 0) := 3, and, in general,
Φt(a, b) := 2(b + 1) + a where a = 0, 1 and b = 1, . . . , ht. We also defines L-list
as the history of issuing user’s key.

GSetup(1λ) :

param
G
:= (q,G,GT , G,e)

R←− Gbpg(1
λ), H : {0, 1}∗ → G;

return gparam := (param
G
, H).

Remark: Given gparam, the following values can be computed by anyone and

shared by all parties: G0 := H(0λ), G1 := H(0λ−1 ‖ 1), gT := e(G0, G1).

ASetup(gparam, t, nA,t, Nmax,t(= 2ht), ϕt) :

param
VA,t

:= (q,VA,t,GT ,AA,t,e) := Gdpvs(1
λ, 6nA,t + 1, param

G
),

XA,t
U←− GL(6nA,t + 1,Fq), bA,t,i := XA,t((0

i−1, G0, 06nA,t+1−i))for i = 1, . . . , 6nA,t + 1,

Set BA,t := (bA,t,i)i=1,...,6nA,t+1,

B̂A,t := (bA,t,1, . . . , bA,t,2nA,t
, bA,t,5nA,t+1, . . . , bA,t,6nA,t+1),

askt := XA,t, apkt := (param
VA,t

, B̂A,t),

Run CS.Setup(Nmax,t) which takes the maximum number of users and outputs

the user’s binary tree. Then, assign a random value ςνi ∈ F
×
q to each leaf node νi in BT t.7

nR,t := 4 + 2 log2 Nmax,t + ϕt,

paramVR,t
:= (q,VR,t,GT ,AR,t,e) := Gdpvs(1

λ, 6nR,t + 1, paramG),

XR,t
U←− GL(6nR,t + 1,Fq), bR,t,i :=XR,t((0

i−1, G0, 06nR,t+1−i)) for i = 1, . . . , 6nR,t + 1,

Set BR,t := (bR,t,i)i=1,...,6nR,t+1,

B̂R,t := (bR,t,1, bR,t,2ht+5, . . . , bR,t,nR,t
, bR,t,nR,t+1, bR,t,nR,t+2ht+5, . . . , bR,t,2nR,t

,

bR,t,5nR,t+1, bR,t,5nR,t+2ht+5, . . . , bR,t,6nR,t+1),

rskt := (XR,t, BT t, Φt, ψt), rpkt := (param
VR,t

, B̂R,t, ϕt),

return (askt, apkt, rskt, rpkt).

PUpdate(t, rpkt, rskt, r�vt := {FindNode(gid, (t, �xA,t), rt)}, vt) :

Run CS.Cover(BT t, r�vt) (which takes the user’s binary tree and the revocation list)

and outputs the covering set CV r�vt
= {Si′1 , . . . , Si′

m′vt
},

for j = 1, . . . , m′
vt (≤ ϕt),

η
[1]
t,vt,j , η

[2]
t,vt,j , η

[3]
t,vt,j

U←− Fq ,

dj , dj,a, rt,vt,j
U←− F

×
q s.t. dj,0 + . . . + dj,|ID(i′

j)| = dj , for a = 0, . . . , |ID(i′j)|,

for 1 � z � 2ht + 4,

vR,t,vt,j,z =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dj (z = 2)

−dj,a (z = Φt(ID(i′j)[a], a); 0 � a � |ID(i′j)|)
rt,vt,j (z = 2ht + 4)

0 (else)

7 Nmax,t is smaller than q for assigning ςνi to each leaf node uniquely.

Revocable Decentralized Multi-Authority Functional Encryption 259

p
[1]
t,vt,j = (

nR,t
︷ ︸︸ ︷
�vR,t,vt,j , 0ϕt ,

nR,t
︷ ︸︸ ︷
0nR,t ,

3nR,t
︷ ︸︸ ︷

03nR,t ,

nR,t
︷ ︸︸ ︷
0nR,t ,

1
︷ ︸︸ ︷

η
[1]
t,vt,j)BR,t

,

p
[2]
t,vt,j = (

nR,t
︷ ︸︸ ︷
0nR,t ,

nR,t
︷ ︸︸ ︷
�vR,t,vt,j , 0ϕt ,

3nR,t
︷ ︸︸ ︷

03nR,t ,

nR,t
︷ ︸︸ ︷
0nR,t ,

1
︷ ︸︸ ︷

η
[2]
t,vt,j)BR,t

,

p
[3]
t,vt,j = (

nR,t
︷ ︸︸ ︷
0nR,t ,

nR,t
︷ ︸︸ ︷
0nR,t ,

3nR,t
︷ ︸︸ ︷

03nR,t ,

nR,t
︷ ︸︸ ︷
�vR,t,vt,j , 0ϕt ,

1
︷ ︸︸ ︷

η
[3]
t,vt,j)BR,t

,

return CPvt = (vt, {p[1]
t,vt,j ,p

[2]
t,vt,j ,p

[3]
t,vt,j}

m′
vt

j=1
).

KeyGen(gparam, t, askt, rskt, gid, �xA,t := (xA,t,1, . . . , xA,t,nA,t
) ∈ F

nA,t
q \ {�0} s.t. xA,t,1 := 1) :

Ggid(= δG1) := H(gid) ∈ G, �ϕf,t := (ϕf,t,1, . . . , ϕf,t,nf,t
)

U←− F
nf,t
q for f = A, R,

b∗
f,t,i := (X−1

f,t)T ((0i−1, G1, 06nf,t+1−i)) for f = A, R,

Set B
∗
f,t = (b∗

f,t,i)i=1,...,6nf,t+1 for f = A, R,

If (gid, (t, �xA,t), rt
′) exists in L-list, then set rt = rt′ + 1 and change (gid, (t, �xA,t), rt

′)
to (gid, (t, �xA,t), rt) in L-list,

If (gid, (t, �xA,t), rt
′) does not exist in L-list, then set rt=0 and add (gid, (t, �xA,t), rt) to L-list,

Assign (gid, (t, �xA,t), rt) to FindNode(gid, (t, �xA,t), rt) − th leaf node of BT t,

Lgid,(t,�xA,t),rt
= ψt(gid, (t, �xA,t), rt),

Retrieve ςID−1(Lgid,(t,�xA,t),rt)
from BT t and we define it as ςgid,(t,�xA,t),rt

,

k∗
A,t := (

nA,t
︷ ︸︸ ︷
�xA,t,

nA,t
︷ ︸︸ ︷
δ�xA,t,

2nA,t
︷ ︸︸ ︷

02nA,t ,

nA,t
︷ ︸︸ ︷
�ϕA,t,

nA,t
︷ ︸︸ ︷
ςgid,(t,�xA,t),rt

�xA,t,

1
︷︸︸︷
0)

B
∗
A,t

,

uakgid,(t,�xA,t)
:= (gid, (t, �xA,t),k

∗
A,t),

�xR,t := (xR,t,1, . . . , xR,t,2ht+4),

for z = 1, . . . , 2ht + 4(= 4 + 2 log2 Nmax,t),

xR,t,z =

⎧
⎪⎨

⎪⎩

1 (z = 1)

γ (z = 2, Φt(Lgid,(t,�xA,t),rt
[a], a); 0 � a � |Lgid,(t,�xA,t),rt

|(= ht)

0 (else)

k∗
R,t := (

nR,t
︷ ︸︸ ︷
�xR,t, 0

ϕt ,

nR,t
︷ ︸︸ ︷
δ�xR,t, 0

ϕt ,

2nR,t
︷ ︸︸ ︷

02nR,t ,

nR,t
︷ ︸︸ ︷
�ϕR,t

nR,t
︷ ︸︸ ︷
ςgid,(t,�xA,t),rt

�xR,t, 0
ϕt

1
︷︸︸︷
0)

B
∗
R,t

,

uikLgid,(t,�xA,t),rt
:= (gid, (t, �xA,t), rt,k

∗
R,t),

return uskLgid,(t,�xA,t),rt
:= (rt, uakgid,(t,�xA,t)

, uikLgid,(t,�xA,t),rt
).

Enc({apkt, rpkt,CPvt}, m, S) :

wi
U←− F

×
q for i = 1, . . . , �, s′

0
U←− Fq ,

260 H. Tsuchida et al.

�fA
U←− F

r
q, �sT

A := (sA,1, . . . , sA,�)
T := M · �fT

A , sA,0 := �1 · �fT
A ,

�f ′
A

R←− F
r
q s.t. �1 · �f ′T

A = s′
0, �s′T

A := (s′
A,1, . . . , s

′
A,�)

T := M · �f ′T
A,

�fR
U←− F

r
q, �sT

R := (sR,1, . . . , sR,�)
T := M · �fT

R , sR,0 := �1 · �fT
R,0,

�f ′
R

R←− F
r
q s.t. �1 · �f ′T

R = −s′
0, �s′T

R := (s′
R,1, . . . , s

′
R,�)

T := M · �f ′T
R,

for i = 1, . . . , �,

ηA,i, θA,i, θ′
A,i, θ′′

A,i
U←− Fq,

if ρ(i) = (t, �vA,i := (vA,i,1, . . . , vA,i,nA,t
) ∈ F

nA,t
q \ {�0} s.t. vA,i,nA,t

�= 0),

cA,i := (

nA,t

︷ ︸︸ ︷
sA,i�eA,t,1 + θA,i�vA,i,

nA,t

︷ ︸︸ ︷
s′

A,i�eA,t,1 + θ′
A,i�vA,i,

2nA,t

︷ ︸︸ ︷
02nA,t ,

nA,t

︷ ︸︸ ︷
0nA,t ,

nA,t

︷ ︸︸ ︷
wi�eA,t,1 + θ′′

A,i�vA,i,

1
︷︸︸︷
ηA,i)

BA,t
,

if ρ(i) = ¬(t, �vA,i),

cA,i := (

nA,t

︷ ︸︸ ︷
sA,i�vA,i,

nA,t

︷ ︸︸ ︷
s′

A,i�vA,i,

2nA,t

︷ ︸︸ ︷
02nA,t ,

nA,t

︷ ︸︸ ︷
0nA,t ,

nA,t

︷ ︸︸ ︷
wi�vA,i,

1
︷︸︸︷
ηA,i)BA,t

,

for j = 1, . . . , m′
vρ̃(i) (where t = ρ̃(i)),

ηR,i,j , θR,i,j , θ′
R,i,j , θ′′

R,i,j , τi,j , τ ′
i,j , τ ′′

i,j
U←− Fq,

cR,i,j = sR,ibR,t,1 + θR,i,jp
[1]
t , vt,j + τi,jbR,t,j+2ht+4

+ s′
R,ibR,t,nR,t+1 + θ′

R,i,jp
[2]
t,vt,j + τ ′

i,jbR,t,j+nR,t+2ht+4

+ (−wi)bR,5nR,t+1 + θ′′
R,i,jp

[3]
t,vt,j + τ ′′

i,jbR,t,j+5nR,t+2ht+4

+ ηR,i,jbR,6nR,t+1

(Let η′
R,i,j = θR,i,jη

[1]
t,vt,j

+ θ′
R,i,jη

[2]
t,vt,j

+ θ′′
R,i,jη

[3]
t,vt,j + ηR,i,j)

(We already defined �vR,t,vt,j in PUpdate,)

= (

nR,t

︷ ︸︸ ︷
sR,i�eR,t,1 + θR,i,j�vR,t,vt,j , 0

j−1, τi,j , 0ϕt−j ,

nR,t

︷ ︸︸ ︷
s′

R,i�eR,t,1 + θ′
R,i,j�vR,t,vt,j , 0

j−1, τ ′
i,j , 0ϕt−j ,

2nR,t

︷ ︸︸ ︷
02nR,t ,

nR,t

︷ ︸︸ ︷
0nR,t ,

nR,t

︷ ︸︸ ︷
−wi�eR,t,1 + θ′′

R,i,j�vR,t,vt,j , 0
j−1, τ ′′

i,j , 0ϕt−j ,

1
︷ ︸︸ ︷
η′

R,i,j)
BR,t

,

cd+1 := g
sA,0+sR,0
T m, ctS,{vt} := (S, {cA,i, {cR,i,j ,p

[1]
t,vt,j}m′

vt
j=1 }�

i=1, cd+1)8

return ctS,{vt}.

8 If an attribute authority t continues to make the past revocation patch available,

ctS,{vt} does not have to include {p[1]
t,vt,j}

m′
vt

j=1 . If ctS,{vt} includes it, an attribute
authority t has only to publish the latest revocation patch.

Revocable Decentralized Multi-Authority Functional Encryption 261

Dec(gparam, {apkt, rpkt, uskgid,(t,�xA,t),rt
}, ctS,{vt}) :

If S := (M, ρ) accepts Γ := {(t, �xA,t) ∈ uskgid,(t,�xA,t),rt
},

then compute I and {αi}i∈I s.t. �1 =
∑

i∈I

αiMi, where Mi is the i−th row of M , and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vA,i) ∧ (t, �xA,t) ∈ Γ ∧ �vA,i · �xA,t = 0]

∨ [ρ(i) = ¬(t, �vA,i) ∧ (t, �xA,t) ∈ Γ ∧ �vA,i · �xA,t
= 0]},

for each i ∈ I (where t = ρ̃(i)),

pick {p[1]
t,vt,j}

m′
vt

j=1
from ctS,{vt},

Ki := e(cR,i,j , k∗
R,t) for j s.t. e(p

[1]
t,vt,j , k∗

R,t) = 1,

K :=
∏

i∈I∧ρ(i)=(t,�vA,i)

(e(cA,i, k∗
A,t) · Ki)

αi ·
∏

i∈I∧ρ(i)=¬(t,�vA,i)

(e(cA,i, k∗
A,t)

1/(�vA,i·�xA,t) ·Ki)
αi

return m′ := cd+1/K.

[Correctness]

Here, the value gs
T is written as gT(s) in the way that the function ex is written as exp(x).

K := gT(
∑

i∈I∧ρ(i)=(t,�vA,i)

αi(sA,i + δs′
A,i + wiςgid,(t,�xA,t),rt

))

gT(
∑

i∈I∧ρ(i)=¬(t,�vA,i)

αi(�vA,i · �xA,t)
−1(sA,i + δs′

A,i + wiςgid,(t,�xA,t),rt
)(�vA,i · �xA,t))

gT(
∑

i∈I

αi(sR,i + δs′
R,i − wiςgid,(t,�xA,t),rt

))

= gT(
∑

i∈I

(αi(sA,i + sR,i) + δαi(s
′
A,i + s′

R,i))) = gT(sA,0 + sR,0) = g
sA,0+sR,0
T

since
∑

i∈I

αisf,i = sf,0 for f = A, R,
∑

i∈I

αis
′
A,i = s′

0,
∑

i∈I

αis
′
R,i = −s′

0.

Encoding of Attribute Vector for Revocation and Toy Example. The
user is assigned a unique leaf node of the attribute binary tree used to manage
users having the attribute. Then, the label is given to the user according to the
path from the root node to the leaf node. At that time, the attribute vector is
constructed according to the user’s label and the covering node in the complete
subtree method. The mapping Φt works to associate the basis in DPVS and the
root node and the edges. The encoding of the attribute vector is as follows:

�xR,t := (

1
︷︸︸︷
1 ,

1
︷ ︸︸ ︷
random value γ,

2ht+1
︷ ︸︸ ︷
root node and each edge(γ or 0),

1
︷︸︸︷
0),

�vR,t,vt,j := (

1
︷︸︸︷
0 ,

1
︷ ︸︸ ︷
random value d,

2ht+1
︷ ︸︸ ︷
root node and each edge(−(d − shared value)da or 0),

1
︷ ︸︸ ︷
random value r),

We show a toy example in Fig. 1.

262 H. Tsuchida et al.

Fig. 1. Encoding of vector for revocation as a toy example

Comparison with the DMA-FE Scheme [18]. We show comparison with
the DMA-FE scheme [18] in the full version of this paper [23].

2.3 Performance

We show a comparison of parameter size with previous works in Tables 3, 4 and
5. The construction of revocable-storage ABE supporting indirect revocation
[11,21] is built in composite order bilinear groups. (The construction of [2,7,10,
13,18] and our scheme is built in prime order bilinear groups.) Therefore, those
are outside the scope of comparison. In Tables 3, 4 and 5, SK, PK, MSK, CT
and UI represent the bit length of (user’s) Secret Key, Public Key, Master Secret
Key, Ciphertext and Update Information, respectively. UI is update key (in [2])
or revocation patch (in our scheme). |G|, |GT |, |Zq| and |Fq| represent the bit
length of element in G,GT ,Zq and Fq, respectively. CA and AA represent Central
Authority and Attribute Authority. Γmax represents the maximum number of
attributes in the system. Γ represents the number of attribute in user’s secret
keys or ciphertexts. � is the size of rows in the LSSS matrix. h is the height of
user’s (binary) tree in the system. ht is the height of user’s (binary) tree managed
by an attribute authority t. ϕ is the upper bound for the number of subsets in the
cover in the system. ϕt is the upper bound for the number of subsets in the cover
for an attribute category t. R means the number of revoked user in the system. Rt

means the number of revoked user’s attribute managed by an attribute authority
t. nt is the dimension of attribute vector in the category t. We define function

Revocable Decentralized Multi-Authority Functional Encryption 263

ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or ρ(i) := ¬(t, �v), where
ρ is given in access structure S := (M,ρ). We assume ρ̃ is injective for access
structure with ciphertext. We also define ρ̂ : {1, . . . , Γ} → {1, . . . , d}. Tables 1,
2, 3, 4 and 5 show that our proposal has more advantageous funtionalities in
exchange for increasing the parameter size.

Table 3. Comparison of parameter size with previous works

Schemes PK MSK

AI09 [2] |GT | + (Γmax + ϕ + 1)|G| 2h+1|Zq|
DDM15 [7] |GT | + 111|G| 111|G|
H15 [10] 2|G| (CA) |GT | + |G| (AA) 2|Zq| (CA) 2|Zq| (AA)

L12 [13] 2|GT | + 48|G| (AA) 24|G| + 48|Zq| (AA)

OT13 [18] (10n2
t + 7nt + 1)|G| (AA) (25n2

t + 10nt + 1)|Fq| (AA)

This work (18n2
t + 9nt + 18ϕ2

t + 99ϕt

+36htϕt + 48ht + 101)|G| (AA)
(18n2

t + 9nt + 14h2t + ϕ2
t +6htϕt

+16ht +8ϕt +2ht +17)|Fq| (AA)

Table 4. Comparison of parameter size with previous works (cont.)

Schemes SK CT

AI09 [2] 2(� + 1) log(2h)|G| |GT | + (Γ + 1 + R log(2h/R))|G| (Direct)
|GT | + (Γ + 2)|G| (Indirect)

DDM15 [7] (5 + 16� + 32 log2(2h))|G| |GT | + (16Γ + 64R − 27)|G|
H15 [10] (1 + Γ)|G| (1 + �)|GT | + 2(� + R)|G|
L12 [13] 12Γ |G| (� + 1)|GT | + 12�|G|
OT13 [18]

∑Γ
i′=1 nρ̂(i′)|Fq | +

∑Γ
i′=1

(5nρ̂(i′) + 1)|G|
|GT | +

∑�
i=1(5nρ̃(i) + 1)|G|

This work
∑Γ

i′=1 nρ̂(i′)|Fq |+
∑Γ

i′=1(6nρ̂(i′)
+12ht + 6ϕt + 26)|G|

|GT | +
∑�

i=1(6nρ̃(i) + 1 +Rρ̃(i) log(2
hρ̃(i)/

Rρ̃(i))(24hρ̃(i) + 12ϕρ̃(i) + 50))|G|

Table 5. Comparison of parameter size with previous works (cont.)

Schemes UI

AI09 [2] 2(R log(2h/R))|G|
DDM15 [7] -

H15 [10] -

L12 [13] -

OT13 [18] -

This work (36htRt log(2ht/Rt) + 18ϕtRt log(2ht/Rt) + 75Rt log(2Rt/Rt))|G| (AA)

264 H. Tsuchida et al.

2.4 Security of the Proposed R-DMA-FE

The DLIN assumption is given in the full version of this paper [23].

Theorem 1. The proposed R-DMA-FE scheme is adaptively payload-hiding
against chosen plaintext attacks and static corruption of authorities under the
DLIN assumption in the random oracle model.

The proof of Theorem 1 is given in the full version of this paper [23].

3 Conclusion

In this paper, we proposed the first DMA-FE scheme supporting patch revoca-
tion in which an encryptor does not have to care about the revocation list. Our
proposed scheme realizes the revocation on the category level that is a generaliza-
tion of attribute level for the first time. We proved that our construction is adap-
tively secure against chosen plaintext attacks and static corruption of authorities
based on the DLIN assumption. (We note that DMA-FE [18] of Okamoto and
Takashima does not achieve the security against static corruption of authorities.)
In the future, we will try to apply new techniques called indexing and consistent
randomness amplification [17] to reduce the size of public parameters.

Acknowledgements. This work was supported in part by JSPS KAKENHI Grant
Number 26330151 and JSPS and DST under the Japan - India Science Cooperative Pro-
gram. The authors would like to thank anonymous reviewers for their useful comments.

References

1. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03298-1 16

2. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10868-6 17

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: ACM CCS 2008, pp. 417–426 (2008)

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19571-6 16

6. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-70936-7 28

7. Datta, P., Dutta, R., Mukhopadhyay, S.: Adaptively secure unrestricted attribute-
based encryption with subset difference revocation in bilinear groups of prime
order. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2016. LNCS, vol. 9646, pp. 325–345. Springer, Heidelberg (2016). doi:10.1007/
978-3-319-31517-1 17

http://dx.doi.org/10.1007/978-3-642-03298-1_16
http://dx.doi.org/10.1007/978-3-642-10868-6_17
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-540-70936-7_28
http://dx.doi.org/10.1007/978-3-319-31517-1_17
http://dx.doi.org/10.1007/978-3-319-31517-1_17

Revocable Decentralized Multi-Authority Functional Encryption 265

8. González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate
encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol.
7372, pp. 350–363. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31448-3 26

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89–98 (2006)

10. Horváth, M.: Attribute-based encryption optimized for cloud computing. In:
Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer,
R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 566–577. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46078-8 47

11. Lee, K., Choi, S.G., Lee, D.H., Park, J.H., Yung, M.: Self-updatable encryption:
time constrained access control with hidden attributes and better efficiency. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 235–254.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 13

12. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20465-4 31

13. Lewko, A.B.: Functional encryption: new proof techniques and advancing capabil-
ities. Ph.D. thesis, The University of Texas (2012)

14. Müller, S., Katzenbeisser, S., Eckert, C.: Distributed attribute-based encryption.
In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 20–36. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-00730-9 2

15. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless
receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer,
Heidelberg (2001). doi:10.1007/3-540-44647-8 3

16. Okamoto, T., Takashima, K.: Fully secure functional encryption with general
relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 11

17. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 22

18. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36362-7 9

19. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: ACM CCS 2007, pp. 195–203 (2007)

20. Qian, J., Dong, X.: Fully secure revocable attribute-based encryption. J. Shanghai
Jiaotong Univ. (Sci.) 16(4), 490–496 (2011)

21. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 13

22. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). doi:10.
1007/11426639 27

23. The full version of this paper. It will appear in the IACR Cryptology ePrint
Archive. https://eprint.iacr.org/

http://dx.doi.org/10.1007/978-3-642-31448-3_26
http://dx.doi.org/10.1007/978-3-662-46078-8_47
http://dx.doi.org/10.1007/978-3-642-42033-7_13
http://dx.doi.org/10.1007/978-3-642-20465-4_31
http://dx.doi.org/10.1007/978-3-642-00730-9_2
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-14623-7_11
http://dx.doi.org/10.1007/978-3-642-34961-4_22
http://dx.doi.org/10.1007/978-3-642-36362-7_9
http://dx.doi.org/10.1007/978-3-642-32009-5_13
http://dx.doi.org/10.1007/978-3-642-32009-5_13
http://dx.doi.org/10.1007/11426639_27
http://dx.doi.org/10.1007/11426639_27
https://eprint.iacr.org/

Symmetric-Key Cryptanalysis

On Linear Hulls and Trails

Tomer Ashur(B) and Vincent Rijmen

Department of Electrical Engineering, ESAT/COSIC,
KU Leuven, and iMinds, Leuven, Belgium

{tomer.ashur,vincent.rijmen}@esat.kuleuven.be

Abstract. This paper improves the understanding of linear cryptanaly-
sis by highlighting some previously overlooked aspects. It shows that
linear hulls are sometimes formed already in a single round, and that
overlooking such hulls may lead to a wrong estimation of the linear cor-
relation, and thus of the data complexity. It shows how correlation matri-
ces can be used to avoid this, and provides a tutorial on how to use them
properly. By separating the input and output masks from the key mask
it refines the formulas for computing the expected correlation and the
expected linear potential. Finally, it shows that when the correlation of
a hull is not properly estimated (e.g., by using the correlation of a single
trail as the correlation of the hull), the success probability of Matsui’s
Algorithm 1 drops, sometimes drastically. It also shows that when the
trails composing the hull are properly accounted for, more than a single
key bit can be recovered using Algorithm 1. All the ideas presented in
this paper are followed by examples comparing previous methods to the
corrected ones, and verified experimentally with reduced-round versions
of Simon32/64.

Keywords: Linear cryptanalysis · Linear hulls · Simon

1 Introduction

Linear cryptanalysis is introduced by Matsui and applied to DES in [11]. The for-
malism of linear cryptanalysis is extended in [4,6,13]. These works emphasize the
similarity with the formalism for differential cryptanalysis that existed before. The
linear hull is introduced as the counterpart of a differential. It is often used to prove
the security of block ciphers against cryptanalysis, e.g. in [10]. A critical study of
the linear hull effect is presented in [12]. A different framework for linear crypt-
analysis, called correlation matrices, is introduced in [7].

In this paper, we revisit [7] and apply it to the block cipher Simon reduced
to 3 rounds. Firstly, Simon’s simple structure allows to construct simple and
illustrative examples to highlight the similarities and differences between the
two formalisms for linear cryptanalysis in practice. Secondly, the structure of
Simon is sufficiently different from other mainstream ciphers to highlight the
impact of some theoretical observations.

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 269–286, 2016.
DOI: 10.1007/978-3-319-49890-4 15

270 T. Ashur and V. Rijmen

In Sect. 3 we follow the ‘classical’ formalism and show that the round function
of Simon exhibits one-round hulls. In Sect. 4 we repeat the analysis using cor-
relation matrices and illustrate that these matrices can facilitate the automatic
analysis of ciphers, even when one-round hulls exist.

In Sect. 5 we present our first theoretical observation. We use the theoretical
contributions of [7] to discuss the validity of a popular method to compute the
potential of a linear hull.

In Sect. 6 we present our second theoretical observation. When several trails
with correlation contributions of comparable magnitude and different signs exist,
the performance of Matsui’s Algorithm 1 strongly depends on the values of some
roundkey bits. When this dependency is taken into account, the algorithm can be
extended to recover multiple roundkey bits [14]. When this fact is neglected, the
average success rate of Algorithm 1 drops, sometimes dramatically. Furthermore,
we show a case where increasing the number of known plaintexts beyond a certain
value, leads to a decrease in the success probability of the attack.

2 Notation and Terminology

In this section, we recall some definitions and terminology of linear cryptanalysis
[4,6,7,10,11,13].

2.1 Boolean Functions

We denote the field with two elements by GF(2) and the vector space of dimen-
sion n over this field by GF(2)n. We use + to denote addition in some field. The
field in which the addition is made is always clear from the context.

A boolean function y = f(x) is a function f : GF(2)n → GF(2) mapping
a vector of size n with binary components into a single bit. A boolean vector
function y = F (x) is a function F : GF(2)n → GF(2)m that maps a binary
vector of size n into a binary vector of size m. A permutation is an invertible
boolean vector function. A boolean vector function y = F (x) with output size
m can be viewed as the parallel execution of m boolean functions such that
yi = Fi(x) where 0 ≤ i ≤ m − 1 denotes the bit position.

A keyed boolean vector function y = F (x, k) = Fk(x) is a family of boolean
vector functions, indexed by a key k. An iterative block cipher with r rounds
is a composition of r permutations Fkr−1 ◦ Fkr−2 ◦ . . . ◦ Fk0(x). Observe that
many r-round ciphers contain in fact a reduced extra round, consisting only of
an extra key addition. We will ignore this. In this paper we will assume that the
roundkeys ki are independent. Hence the key of a block cipher, denoted by k, is
defined as the vector consisting of the concatenation of the r roundkeys ki.

2.2 Masks and Approximations

Let a, b be two vectors of size n. Then atx =
∑n−1

i=0 ai · xi. We will call a the
mask of x. In practical examples, the masks will often contain many zero bits.

On Linear Hulls and Trails 271

In order to emphasize which bits are nonzero, we will sometimes use the following
set notation:

a = {i1, i2, . . . , iu} ⇔
{

aj = 1,∀j ∈ {i1, i2, . . . , iu}
aj = 0,∀j �∈ {i1, i2, . . . , iu}

Using this notation, the addition (XOR) of two masks corresponds to the sym-
metric difference operation on the sets.

A linear approximation for a keyed boolean permutation is a tuple (a, b, c)
such that a, b and c are masks for the input, the output and the key, respectively.
Let p be the fraction of inputs x for which the equation atx + btFk(x) + ctk=0
holds. The correlation of the linear approximation (a, b, c) is defined as
cor(a, b, c) = 2 ·(p− 1

2) = 2p−1. In general, both p and cor(a, b, c) will depend on
the value of k. When c = 0, we abbreviate the notation (a, b, 0) and cor(a, b, 0)
to (a, b) and cor(a, b).

2.3 Linear Hulls and Trails

A (linear) trail Ω covering r rounds of an iterative block cipher is a concatenation
of linear approximations each covering a single round such that the output mask
of round i equals the input mask of round i + 1. Hence we can identify the
trail with a vector of r + 1 masks ωi, 0 ≤ i ≤ r Ω = (ω0, ω1, . . . , ωr). Round
i has input mask ωi and output mask ωi+1. The correlation contribution of a
trail Ω is the product of the correlations of the individual rounds: corp(Ω) =
∏r−1

i=0 corround i(ωi, ωi+1). In a key-alternating cipher the round consists of a fixed
part g followed by an addition with the round key. We can write:

corround i(ωi, ωi+1) = (−1)ωt
ikicorg(ωi, ωi+1). (1)

Note, however, that this notation implicitly assumes that to each bit of the
round input a different bit of the roundkey is added. We will say more on this
in Sect. 5.3. We obtain:

corp(Ω) =
∏

i

(−1)ωt
ikicorg(ωi, ωi+1) = |corp(Ω)| · (−1)dΩ+

∑
i ωt

iki , (2)

with dΩ = 1 if
∏

i corg(ωi, ωi+1) is negative; otherwise dΩ = 0.
A linear hull covering r rounds of a block cipher is a tuple (α, β). The hull

is composed of a set of linear trails all having the same input mask and output
mask but that can differ in the intermediate masks. The correlation of a linear
hull is

cor(α, β) =
∑

Ω

ω0=α,ωr=β

corp(Ω) (3)

3 One-Round Hulls in Simon

In this section, we briefly recall the definition of Simon’s round function. We
prove the existence of one-round hulls, which impact the computation of corre-
lations of multi-round hulls.

272 T. Ashur and V. Rijmen

Fig. 1. Trail through one round of Simon (without the final swap operation). The
dashed box indicates the part of the round that we discuss in Sect. 4.

3.1 Simon

Simon is a family of lightweight block ciphers designed by the US National Secu-
rity Agency and published in 2013 [3]. The Simon2n/mn family of lightweight
block ciphers has 10 members differing in the block and key sizes. All members
of the family have a Feistel structure with round function R employing a non-
linear function f . In each round i, R receives two n-bit input words Xi and Y i,
and outputs two n-bit words Xi+1 and Y i+1. The round function uses three
operations: addition in GF(2)n, bitwise AND, and a left circular shift by j posi-
tions, which we denote by +, &, and ≪ j, respectively. The internal non-linear
function f is defined as:

f(Xi) = [(Xi ≪ 1)&(Xi ≪ 8)] + (Xi ≪ 2).

The output of the round function R on input block (Xi, Y i) is: Ri(Xi, Y i) =
(Y i + f(Xi) + ki,Xi), where i is the round number. The entire cipher is Rr−1 ◦
Rr−2◦ . . .◦R0(X0, Y 0). The structure of the round function of Simon is depicted
in Fig. 1.

3.2 Linear Hulls and Trails Through One Round of Simon

We use the notation (a, b, c, d, e) to describe a linear trail through one round of
Simon. Here a and b denote the left and right input masks; c and d denote the
masks at the outputs of the two topmost rotations; e and b denote the left and
right output masks (before the swap operation), cf. Fig. 1.

We now study the behavior of linear trails over one round of Simon using the
rules of propagation of linear trails introduced in [4,6]. The rule for trail propa-
gation over the branch operation implies the following constraint on a, b, c, d, e:

a + e = (b ≫ 2) + (c ≫ 1) + (d ≫ 8) (4)

Note that the rule for trail propagation over the addition operation is already
implicit in the way we propagate the b mask through Fig. 1. The output bit z of
a bitwise AND operation z = x AND y is correlated to the 4 linear functions of
the two input bits:

cor(z, 0) = cor(z, x) = cor(z, y) = 1/2, cor(z, x + y) = −1/2.

On Linear Hulls and Trails 273

It follows that the AND operation in Simon leads to the following constraints
on b, c, d: if a bit in c or d is set, then the bit in b at the corresponding position
needs to be set. This translates to:

c̄ OR b = 1 (5)
d̄ OR b = 1 (6)

The following lemma expresses that some one-round trails come in groups.

Lemma 1. Let (a, b, c, d, e) be a one-round trail over Simon. If there exists an
index i such that bi = bi+7 = 1, then the trail (a, b, c, d, e) satisfies the constraints
(4)–(6) if and only if the trail (a, b, c + (1 ≪ i), d + (1 ≪ (i + 7)), e) satisfies
the constraints (4)–(6).

Proof. The proof can be found in the full version of this paper [2].

Since the trails in Lemma 1 have the same input masks (a, b) and the same
output masks (e, b), they are in the same one-round linear hull. Figures 2, 3 and
4 each show two trails derived from one another by means of Lemma 1. Notice
that in each set both trails select exactly the same bits of the roundkeys.

Fig. 2. Two trails of a one-round hull.

Fig. 3. Two trails of a second one-round hull.

3.3 Correlations and Correlation Contributions

We now want to compute the correlation contributions of the trails of Figs. 2, 3
and 4. The usual rule is to assume that all nonlinear functions act independently
and to multiply all the correlations. This results in the following values for the
correlation contributions of the six trails:

274 T. Ashur and V. Rijmen

Fig. 4. Two trails of a third one-round hull. The trails have nonzero contributions of
the same magnitude and opposite sign. The hull has correlation zero.

c d cor

Fig. 2 ∅ {14} 2−2

{7} ∅ 2−2

Fig. 3 ∅ ∅ 2−2

{7} {14} 2−2

Fig. 4 {14} ∅ 2−2

{7,14} {14} −2−2

In each case by adding the correlation contributions of the two trails we
obtain the correct correlation of the hull. However, starting from the observation
that when bi = bi+7 = 1, there are pairs of AND gates that share one input bit,
we can follow a different approach. Let

s = x AND y, t = y AND z

Then we have
s + t = y AND (x + z),

which implies the following:

cor(s + t, x + z) = cor(s + t, 0) = cor(s + t, y) = 1/2
cor(s + t, x + y + z) = −1/2

cor(s + t, x + y) = cor(s + t, y + z) = 0
cor(s + t, x) = cor(s + t, z) = 0

These values can be used to derive immediately the exact correlations of the
linear hulls of Figs. 2, 3 and 4. Observe that the linear hull of Fig. 4 has correlation
zero, while both trails have a nonzero correlation contribution. Hence, mounting
an attack and using the correlation contribution of a trail as an estimate for the
correlation of this linear hull will likely lead to wrong results.

4 Correlation Matrices

In this section, we follow the alternative approach of [7] to compute correlations
and correlation contributions.

On Linear Hulls and Trails 275

4.1 Correlation Matrix for Simon

In order not to repeat too much from the previous approach, we concentrate
on the most interesting part of the round function: the AND function combined
with the preceding expanding linear function lin(x) = (x ≪ 1, x ≪ 8). This
part is indicated by a dashed box in Fig. 1. The correlation matrix of a map f
is defined as follows:

Definition 1 (Correlation matrix [7]).

Cf
uw := cor(utf(x), wtx)

For a linear map y = Mx, we have: Cuw = δ(Mtu+w), where δ is the Kronecker-
delta function (which is defined by δ(0) = 1 and δ(x) = 0,∀x �= 0). This gives
for lin(x):

Clin
uv,w = δ(w + (u ≫ 1) + (v ≫ 8)),

where we denote the row index of Clin by uv in order to make it more clear
from the notation this is an expansion function, and hence, the row index of the
matrix (i.e., the output) is twice as long as the column index.

The correlation matrix for a 1-bit AND operation z = x AND y is given by:

CA =
[
cor(0, 0) cor(0, x) cor(0, y) cor(0, x + y)
cor(z, 0) cor(z, x) cor(z, y) cor(z, x + y)

]

=
[
1 0 0 0
1
2

1
2

1
2 − 1

2

]

We can express the matrix elements by means of the following formula:

CA
a,bc = (1 − a)(1 − b)(1 − c) +

1
2
a(−1)bc

The 16-bit parallel AND operation is a special case of the boxed map discussed
in [7]. Hence, we obtain:

CAND
a,bc =

∏

i

CA
ai,bici

=
∏

i

(

(1 − ai)(1 − bi)(1 − ci) +
1
2
ai(−1)bici

)

In order to compute the correlation matrix for a combined map, we only have
to multiply the correlation matrices of its components [7]:

Cf2◦f1 = Cf2 × Cf1

For the combination of lin(x) and AND, we obtain:

Cu,w =
∑

xy

CAND
u,xy C

lin
xy,w

=
∑

xy

∏

i

(

(1 − ui)(1 − xi)(1 − yi) +
1

2
ui(−1)xiyi

)

δ(w + (x ≫ 1) + (y ≫ 8))

The δ-function is nonzero only when y = (w ≪ 8)+(x ≪ 7). Hence, we obtain:

Cu,w =
∑

x

∏

i

(

(1 − ui)(1 − xi)(1 − (wi−8 + xi−7)) +
1
2
ui(−1)xi(wi−8+xi−7)

)

(7)

276 T. Ashur and V. Rijmen

4.2 Examples

We now apply (7) to compute the correlations and correlation contributions of
the linear hulls, respectively trails, shown in Fig. 2, 3 and 4. Remember that we
consider only the combination of the linear map lin and the AND operation. We
denote the input mask for this combined map by w and the output mask by u.
They are related as follows to the masks (a, b, c, d, e) defining a trail over one
round, cf. Fig. 1:

w = a + e + (b ≫ 2)
u = b

The hull of Fig. 2 has input w = {6} = 0040x and output u = {7, 14} = 4080x.
Filling out these values in (7), we obtain

C4080,0040 =
∑

x

∏

i=7,14

(
1
2
(−1)xi(wi−8+xi−7)

) ∏

i�=7,14

(1 − xi)(1 − (wi−8 + xi−7)) .

From the first factor of the product on the right, we see that in order to obtain a
nonzero contribution, xi must equal 0 for all i except i = 7, 14. Combined with
the second factor we obtain that x7 is free and all other xi = 0. Hence we obtain:

C4080,0040 =
∑

x7

∏

i=7,14

1
2
(−1)xi(wi−8+xi−7)

=
1
4
(−1)0(−1)0

︸ ︷︷ ︸
x7=0,trail of Fig. 2, left

+
1
4
(−1)0(−1)0

︸ ︷︷ ︸
x7=1,trail of Fig. 2, right

=
1
2

The two terms in the sum are the correlation contributions of the two trails that
are shown in Fig. 2 and that together form the one-round hull.

The hull of Fig. 3 has w = ∅ = 0000x and u = {7, 14} = 4080x. We obtain:

C4080,0000 =
∑

x

∏

i=7,14

(
1
2
(−1)xixi−7

) ∏

i�=7,14

(1 − xi)(1 − xi−7)

From the product on the right, we obtain that x7 is free and all other xi = 0.
Hence we obtain

C4080,0000 =
∑

x7

∏

i=7,14

1
2
(−1)xixi−7

=
1
4
(−1)0(−1)0

︸ ︷︷ ︸
x7=0,trail of Fig. 3, left

+
1
4
(−1)0(−1)0

︸ ︷︷ ︸
x7=1,trail of Fig. 3, right

=
1
2

The hull of Fig. 4 has w = {13} = 2000x and u = {7, 14} = 4080x. We obtain:

C4080,2000 =
∑

x

∏

i=7,14

(
1
2
(−1)xi(wi−8+xi−7)

) ∏

i�=7,14

(1 − xi)(1 − (wi−8 + xi−7))

On Linear Hulls and Trails 277

From the product on the right, we obtain that x7 is free, x14 = 1 and all other
xi = 0.

C4080,2000 =
∑

x7

∏

i=7,14

1
2
(−1)xi(wi−8+xi−7)

=
1
4
(−1)0(−1)0 +

1
4
(−1)0(−1)1 = 0

We see that the two trails of this hull have opposite contributions, resulting in
a correlation zero for the hull.

4.3 Conclusion

As expected, this method gives the same results as the method of Sect. 3. How-
ever, observe that by using correlation matrices, the dependence between the
inputs of the AND operation is taken care of automatically. Observe also that
while the end result of this method is the correlation of the linear hull, we also
obtain the correlation contributions of all the individual trails as the nonzero
terms in the final sum.

5 Expected Correlation and Potential

Several recent works provide bounds for the security of ARX ciphers and other
ciphers defined at bit-level against linear cryptanalysis by bounding the potential
of linear hulls [15–17]. The bounds on the hulls are computed by summing the
squares of the expected values of the correlation contributions of the linear trails,
which are constructed automatically using mixed-integer linear programming
(MILP) techniques.

Several of these works mention the problem that may arise in the computation
of the correlation contribution of a linear trail when non-linear functions share
inputs. We showed in Sect. 4 that correlation matrices don’t have this problem.

In this section we address a second problem with the computation of the
potential. Note that this problem doesn’t occur for differential characteristics
and differentials. It is one reason why we do not agree that differential and
linear trails can be treated in exactly the same way, as is claimed e.g. in [17].

5.1 Expected Correlation

For a key-alternating cipher, the expected value (over all roundkeys) of the
correlation contribution of a linear trail equals

E[corp(Ω)] = 0 (8)

This follows directly by taking the expectation of (2). Intuitively, (8) might look
contradictory to [11], in particular to Algorithm 1. The apparent contradiction
can be solved as follows. Although [7] writes:

278 T. Ashur and V. Rijmen

The multiple-round linear expressions described in [11] correspond with
what we call linear trails.

there is in fact a difference. The approximations of [11] are linear expressions in
terms of plaintext bits, ciphertext bits and roundkey bits. In the trails of [7], the
roundkey bits are left out of the expression. It follows that the expected value of
the correlation contribution becomes zero. By (3) we obtain that the expected
value over all roundkeys of the correlation of a linear hull is

E[cor(a, b)] = 0 .

5.2 Potential

Since the data complexity of a linear attack is inversely proportional to the
square of the correlation, it is of importance to know or to bound the value
E[(cor(a, b))2]. In [13], Nyberg calls this quantity the potential of the linear hull,
and gives the following formula to compute it:

E[(cor(a, b))2] =
∑

Ω

ω0=a,ωr=b

(corp(Ω))2 (9)

The potential is also called the Expected Linear Probability (ELP). We briefly
recall here the proof for (9), using our own notation. By definition of expectation,
we have:

E[(cor(a, b))2] =
1
K

∑

k

⎛

⎜
⎝

∑

Ω

ω0=a,ωr=b

corp(Ω)

⎞

⎟
⎠

⎛

⎜
⎜
⎝

∑

Ω′
ω′

0=a,ω′
r=b

corp(Ω′)

⎞

⎟
⎟
⎠

Using (2):

=
1
K

∑

Ω

∑

Ω′

(
∑

k

(−1)dΩ+dΩ′+
∑

i(ωi+ω′
i)

tki |corp(Ω)||corp(Ω′)|
)

Since
∑

k

(−1)
∑

i(ωi+ω′
i)

tki =
{

K if ωi = ω′
i,∀i,

0 else, (10)

we have:
E[(cor(a, b))2] =

∑

Ω

(corp(Ω))2 . (11)

	

On Linear Hulls and Trails 279

5.3 Additions/Corrections

We will now show that if a cipher exhibits one-round hulls as described in Sect. 3,
Formula (11) is no longer correct. The existence of one-round hulls implies that
we can have more than one trail corresponding to the same linear mask of the
roundkey. For example, Figs. 2, 3 and 4 each show two different trails corre-
sponding to the same linear mask of the roundkey.

In order to explain the consequences, (1) has to be slightly rewritten, using a
different notation. In fact, we need to distinguish between trails and masks for the
roundkey. From now on, we use κi to denote the mask for the roundkey of round
i, and K to denote the vector of roundkey masks. We use W to denote the vector
of the data masks required to uniquely define the trail: W = (w0, w1, . . . , wr).
Note that the domain of the wi may be larger than the domain of the κi. For
example, in Fig. 1, the data mask wi contains a, b, c and d, while the roundkey
mask κi needs to contain only b.

We denote by l, respectively L, the functions mapping wi to the correspond-
ing κi, respectively W to the corresponding K. These functions are specific to
the cipher. With this notation, (1) becomes:

corround i(wi, wi+1) = (−1)κt
ikicorg(wi, wi+1), with κi = l(wi).

When L is one-to-one, formula (11) applies without modifications. However, if L
is a non-injective map, then the sum of (10) become nonzero as soon as K = K′,
which still allows W �= W ′. Hence (11) becomes:

E[(cor(a, b))2] =
∑

K

∑

W,W ′
L(W)=L(W ′)=K

(corp(W))(corp(W ′)) .

Converting back, we obtain:

E[(cor(a, b))2] =
∑

K

⎛

⎜
⎜
⎝

∑

W

L(W)=K

corp(W)

⎞

⎟
⎟
⎠

2

(12)

Comparing (9) to (12), we see that the difference between the two values can
take positive as well as negative values. In particular when there are several trails
with correlation contributions of comparable magnitude, the difference can be
significant. Applied to the one-round hulls of Figs. 2, 3 and 4, we get the following
results:

(a, b) E[(cor(a, b))2] with (9) E[(cor(a, b))2] with (12)

({6;7,14},{5,12;7,14}) 2−3 2−2

({5;7,14},{12;7,14}) 2−3 2−2

({5,13;7,14},{12;7,14}) 2−3 0

280 T. Ashur and V. Rijmen

We performed practical experiments and confirmed the values in the right-
most column.

5.4 Conclusion

Finally, we would like to discuss when (12) has to be used instead of (11),
or in other words: “For which ciphers is the map L from data-input masks to
roundkey masks not one-to-one?” We already demonstrated that Simon is such
a cipher. Also Speck and ciphers using Substitution-Permutation-Substitution
(SPS) round functions like Camellia [1] are in this category.

Perhaps we should conclude that the difference between (11) and (12) points
to a problem with the methodology being used to construct linear trails. Indeed,
it would be possible to define a linear trail by its roundkey mask, and then adapt
the method to compute its correlation contribution to make sure that all terms
are included.

6 On Matsui’s Algorithm 1

In this section, we investigate how the success rate of Matsui’s Algorithm 1 is
influenced by all the trails in the same linear hull. As described already in [14],
this phenomenon can be used to extend Matsui’s Algorithm 1 and to extract
multiple key-bits. We illustrate this for reduced Simon in Sect. 6.5.

In Sects. 6.3 and 6.4 we study another consequence of this phenomenon: some-
times, the success rate of Matsui’s Algorithm 1 will be worse than the estimate
based on the study of a single trail. Somewhat counter-intuitively, the success
rate of an attack may even decrease when the number of known plaintexts is
increased! As far as we know, this is the first time that an explanation for such
an effect is provided.

First, we describe the background for this special phenomenon: the 4 trails
that constitute a hull over three rounds of Simon (Sect. 6.1) and the key-
dependence of their correlations (Sect. 6.2).

6.1 Four Trails Through Three Rounds of Simon

Figure 5 shows two trails through three rounds of Simon-32. Both trails start
from the plaintext bits {8, 10, 16, 28} and end in the ciphertext bit {16}. Hence
they belong to the same 3-round linear hull. Two more trails belonging to this
3-round linear hull are presented in the full version of the paper [2]. It can
be shown that this 3-round hull doesn’t have any other trails with nonzero
correlation contribution. These 4 linear trails are linearly dependent: denoting
the vector of roundkey masks of Trail i by Ωi, we have

Ω1 + Ω2 + Ω3 + Ω4 = 0

All trails involve bits {0, 12} from the first roundkey, bit {14} from the second,
and bit {0} from the third roundkey. Additionally, each of these trails have the
following bits involved:

On Linear Hulls and Trails 281

Fig. 5. Two trails in a 3-round linear hull. Trail 1 is shown on the left, Trail 2 on the
right.

Trail 1: ∅
Trail 2: bit 8
Trail 3: bit 15
Trail 4: bits 8, 15

We denote by Z the sum of the roundkey bits involved in all trails. The sum of
the roundkey bits involved in Trail 2, 3 and 4, we denote respectively by Z + z0,
Z + z1 and Z + z0 + z1.

6.2 Correlation Contributions of the Trails

Straightforward computations similar to the computations in Sect. 3 and Sect. 4
show that the trails have the following correlation contributions:

Trail 1: cor(1)p = (−1)Z · 2−4

Trail 2: cor(2)p = (−1)Z+z0 · 2−5

Trail 3: cor(3)p = (−1)Z+z1+1 · 2−5

Trail 4: cor(4)p = (−1)Z+z0+z1 · 2−5

Note that these correlation contributions exist only as intermediate mathemati-
cal results. An attacker who can observe only plaintext and ciphertext bits, can
measure only the sum of the four correlation contributions, i.e. the correlation of
the hull. We suspect that this fact forms the basis of Murphy’s argument against
the probability statements made in the usual definition of a linear hull [12].

282 T. Ashur and V. Rijmen

We denote the correlation of the hull by corh and obtain:

corh = (−1)Z · 2−4 + (−1)Z+z02−5 + (−1)Z+z1+12−5 + (−1)Z+z0+z12−5 (13)

= (−1)Z · 2−5
(
2 + (−1)z0 + (−1)z1+1 + (−1)z0+z1

)
(14)

= (−1)Z+z0 · 2−5
(
(−1)z0 · 2 + 1 + (−1)z1+z0+1 + (−1)z1

)
(15)

= (−1)Z+z1 · 2−5
(
(−1)z1 · 2 + (−1)z0+z1 − 1 + (−1)z0

)
(16)

= (−1)Z+z0+z1 · 2−5
(
(−1)z0+z1 · 2 + (−1)z1 + (−1)z0+1 + 1

)
(17)

From (13) we see that the correlation is determined by the values of Z,Z +
z0, Z + z1 + 1, and Z + z0 + z1. Table 1 considers the 8 possible assignments
for these variables and their correlations. We see that for a fixed Z, the value
(−1)Z ·3 ·2−5 is three times more likely to occur than the value (−1)Z+1 ·2−5. In
the following, we will investigate how likely each value is, and show how different
values affect the success rate of Matsui’s Algorithm 1 when different trails are
considered as if they are the only trails.

Table 1. The possible values for corh obtained from (13).

Z z0 z1 corh Z z0 z1 corh

0 0 0 3 · 2−5 1 0 0 −3 · 2−5

0 0 1 3 · 2−5 1 0 1 −3 · 2−5

0 1 0 −2−5 1 1 0 2−5

0 1 1 3 · 2−5 1 1 1 −3 · 2−5

6.3 Knowing Trail 1 only

We adopt the figures of [11, Table 2] to express the relation between correlation
of a hull, the number of known plaintext and the success rate. Concretely, we
derive from the table that if the hull has correlation c, then using c−2, 4c−2 and
8c−2 known plaintexts, the algorithm achieves success rates of respectively 84%,
98% and 100%.

In order to apply Algorithm 1 using Trail 1, the adversary first computes the
correlation contribution of Trail 1:

cor(1)p = (−1)Z · 2−4 (18)

Using the assumption that the correlation of the hull is approximately equal to
the correlation contribution of Trail 1, the adversary concludes that a sample of
N = 210 known plaintexts should be sufficient to estimate Z with a success rate
of 98%.

Subsequently, the adversary collects a sample of N known plaintexts and
uses them to compute the experimental correlation ĉ. Depending on the value
of ĉ, the adversary “guesses” a value for the sum (XOR) of the roundkey bits

On Linear Hulls and Trails 283

associated with the trail. Using (18) the adversary is led to believe that the
actual bias can only take the values 2−4 and −2−4 and so the obvious decision
rule is to guess for the XOR of the roundkey bits the value 1 if ĉ < 0, and the
value 0 if ĉ > 0. From (14), however, we obtain:

z0 = 0, z1 = 0 → corh = (−1)Z · 3 · 2−5

z0 = 0, z1 = 1 → corh = (−1)Z · 3 · 2−5

z0 = 1, z1 = 0 → corh = (−1)Z · (−1) · 2−5

z0 = 1, z1 = 1 → corh = (−1)Z · 3 · 2−5

In the first, the second and the last case, the actual correlation is (−1)Z · 3 · 2−5,
which is 50% larger than the value that was obtained using Trail 1 only. Using 210

known plaintexts, the success rate of Algorithm 1 increases from the predicted
98% to 100%.

In the third case, however, not only the magnitude of the correlation has
decreased, but also the sign has changed. This means that Algorithm 1’s estimate
for Z will be usually wrong ! The success rate drops from the predicted 98%
to 100 − 84 = 16%. We conclude that the average success rate of Matsui’s
Algorithm 1 drops from the predicted 98% to

0.75 · 100% + 0.25 · 16% = 79%.

When the data complexity is increased, the estimate of the actual correlation
through the sample correlation is improved. This means that the first term in
the sum increases, while the second one decreases. The success probability in
the general case is given by:

1 − 0.75 · φ

⎛

⎝
− (

N
2 + 3 · N · 2−6 − N

2

)

√
N
4 − 9 · N · 2−12

⎞

⎠ + 0.25 · φ

⎛

⎝
− (

N
2 − N · 2−6 − N

2

)

√
N
4 + ·N · 2−12

⎞

⎠

Differentiating with respect to N shows that the function is maximized with a
success rate of 80% when N = 29.12, and tends to 75% as N tends to 232. So we
get the following observation.

Observation: In an attack based on (the original, non-extended version of)
Matsui’s Algorithm 1 the optimal number of plaintexts can be smaller than the
full codebook. Increasing the number of plaintexts beyond this optimal number
may decrease the success rate of the attack.

6.4 Knowing only One of the Trails 2–4

Similar to the case of Trail 1, we can use the individual correlations presented
in Sect. 6.2. Hence, for Trail 2, the adversary will compute

cor(2)p = (−1)Z+z02−5

284 T. Ashur and V. Rijmen

and conclude that 212 known plaintexts should be sufficient to estimate Z + z0
with a success rate of 98%. Since the predicted correlation differs only in sign,
the decision rule for the guessed sum of the roundkey bits is as before. Repeating
the success rate analysis and using the numbers from Table 1, we learn that the
success rate with 212 known plaintexts drops from the predicted 98% to

0.5 · 100% + 0.25 · 98% + 0.25 · 0% = 74.5%

The success rate is maximized and saturates with 75% when N grows beyond
212.1 as the middle term tends to 100% and the others stay steady. Similar
computations give for Trail 4 the same result as for Trail 2. For Trail 3, setting
N = 212 gives a reduced success rate of:

0.25 · 100% + 0.5 · 0% + 0.25 · 2% = 25.5%.

A success rate below 50% means that Algorithm 1 will more often produce the
wrong answer.

6.5 Knowing All Trails

When all trails are taken into account, Matsui’s Algorithm 1 can be extended
and recover more than a single bit, cf. also [14]. The approach can be summarized
as follows. The adversary knows now that the correlation of the hull can take 4
values, distanced 2 · 2−5 apart, cf. (13) and Table 1. The adversary divides the
space of possible ĉ outcomes into four regions instead of just two. After collecting
N plaintexts, the adversary computes ĉ and guesses for the key bits the values
that produce the correlation the closest to ĉ. We can compute the success rate
as follows.

If Z = 0 and z0z1 ∈ {00, 01, 11}, then corh = 3 · 2−5. The attack will be
successful if ĉ > 2−4. When N = 212, this happens with probability 0.98. The
adversary obtains 1+3(−1/3 log2(1/3)) = 1+log2(3) ≈ 2.6 bits of information.

If Z = 0 and z0z1 = 10, then corh = −1 · 2−5. The attack will be successful
if −2−4 < ĉ < 0. When N = 212, this happens with probability 0.95. The
adversary obtains 3 bits of information.

If Z = 1 and z0z1 = 10, then corh = 2−5. The attack will be successful if 0 <
ĉ < 2−4. When N = 212, this happens with probability 0.95. The adversary
obtains 3 bits of information.

If Z = 1 and z0z1 ∈ {00, 01, 11}, then corh = −3 · 2−5. The attack will be
successful if ĉ < −2−4. When N = 212, this happens with probability 0.98.
The adversary obtains 2.6 bits of information.

6.6 Conclusion

It has been observed before that the accuracy of linear attacks can be improved if
multiple trails are taken into account [5,8,9]. The example that we treated in this

On Linear Hulls and Trails 285

section illustrates this for the specific case where we use Matsui’s Algorithm 1
and all trails are in the same linear hull.

When we take the dependencies on the roundkey bits into account, we can
use Algorithm 1 to recover more than 1 key bit as in [14]. However, when we
do not take into account these dependencies, there are cases where Algorithm 1
systematically provides the wrong outcome, no matter how much we increase
the number of known plaintexts. In fact, there are cases where increasing the
number of known plaintexts beyond a certain value will result in a decrease of
the attack’s success rate. Future work should revisit attacks that were using the
correlation of a single trail as an estimate for the correlation of the hull, as well
as attacks using Matsui’s Algorithm 1, to see whether the data complexity needs
to be modified, and whether more key bits can be recovered. In previous sections
we showed how this can be done using correlation matrices, taking into account
conflicting effects that were previously overlooked.

It remains to be investigated how we can extend this analysis to hulls over
more rounds, when it becomes infeasible to enumerate all the trails. Secondly, it
would be interesting to investigate the consequences for Matsui’s Algorithm 2.
Algorithm 2 tries to find the last-round keys that minimize the distance between
the correlation over R − x rounds that is predicted by the adversary and the
experimental correlation computed from ciphertexts and known plaintexts. If
the actual correlation is very far from the predicted correlation, as we observed
here, there could be many wrong keys ranked above the correct key.

Acknowledgments. The authors would like to thank Kaisa Nyberg and the anony-
mous reviewers for their comments. This work was partially supported by the Research
Council KU Leuven, OT/13/071.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001). doi:10.1007/3-540-44983-3 4

2. Ashur, T., Rijmen, V.: On linear hulls and trails in simon. IACR Cryptology ePrint
Archive 2016, 88 (2016). http://eprint.iacr.org/2016/088

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/

4. Biham, E.: On Matsui’s linear cryptanalysis. In: Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995). doi:10.1007/
BFb0053449

5. Biryukov, A., Cannière, C., Quisquater, M.: On multiple linear approximations. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-28628-8 1

6. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis.
In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995). doi:10.1007/BFb0053450

http://dx.doi.org/10.1007/3-540-44983-3_4
http://eprint.iacr.org/2016/088
http://eprint.iacr.org/
http://dx.doi.org/10.1007/BFb0053449
http://dx.doi.org/10.1007/BFb0053449
http://dx.doi.org/10.1007/978-3-540-28628-8_1
http://dx.doi.org/10.1007/BFb0053450

286 T. Ashur and V. Rijmen

7. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.)
FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 21

8. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis
of reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70500-0 15

9. Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approxima-
tions. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer,
Heidelberg (1994). doi:10.1007/3-540-48658-5 4

10. Keliher, L., Meijer, H., Tavares, S.: New method for upper bounding the maximum
average linear hull probability for SPNs. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001). doi:10.1007/
3-540-44987-6 26

11. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

12. Murphy, S.: The effectiveness of the linear hull effect. J. Math. Cryptol. 6(2),
137–147 (2012). http://dx.doi.org/10.1515/jmc-2011-0025

13. Nyberg, K.: Linear approximation of block ciphers. In: Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). doi:10.
1007/BFb0053460

14. Röck, A., Nyberg, K.: Generalization of Matsui’s algorithm 1 to linear hull for
key-alternating block ciphers. Des. Codes Cryptograph. 66(1–3), 175–193 (2013).
http://dx.doi.org/10.1007/s10623-012-9679-1

15. Shi, D., Hu, L., Sun, S., Song, L.: Linear (hull) cryptanalysis of round-reduced
versions of KATAN. Cryptology ePrint Archive, Report 2015/964 (2015). http://
eprint.iacr.org/

16. Shi, D., Hu, L., Sun, S., Song, L., Qiao, K., Ma, X.: Improved linear (hull) crypt-
analysis of round-reduced versions of SIMON. Cryptology ePrint Archive, Report
2014/973 (2014). http://eprint.iacr.org/

17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers and
automatic enumeration of (related-key) differential and linear characteristics with
predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014). http://
eprint.iacr.org/

http://dx.doi.org/10.1007/3-540-60590-8_21
http://dx.doi.org/10.1007/3-540-60590-8_21
http://dx.doi.org/10.1007/978-3-540-70500-0_15
http://dx.doi.org/10.1007/978-3-540-70500-0_15
http://dx.doi.org/10.1007/3-540-48658-5_4
http://dx.doi.org/10.1007/3-540-44987-6_26
http://dx.doi.org/10.1007/3-540-44987-6_26
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1515/jmc-2011-0025
http://dx.doi.org/10.1007/BFb0053460
http://dx.doi.org/10.1007/BFb0053460
http://dx.doi.org/10.1007/s10623-012-9679-1
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Related-Key Cryptanalysis of Midori

David Gérault(B) and Pascal Lafourcade

University Clermont Auvergne, Clermont-Ferrand, France
{david.gerault,pascal.lafourcade}@udamail.fr

Abstract. Midori64 and Midori128 [2] are lightweight block ciphers,
which respectively cipher 64-bit and 128-bit blocks. While several attack
models are discussed by the authors of Midori, the authors made no
claims concerning the security of Midori against related-key differential
attacks. In this attack model, the attacker uses related-key differential
characteristics, i.e., tuples (δP , δK , δC) such that a difference (generally
computed as a XOR) of δP in the plaintext coupled with a difference δK
in the key yields a difference δC after r rounds with a good probability.
In this paper, we propose a constraint programming model to automate
the search for optimal (in terms of probability) related-key differential
characteristics on Midori. Using it, we build related-key distinguishers on
the full-round Midori64 and Midori128, and mount key recovery attacks
on both versions of the cipher with practical time complexity, respectively
235.8 and 243.7.

Keywords: Midori · Related-key attack · Constraint programming

1 Introduction

The increasing usage of embedded devices led to a lot of research on how to adapt
existing cryptographic primitives for the low power and energy constraints asso-
ciated with the internet of things. Lightweight block ciphers follow this trend,
and aim at providing energy efficient ways to ensure confidentiality for fixed
size block messages. In 2015, the authors of [2] consider the challenging task
of minimizing the energy cost for a lightweight block cipher. They proposed a
lightweight symmetric block cipher scheme called Midori, composed of two ver-
sions Midori64 and Midori128, which respectively cipher 64- and 128-bit message
blocks.

In this paper, we challenge the related-key security of both versions of Midori.
In the related-key model, introduced independently by Biham [3] and Knud-
sen [12], the attacker is allowed to require the encryption of messages of his
choice under the secret key, but also under other keys which have a relation to
the original one. For instance, if K is the secret key, the attacker can require the

This research was conducted with the support of the FEDER program of 2014–
2020, the region council of Auvergne, and the Digital Trust Chair of the University
of Auvergne.

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 287–304, 2016.
DOI: 10.1007/978-3-319-49890-4 16

288 D. Gérault and P. Lafourcade

encryption of a message m under K, but also under another key K∗, computed
as K ⊕ δK , where ⊕ is the XOR operation and δK is a bit string chosen by the
attacker. In an ideal block cipher, the distribution of the resulting ciphertext dif-
ference should be uniform and independent from the input difference. However,
in real ciphers, there exist related-key differential characteristics, i.e., difference
propagation patterns, which happen with higher probabilities. In a related-key
differential attack, the attacker requires the encryption of message pairs satisfy-
ing a difference δP , under keys satisfying a difference δK , expecting an output
difference δC .

One of the main applications of related-key cryptanalysis is finding collisions
on hash functions built from block ciphers (e.g., with the Davies-Meyer con-
struction). For instance, the hash function used in Microsoft’s Xbox was broken
due to the related-key vulnerability of the underlying block cipher TEA [19],
leading to a hack of the system [20]. Related-key attacks were not taken into
account in the design of Midori, and the authors made no claim on its security
in this model. As Midori is designed for embedded devices, it could however be
used to build a hash function, which motivates scrutinizing its security in the
related key setting.

The search for related-key differential characteristics is however difficult. Fol-
lowing the idea of [9], we use constraint programming (CP) to tackle this prob-
lem. In this programming paradigm, instead of providing an imperative algo-
rithm, the programmer describes the problem to be solved as a set of variables
linked together by constraints (for instance, x + y = 10), and the exploration of
the search space is left to the solver. While an overwhelming part of the crypt-
analysis literature relies on custom algorithms, we believe that a more generic
approach is very promising. In particular, as shown in [9], constraint program-
ming seems less error prone than custom code.

Contributions

– We provide constraint programming models to find optimal related key differ-
ential characteristics on both versions of Midori.

– Using our models, we give the optimal R − 1 rounds related-key differential
characteristics of both versions of Midori, with probability 2−14 for Midori64,
and 2−38 for Midori128.

– We then mount practical time key recovery attacks requiring 235.8 operations
with 20 related keys for Midori64, and 243.7 encryptions with 16 related keys
for Midori128.

– We also provide a related-key distinguisher of probability 2−16 for Midori64
and 2−40 for Midori128.

Related Work: Most results in the literature using constraint programming
for the cryptanalysis of block ciphers use Mixed Integer Linear Programming
(MILP). In [14], the authors use MILP to mount a linear cryptanalysis on a
stream cipher and on the block cipher AES, both in the single key setting.
In [17,18], the authors use MILP to find the best related-key differential charac-
teristics on several bit oriented block ciphers, but they do not treat Midori. As
opposed to MILP, CP supports table constraints defining tuples of authorized

Related-Key Cryptanalysis of Midori 289

Table 1. Summary of the attacks against Midori.

Type Rounds Data Time Reference

Midori64

Impossible differential 10 262,4 280,81 [6]

Meet-in-the-middle 12 255.5 2125,5 [13]

Invariant subspace∗ full(16) 2 216 [11]

Related-key differential 14 259 2116 [7]

Related-key differential full(16) 223.75 235.8 Sect. 5

Midori128

Related-key differential full(20) 243.7 243.7 Sect. 5
∗Note that this attack only works if a key from the weak class is used

values, which provides a rather efficient way to model the non linear SBs. To the
best of our knowledge, only [9] uses classical CP instead of MILP. The authors
present a model for finding optimal related-key differential characteristics against
AES, using a method similar to the one presented in this paper.

The existing attacks against Midori are summed up in Table 1.
In [6], the authors propose an impossible differential attack on 10 rounds of

Midori64. In [13], Li Lin and Wenling Wu describe a meet-in-the-middle attack
on 12-round Midori64. In [11], the authors exhibit a class of 232 weak keys which
can be distinguished with a single query. Assuming a key from this class is used,
then it can be recovered with as little as 216 operations, and a data complexity
of 21. Finally, a related-key cryptanalysis of Midori64 is performed in [7]. It
covers 14 rounds and has a complexity of 2116, as opposed to 235.8 for ours. This
difference is due to their differential characteristics being far from optimal.

As for Midori128, to the best of our knowledge, no cryptanalysis on it has
been published yet. We fill this gap by mounting a key recovery attack on the
whole cipher, requiring 243.7 encryptions.

Outline: In Sect. 2, we give a brief description of Midori. We then remind the
basics of related-key cryptanalysis and introduce our notations in Sect. 3. We
present our CP models in Sect. 4. Finally, we detail our results in Sect. 5, before
concluding in the last section.

2 Description of Midori Encryption Scheme

S =

⎛

⎜
⎜
⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞

⎟
⎟
⎠

Fig. 1. Representation of
the state in Midori.

Both versions of Midori, Midori64 and Midori128, use
128-bit keys. In both versions, the blocks are treated
as 4 × 4 matrices of words of m bits, with m = 4
for Midori64 and m = 8 for Midori128. The encryp-
tion process consists in applying a round function that
updates an internal state S, represented as shown on
Fig. 1 (where the si are 4-bit words for Midori64 and

290 D. Gérault and P. Lafourcade

8-bit words (bytes) for Midori128), for a given number of rounds R. For Midori64,
R is equal to 16, whereas for Midori128 R is 201.

The round function is composed of the following consecutive operations:

SubCell (SB) substitutes every cell of the state, using a non linear Substitution
Box, denoted Sbox. The Sbox of Midori64 is given as example in Fig. 2(a).
For Midori128, 4 different Sboxes are used (one for each line of the state)2.

ShuffleCell (SC) operates a permutation of the cells of the state. On input
(s0, . . . , s15), it applies the following permutation:

(s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8) .

MixColumns (MC) multiplies the state by the symmetric matrix given in
Fig. 2(b), thus applying a linear transformation on each column indepen-
dently. It has the quasi-MDS property if MC(0, 0, 0, 0) = (0, 0, 0, 0) or
|X| + |MC(X)| = 0 or |X| + |MC(X)| ≥ 4, where |X| denotes the num-
ber of non-zero words in a column X of the state.

KeyAdd (KA) is a XOR between S and a round key derived from the initial
key.

The Midori encryption process works as follows: an initial KeyAdd, using the
whitening key WK, is applied. Then, the round function is executed R−1 times.
Finally, a final SubCell is applied to the resulting state, and a new KeyAdd is
performed, again using WK. The round key derivation is very straightforward:
the key for each round i is obtained by XORing the initial key with a predefined
4 × 4 constant matrix αi. For Midori64, the 128-bit key is considered as two
4 × 4 matrices of 4-bit words K0 and K1, and WK is computed as K0 ⊕ K1.
The round key for round i is computed as Ki mod 2 ⊕ αi. For Midori128, K is
a single 4 × 4 bytes matrix, and WK = K. The round key for round i is then
simply computed as for Midori64: K ⊕ αi.

3 Related-Key Cryptanalysis

Differential cryptanalysis studies the propagation of the differences, generally
computed as a XOR, between two plaintexts ciphered with the same key.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

SB(x) c a d 3 e b f 7 8 9 1 5 0 2 4 6

(a) The Sbox of Midori64.

⎛
⎜⎜⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠

(b) The MixColumns matrix
of Midori.

Fig. 2. Midori description.

1 The full specification is presented in [2].
2 The Sboxes of Midori 128 are given in [11].

Related-Key Cryptanalysis of Midori 291

Related-key cryptanalysis, which was independently introduced by Biham [3]
and Knudsen [12], additionally considers the case where the two plaintexts are
ciphered with different keys. A tuple (δin, δK , δout) is an n-rounds related-key
differential for a keyed round function fK , for which f i

K denotes the output
after round i (starting from 0), if for some plaintext P and key K it holds
that fn−1

K (P) ⊕ fn−1
K⊕δK

(P ⊕ δin) = δout. Similarly, if XP,K
i denotes the inter-

nal state of the round function with inputs P and K at round i, a tuple
(δin, δK , δX0 . . . δXn−1 , δout) is an n-rounds related-key differential characteris-
tics if (δin, δout, δK) is an n-rounds related-key differential and, for all i from 0
to n − 1, it holds that XP,K

i ⊕ XP⊕δin,K⊕δK
i = δXi

.
The differences δX are composed of differential words, defined as δX [i][j] =

X[i][j] ⊕ X ′[i][j], where X[i][j] (resp. X ′[i][j]) denotes a word at position i, j
(where (i, j) ∈ [0; 3]2) of a matrix X (resp. X ′).

The probability p = Pr[(δin, δK) → δout] denotes the probability that a
related-key differential (δin, δk, δout) holds, i.e., for P and K drawn uniformly at
random, fK(P) ⊕ fK⊕δK (P ⊕ δin) = δout.

Note that, by definition, for the linear parts L of the cipher, we have L(P)⊕
L(P ⊕ δ) = L(δ), for any P and δ. On the other hand, for the non linear parts
NL, NL(P)⊕NL(P ⊕δ) is generally different from NL(δ). Hence, to handle the
non linear parts of block ciphers (namely the Sboxes), related-key differential
cryptanalysis usually uses a Differential Distribution Table (DDT) to derive
the probability Pr[δin → δout] that for a random word w, SB(w) ⊕ SB(w ⊕
δin) = δout. For any differential words δin and δout, DDT [δin][δout] gives the
number of words w satisfying this relation, and the probability is computed
as DDT [i][j]

2|W | , where |W | denotes the bit length of the words. When the Sboxes
are bijective3, they do not introduce nor remove differences. More formally, it
holds that for any word w, SB(w) ⊕ SB(w ⊕ δ) �= 0 if δ �= 0, and SB(w) ⊕
SB(w ⊕ δ) = 0 if δ = 0. Said otherwise, for a given Sbox, Pr[0 → 0] = 1.
Hence, the probability of a related-key differential characteristic is only affected
by active Sboxes, i.e., Sboxes which have a non-zero difference at their input.
Thus, the probability p for a related-key differential characteristic to hold for
random P and K is computed as the product of the probabilities associated with
each the active Sboxes it contains. We have p =

∏x
i=1 pi, where pi denotes the

probability that the transition δini → δouti, defined by the related-key differential
characteristic, holds for the ith active Sbox (among x). Since the complexity of a
related-key differential key recovery attack is directly related to the probability
of the related-key differential that is used, characteristics with the least possible
active Sboxes are generally the most interesting. The crucial point of this type
of cryptanalysis is then to determine high probability related-key differential
characteristics.

However, exhaustive search on all possible input differences is not practical
for Midori because the size of the input is 128 bits for the key and 64 or 128
bits for the plaintext. Hence, a common method is to solve the problem in two
steps (e.g., [5,8,9]). The first step does not consider the value of the differential

3 It is the case for most block ciphers, including Midori.

292 D. Gérault and P. Lafourcade

bytes, but only the positions of non-zero differences. During the first step, the
differential words are abstracted to a compact representation. In the compact
representation, the differential words are abstracted to differential bits. The dif-
ferential bit Δ representing a differential word δ in the compact representation
is defined by δ = 0 ⇒ Δ = 0 and δ �= 0 ⇒ Δ = 1. We denote a differential word
by δ, and a differential bit by Δ.

An n-round compact related-key differential characteristic Δ abstracting a
related-key differential characteristic δ = (δin, δk, δX0 , . . . , δXn−1 , δout) is the
tuple (Δin,Δk,ΔX0 , . . . ,ΔXn−1 ,Δout), where Δin = 0 if δin = 0 and Δin = 1 if
δin �= 0 (and similarly for ΔX0 , . . . ,ΔXn−1 and Δout).

The idea of working with two steps is that related-key differential charac-
teristics with the best probabilities are generally the ones with the least active
Sboxes. Hence, a lot of filtering can be done by simply starting by working on
differential bits and minimizing the number of active Sboxes.

Once compact related-key differential characteristics minimizing the number
of active Sboxes are obtained, a second step is run to build full related-key
differential characteristics built with differential words. Note that not all compact
related-key differential characteristics can be instantiated with differential words.
The main reason is that a given input difference to an Sbox can only yield a
limited number of output differences. For instance, in Midori64, if δX = 0x1
(where 0x denotes hexadecimal representation), there exists no word X such
that SB(X) ⊕ SB(X ⊕ 0x1) = 0x9, according to the Sboxes of Midori64 given
in Fig. 2(a). Moreover, the coefficients of the MixColumns matrix cannot be
directly taken into account with differential bits, nor can the equalities of the
corresponding differential words. This yields transitions that are correct when
working on a bit related-key differential characteristic, but not with differential
words. Such solutions are said to be inconsistent, otherwise, they are consistent.

4 Constraint Programming Model

We describe our constraint programming models to find related-key differential
characteristics with optimal probability on Midori. This process is decomposed
in two steps: the first one aims at lower bounding the number of active Sboxes. It
only considers compact related-key differential characteristics. The second step
transforms the solutions to Step 1 into word related-key differential character-
istics when it is possible. In other words, during Step 1, we simply find the
positions of the differences in the related-key differential characteristic, and in
Step 2, we assign actual values to these differences.

4.1 Step 1

Variables and Objective Function: In Step 1, we consider the propagation
of differences through the cipher by working on compact related-key differential
characteristics. Let n denote the number of times the full round function is
applied, i.e., we neglect the initial KeyAdd and the final KeyAdd and SB. For

Related-Key Cryptanalysis of Midori 293

Midori64, n = 15, and for Midori128, n = 19. When no information about the
format is provided, the variables are n×4×4 binary arrays, i.e., one 4×4 matrix
per round. Each of the following variables represent differential bits:

ΔK represents the differential bits of the key. For Midori64, it is modeled as a
2 × 4 × 4 binary array (as the initial key is composed of two 4 × 4 matrices).
For Midori128, it is represented as a 4 × 4 binary matrix.

ΔSB represents the state after the SB operation. Note that since this opera-
tion does not introduce differences, this variable is somehow redundant. We
however use it for readability.

ΔKA represents the state after the KeyAdd operation.
ΔMC represents the state after the MixColumns operation.
ΔSC represents the state after the ShuffleCell operation.

The relations between these variables for a given round r is:

ΔSB [r] SC−−→ ΔSC [r] MC−−→ ΔMC [r] KA−−→ ΔKA[r] SB−−→ ΔSB [r + 1]

Our aim is to minimize the number of active Sboxes, i.e., Sboxes with non
zero differences. Hence, we ask the solver to minimize the sum of all ΔSB [r],
which constitutes our objective function:

Minimize

(∑n−1

r=0

∑3

i=0

∑3

j=0
ΔSB [r][i][j]

)

Constraints: Since we work with differential bits representing the presence or
absence of difference, we cannot use the regular XOR operation between such
values for KeyAdd nor MixColumns. Let Δ0 and Δ1 denote two differential
bits. We remind that Δ0 (resp. Δ1) is 1 if δ0 �= 0 (resp. δ1 �= 0). The compact
representation contains no information about the actual values of δ0 and δ1 when
they are non-zero. This abstraction leads us to define the following constraint
that describes the xor between several differential bits x1, . . . , xq−1 where xq is
the result:

XOR(x1, . . . , xq) ⇔ {x1 + . . . + xq �= 1}
where + denotes the integer addition and x1, . . . , xk ∈ {0, 1}. Intuitively, it
states that the xor of the q − 1 corresponding words is known to be 0 when all
the differential bits are zero, or only one is non zero, but can be either 0 or 1
otherwise.

For ShuffleCell, we simply apply the permutation given in Sect. 2 to build
ΔSC [r] from ΔSB [r].
ΔSC [r][0][0] = ΔSB [r][0][0], ΔSC [r][1][0] = ΔSB [r][2][2], ΔSC [r][2][0] = ΔSB [r][1][1],

ΔSC [r][3][0] = ΔSB [r][3][3], ΔSC [r][0][1] = ΔSB [r][2][3], ΔSC [r][1][1] = ΔSB [r][0][1],

ΔSC [r][2][1] = ΔSB [r][3][2], ΔSC [r][3][1] = ΔSB [r][1][0], ΔSC [r][0][2] = ΔSB [r][1][2],

ΔSC [r][1][2] = ΔSB [r][3][0], ΔSC [r][2][2] = ΔSB [r][0][3], ΔSC [r][3][2] = ΔSB [r][2][1],

ΔSC [r][0][3] = ΔSB [r][3][1], ΔSC [r][1][3] = ΔSB [r][1][3], ΔSC [r][2][3] = ΔSB [r][2][0],

ΔSC [r][3][3] = ΔSB [r][0][2].

294 D. Gérault and P. Lafourcade

The constraint for MC contains two parts, where r varies from 0 to n − 1
and j varies from 0 to 3.

Firstly the quasi-MDS property directly gives the following constraint:
(∑3

i=0
ΔSC [r][i][j] + ΔMC [r][i][j]

)

∈ {0, 4, 5, 6, 7, 8}

Then, we model the fact that MC(0, 0, 0, 0) = (0, 0, 0, 0) as follows:
(∑3

i=0
ΔSC [r][i][j] = 0

)

⇔
(∑3

i=0
ΔMC [r][i][j] = 0

)

.

The second part directly implements the product of the vector ΔSC with the
matrix given in Midori to get ΔMC . It is modeled as follows:

XOR(ΔSC [r][1][j],ΔSC [r][2][j],ΔSC [r][3][j],ΔMC [r][0][j])
XOR(ΔSC [r][0][j],ΔSC [r][2][j],ΔSC [r][3][j],ΔMC [r][1][j])
XOR(ΔSC [r][0][j],ΔSC [r][1][j],ΔSC [r][3][j],ΔMC [r][2][j])
XOR(ΔSC [r][0][j],ΔSC [r][1][j],ΔSC [r][2][j],ΔMC [r][3][j])

For KA, following the rules of Midori and the XOR constraint described earlier4,
we have, for r from 0 to n − 1, and i and j from 0 to 3: For Midori64:

XOR(ΔMC [r][i][j],ΔK [r mod 2][i][j],ΔKA[r][i][j])

and for Midori128:

XOR(ΔMC [r][i][j],ΔK [i][j],ΔKA[r][i][j])

4.2 Step 2

Variables: In addition to the variables from Step 1, new ones are introduced to
represent the differential words in the whitening key, the plaintext, the result of
the initial KeyAdd, and the probabilities for each Sbox. When no information
about the format is provided, the following variables are n × 4 × 4 word arrays,
i.e., one 4 × 4 matrix per round.

δK represents the differential words in the key. It is modeled as a 2×4×4 array
of 4-bit words for Midori64, as a 4 × 4 byte matrix for Midori128.

δSB represents the state after the SB operation.
δKA represents the state after the KeyAdd operation.
δMC represents the state after the MixColumns operation.
δSC represents the state after the ShuffleCell operation.
4 Note that the XOR operations between the key and constants at each rounds are

not taken into account when working at a differential level. This is because the
constants are canceled, i.e., for two different keys K0 and K1, and a constant c,
(K0 ⊕ c) ⊕ (K1 ⊕ c) = K0 ⊕ K1.

Related-Key Cryptanalysis of Midori 295

δWK represents the whitening key, which is δK [0] ⊕ δK [1] for Midori64, and δK

for Midori128.
δP represents the plaintext and δP ′ the state after the initial KeyAdd.
P is a n×4×4 matrix used to compute the final probability, where P [r][i][j] = 0

if δSB [r][i][j] = 0, and log2(DDT [δKA[r][i][j]][δSB [r + 1][i][j]) otherwise. For
Midori64, the domain of this variable is {0, 1, 2}, whereas for Midori128 it is
{0, 1, 2, 3, 4, 5, 6}.

To find the optimal related-key differential characteristics, we need to maximize
the sum of the P variables, hence our objective function is

Maximize

(∑n−1

r=0

∑3

i=0

∑3

j=0
P [r][i][j]

)

Constraints: The first constraints aim at linking each variable of the input
(from Step 1) to the variables of Step 2: for instance, for δKA, we have ∀r ∈
[0..n − 1],∀i ∈ [0..3],∀j ∈ [0..3] :

if ΔKA[r][i][j] == 0 then δKA[r][i][j] = 0, else δKA[r][i][j] > 0

Similar constraints are defined for the other input variables.
The constraint for SC is exactly the same as in Step 1, except that it is on

the δ variables (differential words) instead of the Δ variables (differential bits).
For the other operations, we make use of table constraints to model the

Sboxes and the XOR operations5. Intuitively, table constraints tell the solver
which tuples of values are allowed.

We denote tupleXOR the set of all tuples (X,Y,Z) that satisfying Z =
X ⊕ Y . Similarly we denote tupleSBS the tuples modeling the DDT for
the Sbox S, i.e., for every couple of words δin, δout there is a tuple
(δin, δout, log2(DDTS [δin][δout])), where DDTS is the DDT of the Sbox S.

We also denote by TABLE((x, y, z), SET), the constraint that tells the solver
that the values x, y and z must for a valid tuple with regards to a given SET .

We define XORbyte(x, y, z) := TABLE((x, y, z), tupleXOR) and extend it to
XORbyte3(x, y, z, w) := XORbyte(t, z, w), where t is defined by XORbyte(x, y, t).

The MixColumns operation can then be expressed, according the specifica-
tion of the cipher, by: ∀r ∈ [0..n − 1],∀j ∈ [0..3] :

XORbyte3(δSC [r][1][j], δSC [r][2][j], δSC [r][3][j], δMC [r][0][j])
XORbyte3(δSC [r][0][j], δSC [r][2][j], δSC [r][3][j], δMC [r][1][j])
XORbyte3(δSC [r][0][j], δSC [r][1][j], δSC [r][3][j], δMC [r][2][j])
XORbyte3(δSC [r][0][j], δSC [r][1][j], δSC [r][2][j], δMC [r][3][j])

We now define δWK . For Midori64, δWK is defined by: ∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δK [0][i][j], δK [1][i][j], δWK [i][j])
5 As the operation XOR is not by default implemented in the solver.

296 D. Gérault and P. Lafourcade

For Midori128, we simply have δWK = δK .
The initial KeyAdd operation then is modeled as: ∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δP [r][i][j], δWK [i][j], δP ′ [i][j])

For the other KeyAdd operations, we have ∀r ∈ [0..n−1],∀i ∈ [0..3],∀j ∈ [0..3] :

XORbyte(δMC [r][i][j], δK [r mod 2][i][j], δKA[r][i][j])

for Midori64, and

XORbyte(δMC [r][i][j], δK [i][j], δKA[r][i][j])

for Midori128. We finally model the SB operations. In the model for Midori128,
where 4 different Sboxes are used, we use Sboxi, where i is the number of the
line. For readability, the number of the Sbox is omitted in what follows.

The initial SB is modeled as follows: ∀i ∈ [0..3],∀j ∈ [0..3] :

TABLE((δP ′ [i][j], δSB [0][i][j], P [0][i][j]), tupleSB)

Then, for the other rounds, we have ∀r ∈ [1..n − 1],∀i ∈ [0..3],∀j ∈ [0..3] :

TABLE((δKA[r − 1][i][j], δSB [r][i][j], P [r][i][j]), tupleSB)

5 Results

Step 1 was implemented in the Minizinc6 language, and solved using the solver
Chuffed7, which minimizes the objective function in around 3 h for Midori64 and
in around 10 h for Midori1288. Step 2 was solved using Choco3 [15], which finds
the best related-key differential characteristic (when it exists) for each input
from Step 1 within 10 s.

The results are given in Table 2.
Note that since all Sboxes in our related-key differential characteristics have

the best possible probability (2−2), any related-key differential characteristic
with more Sboxes has a lower probability.

5.1 Key Recovery Attacks

Our goal is to recover the secret key K. We use an encryption oracle EncK(x,m)
that encrypts a message m with the key K ⊕ x. Our attacks are different for
Midori64 and Midori128.

6 http://www.minizinc.org/.
7 https://github.com/geoffchu/chuffed.
8 We run our experiments on an Intel i7-4790, 3.6 Ghz with 16GB RAM.

http://www.minizinc.org/
https://github.com/geoffchu/chuffed

Related-Key Cryptanalysis of Midori 297

Table 2. The results obtained by the solvers, both for full-round and n − 1 rounds
of both versions of Midori. The number of Sboxes is the result of Step 1, and the
probability is the result of Step 2.

Version Number of rounds Number of Sboxes Probability

Midori64 15 7 2−14

16 8 2−16

Midori128 19 19 2−38

20 20 2−40

Midori64: For this attack, we first recover WK, one word at a time, using 16 15-
rounds related-key differential characteristics with 16 ·219.32 = 223.32 operations.
Then we use 4 14-rounds related-key differential characteristics to recover K[0] in
235.8 operations. By combining them, we obtain K[1] = K[0] ⊕ WK and deduce
K (composed of K[0] and K[1]), for a total complexity of 223.32 + 235.8 ≈ 235.8.

Recovery of WK: The solvers give 16 different 15-rounds related-key differ-
ential characteristics, the corresponding related-key differentials are given in
AppendixA. Each of them contains only one non-zero difference at the end
of the 15th round (corresponding to δKA[14] in Fig. 3), all at different positions.

δWK δWK

δP

KA SB KA
.........

15 rounds

δKA[14]

SB KA

δC

Fig. 3. An example of a related-key differential characteristic provided by the solver.

To be complete we need to give all the details our related-key differential
characteristics. Minizinc finds optimal 2-rounds patterns with 1 active Sbox in
all the odd rounds and none in the even rounds, as described in Fig. 4. Then the
missing steps in Fig. 3 are 7.5 times the characteristic given in Fig. 4.

In order to recover one word of WK, we use the corresponding values of δK ,
δP and δKA[14] given by the related-key differential characteristics9. First we
randomly choose some plaintext P , and query the oracle for C = EncK(0, P),
and C∗ = EncK(δK , P δP). We compute δC = C ⊕ C∗. We say that δC is valid
iff ∀i, j ∈ [0, 3], δKA[14][i][j] = 0 ⇒ δC [i][j] = δWK [i][j]. If δC is valid then we
compute δSB [i][j] = δC [i][j] ⊕ δWK [i][j] (where (i, j) is the positions of the non-
null difference). We now use the fact that for Midori64 the maximum value in

9 From δK which is composed of δK[0] and δK[1], we can compute δWK = δK[0] ⊕ δK[1].

298 D. Gérault and P. Lafourcade

δK [0] δK [1]

δKA[r−1]

SB

δSB [r]

SC

δSC [r]

MC

δY [r]

KA

δKA[r]

SB

δSB [r+1]

SC

δSC [r+1]

MC

δY [r+1]

KA

δKA[r+1]

Fig. 4. An optimal 2-rounds related-key differential characteristic from Set 1 for
Midori64, where r is an even round. Non-zero differences are represented as black
and gray squares. It has 1 active Sbox, for instance with � = 0x1 and � = 0x2.

Input: δK , δP , ∀k ∈ [0, 14]δKA[k], i, j

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
δC = C∗ ⊕ C;
if δC is valid then

δSB [i][j] = δC [i][j] ⊕ δWK [i][j];
for ∀x ∈ DDTS(δKA[14][i][j], δSB [i][j]) do

WK[i][j] = SB[i][j] ⊕ C[i][j];
CPT[WK[i][j]]++;

end

end

Algorithm 1: How to recover WK in Midori64, where DDTS(a, b) = {x :
SB(x)⊕SB(x⊕a) = b}, and CPT a table that is initialized to zero and stores
the occurrences of possible candidates for WK.

the DDT is 4, i.e. every valid δC yields at most 4 possible values for SB[i][j]
(x in Algorithm 1), to obtain four candidates for WK[i][j] = SB[i][j] ⊕ C[i][j].
By repeating this process several times we can find the right candidate: it is the
word that has the most occurrences10. This is formally described in Algorithm 1.
This is done 16 times, one for each word of WK.

Complexity Analysis of Algorithm1: Our aim is to determine how many times
we need to repeat our attack in order to have the true key. To determine precisely
this value denoted T , we follow the approach given in [16]. It uses the signal to
noise ratio S/N introduced by Biham in [4]. It is defined as S/N = 2k·p

α·β , where
k is the number of key bits that we want to recover (in our case, k = 4 since we
aim to recover a word of 4 bits of the key), p is the probability of the related-key
differential characteristic (for us p = 2−14), α is the number of key candidates
suggested for each good pair (using the DDT, we have α = 4), and β is the ratio
of the pairs that are not discarded. For β we have 2−14 + 2−60 since 2−14 is the
probability given by the solvers and 2−60 corresponds to the false positives, i.e.,
pairs having the same difference pattern, with 4 bits of undetermined difference.
Then we obtain S/N = 2k·p

α·β = 24·2−14

4·(2−14+2−60) = 2−10

2−12+2−58 ≈ 4. We denote by

10 Indexes of the cell having the maximum values in the tables CPT .

Related-Key Cryptanalysis of Midori 299

PS the probability to obtain the true key. We use the Eq. (19) of [16], where
Φ denote the density probability function of the standard normal distribution,

and Φ−1 its inverse: PS = Φ

(√
T ·S/N−Φ−1(1−2−k)√

S/N+1

)

(19). Then we can obtain

PS for given values of T , S/N and α. Note that since we repeat the analysis 16
times (one for each word of WK), we need to have PS

16 sufficiently large as well.
By numerical approximation we obtain T = 20 ≈ 24.32, which gives PS > 0.99,
and PS

16 > 0.99. Hence, using T · p−1 plaintext pairs, we recover a key word
with a probability greater than 0.99. The corresponding data complexity is then
16 · 2 · 20 · 214 ≈ 223.32 chosen plaintexts, as well as 1 related key, for each
related-key differential characteristic used.

Recovery of K[0]: Using WK previously computed thanks to the 15-rounds
related-key differential characteristics, we decrypt the last round of Midori and
obtain the state of the 14th round δKA[14]. Now we use other four 14-rounds
related-key differential characteristics outputted by the solvers, one for each col-
umn of K[0], the corresponding related-key differentials are given in AppendixB.
They have only one active Sbox in the last round and there is a characteristic
for each position of the active word. Hence we obtain the value of δKA[13]. Sim-
ilarly as in the case of Midori64, we can use the DDT to obtain 4 possibilities
for a word of SB[13]. In the encryption function of Midori64, we have to apply
the ShuffleCell (which does not influence our attack), then MixColumns which
propagates the position of the 4 possibles values into different position. Then we

Input: δK , δP , ∀k ∈ [0, 14]δKA[k], i, j, WK

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
δC = C∗ ⊕ C;
if δC = δWK then

SB = C ⊕ WK; SB∗ = C∗ ⊕ WK∗ ⊕ δWK ;
X = InvSB(SB); X∗ = InvSB(SB∗);
δX = X∗ ⊕ X;
δSB [14] = InvSC(InvMC(δX));
for ∀x ∈ DDTS(δKA[13], δSB [14]) do

for ∀u, v, w ∈ {0, 24}3 do
K[0][.][j′] = MC[14][.][j′] ⊕ KA[.][j′];
CPT [K[0][.][j′]] + +;

end

end

end

Algorithm 2: How to recover K[0] in Midori64, where InvSB (resp. InvMC

and InvSC) is the inverse of the Sbox function (resp. MC and SC), δWK =
δK[0] ⊕ δK[1], CPT a table that is initialized to 0 and stores the occurrences
of possible candidates for K[0], and j′ is the index of the column where the 4
possibles values appeared after the MixColumn. The value of j′ is deterministic
and only depends of the positions i, j.

300 D. Gérault and P. Lafourcade

need to guess all the remaining values for these 3 words of 4 bits in the column
where the value has been shifted after the ShuffleCell. This leads us to a total
of 24 · 24 · 24 · 4 = 214 possibilities. Each of these possibilities gives a candidate
for 4 words of the key K[0] by xoring the obtained column of MC[13] and the
corresponding column of KA[14], as described in Algorithm 2.

Complexity Analysis of Algorithm2: This time k = 4×4 = 16, p = 2−14, α = 214,
β = 2−14 + 2−60, then S/N = 2k·p

α·β = 216·2−14

214·(2−14+2−60) = 2−12

2−14+2−58 ≈ 4. Then by
numerical approximation we find T = 28 ≈ 24.8, which gives PS > 0.99, and
PS

4 > 0.99. It gives us the time complexity of 2 · 4 · 28 · 214 · 214 = 235.8 and a
data complexity of 2 · 4 · 28 · 214 = 221.8.

Midory128: The constraints programming solvers find 16 patterns similar to the
one of Fig. 5, each of them having a different position for the active Sbox. The
corresponding related-key differentials are given in AppendixC. Hence, we can
build 16 different 19-rounds related-key differential characteristics with 19 active
Sboxes each, and each happening with probability 2−38, to recover one word of
WK per characteristic. We use a similar technique as for Midori64 for WK,
since in Midori128 the key is K exactly WK.

δK

δKA[r−1]

SB

δSB [r]

SC

δSC [r]

MC

δY [r]

KA

δKA[r]

Fig. 5. The optimal 1-round related-key differential characteristic for Midori128. There
is 1 active Sbox that can be repeated to cover 19 rounds of Midori128, for instance
with � = 0x9 and � = 0x1.

Complexity Evaluation: Here, we only need to use 16 related-key differential
characteristics, so we want PS

16 ≥ 0.99. To compute S/N , we use k = 8 as we
recover a 8-bit word of the key for each related-key differential characteristic,
p = 2−38, α = 64 (according to the DDT), and β = 2−38 + 2−120. With these
values, we have S/N = 4, and need T = 25 ≈ 24.7 to have PS

16 > 0.99. Thus,
the data complexity of the attack is 2 · 25 · 238 ≈ 243.7 plaintexts and 16 related
keys, and we need 243.7 encryptions.

5.2 Related-Key Distinguishers

A related-key distinguisher aims at distinguishing a cipher scheme from a
Pseudo-Random Function (PRF) that represents an ideal cipher. We construct
two distinguishers for Midori64 and for Midori128.

Related-Key Cryptanalysis of Midori 301

Input: δK , δP , δC
for i = 1 to 218.5 do

P
$←{0, 264 − 1};

C = EncK(0, P); C∗ = EncK(δK , P ⊕ δP);
if C ⊕ C∗ = δC then return 1;

end
return 0;

Algorithm 3: Algorithm for a distinguisher for Midori64.

Midori64: Midori64 has related-key differential characteristics with 8 active
Sboxes, all of which can be crossed with the maximal probability 2−2. Following
the bound given in [1], we have that only

√
2

p =
√
2

2−18 = 218.5 are needed to
distinguish Midori64 from a PRF, using the distinguisher given in Fig. 3. The
equivalent complexity to find for a PRF is 226 operations (following the formula
given in [10]). Thus, we are able to distinguish Midori64 from a PRF11.

Midori128: As for Midori64, there exist patterns that can be repeated to cover
the whole cipher. The optimal ones only contain one active Sbox per round, e.g.,
Fig. 5, hence leading to 20-rounds distinguishers with 20 active Sboxes. Since
these Sboxes can be crossed with maximal probability (2−2), the probability of
the distinguisher is 2−40. Hence, distinguishing Midori128 from a PRF, using
Algorithm 3, can be done with

√
2

p = 239.5 encryptions of plaintext pairs whereas
the equivalent complexity to find such a structure for a PRF is 252, again with
the formula given in [10].

6 Conclusion

In this paper, we give a practical related-key attack on Midori64, improving the
existing key recovery attack from 2116 for 14 rounds to 235.8 for the full 16 rounds
cipher. We also are able to provide the first related-key attack on Midori128 with
a complexity of 243.7. In order to construct such impressive practical attacks, we
model Midori with constraint programming. The constraint programming solvers
help us determine the minimal number of active Sboxes in a few hours, and then
to derive optimal related-key differential characteristics in a few seconds.

Finally we propose two efficient distinguishers for Midori64 and Midori128. In
the future, we aim at exploring how CP can be used to perform some related-key
cryptanalysis on other symmetric encryption schemes.

Acknowledgement. We would like to thank Marine Minier for her valuable advice.

11 In Appendix D, we provide an example of values that satisfy the distinguisher built
using the pattern given in Fig. 4 with � = 0xa and � = 0xa.

302 D. Gérault and P. Lafourcade

A 16 Related-Key Differentials for WK for Midori64

In the following table we give the 16 differential found by the solver that we used
for recovery WK for Midori64.

no δP δK δKA[14]

1 1110000000000002 00000000000000021110000000000000 0000000000000002

2 0000110100020000 00000000000200000000110100000000 0000000000020000

3 0000000200000111 00000002000000000000000000000111 0000000200000000

4 0002000010110000 00020000000000000000000010110000 0002000000000000

5 0000022200000010 00000000000000100000022200000000 0000000000000010

6 1011000000200000 00000000002000001011000000000000 0000000000200000

7 0000002011100000 00000020000000000000000011100000 0000002000000000

8 0010000000002202 00100000000000000000000000002202 0010000000000000

9 0000000000001211 00000000000002000000000000001011 0000000000000200

10 0000000003110000 00000000020000000000000001110000 0000000002000000

11 1101020000000000 00000200000000001101000000000000 0000020000000000

12 0100222000000000 01000000000000000000222000000000 0100000000000000

13 0000000011012000 00000000000020000000000011010000 0000000000002000

14 0000000020001110 00000000200000000000000000001110 0000000020000000

15 0000301100000000 00002000000000000000101100000000 0000200000000000

16 2111000000000000 20000000000000000111000000000000 2000000000000000

B 4 Related-Key Differentials for K[0] for Midori64

In the following table we give the 4 related-key differential characteristics found
by the solver, that we used for recovery K[0] for Midori64.

no δP δK δKA[13]

1 0111000000000000 01110000000000001000000000000000 1000000000000000

2 0000101100000000 00001011000000000000100000000000 0000100000000000

3 0000000001110000 00000000011100000000000001000000 0000000001000000

4 0000000000001011 00000000000010110000000000000100 0000000000000100

C 16 Related-Key Differentials for Midori128

In the following table, we give the 16 related-key differential characteristics found
by the solver, that we used for recovery K for Midori128. The hexadecimal values
of corresponding bytes are separated by a coma for more clarity.

Related-Key Cryptanalysis of Midori 303

D Example of Related-Key Distinguisher for Midori64

In Table 3, we give an example of values that satisfy the related-key distinguisher
built using the pattern given in Fig. 4 with � = 0xa and � = 0xa.

Table 3. A pair of plaintext/key couples following the related key distinguisher on
Midori64, where Y can be P , K or C.

Plaintext (P) Key (K) Ciphertext (C)

Y cdd0776b6777667e fffefefeefeeffe7 5448eff3eeffffff 99471218a32ea67c

Y ∗ 6770776b67776674 fffefefeefeeffed fee8eff3eeffffff 33e71218a32ea67c

δY = Y ⊕ Y ∗ aaa000000000000a 00000000000a aaa000000000 aaa0000000000000

References

1. Baignères, T., Sepehrdad, P., Vaudenay, S.: Distinguishing distributions using cher-
noff information. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol.
6402, pp. 144–165. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16280-0 10

2. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

3. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). doi:10.1007/3-540-48285-7 34

4. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, London (1993)

5. Biryukov, A., Nikolić, I.: Automatic search for related-key differential character-
istics in byte-oriented block ciphers: application to AES, Camellia, Khazad and
others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 17

http://dx.doi.org/10.1007/978-3-642-16280-0_10
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/3-540-48285-7_34
http://dx.doi.org/10.1007/978-3-642-13190-5_17

304 D. Gérault and P. Lafourcade

6. Chen, Z., Wang, X.: Impossible differential cryptanalysis of midori. IACR Cryp-
tology ePrint Archive 2016, 535 (2016)

7. Dong, X.: Cryptanalysis of reduced-round midori64 block cipher. Cryptology ePrint
Archive, Report 2016, 676 (2016). http://eprint.iacr.org/2016/676

8. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES, and chosen-key
distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 11

9. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen
key differential cryptanalysis. In: The 22nd International Conference on Principles
and Practice of Constraint Programming, Toulouse, France (2016)

10. Gilbert, H., Peyrin, T.: Super-sbox cryptanalysis: improved attacks for AES-like
permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–
383. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13858-4 21

11. Guo, J., Jean, J., Nikolić, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace
attack against full midori64. Cryptology ePrint Archive, Report 2015, 1189 (2015).
http://eprint.iacr.org/

12. Knudsen, L.R.: Cryptanalysis of LOKI 91. In: Seberry, J., Zheng, Y. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993).
doi:10.1007/3-540-57220-1 62

13. Lin, L., Wu, W.: Meet-in-the-middle attacks on reduced-round midori-64. Cryp-
tology ePrint Archive, Report 2015, 1165 (2015). http://eprint.iacr.org/

14. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-34704-7 5

15. Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)

16. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J.
Crypt. 21(1), 131–147 (2008)

17. Sun, S., Hu, L., Wang, M., Yang, Q., Qiao, K., Ma, X., Song, L., Shan, J.: Extend-
ing the applicability of the mixed-integer programming technique in automatic
differential cryptanalysis. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol.
9290, pp. 141–157. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23318-5 8

18. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evalua-
tion and (Related-key) differential characteristic search: application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45611-8 9

19. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995). doi:10.
1007/3-540-60590-8 29

20. ZDNet: New xbox security cracked by linux fans. http://www.zdnet.com/article/
new-xbox-security-cracked-by-linux-fans

http://eprint.iacr.org/2016/676
http://dx.doi.org/10.1007/978-3-642-40041-4_11
http://dx.doi.org/10.1007/978-3-642-40041-4_11
http://dx.doi.org/10.1007/978-3-642-13858-4_21
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-57220-1_62
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-642-34704-7_5
http://dx.doi.org/10.1007/978-3-319-23318-5_8
http://dx.doi.org/10.1007/978-3-662-45611-8_9
http://dx.doi.org/10.1007/3-540-60590-8_29
http://dx.doi.org/10.1007/3-540-60590-8_29
http://www.zdnet.com/article/new-xbox-security-cracked-by-linux-fans
http://www.zdnet.com/article/new-xbox-security-cracked-by-linux-fans

Some Proofs of Joint Distributions of Keystream
Biases in RC4

Sonu Jha1, Subhadeep Banik2(B), Takanori Isobe3, and Toshihiro Ohigashi4

1 Grocme Ltd, Kolkata, India
jhasonu1987@yahoo.com

2 Temasek Labs, Nanyang Technological University, Singapore, Singapore
bsubhadeep@ntu.edu.sg

3 Kobe University, Kobe, Japan
takanori.isobe@jp.sony.com

4 Tokai University, Tokyo, Japan
ohigashi@tsc.u-tokai.ac.jp

Abstract. In Usenix Security symposium 2015, Vanhoef and Piessens
published a number of results regarding weaknesses of the RC4 stream
cipher when used in the TLS protocol. The authors unearthed a number
of new biases in the keystream bytes that helped to reliably recover the
plaintext using a limited number of TLS sessions. Most of these biases
were based on the joint distribution successive/non-successive keystream
bytes. Moreover, the biases were reported after experimental observations
and no theoretical explanations were proffered. In this paper, we provide
detailed proofs of most of these biases, and provide certain generaliza-
tions of the results reported in the above paper. We also unearth new
biases based on the joint distributions of three consecutive bytes.

Keywords: RC4 · TLS · Distinguisher

1 Introduction

RC4, designed by Rivest in 1987, was not very long ago one of the most widely
used stream ciphers in the world. It was adopted in many software applications
and standard protocols such as SSL/TLS, WEP, Microsoft Lotus and Oracle
secure SQL. After the disclosure of its algorithm in 1994, RC4 attracted intense
cryptanalytic efforts by the cryptographic community. Since then, there have
been numerous cryptanalytic attempts to discover weaknesses in the ultra sim-
plistic algorithm of this stream cipher [7–9,11,12,16] as well as there has been
several proposals of new stream ciphers by applying several tweaks and modifica-
tions on the algorithm of RC4 [6,8,10,15–17,22] to remove the known weaknesses
of the original stream cipher. Needless to say, all the proposed modifications
were also the subject of some distinguishing attacks [2–5,13,18,19]. In 2013,
Vanhoef et al. also showed some practically verifiable vulnerabilities present in
WPA-TKIP [21]. Practical plaintext recovery attacks on RC4 in SSL/TLS were
proposed by AlFardan et al. [1] in 2013 and Vanhoef and Piessens [20] in 2015.
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 305–321, 2016.
DOI: 10.1007/978-3-319-49890-4 17

306 S. Jha et al.

In the response to these results, usage of RC4 has drastically decreased, espe-
cially in TLS, and major companies such as Google and Mozilla have officially
removed the RC4 from web browsers in early 2016. Furthermore, RC4 use in
TLS has been depreciated by RFC 7465 [14].

1.1 Description of the RC4 Stream Cipher

The RC4 stream cipher runs in two phases. The first phase is known as Key
Scheduling Algorithm or KSA and the second phase is known as Pseudo-Random
keystream Generation Algorithm or the PRGA. In the first phase, an array S is
initialized with the elements 0, 1, . . . , N where N = 256 and following a certain
number of steps, permutation of {1, 2, . . . , N} is derived using a secret key K
of size l bytes (typically l = 16). In the second phase known as the PRGA,
the cipher runs for as many iterations as are needed to generate output bytes
of the keystream. The input of the PRGA is the permutation derived after the
KSA phase. The keystreams hence produced are XOR-ed with the plaintext to
produce the corresponding ciphertext.

Algorithm 1. KSA
Input: S, K
Output: Permutation of S

for i = 0 to N − 1 do
S[i] = i;
j = 0;

end

for i = 0 to N − 1 do
j = (j + S[i]) + K[i mod l])
mod N ;

Swap(S[i],S[j]);
end

Algorithm 2. PRGA
Input: Permutation of S
Output: 1-byte output

i = 0;j = 0;
while Keystream is required do

i = (i + 1) mod N ;
j = (j + S[i]) mod N ;
Swap(S[i],S[j]);
Output=S[(S[i] + S[j])
mod N];

end

1.2 Our Contribution and Organization of the Paper

In [20], authors present a list of biases present in the output bytes of the RC4
stream cipher. Most of these biases were based on the joint distribution of succes-
sive and non-successive keystream bytes and were reported following thorough
experimental evaluations, however there were no theoretical proofs and explana-
tions provided for them. The authors also categorized the biases as key-length
dependent biases and the biases independent of key-length. In this paper, we
prove most of the key-length independent output byte biases giving detailed
theoretical explanations. Furthermore, we prove a number of significant biases
based on the joint distribution of non-consecutive output byte pairs and three
consecutive output bytes. In Table 1, we provide the list of biases presented
in [20] and the biases unearthed by us during the analysis.

Some Proofs of Joint Distributions of Keystream Biases in RC4 307

Table 1. Proved biases

Event Observed

probability

Source Section

1 Pr[Z3 = 4, Z4 = −1, Z5 = 4] 2/N3 New 2.1

2 Pr[Z4 = 5, Z5 = −1, Z6 = −1] 2/N3 New 2.2

3 Pr[Z1 = Z4]
1
N
(1 + 0.7

N
) [20] 3.1

4 Pr[Z1 = 0, Z2 = 1] 1
N2 (1 − 4

N
) [20] 4.1

5 Pr[Z1 = 0, Z2 = 2] 1
N2 (1 − 5

N
) [20] 4.1

6 Pr[Z1 = 0, Z2 = 3, 4, . . .] 1
N2 (1 − 3

N
) [20] 4.1

7 Pr[Z1 = x, Z2 = 1], ∀x > 0 1
N2 (1 − 2

N
) [20] 4.2

8 Pr[Z1 = x, Z2 = 258 − x], ∀x > 0 1
N2 (1 + 1

N
) [20] 4.3

9 Pr[Z1 = 257 − X,ZX = 0], X = 2, 3, . . . , 256 1
N2 (1 + β

N
) [20] 3.2

10 Pr[Z1 = 257 − X,ZX = X], X = 2, 3, . . . , 256 1
N2 (1 + β

N
) [20] 3.3

11 Pr[Z1 = 257 − X,ZX = 257 − X], X = 2, 3, . . . , 256 1
N2 (1 − β

N
) [20] 3.4

12 Pr[Z1 = X − 1, ZX = 1], X = 4, 5, . . . , 256 1
N2 (1 + β

N
) [20] 3.5

13 Pr[Z3 = 131, Z131 = 3] 1
N2 (1 + 0.6

N
) [20] 2.3

14 Pr[(Zw256, Zw256+2) = (128, 0)], w ≥ 1 1
N2 (1 + 1

N
) [20] 4.4

2 Proofs of Biases Present in Non-consecutive Bytes
and Consecutive Triple Bytes

In this section we provide proofs of biases present within joint distribution of
non-consecutive bytes. The experimental values of these biases were listed in
Vanhoef’s paper [20] without any theoretical proofs. In the upcoming subsec-
tions, we will analyze the events leading to the biases present within these non-
consecutive bytes. We will also provide proofs of the extended results found by
us on the biases within the joint distribution of three consecutive bytes, during
the course of theoretically proving the Vanhoef’s results.

Some Notations: Let S denote the RC4 state consisting of random permutation
of the elements {0, 1, 2, . . . , 255}. Let Sr denote the RC4 state at the r−th round
of the PRGA. Let Zr denote the output byte generated after the PRGA round r.

2.1 Biased Probability of the Triplet Z3 = 4, Z4 = 255 and Z5 = 4

In [20] it is mentioned that the probability of non-consecutive bytes (Z3 and
Z5) being equal to 4 is biased and that the probability is given by the value
Pr[Z3 = 4, Z5 = 4] ≈ 1

N2 (1 + 1
N) where N = 256. We present the following

Lemma 1 to describe the events leading to the given bias. Interestingly, we found
out that the same event leads to the biased probability of the given triple bytes.
We also prove that the probability of Z3 = 4, Z4 = 255 and Z5 = 4 is 2

N3 which
is double compared to the probability in ideal case. Hence it represents a very
huge bias in the joint distribution of the given triple bytes.

308 S. Jha et al.

Lemma 1. Let S0[1] = 4, S0[2] = 1 and S0[3] = 255, then the output bytes Z3

and Z5 always ends up having the value 4. Moreover, the value of Z4 is always
equal to 255.

Proof. We refer to the first round of the PRGA. At the first round, the public
index i = 0 + 1 = 1 and the secret index j = 0 + S0[1] = 4. After the swap
operation S1[1] = X and S1[4] = 4 where X /∈ {1, 4, 255}. In the second round,
i = 2 and j = 5. After the swap operation, S2[2] = Y and S2[5] = 1 where again
Y /∈ {1, 4, 255}. In the third round, i = 3 and j = 255 + 5 = 4. Following the
swap operation, S3[3] = 4 and S3[4] = 255. The value of third output byte, or
Z3 after the third PRGA round is given as

Z3 = S3[S3[3] + S3[4]] = S3[4 + 255] = S3[3] = 4

In the fourth round of the PRGA, i = 4 and j = 4 + S3[4] = 3. After the
swap operation, S4[4] = 4 and S4[3] = 255. The value of fourth output byte, or
Z4 after the fourth PRGA round is given as

Z4 = S4[S4[4] + S4[3]] = S4[4 + 255] = S4[3] = 255

In the fifth round, i = 5 and since the 5th location is not involved in swaps after
round 2, j = 3 + S4[5] = 3 + S2[5] = 4. Following the swap operation, S5[5] = 4
and S5[4] = 1. The value of fifth output byte, or Z5 after the fifth PRGA round
is given as

Z5 = S5[S5[5] + S5[4]] = S5[4 + 1] = 4

The following Theorem provides the proof of our extended result related to
the given triple byte bias.

Theorem 1. The probability of Z3, Z4 and Z5 being equal to 4, 255 and 4 is
given by the equation Pr[Z3 = 4, Z4 = 255, Z5 = 4] ≈ 2

N3 .

Proof. Let E denote the event “S0[1] = 4, S0[2] = 1 and S0[3] = 255”. The
probability of the event E can be given as (N−3)!

N ! ≈ 1
N3 . According to Lemma 1,

probability of Z3, Z4 and Z5 being 4, 255 and 4 under the occurrence of event E
is 1. By standard randomness assumptions supported by computer experiments,
Pr[Z3 = 4, Z4 = 255, Z5 = 4|Ec] = 1

N3 where Ec denotes the compliment of the
event E. Therefore the final probability can be given as

Pr[Z3 = 4, Z4 = 255, Z5 = 4] = Pr[Z3 = 4, Z4 = 255, Z5 = 4|E] · Pr[E] +
Pr[Z3 = 4, Z4 = 255, Z5 = 4|Ec] · Pr[Ec]

= 1 · 1
N3

+
1

N3
· (1 − 1

N3
)

≈ 2
N3

.

For an ideal cipher, the probability Pr[Z3 = 4, Z4 = 255, Z5 = 4] should be
only 1

N3 , so we can see that in RC4, this probability is twice that of an ideal
cipher. We now state the following theorem from [11], which outlines the number
of output samples required to distinguish two distributions X and Y .

Some Proofs of Joint Distributions of Keystream Biases in RC4 309

Theorem 2 (Mantin-Shamir [11]). Let X,Y be distributions, and suppose that
the event e happens in X with probability p and in Y with probability p(1 + q).
Then for small p and q, O

(
1

pq2

)
samples suffice to distinguish X from Y with

a constant probability of success.

Distinguishing from Random Sources: Let X be the probability distribu-
tion of Z3, Z4, Z5 in an ideal random stream, and let Y be the probability dis-
tribution of Z3, Z4, Z5 in streams produced by RC4 for randomly chosen keys.
Let the event e denote Z3 = 4, Z4 = 255, Z5 = 4, which occurs with probability
of 1

N3 in X and 2
N3 in Y . By using the Theorem 2 with p = 1

N3 and q = 1, we
can conclude that we need about 224 output samples to reliably distinguish the
two distributions.

2.2 Biased Probability of the Triplet Z4 = 5, Z5 = 255 and Z6 = 255

Following similar techniques discussed in the previous Subsection, we will show
the events which leads to this biased probability. We will also show that the
probability Pr[Z4 = 5, Z5 = 255, Z6 = 255] is again 2

N3 . Please note that in [20],
the experimental value of Pr[Z4 = 5, Z6 = 255] was listed and it was again
around 1

N2 (1+ 1
N). However, we will be presenting proofs of the extended result

found by us on the given triplet.

Lemma 2. Let S0[1] = 5, S0[2] = 255 and S0[3] = 2, then the output bytes Z4,
Z5 and Z6 always ends up having the values 5, 255 and 255.

Proof. We refer to the first round of the PRGA. At the first round, the public
index i = 0 + 1 = 1 and the secret index j = 0 + S0[1] = 5. After the swap
operation S1[1] = X and S1[5] = 5 where X /∈ {2, 5, 255}. In the second round,
i = 2 and j = 5 + 255 = 4. After the swap operation, S2[2] = Y and S2[4] = 255
where Y /∈ {2, 5, 255}. At the third round, i = 3 and j = 6. Following the swap
operation, S3[3] = W and S3[6] = 2 where W /∈ {2, 5, 255}. At the fourth round,
i = 4 and j = 6 + 255 = 5. After the swap operation, S4[4] = 5 and S4[5] = 255.
The value of fourth output byte, or Z4 after the fourth PRGA round is given as

Z4 = S4[S4[4] + S4[5]] = S4[5 + 255] = S4[4] = 5

In the fifth round of the PRGA, i = 5 and j = 5 + 255 = 4. After the swap
operation, S5[5] = 5 and S5[4] = 255. The value of fifth output byte, or Z5 after
the fifth PRGA round is given as

Z5 = S5[S5[4] + S5[5]] = S5[5 + 255] = S5[4] = 255

In the sixth round, i = 6 and j = 6. Since both the indices are same, there will
be no swap in this round and S6[6] = 2. The value of sixth output byte, or Z6

after the sixth PRGA round is given as

Z6 = S6[S6[6] + S6[6]] = S6[4] = 255

310 S. Jha et al.

Theorem 3. The probability of Z4, Z5 and Z6 being equal to 5, 255 and 255 is
given by the equation Pr[Z4 = 5, Z5 = 255, Z6 = 255] ≈ 2

N3 .

Proof. Let E denote the event “S0[1] = 5, S0[2] = 255 and S0[3] = 2”. The
probability of the event E can be given as (N−3)!

N ! ≈ 1
N3 . According to Lemma 2,

probability of Z4, Z5 and Z6 being 5, 255 and 255 under the occurrence of event E
is 1. By standard randomness assumptions supported by computer experiments,
Pr[Z4 = 5, Z5 = 255, Z6 = 255|Ec] = 1

N3 where Ec denotes the compliment of
the event E. Therefore the final probability can be given as

Pr[Z4 = 5, Z5 = 255, Z6 = 255] = Pr[Z4 = 5, Z5 = 255, Z6 = 255|E] · Pr[E] +
Pr[Z4 = 5, Z5 = 255, Z6 = 255|Ec] · Pr[Ec]

= 1 · 1
N3

+
1

N3
· (1 − 1

N3
)

≈ 2
N3

.

The probability of this triplet again is 2
N3 which is twice as the probability

in case of the ideal cipher. This brings a scope of broadcast attack on RC4
based on these triple byte biases. We follow the similar lines as given in previous
Subsection to reliably distinguish the probability distribution of Z4, Z5, Z6 in an
ideal random stream from the distribution of Z4, Z5, Z6 in streams produced by
RC4 for randomly chosen keys. It is easy to deduce that about 224 samples are
required in order to distinguish the two distributions.

We attempted to find more consecutive triple bytes leading to similar highly
biased probabilities by analyzing the keystream bytes further using similar app-
roach, but couldn’t find biases strong enough as in the previously described
couple of cases. Rather the biases in further triple consecutive bytes were very
weak.

2.3 Bias of Z3 = 131 and Z131 = 3

In [20], the biased probability of Z3 = 131 and Z131 = 3 is given as Pr[Z3 =
131, Z131 = 3] = 1

N2 (1 + 0.6
N). With the help of following lemma and theorems,

we provide the theoretical proof of this bias.

Theorem 4. The probability of Z3 = 131 and Z131 = 3 is given by the equation
Pr[Z3 = 131, Z131 = 3] ≈ 1

N2 (1 + 0.6
N).

Proof. Let the event “S0[1] = 131, S0[2] = 128 and S130[j] = 3 and j �= 131
for rounds r = 4, 5, . . . , 130” be denoted by E. The state transitions can then be
described as follows.

Looking at the first round of the PRGA, the public index i = 1 and the
secret index j = 0 + S0[1] = 131. Following the swap operation, S1[1] = X
where X /∈ {131, 128} and S1[131] = 131. In the second round, i = 2 and
j = 131 + S1[2] = 3. After the swap operation, S2[2] = Y where Y /∈ {131, 128}
and S2[3] = 128. In the third round, i = 3 and j = 3 + S2[3] = 131. After the

Some Proofs of Joint Distributions of Keystream Biases in RC4 311

swap operation, S3[3] = 131 and S3[131] = 128. The value of the third output
byte can then be calculated as,

Z3 = S3[S3[3] + S3[131]] = S3[131 + 128] = S3[3] = 131

Now, if the value of the secret index j is never 131 for the next 126 rounds
and considering that the value of S130[j] = 3, then in the 131st round we have
S131[j] = 128 and S131[131] = 3. Now, the value of 131st output byte can be
calculated as,

Z131 = S131[S131[131] + S131[j]] = S131[3 + 128] = S131[131] = 3

The probability of S0[1] = 131, S0[2] = 128 is 1
N2 . Probability of S130[j] = 3

is 1
N . Finally the probability of j �= 131 for rounds r = 4, 5, . . . , 130 is (1− 1

N)126,
which is close to 0.6. Considering these sub-events independent, we have Pr[E] ≈
0.6
N3 . The probability of Z3 = 131 and Z131 = 3 under the occurrence of E is
1. By standard randomness assumptions supported by computer experiments,
Pr[Z3 = 131, Z131 = 3|Ec] = 1

N2 where Ec denotes the compliment of the event
E. Therefore the final probability can be given as

Pr[Z3 = 131, Z131 = 3] = Pr[Z3 = 131, Z131 = 3|E] · Pr[E] +
Pr[Z3 = 131, Z131 = 3|Ec] · Pr[Ec]

= 1 · 0.6
N3

+
1

N2
· (1 − 0.6

N3
)

≈ 1
N2

+
0.6
N3

.

3 Proofs of Biases Influenced by Z1

In this section, we provide the proofs of biases where the output byte Z1 influence
all initial 256 keystream bytes along with the biased equality Z1 = Z4.

3.1 Bias in the Equality Z1 = Z4

In [20], it is mentioned that the probability of Z1 = Z4 is positively biased and
has the value around 1

N (1+ 0.7
N). In the light of the following lemma and theorem,

we provide detailed proof of this probability being biased.

Theorem 5. The probability of Z1 = Z4 is given by the equation Pr[Z1 = Z4] ≈
1
N (1 + 0.7

N).

Proof. Let the event “S0[1] = 2, S0[2] /∈ {−1, 0, 1} and S0[3] equals N − 3 or
N − 5” be denoted by E. Consider initially the case when S0[3] = N − 3 and
then the following state transitions.

Referring to the first round of the PRGA, i is incremented and takes the value
1, and j = 2. After the swap operation, S1[1] = X (X is the initial value in index
location 2), here we need to impose the added condition that X /∈ {N − 1, 0, 1}

312 S. Jha et al.

the reason for which will become apparent shortly. We also have S1[2] = 2. The
value of output byte Z1 is then calculated as

Z1 = S1[S1[1] + S1[2]] = S1[X + 2]

In the second and third round, the values of i, j, S[i] and S[j] change as following,

1. i = 2, j = 2 + S1[2] = 4, S2[2] = Y where Y /∈ {2, N − 3}, S2[4] = 2.
2. i = 3, j = 4 + S2[3] = 1, S3[3] = X, S3[1] = N − 1.

In the fourth round, i = 4 and j = 1 + S3[4] = 3. After the swap operation,
S4[4] = 2 and S4[3] = X. The output byte Z4 is now calculated as,

Z4 = S4[S4[4] + S4[3]] = S4[X + 2]

If X /∈ {N − 1, 0, 1}, none of the indices i, j in the first 4 rounds would have
touched the value X + 2, and so the value at index location X + 2 never gets
swapped out. Hence we can conclude that the output bytes Z1 and Z4 are always
same under the given conditions.

The case S0[3] = N − 5 can be dealt with similarly. Following is the list of
state transitions in the first 4 rounds.

1. i = 1, j = 0 + S0[1] = 2, S1[1] = X, S1[2] = 2 and Z1 = S1[X + 2]
2. i = 2, j = 2 + S1[2] = 4, S2[2] = Y where Y /∈ {2, N − 3}, S2[4] = 2.
3. i = 3, j = 4 + S2[3] = N − 1, S3[3] = W , S3[N − 1] = N − 5.
4. i = 4, j = N − 1 + S3[4] = 1, S4[1] = 2, S4[4] = X and Z4 = S4[X + 2]

Again we have Z1 = Z4 if the value in index X +2 does not get swapped out
at any time. It is easy to see that X /∈ {N − 3, N − 1, 0, 1} ensures that. The
probability of Pr[E] ≈ 2

N2 . The probability of Z1 = Z4 under the occurrence of
E is approximately 1 − 3

N if S0[3] = N − 3, and around 1 − 4
N if S0[3] = N − 5.

Thus, we have

Pr[Z1 = Z4|E] =
1
2
(1 − 3

N
) +

1
2
(1 − 4

N
) = (1 − 7

2N
)

However we experimentally observed that Pr[Z1 = Z4|Ec] is non-uniform and
has the value close to 1

N − 1.3
N2 where Ec denotes the compliment of the event E.

We don’t have an exact analytical reasoning of why this non-uniformity occurs,
and in that respect the proof is incomplete. But we do identify the event largely
responsible for the positive bias of this event. Therefore, based on the experi-
mental evaluation, we give the final probability as

Pr[Z1 = Z4] = Pr[Z1 = Z4|E] · Pr[E] +
Pr[Z1 = Z4|Ec] · Pr[Ec]

= (1 − 7
2N

) · 2
N2

+ (
1
N

− 1.3
N2

) · (1 − 2
N2

)

≈ 1
N

+
0.7
N2

.

Some Proofs of Joint Distributions of Keystream Biases in RC4 313

3.2 Bias in Z1 = 257 − X and ZX = 0

The joint distribution of the output bytes Z1 = 257 − X and ZX = 0 where
X = {2, 3, . . . , 256} is positively biased. In the following theorem, we provide
the proof of this biased probability.

Theorem 6. The probability of Z1 = 257 − X and ZX = 0 is given by the
equation Pr[Z1 = 257 − X,ZX = 0] ≈ 1

N2 (1 + β
N) where β = (1 − 1

N)X−2.

Proof. Let the event E denote “S0[1] = X, S0[X] = N +1−X, jX = Y, S0[Y] =
0 and S1[X] not being swapped out from round 2 to round i = X − 1”, then we
have the following transitions.

In round one, i = 1 and j = X. After the swap operation, S1[1] = N +1−X
and S1[X] = X. The output byte Z1 can now be calculated as

Z1 = S1[S1[1] + S1[X]] = S1[1] = N + 1 − X

In order to get ZX = 0, we don’t need the value of S1[X] being swapped out
from round 2 to round i = X −1. The probability of the value of S1[X] not being
swapped out from round 2 to round i = X − 1, is given as (1 − 1

N)X−2 = β.
In round X, i = X and jX = Y . After the swap operation, SX [X] = 0 and
SX [Y] = X. The output byte ZX is then calculated as

ZX = SX [SX [X] + SX [Y]] = SX [X] = 0

The probability of the event E is around β
N3 . We have Pr[Z1 = 257−X,ZX =

0|E] = 1. Due to standard randomness assumptions, we also know Pr[Z1 =
257 − X,ZX = 0|Ec] = 1

N2 . Therefore using the Bayes’ Theorem, the total
probability can be given as

Pr[Z1 = 257 − X,ZX = 0] = Pr[Z1 = 257 − X,ZX = 0|E] · Pr[E] +
Pr[Z1 = 257 − X,ZX = 0|Ec] · Pr[Ec]

= 1 · β

N3
+

1
N2

· (1 − β

N3
)

≈ 1
N2

+
β

N3
.

3.3 Bias in Z1 = 257 − X and ZX = X

The joint distribution of the output bytes Z1 = 257 − X and ZX = X where
X = {2, 3, . . . , 256} is also positively biased and in the following theorem, we
provide the proof of this biased probability.

Theorem 7. The probability of Z1 = 257 − X and ZX = X is given by the
equation Pr[Z1 = 257 − X,ZX = X] ≈ 1

N2 (1 + β
N) where β = (1 − 1

N)X−2.

314 S. Jha et al.

Proof. Let the event E denote “S0[1] = X, S0[X] = N + 1 − X, jX = 1 and
S1[X] not being swapped out from round 2 to round i = X − 1”, then we have
the following transitions.
In round one, i = 1 and j = X. After the swap operation, S1[1] = N + 1 − X
and S1[X] = X. The output byte Z1 can now be calculated as

Z1 = S1[S1[1] + S1[X]] = S1[1] = N + 1 − X

The probability of the value of S1[X] not being swapped out from round 2
to round i = X −1, is given as (1− 1

N)X−2 = β. In round X, i = X and jX = 1.
After the swap operation, SX [X] = N +1−X and SX [1] = X. The output byte
ZX is then calculated as

ZX = SX [SX [X] + SX [1]] = SX [1] = X

The probability of the event E is also around β
N3 . We have Pr[Z1 = 257 −

X,ZX = X|E] = 1. Due to standard randomness assumptions, we also know
Pr[Z1 = 257 − X,ZX = X|Ec] = 1

N2 . Therefore using the Bayes’ Theorem, the
total probability can be given as

Pr[Z1 = 257 − X,ZX = X] = Pr[Z1 = 257 − X,ZX = X|E] · Pr[E] +
Pr[Z1 = 257 − X,ZX = X|Ec] · Pr[Ec]

= 1 · β

N3
+

1
N2

· (1 − β

N3
)

≈ 1
N2

+
β

N3
.

3.4 Bias in Z1 = 257 − X and ZX = 257 − X

The joint distribution of the output bytes Z1 = 257 − X and ZX = 257 − X
where X = {2, 3, . . . , 256} is negatively biased and the probability of this event
is around 1

N2 (1 − β
N) where β = (1 − 1

N)X−2.

Theorem 8. The probability of Z1 = 257 − X and ZX = 257 − X is given by
the equation Pr[Z1 = 257 − X,ZX = 257 − X] ≈ 1

N2 (1 − β
N).

Proof. Since the bias is negative, we will consider the event in which it is impos-
sible to have Z1 and ZX both equals to 257 − X. Let the event E denote
“S0[1] = X, S0[X] = N +1−X, jX �= 1 and S1[X] not being swapped out from
round 2 to round i = X − 1”, then we have the following transitions.

In round one, i = 1 and j = X. After the swap operation, S1[1] = N +1−X
and S1[X] = X. The output byte Z1 can now be calculated as

Z1 = S1[S1[1] + S1[X]] = S1[1] = N + 1 − X

The probability of the value of S1[X] not being swapped out from round 2
to round i = X −1, is given as (1− 1

N)X−2 = β. In round X, i = X and jX = Y

Some Proofs of Joint Distributions of Keystream Biases in RC4 315

where Y �= 1. After the swap operation, SX [X] = Z (say) and SX [Y] = X. The
output byte ZX is then calculated as

ZX = SX [SX [X] + SX [Y]] = SX [X + Z]

Since Y �= 1, this ensures that ZX �= N + 1 − X

The probability of the event E is around β
N (1 − 1

N) = m (say). We have
Pr[Z1 = 257 − X,ZX = 257 − X|E] = 0. Due to standard randomness assump-
tions, we also know Pr[Z1 = 257 − X,ZX = 257 − X|Ec] = 1

N2 . Therefore using
the Bayes’ Theorem, the total probability can be given as

Pr[Z1 = 257 − X, ZX = 257 − X] = Pr[Z1 = 257 − X, ZX = 257 − X|E] · Pr[E] +

Pr[Z1 = 257 − X, ZX = 257 − X|Ec] · Pr[Ec]

= 0 · m +
1

N2
· (1 − m)

≈ 1

N2
− β

N3
.

3.5 Bias in Z1 = X − 1 and ZX = 1

This condition doesn’t hold when X = 1. When X is 2, it falls in the one of
the categories of biases listed separately in [20]. When X = 3, the bias becomes
negligible as j3 cannot be 1. From X = 4 onwards, the given joint distribution
is positively biased and the probability of this event is around 1

N2 (1 + β
N).

Theorem 9. The probability of Z1 = X−1 and ZX = 1 is given by the equation
Pr[Z1 = X − 1, ZX = 1] ≈ 1

N2 (1 + β
N) where (1 − 1

N)X−3 = β.

Proof. Let the event E denote “S0[1] = 1, S0[2] = X − 1, jX = 1 and S2[X]
not being swapped out from round 3 to round i = X − 1”, then we have the
following transitions.
In round one, i = 1 and j = 1. Since both the indices are same, no swap happens
in the first round. The output byte Z1 can now be calculated as

Z1 = S1[S1[1] + S1[1]] = S1[2] = X − 1

Note that in round two, i = 2 and j = 1+X −1 = X. After swap, S2[2] = Y
(say) and S2[X] = X − 1. We need the value of S2[X] not being swapped out
from round 3 to round i = X − 1. The probability of this event can be given as
(1 − 1

N)X−3 = β.
In round X, i = X and jX = 1. After the swap operation, SX [X] = 1 and

SX [1] = X − 1. The output byte ZX is then calculated as

ZX = SX [SX [X] + SX [1]] = SX [X] = 1

316 S. Jha et al.

The probability of the event E is around β
N3 . We have Pr[Z1 = X − 1, ZX =

1|E] = 1. Due to standard randomness assumptions, we also know Pr[Z1 = X −
1, ZX = 1|Ec] = 1

N2 . Therefore using the Bayes’ Theorem, the total probability
can be given as

Pr[Z1 = X − 1, ZX = 1] = Pr[Z1 = X − 1, ZX = 1|E] · Pr[E] +
Pr[Z1 = X − 1, ZX = 1|Ec] · Pr[Ec]

= 1 · β

N3
+

1
N2

· (1 − β

N3
)

≈ 1
N2

+
β

N3
.

4 Proofs of Consecutive Bytes Biases and Long-Term
Biases

In this section, we will prove that the joint distribution of consecutive output
bytes Z1 and Z2 is biased positively and negatively for certain values of Z1 and
Z2. Furthermore, we will prove a long-term bias in the output bytes Zw256 and
Zw256+2 where w ≥ 1. We will show that the probability of this event is given
by the equation Pr[(Zw256, Zw256+2) = (128, 0)] ≈ 1

N2 + 1
N3 .

4.1 The Biased Consecutive Output Bytes Z1 = 0 and Z2 = x

The joint distribution of Z1 = 0 and Z2 = x for x �= 0 is negatively biased.
The bias varies for different values of x which will be explained in the following
theorem.

Theorem 10. The probabilities of Z1 = 0 and Z2 = x for x �= 0 are given by

x = 1: Pr[Z1 = 0, Z2 = 1] ≈ 1
N2 (1 − 4

N)
x = 2: Pr[Z1 = 0, Z2 = 2] ≈ 1

N2 (1 − 5
N)

x = U : Pr[Z1 = 0, Z2 = U] ≈ 1
N2 (1 − 3

N) where U = 3, 4,

Proof. Let the cases Z1 = 0 and Z2 = x be denoted by A and B. Since the biases
are negative, we will be looking into the events which would make either A or
B impossible to happen.

When x = 1. Let the event E1 denote the case when “S0[1] = 0”. In the first
round of the PRGA, i = 1 and j = S0[1] = 0. Then we have S1[0] = 0 and
S1[1] = Y (say). The first output byte Z1 is given as S1[Y] �= 0.

Let the event E2 denote the case when S0[1] = 1 and S0[2] �= 0. In the first
PRGA round we have, i = 1 and j = 1. Since no swaps happen in this round we
have Z1 = S1[2] �= 0.

Let EA denotes the both E1 and E2 combined. Therefore we have probability
Pr[EA] ≈ 2

N − 1
N2 . We know that Pr[A|EA] = 0 and Pr[A|Ec

A] = 1
N . Therefore

the total probability of A is Pr[A] ≈ 1
N − 2

N2 .

Some Proofs of Joint Distributions of Keystream Biases in RC4 317

Let the event E3 denote the case when “S0[1] �= 1 and S0[2] = 0”. In the
first round of the PRGA, i = 1 and j = S0[1] = Q. After the swap, we have
S1[1] = R (say) and S1[Q] = Q. In the second round we have i = 2 and j = Q.
After the swap, we get S2[2] = Q and S2[Q] = 0. The output byte Z2 is given
as S2[Q] = 0.

Let the event E4 denote the case when “S0[2] = 1”. In the first round of the
PRGA, i = 1 and j = S0[1] = Z. After the swap, we have S1[1] = W (say) and
S1[Z] = Z (say). In the second round we have i = 2 and j = Z + 1. After the
swap, we get S2[2] = T (say) and S2[Z + 1] = 1. The output byte Z2 is given as
S2[T + 1]. Since T �= Z, we have Z2 �= 1.

Let EB denotes the both E3 and E4 combined then the probability of EB is
again 2

N − 1
N2 . Following similar approach as case A, we have Pr[B] ≈ 1

N − 2
N2 .

Considering the cases A and B independent of one another, we have Pr[A ·
B] = Pr[A] · Pr[B] ≈ 1

N2 − 4
N3 .

When x = 2. For x = 2, we will follow the similar approach to find events
which will make the cases A or B impossible to happen. Notably, there are three
same events for x = 2 which lead to the biases when x = 1. The events E1 and
E2 used previously plays the same role in the biased probability of the case A.
The event E3 directly makes Z2 = 0 and hence can be considered one of the
events when Z2 �= 2. There are two more events which make Z2 �= 2.

Let the event E′ be “S0[2] = 2”. In the first round of the PRGA, we have
i = 1 and j = S0[1] = X (say). After the swap operation we get S1[1] = Y (say)
and S1[X] = X. In the second round, we have i = 2 and j = X + 2. After the
swap operation, we have S2[2] = W (say) and S2[X + 2] = 2. Then the second
output byte Z2 is S2[W + 2]. Since X �= W , this ensures Z2 �= 2.

Let the event E′′ be “S0[1] = 2”. In the first round of the PRGA, we have
i = 1 and j = S0[1] = 2. After the swap operation we get S1[1] = P (say)
and S1[2] = 2. In the second round, we have i = 2 and j = 4. After the swap
operation, we have S2[2] = Q (say) and S2[4] = 2. Then the second output byte
Z2 is S2[Q + 2]. Since Q �= 2, this ensures Z2 �= 2.

Hence, when x = 2, we have the events E3, E′ and E′′ which makes the
case B impossible to happen. Let E′

B denotes combination of these three events.
Therefore we have Pr[E′

B] ≈ 3
N − 1

N2 . Therefore probability of case B can now
be given as Pr[B] ≈ 1

N − 3
N2 .

Again considering the cases A and B independent of one another, we have
Pr[A · B] = Pr[A] · Pr[B] ≈ 1

N2 − 5
N3 .

When x = U . For x = U , the biased probability is caused by the events E1,
E2 and E3 which were explained earlier when x = 1. Following the similar
approaches, the probability of the joint distribution can be given as Pr[A · B] =
Pr[A] · Pr[B] ≈ 1

N2 − 3
N3 .

4.2 The Biased Consecutive Output Bytes Z1 = x and Z2 = 1

The joint distribution of Z1 = x and Z2 = 1 (for x > 0) is biased negatively
with the probability 1

N2 − 2
N3 . In [20], it was mentioned that the probability of

318 S. Jha et al.

this event is biased positively, but during the course of our analysis, we found
the event to be biased negatively. We think there may have been some possible
typing error in [20]. The following theorem describes the events resulting in the
biased probability of this distribution.

Theorem 11. The probability of Z1 = x and Z2 = 1 is given by the equation
Pr[Z1 = x,Z2 = 1] ≈ 1

N2 (1 − 2
N).

Proof. Let us again denote the cases Z1 = x and Z2 = 1 by A and B. In the
previous subsection, we discussed several events which made the previous cases
impossible to happen. The event E3 described in the previous subsection makes
the output byte Z2 directly equal to 0. Therefore the event E3 makes the case
B impossible.

Let us denote the event Ex given by “S0[1] = x and S0[x] �= 0”. Under this
event, in PRGA round one, we have i = 1 and j = S0[1] = x. After the swap
operation we have S1[1] = y (say) and S1[x] = x. Therefore the first output byte
Z1 can be given by S1[S1[1] + S1[x]] = S1[x + y]. We know that y cannot be
equal to 0 and it ensures that under this condition, Z1 cannot be x.

We have Pr[E3] ≈ 1
N − 1

N2 and Pr[Ex] ≈ 1
N − 1

N2 and under these events, we
accordingly have Pr[B|E3] and Pr[A|Ex] equal to 0. Therefore the final proba-
bilities of each Pr[A] and Pr[B] is around 1

N − 1
N2 .

Considering the cases A and B independent of one another, we have Pr[A ·
B] = Pr[A] · Pr[B] ≈ 1

N2 − 2
N3 .

4.3 The Biased Consecutive Output Bytes Z1 = x and Z2 = 258−x

In this subsection, we prove that the joint distribution of the output bytes Z1 = x
and Z2 = 258−x (for x > 0) is positively biased. The following theorem describes
the biased probability of the given output bytes.

Theorem 12. The probability of Z1 = x and Z2 = 258 − x is given by the
equation Pr[Z1 = x,Z2 = 258 − x] ≈ 1

N2 (1 + 1
N).

Proof. Let the event E denote “S0[1] = 1, S0[2] = x, S0[x + 1] = 258 − x”, then
we have the following transitions.

In the first round, i = 1 and j = S0[1] = 1. Since both the indices are same,
it results in no swaps. The value of Z1 is then calculated as

Z1 = S1[S1[1] + S1[1]] = S1[2] = x

In the next round, i = 2 and j = 1 + x. After the swap operation, S2[2] =
258 − x and S2[1 + x] = x. The output byte Z2 is calculated as

Z2 = S2[S2[2] + S2[1 + x]] = S2[258] = S2[2] = 258 − x

The probability of the event E is around 1
N3 . We have Pr[Z1 = x,Z2 =

258 − x|E] = 1. Due to standard randomness assumptions, we also know

Some Proofs of Joint Distributions of Keystream Biases in RC4 319

Pr[Z1 = x,Z2 = 258 − x|Ec] = 1
N2 . Therefore using the Bayes’ Theorem, the

total probability can be given as

Pr[Z1 = x,Z2 = 258 − x] = Pr[Z1 = x,Z2 = 258 − x|E] · Pr[E] +
Pr[Z1 = x,Z2 = 258 − x|Ec] · Pr[Ec]

= 1 · 1
N3

+
1

N2
· (1 − 1

N3
)

≈ 1
N2

+
1

N3
.

4.4 Long-Term Bias in Output Bytes Zw256 and Zw256+2

The joint distribution of the output bytes Zw256 and Zw256+2 where w ≥ 1 are
biased positively and persists in long-term. The theoretical analysis of the biased
probability is given below.

Theorem 13. The probability of Zw256 and Zw256+2 being equal to the values
128 and 0 is given by the equation Pr[(Zw256, Zw256+2) = (128, 0)] ≈ 1

N2 + 1
N3 .

Proof. Let that after the completion of round w256−1, we have Sw256−1[0] = N
2 ,

Sw256−1[2] = 0 and jw256−1 = N
2 . Let us denote this event as E. Then we have

the following transitions in next 3 rounds.

1. iw256 = w256 − 1 + 1 = 0, jw256 = N
2 + Sw256−1[0] = 0, Zw256 = Sw256[N

2 +
N
2] = Sw256[0] = N

2 .
2. iw256+1 = 0 + 1 = 1, jw256+1 = 0 + Sw256[1] = X (say). After the swap,

Sw256+1[1] = Y (say) and Sw256+1[X] = X.
3. iw256+2 = 2, jw256+2 = X + Sw256+1[2] = X. After the swap, Sw256+2[2] = X

and Sw256+2[X] = 0, Zw256+2 = Sw256+2[X + 0] = Sw256+2[X] = 0.

The probability of the event E is around 1
N3 . The probability Pr[(Zw256,

Zw256+2) = (128, 0)|E] = 1. Also Pr[(Zw256, Zw256+2) = (128, 0)|Ec] = 1
N2 .

Therefore the total probability comes to

Pr[(Zw256, Zw256+2) = (128, 0)] = Pr[(Zw256, Zw256+2) = (128, 0)|E] · Pr[E] +
Pr[(Zw256, Zw256+2) = (128, 0)|Ec] · Pr[Ec]

= 1 · 1
N3

+
1

N2
· (1 − 1

N3
)

≈ 1
N2

+
1

N3
.

5 Conclusion

In this paper, we have tried to theoretically explain and prove numerous biases
present in the keystream of RC4 that were experimentally evaluated by the
authors of [20] without any theoretical explanations. Furthermore, we have also

320 S. Jha et al.

unearthed couple of strong significant biases present in the joint distribution of
3 consecutive output bytes. These biases are huge and have twice the probability
compared to the probability in the ideal cases. There are still a number of biases
mentioned in [20] including biases in consecutive output bytes and single byte
biases, both key length dependent, which are yet to be proved and seems as an
interesting area of research.

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.N.:
On the security of RC4 in TLS. In: USENIX Security Symposium 2013, pp. 305–320
(2013)

2. Banik, S., Sarkar, S., Kacker, R.: Security analysis of the RC4+ stream cipher. In:
Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 297–307.
Springer, Heidelberg (2013). doi:10.1007/978-3-319-03515-4 20

3. Banik, S., Jha, S.: Some security results of the RC4+ stream cipher. Secur. Com-
mun. Netw. 8(18), 4061–4072 (2015)

4. Banik, S., Jha, S.: How not to combine RC4 states. In: Chakraborty, R.S.,
Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 95–112.
Springer, Heidelberg (2015). doi:10.1007/978-3-319-24126-5 6

5. Banik, S., Isobe, T.: Cryptanalysis of the full Spritz stream cipher. In: Peyrin, T.
(ed.) FSE 2016. LNCS, vol. 9783, pp. 63–77. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-52993-5 4

6. Gong, G., Gupta, K.C., Hell, M., Nawaz, Y.: Towards a general RC4-like keystream
generator. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp.
162–174. Springer, Heidelberg (2005). doi:10.1007/11599548 14

7. Isobe, T., Ohigashi, T., Watanabe, Y., Morii, M.: Full plaintext recovery attack
on broadcast RC4. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 179–202.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 10

8. Lv, J., Zhang, B., Lin, D.: Distinguishing attacks on RC4 and a new improvement
of the cipher. Cryptology ePrint Archive: Report 2013/176

9. Maitra, S.: Four Lines of Design to Forty Papers of Analysis: The RC4 Stream
Cipher. http://www.isical.ac.in/∼indocrypt/indo12.pdf

10. Maitra, S., Paul, G.: Analysis of RC4 and proposal of additional layers for better
security margin. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT
2008. LNCS, vol. 5365, pp. 27–39. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89754-5 3

11. Mantin, I., Shamir, A.: A practical attack on broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152–164. Springer, Heidelberg (2002). doi:10.1007/
3-540-45473-X 13

12. Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 17

13. Maximov, A.: Two linear distinguishing attacks on VMPC and RC4A and weak-
ness of RC4 family of stream ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 342–358. Springer, Heidelberg (2005). doi:10.1007/
11502760 23

14. Papov, A.: Prohibiting RC4 cipher suites. In: Internet Engineering Task Force
(IETF). https://tools.ietf.org/html/rfc7465

http://dx.doi.org/10.1007/978-3-319-03515-4_20
http://dx.doi.org/10.1007/978-3-319-24126-5_6
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/978-3-662-52993-5_4
http://dx.doi.org/10.1007/11599548_14
http://dx.doi.org/10.1007/978-3-662-43933-3_10
http://www.isical.ac.in/~indocrypt/indo12.pdf
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/978-3-540-89754-5_3
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/3-540-45473-X_13
http://dx.doi.org/10.1007/978-3-540-85174-5_17
http://dx.doi.org/10.1007/11502760_23
http://dx.doi.org/10.1007/11502760_23
https://tools.ietf.org/html/rfc7465

Some Proofs of Joint Distributions of Keystream Biases in RC4 321

15. Paul, G., Maitra, S., Chattopadhyay, A.: Quad-RC4: merging four RC4 states
towards a 32-bit stream cipher. IACR Cryptology eprint Archive 2013:572 (2013)

16. Paul, S., Preneel, B.: A new weakness in the RC4 keystream generator and an
approach to improve the security of the cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245–259. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25937-4 16

17. Rivest, R.L., Schuldt, J.C.N.: Spritz—a spongy RC4-like stream cipher and hash
function. https://people.csail.mit.edu/rivest/pubs/RS14.pdf

18. Sarkar, S.: Further non-randomness in RC4, RC4A and VMPC. Crypt. Commun.
7(3), 317–330 (2015)

19. Tsunoo, Y., Saito, T., Kubo, H., Shigeri, M., Suzaki, T., Kawabata, T.: The most
efficient distinguishing attack on VMPC and RC4A. In: SKEW 2005. http://www.
ecrypt.eu.org/stream/papers.html

20. Vanhoef, M., Piessens, F.: All your biases belong to us: breaking RC4 in WPA-
TKIP and TLS. In: 24th USENIX Security Symposium 2015, pp. 97–112 (2015)

21. Vanhoef, M., Piessens, F.: Practical verification of WPA-TKIP vulnerabilities. In:
ASIACCS 2013, Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, pp. 427–436 (2013)

22. Zoltak, B.: VMPC one-way function and stream cipher. In: Roy, B., Meier, W.
(eds.) FSE 2004. LNCS, vol. 3017, pp. 210–225. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25937-4 14

http://dx.doi.org/10.1007/978-3-540-25937-4_16
http://dx.doi.org/10.1007/978-3-540-25937-4_16
https://people.csail.mit.edu/rivest/pubs/RS14.pdf
http://www.ecrypt.eu.org/stream/papers.html
http://www.ecrypt.eu.org/stream/papers.html
http://dx.doi.org/10.1007/978-3-540-25937-4_14
http://dx.doi.org/10.1007/978-3-540-25937-4_14

Practical Low Data-Complexity Subspace-Trail
Cryptanalysis of Round-Reduced PRINCE

Lorenzo Grassi1(B) and Christian Rechberger1,2

1 IAIK, Graz University of Technology, Graz, Austria
{lorenzo.grassi,christian.rechberger}@iaik.tugraz.at

2 DTU Compute, Technical University of Denmark, Lyngby, Denmark

Abstract. Subspace trail cryptanalysis is a very recent new cryptanaly-
sis technique, and includes differential, truncated differential, impossible
differential, and integral attacks as special cases.

In this paper, we consider PRINCE, a widely analyzed block cipher
proposed in 2012. After the identification of a 2.5 rounds subspace trail
of PRINCE, we present several (truncated differential) attacks up to 6
rounds of PRINCE. This includes a very practical attack with the lowest
data complexity of only 8 plaintexts for 4 rounds, which co-won the final
round of the PRINCE challenge in the 4-round chosen-plaintext cate-
gory. The attacks have been verified using a C implementation.

Of independent interest, we consider a variant of PRINCE in which
ShiftRows and MixLayer operations are exchanged in position. In par-
ticular, our result shows that the position of ShiftRows and MixLayer
operations influences the security of PRINCE. The same analysis applies
to follow-up designs inspired by PRINCE.

Keywords: PRINCE · Subspace trails cryptanalysis · Invariant sub-
space attack · Truncated differential attack · Practical attack · MANTIS

1 Introduction

The area of lightweight cryptography involves ciphers with low implementa-
tion costs, adequate for use in smart devices that have very limited resources
(regarding memory, computing power, battery supply). Lightweight ciphers are
designed in order to ensure a high level of security, even in the presence of tight
constraints, that is they should be designed as a trade-off between security, cost
of implementation and performance.

One of the most analyzed recent lightweight block ciphers is PRINCE [6].
The structure was designed in order to have efficient instantaneously encryption
of a given plaintext, i.e. the entire encryption and decryption process should take
place within the shortest possible delay, using little chip area. Follow-up designs
(e.g. [2,3,5]) were inspired by PRINCE.

PRINCE has already gained a lot of attention from the academic commu-
nity, and some interesting cryptanalysis have been published. Most of the earlier

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 322–342, 2016.
DOI: 10.1007/978-3-319-49890-4 18

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 323

attacks came with very high time and data complexity. In order to encourage
more practically relevant cryptanalysis, “The PRINCE Challenge”1 was orga-
nized, which started in (middle) 2014 and recently concluded with its third
round. The challenge involved two settings: a chosen-plaintext scenario and the
known-plaintext one. Since the competition aims at finding practical attacks,
submissions must respect some initial restrictions regarding data, time and mem-
ory complexity: a particular emphasis is on restricting the amount of data (plain-
text) that is available to the attacker.

Studying practical attacks on round-reduced versions of ciphers is motivated
in many ways, see e.g. [7] for a survey of such reasons. A recent example is a
creative attack on a full version of a 2nd-round CAESAR candidate ELmD [4]
which in turn relies on an attack on AES reduced to 6 rounds. As use-cases of
PRINCE are particularly sensitive to the choice of the number of rounds (due
to latency constraints) it is very interesting to understand how much security
can be at most hoped for when rounds are reduced.

In this paper, we present truncated differential attacks on reduced PRINCE,
derived in a natural way exploiting so-called “subspace trails” of reduced-versions
of PRINCE. The subspace trail framework was recently introduced in [12] as
generalization of the invariant-subspace attack [15,16], and found already appli-
cation in the cryptanalysis of AES [12]. While we describe applications in vari-
ous settings, we focus on 4-round reduced PRINCE. The result improves upon
all earlier results and has the lowest data complexity while still being entirely
practical and practically verified. This attack also co-won the final round of the
PRINCE challenge in the 4-round chosen-plaintext category.

As a second important aspect, we study the security of PRINCE when the
rounds are slightly modified. Without going into the details here already, a round
of PRINCE is very similar to an AES one, with the main difference that the
ShiftRows operation is computed after the MixLayer one (instead of before). We
show that the order of these two operations influences the security of PRINCE,
and we show a possible way to overcome this problem. The same analysis applies
to other encryption schemes that follow the same design of PRINCE, as the low-
latency tweakable block cipher MANTIS [5] presented at CRYPTO 2016.

Review of Attacks on PRINCE. Known cryptanalysis of PRINCE includes
theoretical attacks and observations on round-reduced and full PRINCE, and
also a number of practical attacks on round-reduced versions. Here we review
those most relevant to our work.

Derbez and Perrin described in [8] attacks based on a Meet-in-the-Middle
approach, applicable (theoretically) up to 10 rounds of the algorithm. In [17],
Morawiecki introduced attack relying on Integral and Higher-Order-Differential
Cryptanalysis, up to 7 rounds2. This attack is based on a 3.5 round distinguisher

1 https://www.emsec.rub.de/research/research startseite/prince-challenge/.
2 Table 1 of [17] contains an error about the data complexity and the time complexity

for the Integral Attack on 4 rounds. The correct values for this attack (as also
confirmed by the author of [17]) are those reported in Table 1 of this paper.

https://www.emsec.rub.de/research/research_startseite/prince-challenge/

324 L. Grassi and C. Rechberger

on PRINCE with one active nibble. Starting from this work, Posteuca and
Negara [18] found a 4.5 round integral distinguisher for PRINCE which needs
three (not arbitrary) active nibbles instead of one.

Due to the involution structure of PRINCE, a modified version of a differ-
ential attack was presented in [1]. Instead of choosing pairs of plaintexts with a
known difference and studying its propagation through the encryption process
(as in a classical differential attack), authors are able to recover the key using
the difference among the nibbles of the plaintexts and of the respective cipher-
texts (the nibbles are in the same positions). A related work about truncated
differentials [14] has been presented in [21], which showed the existence of 5- and
6-round truncated differential distinguishers.

Our Contribution. We describe practical key-recovery attacks based on sub-
space trails of PRINCE which resemble truncated differentials, and we analyze
in details the security of PRINCE-like ciphers focusing on the order of ShiftRows
and MixLayer operations.

We base our work on the Subspace Trail Cryptanalysis, a technique that
was recently introduced in [12]. Starting from [12], in Sect. 3 we investigate the
behavior of subspaces in PRINCE. At a high level, we fix a subspace of plaintexts
that maintain predictable properties after repeated applications of a key-variant
round function. In other words, we identify (constant dimensional) subspace
trails, that is a coset of a plaintext subspace that encrypts to proper subspaces
of the state space over several rounds.

In Sect. 4 we present an “equivalent” version of PRINCE (with respect to
the attacks we consider), which allows a better understanding of the design of
this encryption scheme. As we have already mentioned, a round of PRINCE
is very similar to an AES one, with the main difference that the ShiftRows
operation is computed after the MixLayer one. Our analysis shows that if these
two operations are exchanged of position (to have something similar to AES),
the attacks present in literature can usually cover more rounds with the same (or
even less) complexity. As example, for this modified version it is possible to set up
a subspace trail that covers one more round. Thus, we present how to modify the
middle-rounds of PRINCE in order to obtain a version equivalent to the original
one (also from the security point of view) and where the ShiftRows operation
is computed before the MixLayer one. Similar analysis applies also to other
encryption schemes that follows the (same) design of PRINCE. In particular, a
detailed analysis for the MANTIS encryption scheme is presented in AppendixA.
Finally, we highlight that this problem arises only for PRINCE-like ciphers, i.e.
the security of AES-like cipher is not influenced by the position of the ShiftRows
operation with respect to the MixLayer, while PRINCE-like ciphers are.

In the following sections, we use the found subspace trails as starting points to
set up competitive key recovery attacks to round-reduced PRINCE. In particular,
we present two different truncated differential key-recovery attacks on 3 rounds
of PRINCE. The idea - described at the beginning of Sect. 5 and in details in
App. E of [11] - is simple. Assume to fix a coset of a particular subspace C of the

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 325

Table 1. Comparison table of attacks on 4-round PRINCE. These are the four central
rounds, that is the middle rounds, one round before and one round after. Data com-
plexity is measured in number of required chosen plaintexts (CP). Time complexity is
measured in round-reduced PRINCE encryption equivalents (E). Memory complexity
is measured in plaintexts (64 bits).

Technique Data (CP) Computation (E) Memory Reference

Trunc. Diff. (EE) 8 = 23 218.25 Small Sect. 5

Bit-pattern integral 48 = 25.6 222 Small [17]

(Pre-computed) integral 64 = 26 27.4 Small [19]

Integral 160 = 27.32 29.32 Small [17]

Trunc. Diff. (EB) 430 = 28.75 28.15 Small [11] (App. G)

Diff./Logic 210 5 sec �227 [8]

Differential 232 256.26 248 [1]

(EE: Extension at End - EB: Extension at Beginning)

plaintexts space. After 2.5 rounds, each element of a (fixed) coset of C belongs
to a coset of another particular subspace M, i.e. a coset of C is mapped into a
coset of M after 2.5 rounds. Equivalently, if two elements belong to the same
coset of C, after 2.5 rounds they belong to the same coset of M independently
of the secret key. Thus, the key of the final round must satisfy the condition
that, given two ciphertexts (whose plaintexts belong to the same coset of C),
they belong to the same coset of M half round before. As main result, we show
that a truncated differential attack that exploits relationships among the nibbles
is (much) more powerful than one that works independently on each nibble.

In Sect. 5, we show how to extend this attack to 4 rounds by adding one
round at the end. This attack needs only 8 chosen plaintexts and it is the best
one from the point of view of the data complexity (the computational cost is
also very competitive), improving previous results of a factor 6 for the data
complexity and of a factor 24 for the computational cost. All these attacks have
been verified using a C/C++ implementation. A comparison of all known state
of art of attacks on PRINCE and our attacks is given in Table 1.

It is also possible to extend the attack on 3 rounds at the beginning (see
App. G of [11]) which leads to higher data but lower time complexity. Using
both the extension at the end and at the beginning, it is possible to attack 5-
and 6- rounds of PRINCE (see App. H of [11]).

Practical Verification of 3- and 4-Rounds Attacks. We practically verified
all the 3 rounds attacks described in this paper and the 4 rounds attack described
in Sect. 5, using a C/C++ implementation3. For all the attacks, the full key
recovery takes a fraction of a second on a desktop PC. We also practical verified

3 The source code is available at https://github.com/Krypto-iaik/PRINCE Attacks.

https://github.com/Krypto-iaik/PRINCE_Attacks

326 L. Grassi and C. Rechberger

Fig. 1. A scheme of the PRINCEcore cipher.

some of the attacks (e.g. the square one) present in literature against the modified
versions of PRINCE presented in Sect. 4.

2 Description of PRINCE

PRINCE [6] is a lightweight cipher with a state size of 64 bits - the 64-bits state
of PRINCE can be visualized as a 4 × 4-matrix, where every cell represents a
nibble - and a key length of 128 bits. It is based on the so-called FX construction
[13], where one part of the key is used for a core cipher F , which contains the
major encryption process, and the remaining parts are used for whitenings before
and after the core: FXk,k1,k2 = k2 ⊕ Fk(x ⊕ k1). First, the 128-bit key k is split
into two 64-bit words (i.e. k = (k0||k1)), and then it is expanded into 192 with
a simple linear transformation: (k0||k′

0||k1) := (k0||(k0 ≫ 1) ⊕ (k0 � 63)||k1).
The 64-bit subkeys k0 and k′

0 are used as whitening keys to the underlying block
cipher called PRINCEcore, while the 64-bit key k1 is used for the core.

The core cipher “PRINCEcore” is a substitution-permutation network com-
posed of 12 rounds (see Fig. 1). Every round in PRINCE consists of an S-Box
layer, a Linear layer, a ShiftRows operation, a key addition and the addition of
a round constant:

– S-Box Layer: Every nibble in the internal state is replaced by using a 4×4-bit
S-Box, which has algebraic degree 3 and which is differential 4-uniform.

– Linear Layer M′: In the linear layer, the state is multiplied by an involutive
64 × 64-matrix, a kind of equivalent of MixColumns in AES. More precisely,
two 16 × 16 submatrices M̂ (0) and M̂ (1) are arranged on the diagonal of a
bigger matrix, where every submatrix affects a 16-bit chunk xi of the 64-bit
state x = (x1||x2||x3||x4):

M ′ · x = (M̂ (0) · x1||M̂ (1) · x2||M̂ (1) · x3||M̂ (0) · x4).

– ShiftRows Operation SR: Equal to the one in the AES cipher.
– A bit-wise XOR with a round constant RCi, for i = 0, . . . , 11.
– A bit-wise XOR with the secret key k1.

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 327

In the last 5 rounds (the backward rounds), the order of operations is inverse with
respect to the first 5 rounds (the forward rounds), where only the round constants
differ. The middle rounds consist of three key-less operations: an S-Box layer, a
matrix multiplication with M ′ and an inverse S-Box layer. Since the matrix M ′

is self-inverting (i.e. M ′ = M ′−1), the same linear layer M ′ operation is used in
forward and backward rounds. Like AES, the combination of matrix multipli-
cation and shifting provides full diffusion after only two rounds. Moreover, the
varying round constants RCi supplement the round transformation in order to
prevent slide attacks. The difference between RCi ⊕RC11−i is always equal to a
constant value α. Since the round constants satisfy RCi ⊕RC11−i = α and since
M ′ is an involution, the core cipher has the so called α-reflection property, i.e. the
core cipher is such that the inverse of PRINCEcore parametrized with k is equal
to PRINCEcore parametrized with k ⊕ α: D(k0||k′

0||k1)(·) = E(k′
0||k0||k1⊕α)(·).

For the following, we use the term “PRINCE-like cipher” to denote a cipher
with middle rounds, r forward rounds and r backwards rounds, and which has
the α-reflection property - examples are MANTIS [5] or QARMA [2].

Notation. In our attack, we suppose that the 64-bit state is organized as a 16×1
array of nibbles, and we use the notation [z] to denote the nibble in position z
(the z-th nibble is in row r = z mod 4 and in column c = (z−r)/4). We denote by
R one round of PRINCE, while we denote i rounds by R(i) (without distinction
between the forward and the backward direction). To simplify the notation we
denote by super-SBox the middle rounds, by k̂ the key of the final round and
by k̃ the key of the first round, that is:

super-SBox(·) = S-Box−1 ◦ M ′ ◦ S-Box(·), k̂ := k1 ⊕ k′
0 ⊕ α, k̃ := k1 ⊕ k0.

We attack round-reduced variants of PRINCE. In case of an even number of
rounds, we keep the symmetry of the cipher.

3 Subspace Trails

Let F denote a round function in a iterative block cipher and let V ⊕ a denote
a coset of a vector space V . Then if F (V ⊕ a) = V ⊕ a we say that V ⊕ a is
an invariant coset of the subspace V for the function F . This concept can be
generalized to trails of subspace.

Definition 1. Let (V1, V2, . . . , Vr+1) a set of r + 1 subspaces with dim(Vi) ≤
dim(Vi+1). If for each i = 1, . . . , r+1 and for each ai ∈ V ⊥

i , there exists (unique)
ai+1 ∈ V ⊥

i+1 such that F (Vi ⊕ ai) ⊆ Vi+1 ⊕ ai+1, then (V1, V2, . . . , Vr+1) is a
subspace trail of length r for the function F . If the previous relation holds with
equality, then the trail is called a constant-dimensional subspace trail.

We refer to [12] for more details about the concept of subspace trails. Our
treatment here is however meant to be self-contained.

328 L. Grassi and C. Rechberger

In the following, we present two subspace trails for 2.5 rounds of PRINCE.
The first one is composed of the middle rounds (without the final S-Box−1) and 1
round before it, while the second one is composed of the middle rounds and 0.5
round after it. In particular, this second one is composed of an invariant subspace
of the middle rounds. All the proofs of the theorems and of the propositions of
this section can be found in App. A of [11].

3.1 Subspaces of PRINCE

In this section, we define the subspaces of PRINCE, analogous to those of AES
presented in [12]. For the following, let E = {e[0], . . . , e[15]} denote the unit
vectors of F16

24 (e.g. ei has a single 1 in position i). Moreover, we recall that given
a generic subspace X, two different cosets X ⊕ a and X ⊕ b (i.e. a �= b) are
equivalent if and only if a ⊕ b ∈ X.

For each i = 0, . . . , 3, let Ci the column subspace of dimension 16 defined as:

Ci = 〈e[4 · i], e[4 · i + 1], e[4 · i + 2], e[4 · i + 3]〉. (1)

For instance, C0 correspond to matrix representation:

C0 =
{

⎡

⎢
⎢
⎣

x 0 0 0
z 0 0 0
w 0 0 0
y 0 0 0

⎤

⎥
⎥
⎦

∣
∣
∣
∣ ∀x, y, z, w ∈ F24

}

≡

⎡

⎢
⎢
⎣

x 0 0 0
z 0 0 0
w 0 0 0
y 0 0 0

⎤

⎥
⎥
⎦ .

For each i = 0, . . . , 3, let Di the diagonal subspace and IDi the inverse-
diagonal subspace - both of dimension 16 - defined as:

Di = SR(Ci), IDi = SR−1(Ci) (2)

For instance, D0 and ID0 correspond to matrix representations:

D0 ≡

⎡

⎢
⎢
⎣

x 0 0 0
0 0 0 y
0 0 w 0
0 z 0 0

⎤

⎥
⎥
⎦ , ID0 ≡

⎡

⎢
⎢
⎣

x 0 0 0
0 z 0 0
0 0 w 0
0 0 0 y

⎤

⎥
⎥
⎦ .

Finally, let Mi the mixed subspace and IMi the inverse-mixed subspace -
both of dimension 16 - defined as

Mi := M ′(Di), IMi := M ′(IDi) (3)

For instance, M0 and IM0 correspond to matrix representations:

M0 ≡

⎡

⎢
⎢
⎣

α3(x) α3(z) α0(w) α2(y)
α2(x) α2(z) α3(w) α1(y)
α1(x) α1(z) α2(w) α0(y)
α0(x) α0(z) α1(w) α3(y)

⎤

⎥
⎥
⎦ , IM0 ≡

⎡

⎢
⎢
⎣

α3(x) α1(z) α0(w) α0(y)
α2(x) α0(z) α3(w) α3(y)
α1(x) α3(z) α2(w) α2(y)
α0(x) α2(z) α1(w) α1(y)

⎤

⎥
⎥
⎦

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 329

where αi(·) are defined as

αi(x) = x ∧ (0x2i ⊕ 0xf), (4)

and where ∧ is the and (logic) operator.
Let I ⊆ {0, 1, 2, 3}. Subspaces CI , DI , IDI , MI and IMI are defined as:

CI =
⊕

i∈I

Ci, DI =
⊕

i∈I

Di, IDI =
⊕

i∈I

IDi, MI =
⊕

i∈I

Mi, IMI =
⊕

i∈I

IMi.

Note that CI is an invariant subspace for the middle-rounds of PRINCE, that
is for each a ∈ C⊥

I , there exists unique b ∈ C⊥
I such that

S-Box−1 ◦ M ′ ◦ S-Box(CI ⊕ a) = CI ⊕ b. (5)

As noticed in [20] and in [8], the middle rounds of PRINCE have 232 fixed points
(x is a fixed point of a function f iff f(x) = x). In particular, in [8] authors
showed that if a plaintext of PRINCE “corresponds” to a fixed point of the
middle rounds, then the encryption scheme is much simplified, since the 4 center
rounds - minus the first and the last key addition - become a simple S-Box
layer. However, no key-recovery attack has been showed: due to the presence
of the secret key, it is not possible to choose a priori the plaintexts in order
to satisfy the previous requirement. In our case, we show how to exploit the
invariant subspace (that is, set of points instead of a single point) in order to
mount powerful attacks on reduced-round PRINCE.

3.2 Subspace Trails of PRINCE

In the following, we present several subspace trails for round-reduced PRINCE.

Subspace Trail for 1+1.5 rounds of PRINCE. Let R(1+1.5)(·) defined as:

R(1+1.5)(·) := M ′ ◦ S-Box ◦ R ◦ ARK(·), (6)

i.e. the middle rounds without the final S-Box (denoted by “1.5”) and the pre-
vious round (denoted by “1”).

Theorem 1. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥
I , there exists unique b ∈ M⊥

I

such that R(1+1.5)(CI ⊕ a) = MI ⊕ b, where b depends on a and on the secret
key. Equivalently:

Prob(R(1+1.5)(x) ⊕ R(1+1.5)(y) ∈ MI |x ⊕ y ∈ CI) = 1. (7)

This means that a coset of CI is mapped into a coset of MI after 2.5 rounds:

CI ⊕ a
R◦ARK(·)−−−−−−−→ DI ⊕ b

M ′◦S-Box(·)−−−−−−−−→ MI ⊕ c.

330 L. Grassi and C. Rechberger

Thus, a subspace trail for 1+1.5 rounds of PRINCE is composed by the subspaces
{CI ,DI ,MI}. Since S-Box(MI) is mapped into a subspace of dimension 64 (that
is all the space), it is not possible to extend the found subspace trail anymore.
Moreover, observe that if X is a generic subspace, X ⊕a is a coset of X and if x
and y are two elements of the (same) coset X ⊕ a, then x⊕ y ∈ X. This justifies
the probability (7).

Subspace Trail for 2+0.5 rounds of PRINCE. Let R(2+0.5)(·) defined as:

R(2+0.5)(·) := M ′ ◦ SR−1 ◦ ARK ◦ super-SBox ◦ ARK(·), (8)

i.e. the middle rounds (“2”) and the linear part of the next round (“0.5”).

Theorem 2. Let I ⊆ {0, 1, 2, 3}. For each a ∈ C⊥
I , there exists unique b ∈

IM⊥
I such that R(2+0.5)(CI ⊕ a) = IMI ⊕ b, where b depends on a and on the

secret key. Equivalently:

Prob(R(2+0.5)(x) ⊕ R(2+0.5)(y) ∈ IMI |x ⊕ y ∈ CI) = 1. (9)

This means that a coset of CI is mapped into a coset of IMI after 2.5 rounds:

CI ⊕ a
super-SBox◦ARK(·)−−−−−−−−−−−−−→ CI ⊕ b

M ′◦SR−1◦ARK(·)−−−−−−−−−−−−→ IMI ⊕ c.

Thus, a subspace trail for 2+0.5 rounds of PRINCE is composed by the subspaces
{CI , IMI}.

4 An “Equivalent” Representation of PRINCE

In this section, we present an “equivalent” representation of PRINCE from the
point of view of the security. The PRINCEcore round is very similar to the
AES round. The major difference between them is that in a PRINCE round the
MixLayer operation is performed before the ShiftRows operation, while in an
AES round is the opposite.

In order to better understand the PRINCE algorithm, we evaluate the secu-
rity of a version of PRINCE - called in the following PRINCE′ - where these
two linear operations are exchanged in position, both in the forward and in the
backward rounds. First of all, in this case it is possible to set up a subspace trail
for 3.5 rounds of PRINCE′ (i.e. one more round than original PRINCE):

IDI ⊕a
R◦ARK(·)−−−−−−−→ CI ⊕ b

super-SBox(·)−−−−−−−−−→ CI ⊕ c
M ′◦SR−1◦ARK(·)−−−−−−−−−−−−→ IMI ⊕d, (10)

where I ⊆ {0, 1, 2, 3}, using the property that CI is an invariant subspace for the
middle rounds. The proof follows immediately by the definition of the subspaces
and by the order of the ShiftRows and of the MixLayer operations.

Also due to the following cryptanalysis of PRINCE′ against the most popular
attacks present in literature, we can conclude that this version of PRINCE is
weaker than the original one (as the designers, we don’t consider the related key
attacks for this security analysis):

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 331

– Differential/Linear Cryptanalysis: For the original PRINCE, “any differential
characteristic and any linear-trail over 4 consecutive rounds of PRINCE has at
least 16 active S-Boxes” (see App. C of [6] for more details). For the modified
version PRINCE′ and using the same argumentation given in [6], the number
of active S-Boxes over 4 consecutive rounds is at least 12 instead of 16.

– Square Attack: For the original PRINCE, the balanced property holds for 4.5
rounds (2 forward rounds + middle rounds + 1 backward rounds) starting
with three input active nibbles which lie on the same column (see [18] for
more details). For PRINCE′, the balanced property holds for 5.5 rounds (2
forward rounds + middle rounds + 2 backward rounds) starting with a single
input active nibble (result practical verified).

– Meet-in-the-Middle Attack: The Meet-in-the-Middle Attacks presented in [8]
are not influenced by the positions of the MixLayer and of the ShiftRows
operations, that is there are analogous meet-in-the-middle attacks for this
modified version similar to the ones presented for the original PRINCE.

As a consequence, the position of the ShiftRows and of the MixLayer operations
influences the security of this encryption scheme.

A version of PRINCE - called in the following PRINCE� - with the same
security of the original one and where ShiftRows and MixLayer operations are
ordered as in AES can be obtained by changing the original middle-rounds of
PRINCE with the following one:

middle-rounds(x) = S-Box−1 ◦ SR−1 ◦ M ′ ◦ SR ◦ S-Box(x), (11)

and with some more slight modifications, as we show in details in the following.
By definition of PRINCE:

p
ARK(·)−−−−−→ ARK◦M ′◦SR◦ S-Box(·)−−−−−−−−−−−−−−−→ . . .

ARK◦M ′◦SR◦ S-Box(·)−−−−−−−−−−−−−−−→ S-Box−1◦M ′◦ S-Box(·)−−−−−−−−−−−−−−→
middle-rounds

S-Box−1◦SR−1◦M ′◦ARK(·)−−−−−−−−−−−−−−−−−−→ . . .
S-Box−1◦SR−1◦M ′◦ARK(·)−−−−−−−−−−−−−−−−−−→ ARK(·)−−−−−→ c.

Exchanging S-Box, ARK and SR operations, and applying a SR−1 operation
on the plaintext and a SR on the ciphertext, one obtains:

p
′ ARK′(·)−−−−−−→ ARK′◦SR◦M′◦ S-Box(·)−−−−−−−−−−−−−−−−−→ . . .

ARK′◦SR◦M′◦ S-Box(·)−−−−−−−−−−−−−−−−−→ S-Box−1◦SR◦M′◦SR−1◦ S-Box(·)−−−−−−−−−−−−−−−−−−−−−−−−→
middle-rounds

S-Box−1◦M ′◦SR−1◦ARK′′(·)−−−−−−−−−−−−−−−−−−−→ . . .
S-Box−1◦M ′◦SR−1◦ARK′′(·)−−−−−−−−−−−−−−−−−−−→ ARK′′(·)−−−−−−→ c′,

where ARK ′(·) := · ⊕ SR−1(k), ARK ′′(·) := · ⊕ SR(k), p′ = SR−1(p) and c′ =
SR(c). PRINCE� is an equivalent representation of PRINCE, where ShiftRows
operation is performed before the MixColumns one (as in AES) and where the
super-SBox operation is a little modified, for the cost of 2 additional ShiftRows
operations. With respect to the original PRINCE, a (slight) different key schedule
is used and SR−1 (respectively SR) is applied on p (respectively on c).

332 L. Grassi and C. Rechberger

Fig. 2. A scheme of the PRINCEcore of the cipher PRINCE�, analogous (but not
completely equivalent - see the text for details) to the original PRINCE.

In this equivalent representation, a ShiftRows operation (respectively Inverse-
SR) is applied to the key in the forward rounds (respectively backwards). Thus,
we finally define another version of PRINCE - called in the following PRINCE� -
depicted in Fig. 2, which is analogous to the original PRINCE but not completely
equivalent, since no ShiftRows operation (respectively Inverse-SR) is applied to
the key in the forward rounds (respectively backward). Thus, we claim that
PRINCE� has the same security of the original PRINCE. Note that the order of
ShiftRows and MixLayer operations of PRINCE� is the same of AES. In App.
C of [11], we present a related key attack that exploits this equivalent version of
PRINCE.

Conclusion and AES-Like Ciphers. Our analysis can be applied in a nat-
ural way to other PRINCE-like ciphers, as for example the MANTIS encryption
scheme [5] - see Appendix A for details and [9], where a similar but indepen-
dent analysis with analogous results and conclusion has been proposed - or the
QARMA block cipher family [2].

By our analysis, the order of the MixLayer and the ShiftRows operations
influences the security of PRINCE-like ciphers. Thus, it seems advisable to use
only one of the two following options for future designs of PRINCE-like schemes:

– the middle-rounds as in the original PRINCE cipher (that is, S-Box−1◦M ′◦ S-
Box(·)) and the MixLayer computed before (respectively after) the ShiftRows
in the forward (respectively backward) rounds;

– the middle rounds as in the PRINCE� cipher (that is, S-Box−1 ◦ SR−1 ◦ M ′ ◦
SR ◦ S-Box(·)) and the ShiftRows computed before (respectively after) the
MixLayer in the forward (respectively backward) rounds.

Finally, we emphasize that this analysis holds due to the particular structure
of PRINCE-like cipher. In particular, consider key-recovery attacks that are

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 333

independent of the key-schedule4, excluding related-key attacks. For an AES-
like cipher (with r identical rounds and without middle rounds), the position
of the ShiftRows operation with respect to the MixLayer one does not influ-
ence the security. Indeed, consider the AES encryption scheme (where the final
MixColumns operation can also be omitted):

p
ARK−−−→ ARK◦MC◦SR◦S-Box(·)−−−−−−−−−−−−−−−→ . . .

ARK◦MC◦SR◦S-Box(·)−−−−−−−−−−−−−−−→ c.

Changing the position of SR, ARK and S-Box, and applying a ShiftRows opera-
tion to the ciphertexts (note that this is a linear operation, so it doesn’t influence
the security of the encryption scheme), one obtains:

SR(p) ARK′′
−−−−→ ARK′′◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−−→ . . .

ARK′′◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−−→ c,

where ARK ′′(·) = ·⊕SR(k) and k is the secret key. It follows that an equivalent
version of AES - called for consistency AES� - defined as

p
ARK−−−→ ARK◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−→ . . .

ARK◦SR◦MC◦S-Box(·)−−−−−−−−−−−−−−−→ c,

where ShiftRows operation is computed after the MixColumns one, has the same
security of the original version.

5 Truncated Differential Attack on 4 Rounds of PRINCE

Using the first 2.5 rounds subspace trail presented in previous section, it is
possible to set up an attack on 3 rounds of PRINCE:

p
R(·)−−→ q

M ′◦ S-Box(·)−−−−−−−−→ s
S-Box−1(·)−−−−−−−→ c,

where the plaintexts are chosen in the same coset of CI , and the states s belong
in the same coset of MI . Briefly, given a pair of ciphertexts (c1, c2), the idea is
to find the final key using the condition S-Box(c1 ⊕ k̂)⊕ S-Box(c2 ⊕ k̂) ∈ MI .
When the full key k̂ has been found, to find k1 the idea is to use plaintexts in the
same coset of DI , to decrypt the corresponding ciphertexts and to find the key
k1 using the condition that S-Box(q1 ⊕ k1)⊕ S-Box(q2 ⊕ k1) ∈ SR(MI), where
q := super-SBox−1(c)⊕R1. The attack is presented in details in App. E of [11],
and here we focus on the attack on 4 rounds of PRINCE (giving all the details).
4 We observe that attacks that exploit the key-schedule can be affected by the order of

linear operations. To better highlight this fact, we refer to the analysis done in [10]
about the effect of the omission of the final MixColumns operation. While in general
key-recovery attacks are not influenced by the presence of the last MixColumns
operation, some of the attacks that exploit it (e.g. Meet-in-the-Middle attacks) are
affected, since a different key schedule can affect the amount of key material that
has to be guessed in key-recovery attacks (also in the standard single-key model). In
a similar way, the same analysis holds also when the positions of the MixColumns
and ShiftRows operations are exchanged.

334 L. Grassi and C. Rechberger

To attack 4 rounds, a possibility is to extend the attack on 3 rounds (the mid-
dle rounds and one round before) at the end. Consider four rounds of PRINCE:

p
R(·)−−→ p̂

M ′◦ S-Box(·)−−−−−−−−→ q
S-Box−1(·)−−−−−−−→ s

R−1(·)−−−−→ c,

where p ∈ CI ⊕a (for a ∈ C⊥
I fixed). Given a pair of plaintexts/ciphertexts (where

the plaintexts belong to the same coset of CI), the idea is simply to guess the
key of the final round, to decrypt partially one round, and to find the key of the
third round such that the two corresponding texts belong to the same coset of
MI . That is, if k̂ is a candidate of the final key (as we show in the following,
the attacker must test all the possibilities) and if Rk̂(·) denotes the final round
with key k̂, given a pair (c1, c2) the right key k0 must satisfy the condition:

S-Box(Rk̂(c1) ⊕ k1 ⊕ RC1 ⊕ α) ⊕ S-Box(Rk̂(c2) ⊕ k1 ⊕ RC1 ⊕ α) ∈ MI .

Candidates k̂ and k1 of the key must be tested checking if this condition is satis-
fied for other pairs of ciphertexts. To find them, the idea is to work independently
on each column of MI . For the following, we limit to the case I = {0}.

First Step of the Attack. Let c1 and c2 two ciphertexts such that the cor-
responding plaintexts belong to the same coset of C0, that is p1 ⊕ p2 ∈ C0. As
for the attack on 3 rounds, the idea is to work independently on each column
of the key, due to the fact that the columns of M0 depend on different and
independent variables. Initially the attacker guesses 1 column (that is 4 nibbles)
of the final key, as for example k̂[0], k̂[1], k̂[2] and k̂[3], and she uses them to
partially decrypt c1 and c2, that is she computes 4 nibbles of s1 := Rk̂(c1) and
of s2 := Rk̂(c2). Note that the attacker cannot guess 4 arbitrary nibbles of the
final key but an entire column, since she has to compute the Linear Layer M ′.
Moreover, since the attacker can not impose any restriction/condition on the
final key, she has to repeat the next steps for each values of these four nibbles
of the final key, which are (24)4 = 216 possible values in total.

Due to the ShiftRows operation, after one-round of decryption these four
nibble belong to different column. To find four nibbles of k0, the attacker must
work independently on each nibble (note that since they lie on different columns,
no relationship holds among them, due to the definition of MI). For example,
using the definition of M0, the nibble k1[0] has to satisfy the condition:

(S-Box(s1[0] ⊕ k1[0] ⊕ RC2[0]) ⊕ S-Box(s2[0] ⊕ k1[0] ⊕ RC2[0])) ∧ 0x8 = 0, (12)

and similar conditions hold for the nibbles k1[7], k1[10] and k1[13]. To find these
4 nibbles, the attacker needs at least four different pairs of chosen ciphertexts
(each of these conditions involves only one bit - it is satisfied with prob. 2−1).

Since these found 4 nibbles of k1 (which are k1[0], k1[7], k1[10], k1[13]) depend
on the 4 guessed nibbles of k̂ (which are k̂[0], . . . , k̂[3]), for each combination of
the first column of k̂, the attacker finds on average one combination of the 4
nibbles of k1, that is 216 in total. To discover the right combination, the attacker
has to test these values using other pairs of ciphertexts, that is given other pairs

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 335

of ciphertexts (c�, c′) she has to check if the corresponding texts (q�, q′) - where
q := S-Box(s⊕k1⊕RC2) - belong to the same coset of M0. Since each condition
involves one bit and since there are 216 combinations for the 4 nibbles of k̂ and
k1, she needs at least other four different pairs to check the found values (since
216 × (2−4)4 = 1). Thus the attacker needs at least eight different pairs for this
first step. To save memory, a good idea is to check immediately the found values
of k̂ and k1 with other pairs of ciphertexts: in this way, the attacker doesn’t need
to store anything.

Second Step of the Attack. When the attacker has found 1 nibble for each
column of k1, the idea is to use the relationships that hold among the nibbles
of the same column to discover the other nibbles of the key much faster than
working on each nibble independently by the others.

As before, the attacker guesses one column (e.g. the second one) of k̂, and
decrypts partially the pair of ciphertexts. In order to find other 4 nibbles of
k1 (one per column), the idea is to use the relationships that hold among the
nibbles of the same column given in Theorem 7 - App. E of [11], and not to work
independently on each nibble. For example, the attacker can find the nibble of
the first column k1[1] using the relationship:

(S-Box(s1[0] ⊕ k1[0] ⊕ RC2[0]) ⊕ S-Box(s2[0] ⊕ k1[0] ⊕ RC2[0])) ∧ 0xb

= (S-Box(s1[1] ⊕ k1[1] ⊕ RC2[1]) ⊕ S-Box(s2[1] ⊕ k1[1] ⊕ RC2[1])) ∧ 0x7,

where the left part of the equation is known (k1[0] is already known). Analo-
gous relationships hold for the other nibbles and for the other columns. Observe
that since these relationships involve more than one bit, in this second step the
attacker needs a lower number of pairs of ciphertexts to discover the right key.

As before, the attacker has to repeat the step for each possible values of
the second column of k̂, and to test the found values against other plain-
texts/ciphertexts pairs in order to eliminate wrong candidates (remember that
she finds on average one candidate of four nibbles of k1 for each of the 216

guess values of k̂). The same procedure is used for the third and for the fourth
columns of k̂. For example, for each guess value of the third column of k̂, the
relationships that the nibble k1[2] have to satisfy are s̃[2] ∧ 0xb = s̃[1] ∧ 0xd
and s̃[2] ∧ 0x4 = s̃[0] ∧ 0x4, where s̃[i] := S-Box(s1[i] ⊕ k1[i] ⊕ RC2[i])⊕ S-
Box(s2[i] ⊕ k1[i] ⊕ RC2[i]).

For completeness, note that also in this second step the attacker can work
independently on each nibble, but the total computational cost would be higher.

Estimation of the Data Complexity. Our implementation shows that if
only eight pairs of ciphertexts are used for the first step, then some false positive
candidates of the key pass the test. To avoid this problem, one possibility is to
use more pairs of ciphertexts, making the filter stronger5.
5 We emphasize that the right key is always found. We use more plaintexts only to

discard false positives that pass the test.

336 L. Grassi and C. Rechberger

In the following, we first try to give a theoretical estimation of the number
of pairs necessary to eliminate almost all the false positive candidates of the key.
In the first step of the attack, the problem of the false positives arises when
Rk̂(c1)[i] = Rk̂(c2)[i] for a certain i = 0, 7, 10, 13. For example, note that if
Rk̂(c1)[0] = Rk̂(c2)[0] in Eq. (12), then each possible value of k1[0] passes the
test. Thus, a first estimation can be done by calculating the minimum number
of pairs such that there exist at least eight pairs with 4 different nibbles.

Before to continue, an important observation has to be done. Given n texts,
it is possible to construct n · (n − 1)/2 different pairs, but actually only n − 1
pairs are useful for the attack. Consider for example three texts t1, t2, t3 and the
corresponding pairs (t1, t2), (t1, t3), (t2, t3). If k1[0] satisfies the condition (12)
for the pairs (t1[0], t2[0]) and (t1[0], t3[0]), then it automatically satisfies this
condition also for the pair (t2[0], t3[0])6. Thus, only two pairs are really useful
for the attack. More generally, given n texts, only n − 1 pairs are useful for the
attack - for the following we suppose that one text is in common for all the pairs.
As shown in details in App. F of [11], the probability that only the right key
is found using 9 chosen plaintexts is about (0.0604)4. By calculation (we refer
to App. F of [11] for more details), the attacker needs at least 16 plaintexts in
order to have a good probability of success, which is approximately 73%.

Actually, this is only a rough approximation, since an important aspect is
not taken into account. For each guess of the first column of k̂, the attacker
is able to find 4 nibbles of k1. Then, she checks these candidates of the keys
using other texts. Note that it is sufficient that one nibble of k1 doesn’t pass
this test to conclude that the guess value of k̂ is wrong, independently by the
other three nibbles of k1. Moreover, it is also possible that wrong key candidates
found at the first step are detected and eliminated in the second step of the
attack. Thus, as our implementation shows, a lower number of texts (with respect
to that predicted by our theoretical model) turns out to be sufficient for the
attack. In particular, we found that 12 chosen plaintexts (instead of 16) - i.e.
11 pairs - are sufficient with (very) high probability. Working in a similar way,
it turns out that only 6 chosen plaintexts - i.e. 5 pairs - are sufficient for the
second step.

The number of plaintexts chosen for the first step (i.e. 12) allows to eliminate
almost all the false candidates of the key. For the second step of the attack, a
lower number of plaitexts (i.e. 6) is sufficient to recover the entire key. As a
consequence, in the second step the attacker doesn’t use and wastes a lot of
information about the (chosen) plaintexts/ciphertexts pairs.

To improve the attack, the idea is to reduce the total number of chosen
plaintexts used for the attack, and to use all the available plaintexts/ciphertexts
pairs also in the second step. That is, the idea is to reduce the number of chosen
plaintexts used for the first step and to increase this number for the second

6 Note that: [S-Box(t2[0]⊕k1[0]) ⊕ S-Box(t3[0]⊕k1[0])] ∧0x8 = [S-Box(t2[0]⊕k1[0]) ⊕⊕
S-Box(t1[0] ⊕ k1[0]) ⊕ S-Box(t1[0] ⊕ k1[0]) ⊕ S-Box(t3[0] ⊕ k1[0])] ∧ 0x8 = 0.

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 337

step - we assume that these two numbers are equal. As a consequence, in the
first step of the attack more false positive candidates pass the test, but they
are soon detected in the second step, thanks to the higher number of pairs
used. Moreover, note that in the second step the false candidates are detected
much faster than in the first one, since the probability that the relationships are
satisfied is much lower (remember that they involve an higher number of bits).

Our implementation shows that 8 chosen plaintexts (i.e. 7 pairs) are suffi-
cient for this mode of the attack (note that we use 8 chosen plaintexts both in
the first step and in the second one), and that the total computational cost is
approximately unchanged (with respect to the previous mode).

Estimation of the Computational Cost. The computational cost of the
first step can be estimated as follows. Given 5 chosen ciphertexts, the compu-
tational cost to calculate 4 nibbles of R−1(c) is 8 × 4 = 25 S-Box look-ups. As
shown in detail in App. E.1 of [11], the cost to find one nibble of k1 working
independently on each nibble is 25.46 S-Box look-ups (thus for 4 nibbles, the
cost is 4 × 25.46 = 27.46). The cost to check candidates of k̂ and of k1 against
other pairs of ciphertexts can be estimated by 4 × 2 × 8 = 26 S-Box look-ups.
Thus, to find the right combination and to do the requested check, the total com-
putational cost for the first step is well approximated by 216 (possible values)
×(4 · 25.46 + 8 × 4 + 26) � 224.1 S-Box looks ups.

Some optimizations allow to improve the computational cost of the attack.
For example, for each guessed value of k̂, the attacker should focus on a single
nibble of k1, e.g. k1[0]. In this way, it is possible to eliminate wrong candidates
simply checking the found candidates of k1[0] and of the column of k̂ against
all the available pairs of texts before to work on the other three nibbles of k1.
It follows that it is sufficient to consider only these survived combinations of
the first column of k̂ (instead of all the 216 possible values) in order to find the
other 3 nibbles of k1. The computational cost to find the remaining 3 nibbles
of k1 becomes negligible compared to the cost to find k1[0], and the total com-
putational cost can be approximated by 216 × (25.46 + 25 + 26) � 223.1 S-Box
look ups.

The computational cost for the second step can be computed in a similar
way. As shown in an analogous case in App. E.2 of [11], the cost to find one
nibble of k1 is of 24.6 S-Box look-ups (given another nibble of the same column
and exploiting the relationship among the nibbles). Thus, the total cost for this
step can be approximated by 3 (columns) ×216 × (24.6 (cost of the subspace
attack - single equivalence) + 4 × 8 (check) + 25 (partial decryption)) � 223.9

S-Box look-ups, using the same optimizations as before.
The total computational cost can be approximated by 223.9 + 223.1 � 224.25

S-Box look-ups, that is 218.25 four-rounds encryption, and the attacker needs
only 8 different chosen plaintexts (that belong to the same coset of C0).

338 L. Grassi and C. Rechberger

Data: 7 ciphertexts pairs (c1, ci) where i = 2, . . . , 8, whose corresponding
plaintexts belong in the same coset of C0

Result: Secret Key k̂ and k1.
for all 216 possible combinations of (k̂[0], k̂[1], k̂[2], k̂[3]) do

decrypt one round: si[j] = S-Box(ci ⊕ k̂[j]) ∀i = 1, . . . , 8 and ∀j = 0, . . . , 3;
for k1[0] from 0 to 24 − 1 do

check if for each possible pairs (s1, si) where i = 2, . . . , 8:
[S-Box(s1[0] ⊕ k1[0] ⊕ RC2[0])⊕S-Box(si[0] ⊕ k1[0] ⊕ RC2[0])] ∧ 0x8 = 0;
If not satisfied, then next value (i.e. next k1[0] or/and (k̂[0], . . . , k̂[3]));
else

identify candidates for k1[0] and (k̂[0], . . . , k̂[3]);
use these candidates of the first column of k̂, to find candidates of
k1[7], k1[10], k1[13] - use the same algorithm described for k1[0] and
work independently on each nibble;

end

end

end

for all candidates of k1[0], k1[7], k1[10], k1[13] and (k̂[0], . . . , k̂[3]) do

for all 216 possible combinations of (k̂[4], k̂[5], k̂[6], k̂[7]) do

decrypt one round: si[j] = S-Box(ci ⊕ k̂[j]) ∀i = 1, . . . , 8 and
∀j = 4, . . . , 7;

for k1[1] from 0 to 24 − 1 do
check if for each possible pairs (s1, si) where i = 2, . . . , 8:
[S-Box(s1[0]⊕ k1[0] ⊕RC2[0])⊕S-Box(si[0] ⊕ k1[0]⊕RC2[0])) ∧ 0xb =
[S-Box(s1[1] ⊕ k1[1] ⊕RC2[1])⊕S-Box(si[1] ⊕ k1[1] ⊕RC2[1])] ∧ 0x7;

If not satisfied, then next value (i.e. next k1[1] or/and
(k̂[4], . . . , k̂[7]) or/and k1[0] or/and (k̂[0], . . . , k̂[3]));

else

identify candidates for k1[1] and (k̂[4], . . . , k̂[7]);
use these candidates of the second column of k̂, to find
candidates of k1[4], k1[11], k1[14] - use the same algorithm
described for k1[1] and exploit the relationships among the
nibbles;

end

end

end

end

Repeat this second step for the third and for the fourth column of k̂;
return Secret Key k̂ and k1.

Algorithm 1: Truncated differential attack on 4 rounds of PRINCE - exten-
sion at the end. For simplicity, this pseudo-code is not completely optimized
as described in the text.

Acknowledgements. The work in this paper has been partially supported by the
Austrian Science Fund (project P26494-N15).

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 339

A MANTIS Encryption Scheme: Subspace Trail
Cryptanalysis

MANTIS encryption scheme [5] is a low-latency tweakable block cipher proposed
at CRYPTO 2016. The starting point used by the designer for this encryption
scheme is a PRINCE-like encryption scheme, keeping the entire design symmet-
ric around the middle (to have the α-reflection property). In order to improve the
security, the PRINCE-round has been replaced by the MIDORI-round function.
This simple change results in a cipher with improved latency and improved secu-
rity compared to PRINCE. Note that in contrast to PRINCE, the PermuteCells
operation is performed before the MixLayer one.

MANTISr has a 64-bit block length and works with a 128-bit key (k = k0||k1
with 64-bit subkeys k0, k1) and 64-bit tweak T . The parameter r specifies the
number of rounds of one half of the cipher. As PRINCE, MANTIS is based on
the FX-construction and thus applies whitening keys before and after applying
its core components (the whitening keys are generated in the same way as for
PRINCE). Every round Ri(·) in MANTIS is defined as

Ri(·) = M ◦ P (hi(T) ⊕ k1 ⊕ RCi ⊕ S-Box(·)),

for i = 0, . . . , r, where7:

– S-Box layer: Every byte in the internal state is replaced by using the invo-
lutory 4 × 4-bit MIDORI S-Box;

– A bit-wise XOR with the (full) round tweakey state hi(T) ⊕ k1, for
i = 0, . . . , r, where T is the tweak and hi is the tweak permutation;

– PermuteCells Operation P: The cells of the internal state are permuted
according to the MIDORI permutation;

– MixColumns M: Each column of the cipher internal state array is multiplied
by the MixColumns binary matrix of MIDORI M (we recall that M = M−1):

– A bit-wise XOR with the key k1 and a round constant RCi.

As for PRINCE, in the last r rounds the order of operations is inverse with
respect to the first r rounds, where only the round constants differ. Moreover,
the middle rounds consist of three key-less operations: an S-Box layer, a matrix
multiplication with M and an inverse S-Box layer. Finally, as PRINCE, MAN-
TIS has the α-reflection property, that is D(k0||k′

0||k1)(·, T) = E(k′
0||k0||k1⊕α)(·, T).

Thus, our results presented in Sect. 4 can be applied on MANTIS.

Subspace Trail of MANTIS. Proceeding as for PRINCE, we first identify
analogous subspace trails for MANTIS. The column, diagonal and mixed sub-
spaces are defined exactly as the ones defined for PRINCE in Sect. 3.1, but their
representations are a little different (expect for the column space).

7 We refer to [5] and [3] for a complete description of the S-Box, the PermuteCells and
the MixColumns operations.

340 L. Grassi and C. Rechberger

For instance, D0 = P (C0), ID0 = P−1(C0), M0 = M(D0) and IM0 =
M(ID0) correspond to matrix representations:

D0 ≡

⎡

⎢
⎢
⎣

x 0 0 0
0 0 y 0
0 0 0 z
0 w 0 0

⎤

⎥
⎥
⎦ ID0 ≡

⎡

⎢
⎢
⎣

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 w

⎤

⎥
⎥
⎦ M0 ≡

⎡

⎢
⎢
⎣

0 w y z
x w 0 z
x w y 0
x 0 y z

⎤

⎥
⎥
⎦ IM0 ≡

⎡

⎢
⎢
⎣

0 w y z
x 0 y z
x w 0 z
x w y 0

⎤

⎥
⎥
⎦ .

Let I ⊆ {0, 1, 2, 3}. Since CI is an invariant subspace for the middle rounds,
note that it is possible to set up a subspace trail for 3.5 rounds of MANTIS:

IDI ⊕ a
R◦ARK(·)−−−−−−−→ CI ⊕ b

super-SBox(·)−−−−−−−−−→ CI ⊕ c
M ′◦SR−1(·)−−−−−−−−→ IMI ⊕ d.

A More Secure Version of MANTIS. As for PRINCE, we consider a ver-
sion of MANTIS where the MixColumns and the PermuteCells operations are
exchanged in positions - called for the following MANTIS�. In this version, the
rounds of MANTIS� are defined similar of the PRINCE ones, where the Mix-
Columns operation is performed before (resp. after) the PermuteCells one in the
forward (resp. backwards) rounds.

As first consequence, in this case it is only possible to set up a subspace trail

for 2.5 rounds (similar to PRINCE), that is CI ⊕a
R(·)−−→ DI ⊕b

M◦S-Box(·)−−−−−−−→ MI ⊕c

or CI ⊕ a
super-SBox(·)−−−−−−−−−→ CI ⊕ b

M◦SR−1(·)−−−−−−−→ IMI ⊕ c.
Moreover, “as one round of MANTIS is almost identical to one round in

MIDORI, most of the security analysis can simply be copied from the latter”
(see Sect. 6.3 of [5]). By our analysis of Sect. 4 and since MIDORI [3] is an AES-
like cipher, its security is not influenced by the positions of the MixColumns
and of the PermuteCells operations. Thus, the version of MIDORI - called for
consistency MIDORI� - in which the MixColumns operation is performed before
the PermuteCells operation has the same security of the original one.

Due to previous considerations and since the analysis done for PRINCE in
Sect. 4 also applies on MANTIS as well, we can claim that MANTIS� (i.e. the
version of MANTIS in which MixColumns and PermuteCells are exchanged in
positions) is more secure than the original version proposed by [5] with respect to
the attack vectors considered in this paper. Note that this claim is also justified
by the fact that authors didn’t consider related-key attacks in order to evaluate
the security of MANTIS, and that its key schedule is linear (in particular, there
is no key-schedule since all the subkeys are equal to the whitening key).

For completeness and following our analysis of Sect. 4, we defined another
version of MANTIS - called in the following MANTIS′, such that MANTIS′ is
identical to the original MANTIS excepted for the middle rounds, defined as

middle-rounds(·) = S-Box−1 ◦ P−1 ◦ M ◦ P ◦ S-Box(·).
As for MANTIS�, we can claim that MANTIS′ is more secure than the original
version proposed by [5], and that it has the same security of MANTIS�. For
completeness, a similar but independent analysis is proposed in [9], which leads
to analogous results and conclusions.

Practical Subspace-Trail Cryptanalysis of Round-Reduced PRINCE 341

References

1. Abed, F., List, E., Lucks, S.: On the Security of the Core of PRINCE
Against Biclique and Differential Cryptanalysis. Cryptology ePrint Archive, Report
2016/712 (2016)

2. Avanzi, R.: The QARMA Block Cipher Family - Almost MDS Matrices Over Rings
With Zero Divisors, Nearly Symmetric Even-Mansour Constructions With Non-
Involutory Central Rounds, and Search Heuristics for Low-Latency S-Boxes. Cryp-
tology ePrint Archive, Report 2016/444 (2016)

3. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

4. Bay, A., Ersoy, O., Karakoç, F.: Universal Forgery and Key Recovery Attacks on
ELmD Authenticated Encryption Algorithm. Cryptology ePrint Archive, Report
2016/640 (2016). To appear at Asiacrypt 2016

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

6. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

7. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Trans. Inf. Theory 58(11), 7002–7017
(2012)

8. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 10

9. Dobraunig, C., Eichlseder, M., Mendel, F.: Key recovery for MANTIS-5. Cryptol-
ogy ePrint Archive, Report 2016/754 (2016)

10. Dunkelman, O., Keller, N.: The effects of the omission of last round’s MixColumns
on AES. Inf. Process. Lett. 110(8–9), 304–308 (2010)

11. Grassi, L., Rechberger, C.: Practical low data-complexity subspace-trail crypt-
analysis of round-reduced PRINCE. IACR Cryptology ePrint Archive (2016)

12. Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its appli-
cations to AES. Cryptology ePrint Archive, Report 2016/592 (2016)

13. Kilian, J., Rogaway, P.: How to protect DES against exhaustive key search.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 252–267. Springer,
Heidelberg (1996). doi:10.1007/3-540-68697-5 20

14. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). doi:10.1007/
3-540-60590-8 16

15. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 12

http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-662-48116-5_10
http://dx.doi.org/10.1007/3-540-68697-5_20
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/3-540-60590-8_16
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1007/978-3-642-22792-9_12

342 L. Grassi and C. Rechberger

16. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace
attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 11

17. Morawiecki, P.: Practical Attacks on the Round-reduced PRINCE. Cryptology
ePrint Archive, Report 2016/245 (2016)

18. Posteuca, R., Negara, G.: Integral Cryptanalysis of Round-Reduced PRINCE
Cipher. Proceedings of the Romanian Academy, Series A 16, 265–270 (2015)

19. Raddum, H., Rasoolzadeh, S.: Faster Key Recovery Attack on Round-Reduced
PRINCE. Cryptology ePrint Archive, Report 2016/828 (2016). To appear at Light-
Sec 2016

20. Soleimany, H., Blondeau, C., Yu, X., Wu, W., Nyberg, K., Zhang, H., Zhang, L.,
Wang, Y.: Reflection cryptanalysis of PRINCE-like ciphers. J. Crypt. 28(3), 718–
744 (2013)

21. Zhao, G., Sun, B., Li, C., Su, J.: Truncated differential cryptanalysis of PRINCE.
Secur. Commun. Netw. 8(16), 2875–2887 (2015)

http://dx.doi.org/10.1007/978-3-662-46800-5_11

Foundations

On Negation Complexity of Injections,
Surjections and Collision-Resistance

in Cryptography

Douglas Miller, Adam Scrivener, Jesse Stern,
and Muthuramakrishnan Venkitasubramaniam(B)

University of Rochester, Rochester, NY, USA
muthuv@cs.rochester.edu

Abstract. Goldreich and Izsak (Theory of Computing, 2012) initiated
the research on understanding the role of negations in circuits implement-
ing cryptographic primitives, notably, considering one-way functions and
pseudo-random generators. More recently, Guo, Malkin, Oliveira and
Rosen (TCC, 2015) determined tight bounds on the minimum number
of negations gates (i.e., negation complexity) of a wide variety of crypto-
graphic primitives including pseudo-random functions, error-correcting
codes, hardcore-predicates and randomness extractors.

We continue this line of work to establish the following results:
1. First, we determine tight lower bounds on the negation complex-

ity of collision-resistant and target collision-resistant hash-function
families.

2. Next, we examine the role of injectivity and surjectivity on the nega-
tion complexity of one-way functions. Here we show that,
(a) Assuming the existence of one-way injections, there exists a

monotone one-way injection. Furthermore, we complement our
result by showing that, even in the worst-case, there cannot exist
a monotone one-way injection with constant stretch.

(b) Assuming the existence of one-way permutations, there exists a
monotone one-way surjection.

3. Finally, we show that there exists list-decodable codes with
monotone decoders.

In addition, we observe some interesting corollaries to our results.

Keywords: Monotone boolean circuits · One-way functions · Collision-
resistant hash-functions · Injections · Surjections

1 Introduction

A boolean circuit C is monotone if it comprises only of fanin-2 AND and OR
gates. Monotone circuits have been extensively studied in complexity theory,
where one of the fundamental goals is to establish lower bounds on circuit size,
and learning theory [1,5,6,10,17]. In the context of cryptography, Goldreich and
Izsak began exploring whether cryptographic primitives can be implemented
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 345–363, 2016.
DOI: 10.1007/978-3-319-49890-4 19

346 D. Miller et al.

via monotone circuits [8]. They showed that, assuming the existence of one-
way functions, there exists a one-way function implementable by monotone cir-
cuits. On the negative side, they proved that pseudo-random generators cannot
be implemented using monotone circuits. More recently, Guo, Malkin, Oliveira
and Rosen, inspired by a long series of works [2–4,7,12,13,15,16] in complex-
ity theory, initiated the study of the negation complexity of realizing crypto-
graphic primitives. Loosely speaking, the negation complexity of a primitive is
the minimum number of negation gates required in any circuit implementing
that primitive.

Markov [12] showed that any boolean function on n-bit inputs can be realized
using a circuit with at most �log(n+1)� negation gates. A more efficient version
was proved by Fischer [7], which, in particular, implies that any polynomial-time
computable boolean function can be realized using a polynomial-size monotone
circuit with �log(n + 1)� negation gates. In essence, the negation complexity
of any arbitrary polynomial-time computable function is O(log n). In [9], quite
surprisingly, they show that this is tight for various primitives such as pseudoran-
dom functions, error-correcting codes, randomness-extractors and generic hard-
core predicates. Interestingly, a new technique was required to establish each
lower-bound.

Our first motivating question concerns the negation complexity of collision-
resistant hash-functions. Various notions of collision-resistance have been used in
cryptographic constructions. Standard hash-functions, such as MD5 and SHA,
are referred to as collision-resistant hash-functions (CRH), where the security
game requires an adversary to find a pair of colliding inputs given a function
picked uniformly from the family. A weaker form of collision-resistance that
can be realized from one-way functions, referred to as universal one-way hash-
functions (or target collision-resistant functions (TCR)) [14] require the adver-
sary to produce a target for which it needs to find a collision before seeing
the description of the hash-function. Yet another related primitive is second-
preimage resistant hash-functions (SPR) where it is infeasible for any adversary
to find a collision for a randomly chosen hash-function on a uniformly chosen
input. Our first motivating question is:

What is the negation complexity of collision-resistance?

Another interesting result presented in the work of Guo et al. [9] proves
the impossibility of monotone one-way permutations.1 The main result shows
that any monotone circuit that implements a permutation must be of the form
where the output bits are a permutation of the input bits, in essence, making
them easily invertible with probability 1. The result of Guo et al. and Goldreich
and Izsak show a gap in what kind of one-way functions are achievable using
monotone circuits. Our second motivating question is:

Do there exist polynomial-sized one-way surjections or one-way injections
with monotone circuit implementations?

1 A permutation is a length-preserving function that is both injective (i.e., one-to-one)
and surjective (i.e., onto).

On Negation Complexity of Injections, Surjections and Collision-Resistance 347

1.1 Our Results

Our first result establishes optimal bounds on the negation complexity of CRHs
and TCRs.

Theorem 1 (Informal). Collision-resistant hash-functions and Target
Collision-resistant hash-functions require θ(log n) negation gates.

While we resolve the question for CRHs and TCRs, the problem remains open for
Second Pre-Image Resistant functions. Interestingly, since TCRs and SPRs are
equivalent,2 any result on the negation complexity of SPR could reveal something
about the negation complexity of universal hash-functions and, consequently, the
XOR function.

Our second result explores whether injectivity or surjectivity influences the
negation complexity of constructing one-way functions. We answer in the affir-
mative that, if we relax one of these conditions from a one-way permutation, it
is indeed possible to construct monotone one-way functions. More precisely, we
prove the following theorems.

Theorem 2 (Informal). Assume the existence of one-way surjections. Then
there exists a (poly-sized) one-way surjection that is computable by a monotone
circuit.

Theorem 3 (Informal). Assume the existence of one-way injections. Then
there exists a (poly-sized) one-way injection that is computable by a monotone
circuit.

We remark that if we start with a one-way permutation f : {0, 1}n → {0, 1}n,
then we can construct a one-way injection g : {0, 1}n → {0, 1}3n and a one-way
surjection h : {0, 1}n → {0, 1}n−2 log n that are both monotone.

We also complement our injectivity result by showing that there do not exist
one-way injections with constant stretch, where stretch refers to the difference in
lengths of the output and input. More formally, we prove the following theorem:

Theorem 4 (Informal). There exists an algorithm that, given oracle access to
an injective monotone function f : {0, 1}n → {0, 1}m, where m − n = O(1), can
invert f in polynomial time.

This can be viewed as a generalization of the result of [9] where they give an
algorithm only when m = n. We remark that not only can the algorithm invert
an arbitrary element in the range of the function, it can also determine whether
an element is in the range of the function.

In the work of Guo et al. [9], they show that error-correcting codes are highly
non-monotone. Here we extend their result to list-decodable codes. This result
follows techniques from [9] and is presented in the full version.
2 A TCR can be constructed from an SPR by computing a universal hash-function

(1-wise independent) on the input before feeding it to the SPR function, namely,
masking the inputs with a random key.

348 D. Miller et al.

1.2 Our Techniques

We remark that for most of our results we rely on different techniques.
We believe that understanding the negation complexity of cryptography is a
fundamental problem, and that our work sheds light on how different properties
of functions influence the negation complexity of cryptographic primitives. We
briefly mention some of our techniques below.

Collision-Resistant Hash-Functions: Establishing that collision-resistant hash-
function requires negation gates follows using the pigeon-hole principle. Con-
sider any monotone function with m-bit outputs: In any m + 1 chain of inputs
x1, . . . , xm+1 (i.e. xi � xi+1)3 which has strictly increasing Hamming weights
there must exist a pair of consecutive inputs that collide. This is because each
bit of the output can change at most once in the sequence and there are only
m output bits. We can then conclude by using the fact that hash-functions are
compressing, i.e. m < n and a chain can be easily constructed by simply flip-
ping input bits one at a time from 0 to 1 starting from 0n. Following ideas of
[9], using a theorem of Markov [12], we also extend this to show that if the
collision-resistant function is highly-compressing (namely by polynomially many
bits) then it must require log n negations.

One-Way Monotone Surjections: Our technique for constructing one-way
monotone surjections follows the idea of Goldreich and Izsak [8] for constructing
one-way monotone functions. Let ham(x) denote the Hamming weight of the
string x. Recall that in their construction, starting from any one-way function
f : {0, 1}n → {0, 1}m, they consider a function f ′ that behaves as follows:

– On inputs x such that ham(x) < n
2 , f ′ assumes the value 0m.

– On inputs x such that ham(x) = n
2 , f ′ assumes the value f(x).

– On inputs x such that ham(x) > n
2 , f ′ assumes the value 1m.

They then show that this function can be implemented using a monotone circuit.
Since the middle slice occupies at least 1√

n
fraction of the total inputs, f ′ is

a weak one-way function. Then a strong monotone one-way function can be
obtained via standard parallel repetition.

Suppose we start with a function f that is surjective and apply the construc-
tion specified above, the resulting function will no longer be surjective. Instead,
we rely on a an error correcting code G with a certain property. More precisely,
G maps ‘balanced’ (i.e., contains the same number of 0s as 1s) strings of length
n + O(log n) to strings of length n surjectively. An example of one such code is
the Knuth code [11]. Given such codes, we can augment Goldreich’s construction
to get a monotone surjective one-way function as follows: We consider a func-
tion f ′ that takes as input n + O(log n) inputs and first applies G to its input,
followed by f on balanced inputs while the rest of the inputs are defined just
as before. It follows from the definition that this function is surjective and weak
one-way.
3 We write a � b, if for any i, ith bit of a is 1 implies that the ith bit of b is 1.

On Negation Complexity of Injections, Surjections and Collision-Resistance 349

One-Way Monotone Injections: The technique for our one-way monotone
injection construction can be explained using the same construction as above.
Note that, in this construction, inputs of Hamming weight smaller than n/2 all
map to the same output. Similarly, inputs with Hamming greater than n/2 also
map to the same value. The main idea here to achieve injection is to get rid of
these collisions.

Towards this, we add two blocks of n-bits to the output where the purpose
of the first block is to handle inputs of Hamming weight smaller than n/2 and
the other for those with Hamming weight greater than n/2. The result then
follows by showing that the following functions flower and fupper can be built
using monotone circuits:

– flower(x) = x when ham(x) < |x|/2 and flower(x) = 1n otherwise.
– fupper(x) = x when ham(x) > |x|/2 and fupper(x) = 0n otherwise.

On a high-level this idea follows the approach of [8] and we present the formal
statement and proof in Sect. 5.

A Deterministic Algorithm to Invert Monotone Injection: One of our main tech-
nical contributions and novel approach is in proving our lower bound on injec-
tions. Here we give an explicit deterministic algorithm that allows inversion of
any injections with constant stretch. In fact, we provide a general analysis where
the run-time of the algorithm depends on the input length and stretch.

At a high-level, the idea is that given a target b = f(s) of a function f :
{0, 1}n → {0, 1}m, we systematically break f down into a number of different
cases, each of which is permutation-like, in the sense that most of the output bits
are permutations of the input bits. More specifically, we reduce f to a piecewise
function of restrictions of f (over domains where certain input bits are held
constant) where fixing one additional bit of the input fixes exactly one bit of the
output. At that point we use the correspondence between input and output bits
to find pre-images for all but the stretch bits of y, which are brute-forced. We
iterate through the cases until we find one that produces a preimage for y, or
we exhaust all cases, in which case no preimage can exist.

The main trick of the proof is the reduction of f into a polynomial (assuming
m−n = O(1)) number of cases. Essentially, this is done by searching for an input
bit that causes more than one output bit to be fixed when set to 1 (or 0), and
recursing into both the case where we set it to one and set it to zero. Then,
by a combinatorial argument, we show that this will only recurse polynomially
many times. In particular, this helps us characterize an important property of
functions of super-contstant stretch (that is, f : {0, 1}n �→ {0, 1}n+ω(1)) that are
potentially hard to solve: they will very often exhibit the worst-case behavior
where fixing an input bit to 0 fixes only one output bit to 0, but fixing it to 1
fixes multiple output bits to 1, or vice versa. Functions like this are thus ideal
candidates for one-way monotone injections of small stretch.

350 D. Miller et al.

2 Preliminaries

For some x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for all i ∈ [n]. By definition,
a Boolean function f : {0, 1}n → {0, 1} is monotone iff f(x) ≤ f(y) whenever
x � y and a function g : {0, 1}n → {0, 1}m is monotone iff every output bit of g is
a monotone Boolean function. If x is a binary string, let ham(x) be the Hamming
weight of x, i.e. the amount of 1s that appear in x. A chain X = (x1, . . . , xt) is a
monotone sequence of strings over {0, 1}n, i.e., xi ≤ xi+1 for every i ∈ [1, t − 1].
Define an increasing chain as a chain for which all xj 	= xk when j 	= k.

Let f : {0, 1}n → {0, 1} be a Boolean function, and let X = (x1, x2, . . . , xn)
be a chain. Then, define a(f,X) to be the largest set of indexes {0 ≤ i0, . . . , im ≤
n − 1} such that f(xij) 	= f(xij+1) for every j ∈ [0,m − 1]. Furthermore, define
a(f) = maxX(a(f,X)) where X is a chain to be the alternating complexity of f .

The following result was shown by Markov [12]:

Theorem 5. Let f : {0, 1}n → {0, 1}m be a Boolean function computed by a
circuit with at most t negations. Then a(f) ∈ O(2t).

2.1 One-Way Functions

Definition 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is (strong) one-way if for every PPT machine A, there exists a negligible
function ν(·) such that

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ ν(n)

A function f {0, 1}n → {0, 1}m is said to be injective if for any x, y ∈ {0, 1}n,
x 	= y =⇒ f(x) 	= f(y). f is said to be surjective if for any z ∈ {0, 1}m, there
is an x ∈ {0, 1}n such that f(x) = z. f is said to be a weak one-way function if
there exists a polynomial p such that for all adversaries A the probability with
which it can invert the function is at most 1

p(n) for sufficiently large n where the
probability is over a randomly chosen input x and the random coins of A.

Definition 2 (Exponentially-hard one-way functions). Let f : {0, 1}∗ →
{0, 1}∗ be a polynomial-time computable function. f is exponentially-hard one-way
if there exists some c such that for every probabilistic adversary A that runs in
O(2cn) time, there exists a negligible function ν(·) such that

Pr[x ← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ ν(n)

Definition 3 (Regular one-way functions). Let f : {0, 1}∗ → {0, 1}∗ be a
one-way function. f is regular if there exists a function α : N → N such that for
every n ∈ N and every x ∈ {0, 1}n we have: |f−1(f(x))| = α(n).

We assume that the regularity α(·) of a function f is not known (i.e. not
polynomial-time computable). Without loss of generality, we assume the one-
way function is length preserving i.e. f({0, 1}n) ⊆ {0, 1}n.

On Negation Complexity of Injections, Surjections and Collision-Resistance 351

2.2 Target Collision-Resistant Hash-Function Families

Definition 4. Let G = {gk}k∈K be a family of functions where each function
gk goes from {0, 1}n+� to {0, 1}n. We say that G is a Collision-Resistant Hash-
Function Family if (i) the functions gk are efficiently computable and (ii) for
every efficient adversary A, the probability that A succeeds in the following game
is negligible in n:

– Choose k ← K
– Let x, x′ ← A(1n, k)
– A succeeds if x 	= x′ and gk(x) = gk(x′)

Definition 5. Let G = {gk}k∈K be a family of functions where each function
gk goes from {0, 1}n+� to {0, 1}n. We say that G is a Universal One-Way Hash-
Function Family if (i) the functions gk are efficiently computable and (ii) for
every efficient adversary A, the probability that A succeeds in the following game
is negligible in n:

– Let (x, σ) ← A(1n) where σ is some state information output by A
– Choose k ← K
– Let x′ ← A(σ, k)
– A succeeds if x 	= x′ and gk(x) = gk(x′)

Universal One-Way Hash-Function Families [14] as defined above enjoy the prop-
erty of target collision-resistance. The related notion of Second Preimage Resis-
tance follows the same security game with the exception that x and k are uni-
formly chosen and handed to the adversary instead of allowing the adversary to
first choose x before seeing the key. It is well-known how to construct UOWHFs
from second preimage resistant families.

2.3 Error-Correcting and Balanced Codes

Let E : {0, 1}n → {0, 1}m be a polynomial-time computable function. Given
strings y, y′ ∈ {0, 1}m, define Δ(y, y′) =

∑m
i=1 yi �=y′

i

m . We say E is γ-error-
correcting if for any pair of distinct inputs x, x′ ∈ {0, 1}n, Δ(E(x), E(x′)) ≥ γ.

Definition 6. Let f : {0, 1}n → {0, 1}m be a polynomial-time computable func-
tion. f is a balanced code if every element in the image of f is balanced, i.e.
�m

2 � of its bits are 1 and �m
2 � of its bits are 0.

In addition, we define BALn = {x ∈ {0, 1}n|x is balanced}, and On to be the
strict order on BALn that is inherited from the normal lexicographic order on
{0, 1}n. For example, if n = 4, On = 0011, 0101, 0110, 1001, 1010, 1100. Finally,
if w is a binary string, let wk represent w whose first k bits are flipped and the
rest of the bits remain the same.

We are interested in constructing a surjective, poly-time computable function
G : BALn → {0, 1}n−2 log n (assuming n is a power of 2 for simplicity). This is
known as a decoder for a balanced Knuth Code [11].

352 D. Miller et al.

3 Negation Complexity of Collision-Resistance

In this section, we prove our results regarding the negation complexity of
collision-resitant hash-functions. We start with a warm-up Lemma that shows
that for any compressing (unkeyed) function that is monotone a collision can be
found easily by uniform adversaries.

Lemma 1. Let g : {0, 1}n → {0, 1}m be any monotone function such that m <
n. Then there exists a uniform adversary A that can output x, x′ ∈ {0, 1}n such
that x 	= x′ and g(x) = g(x′).

Proof. On a high-level the proof will demonstrate that every increasing chain
has a collision. Consider an algorithm A that does the following:

– Choose an arbitrary increasing chain X = (x1, . . . , xn+1) over {0, 1}n and
compute g(xi) for all i. Suppose there exists an i such that g(xi) = g(xi+1).
If so, output (xi, xi+1). Otherwise output fail.

For all pairs g(xi) and g(xi+1), the montonicity of g and the definition of an
increasing chain implies that, either there exists at least one position in the bits
of g(xi) that was a 0 turns to a 1 in g(xi+1), or g(xi) = g(xi+1). There are n
possible values for i and a maximum of m possible positions that can be flipped
from 0 to 1. Furthermore, monotonicity implies that each position can flip at
most once. Since n > m, by the pigeonhole principle, there must exist at least
one such pair that has no bit that flips and thus, for this pair, g(xi) = g(xi+1)
and xi 	= xi+1.

Corollary 1. There does not exist a family of collision-resistant hash-functions
that is computable by monotone circuits.

Next, we extend the proof to rule out monotone implementations of target
collision-resistant functions. Recall that in the security game for target collision-
resistance, the adversary needs to pick a target x for which it is required to find
a collision before it receives the description of the hash-function.

Theorem 6. There does not exist a family of target collision-resistant hash-
functions that is computable by monotone circuits.

Assume, for contradiction, that there exists a family of target collision-
resistant hash-functions {gk}k∈K where gk is a function from {0, 1}n to {0, 1}m

with m < n that can be computed using a monotone circuit of polynomial size.
From Lemma 1, we know that for any compressing function, and therefore for
any gk, every increasing chain of inputs has at least one collision.

Pick an arbitrary increasing chain X = (x1, . . . , xn+1). Since every function
gk has a collision in this chain, using a standard averaging argument we can
conclude that there exists at least one index in [n], say i∗, such that with prob-
ability at least 1

n over the functions k ∈ K, gk(xi∗
) = gk(xi∗+1). Consider an

adversary A that picks an input uniformly from the chain X and submits it as a

On Negation Complexity of Injections, Surjections and Collision-Resistance 353

target. Upon receiving the function gk, it outputs (xi, xi+1) if gk(xi) = gk(xi+1).
Otherwise, it outputs fail.

It follows that A picks xi∗
with probability at least 1

n and when this happens,
it succeeds in outputting a collision with probability at least 1

n . Therefore, A
succeeds in outputting a collision with non-negligible probability, which is a
contradiction.

Next, we strengthen our bound by proving that both CRHs and TCRs are
highly non-monotone.

Lemma 2. Let g : {0, 1}n → {0, 1}m be an arbitrary function that can be imple-
mented by a circuit with t = (1 − ε) log n gates. Then there exists a constant
c > 0 such that, if m < cnε, then there exists an adversary A that the can output
x, x′ ∈ {0, 1}n such that x 	= x′ and g(x) = g(x′).

Proof. We will rely on Markov’s theorem (cf. Theorem5) that shows that for
any boolean function f on n-bit inputs that can be computed by a circuit with
at most t gates, a(f) = O(2t). Recall that a(f) = maxX a(f,X) where X is any
non-decreasing chain over {0, 1}n and a(f,X) denotes the number of times the
output of f changes when iterating through the chain.

We prove that any increasing chain will have consecutive elements whose
outputs are identical under g. Then we can rely precisely on the same adversary
as in Lemma 1 that examines the elements in an arbitrary increasing chain and
outputs if it finds a collision on any consecutive elements in the chain.

Let X = (x1, . . . , xn+1) be an arbitrary increasing chain over {0, 1}n. As
before, we have that every pair of consecutive elements either collide under g
or differ by at least one position in the output. By Markov’s theorem we know
that each position in the output can change at most c′2t = c′n1−ε times. Hence
if n > mc′n1−ε then there must be a collision by the pigeonhole principle. By
fixing c = 1

c′ and observing that m < 1
c′ n

ε, the lemma follows.

Using the same techniques as before we obtain the following corollary.

Corollary 2. Let {gk}k∈K be a family of collision-resistant hash-functions or
target collision-resistant functions where gk is a function from n bits to m bits
such that m < cnε and computable by a circuit with t gates. Then t ≥ (1−ε) log n.

4 One-Way Monotone Surjections

In this section, we provide our construction of one-way monotone surjections.
First we require the following definitions:

Definition 7. If f : {0, 1}n �→ {0, 1}m is a function, let the k − cut of f be the
function f (k) : {0, 1}n �→ {0, 1}m such that

f (k)(x) =

⎧
⎨

⎩

0m : ham(x) < k
f(x) : ham(x) = k
1m : ham(x) > k

We remark that in literature this sometimes referred to as k-slice.

354 D. Miller et al.

Definition 8. If x is a binary string and k is an integer, the threshold function
of threshold k is the function Tk such that

Tk(x) =
{

0 : ham(x) < k
1 : ham(x) ≥ k

Definition 9. If x is a binary string, let xi→0 stand for the binary string pro-
duced by changing the ith bit in x to 0.

Proposition 1. If x is a binary string and ham(x) = k, then Tk(xi→0) = ¬xi.

Proof. If xi = 1, then xi→0 has Hamming weight k − 1. Thus, Tk(xi→0) = 0. If
xi = 0, changing the ith bit to 0 does not change x, and so it does not change
the Hamming weight. Thus, Tk(xi→0) = 1.

We will rely on the following proposition (from [8]) that states that f (k) is
computable by a monotone circuits.

Proposition 2. If f : {0, 1}n �→ {0, 1}m is a function computable in polynomial
time, then for any k, the k − cut of f , f (k), is computable by a polynomial-sized
monotone circuit.

Theorem 7. If one-way permutations exist, then one-way surjections exist with
O(log n) compression which can be computed by a polynomial-sized monotone
circuit.

Proof. In this proof, we follow the convention that, if w is a binary string, then wk

will represent the string obtained by flipping the first k bits of w and keeping the
rest of the bits remain the same. Under this notation, we have that w(k)(k) = w.

The following function G : BALn → {0, 1}n−2 log n will be useful in proving
this theorem:
1: function g(s):
2: u ← first 2 log n bits of s
3: if u has Hamming weight of log n then
4: k ← position of u in O2 log n for BAL2 log n

5: w ← last n − 2 log n bits of s
6: return wk

7: else
8: return 0n−2 log n

Claim. G : BALn → {0, 1}n−2 log n is surjective and computable in polynomial
time.

Proof. First, we prove that G is surjective. Towards proving this, we prove the
following Claim.

Claim. Suppose w ∈ {0, 1}n−2 log n. Then, there exists a k ∈ {0, . . . , n − 2 log n}
such that wk has Hamming weight |w|

2 .

On Negation Complexity of Injections, Surjections and Collision-Resistance 355

Proof. To see this, let ham(w) = l. Observe that w0 has Hamming weight
l, and w|w| has Hamming weight |w| − l. Furthermore, w0, w1, w2, . . . is a
sequence of bit strings such that ham(wi) = ham(wi+1) ± 1. Thus, the Ham-
ming weights of w0, w1, w2, . . . , w|w| hit every natural number (inclusively) in
between ham(w0) = l and ham(w|w|) = |w| − l. In this set of numbers lies |w|

2 .
This is because, if l > |w|

2 , |w| − l < |w| − |w|
2 = |w|

2 , and a similar argument
goes for when l < |w|

2 , and is trivial when l = |w|
2 . Thus, there is a k such that

ham(wk) = |w|
2 .

Now, to prove that G is surjective, it suffices to show the following:

Claim. If u is the kth string in BAL2 log n according to O2 log n, G(uwk) = w.

Proof. First, we show that the kth string in BAL2 log n indeed exists. It suffices to
show that |BAL2 log n| ≥ |w|, as we are never required to use k = |w|, as if w|w|

has even Hamming weight, so does w0. Thus we only consider k ∈ [0, . . . , |w|−1].
First,

|BAL2 log n| =
(
2 log n
log n

)

≥ 22 log n−1

√
log n

by Stirling’s approximation. Then, we have

22 log n−1

√
log n

=
n2

2
√

log n
≥ n2

2 log n

Finally,

n2

2 log n
≥ n − 2 log n ⇐⇒

n2

2 − n log n + 2 log2 n

log n
≥ 0

And for sufficiently large n, the numerator on the left hand side is greater
than 1, and 1

log n ≥ 0 for n > 1.
And so, for sufficiently large n,

|BAL2 log n| ≥ |w|
Claim. uwk ∈ BALn.

Proof. ham(u) = log n since 2 log n is even, and thus

ham(uwk) = ham(u) + ham(wk) =
2 log n

2
+

|wk|
2

=
2 log n + |wk|

2
=

n

2

Then, upon inspection of G, we see that since u has even Hamming weight,
G will compute k, the position of u in O2 log n. This is the same k as in wk, by
definition of u. Then, G will return w(k)(k) = w.

Let G be the function based on Knuth’s balanced code [11] described in
Sect. 2.3. Recall that G is computable in polynomial time and surjective. Using
this function G, we will now construct the following function, assuming one-
way permutations exist. Let f : {0, 1}n−2 log n �→ {0, 1}n−2 log n be a one-way
permutation. Let f ′ : {0, 1}n �→ {0, 1}n−2 log n be the function (f ◦ G)(

n
2).

356 D. Miller et al.

Claim. f ′ is monotone and surjective.

Proof. Given any x ∈ {0, 1}n−2 log n, there is a y ∈ {0, 1}n−2 log n such that
f(y) = x (since f is surjective). Then, since G is surjective, there is a z ∈ BALn
such that G(z) = y. Thus, f(G(z)) = x. Then, since z ∈ BALn, ham(z) = n

2 .
And so f ′(z) = f(G(z)) = x. Furthermore, f ′ is known as the n

2 -cut of f ◦ G,
and we have already proven that any k-cut of a polynomial-time algorithm has
a polynomial-size monotone circuit that computes it.

It suffices to show that f ′ is weak one-way, as by a simple extension we can
construct a strong one-way function from f ′. Again, following [8], we can show
that f ′ is weak.

Lemma 3. f ′ is a weak one-way function.

Assume that adversary D′ inverts f ′(Un) with probability at least 1− 1
n2 + 1

n3 .
Now, construct adversary D that, on input y ∈ f ′(Un), returns G(D′(y)).

It follows from Claims 4 and 4the for every string w ∈ 0, 1n−2logn there exists
at least one value for k <= n − 2 log n such that G(uwk) = w where u is the
kth string in some ordering of strings in BAL2 log n. However, there could be more
than one input for which G outputs w. We will pick exactly one preimage w.r.t.
G for every string w ∈ 0, 1n−2logn and form a set S. The weak one-wayness of f
can be concluded as follows:

1. G is injective and surjective from S to 0, 1n−2logn.
2. For any string y that is not the all 0s or all 1s string, if D′ inverts y successfully

under f ′ as x′, then G(x′) gives a preimage of y under f . That is, D inverts
y wrt f .

3. Let A(n) be the probability that x′ sampled from 0, 1n is in S. Since S
occupies 1/n2 fraction of 0, 1n, it holds that A(n) = 1/n2.

Pr[x ← {0, 1}n−2logn : D(f(x) ∈ f−1(f(x))]

= Pr[x ← {0, 1}n−2logn : D′(f(x)) ∈ f ′(−1) (Using 2)

= Pr[x′ ← {0, 1}n : D′(f ′(x′)) ∈ f ′−1(f ′(x′))|x ∈ S] (Using 1)

=
1

Pr[x′ ∈ S]
Pr[x′ ← {0, 1}n : D′(f ′(x′)) ∈ f ′−1(f ′(x′)) ∧ x ∈ S]

=
1

Pr[x′ ∈ S]
(Pr[x′ ← {0, 1}n : D′(f ′(x′)) ∈ f ′−1(f ′(x′))]

− Pr[x′ ← {0, 1}n : D′(f ′(x′)) ∈ f ′−1(f ′(x′)) ∧ x �∈ S])

>= n2(1 − A(n) +
1

n3
− (1 − A(n)) (Using 3)

=
1

n

which is non-negligible and a contradiction to the fact that f is (strong) one-way.
Therefore, f’ is weak. We conclude the proof of Theorem7 by observing that

the standard amplification of weak one-way functions to strong one-way func-
tions via repetition preserves both the monotonicity and surjectivity.

On Negation Complexity of Injections, Surjections and Collision-Resistance 357

Corollary 3. If a one-way surjection fS : {0, 1}n−2 log n → {0, 1}m exists, then
a one-way monotone surjection gS : {0, 1}n → {0, 1}m exists.

Proof. By replacing the one-way permutation used in the preceding proof with
fS , and using the fact that the injectivity of the permutation is not used in the
proof, this corollary follows.

Corollary 4. If strong exponentially hard one-way permutations exist, weak
one-way monotone surjections exist from n bits to n − O(log log(n)) bits.

Proof. Suppose some fn is a sequence of strong exponentially hard one-way
permutations. Let d ∈ ω(log n). Now, via a compexity leveraging argument, we
see that there exists a strong one-way permutation gn on d-bits that is strong
one-way with respect to polynomial-time adversaries. By the previous theorem,
this means that there exists a monotone weak one-way surjection from d bits to
d−log d bits. Append n−d input and output bits (each input mapping directly to
the corresponding output bit, so as to maintain surjectivity) to get a monotone
weak one-way surjection from n bits to n − log d which will be n − O(log log(n))
as desired by setting d appropriately.

5 One-Way Monotone Injections

Theorem 8. If strong one-way permutations exist, then one-way monotone
injections exist. In particular, if strong one-way permutations exist, then strong
one-way monotone injections exist from n bits to 3n bits.

Proof. Suppose there exists some one-way family of permutations fn : {0, 1}n �→
{0, 1}n that have a polynomial bound Q(n) on their circuit size. Then, let Ti,n :
{0, 1}n �→ {0, 1} be defined as the function such that Ti(x) is true if and only if x
has at least i of its n bits set to 1. First, we show that Ti can be calculated via a
polynomial-sized circuit through the following recursive construction: let T0(x) =
1 for all x, and for i > 0, let Ti =

∨n
j=1 (xj ∧ Ti−1(x with bit j set to zero)).

Recall that if fn has circuit size bounded by Q(n), then by De Morgan’s
laws, we can still construct a monotone circuit f ′

n : {0, 1}n × {0, 1}n �→
{0, 1}n with circuit size ≤ Q(n) such that f ′

n(x,¬x) = fn(x) for all x. If
we set Hi,n(x) = T�n

2 �,n (x with bit i set to 0), then note that for x with

Hamming weight
⌊

n
2

⌋
, f ′

n(x,H1,n(x)‖H2,n(x)‖ · · · ‖Hn,n(x)) = fn(x). Then,
defining Fn(x) = f ′

n(x,H1,n(x)‖H2,n(x)‖ · · · ‖Hn,n(x)), consider the following
constructed family:

gn(x) = Fn(x)‖
(
x ∧ [T�n

2 �+1,n(x)]n
)

‖
(
x ∨ [T�n

2 �,n(x)]n
)

Note that the concatenation of the H functions has a polynomial bound in n.
Thus, we can construct gn in a polynomial-size monotone circuit.

358 D. Miller et al.

Claim. gn is injective.

Proof. For inputs x with Hamming weight less than �n
2 �, the last n bits of gn

equals x, and so within this range, there cannot be any collisions. A similar proof
shows that there are no collisions among inputs with Hamming weight greater
than �n

2 �.
In addition, there are no collisions between inputs of Hamming weight �n

2 �,
as Fn is injective.

There are also no collisions between inputs of Hamming weight less than �n
2 �

and those with Hamming weight greater than �n
2 �, because the third section

of the latter consists of all 1s, and the third section of the former cannot have
Hamming weight greater than or equal to �n

2 �.
Finally, there are no collisions between inputs of Hamming weight less than

�n
2 � and Hamming weight equal to �n

2 �, as the third section of the former cannot
have Hamming weight greater than or equal to �n

2 �, and the third section of
the latter consists of all 1s. A similar proof shows that there are no collisions
between inputs with Hamming weight equal to �n

2 � and inputs with Hamming
weight greater than �n

2 �.
Now, recall that there are Ω(1/

√
n) fraction of inputs with Hamming weight

�n
2 �. Then, since the first n bits of gn = fn for inputs with Hamming weight

�n
2 �, the first n bits of gn = fn for Ω(1/

√
n) fraction of inputs. Therefore, gn is

Ω(1/
√

n) hard. gn can then be amplified by a simple extension to obtain strong
one-way injections.

Corollary 5. If a one-way injection fI : {0, 1}n → {0, 1}m exists, then a one-
way monotone injection gI : {0, 1}n → {0, 1}m+2n exists.

Proof. Since the preceding proof does not require that the one-way function be
surjective, the proof is equivalent. Furthermore, the output of the constructed
function is m bits concatenated by two sequences of n bits each.

As a simple corollary, we can construct regular length-preserving functions:

Corollary 6. If one-way injections exist, regular length-preserving one-way
monotone functions exist.

Proof. By the preceding theorem, we can construct a family of monotone weak
one-way functions. gn : {0, 1}n �→ {0, 1}3n. Then, construct a family of functions
hn : {0, 1}3n �→ {0, 1}3n such that

hn(x) = gn(last n bits of x)

Then, hn is 22n-regular, as for any element y in the image of hn, there is
exactly one element x′ ∈ {0, 1}n such that g(x′) = y. Then, there are exactly
22n elements in the domain of hn whose last n bits are equal to x′, thus each
of these maps to y. Now, if there was an adversary D and a polynomial q such
that hn can be inverted with probability 1 − A(n) + 1

q(n) , an adversary

D′(y) = last n bits of D(y)

On Negation Complexity of Injections, Surjections and Collision-Resistance 359

would invert gn with probability 1 − A(n) + 1
q(n) as well, thus contradicting the

fact that gn is weak one-way. Thus, hn is weak one-way, and can be extended to
a strong one-way function.

Using a complexity leveraging argument, we obtain the following corollary
assuming the existence of exponentially hard one-way functions.

Corollary 7. If strong exponentially hard one-way permutations exist, strong
one-way monotone injections exist from n bits to n + ω(log(n)) bits.

We need the following lemma to prove our corollary. We will prove the corol-
lary using the following lemma and then prove the lemma.

Lemma 4. If fn : {0, 1}n �→ {0, 1}m(n) is sequence of strong exponentially hard
one-way functions, then for any function d ∈ ω(log(n)), the sequence of functions
gn : {0, 1}d(n) �→ {0, 1}m(d(n)) defined as gn(x) = fd(n)(x) is strong one-way with
respect to poly(n).

Proof. Suppose some fn is a sequence of strong exponentially hard one-way
permutations. Let d(n) ∈ ω(log(n)). Now, by the lemma, there exists a strong
one-way sequence of permutations gn on d(n)/2 bits that is strong one-way with
respect to poly(n). By the previous theorem, this means there exists a strong
one-way monotone injection from d(n)/2 bits to 1.5∗d(n) bits. Append n−d(n)/2
input and output bits (each input mapping directly to the corresponding output
bit, so as to maintain injectivity) to get a strong one-way monotone injection
from n bits to n + d(n) bits, as desired.

Proof of Lemma 4. Suppose that given some fn exponentially hard (specifically,
O(2cn) hard) and some d ∈ ω(log(n)), there exists some probabilistic adversary
A that can invert gn with non-negligible probability in (assuming n is sufficiently
large) poly(n) time. However, this means that A can invert fn in Bnp = B2log(n)p

time. Since fn is exponentially hard, this must be greater than k2cd(n). Since d ∈
ω(log(n)), this will be false for large enough n, a contradiction. By contradiction,
gn is a strong one-way function with respect to poly(n).

6 Negation Complexity of Some One-Way Injections

One of our main technical contributions is presented in this section. We show
that an arbitrary injective one-way function f from n bits to m bits that
is computable by monotone circuits can be inverted in deterministic time
O(poly(n,m)

(
m

m−n

)
2m−n).

We say a function f is perfectly invertible in P if there is a deterministic
polynomial-time adversary that, with only oracle access to any f and given any
x ∈ codomain(f), outputs the preimage f−1(x) or indicates that x is not in the
range of f .

Theorem 9. There exists an inverter I that, for any k > 0, perfectly
inverts in P the monotone injections {0, 1}n �→ {0, 1}m in deterministic time
O(poly(n,m)

(
m

m−n

)
2m−n), where m = n + k.

360 D. Miller et al.

In order to prove the theorem, we will require the following proposition that
follows immediately from an injectivity argument:

Proposition 3. Given any monotone injection, and any input bit of that func-
tion, restricting an input bit to zero (or one) will necessarily restrict at least
one output bit to zero (or one). In other words, for any monotone injection
f : {0, 1}n �→ {0, 1}m, where f(b1b2 · · · bn) = b′

1b
′
2 · · · b′

m, then for all 1 ≤ t ≤ n,
there exists a t1 such that b′

t1 = 1 whenever bt is 1, and a t0 such that b′
t0 = 0

whenever bt is 0.

Proof. The inverter I consists of two main parts, the reduce method, and the
solve method. The adversary begins at the reduce method, and calls the reduce
method recursively, until it reaches the base case, at which point the solve
method is run.

The reduce method operates on strings in {0, 1, �}∗, which should be inter-
preted as follows: the � bits are considered “free” and may vary throughout the
scope of the variables, whereas the 0 and 1 bits are fixed, and will not change.
For convenience, we define a couple functions on {0, 1, �}∗: let z(y) denote the
string obtained from y where all positions with a � in y are replaced with
zero, and similarly let w(y) denote the string where all � bits in y are replaced
with ones.

The inverter I operates as follows:
Let x be the input, which has m bits. I calls reduce(x, �n, �m), beginning

a recursive procedure. The procedure reduce(x, y, �m) takes three inputs: the
target x ∈ {0, 1}m (which is unused, except insofar as it is passed onto the final
solve method), the input bit configuration y ∈ {0, 1, �}n and the output bit
configuration, p ∈ {0, 1, �}m. The fixed bits in y should be interpreted as bits
which are assumed to be consistent with the preimage of x, and the fixed bits
in p should be interpreted as bits that are constant over all possible settings of
the free input bits. We will maintain as a recursive invariant in calls to reduce
that the difference between the number of free bits in p and the free bits in y is
at most m − n.

The reduce method is as follows:

– Define f ′ as the restriction of f such that the domain is the subset of {0, 1}n

that only disagree with y on its free bits, and the range is the subset of {0, 1}m

that only disagree with p on its free bits. Note that f ′ is a monotone injection.
For each free bit in y, indexed by t, let at ∈ {0, 1}n be the string that has
only position t set to one, 0t−110n−t, and let bt be the complement of at.
Let rt = (at ∨ z(y)) and st = (bt ∧ w(y)) where ∨ and ∧ are computed bit-
wise. Now, consider ham(f ′(rt)) and l − ham(f ′(st)). By Proposition 3, both
quantities are ≥ 1. If both are = 1 for all t, then as a base case, return the
result of solve(x, y, p). Otherwise, in the case that one of the quantities is
≥ 2 for some t, branch into two recursive calls: reduce(x, at ∨ y, rt ∨ p) and
reduce(x, bt ∧ y, st ∧ p), where the bitwise ∨ and ∧ operations are extended
in the natural way, so that 0 ∨ � = �, 1 ∨ � = 1, � ∨ � = �, 0 ∧ � = 0,
1 ∧ � = �, and � ∧ � = �. If either call returns a preimage for x, return that

On Negation Complexity of Injections, Surjections and Collision-Resistance 361

preimage; otherwise, if both branches indicate no solution, return that there
is no preimage.

Observe that when the solve method is called from the reduce method, it
holds that all of the free bits in the input y, when restricted to 0, set exactly
one free bit in the output p to 0, and when restricted to 1, set exactly one free
bit in the output p to 1 (since, otherwise we recurse further). Let π, τ be partial
functions from free bits in y to the free bits in p such that on input a position
in the input indicate which output bit is set to zero and one, respectively. Now,
by injectivity, we know that π and τ must themselves be injective, because
otherwise, setting two different free input bits would result in the same output.

The solve method is as follows:

– Suppose there are k free input bits. First, discover the π and τ permutations by
simply testing each free input bit, and seeing which free output bit corresponds
to that input. Consider the images of π and τ , P and T . We know the number
of free output bits is limited, so |P ∪ T | ≤ k + (m − n), and k = |P | = |T |.
So, m + k − n ≥ |P ∪ T | = |P | + |T | − |P ∩ T | = 2k − |P ∩ T |, meaning that
k − |P ∩ T | ≤ (m − n). For each bit b ∈ P ∩ T , examine the corresponding bit
in x; if x has a zero at b, it must be the case that a preimage of x has T−1(b)
set to zero, and if x has a one at b, a preimage of x has P−1(b) set to one.
Thus, |P ∩T | of the free bits can be deduced, leaving at most m−n remaining
free bits. Perform a brute-force search over all possible configurations of these
bits, returning a preimage of x if one is found, or indicating no such preimage
exists.

It is clear that the solve method runs in O(m2m−n) steps. Next, we count the
maximum number of times reduce is called. Let T (i, j) be the number of times
reduce is called, where i is the number of free input bits and j is the number of
free output bits minus the number of free input bits. Note that in the worst case,
T (i, j) = 1+T (i−1, j)+T (i−1, j−1), since in at least one of the paths, more than
one outbit bit is set by restricting an input bit. The recursion will necessarily
stop as soon as either i = 0 or j = 0. Equivalently this quantity is bounded by the
number of non-backtracking paths between corners on a n× (m−n) rectangular
grid, which is

(
m

m−n

)
. Each call takes only O(nm) time, and so the total running

time for the whole method is O
(
nm2

(
m

m−n

)
2m−n

)
, which for constant m − n is

polynomial in n.

7 Some Corollaries to Our Injection Lower Bound

We present some interesting (and immediate) corollaries to this theorem in this
section and provide the proofs in the full version.

Corollary 8. For any constant c, for any OWI with constant stretch, for all
inputs of Hamming weight less than c [assuming n is sufficiently large], at least
one negation gate must not trigger, and for all inputs of Hamming weight more
than m − c, at least one negation gate must trigger.

362 D. Miller et al.

Corollary 9. Any monotone function f that has a constant number of collisions
(in other words, |{(x, y)|x 	= y, f(x) = f(y)}| is constant) is perfectly invertible
in P .

Corollary 10. Any monotone injection from {0, 1}n �→ {0, 1}n+O(log n) can be
inverted in time nO(log n)

Recall that Corollary 7 shows that that assuming existence exponential-time
hard one-way permutations we can get a monotone injection with ω(log n) stretch
secure against polynomial-time adversaries. While still a small gap remains, this
gives an indication that we cannot significantly improve our results.

Corollary 11. There is an inverter that, for any constants k, g, perfectly inverts
in P any monotone injection f : {0, 1}n �→ {0, 1}n+k with g negation gates at
the bottom (meaning the negation gates are over only input bits).

Corollary 12. OWIs (one-way injections) with constant stretch and negation
gates only at the bottom must have a super-constant number of negation gates.

Proof. This is the contrapositive of the previous corollary.

Corollary 13. OWIs with constant stretch must either have a super-constant
number of negation gates, or a negation gate above a subcircuit of superconstant
size.

Corollary 14. OWIs in NC0 with constant width require a super-constant num-
ber of negation gates.

References

1. Amano, K., Maruoka, A.: A superpolynomial lower bound for a circuit computing
the clique function with at most (1/6) log log n negation gates. SIAM J. Comput.
35(1), 201–216 (2005)

2. Beals, R., Nishino, T., Tanaka, K.: More on the complexity of negation-limited cir-
cuits. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, Las Vegas, Nevada, USA, 29 May–1 June 1995, pp. 585–595 (1995)

3. Beals, R., Nishino, T., Tanaka, K.: On the complexity of negation-limited Boolean
networks. SIAM J. Comput. 27(5), 1334–1347 (1998)

4. Blais, E., Canonne, C.L., Oliveira, I.C., Servedio, R.A., Tan, L.: Learning circuits
with few negations. CoRR abs/1410.8420 (2014)

5. Blum, A., Burch, C., Langford, J.: On learning monotone Boolean functions. In:
39th Annual Symposium on Foundations of Computer Science, FOCS 1998, Palo
Alto, California, USA, 8–11 November 1998, pp. 408–415 (1998)

6. Buresh-Oppenheim, J., Kabanets, V., Santhanam, R.: Uniform hardness amplifica-
tion in NP via monotone codes. Electron. Colloquium Comput. Complex. (ECCC)
13(154) (2006)

7. Fischer, M.J.: The complexity of negation-limited networks - a brief survey. In:
Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 71–82. Springer,
Heidelberg (1975). doi:10.1007/3-540-07407-4 9

http://dx.doi.org/10.1007/3-540-07407-4_9

On Negation Complexity of Injections, Surjections and Collision-Resistance 363

8. Goldreich, O., Izsak, R.: Monotone circuits: one-way functions versus pseudoran-
dom generators. Theory Comput. 8(1), 231–238 (2012)

9. Guo, S., Malkin, T., Oliveira, I.C., Rosen, A.: The power of negations in cryptog-
raphy. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 36–65.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 3

10. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. In: Proceedings of the 20th Annual ACM Symposium on Theory
of Computing, Chicago, Illinois, USA, 2–4 May 1988, pp. 539–550 (1988)

11. Knuth, D.E.: Efficient balanced codes. IEEE Trans. Inf. Theory 32(1), 51–53 (1986)
12. Markov, A.A.: On the inversion complexity of a system of functions. J. ACM 5(4),

331–334 (1958)
13. Morizumi, H.: Limiting negations in non-deterministic circuits. Theor. Comput.

Sci. 410(38–40), 3988–3994 (2009)
14. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic

applications. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, Seattle, Washigton, USA, 14–17 May 1989, pp. 33–43 (1989)

15. Santha, M., Wilson, C.B.: Limiting negations in constant depth circuits. SIAM J.
Comput. 22(2), 294–302 (1993)

16. Sung, S.C., Tanaka, K.: Limiting negations in bounded-depth circuits: an extension
of Markov’s theorem. Inf. Process. Lett. 90(1), 15–20 (2004)

17. Tardos, É.: The gap between monotone and non-monotone circuit complexity is
exponential. Combinatorica 8(1), 141–142 (1988)

http://dx.doi.org/10.1007/978-3-662-46494-6_3

Implicit Quadratic Property of Differentially
4-Uniform Permutations

Theo Fanuela Prabowo(B) and Chik How Tan

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411, Singapore

{tsltfp,tsltch}@nus.edu.sg

Abstract. Substitution box (S-box) is an important component of block
ciphers for providing nonlinearity. It is often constructed from differen-
tially 4-uniform permutation. In this paper, we examine all (to the best of
our knowledge) the differentially 4-uniform permutations that are known
in the literature and determine whether they are implicitly quadratic. We
found that all of them are implicitly quadratic, making them vulnerable
to algebraic attack [10,12–14]. This leads to an open question of whether
there exists a differentially 4-uniform permutation over F2n that is not
implicitly quadratic. We provide a partial answer to this question by
solving it for the special cases of n = 11 and n = 13.

Keywords: Cryptography · S-box · Implicitly quadratic functions ·
Implicit quadratic property · Differentially 4-uniform permutations ·
Algebraic attack

1 Introduction

Substitution box (S-box) is an important component of block ciphers as it is
often the only nonlinear component of a block cipher. Thus, choosing a good
S-box is very important to ensure the security of a block cipher. The S-box of
AES, which uses the affine transform of the Inverse function on F28 , is chosen as
to maximize resistance against various major attacks such as linear, differential,
and higher order differential attack.

Unfortunately, due to its simple algebraic description in F28 , the S-box of AES
is vulnerable to algebraic attack. It is well known that 39 linearly independent
multivariate quadratic equations over F2 can be derived from the S-box of AES
(see [8,9,11]). One can then perform algebraic attack on AES by solving a system
of quadratic equations, e.g. using the XL algorithm [12], XSL algorithm [13],
Gröbner basis algorithm [14], etc.

It is noted that there is still no known practical attack on full-round AES.
However, the property that there exist some quadratic equations satisfied by the
input and output bits of the S-box opens up some vulnerabilities. An n × n S-
box (i.e. (n, n)-function) having such property is called implicitly quadratic. The
implicit quadratic property of (n, n)-function has been studied in several other
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 364–379, 2016.
DOI: 10.1007/978-3-319-49890-4 20

Implicit Quadratic Property of Differentially 4-Uniform Permutations 365

papers. [9] (and later extended in [8]) studied the number of linearly independent
multivariate quadratic equations that can be derived from some power functions
(i.e. functions of the form xe for some integer e) of certain types, including the
Inverse, Gold, and Kasami functions. However, there are some inaccuracies in
their results as pointed out by [11]. Apart from that, [11] also determined the
exact number of multivariate quadratic equations from the Inverse function on
F2n . [19] then expanded and generalized the technique used in [11] to study the
implicit quadratic property for power functions more generally.

Most of the previous studies focused on the power functions. However, there
are numerous other classes of functions that are suitable to be used as an S-box.
Differentially 4-uniform permutations are candidates for a good S-box as they
possess good resistance against differential attack. In this paper, we examine all
the differentially 4-uniform permutations that are known in the literature (not
limited to power functions) and determine whether they are implicitly quadratic.

The rest of the paper is organized as follows. In Sect. 2, a precise definition of
implicitly quadratic functions is given. In Sect. 3, we introduce some useful tools
to determine whether a given function is implicitly quadratic. We then examine
all the known differentially 4-uniform permutations and determine whether they
are implicitly quadratic in Sect. 4. In Sect. 5, we pose an open question of whether
there exist differentially 4-uniform permutations over F2n that are not implicitly
quadratic. We also present a solution to this question for the special cases when
n = 11 and n = 13. Finally, we conclude the paper in Sect. 6.

2 Preliminaries

Let n ≥ 1 be integer. We denote the finite field of 2 elements and of 2n elements
by F2 and F2n respectively. Let F2[t] be the univariate polynomial ring over F2.
Suppose p(t) ∈ F2[t] is an irreducible polynomial of degree n. We identify the
finite field F2n with F2[t]/(p(t)). Note that F2n and F

n
2 are isomorphic as vector

spaces over F2. We define a linear isomorphism ϕ : F2n → F
n
2 by ϕ(tn−1) :=

(1, 0, 0, · · · , 0), ϕ(tn−2) := (0, 1, 0, 0, · · · , 0), · · · , ϕ(1) := (0, 0, · · · , 0, 1).

Definition 1. A function F̃ : Fn
2 → F

n
2 is implicitly quadratic if there exists

q ∈ F2[t1, t2, · · · , t2n]/(t21 + t1, t
2
2 + t2, · · · , t22n + t2n) with deg(q) = 2 such

that for all (x1, x2, · · · , xn) ∈ F
n
2 , if (y1, y2, · · · , yn) := F̃ (x1, x2, · · · , xn), then

q(x1, · · · , xn, y1, · · · , yn) = 0.
Any such quadratic polynomial q is called an implicit quadratic equation

(IQE) satisfied by F̃ .

Let V be a vector space over F2 of dimension n. Then V is isomorphic to
F

n
2 . Let φ : V → F

n
2 be a linear isomorphism. Given a function F : V → V , we

define ψφ(F) : Fn
2 → F

n
2 by ψφ(F) := φ ◦ F ◦ φ−1.

Definition 2. Let V be an n-dimensional F2-vector space and φ : V → F
n
2

be a linear isomorphism. A function F : V → V is implicitly quadratic if the
corresponding function ψφ(F) : Fn

2 → F
n
2 is implicitly quadratic.

366 T.F. Prabowo and C.H. Tan

Lemma 1. The definition above is independent of φ, that is, if φ1, φ2 : V → F
n
2

are linear isomorphisms, then ψφ1(F) is implicitly quadratic if and only if ψφ2(F)
is implicitly quadratic. Furthermore, the number of IQE satisfied by ψφ1(F) is
the same as the number of IQE satisfied by ψφ2(F).

Proof. Let F̃1 := φ1 ◦ F ◦ φ−1
1 be implicitly quadratic. We show that F̃2 :=

φ2 ◦ F ◦ φ−1
2 is implicitly quadratic as well.

Since F̃1 is implicitly quadratic, there exists a quadratic polynomial q such
that for any x′ ∈ F

n
2 , if y′ := F̃1(x′) = φ1 ◦ F ◦ φ−1

1 (x′), then q(x′, y′) = 0. Let
x ∈ F

n
2 and y := F̃2(x) = φ2 ◦ F ◦ φ−1

2 (x). Then φ1 ◦ φ−1
2 (y) = φ1 ◦ F ◦ φ−1

1 ◦ φ1 ◦
φ−1
2 (x). In other words, we have φ1 ◦ φ−1

2 (y) = F̃1(φ1 ◦ φ−1
2 (x)). Thus, we have

q(φ1 ◦ φ−1
2 (x), φ1 ◦ φ−1

2 (y)) = 0.
Since φ1 ◦ φ−1

2 : F
n
2 → F

n
2 is a linear isomorphism, then each component

of φ1 ◦ φ−1
2 (x) (resp. φ1 ◦ φ−1

2 (y)) is a linear combination of the components
of x (resp. y). So, expanding q(φ1 ◦ φ−1

2 (x), φ1 ◦ φ−1
2 (y)) = 0 gives a quadratic

polynomial q′ in terms of the components of x and y. Hence, F̃2 is implicitly
quadratic.

We now show that the number of IQE satisfied by F̃1 is the same as the
number of IQE satisfied by F̃2. Let Q (resp. Q′) be the set of all IQE satisfied
by F̃1 (resp. F̃2). Define τ : Q → Q′ by τ(q) := q′, where q′(t1, · · · , t2n) :=
q(φ1◦φ−1

2 (t1, · · · , tn), φ1◦φ−1
2 (tn+1, · · · , t2n)). For any q ∈ Q, we have τ(q) ∈ Q′.

So τ : Q → Q′ is well-defined. Define another function τ ′ : Q′ → Q by τ ′(q′) := q,
where q(t1, · · · , t2n) := q′(φ2◦φ−1

1 (t1, · · · , tn), φ2◦φ−1
1 (tn+1, · · · , t2n)). Note that

τ and τ ′ are inverses of each other. So τ is bijective, and thus |Q| = |Q′|. ��

3 Main Tools

In this section, we present some tools to determine whether a given function
F̃ : Fn

2 → F
n
2 is implicitly quadratic.

Using the same setting as in Definition 1, let (x1, · · · , xn) ∈ F
n
2 and

(y1, · · · , yn) := F̃ (x1, · · · , xn). Define

u(x1,··· ,xn) := (1, x1, · · · , xn, x1x2, · · · , xn−1xn, y1, · · · , yn,

y1y2, · · · , yn−1yn, x1y1, x1y2, · · · , xnyn).

Note that u(x1,··· ,xn) ∈ F
Ln
2 , where Ln := 1 + 2

[
n +

(
n
2

)]
+ n2 = 2n2 + n + 1.

Suppose

MF̃ :=

⎛

⎜
⎜
⎜
⎝

u(0,0,··· ,0)

u(0,0,··· ,1)

...
u(1,1,··· ,1)

⎞

⎟
⎟
⎟
⎠

.

For any matrix M , we recall that its nullspace is defined to be the vector space
{v|Mv = 0}. We denote the nullspace of M and the nullity of M (that is, the
dimension of its nullspace) by Nullspace(M) and Nullity(M) respectively.

Implicit Quadratic Property of Differentially 4-Uniform Permutations 367

We define Θ : {IQE satisfied by F̃} → Nullspace(MF̃) as follows. Any IQE
satisfied by F̃ is of the form

a+
n∑

i=1

bixi+
n−1∑

i=1

n∑

j=i+1

ci,jxixj+
n∑

i=1

diyi+
n−1∑

i=1

n∑

j=i+1

ei,jyiyj+
n∑

i=1

n∑

j=1

fi,jxiyj = 0,

(1)
where a, bi, ci,j , di, ei,j , and fi,j are coefficients belonging to F2. We define
the function Θ by sending IQE of the form (1) to the vector (a, b1, · · · , bn,
c1,2, · · · , cn−1,n, d1, · · · , dn, e1,2, · · · , en−1,n, f1,1, · · · , fn,n)T .

Theorem 1. The function Θ : {IQE satisfied by F̃}→Nullspace(MF̃) is a well-
defined linear isomorphism.

Proof. Let q be an IQE satisfied by F̃ of the form (1), and suppose v := Θ(q).
Note that (1) is equivalent to u(x1,··· ,xn)v = 0 for all (x1, · · · , xn) ∈ F

n
2 . This

can be combined into one matrix equation MF̃ v = 0, which holds if and only if
v ∈ Nullspace(MF̃). Thus, q is an IQE of the form (1) satisfied by F̃ if and only
if v ∈ Nullspace(MF̃). This shows that Θ is well-defined and surjective. As it is
clear that Θ is linear and injective, we conclude that Θ is a well-defined linear
isomorphism. ��
As a corollary of Theorem 1, we have the following:

Corollary 1. The number of linearly independent IQE satisfied by F̃ is equal
to Nullity(MF̃). In particular, the function F̃ is implicitly quadratic if and only
if Nullity(MF̃) �= 0.

Remark 1. Given any function F̃ : F
n
2 → F

n
2 , Corollary 1 gives a method to

determine whether F̃ is implicitly quadratic. The quantity Nullity(MF̃) can be
computed easily by Gaussian elimination. Moreover, Gaussian elimination also
gives a basis for the nullspace of MF̃ , which can then be converted to IQE
satisfied by F̃ via the one-to-one correspondence Θ. This method of obtaining
IQE satisfied by F̃ is similar to that of [1].

Lemma 2. Let 1 ≤ n ≤ 6 be integer. Then any function F̃ : F
n
2 → F

n
2 is

implicitly quadratic.

Proof. Note that the matrix MF̃ is a 2n × Ln matrix, where Ln = 2n2 + n + 1.
Since 2n < Ln for 1 ≤ n ≤ 6, we see that Rank(MF̃) ≤ 2n < Ln. So, by Rank-
Nullity Theorem [18], we have Nullity(MF̃) = Ln − Rank(MF̃) > 0. Hence, by
Corollary 1, F̃ is implicitly quadratic. ��
Remark 2. In view of the above lemma, we shall henceforth only consider the
case n ≥ 7.

Lemma 3 [5]. Suppose F̃1, F̃2 : Fn
2 → F

n
2 are CCZ-equivalent. Then F̃1 is implic-

itly quadratic if and only if F̃2 is implicitly quadratic. Moreover, the number of
IQE satisfied by F̃1 is the same as the number of IQE satisfied by F̃2.

368 T.F. Prabowo and C.H. Tan

4 Examining the Known Differentially 4-Uniform
Permutations

In this section, we are only interested to examine the known differentially 4-
uniform permutations over F2n for n even as n×n S-box with n even is commonly
used in block ciphers.

4.1 Functions Constructed by Primary Construction

There are 5 classes of primarily-constructed differentially 4-uniform permuta-
tions (bijective (n, n)-functions). These are listed in Table 1. The Inverse, Gold
and Kasami functions are already known to be implicitly quadratic [8,9,11]. In
this subsection, we show that the other functions are also implicitly quadratic.

Table 1. Primarily-constructed differentially 4-uniform permutations over F2n

Functions Conditions Ref

Gold x2i+1 n = 2k, k is odd and gcd(n, i) = 2 [15]

Kasami x22i−2i+1 n = 2k, k is odd and gcd(n, i) = 2 [16]

Inverse x−1 (0−1 := 0) n is even [20]

Bracken-Leander x22m+2m+1 n = 4m and m is odd [3]

Binomial αx2s+1 + α2m

x2−m+2m+s

n = 3m, m even, m/2 odd,
gcd(n, s) = 2, 3|m+s and α is a
primitive element of F2n

[4]

In the last column of Table 2, we list some equations derived from y = F (x),
where F is a primarily-constructed differentially 4-uniform permutation. Note
that the IQE satisfied by ψϕ(F) can be obtained by applying ϕ to any of the
derived equations listed on the table and looking at the components. Thus, using
Table 2, we have just shown that all of the primarily-constructed differentially
4-uniform permutations are implicitly quadratic.

As the precise number of IQE satisfied by the Inverse function is known and
will be useful to us, we recall the following well-known result.

Lemma 4 [11]. Let I : F2n → F2n be the Inverse function. Then,
Nullity(Mψϕ(I)) = 5n − 1.

4.2 Functions Constructed by Switching Method

A number of differentially 4-uniform permutations have been constructed via
the switching method applied to the Inverse function. In the following, we list
the known differentially 4-uniform permutations of F2n constructed by switching
method for n even.

Implicit Quadratic Property of Differentially 4-Uniform Permutations 369

Table 2. Derived equations from primarily-constructed permutations

Functions Derived equations

Gold x2i+1 y = x2i+1

xy2i

= x22i

y

xy2i

= x22i

y

xy2i

= x22i

y

Kasami x22i−2i+1 x2i

y = x22i+1

y2i+1 = x23i+1

Inverse x−1 (0−1 := 0) xy = 1 (if x �= 0), xy = 0 (if x = 0)
x2y = x
x4y = x3

xy2 = y
xy4 = y3

Bracken-Leander x22m+2m+1 xy2m

= x23m

y

Binomial αx2s+1 + α2m

x2−m+2m+s

y2m

= α2m

x2m+s+2m

+

α22m

x1+22m+s

– Qu-Tan-Tan-Li [25]: x−1+Tr(x−d+(x−1+1)d), where d = 2n−2, or 3(2t+1)
for 2 ≤ t ≤ n/2 − 1.

– Qu-Tan-Li-Gong [26]: x−1 + g(x), where g is some Boolean function.

– Peng-Tan [21]:

F (x) =

{
x−1 + 1 if x ∈ T ,

x−1 if x ∈ F2n \ T ,

where T ⊂ F2n . As there are at least 22
n−2−1 such T , it is not possible to list

them here. For more details on T , please refer to [21].

– Peng-Tan (II) [22]:

F (x) =

{
β(x + 1)−1 + α if x ∈ F2d ,

x−1 if x ∈ F2n \ F2d ,

where α, β, d, n satisfy any of the following conditions:
(1) α ∈ F2d , β = 1, d is even, or
(2) α = β = 1, d is odd, or
(3) α = 0, β = 1, d = 1, 3, n/2 is odd, or
(4) α, β ∈ F2d , Tr(β−1) = 1, n/d is odd.

– Peng-Tan-Wang [23]:

F (x) =

{
(γx)−1 if x ∈ U,

x−1 if x ∈ F2n \ U,

370 T.F. Prabowo and C.H. Tan

where γ ∈ F2n and U is a union of some cosets of the cyclic group 〈γ〉. Please
refer to [23] for more details on the set U .

– Zha-Hu-Sun (I) [29]:

F (x) =

{
x−1 + 1 if x ∈ S,

x−1 if x ∈ F2n \ S,

where S satisfies any of the following conditions:
(1) S = F2k1 ∪F2k2 ; k1, k2 are even; k1|n; k2|n, or
(2) S = F23 ∪F2k1 ; k1 is even; k1|n; gcd(3, k1) = 1; 6|n; n

6 is odd.

– Zha-Hu-Sun (II) [28]:

F (x) =

{
x−1 + α if x ∈ F2d ,

x−1 if x ∈ F2n \ F2d ,

where α ∈ F2d ; d|n; d is even, or d = 1, 3; n/2 is odd.

– Zha-Hu-Sun (III) [28]:

F (x) =

{
βx−1 + α if x ∈ F2d ,

x−1 if x ∈ F2n \ F2d ,

where α, β ∈ F2d ; Tr(1
α) = 1; d|n; d is even; n

d is odd.

– Tang-Carlet-Tang [27]:

F (x) =

{
(x + 1)−1 if x ∈ T ,

x−1 if x ∈ F2n \ T ,

where T satisfies:
(1) if x ∈ T , then x + 1 ∈ T , and
(2) if x ∈ T , then Tr(1

x) = Tr(1
x+1) = 1.

Remark 3. The Qu-Tan-Tan-Li function [25] and Qu-Tan-Li-Gong function [26]
can be expressed in the following form

F (x) =

{
x−1 + 1 if x ∈ S,

x−1 if x ∈ F2n \ S,

where S = {x ∈ F2n |Tr(x−d + (x−1 + 1)d) = 1} with d = 2n − 2 or d =
3(2t + 1) for 2 ≤ t ≤ n/2 − 1 for the Qu-Tan-Tan-Li function [25]; and S = {x ∈
F2n | g(x) = 1} for the Qu-Tan-Li-Gong function [26].

In this subsection, we will show that all the functions listed above are implic-
itly quadratic.

Implicit Quadratic Property of Differentially 4-Uniform Permutations 371

Theorem 2. Let F : F2n → F2n be any implicitly quadratic function with N :=
Nullity(Mψϕ(F)) > 2n. Suppose U is a subset of F2n and α ∈ F2n \ {0}. Define
G : F2n → F2n by

G(x) :=

{
F (x) + α if x ∈ U,

F (x) if x ∈ F2n \ U.

Then G is implicitly quadratic and Nullity(Mψϕ(G)) ≥ N − 2n.

Proof. Suppose {u1, · · · , un−1, α} is a basis for F2n . Define a linear isomorphism
φ : F2n → F

n
2 by φ(u1) := (1, 0, · · · , 0), φ(u2) := (0, 1, 0, · · · , 0), · · · , φ(un−1) :=

(0, · · · , 0, 1, 0), φ(α) := (0, · · · , 0, 1). Let F̃ := ψφ(F) and G̃ := ψφ(G).
As φ(α) = (0, 0, · · · , 0, 1), we see that MG̃ is obtained from MF̃ by modifying

only the columns corresponding to the terms involving yn. There are 2n such
terms: yn, y1yn, · · · , yn−1yn, x1yn, · · · , xnyn. Thus, MG̃ is obtained from MF̃ by
modifying 2n columns. Therefore the number of linearly independent columns in
MG̃ is at most 2n more than the number of linearly independent columns in MF̃ .
In other words, Rank(MG̃) ≤ Rank(MF̃) + 2n. Applying Rank-Nullity Theorem
and simplifying, we have Nullity(MG̃) ≥ Nullity(MF̃)−2n. By Lemma 1, we have
N = Nullity(MF̃) and Nullity(Mψϕ(G)) = Nullity(MG̃). So, Nullity(Mψϕ(G)) =
Nullity(MG̃) ≥ Nullity(MF̃) − 2n = N − 2n > 0. Therefore, by Corollary 1, G̃
(and hence G) is implicitly quadratic. ��
By Lemma 4 and Theorem 2, we deduce the following corollary:

Corollary 2. Let n ≥ 7 be an integer and U be any subset of F2n . Then the
function F : F2n → F2n given by

F (x) :=

{
x−1 + 1 if x ∈ U,

x−1 if x ∈ F2n \ U,

is implicitly quadratic. Moreover, Nullity(Mψϕ(F)) ≥ 3n − 1.

Corollary 3. The Zha-Hu-Sun (I) function [29], the Qu-Tan-Tan-Li function
[25], the Qu-Tan-Li-Gong function [26] and the Peng-Tan function [21] are
implicitly quadratic.

Proof. This is true by Corollary 2 and Remark 3. ��
Corollary 4. The Zha-Hu-Sun (II) function [28] is implicitly quadratic.

Proof. This is a consequence of Lemma 4 and Theorem 2. ��
Corollary 5. Let F be the Tang-Carlet-Tang function [27]. Then F is implicitly
quadratic.

Proof. Let F−1 be the composite inverse of F . By Corollary 2, F−1 is implicitly
quadratic. Moreover, as F and F−1 are CCZ-equivalent, we see by Lemma 3 that
F is implicitly quadratic. ��

372 T.F. Prabowo and C.H. Tan

Now it remains to prove that the Zha-Hu-Sun (III) function [28], Peng-Tan (II)
function [22], and Peng-Tan-Wang function [23] are implicitly quadratic. In order
to do that, we need the following theorem.

Theorem 3. Let S be a proper subfield of F2n . Suppose F : F2n → F2n is a
function such that x · F (x) ∈ S for all x ∈ F2n . Then F is implicitly quadratic.

Proof. Let {v1, v2, · · · , vd} be a basis for S over F2. We can extend it to a basis
{v1, · · · , vd, vd+1, · · · , vn} for F2n . We define a linear isomorphism φ : F2n → F

n
2

by φ(v1) := (1, 0, · · · , 0), φ(v2) := (0, 1, 0, · · · , 0), · · · , φ(vn) := (0, · · · , 0, 1). We
shall show that F̃ := ψφ(F) is implicitly quadratic. Let x1, · · · , xn, y1, · · · , yn

be variables. Suppose x := φ−1(x1, · · · , xn) and y := φ−1(y1, · · · , yn). Let
(s1, s2, · · · , sn) := φ(xy).

We claim that each component of φ(xy) is quadratic in terms of x1, · · · , xn,
y1, · · · , yn. Suppose (x′

1, x
′
2, · · · , x′

n) := ϕ(x) = ϕ ◦ φ−1(x1, x2, · · · , xn) and
(y′

1, y
′
2, · · · , y′

n) := ϕ(y) = ϕ ◦ φ−1(x1, x2, · · · , xn). Thus, each of the x′
i (resp.

y′
i) is a linear combination of x1, · · · , xn (resp. y1, · · · , yn). Note that each com-

ponent of ϕ(xy) is quadratic in terms of x′
1, · · · , x′

n, y′
1, · · · , y′

n. Since ϕ ◦ φ−1

is linear, we see that any component of ϕ(xy) is also quadratic in terms of
x1, · · · , xn, y1, · · · , yn. Moreover, as φ◦ϕ−1 is linear, we conclude that any com-
ponent of φ(xy) = φ◦ϕ−1(ϕ(xy)) is quadratic in terms of x1, · · · , xn, y1, · · · , yn.

Now, if we let y = F (x), then we have xy ∈ S. As xy ∈ S and {v1, v2, · · · , vd}
is a basis for S, the last (n − d) components of φ(xy) must all be zero. So, F̃

satisfies the following (n − d) IQE: sd+1 = 0, sd+2 = 0, · · · , sn = 0. Thus, F̃ is
implicitly quadratic. Hence, F is implicitly quadratic. ��
Corollary 6. The Zha-Hu-Sun (III) function [28] and the Peng-Tan (II) func-
tion [22] are implicitly quadratic.

Proof. Let F1 and F2 be the Zha-Hu-Sun (III) function and the Peng-Tan (II)
function respectively. Note that

x · F1(x) =

{
β + αx if x ∈ F2d ,

1 if x ∈ F2n \ F2d ,

and

x · F2(x) =

{
βx(x + 1)−1 + αx if x ∈ F2d ,

1 if x ∈ F2n \ F2d .

For any x ∈ F2d , we have β+αx, βx(x+1)−1+αx ∈ F2d as α, β ∈ F2d and F2d is
closed under addition, multiplication, and taking inverse. For any x ∈ F2n \F2d ,
we have x · F1(x) = x · F2(x) = 1. Thus, x · F1(x), x · F2(x) ∈ F2d for all x ∈ F2n .
Hence, by Theorem 3, F1 and F2 are implicitly quadratic. ��
Corollary 7. Let F be the Peng-Tan-Wang function [23]. Then F is implicitly
quadratic.

Implicit Quadratic Property of Differentially 4-Uniform Permutations 373

Proof. First note that if 〈γ〉 = F2n , then F (x) = γ−1x−1 for all x ∈ F2n . In this
case, F is affine equivalent to the Inverse function, and so is implicitly quadratic
by Lemma 3. Now suppose that 〈γ〉 �= F2n . Then F2(γ) is a proper subfield of

F2n . Note that x · F (x) =

{
γ−1 if x ∈ U,

1 if x ∈ F2n \ U.

Thus, x · F (x) ∈ F2(γ) for any x ∈ F2n . Hence, by Theorem 3, F is implicitly
quadratic. ��

4.3 Functions Constructed by Expansion

In 2013, Carlet et al. [7] introduced a method to construct differentially 4-uniform
permutations over F2n+1 from known permutations over F2n . The construction
is as follows.

– Carlet et al. [7]: Let n ≥ 5 be an odd integer. For any element α ∈ F2n \{0, 1}
such that Tr(α) = Tr(1/α) = 1, define an (n+1, n+1)-function F as follows:

F (x1,· · ·,xn, xn+1) :=

{(
1
x′ , g(x′)

)
if xn+1 = 0,(

α
x′ , g(x′

α) + 1
)

if xn+1 = 1,

where x′ ∈ F2n is identified with (x1, · · · , xn) ∈ F
n
2 and g is an arbitrary

Boolean function defined on F2n . Note that 1
0 is defined as 0.

In the following, we show that the above function is implicitly quadratic.

Theorem 4. Suppose α ∈ F2n\F2 and g1, g2 : F2n → F2 are Boolean functions.
Let I : F2n → F2n be the Inverse function. Define the function F : F2n × F2 →
F2n × F2 by

F (x0, x) :=

{
(g1(x), I(x)) if x0 = 0,

(g2(x), αI(x)) if x0 = 1.

Then F is implicitly quadratic.

Proof. Let F2 : F2n → F2n be defined by F2(x) := αI(x). Suppose F̃1 := ψϕ(I),
F̃2 := ψϕ(F2), g′

1 := g1 ◦ ϕ−1, and g′
2 := g2 ◦ ϕ−1. We define F̃ : Fn+1

2 → F
n+1
2

by

F̃ (x0, x1, · · · , xn) :=

{
(g′

1(x1, · · · , xn), F̃1(x1, · · · , xn)) if x0 = 0,

(g′
2(x1, · · · , xn), F̃2(x1, · · · , xn)) if x0 = 1.

Let M be the matrix obtained from MF̃ by removing all (4n+3) columns cor-
responding to the terms involving x0 or y0. Note that Nullity(M) ≤ Nullity(MF̃).
By Corollary 1 and the previous inequality, in order to show that F is implicitly
quadratic, it suffices to show that Nullity(M) > 0.

Observe that M =
(

M
F̃1

M
F̃2

)

. Thus, v ∈ Nullspace(M) if and only if

v ∈ Nullspace(M
F̃1

) ∩ Nullspace(M
F̃2

). In the following, we are going to show

374 T.F. Prabowo and C.H. Tan

that Nullspace(M
F̃1

) ∩ Nullspace(M
F̃2

) is nonzero by finding some IQE that are

satisfied by both F̃1 and F̃2.
We first find some IQE satisfied by F̃1. Let x1, · · · , xn, y1, · · · , yn be variables

and x := ϕ−1(x1, · · · , xn) and y := ϕ−1(y1, · · · , yn). Suppose (α1, · · · , αn) :=
ϕ(α) and (s1, · · · , sn) := ϕ(xy). Note that each si is quadratic in terms of
x1, · · · , xn, y1, · · · , yn. From the equation y = I(x), we see that

xy =

{
1 if x �= 0,

0 if x = 0.

Applying ϕ to the equation above gives

(s1, s2, · · · , sn) =

{
(0, 0, · · · , 0, 1) if x �= 0,

(0, 0, · · · , 0, 0) if x = 0.

Thus, F̃1 satisfies the (n − 1) IQE: s1 = 0, s2 = 0, · · · , sn−1 = 0.
Now we find some IQE satisfied by F̃2. Consider the equation y = αx−1.

Then

xy =

{
α if x �= 0,

0 if x = 0.

Applying ϕ to the equation above, we have

(s1, s2, · · · , sn) =

{
(α1, α2, · · · , αn−1, αn) if x �= 0,

(0, 0, · · · , 0, 0) if x = 0.

Suppose {i1, i2, · · · , ik} := {i ∈ {1, 2, · · · , n − 1}|αi = 0} and {j1, j2, · · · , jl} :=
{j ∈ {1, 2, · · · , n − 1}|αj = 1}. Then si1 = 0, si2 = 0, · · · , sik

= 0 are k IQE
satisfied by F̃2 (and so these k IQE are satisfied by both F̃1 and F̃2). Moreover,
the following (l − 1) IQE are also satisfied by both F̃1 and F̃2: sj1 + sj2 =
0, sj1 + sj3 = 0, · · · , sj1 + sjl

= 0. Thus, there are at least k + (l − 1) = (n − 2)
IQE satisfied by both F̃1 and F̃2. Hence, Nullity(M) = dim(Nullspace(M)) =
dim(Nullspace(M

F̃1
) ∩ Nullspace(M

F̃2
)) ≥ n − 2 > 0. ��

Recently, Perrin et al. [24] introduced the so-called butterfly structure, which
is a 2n-bit mapping obtained by concatenating two bivariate functions over F2n .
Such butterflies have two CCZ-equivalent representations: one is a quadratic non-
bijective function (denoted Vα

e) and one is a degree n + 1 permutation (denoted
Hα

e) as described in the following.

– Perrin et al. [24]: Let α ∈ F2n and e be an integer such that the mapping
x �→ xe is a permutation on F2n . The Butterfly Structures are the functions
on (F2n)2 defined as follows:

• the open butterfly Hα
e is defined by

Hα
e (x, y) :=

(
(y + α((x + ye)1/e + αy))e + ((x + ye)1/e + αy)e, (x + ye)1/e + αy

)
,

Implicit Quadratic Property of Differentially 4-Uniform Permutations 375

• the closed butterfly Vα
e is defined by

Vα
e (x, y) := ((x + αy)e + ye, (y + αx)e + xe) .

It was shown in [24] that the differential uniformity of these functions is at
most 4 when n, e, and α satisfy any of the following conditions:

(1) n is odd, e = 3 · 2t for some integer t, and α ∈ F2n \ {0, 1}; or
(2) n = 6, e = 5, α is a certain element of F2n ; or
(3) n is odd, e = 22k + 1 for some integer k, α = 1.

However [24] also stated that in any of these cases, the function Vα
e is

quadratic (and hence is implicitly quadratic as well). This is because the left
and right side of Vα

e (x, y) are equal to (x + αy)e + ye and (y + αx)e + xe respec-
tively, both of which are quadratic in any of the three cases (note that the
mapping x �→ xe is quadratic in any of these cases). As Vα

e and Hα
e are CCZ-

equivalent, by Lemma 3, we see that the differentially 4-uniform permutation Hα
e

is also implicitly quadratic.

4.4 Functions Constructed by Contraction

In [6], Carlet presented a method to construct differentially 4-uniform permuta-
tions over F2n by using APN permutations over F2n+1 . The construction is as
follows.

– Carlet [6]: Let c ≡ n mod 2, S = {x ∈ F2n+1 |Tr(x) = 0}, α ∈ F2n+1 such
that Tr(α) = 1. Define F (x) = x + 1

x+α+c + (1
x+α+c)2. Identify S with F2n ,

then F (x)|S is a permutation over F2n .

In this subsection, we show that the above function is implicitly quadratic.

Theorem 5. Let V be an F2-vector space of dimension n and U be a vector
subspace of V of dimension d < n. Suppose F : V → V is implicitly quadratic
and F (U) ⊆ U . Then F |U : U → U is implicitly quadratic.

Proof. Let {v1, · · · , vd} be a basis for U . We can extend it to a basis {v1, · · · , vd,
vd+1, · · · , vn} for V . Define a linear isomorphism φ : U → F

d
2 by φ(v1) :=

(1, 0, · · · , 0), φ(v2) := (0, 1, 0, · · · , 0), · · · , φ(vd) := (0, · · · , 0, 1). Similarly, define
another linear isomorphism φ : V → F

n
2 by φ(v1) := (1, 0, · · · , 0), φ(v2) :=

(0, 1, 0, · · · , 0), · · · , φ(vn) := (0, · · · , 0, 1).
As F is implicitly quadratic, then ψφ(F) is also implicitly quadratic. So,

there exists a quadratic polynomial q such that q(x1, · · · , xn, y1, · · · , yn) = 0.
Define a quadratic polynomial q′ in 2d variables by q′(x1, · · · , xd, y1, · · · , yd) :=
q(x1, · · · , xd, 0, · · · , 0

︸ ︷︷ ︸
n−d times

, y1, · · · , yd, 0, · · · , 0
︸ ︷︷ ︸
n−d times

). Then q′ is an IQE satisfied by

ψφ(F |U). Thus, F |U : U → U is also implicitly quadratic. ��

376 T.F. Prabowo and C.H. Tan

Lemma 5. Suppose c ∈ {0, 1} and α ∈ F2n . Define F : F2n → F2n by F (x) :=

x + 1
x+α+c +

(
1

x+α+c

)2

. Then F is implicitly quadratic.

Proof. Note that from y = F (x), we can derive

(x + α + c)2(y + α + c)+(x + α + c)3+(x + α + c)=

{
1 if x �=α+c,

0 if x=α+c.

We can obtain (n − 1) IQE satisfied by ψϕ(F) by applying ϕ to the above
equation and looking at the components. Thus, F is implicitly quadratic. ��
Combining Theorem 5 and Lemma 5, we see that the function constructed by
Carlet in [6] is implicitly quadratic.

5 An Open Question and Its Partial Answer

All of the differentially 4-uniform permutations we have examined so far are
implicitly quadratic. This naturally leads us to pose the following open question.

Open Question. Let n ≥ 7 be integer. Do there exist differentially 4-uniform
permutations over F2n which are not implicitly quadratic? If so, then how to
construct them?

In attempt to solve the open question, we performed an exhaustive search
on all power functions (functions of the form xe for some integer e) on F2n for
7 ≤ n ≤ 13. We found that there is no differentially 4-uniform power function
on F27 ,F28 , F29 , and F212 that is not implicitly quadratic. We managed to find
some non-implicitly quadratic differentially 4-uniform power functions on F210 .
For e ∈ {87, 174, 237, 315, 348, 369, 423, 453, 474, 555, 630, 669, 696, 723, 738,
789, 846, 873, 906, 948}, the functions xe on F210 are non-implicitly quadratic
differentially 4-uniform functions. However, none of them is a permutation.

Fortunately, we successfully found some non-implicitly quadratic differen-
tially 4-uniform permutations on F211 and F213 , solving the open question for the
special cases of n = 11 and n = 13. Let E1 :=

⋃10
i=0{109 ·2i (mod 211−1), 695 ·2i

(mod 211−1)} and E2 :=
⋃10

i=0{251·2i (mod 211−1), 367·2i (mod 211−1)}. For
any e ∈ E1∪E2, the function xe on F211 is a differentially 4-uniform permutation
which is not implicitly quadratic. We also computed the differential spectrum
and nonlinearity of these power functions. For e ∈ E1, the differential spectrum
of xe is [2433883, 1420618, 337755], while for e ∈ E2, the differential spectrum
of xe is [2568985, 1150414, 472857].1 The nonlinearity of xe for any e ∈ E1 ∪ E2

is 960. This is slightly less than the nonlinearity of the Inverse function on F211 ,
which equals to 980.

For the case n = 13, we found that for any e ∈ ⋃12
i=0{303 · 2i (mod 213 − 1),

947 · 2i (mod 213 − 1)}, the function xe on F213 is a differentially 4-uniform
1 The differential spectrum [a, b, c] represents the multi-set in which 0 appears a times,

2 appears b times and 4 appears c times.

Implicit Quadratic Property of Differentially 4-Uniform Permutations 377

permutation that is not implicitly quadratic. The differential spectrum of these
power functions is [37703173, 25244662, 4152837], while the nonlinearity is 3968,
slightly less than the nonliearity of the Inverse function on F213 which equals to
4006.

Extending our exhaustive search on all power functions on F2n for 7 ≤ n ≤ 13,
we remark that it was shown in Table 1 of [2], that for 14 ≤ n ≤ 24, any
power function on F2n which is a differentially 4-uniform permutation is CCZ-
equivalent to either the Inverse function, the Kasami function, the Gold function,
or the Bracken-Leander function. We have seen in Subsect. 4.1 that all of these
functions are implicitly quadratic. Thus, by Lemma3, we conclude that for any
14 ≤ n ≤ 24, there is no power function on F2n that is both differentially 4-
uniform permutation and not implicitly quadratic.

6 Conclusion

In this paper, we studied the implicit quadratic property for S-boxes con-
structed from differentially 4-uniform permutations (bijective (n, n)-functions).
If an (n, n)-function used as an S-box in some ciphers is implicitly quadratic,
then one can derive some quadratic equations to express the S-box. As a result,
the cipher is vulnerable to algebraic attack [10,12–14]. Thus, the property of
being not implicitly quadratic is a desired property for a good S-box.

It is desirable to find a differentially 4-uniform permutation that is not implic-
itly quadratic as such function has a good resistance against both algebraic and
differential attack. We have examined all (to the best of our knowledge) the
known differentially 4-uniform permutations over F2n . We proved that all of
them are implicitly quadratic, except for the Li-Wang’s function [17].2 This leads
to an open question of whether there exist non-implicitly quadratic differentially
4-uniform permutations over F2n and how to construct them if they exist. We
found some power functions on F211 and F213 which are non-implicitly quadratic
differentially 4-uniform permutations, solving the question for the special cases
of n = 11 and n = 13. However, solving the open question for the general case
remains an interesting problem to be explored for future research.

References

1. Biryukov, A., De Cannière, C.: Block ciphers and systems of quadratic equa-
tions. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 274–289. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-39887-5 21

2. Blondeau, C., Canteaut, A., Charpin, P.: Differential properties of power functions.
Int. J. Inf. Coding Theory 1(2), 149–170 (2010)

3. Bracken, C., Leander, G.: A highly nonlinearity differentially 4-uniform power map-
ping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010)

2 We have tested the Li-Wang functions [17] in Magma for n ≤ 12. The computation
shows that all of them are implicitly quadratic. This suggests that it is likely that
all the Li-Wang functions are implicitly quadratic.

http://dx.doi.org/10.1007/978-3-540-39887-5_21

378 T.F. Prabowo and C.H. Tan

4. Bracken, C., Tan, C.H., Tan, Y.: Binomial differentially 4-uniform permutations
with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012)

5. Budaghyan, L., Carlet, C., Pott, A.: New class of almost bent and almost perfect
nonlinear polynomials. IEEE Trans. Inf. Theory 52(3), 1141–1152 (2006)

6. Carlet, C.: On known and new differentially uniform functions. In: Parampalli, U.,
Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 1–15. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22497-3 1

7. Carlet, C., Tang, D., Tang, X., Liao, Q.: New construction of differentially 4-
uniform bijections. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol.
8567, pp. 22–38. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12087-4 2

8. Cheon, J.H., Lee, D.H.: Quadratic equations from APN power functions. IEICE
Trans. Fundam. E89-A(1), 1–9 (2006)

9. Cheon, J.H., Lee, D.H.: Resistance of S-boxes against algebraic attacks. In: Roy, B.,
Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–93. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-25937-4 6

10. Cid, C., Murphy, S., Robshaw, M.: Algebraic Aspects of the Advanced Encryption
Standard. Springer, Heidelberg (2006)

11. Courtois, N.T., Debraize, B., Garrido, E.: On exact algebraic [non-]immunity
of S-boxes based on power functions. In: Batten, L.M., Safavi-Naini, R. (eds.)
ACISP 2006. LNCS, vol. 4058, pp. 76–86. Springer, Heidelberg (2006). doi:10.
1007/11780656 7

12. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

13. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 17

14. Faugère, J.C.: A new efficient algorithm for computing Grobner bases without
reduction to zero (F5). In: ISSAC 2002, pp. 75–83. ACM, New York (2002)

15. Gold, R.: Maximal recursive sequences with 3-valued recursive cross-correlation
functions (corresp.). IEEE Trans. Inf. Theory 14(1), 154–156 (1968)

16. Kasami, T.: The weight enumerators for several classes of subcodes of the 2nd
order binary reed-muller codes. Inf. Control 18(4), 369–394 (1971)

17. Li, Y.Q., Wang, M.S.: Constructing differentially 4-uniform permutations over
F22m from quadratic APN permutations over F22m+1 . Des. Codes Cryptogr. 72,
249–264 (2014)

18. De Meyer, C.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia
(2000)

19. Nawaz, Y., Gupta, K.C., Gong, G.: Algebraic immunity of S-boxes based on power
mappings, analysis and construction. IEEE Trans. Inf. Theory 55(9), 4263–4273
(2009)

20. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 6

21. Peng, J., Tan, C.H.: New explicit constructions of differentially 4-uniform permu-
tations via special partitions of F22k . Finite Fields Appl. 40, 73–89 (2016)

22. Peng, J., Tan, C.H.: New differentially 4-uniform permutations by modifying the
inverse function on subfields. Cryptogr. Commun. doi:10.1007/s12095-016-0181-x

23. Peng, J., Tan, C.H., Wang, Q.: A new family of differentially 4-uniform permuta-
tions over F22k for odd k. Sci. China Math. 59(6), 1221–1234 (2016)

http://dx.doi.org/10.1007/978-3-642-22497-3_1
http://dx.doi.org/10.1007/978-3-319-12087-4_2
http://dx.doi.org/10.1007/978-3-540-25937-4_6
http://dx.doi.org/10.1007/11780656_7
http://dx.doi.org/10.1007/11780656_7
http://dx.doi.org/10.1007/3-540-45539-6_27
http://dx.doi.org/10.1007/3-540-36178-2_17
http://dx.doi.org/10.1007/3-540-48285-7_6
http://dx.doi.org/10.1007/s12095-016-0181-x

Implicit Quadratic Property of Differentially 4-Uniform Permutations 379

24. Perrin, L., Udovenko, A., Biryukov, A.: Cryptanalysis of a theorem: decomposing
the only known solution to the big APN problem. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9815, pp. 93–122. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53008-5 4

25. Qu, L.J., Tan, Y., Tan, C.H., Li, C.: Constructing differentially 4-uniform per-
mutations over F22k via the switching method. IEEE Trans. Inf. Theory 59(7),
4675–4686 (2013)

26. Qu, L.J., Tan, Y., Li, C., Gong, G.: More constructions of differentially 4-uniform
permutations on F22k . Des. Codes Cryptogr. 78(2), 391–408 (2016)

27. Tang, D., Carlet, C., Tang, X.: Differentially 4-uniform bijections by permuting
the inverse function. Des. Codes Cryptogr. 77(1), 117–141 (2015)

28. Zha, Z.B., Hu, L., Sun, S.W.: Constructing new differentially 4-uniform permuta-
tions from the inverse function. Finite Fields Appl. 25, 64–78 (2014)

29. Zha, Z.B., Hu, L., Sun, S.W., Shan, J.Y.: Further results on differentially 4-uniform
permutations over F22m . Sci. China Math. 58(7), 1577–1588 (2015)

http://dx.doi.org/10.1007/978-3-662-53008-5_4
http://dx.doi.org/10.1007/978-3-662-53008-5_4

Secret Sharing for mNP: Completeness Results

Mahabir Prasad Jhanwar1(B) and Kannan Srinathan2

1 Ashoka University, Sonepat, India
mahavir.jhawar@gmail.com

2 IIIT Hyderabad, Hyderabad, India

Abstract. We show completeness results for secret sharing schemes
realizing mNP access structures. We begin by proposing a new,
Euclidean-type, division technique for access structures. Using this new
technique we obtain several results in characterizing access structures for
efficient (unconditionally secure) secret sharing schemes:

– We show a useful transformation that achieves efficient schemes
for complex access structures using schemes realizing simple access
structures.

– We show that, assuming every access structure in P ∩ mono admits
efficient secret sharing, the existence of an efficient secret sharing
for an access structure in mNP that is also complete for mNP under
Karp/Levin monotone-reductions implies secret sharing schemes for
all of mNP.

– We finally improve upon the above completeness result by obtaining
the same under ordinary Karp/Levin reductions.

1 Introduction

Secret sharing schemes enable a dealer, holding a secret piece of information, to
distribute this secret among a set Pn = {P1, . . . , Pn} of n players such that only
some predefined authorized subsets of players can reconstruct the secret from
their shares. The (monotone) collection Γn ⊆ 2Pn of authorized sets that can
reconstruct the secret is called an access structure. The security of a secret shar-
ing scheme requires that any unauthorized set B of players, i.e., B /∈ Γn, pulling
its shares together and attempt to reconstruct the secret should fail with high
probability. Consequently, the security is termed unconditional (computational)
if the players are computationally unbounded (computationally bounded).

A secret sharing scheme realizing an access structure Γn over n players is
termed size-efficient, if the total length of the n shares is polynomial in n; semi-
efficient, if the share distribution is computable in poly(n) time; and efficient, if
both share distribution and reconstruction are computable in poly(n) time. The
notions of semi-efficiency and efficiency are stronger than size-efficiency.

A major problem in this field is the characterization of access structures in
terms of secret sharing schemes that they admit, where the security and efficiency
of the later is measured as a combination of the following:

– Unconditional/computational security, and
– size-efficiency/semi-efficiency/efficiency.
c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 380–390, 2016.
DOI: 10.1007/978-3-319-49890-4 21

Secret Sharing for mNP: Completeness Results 381

For concrete characterization, now onwards, we use the term access structure
for referring to an infinite family of access structures Γ = {Γn}n∈N (for every
n, Γn is an access structure over Pn) and the term “scheme realizing Γ” for
referring to an infinite family of secret sharing schemes {Πn}n∈N such that for
every n, Πn realizes Γn.

Associating sets A ⊆ Pn with there characteristic vectors xA ∈ {0, 1}n, we
can define a language LΓ ⊆ {0, 1}∗ associated with an access structure Γ =
{Γn}n∈N. Namely, LΓ = ∪∞

n=1{xA ∈ {0, 1}n | A ∈ Γn}. An access structure
Γ = {Γn}n∈N is said to be in the complexity class P ∩ mono if the associated
language LΓ ∈ P ∩ mono. The Γ is said to be in mNP if LΓ ∈ mNP.

The question of access structures characterization has been widely studied.
The extensive work in this area can be divided under the following two category
of security: unconditional and computational. The most general class of access
structures with known characterization results under them are given below.

– Unconditional Security
• P ∩ mono: It has been extensively studied whether there exists efficient

secret sharing schemes for every access structures in P∩mono? In fact, it
is wide open if the same is true for all of mP - the class of access structure
strictly contained in P ∩ mono. With several schemes realizing different
classes of access structures [6–8,11,12,16], the most general class of access
structures in P∩mono that admit efficient perfect secret sharing are those
that can be described by a polynomial-size monotone span program [13].

• mNP: The question of obtaining unconditionally secure efficient schemes
for access structures in mNP was met with an impossibility result. Steven
Rudich observed that if NP �= coNP, then for Hamiltonian access structure
in NP there exists no semi-efficient secret-sharing scheme (specifically,
schemes with perfect privacy) [4].

– Computational Security
• P ∩ mono: It is known that the whole of mP admit efficient secret shar-

ing schemes that are computationally secure - assuming that one-way
functions exists [4,17].

• mNP: Komargodski, Naor and Yogev [14] showed semi-secret sharing
schemes for all of mNP (and therefore cover all of P ∩ mono), where
the reconstruction algorithm is polynomial-time if the NP-witnesses for
the authorized sets are given. Their scheme assumes existence of witness
encryption [9] for whole of NP and one-way functions.

1.1 Our Results

An important corollary of the main result of Komargodski, Naor and Yogev [14]
is the following completeness theorem for secret sharing schemes realizing mNP
access structures:

Theorem 1 [14]. Assume that one-way functions exists. Then existence of an
efficient computational secret sharing for an access structure in mNP that is also
complete for mNP under Karp/Levin reductions implies efficient computational
secret sharing scheme for every access structure in mNP.

382 M.P. Jhanwar and K. Srinathan

The above theorem was established using the following two results:

– A secret sharing scheme for an access structure Γ = {Γn}n∈N implies witness
encryption for the associated language LΓ .

– Completeness theorem of witness encryption: Using standard Karp/Levin
reductions between NP-complete languages, one can transform a witness
encryption for a single NP-complete language to a witness encryption scheme
for any other language in NP.

Beside one-way functions, the completeness result in Theorem 1, therefore,
is obtained based on the existence of witness encryption which in turn relies
on strong computational assumptions related to indistinguishability obfusca-
tion [2,3].

In this paper we obtain such completeness results for mNP access structures
assuming that efficient secret sharing schemes exists for access structures in
P∩mono. More importantly, our completeness results hold under reductions with
unconditional security. As a corollary, our completeness results also partially
resolve the following problem that was left open in [14]: Is there a way that can
use secret sharing scheme for access structures in P ∩ mono to achieve secret
sharing scheme for access structures in mNP?

In particular, this paper makes the following important contributions:

– Our foremost contribution lies in defining a new Euclidean-type division tech-
nique for access structures. Namely, for a given pair of access structures (more
like a pair of dividend and divisor), this new technique distill a list of access
structures, possibly simpler then dividend and divisor (more like a remain-
der). Unlike the ordinary Euclidean division for numbers, the remainder access
structures are not fixed and choosing them carefully is of great importance
as it allows for simplified reductions among schemes realizing these access
structures.

– We next illustrate the usefulness of our proposed division property by describ-
ing a transformation that achieves efficient secret sharing scheme for a given
access structure using secret sharing schemes for appropriately defined divisor
and remainder access structures.

– The above transformation helps us to achieve our first completeness theorem:
Namely we show that, assuming access structures in P ∩mono admit efficient
secret sharing, the existence of an efficient secret sharing for an access structure
in mNP that is also complete for mNP under Karp/Levin monotone-reductions
implies secret sharing schemes for all of mNP.

– The above completeness theorem is obtained for NP-completeness under
monotone-reductions. Removing the later restriction proved to be an impor-
tant achievement of our work. A clever construction of remainder access struc-
tures helped us to obtain our second completeness theorem: Namely we show,
assuming access structures in P ∩ mono admit efficient secret sharing, the
existence of an efficient secret sharing for an access structure in mNP implies
efficient secret sharing for all of mNP.

Secret Sharing for mNP: Completeness Results 383

2 Preliminaries

2.1 Access Structure and Its Complexity

Let Pn
def= {P1, . . . , Pn} be a set of n players. A collection Γ ⊆ 2Pn of subsets of

Pn is called monotone increasing if, A ∈ Γ and A ⊆ B ⊆ Pn implies B ∈ Γ . A
collection Γ ′ ⊆ 2Pn is called monotone decreasing if, A ∈ Γ ′ and B ⊆ A implies
B ∈ Γ ′.

Definition 1 (Access Structure). An access structure on Pn is a tuple
(Γn, Γ ′

n), where Γn, Γ ′
n ⊆ 2Pn , such that

– Γn is monotone increasing; Γ ′
n is monotone decreasing, and

– Γn ∩ Γ ′
n = ∅.

For an access structure (Γn, Γ ′
n), the collection Γ ′

n is often called an adversary
access structure. We call an access structure complete if, the adversary access
structure Γ ′

n complements Γn in full. We consider only complete access structures
in this paper and they are simply denoted by Γn.

Definition 2 (Complete Access Structure). An access structure (Γn, Γ ′
n) is

called complete if, Γ ′
n = 2Pn\Γn, i.e., Γn ∪ Γ ′

n = 2Pn .

An access structure Γn can be freely identified with its characteristic Boolean
function fΓn

: {0, 1}n → {0, 1}. To each set A ⊆ Pn associate a unique (charac-
teristic vector) vA = (vA

1 , . . . , vA
n) ∈ {0, 1}n as follows: for every j in 1 ≤ j ≤ n,

vA
j = 1 iff Pj ∈ A. Define, DΓn

= {vA | A ∈ Γn} ⊆ {0, 1}n.

Definition 3 (Associated Boolean function). For access structure Γn, the
corresponding boolean function fΓn

: {0, 1}n → {0, 1} is defined as follows: for
x ∈ {0, 1}n, fΓn

(x) = 1 iff x ∈ DΓn
.

Clearly, the boolean function fΓn
is monotone. Associating access structures

Γn with their boolean functions fΓn
, we can associate a language LΓ ⊆ {0, 1}∗

to a family of access structures Γ = {Γn}n∈N.

Definition 4 (Associated Language). For an access structure Γ = {Γn}n∈N,
the corresponding language LΓ ⊆ {0, 1}∗ is defined as follows: LΓ = {x ∈
{0, 1}∗ | fΓ|x|(x) = 1}, where |x| denotes the length of the binary string x.

For any access structure Γ = {Γn}n∈N, the corresponding language LΓ is
clearly in the complexity class mono - the class of monotone languages.

Definition 5 (Access Structure Complexity). An access structure Γ =
{Γn}n∈N is said to be

1. in P ∩ mono if LΓ ∈ P ∩ mono,
2. in NP ∩ mono if LΓ ∈ NP ∩ mono.

It is a well known fact that, P ∩ mono �= mP [1,15], where the complexity
class mP denotes languages that admit monotone circuits of polynomial-size;
but NP∩mono = mNP [10], where mNP denotes the class of languages accepted
by polynomial-size monotone non-deterministic circuits. We will refer to access
strutures in NP ∩ mono by mNP access structures.

384 M.P. Jhanwar and K. Srinathan

2.2 Secret Sharing

An n-party secret sharing scheme involves n + 1 players: A dealer D, a set
Pn = {P1, . . . , Pn} of n participants, and an access structure Γn over P.
A secret sharing scheme for an arbitrary Γn allows the dealer to distribute shares
of a secret value such that

– Privacy: any unauthorized set B ⊆ P of participants, i.e., B /∈ Γn, must not
obtain any information on the secret from their collective shares.

– Reconstructability: any authorized coalitions A ⊆ P of participants, i.e.,
A ∈ Γn, must always reconstruct the secret from their collective shares.

Definition 6 (Secret Sharing). An n-party secret sharing for an access struc-
ture Γn over Pn = {P1, . . . , Pn} is a tuple Π =

(
Share,Rec, Σ,Σ1, . . . , Σn

)
such

that the following holds:

– Algorithms
• Share.Π: The share distribution algorithm Share.Π is a probabilistic algo-

rithm that, on input s ∈ Σ returns (Sh1, . . . ,Shn) $← Share.Π(s), where
Shi ∈ Σi, 1 ≤ i ≤ n.

• Rec.Π: The secret reconstruction algorithm Rec.Π is a deterministic
algorithm that on input (σ1, . . . , σn) ∈ ∏n

i=1(Σi ∪ {∗}) returns a value
σ ← Rec.Π(σ1, . . . , σn) where σ ∈ Σ ∪ {⊥}. The distinguished symbols ∗
and ⊥ have the following meanings: σi = ∗ means the ith share is miss-
ing, and ⊥ ← Rec.Π(σ1, . . . , σn) indicates that the algorithm is unable to
recover the underlying secret.

– Property
• Correctness: For every authorized set of players A ⊆ Pn, i.e., A ∈ Γn,

and for every s ∈ Σ, we have

Rec
(
Share.Π(s)A

)
= s (1)

where Share.Π(s)A restricts the n length vector (Sh1, . . . ,Shn) $← Share.
Π(s) to its A-entries, i.e., Share.Π(s)A = {Shi}Pi∈A.

• Security: The security of a secret sharing scheme is measured by the max-
imum probability with which a adversary A can win the following privacy
game - PrivacySS.

The game is played between the dealer D and an adversary A as follows:

1. A first picks a pair of secrets s0, s1 ∈ S, and gives them to D.
2. D chooses a random bit b ∈ {0, 1} and executes Share.Π(sb).
3. A queries shares of a set of participants B ⊆ P such that B /∈ Γn.
4. A outputs a guess b′ for b using the shares Share.Π(sb)B.

The adversary is said to win the game if b′ = b. We measure its success as

AdvPrivacySS(A) = 2 · Pr[b′ = b] − 1.

Secret Sharing for mNP: Completeness Results 385

Σ � s0, s1 ← A;

b
$← {0, 1};

(Sh1, . . . , Shn)
$← Share.Π(sb);

Γn �� B ← A;
{0, 1} � b′ ← A Share.Π(sb

)
B

)

Fig. 1. PrivacySS: The Privacy Game

Definition 7 (Privacy). A secret sharing scheme is said to have:

* Perfect-Privacy, when A is unbounded and AdvPrivacySS(A) = 0
* ε-Statistical Privacy, when A is unbounded and AdvPrivacySS(A) < ε, where ε > 0.
* Computational-Privacy, when A is a probabilistic polynomial time (PPT) algo-

rithm and AdvPrivacySS(A) < η(k), where η(·) is a negligible function, and k
denotes the underlying security parameter of the scheme1.

• Efficiency: Different measure of efficiency is used in the secret sharing liter-
ature. A secret sharing scheme Π is termed

* Size Efficient, if the total length of the n shares is polynomial in n.
* Semi Efficient, if the share distribution algorithm Share.Π is computable in

poly(n) time.
* Efficient, if both Share.Π and Rec.Π are computable in poly(n) time.

Definition 8 (Secret Sharing for Languages). A family of secret sharing
schemes Π = {Πn}n∈N is said to realize Γ = {Γn}n∈N if for every n ∈ N, Πn

realizes Γn. Then Π is also called a secret sharing scheme for the corresponding
language LΓ (see Definition 4).

Consequently, Π = {Πn}n∈N realizing Γ = {Γn}n∈N is said to be (size/semi)
efficient if for every n ∈ N, Πn realizing Γn is (size/semi) efficient.

In the following, all the secret sharing schemes that we will present are both
efficient and have perfect privacy.

3 A Division Property for Access Structures

For n,m ∈ N, consider the following access structures:

– Γn - an access structure over Pn = {P1, . . . , Pn}
– Δm - an access structure over Qm = {Q1, . . . , Qm}, and
– for every i in 1 ≤ i ≤ m, Γ

(i)
n - an access structure over Pn.

1 In this setting, the instantiations of n, |Σ|, Share.Π, Rec.Π and so on, admits an
additional parameter k.

386 M.P. Jhanwar and K. Srinathan

Definition 9. We say Γn mod Δm
def= {Γ

(1)
n , . . . , Γ

(m)
n } if, for every A ⊆ Pn the

set A mod Δm
def=

{
Qi ∈ Qm | A ∈ Γ

(i)
n

} ⊆ Qm satisfies the following property:

A ∈ Γn ⇐⇒ A mod Δm ∈ Δm (2)

The division property in Definition 9 closely resembles the ordinary Euclidean
division for integers, where Γn is dividend, Δm is divisor, and remainder is formed
by the list of access structures {Γ

(1)
n , . . . , Γ

(m)
n }. Clearly, the size (the number

of authorized sets) of each Γ
(i)
n is at most that of Γn. We will later see the

importance of obtaining smaller size (and therefore simpler) Γ
(i)
n ’s.

4 A Transformation

Theorem 2. Let Γn, Γ
(1)
n , . . . , Γ

(m)
n be access structures on Pn, and Δm be an

access structure on Qm such that Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }. Assume

1. ΠΔm
= (Share.ΠΔm

,Rec.ΠΔm
) is a perfect secret sharing scheme realizing

Δm, and
2. for every i in 1 ≤ i ≤ m, Π

Γ
(i)
n

= (Share.Π
Γ

(i)
n

,Rec.Π
Γ

(i)
n

) is a perfect secret

sharing realizing Γ
(i)
n

then there exists ΠΓn
- a perfect secret sharing scheme realizing Γn.

Proof: The secret sharing scheme ΠΓn
can be described as follows:

– Share.ΠΓn
: The share distribution algorithm distributes a secret s among play-

ers in Pn = {P1, . . . , Pn} as follows:
• Compute (s1, . . . , sm) $← Share.ΠΔm

(s)

• For every i in 1 ≤ i ≤ m, compute (si1, . . . , sin) $← Share.Π
Γ

(i)
n

(si)
The player Pj , for every j in 1 ≤ j ≤ n, gets the following share:

Pj ← (s1j , s2j , . . . , smj)

– Rec.ΠΓn
: For every authorized set A ∈ Γn, the players in A pull together

their respective shares and reconstruct the secret as follows. Let A mod Δm =
{Qi1 , . . . , Qir} ⊆ Qm, for some r in 1 ≤ r ≤ m. By the definition of
A mod Δm, A ∈ Γ

(ij)
n , j in 1 ≤ j ≤ r, and therefore players in A recon-

struct intermediate shares sij ’s using reconstruction algorithm Rec.Π
Γ

(ij)
n

’s
respectively. As A mod Δm is in Δm, the secret is finally reconstructed by
computing s ← Rec.ΠΔm

(si1 , . . . , sir).
– Privacy: Secret is perfectly hidden from the combined shares of any unautho-

rized set A′ /∈ Γn. Let A′ mod Δm = {Qi1 , . . . , Qiu} and it does not belongs
to Δm. The players in A′ can compute intermediate shares sij ’s, 1 ≤ j ≤ u,
of the secret s. But these shares {si1 , . . . , siu} will not reveal any information
(perfectly hidden) about s as {Qi1 , . . . , Qiu} /∈ Δm.

Secret Sharing for mNP: Completeness Results 387

5 Completeness Under Monotone-Reductions

Theorem 3. Assume access structures in P∩mono admit efficient secret shar-
ing. Then existence of an efficient secret sharing for an access structure in mNP
that is also complete for mNP under Karp/Levin monotone-reductions implies
secret sharing schemes for all of mNP.

Proof: Let Δ = {Δm}m∈N be an access structure in mNP that is also com-
plete for mNP under monotone-reductions and suppose it admits an efficient
secret sharing scheme. Consider an arbitrary access structure Γ = {Γn}n∈N

from mNP. We now show, for every n ∈ N, Γn admits an efficient secret sharing
scheme. For any fix n, there exists (completeness of Δ) an m ∈ N such that Γn

is monotone-reducible to Δm, i.e., there exists a polynomial time computable
monotone function KR : 2Pn → 2Qm such that the following holds:

∀A ⊆ Pn, A ∈ Γn ⇐⇒ KR(A) ∈ Δm. (3)

Define, for every i in 1 ≤ i ≤ m, an access structure Γ
(i)
n over Pn as follows:

For i ∈ [m], Γ (i)
n =

{
A ⊆ Pn | Qi ∈ KR(A)

}
. (4)

The theorem follows by proving the following claims (see Theorem 2):

Claim 1: Each Γ
(i)
n is in P ∩ mono, 1 ≤ i ≤ m

Claim 2: Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }.

Proof of Claim 1: We first show Γ
(i)
n is monotone, i.e., for every A,B ⊆ Pn with

Γ
(i)
n � A ⊆ B, we show B ∈ Γ

(i)
n . Firstly, Qi ∈ KR(A) as A ∈ Γ

(i)
n . Secondly,

the monotone property of KR map implies KR(A) ⊆ KR(B). These two mean
that Qi ∈ KR(B), implying B belongs to Γ

(i)
n .

We now show Γ
(i)
n is in P. For any set A ⊆ Pn, A ∈ Γ

(i)
n iff Qi ∈ KR(A). But,

KR is a polynomial time computable function and therefore computing KR(A)
is efficient, implying Γ

(i)
n is in P.

Proof of Claim 2: We now prove Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n }, i.e., for every

A ⊆ Pn, A ∈ Γn iff A mod Δm ∈ Δm. But

A mod Δm = {Qi ∈ Qm | A ∈ Γ (i)
n }

= {Qi ∈ Qm | Qi ∈ KR(A)}
= KR(A)

Therefore, for every set A ⊆ Pn

A ∈ Γn
eqn−3⇐⇒ KR(A) ∈ Δm

⇐⇒ A mod Δm ∈ Δm

This completes the proof.

388 M.P. Jhanwar and K. Srinathan

6 Completeness Without Monotone-Reductions

Theorem 4. Assume access structures in P ∩ mono admit efficient secret
sharing. Then existence of an efficient secret sharing for an access struc-
ture in mNP that is also complete for mNP under ordinary (not necessarily
monotone) Karp/Levin reductions implies efficient secret sharing for all those
Γ = {Γn}n∈N ∈ mNP that satisfy the following: for every n there exists a kn ∈ N

such that Γn = Bkn
∪ {A ⊆ Pn | |A| ≥ kn + 1}, where Bkn

is a subset of
Akn

def= {A ⊆ Pn | |A| = kn}.
Proof: Let Δ = {Δm}m∈N be an access structure in mNP that is also complete
and it admits an efficient secret sharing scheme. Consider an arbitrary access
structure Γ = {Γn}n∈N from mNP satisfying the following: for every n there
exists a kn ∈ N such that Γn = Bkn

∪ {A ⊆ Pn | |A| ≥ kn + 1}, where Bkn

is a subset of Akn
, the set of all kn-size subsets of Pn. We now show that Γn

admits efficient secret sharing scheme for every n ∈ N. For any fix n, there exists
(completeness of Δ) m ∈ N such that Γn is Karp/Levin reducible to Δm, i.e.,
there exists a polynomial time computable function KR : 2Pn → 2Qm with the
following property:

∀A ⊆ Pn, A ∈ Γn ⇐⇒ KR(A) ∈ Δm. (5)

We now define, for every i in 1 ≤ i ≤ m, an access structure Γ
(i)
n on Pn as

follows:

Γ (i)
n =

{
A ⊆ Pn | Qi ∈ KR(A) ∧ |A| = kn

} ∪ {A ⊆ Pn | |A| ≥ kn + 1} (6)

It is easy to see that, for every i in 1 ≤ i ≤ m, Γ
(i)
n is in P∩mono. To prove the

theorem, it suffices to show (by Theorem 2) that Γn mod Δm = {Γ
(1)
n , . . . , Γ

(m)
n },

i.e., for every A ⊆ Pn, A ∈ Γn iff A mod Δm ∈ Δm. We consider the following
exhaustive cases.

– |A| < kn: Clearly, A /∈ Γn and A mod Δm = ∅ /∈ Δm, and therefore A ∈ Γn

iff A mod Δm ∈ Δm holds true.
– |A| ≥ kn + 1: In this case, A ∈ Γn and A mod Δm = Qm ∈ Δm, and therefore

A ∈ Γn iff A mod Δm ∈ Δm holds true.
– |A| = k: Finally, in this case

A mod Δm = {Qi ∈ Qm | A ∈ Γ (i)
n }

= {Qi ∈ Qm | (Qi ∈ KR(A) ∧ |A| = kn) ∨ (|A| ≥ kn + 1)}
= {Qi ∈ Qm | Qi ∈ KR(A)}
= KR(A)

Hence, A ∈ Γn
eqn−5⇐⇒ KR(A) ∈ Δm ⇐⇒ A mod Δm ∈ Δm.

Corollary 1. Assume access structures in P∩mono admit efficient secret shar-
ing. Then existence of an efficient secret sharing for an access structure in mNP
implies efficient secret sharing for all of mNP.

Secret Sharing for mNP: Completeness Results 389

Proof: It suffices (by Theorem 4) to prove the following: the class of access
structures Γ = {Γn}n∈N ∈ mNP as described in Theorem 4 cover whole of mNP.
This follows by a technique developed in [5]. We now show access structures in
mNP are in one-one correspondence with access structures of the type described
in Theorem 4.

Let Γ̂ = {Γ̂n}n∈N be an arbitrary access structure in mNP. For every n ∈ N,
we now define, based on Γ̂n, an access structure Γ̃2n. First identify Γ̂n with the set
LΓ̂n

⊆ {0, 1}n. Now define Γ̃2n over a set of 2n players P̃2n = {Pi,b}1≤i≤n;b∈{0,1}:

Γ̃2n = Bn ∪ {A ⊆ P̃2n | |A| ≥ n + 1}

where the collection Bn consists of precisely the following n-size subsets of P̃2n:
for every x = (x1, . . . , xn) ∈ LΓ̂n

, the set {P1,x1 , . . . , Pn,xn
} is in Bn. Clearly,

the complexity of checking whether a set A ⊆ P̃2n is in Γ̃2n is exactly the
complexity of deciding the membership in LΓ̂n

. However LΓ̂ = {LΓ̂n
}n∈N is in

mNP (as Γ̂ ∈ mNP) and so Γ̃ = {Γ̃2n}n∈N is in mNP. Finally, Γ̃ = {Γ̃2n}n∈N is
clearly of the type described in Theorem 4. This proves the corollary.

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions.
Combinatorica 7(1), 1–22 (1987)

2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.
1007/3-540-44647-8 1

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 2

5. Beimel, A., Ishai, Y.: On the power of nonlinear secrect-sharing. In: IEEE Confer-
ence on Computational Complexity, pp. 188–202 (2001)

6. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions.
In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer,
Heidelberg (1990). doi:10.1007/0-387-34799-2 3

7. Blakley, G.: Safeguarding cryptographic keys. In: AFIPS National Computer Con-
ference, vol. 48, pp. 313–317 (1979)

8. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). doi:10.1007/3-540-46885-4 45

9. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) STOC, pp. 467–476. ACM
(2013)

10. Grigni, M., Sipser, M.: Monotone complexity. In: LMS Workshop on Boolean Func-
tion Complexity, vol. 169, pp. 57–75. Cambridge University Press (1992)

http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/3-540-44647-8_1
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/0-387-34799-2_3
http://dx.doi.org/10.1007/3-540-46885-4_45

390 M.P. Jhanwar and K. Srinathan

11. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–
64 (1989)

12. Jackson, W.-A., Martin, K.M.: Cumulative arrays and geometric secret sharing
schemes. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
48–55. Springer, Heidelberg (1993). doi:10.1007/3-540-57220-1 51

13. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference, pp. 102–111 (1993)

14. Komargodski, I., Naor, M., Yogev, E.: Secret-sharing for NP. In: Sarkar, P.,
Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 254–273. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-45608-8 14

15. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR 281, 798–801 (1985). English translation in Sov.
Math. Doklady 31, 354–357 (1985)

16. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
17. Vinod, V., Narayanan, A., Srinathan, K., Rangan, C.P., Kim, K.: On the power of

computational secret sharing. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT
2003. LNCS, vol. 2904, pp. 162–176. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-24582-7 12

http://dx.doi.org/10.1007/3-540-57220-1_51
http://dx.doi.org/10.1007/978-3-662-45608-8_14
http://dx.doi.org/10.1007/978-3-540-24582-7_12
http://dx.doi.org/10.1007/978-3-540-24582-7_12

New Cryptographic Constructions

Receiver Selective Opening Security
from Indistinguishability Obfuscation

Dingding Jia1,2,3(B), Xianhui Lu1,2,3, and Bao Li1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{ddjia,xhlu,lb}@is.ac.cn
2 Data Assurance and Communication Security Research Center,

CAS, Beijing, China
3 University of Chinese Academy of Sciences, Beijing, China

Abstract. In this paper we study public key encryptions secure against
RSO (receiver selective opening) attacks. To do so, we exploit the punc-
turable property of several existing CCA secure schemes that employs the
“all-but-one” technique, use an indistinguishability obfuscator to wrap
up the decryption circuit and set the obfuscated circuit as the secret key.
Concretely, our first construction is from lossy trapdoor functions; our
second construction is a bit encryption from puncturable pseudo-random
functions and is secure against chosen ciphertext attacks simultaneously.

Keywords: Indistinguishability obfuscation · Receiver selective open-
ing · Public key encryption

1 Introduction

The notion of selective opening attacks is firstly considered in the multi-party
computation scenario [6]. It studies security for the uncorrupted parties, when
messages of different parties are correlated and some parties are corrupted with
internal randomness revealed. In 2009, Bellare, Hofheinz and Yilek introduced
the formal definition of selective opening in the PKE (public key encryption)
scenario [3], and numerous works on this topic appeared ever since then [1,2,13,
14,17–19,21–26,30].

Compared with the ordinary IND-CPA/CCA (indistinguishability against
chosen plaintext/ciphertext attacks) security, security in the selective opening
case is more complicated, for the reason that the opening of the randomness
allows the adversary to verify the correspondence between the ciphertext and
the message. In [3] they formulated the definition of selective opening in two
styles: one is the indistinguishability-based style, which we will call IND-SO; the
other is the simulation-based style, which we will call SIM-SO. Relations among

This work is Supported by the National Basic Research Program of China (973
project) (No. 2013CB338002), the National Nature Science Foundation of China
(No. 61502484, No. 61379137, No. 61572495).

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 393–410, 2016.
DOI: 10.1007/978-3-319-49890-4 22

394 D. Jia et al.

IND-SO, SIM-SO and the ordinary IND security have been well studied recently
[1,2,4,14,21–23,30].

Depending on the attack scenario, selective opening has been considered
in two flavors. In the SSO (sender selective opening) setting, there are many
senders, the attacker can corrupt some of them and get the messages together
with the encryption randomness. In the RSO (receiver selective opening) setting,
there are many receivers, the attacker can corrupt some of them and get the
messages together with the corresponding secret keys for decryption (here we
assume that the randomness for the key generation algorithm is erased once key
pairs are generated). One may notice that the encryption randomness in the SSO
setting and the secret key in the RSO setting play similar roles in some sense.

Constructions in the SSO Setting. The first feasibility results for selective open-
ing security are in the sender setting and leverage an interesting relation with
LE (lossy encryption) [3]. They proved that LE implies IND-SSO-CPA security,
and LE that supports efficient opening implies SIM-SSO-CPA security. Several
constructions of LE were promoted in [3,19]. Approaches to achieving SSO and
CCA security simultaneously are various and more primitives are involved, such
as ABM-TDF (all-but-many lossy trapdoor functions), XAC (cross authenti-
cated code) [13,18,19,25,26].

Constructions in the RSO Setting. Despite there are many constructions in the
SSO setting, constructions in the RSO setting are relatively less. Though exis-
tence for RSO security schemes is implied by the existence of non-committing
encryption [5,6,8,11,20], Nielsen [29] showed that multi-message SIM-RSO secu-
rity in the standard model without erasures is impossible for key pairs of con-
stant length1. To circumvent this, Canetti et al. gave a framework to transform a
single-message SIM-RSO-CPA secure construction to multi-message secure con-
struction via a key-evolving system [7]. They also gave concrete SIM-RSO-CPA
constructions for single-message case [7]. In 2015, Hazay et al. [21] introduced
a primitive called tNCER (tweaked non-committing encryptions for receivers)
which implies IND-RSO-CPA security and proposed several instantiations.

Motivation. In this work, we focus on constructions of SIM-RSO security. While
in the IND-RSO security notion, the message distributions are restricted to be
efficiently conditional resamplable, security notions for SIM-RSO does not suffer
from such restrictions. And the SIM-RSO security implies IND-RSO security.
In a nutshell, a scheme is SIM-RSO secure if for any adversary who can see
a sequence of public keys and ciphertexts, part of which will be opened with
secret keys later, there exists a simulator that can compute the same output
without seeing the ciphertexts and secret keys. While SIM-RSO security requires
the opening of secret keys, one may notice that the IND-CCA security requires
answering decryption queries, which needs information about the secret keys too.

1 Note that Nielsen’s bound is only effective for SIM-RSO security; for IND-RSO
setting, security for single-message case and multi-message case is equivalent, which
can be easily proved via a hybrid argument as that for ordinary IND-CPA security.

RSO Security from iO 395

A natural question is whether there exist approaches to transforming IND-CCA
security to SIM-RSO security.

There are mainly two approaches to constructing practical IND-CCA secure
PKE in the standard model: one employs the universal HPS [9], which we call
the Cramer-Shoup type; the other employs an ABO (all-but-one) technique [31–
34], which we call the ABO type. In the security proof, to answer decryption
queries correctly, the simulator should hold some private informtion about the
secret key. For the Cramer-Shoup type this private information is the original
secret key, so it is natural to open the secret key together with the predeter-
mined message, schemes of this kind can fit into the tNCER paradigm2. For the
ABO type the simulator just holds an ABO key, with which the simulator can
answer all decryption queries except for those in some relation with the chal-
lenge ciphertext, which makes it not able to open secret keys. Since schemes of
the ABO type admit instantiations from search problems, such as factoring, and
search problems encompass a larger class of intractable problems than decisional
assumptions, it is worthwhile to study how to obtain the SIM-RSO security from
the ABO type schemes. In this paper we try to convert IND-CCA secure schemes
of the ABO type to achieve SIM-RSO security.

As Matsuda and Hanaoka [28] pointed out, schemes of the ABO type sat-
isfy a decryption puncturable property. Sahai and Waters [33] in 2014 and Garg
et al. [15] in 2013 proposed methods to apply iO (indistinguishability obfusca-
tion) to puncturable programs and obtained deniable encryptions and several
other primitives, such as PKE, signatures, injective hash functions, etc.. Gener-
ally speaking, iO assures that the obfuscation of any two distinct (equal-size)
circuits that implement identical functionality be computationally indistinguish-
able. In this paper we will use iO to handle the decryption puncturable property
and achieve SIM-RSO security.

Contributions. In this paper we use iO to convert two IND-CCA secure
schemes to be SIM-RSO secure. That is, we set the secret key to be the obfus-
cated decryption circuit. Firstly, we transform the construction from LTDF and
ABO-TDF in [31] to achieve SIM-RSO-CPA security. Secondly, we transform
the bit encryption from puncturable PRF (pseudo-random function) in [33] to
achieve SIM-RSO-CCA security. The main observation is to handle the decryp-
tion puncturable property with an iO and set the obfuscated circuit as the secret
key3. In the following are some technique overviews.

Since iO only assures indistinguishability of circuits that of equal function-
ality, but for encryption schemes of the ABO type, the ABO key cannot decrypt
the challenge ciphertext, one problem for using iO is to assure that the simu-
lated decryption algorithm outputs the same result for the “one challenge cipher-
text. Our resolution is to hardwire the challenge ciphertext and the matching
answer as the constant information into the iO. For ciphertexts different from

2 Note that tNCER is IND-RSO secure, and can achieve SIM-RSO security only if a
fake ciphertext can be opened to any message with a secret key efficiently.

3 Similar technique has been used recently in other works [8,10]. Our work is inde-
pendent to that.

396 D. Jia et al.

the challenge ciphertext, it could be decrypted by the simulated key without the
embedded constant information.

For the construction based on LTDF [31], we use the function value of
LTDF as the branch tag of the ABO-TDF, i.e. the ciphertext is of form
(c1 = f(x), c2 = g(c1, x), c3 = h(x) ⊕ m), where f is an LTDF, g is an ABO-
TDF, h is a pairwise independent hash function, sk is set to be the obfuscation
of the circuit that takes (c1, c2, c3) as input and outputs m = c3 ⊕ h(x) where
x = f−1(c1) if equations c1 = f(x), c2 = g(c1, x) hold. In the security proof, we
puncture the key at challenge ciphertext c∗, and hardwire the mapping c∗ → m∗

in order to preserve the input-output behavior, then we switch f and g to lossy
according to the indistinguishability of LTDF and ABO-TDF, thus h(x) and c3
are randomly distributed, which is irrelevant to m and can be simulated with
a dummy message. With similar technique, we can modify schemes from ABO-
XHPS (all-but-one extractable hash proof system) [34] and one-way functions
for correlated product input [32] to be SIM-RSO-CPA secure respectively.

For the concrete CCA secure bit encryption from puncturable PRF in [33],
the ciphertext is of form (c1 = PRG(r), c2 = PRF1(K1, c1) ⊕ m, c3 =
PRF2(K2, c1‖c2)). Since c3 verifies c1 and c2 simultaneously, the transformed
construction, in which we set sk to be the obfuscation of the circuit that hard-
wired (K1,K2), takes (c1, c2, c3) as input and outputs m = c2 ⊕ PRF1(K1, c1)
if c3 = PRF2(K2, c1‖c2), can achieve SIM-RSO-CCA security. In the security
proof, we puncture the key at challenge ciphertext c∗

1, (c
∗
1‖0, c∗

1‖1), and hardwire
the mapping c∗ → m∗ in order to preserve the input-output behavior, then we
switch c∗

2, c
∗
3 to random according to the pseudorandom property of puncturable

PRF, thus c∗
2 is irrelevant to m and can be simulated with a dummy message. It is

easy to see that correctness of decryption is preserved. We state that the construc-
tion is meaningful for two reasons: firstly, it is better to take minimalist approach
outside of the strong tool “obfuscation”, such as one-way functions; secondly, the
construction achieves a stronger security against chosen ciphertext attacks.

As far as we know, except for those from non-committing encryption, current
RSO secure constructions only consider cases in which key generation random-
ness is erased after key pairs are generated. We leave it as an open problem to
build RSO secure schemes that withstand learning the whole generation ran-
domness and which are not non-committing encryptions.

Organization. The rest of the paper is organized as follows: in Sect. 2 we give
some preliminaries and definitions, in Sect. 3 we give two constructions and prove
their SIM-RSO security and Sect. 4 is the conclusion of the whole paper.

2 Preliminaries and Definitions

2.1 Preliminaries

Notations. In this paper we use PPT to represent probabilistic polynomial time
for short. Let [n] be the set of {1, 2, ..., n}. a ← A is used to denote choosing
a random element from A when A is a set, and to denote picking an element

RSO Security from iO 397

Experiment. Expsim-rso-cca
real (A):

state = ε
(pk, sk) := (pki, ski)i∈[n] ←R Setup(1λ)

(state, dist) ← ADec(·,·)(pk, state)
m ← dist
c∗ ← Enc(pk,m)
(state, I) ← ADec(·,·)(c, state)
outputA ← ADec(·,·)(skI ,mI , state)
return (m, outputA)

Experiment. Expsim-rso-cca
ideal (S):

state = ε

(state, dist) ← S(1λ, state)
m ← dist

(state, I) ← S(state)
outputS ← S(mI , state)
return (m, outputS)

Fig. 1. SIM-RSO-CCA security

according to A when A is a distribution. We use the lower case boldface to
denote vectors. Enc(pk,m) := (Enc(pk1,m1), ..., Enc(pkn,mn)) when pk,m
are vectors of dimension n. The min-entropy of a distribution X over domain
D is defined as H∞(X) = maxa∈D(−log Pr[X = a]). The statistical distance of
two distributions X and Y over a common domain D is defined as SD(X ,Y) =
1
2

∑
a∈D |Pr[X = a] − Pr[Y = a]|.

2.2 Security Definitions

A PKE scheme consists of the following algorithms:

Keygen: the key generation algorithm takes as input a security parameter λ and
outputs a public key pk and a secret key sk. Keygen(1λ) → (pk, sk).

Enc: the encryption algorithm takes as input the public key pk, a message m in
the message space M, and outputs a ciphertext c. Enc(pk,m) → c.

Dec: the decryption algorithm takes the secret key sk and a ciphertext c as input
and outputs a message m or ⊥. Dec(sk, c) → m or ⊥.

Correctness. A PKE scheme satisfies correctness, if Dec(sk,Enc(pk,m)) = m
for all (pk, sk) ← Keygen(1λ),m ∈ M.

Security. Here we give the simulation based security against receiver selective
opening chosen ciphertext attacks (SIM-RSO-CCA) of a PKE scheme as in
[21]. Here we modify the output of the Experiment from (m, outputA, I, dist)
/(m, outputS , I, dist) to (m, outputA) /(m, outputS), since (I, dist) is chosen
by the adversary/simulator, hence can be included in outputA/outputS .

Note that in Expsim-rso-cca
real (A), the decryption query is of the form (c, j), and

is answered by Dec(skj , c), and it is required that c �= c∗
j . And after receiving

skI , it is required that the decryption query (c, j) satisfies j /∈ I. The advan-
tage of a distinguisher D with binary output is defined as Advsim-RSO-CCA

D =∣
∣
∣ Pr[D(Expsim-rso-cca

real (A)) = 1] − Pr[D(Expsim-rso-cca
ideal (S)) = 1]

∣
∣
∣ . When omitting

the decryption oracle, the above experiment gives the definition of IND-RSO-
CPA security.

398 D. Jia et al.

Definition 1 (IND-RSO-CCA/CPA Security). A PKE scheme is SIM-
RSO-CCA secure if for any PPT adversary A, there exists a PPT simulator S,
such that for any PPT distinguisher D, AdvSIM-RSO-CCA

D is negligible in λ.
And it is SIM-RSO-CPA secure if for any PPT adversary A, there exists a
PPT simulator S, such that for any PPT distinguisher D, AdvSIM-RSO-CPA

D is
negligible in λ.

For simplicity here we use the security definition that the corruption is one-
shot, there is also a slightly stronger definition which allows for promoting cor-
ruption queries i ∈ I adaptively [1]. In fact our constructions satisfy the stronger
definition.

2.3 Indistinguishability Obfuscation

Intuitively, an indistinguishability obfuscator keeps the functionality unchanged
for a circuit, and other information about the circuit is computationally pro-
tected. In the following we show the formal definition as in [15,33].

Definition 2 (Indistinguishability Obfuscator (iO)). A uniform PPT
machine iO is called an indistinguishability obfuscator for a circuit class {Cλ} if
the following conditions hold:

– for all security parameter λ, for all C ∈ Cλ, for all inputs x, it satisfies that

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1.

– For any PPT algorithms Samp,D, if there exists a negligible function α(·)
such that: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ← Samp] > 1 − α(1λ), then

∣
∣
∣ Pr[D(σ, iO(1λ, C0)) = 1] − Pr[D(σ, iO(1λ, C1)) = 1]

∣
∣
∣ ≤ α(1λ),

where (C0, C1, σ) ← Samp.

If the circuit class {Cλ} is of size at most poly(1λ), then the above obfuscator
is called an indistinguishability obfuscator for polynomial-size circuits.

2.4 Puncturable Pseudo-random Functions

The notion of puncturable PRFs was introduced by Sahai and Waters [33]. In
a puncturable PRF, a punctured key is computed from a normal key and some
punctured points. When a punctured key is given out, function can be correctly
evaluated on inputs that are not punctured; however, on inputs that are punc-
tured, the outputs are pseudo-random.

Definition 3. A puncturable family of PRFs mapping from n(1λ) to m(1λ) con-
sists of three algorithms (KeyF , PunctureF , EvalF), where (KeyF , EvalF) are
as normal function description and PunctureF computes a punctured key KS

from K and a set S. It satisfies the following properties:

RSO Security from iO 399

Functionality preserved under puncturing. For every PPT adversary A
that outputs a set S ⊂ {0, 1}n(1λ) and every x ∈ {0, 1}n(1λ)\S,

Pr[F (K,x) = F (K(S), x) : K ← KeyF ,K(S) = PunctureF (K,S)] = 1.

Pseudo-random on punctured points. For every PPT adversary A, Advpr
A

= |2Pr[Exppr(A) = 1]−1| is negligible, where Exppr(A) is defined as follows
(Fig. 2.):

2.5 LTDFs and ABO-TDFs

A collection of LTDFs consists of two indistinguishable families of functions.
Functions in one family are injective, while functions in the other family are
lossy. Concretely,

Definition 4 (LTDFs). A collection of (n, l)-LTDFs is a 4-tuple PPT algo-
rithms (S0, S1, F, F−1) such that:

Sampling a lossy function: S0(1λ) outputs a function index s ∈ {0, 1}∗. The
algorithm F (s, ·) computes a function fs : {0, 1}n �→ {0, 1}∗, whose image
size is at most 2n−l.

Sampling an injective function with its trapdoor: S1(1λ) outputs a pair
(s, t) ∈ {0, 1}∗ × {0, 1}∗. The algorithm F (s, ·) computes a function fs :
{0, 1}n �→ {0, 1}∗, and F−1(t, ·) computes its inverse, which satisfies that
for every x ∈ {0, 1}n, F−1(t, F (s, x)) = x.

Hard to distinguish injective from lossy: For any PPT adversary A,
AdvLTDF

A is negligible, where

AdvLTDF
A = Pr[A(s : s ← S0(1λ)) = 1] − Pr[A(s : (s, t) ← S1(1λ)) = 1].

An ABO-TDF (all-but-one lossy trapdoor function) is associated with a
branch set B. The sampling algorithm takes b∗ ∈ B as input, and outputs a

Experiment. Exppr(A):

b ←R {0, 1}
(S ⊂ {0, 1}n(1λ), st) ← A
K ← KeyF

K(S) = PunctureF (K, S)

Z0 ← {0, 1}m(1λ)|S|

Z1 ← F (K, S)(= concatenation of F (K, x) for x ∈ S)
b′ ← A(K(S), Zb, st)
if b = b′, outputs 1, else outputs 0

Fig. 2. puncturable PRF

400 D. Jia et al.

description s0 of the function G(·, ·, ·) together with a trapdoor t0. The function
has the property that for any branch b �= b∗ the function G(s0, b, ·) is injective,
and the function G(s0, b∗, ·) is lossy. For security, it requires that it is hard to
distinguish a function description generated by different branches.

Definition 5 (ABO-TDF [12,31]). A collection of (n, l)-ABO-TDFs consists
of 4-tuple PPT algorithms (B,S,G,G−1) such that:

Sampling a branch: B(1λ) outputs a branch b ∈ {0, 1}v.
Sampling a function: For every b output by B(1λ), the algorithm S(1λ, b)

outputs a pair (s0, t0) ∈ {0, 1}∗ × {0, 1}∗ consists of a function index s0 and
a trapdoor t0.

Evaluation of lossy and injective branches: For every b∗ produced by B(1λ)
and for every (s0, t0) produced by S(1λ, b∗), the algorithm G(s0, b∗, ·) com-
putes a function gs0,b∗ : {0, 1}n �→ {0, 1}∗, whose image size is at most
2n−l; for b �= b∗, the algorithm G(s0, b, ·) computes an injective function
gs0,b : {0, 1}n �→ {0, 1}∗ and G−1 computes its inverse, which satisfies that
for every x ∈ {0, 1}n, G−1(t0, b, G(s0, b, x)) = x.

Security: For any PPT adversary A that outputs (b0, b1), AdvABO−TDF
A is neg-

ligible, where

AdvABO-TDF

A = Pr[A((b0, b1, s0) : (s0, t0) ← S(1λ, b0)) = 1] − Pr[A((b0, b1, s1) :

(s1, t1) ← S(1λ, b1)) = 1].

LTDFs and ABO-TDFs are equivalent for appropriate choice of parameters
[31], and they can be constructed from decisional assumptions, like DDH assump-
tion [31], quadratic residuosity assumption, composite residuosity assumption,
d-linear assumption, LWE assumption, etc. [12]. Some of these constructions are
slightly lossy, but using the method in [27], one can amplify the lossiness.

2.6 Randomness Extractor

In this work, we use pairwise independent hash function as a randomness extrac-
tor as in [31], the leftover hash lemma states that for a random variable X, as
long as the difference between the min-entropy of X and the output length is
large enough, the output h(X) is statistically close to uniform.

Lemma 1 (Leftover Hash Lemma [16]). Let X ∈ X be a random variable
where H∞(X) ≥ κ. Let H be a family of pairwise independent hash functions
with domain X and range {0, 1}l. Then for h ← H and Ul ← {0, 1}l, it satisfies
that

SD((h, h(X)), (h,Ul)) ≤ 2(l−κ)/2.

RSO Security from iO 401

3 Constructions

3.1 CPA Secure Construction from LTDF

Here we describe a SIM-RSO-CPA secure construction converted from the PKE
construction in [31]. Let (S0, S1, F, F−1) be a collection of (v, l1)-LTDFs, without
loss of generality, we assume that the image of F is {0, 1}v. Let H be a family of
pairwise independent hash functions from {0, 1}v to {0, 1}l. Let (B,S,G,G−1)
give a collection of (v, l0)-ABO-TDFs having branches B = {0, 1}v (which con-
tains the image of F). The message space is {0, 1}l.

As in [31], it requires that the parameters satisfy that (v−l1)+(v−l0) ≤ v−κ
for some κ = w(log v), and l ≤ κ − 2 lg(1/ε) for a negligible ε.

Keygen: It first generates an injective trapdoor function: (s, t) ← S1(1λ) and
an ABO-TDF having lossy branch 0v : (s0, t0) ← S(1λ, 0v). Then it chooses
a pairwise independent hash function h ← H. After that, it creates an obfus-
cation of the program Decrypt of Fig. 3, and pad the size to be the maximum
of itself and program Decrypt∗ of Fig. 4. Finally erase the randomness that
is used for key generation. The public key pk = (s, s0, h) and the secret key
sk is the obfuscated program Decrypt.

Enc: It takes as input pk and chooses x ∈ {0, 1}v uniformly at random, computes
c1 = F (s, x), then it computes c2 = G(s0, c1, x) and c3 = h(x) ⊕ m. The
ciphertext c = (c1, c2, c3).

Dec: It runs the obfuscated program of Decrypt on input c and takes the output
as the decryption.

Constants: (pk = (s, s0, h), t)
Input: (c1, c2, c3) ∈ {0, 1}v × {0, 1}∗ × {0, 1}l.

1. compute x = F −1(t, c1);
2. verify if c1 = F (s, x) and c2 = G(s0, c1, x);
3. If the equations hold, output m = c3 ⊕ h(x); else reject.

Fig. 3. Program Decrypt

Constants: (pk = (s, s0, h), t0, c
∗
1, c

∗
2, c

∗
3, m

∗).
Input: (c1, c2, c3) ∈ {0, 1}v × {0, 1}∗ × {0, 1}l.

1. if (c1, c2) = (c∗
1, c

∗
2), output m = c3 ⊕ c∗

3 ⊕ m∗;
2. if c1 = c∗

1, c2 �= c∗
2, output ⊥;

2. if c1 �= c∗
1, compute x = G−1(t0, c1, c2);

3. verify if c1 = F (s, x) and c2 = G(s0, c1, x);
4. if the equations hold, output m = c3 ⊕ h(x), otherwise output ⊥.

Fig. 4. Program Decrypt∗

402 D. Jia et al.

Theorem 1. If the iO is a secure indistinguishability obfuscation, (S0, S1, F,
F−1) is a collection of (v, l1)-LTDFs, (B,S,G,G−1) is a collection of (v, l0)-
ABO-TDFs, H is a family of pairwise independent hash functions from {0, 1}v

to {0, 1}l, then the above scheme is SIM-RSO-CPA secure.

Proof. To prove the security of the above scheme, we define a sequence of games
whereby no PPT adversary can tell the difference between two consecutive
games. Let n be the total number of receivers.

Game0: the real security game. The challenger C generates n injective keys
(si, ti) ← S1(1λ) for i = 1, ..., n and n ABO-TDFs (s0i, t0i) ← S(1λ, 0v),
n pairwise independent hash functions hi ← H. The public keys are set as
{pki = (si, s0i, hi)}i∈[n], the secret keys are set as the obfuscation of the
program Decrypt.
– When A promotes a query dist, the challenger picks m∗ ← dist, chooses

random x∗
i ∈ {0, 1}v for i ∈ [n], computes (c∗

1i = F (si, x
∗
i), c

∗
2i =

G(s0i, c
∗
1i, x

∗
i), c

∗
3i = h(x∗

i) ⊕ m∗
i) and sends c = {(c∗

1i, c
∗
2i, c

∗
3i)}i∈[n] to

A.
– When A promotes a set I ⊂ [n], the challenger responds with (m∗

I , skI).
Game1: The same as Game0 except that secret keys are changed to be the

obfuscation of the program Decrypt∗ with constants (pk, t0, c
∗
1, c

∗
2, c

∗
3,m

∗).
Later we will show that Game1 and Game0 are indistinguishable according
to the security of iO.

Game2: The same as Game1 except that si’s are generated via si ← S0(1λ).
It is easy to see that the probability in distinguishing Game2 and Game1 is
bounded by nAdvLTDF .

Game3: The same as Game2 except that s0i’s are generated via s0i ← S(1λ, c∗
1i).

It is easy to see that the probability in distinguishing Game3 and Game2 is
bounded by nAdvABO−TDF .

Game4: The same as Game3 except that c∗
3is are changed to be randomly chosen.

We will prove that Game3 and Game4 are statistically indistinguishable and
it is easy to show that for all PPT adversary A, there exists a simulator S
that proceeds the same as the challenger in Game4 and hence can output
what A outputs, so Adv4 = 0.

Let Wi = Pr[D(Expsim-rso-cpa
real (A)) = 1] in Gamei. Next we prove that the

probability between consecutive games is negligibly close.

Lemma 2. For any adversary A, W1 − W0 is negligible, assuming iO is an
indistinguishability obfuscator.

Proof. To prove the lemma, we define intermediate games Game0,i for i =
1, ..., n.

Game0,i: The same as Game0,i−1 except that ski is the obfuscation of program
Decrypt∗ (Fig. 4) instead of the program Decrypt. Game0,0 is Game0.

RSO Security from iO 403

Then we prove that Game0,i and Game0,i−1 are indistinguishable.
B generates n injective keys (si, ti) ← S1(1λ) for i = 1, ..., n and n ABO-

TDFs (s0i, t0i) ← S(1λ, 0v), n pairwise independent hash functions hi ← H. The
public keys are set as {pki = (si, s0i, hi)}i∈[n]. On receiving a query dist, B picks
m∗ ← dist and randomly x∗, computes (c∗

1i = F (si, x
∗
i), c

∗
2i = G(s0i, c

∗
1i, x

∗
i),

c∗
3i = h(x∗

i) ⊕ m∗
i) and creates two circuits C1 of Fig. 3 with constants (pki, ti)

and C2 of Fig. 4 with constants (pki, t0i, x
∗
i , c

∗
1i, c

∗
2i, c

∗
3i,m

∗
i), sends both circuits

to the iO and sets the output as ski. For l < i, skl is set as the obfuscation of
program Decrypt∗ (Fig. 4); for l > i, skl is set as the obfuscation of program
Decrypt (Fig. 3).

When A requires openness, B responds with (m∗
I , skI).

Finally B outputs what A outputs.
Note that when B receives an obfuscation of program Decrypt, the above

game perfectly simulates Game0,i−1; when B receives an obfuscation of program
Decrypt∗, the above game perfectly simulates Game0,i.

Next we analysis that for every input (c = (c1, c2, c3), i), the output of pro-
gram Decrypt and Decrypt∗ are identical. clearly, when c1 �= c∗

1i, both circuits
compute the same x since F (si, ·) and G(s0i, c1i, ·) are both injective; when
c1 = c∗

1i, verification holds iff c2 = G(s0i, c1, x
∗
i) = c∗

2, and the decryption
m = c3 ⊕ c∗

3i ⊕ m∗
i . ��

Lemma 3. For any PPT adversary A, W4 − W3 is negligible.

Proof. In Game3, F (si, ·) and G(s0i, c
∗
1i, ·) are both lossy, and the output value

of (c∗
1i, c

∗
2i) can take at most 2v−l1+v−l0 values, so for the unopened ciphertexts,

the conditional min-entropy of x∗
i is bounded by

H∞(x∗
i |c∗

1i, c
∗
2i) ≥ v − (v − l1 + v − l0) ≥ κ.

Then by leftover hash lemma, (pki, c
∗
1i, c

∗
2i, h(x∗

i)) is statistical close to (pki, c
∗
1i,

c∗
2i, ui), where ui is randomly distributed over {0, 1}l, hence (pki, c

∗
1i, c

∗
2i, h(x∗

i)⊕
m∗

i) is irrelevant to m∗
i information theoretically. ��

3.2 CCA Secure Construction from Puncturable PRFs (for Bit
Encryption)

Let PRG be a pseudo-random generator mapping {0, 1}λ to {0, 1}2λ, F1 be a
puncturable PRF mapping {0, 1}2λ to {0, 1}, F2 be a puncturable PRF mapping
{0, 1}2λ+1 to {0, 1}λ. The scheme is described as follows:

Keygen: It first picks random K1 and K2 for F1 and F2 separately, then it
creates an obfuscation of the program Encrypt of Fig. 5. The size of the
program is padded to be the maximum of itself and Encrypt∗ of Fig. 6. It
also creates an obfuscation of the program Decrypt of Fig. 7. And pad the size
to be the maximum of itself and program Decrypt∗ of Fig. 8. The public key
pk is the obfuscated program Encrypt and the secret key sk is the obfuscated
program Decrypt. Finally erase the randomness used in the key generation
algorithm.

404 D. Jia et al.

Constants: PRF keys K1, K2.
Input: message m ∈ {0, 1}, randomness r ∈ {0, 1}λ.

1. compute t = PRG(r).
2. output c = (c1 = t, c2 = F1(K1, t) ⊕ m, c3 = F2(K2, c1‖c2)).

Fig. 5. Program Encrypt

Constants: Punctured PRF keys K1({t∗}), K2({t∗‖0, t∗‖1}).
Input: message m ∈ {0, 1}, randomness r ∈ {0, 1}λ.

1. compute t = PRG(r).
2. output c = (c1 = t, c2 = F1(K1, t) ⊕ m, c3 = F2(K2, c1‖c2)).

Fig. 6. Program Encrypt∗

Constants: PRF keys K1, K2.
Input: (c1, c2, c3) ∈ {0, 1}2λ × {0, 1} × {0, 1}λ.

1. verify if c3 = F2(K2, c1‖c2).
2. if the equation holds, output m = F1(K1, c1) ⊕ c2, otherwise output ⊥.

Fig. 7. Program Decrypt

Enc: It takes m ∈ {0, 1} as input and picks a random value r ∈ {0, 1}λ, then it
runs the obfuscated program of pk on inputs (m, r) and takes the output as
the ciphertext.

Dec: It runs the obfuscated program of sk on input c and takes the output as
the decryption.

Theorem 2. If the iO is an indistinguishability obfuscation, PRG is a secure
pseudo-random generator, F1, F2 are secure punctured PRFs, then the above
scheme is SIM-RSO-CCA secure.

Proof. To prove the security of the above scheme, we define a sequence of games
whereby no PPT adversary can tell the difference between two consecutive
games. Let q denote the number of decryption queries that the adversary makes
during the whole game, n be the total number of receivers.

Game0: the real security game. The challenger C picks n key pairs (K1i,K2i) for
i = 1, ..., n for the puncturable PRFs F1, F2. The public keys are set as the
obfuscation of the program Encrypt and later sent to the adversary A, the
secret keys are set as the obfuscation of the program Decrypt.
– When A promotes a query dist, the challenger picks m∗ ← dist, chooses

random r∗
i ∈ {0, 1}λ for i ∈ [n], computes c∗

1i = t∗i = PRG(r∗
i), c∗

2i =

RSO Security from iO 405

Constants: Punctured PRF keys K1({t∗}), K2({t∗‖0, t∗‖1}) and t∗, c∗
2, β0, β1, m

∗.
Input: (c1, c2, c3) ∈ {0, 1}2λ × {0, 1} × {0, 1}λ.

1. if c1 = t∗ and c3 �= βc2 , output ⊥.
2. if c1 = t∗ and c3 = βc2 , output c2 ⊕ c∗

2 ⊕ m.
3. otherwise, verify if c3 = F2(K2, c1‖c2).
4. if the equation holds, output m = F1(K1, c1) ⊕ c2, otherwise output ⊥.

Fig. 8. Program Decrypt∗

F1(K1i, t
∗
i)⊕mi, c∗

3i = F2(K2i, c
∗
1i‖c∗

2i) and sends c∗ = {(c∗
1i, c

∗
2i, c

∗
3i)}i∈[n]

to A.
– When A promotes a decryption query (c, j), the challenger first checks that

c �= c∗
j and rejects otherwise, then it verifies whether the equation c3 =

F2(K2j , c1‖c2) holds, if it holds, it responds with m = F1(K1j , c1) ⊕ c2,
otherwise it just rejects.

– When A promotes a set I ⊂ [n], the challenger responds with (m∗
I , skI).

– Finally, A outputs outputA.
Game1: The same as Game0 except that t∗i ’s are chosen randomly from {0, 1}2λ.

It is easy to see that the probability in distinguishing Game1 and Game0 is
bounded by nAdvPRG.

Game2: The same as Game1 except that public keys are changed to be the obfus-
cation of the program Encrypt∗ with punctured keys K1i(t∗i),K2i(t∗i ‖0, t∗i ‖1).
Later we will show that Game1 and Game2 are indistinguishable.

Game3: The same as Game2 except that secret keys are changed to be the obfus-
cation of the program Decrypt∗ with constants K1i({t∗i }),K2i({t∗i ‖0, t∗i ‖1})
and t∗i , β0i, β1i, c

∗
2i,m

∗
i , where αi = F1(K1i, t

∗
i), β0i = F2(K2i, t

∗
i ‖0), β1i =

F2(K2i, t
∗
i ‖1). And c∗

2i = αi ⊕m∗
i , c∗

3i = βc∗
2ii

. Later we will show that Game3
and Game2 are indistinguishable according to the security of iO.

Game4: The same as Game3 except that {β0i, β1i}i∈[n] are randomly chosen from
{0, 1}λ. Later we will show that Game4 and Game3 are indistinguishable
according to the pseudo-random property of F2(K2i, ·).

Game5: The same as Game4 except that {c∗
2i}i∈[n] are randomly chosen from

{0, 1}. Game5 and Game4 are indistinguishable according to the pseudo-
random property of F1(K1i, ·). It is easy to show that for all PPT adversary
A, there exists a simulator S that proceeds the same as the challenger in
Game5 and hence can output what A outputs, so Adv5 = 0.

Let Wi = Pr[D(Expsim-rso-cca
real (A)) = 1] in Gamei. Next we show that the prob-

ability between consecutive games is negligibly close.

Lemma 4. For any PPT algorithm A, W1 − W0 ≤ nAdvPRG.

Proof. To prove the lemma, we define intermediate games Game0,i for i =
1, ..., n.

406 D. Jia et al.

Game0,i: The same as Game0,i−1 except that t∗i is chosen randomly from {0, 1}2λ.
Game0,0 is Game0.

B receives T ∈ {0, 1}2λ and its task is to decide whether there exists a r ∈ {0, 1}λ

s.t. T = PRG(r) or not. B then proceeds as in Game0,i−1 except that when
creating the i-th challenge ciphertext, it sets t∗i = T . Finally B outputs what A
outputs.

Note that when T is in the image of PRG, the above game perfectly simulates
Game0,i−1; when T is randomly chosen from {0, 1}2λ, the above game perfectly
simulates Game0,i. ��
Lemma 5. For any PPT adversary A, W2 − W1 is negligible, assuming iO is
an indistinguishability obfuscation.

Proof. To prove the lemma, we define intermediate games Game1,i for i =
1, ..., n.

Game1,i: The same as Game1,i−1 except that pki is the obfuscation of program
Encrypt∗ (Fig. 6) instead of the program Encrypt (Fig. 5). Game1,0 is Game1.

B chooses random key pairs (K1l,K2l) and t∗l ∈ {0, 1}2λ for l = 1, ..., n. Then
it creates two circuits C1 of Fig. 5 with constants (K1i,K2i) and C2 of Fig. 6 with
constants (K1i(t∗i),K2i(t∗i ‖0, t∗i ‖1)), sends both circuits to the iO and sets the
output as pki, other public keys are set as follows: for l < i, pkl is the obfuscation
of program Encrypt∗ with constants K1l(t∗l),K2l(t∗l ‖0, t∗l ‖1); for l > i, pkl is the
obfuscation of program Encrypt with constants (K1l,K2l). B then proceeds as
in Game1. Finally B outputs what A outputs.

Note that when B receives an obfuscation of program Encrypt, the above
game perfectly simulates Game1,i−1; when B receives an obfuscation of program
Encrypt∗, the above game perfectly simulates Game1,i.

Next we analysis that for every input (m, r), the output of program Encrypt
and Encrypt∗ are identical except with negligible probability. Since t∗i is chosen
randomly from {0, 1}2λ, with probability 1 − 1/2λ, t∗i /∈ PRG(1λ), and when
t �= t∗i , F (K1, t) and F (K2, t‖b) can be correctly computed. ��
Lemma 6. For all PPT algorithm A, W3 −W2 is negligible, assuming iO is an
indistinguishability obfuscation.

Proof. To prove the lemma, we define intermediate games Game2,i for i =
1, ..., n. Game2,i is the same as Game2,i−1 except that ski is the obfuscation
of program Decrypt∗ (Fig. 8) instead of the program Decrypt (Fig. 7). Game2,0

is Game2.
B chooses random key pairs (K1l,K2l) and t∗l ∈ {0, 1}2λ for l = 1, ..., n. Then

it sets pkl be the obfuscation of program Encrypt∗ with constants (K1l(t∗l),
K2l(t∗l ‖0, t∗l ‖1)). B then computes c∗

2i = F1(K1i, t
∗
i) ⊕ m∗

i , β0i = F2(K2i, t
∗
i ‖0),

β1i = F2(K2i, t
∗
i ‖1) and creates two circuits C1 as in Fig. 7 with constants

(K1i,K2i) and C2 as in Fig. 8 with constants (K1i(t∗i),K2i(t∗i ‖0, t∗i ‖1), t∗i , β0i, β1i,
c∗
2i,m

∗
i), sends both circuits to the iO and sets the output as ski. For l < i, skl is

RSO Security from iO 407

set as the obfuscation of circuit Decrypt∗; for l > i, skl is set as the obfuscation
of circuit Decrypt.

When A promotes a decryption query, B responds with its secret key. When
A promotes an encryption query, B sets c∗

1l = t∗l , c
∗
2l = F1(K1l, t

∗
l) ⊕ m∗

l , c
∗
3l =

F2(K2l, c1l‖c2l). When A requires openness, B responds with (m∗
I , skI).

Finally B outputs what A outputs.
Note that when B receives an obfuscation of program Decrypt, the above

game perfectly simulates Game2,i−1; when B receives an obfuscation of program
Decrypt∗, the above game perfectly simulates Game2,i.

Next we analysis that for every input (c = (c1, c2, c3), j), the output of pro-
gram Decrypt and Decrypt∗ are identical. clearly, when c1 �= t∗i or j �= i, both
circuits proceed identically; when c1 = t∗i and j = i, verification holds iff c3 =
F2(K2, c1‖c2) = βc2i, and the decryption m = c2 ⊕F1(K1, c1) = c2 ⊕ c∗

2i ⊕m∗
i . ��

Lemma 7. For all PPT algorithm A, W4 − W3 ≤ nAdvPRF
F2

.

Proof. To prove the lemma, we define intermediate games Game3,i for i =
1, ..., n. Game3,i is the same as Game3,i−1 except that β0i, β1i are changed to
be random. Game3,0 is Game3.

B chooses random key pairs K1l for l = 1, ..., n and K2l for l �= i, l = 1, ..., n
and t∗l ∈ {0, 1}2λ for l = 1, ..., n. Then it sends (t∗i ‖0, t∗i ‖1) to its challenge oracle
and receives (K2i(t∗i ‖0, t∗i ‖1), β0i, β1i) as response, it sets pkl be the obfuscation
of program Encrypt∗ with constants (K1l(t∗l),K2l(t∗l ‖0, t∗l ‖1)) and skl be the
obfuscation of program Decrypt∗ with constants (K1l(t∗l),K2l(t∗l ‖0, t∗l ‖1), t∗l , β0l,
β1l, c

∗
2l,m

∗
l), where c∗

2l = F1(K1l,t∗
l
) ⊕ m∗

l and for l < i, (β0l, β1l) are randomly
chosen from {0, 1}2λ and for l > i, (β0l, β1l) = (F2(K2l, t

∗
l ‖0), F2(K2l, t

∗
l ‖1)).

When A promotes a decryption query, B answers with secret keys. When A
promotes an encryption query, B sets c∗

1l = t∗l , c
∗
2l, c

∗
3l = βc∗

2ll
. When A requires

openness, B responds with (m∗
I , skI).

Finally B outputs what A outputs.
Note that when (β0i, β1i) = (F2(K2i, t

∗
i ‖0), F2(K2i, t

∗
i ‖1)), the above game

perfectly simulates Game3,i−1; when (β0i, β1i) are randomly chosen, the above
game perfectly simulates Game3,i. ��
Lemma 8. For all PPT algorithm A, W5 − W4 ≤ nAdvPRF

F1
.

Proof. To prove the lemma, we define intermediate games Game4,i for i =
1, ..., n. Game4,i is the same as Game4,i−1 except that c∗

2i is changed to be
random. Game4,0 is Game4.

B chooses random key pairs K1l for l �= i, l = 1, ..., n and K2l, t∗l ∈ {0, 1}2λ

for l = 1, ..., n. Then it sends t∗i to its challenge oracle and receives K1(t∗i), αi as
response, it computes c∗

2i ⊕ m∗
i and chooses random c∗

2l for l < i and computes
c∗
2l = F1(K1l, t

∗
l) ⊕ m∗

l for l > i, then it sets pkl be the obfuscation of program
Encrypt∗ with constants (K1l(t∗l),K2l(t∗l ‖0, t∗l ‖1)) and skl be the obfuscation of
program Decrypt∗ with constants (K1l(t∗l),K2l(t∗l ‖0, t∗l ‖1), t∗l , β0l, β1l, c

∗
2l,m

∗
l),

where β0l, β1l are randomly chosen from {0, 1}λ.

408 D. Jia et al.

When A promotes a decryption query, B answers with secret keys. When A
promotes an encryption query, B sets c∗

1l = t∗l , c
∗
2l, c

∗
3l = βc∗

2ll
. When A requires

openness, B responds with (m∗
I , skI).

Finally B outputs what A outputs.
Note that when αi = F1(K1i, t

∗
i), the above game perfectly simulates the

real game of Game4,i−1; when αi is randomly chosen, the above game perfectly
simulates the real game of Game4,i. ��

4 Conclusion

In this paper we propose a method to convert IND-CCA secure schemes of the
ABO type to achieve SIM-RSO security with the help of iO. In concrete, we
use indistinguishability obfuscator to wrap up the decryption circuit and set
the obfuscated circuit as the secret key. As a result, we get an SIM-RSO-CPA
secure construction from lossy trapdoor functions, and an SIM-RSO-CCA bit
encryption from puncturable pseudo-random functions.

Acknowledgments. We are very grateful to anonymous reviewers for their helpful
comments.

References

1. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 38

2. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293,
pp. 522–539. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30057-8 31

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
IACR Cryptology ePrint Archive 2009/101 (2009)

5. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 17

6. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM, New York, May 1996

7. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30576-7 9

8. Canetti, R., Poburinnaya, O., Raykova, M.: Optimal-rate non-committing encryp-
tion in a CRS model. IACR Cryptology ePrint Archive 2016/511 (2016)

http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-29011-4_38
http://dx.doi.org/10.1007/978-3-642-30057-8_31
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-10366-7_17
http://dx.doi.org/10.1007/978-3-540-30576-7_9

RSO Security from iO 409

9. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive cho-
sen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EURO-
CRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.
1007/3-540-46035-7 4

10. Dachman-Soled, D., Dov Gordon, S., Liu, F.-H., O’Neill, A., Zhou, H.-S.: Leakage-
resilient public-key encryption from obfuscation. In: Cheng, C.-M., Chung, K.-M.,
Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 101–128. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49387-8 5

11. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

12. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval,
D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, heidelberg (2010).
doi:10.1007/978-3-642-13013-7 17

13. Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against
chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 20

14. Fuchsbauer, G., Heuer, F., Kiltz, E., Pietrzak, K.: Standard security does imply
security against selective opening for markov distributions. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 282–305. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-49096-9 12

15. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: 54th
FOCS, pp. 40–49. IEEE Computer Society Press, October 2013

16. H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

17. Heuer, F., Jager, T., Kiltz, E., Schäge, S.: On the selective opening security of
practical public-key encryption schemes. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 27–51. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 2

18. Huang, Z., Liu, S., Qin, B., Chen, K.: Fixing the Sender-equivocable encryption
scheme in eurocrypt 2010. In: INCOS, pp. 366–372 (2013)

19. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 70–88. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 4

20. Hemenway, B., Ostrovsky, R., Rosen, A.: Non-committing encryption from Φ-
hiding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 591–608.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46494-6 24

21. Hazay, C., Patra, A., Warinschi, B.: Selective opening security for receivers. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 443–469.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6 19. IACR Cryptology
ePrint Archive 2015/860

22. Hofheinz, D., Rupp, A.: Standard versus selective opening security: separation and
equivalence results. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 591–615.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8 25

23. Hofheinz, D., Rao, V., Wichs, D.: Standard security does not imply indistinguisha-
bility under selective opening. IACR Cryptology ePrint Archive 2015/792 (2015)

http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/3-540-46035-7_4
http://dx.doi.org/10.1007/978-3-662-49387-8_5
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/978-3-642-13013-7_17
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-642-13190-5_20
http://dx.doi.org/10.1007/978-3-662-49096-9_12
http://dx.doi.org/10.1007/978-3-662-46447-2_2
http://dx.doi.org/10.1007/978-3-642-25385-0_4
http://dx.doi.org/10.1007/978-3-662-46494-6_24
http://dx.doi.org/10.1007/978-3-662-48797-6_19
http://dx.doi.org/10.1007/978-3-642-54242-8_25

410 D. Jia et al.

24. Lai, J., Deng, R.H., Liu, S., Weng, J., Zhao, Y.: Identity-based encryption secure
against selective opening chosen-ciphertext attack. In: Nguyen, P.Q., Oswald, E.
(eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 77–92. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-55220-5 5

25. Liu, S., Paterson, K.G.: Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020,
pp. 3–26. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2 1

26. Liu, S., Zhang, F., Chen, K.: Public-key encryption scheme with selective open-
ing chosen-ciphertext security based on the decisional Diffie-Hellman assumption.
Concurr. Comput.: Pract. Exp. 26(8), 1506–1519 (2014)

27. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
296–311. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13013-7 18

28. Matsuda, T., Hanaoka, G.: Constructing and understanding chosen ciphertext
security via puncturable key encapsulation mechanisms. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 561–590. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46494-6 23

29. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002). doi:10.1007/3-540-45708-9 8

30. Ostrovsky, R., Rao, V., Visconti, I.: On selective-opening attacks against encryp-
tion schemes. In: Abdalla, M., Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
578–597. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10879-7 33

31. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC,
pp. 187–196 (2008)

32. Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00457-5 25

33. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475-484. ACM Press,
May/June 2014

34. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin,
T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14623-7 17

http://dx.doi.org/10.1007/978-3-642-55220-5_5
http://dx.doi.org/10.1007/978-3-662-46447-2_1
http://dx.doi.org/10.1007/978-3-642-13013-7_18
http://dx.doi.org/10.1007/978-3-662-46494-6_23
http://dx.doi.org/10.1007/3-540-45708-9_8
http://dx.doi.org/10.1007/978-3-319-10879-7_33
http://dx.doi.org/10.1007/978-3-642-00457-5_25
http://dx.doi.org/10.1007/978-3-642-14623-7_17

Format Preserving Sets: On Diffusion Layers
of Format Preserving Encryption Schemes

Kishan Chand Gupta1, Sumit Kumar Pandey2(B), and Indranil Ghosh Ray3

1 Applied Statistics Unit, Indian Statistical Institute,
203, B.T. Road, Kolkata 700108, India

kishan@isical.ac.in
2 School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore
emailpandey@gmail.com

3 Department of Electrical and Electronic Engineering,
City University, London, UK
indranilgray@gmail.com

Abstract. Format preserving encryption refers to a set of techniques
for encrypting data such that the ciphertext has the same format as the
plaintext. Here, we consider the design of diffusion layers only which
can be defined by, in general, a linear transformation. In this paper, we
study and explore the format preserving diffusion layers, in particular,
the relationship between the n × n diffusion matrix M over the field
Fq and the format preserving set S ⊆ Fq such that whenever v ∈ S

n,
Mv ∈ S

n. It is proved in this paper that if such a set S with respect to
a certain type of matrix M contains 0̄ ∈ Fq, then it is always a vector
space over the smallest field containing entries of M . Moreover, some
more interesting results are found when this condition, 0̄ ∈ S, is relaxed.
We illustrate our results by a credit card example where plaintext and
ciphertext both come from the set {0, · · · , 9}. We further show that only
certain type of 4 × 4 matrices over the field F24 can be constructed
which yield a format preserving set of cardinality 10 which is suited
for our credit card example. However, to the best of our knowledge,
such matrices do not have any cryptographic significance. Thus, it is
impossible to construct any cryptographically significant 4 × 4 matrices
over the field F24 in the diffusion layer which yields a format preserving
set of cardinality 10.

Keywords: Diffusion layer · Format preserving encryption · Format
preserving set

1 Introduction

In recent past, a massive leakage of private information like credit card numbers,
social security numbers and so many more private and confidential data give rise
to the importance of a newly emerging field of research in applied cryptography,

c© Springer International Publishing AG 2016
O. Dunkelman and S.K. Sanadhya (Eds.): INDOCRYPT 2016, LNCS 10095, pp. 411–428, 2016.
DOI: 10.1007/978-3-319-49890-4 23

412 K.C. Gupta et al.

called format preserving encryption, or in short FPE. In cases like credit card
based transactions, problems associated with integrating encryption into existing
applications further demand the ciphers to be well-defined data models which
is not possible using general block ciphers. FPE makes it possible to integrate
the data level encryption into the legacy business application frameworks which
were previously difficult or impossible to address.

Cryptographic literature contains good solutions for FPE [3,5,7,12,13,15,
18]. In recent papers [2,5,18], different FPE based constructions were proposed.
An FPE scheme is used to transform data of a predefined specific format into a
ciphertext of identical format. Extensive use of financial servers and also some
recent attacks on these servers urge the need of secure, efficient and robust FPE
schemes. In 2002 paper [5], authors proposed a practical approach of building an
FPE construction. There are three popular approaches of designing FPE based
scheme, namely prefix ciphering, cyclic walking and a Feistel based construction.

In 2008, Terence Spies [21] submitted a proposal to NIST, named FFSEM,
which combines cycle walking and an AES-based balanced Feistel network. In
2010 paper [2,4], authors proposed a Feistel based design called FFX (Format-
preserving, Feistel-based encryption). FFX is based on ten rounds of iteration
involving at least ten invocation of pseudorandom permutation (AES). In prac-
tical applications like credit card numbers or social security numbers, generally
12 to 36 rounds of AES invocations are required. A database with millions of
entries and an FPE scheme which needs 12 to 36 AES invocation per entry is a
fairly inefficient system. The other known schemes are BPS [6] and VFPE [20].

Consider a block cipher which uses substitution-permutation network (SPN).
Let this block cipher contains l number of blocks, each block having size m. An
lm-bit input can be divided into l blocks each containing m bits. In FPE, the
plaintext and the ciphertext both follow the same specified format. For example,
in the encryption of credit card numbers, the desired format for both input and
output may be digits 0 to 9. In such case, the total number of inputs in one block
of the block cipher which is 2m cannot be equal to 10. Therefore, some of the
inputs (in this example, 2m − 10 inputs) are not considered in the encryption.
The natural way to achieve it is to map the set {0, · · · , 9} to {0, 1}m injectively
(one-one). Let X = {0, · · · , 9}, Y = {0, 1}m and φ : X → Y be an injective
map. To preserve the format of plaintext and its corresponding ciphertext, one
way to encrypt an element from X l, say X1||X2|| · · · ||Xl where Xi ∈ {0, · · · , 9}
for all i = 1, · · · , l, is the following -

1. First encode the element X1||X2|| · · · ||Xl using the map φ. Let the output be
an element from Y l, say, Y1||Y2|| · · · ||Yl = φ(X1)||φ(X2)|| · · · ||φ(Xl).

2. Then encrypt the encoded element using the encryption algorithm E of the
block cipher. Let the ciphertext be Ȳ1||Ȳ2|| · · · ||Ȳl.

3. Finally, decode the ciphertext Ȳ1||Ȳ2|| · · · ||Ȳl using φ−1. After decoding, we
get φ−1(Ȳ1)||φ−1(Ȳ2)|| · · · ||φ−1(Ȳl).

For consistency of the encryption, it is easy to check that Ȳi must belong to
φ(X) for all i = 1, · · · , l. Decryption can also be defined in a similar manner
discussed above.

Format Preserving Sets: On Diffusion Layers of FPE Schemes 413

The method discussed above seems obvious and straightforward solution to
the format preserving encryption. However, it must be noted that this method
is only a solution, not the solution and thus we do not claim that the above
method is the only way to achieve the format preserving encryption. Further-
more, this method provides a solution for format preserving encryption if and
only if E(φ(X)l) = φ(X)l. Nevertheless, this condition does not seem trivial
to achieve.

Now, the whole problem boils down to construct a block cipher and a map φ
such that E(φ(X)l) = φ(X)l. In the example discussed above, the set X contains
the digits 0 to 9. In general, we consider X as any arbitrary set unless specified
otherwise. Further, we assume that constructing encoding map φ is easy. It is
trivial to see that if |X| = 2m, constructing our desired block cipher also is easy
(any block cipher with block size m will suffice), but what if |X| �= 2m1 for any
m1 > 0? When |X| �= 2m1 , it is not trivial to achieve the goal and thus becomes
interesting to see the possibility of those block ciphers which can be used in
format-preserving encryption using the method discussed above only.

A block cipher can be viewed as a pseudo-random permutation which maps
{0, 1}lm to {0, 1}lm. Our problem demands a pseudo-random permutation which
maps φ(X)l to φ(X)l. In the example of SPN-based block cipher, the main prob-
lem can be divided into two smaller problems - (i) Can an S-box be constructed
which maps φ(X) to φ(X) and (ii) Can an n × n matrix be constructed which
given any input vector from φ(X)n outputs a vector from φ(X)n only. Keep-
ing aside the security properties of S-box for a moment, constructing such an
S-box is easy which satisfies condition (i). The only remaining problem is to
construct a matrix in the diffusion layer whose both input and output vectors
belong to φ(X)n. If such matrices are possible to construct, our desired block
cipher can also be constructed (not sure about security properties!!). However,
the impossibility of constructing any such matrix does not rule out the possibility
of constructing our desired block cipher.

This paper considers not only block ciphers but, as a whole, those crypto-
graphic primitives whose diffusion layer can be defined by, in general, a linear
transformation. In diffusion layers of many block ciphers or hash functions, some
matrices are used to provide the diffusion. If the matrix is MDS, it gives optimal
branch number, i.e. optimal diffusion [1,8–11]. In the diffusion layer, input and
output to an n × n matrix are mn-bit {0, 1} strings. These mn-bit strings are
divided into n tuples each consisting m-bit {0, 1} string. Mathematically, oper-
ations required for matrix multiplications are addition and multiplication and
hence entries of input vectors, output vectors and matrix are defined as elements
of a subset of a ring containing 2m elements. In many cases, these entries are
from a special type of ring which is the field F2m .

Our Contribution: Let p be a prime number and q = ps for some s > 0.
Consider an n×n matrix, M , whose entries are from the field Fq (not necessarily
binary field only). Let X be any set and φ be an injective map from X to Fq,
i.e. φ : X → Fq. We say φ(X) to be a format preserving set with respect to the
matrix M if Mv ∈ φ(X)n for all v ∈ φ(X)n. The question is - for a given field

414 K.C. Gupta et al.

Fq and a matrix M whose entries are from Fq, what are the possible cardinalities
of a format preserving set φ(X)? In response to this question, this paper shows
that if M has at least one row which contains at least two non-zero entries, then
there does not exist any format preserving set of cardinality 10 with respect to
4 × 4 matrix over the field F24 . Not only that, for such matrices and for any
prime characteristic p, if 0̄ ∈ φ(X), then φ(X) must be a vector space over the
smallest field containing entries of M and therefore |φ(X)| must be pm′

for some
m′ ≥ 1 which cannot be 10. But, if each row of matrix M contains at most one
non-zero entry, then any cardinality of φ(X) is possible. However, to the best
of our knowledge, such matrices do not have any cryptographic significance and
thus useful only for theoretical completeness.

Organisation of the Paper: The paper is organised as follows: In Sect. 2 we
provide definitions and preliminaries. Section 3 covers the main results. In Sect. 4,
we discuss the possibility or impossibility of constructing a format preserving
set of cardinality 10 with respect to a 4 × 4 matrix over the field F24 . Section 5
concludes the paper and mentions some of future works in this direction.

2 Definition and Preliminaries

A formal definition of format preserving definition has been given in [2], but,
in this paper, for the sake of simplicity, we do not present that definition here.
However, in the simplest form, a format preserving encryption is a function
E : K ×X → X where K is called key space and X is called domain. Informally
speaking, the plaintext and ciphertext both follow the same format.

Definition 1. A non-empty set G together with a binary operation, ·, is said to
form a group if it satisfies the following four conditions:

1. a, b ∈ G implies that a · b ∈ G (closed);
2. a, b, c ∈ G implies (a · b) · c = a · (b · c) (associative);
3. There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G

(existence of identity element);
4. For every element a ∈ G, there exists an element b ∈ G such that a · b =

b · a = e. (existence of inverse).

If a · b = b · a for all a, b ∈ G (commutative), then the group G is said to be
abelian. For more details about group, refer [14].

For notational convenience, we denote a · b as simply ab. Let S be a subset of a
group G. Then the subgroup of G generated by S, denoted by < S >, is defined
to be the intersection of all subgroups of G containing S. The subgroup < S >
is the smallest subgroup of G which contains S. Equivalently,

< S >= {bλ1
1 bλ2

2 · · · bλr
r | r ≥ 0, bi ∈ S, λi ∈ {−1, 1}}

Format Preserving Sets: On Diffusion Layers of FPE Schemes 415

with the convention that if r = 0, the product over the empty list is e. If G is
finite, λi �= −1 (−1 in the exponent not required). Let S = {g1, g2, · · · , gk}. If
G is a finite abelian group, then

< S >= {gλ1
1 gλ2

2 · · · gλk

k | λi ≥ 0}.

Let h ∈ G. By hS, we mean {hg1, hg2, · · · , hgk}.

Definition 2. A field is a non-empty set F together with two binary operations,
addition (+) and multiplication (·) which satisfies the following conditions:

1. F must be an abelian group under addition (+);
2. The set of non-zero elements F

∗ = F \ {0̄} (0̄ is the additive identity of F)
must be an abelian group under multiplication (·);

3. For every element a, b, c ∈ F, c · (a + b) = c · a + c · b (distributive law).

Here also, for notational convenience, we denote a · b as simply ab. The multi-
plicative identity is denoted by 1̄.

Let a ∈ F and Z ⊆ F. If Z = {z1, z2, · · · , zk}, then aZ = {az1, az2, · · · , azk}
and a+Z = {a+z1, a+z2, . . . , a+zk}. The smallest field containing the subset Z
is the intersection of all subfields of F which contain Z. We denote this smallest
field as SF (Z). Fields may have finite or infinite cardinalities. In this paper, we
consider only finite fields, i.e. fields having finite cardinalities.

The characteristic of a field F is the least positive integer n such that n·1̄ = 0̄.
If such n exists, we say that the characteristic of the field F, denoted by char(F),
is n else 0. It can be shown that n must be a prime number and thus every finite
field must have prime characteristic.

Let p be a prime number. Any finite field with characteristic p will have q = pe

number of elements for some integer e > 0. A field having q number of elements
is denoted by Fq and the set of non-zero elements of Fq by F

∗
q . Any subfield of

the field Fq contains pe′
number of elements where e′ divides e. Conversely, if e′

is a positive divisor of e, then there exists exactly one subfield having pe′
number

of elements. For more details about finite fields, see [17].

Definition 3. A non-empty set V is said to be a vector space over a field F if
it satisfies the following conditions:

1. V is an abelian group under addition (+);
2. For every α ∈ F and for every v ∈ V , there is defined an element αv which

belongs to V ;
3. α(v + w) = αv + αw for every α ∈ F and for every v,w ∈ V ;
4. (α + β)v = αv + βv for every α, β ∈ F and for every v ∈ V ;
5. α(βv) = (αβ)v;
6. 1v = v for all v ∈ V .

For more details about vector space, see [16]. If V is finite, then V is finite-
dimensional too over F, but converse need not be true. If V is a d-dimensional
vector space over a finite field F, then the cardinality of V is the cardinality of F

416 K.C. Gupta et al.

raised to the d-th power, i.e. |V | = |F|d. If Fq′ is a subfield of the field Fq, then
Fq is a vector space over Fq′ having dimension e/e′.

In this paper, we assume V = F
n
q and F = Fq or some subfield of Fq.

Any vector can be denoted as a horizontal array or a vertical array. A vector
denoted horizontally is called a row vector whereas a vector denoted vertically
is called a column vector. Throughout this paper, we assume that the vector is
n-dimensional and thus has n entries. If these entries are from a set Z, we say
v ∈ Zn (abuse of notation!). The transpose of a row vector is a column vector.
Let v = [v1 v2 · · · vn] be a row vector. Then vT = [v1 v2 · · · vn]T is a column
vector.

An m × n matrix is a rectangular array having m rows and n columns. If
entries of a matrix A are from a set Z, then we denote it as A(Z). We simply
write A if entries of the matrix A are evident from the context. The transpose
of a matrix A is denoted as AT . If the matrix has all entries 0̄, we call it null
matrix denoted as Om×n. If an n × n matrix has diagonal entries 1̄ and rest 0̄,
we call it identity matrix denoted as In×n. For more about matrices and their
operations, refer [19].

Definition 4. A non-empty set S ⊆ Fq is said to be a format preserving set
with respect to an n × n matrix M(Fq) if Mv ∈ S

n for all v ∈ S
n.

If S is a format preserving set with respect to M , we write S is FPS wrt M . All
other notations used in this paper are standard notations. Any undefined terms
have usual standard definitions.

3 Our Results

Let S ⊆ Fq. We denote the (i, j)th-entry of the matrix M(Fq) by mi,j where
1 ≤ i, j ≤ n. We divide our results into three different subsections. Subsection 3.1
covers the case when 0̄ ∈ S while Subsect. 3.2 considers the case when 0̄ may
or may not belong to S. Subsection 3.3 deals with some conditions which ensure
that 0̄ ∈ S.

Lemma 1. Let M be On×n (null matrix). If S is FPS wrt M , then 0̄ ∈ S.

Proof. It’s obvious. �	
From the definition of format preserving set, any set S will be an FPS wrt null
matrix M if and only if 0̄ ∈ S. From Lemma 1, it is evident that if S is an
FPS wrt M , then 0̄ ∈ S. Conversely, assume 0̄ ∈ S. Take any v ∈ S

n. Then
Mv = [0̄ 0̄ · · · 0̄] ∈ S

n. Therefore, Mv ∈ S
n for all v ∈ S

n and thus S is a format
preserving set with respect to the null matrix M .

To the best of our knowledge, null matrix M does not play any significant role
in the design of diffusion layer of cryptographic primitives like block ciphers and
hash functions, however, Lemma1 is essential for the theoretical completeness
of the results.

Format Preserving Sets: On Diffusion Layers of FPE Schemes 417

Lemma 2. Let s ∈ F
∗
q and S

′ = sS. Then, S is an FPS wrt M if and only if S′

is an FPS wrt M .

Proof. Let v ∈ S
n and v′ = sv ∈ S

′n.
Suppose S is an FPS wrt M . Then, Mv ∈ S

n for all v ∈ S
n. Consider

Mv′ = M(sv) = s(Mv). Since Mv ∈ S
n, therefore Mv′ = s(Mv) ∈ S

′n for all
v′ ∈ S

′n.
Conversely, assume S

′ be an FPS wrt M . Therefore, Mv′ ∈ S
′n for all v′ ∈

S
′n. Consider Mv = M(s−1v′) = s−1M(v′) (s−1 exists because s ∈ F

∗
q). Since

Mv′ ∈ S
′n, therefore Mv = s−1(Mv′) ∈ S

n for all v ∈ S
n. Hence, the lemma.

�	
Let s′ ∈ S

′ be a non-zero element. Then, there exists s ∈ F
∗
q such that ss′ = 1̄.

Let S = sS′. It is clear that 1̄ ∈ S. From Lemma 2, S is an FPS wrt M if and
only if S′ is an FPS wrt M .

Lemma 3. If S is an FPS wrt M , then S is an FPS wrt Mk also for all k ≥ 1.

Proof. We prove it by induction. Let v ∈ S
n. Since S is an FPS wrt M , the vector

v(1) = Mv also belongs to S
n for all v ∈ S

n. Assume v(r−1) = Mr−1v ∈ S
n for

some k = r−1 and for all v ∈ S
n. Now, we show that v(r) = M (r)v also belongs

to S
n.
Take any v ∈ S

n. Consider M (r)v = M(M (r−1)v) = Mv(r−1). We assumed
that v(r−1) ∈ S

n. Since S is an FPS wrt M , therefore v(r) = Mv(r−1) also
belongs to S

n. Since it is true for all v ∈ S
n, hence the lemma. �	

3.1 What if 0̄ ∈ S?

In this section, we assume that 0̄ ∈ S and then explore the complete algebraic
structure of S with respect to the matrix M .

Lemma 4. Let 0̄ ∈ S. Suppose s ∈ S. If S is an FPS wrt M , then smi,j ∈ S for
all 1 ≤ i, j ≤ n.

Proof. Let v(j) = [0̄ 0̄ · · · s · · · 0̄ 0̄]T where s is at the jth position of the
vector v(j) and rest 0̄. Then Mv(j) = [sm0,j sm1,j · · · smn,j]T ∈ S

n. Therefore,
smi,j ∈ S for all i = 1, · · · , n. Now, consider Mv(j) for j = 1, · · · , n. Thus
smi,j ∈ S for 1 ≤ i, j ≤ n. Hence, the lemma. �	
Note that Lemma 4 does not assume that 1̄ ∈ S. If we assume that 1̄ ∈ S, then
mi,j ∈ S for all 1 ≤ i, j ≤ n. The justification of assuming 1̄ ∈ S comes from
Lemma 2. From Lemma 4, we get the next corollary.

Let Z = {mi,j |mi,j �= 0̄}. Using the fact that < Z > is a subgroup of the
multiplicative group F

∗
q , we get the following corollary.

Corollary 1. Let 0̄ ∈ S. Suppose s ∈ S. If S is an FPS wrt M , then s < Z >⊆ S.

418 K.C. Gupta et al.

Using the above Corollary 1, we get the following theorem which characterises
the structure of format preserving set S with respect to such matrices M whose
each row contains at most one non-zero entry.

Theorem 1. Let 0̄ ∈ S. Suppose each row of M contains at most one non-zero
entry. Then, S is an FPS wrt M if and only if there exists a set H ⊆ F

∗
q such

that S =
⋃

s∈H s < Z > ∪ {0̄}.
Proof. Let S be an FPS wrt M . Take H to be an empty set. Choose s1 �= 0̄ from
the set S. If there is no non-zero element in S, then S = {0̄} only, otherwise from
Corollary 1, s1 < Z >⊆ S. Consider S1 = S\s1 < Z > and add s1 into H. Repeat
this process until we are left with 0̄ only. Finally, we get S =

⋃
s∈H s < Z > ∪ {0̄}.

Conversely, let S =
⋃

s∈H s < Z > ∪ {0̄}. Assume s(i) ∈ H and αi ∈< Z >for
all i = 1, · · · , n. Consider a vector v = [s(1)α1 | 0̄ s(2)α2 | 0̄ · · · s(n)αn | 0̄]T . By the
term s(i)αi | 0̄, we mean either s(i)αi or 0̄. It is easy to see that v ∈ S

n. We assume
that each row of M has at most one non-zero entry. Without loss of generality, we
may assume that each row has exactly one non-zero entry. Suppose M has non-
zero entries in columns j1, j2, · · · , jn corresponding to rows 1, 2, · · · , n. Then,
Mv = [s(j1)αj1m1,j1 | 0̄ s(j2)αj2m2,j2 | 0̄ · · · s(jn)αjnmn,jn | 0̄] ∈ S

n because from
Corollary 1, s(ji)αjimi,ji ∈ S for all i = 1, · · · , n. Therefore, S is an FPS wrt M .
Hence, the lemma. �	
Theorem 1 gives a nice characterisation for a certain type of of format preserving
sets (we assumed 0̄ ∈ S) with respect to those matrices whose each row contains
at most one non-zero entry. In-fact, this result can be used to count the number
of elements in S with respect to such type of matrices. Consider the set

⋃
s∈H

s < Z >. Take two elements, say s1α1 and s2α2, from this set. The equality
s1α1 = s2α2 implies s1s

−1
2 = α2α

−1
1 = α3 for some α3 ∈< Z > and thus

s1 = s2α3 ∈ s2 < Z >. If so, then s1 < Z >= s2 < Z >. Therefore, it can be
concluded that either s1 < Z >= s2 < Z > or s1 < Z > ∩ s2 < Z >= φ (empty
set) for any two elements s1, s2 ∈ H. We assume that if s1, s2 ∈ H such that
s1 �= s2, then s1 < Z > ∩ s2 < Z >= φ. Let |H| = k and | < Z > | = d. Since
< Z > is a subgroup of F∗

q , | < Z > | = d divides q − 1. Then, the total number
of elements in S will be dk + 1.

Consider the example of credit card. In this example, |S| = dk + 1 = 10. So,
dk=9. Possible values of (d, k) are (1, 9), (3, 3) and (9, 1). Take char(Fq)=p = 2,
i.e. binary field. Some examples for these possible cases are as follows:

Case 1: (d, k) = (1, 9). If d = 1, < Z >= {1̄} which implies Z = {1̄}. And
thus, each row of M has at most one non-zero entry and that non-zero element
is 1̄. Since k = 9, choose any 9 elements from F

∗
q . To get 9 distinct non-zero

values, q ≥ 24.
Case 2: (d, k) = (3, 3). In this case, 3 | q − 1, i.e., 3 | 2e − 1 implies that e
must be a positive even number. Furthermore, as the subgroup of a cyclic
group is cyclic, < Z > must be a cyclic group because < Z > is the subgroup
of a cyclic group F

∗
q . Let < Z >= {1̄, α, α2} for some α ∈ F

∗
q whose order is

3. Thus, each row of M has at most one non-zero entry and that non-zero

Format Preserving Sets: On Diffusion Layers of FPE Schemes 419

entry must be either 1̄, α, or α2. To be < Z >= {1̄, α, α2}, it is required
that at least one row must contain either α or α2 as a non-zero element.
Now, consider the quotient group (F∗

q/ < Z >) = {Γ1,Γ2, · · · ,Γz} where
z = (q − 1)/3. Choose any three cosets and then choose one element from
each coset. Let these elements be {s1, s2, s3}. Take H = {s1, s2, s3}.
Case 3: (d, k) = (9, 1). In this case, 9 | q − 1 or 9 | 2e − 1 implies that e must
be a multiple of 6. Let < Z >= {1̄, β, β2, β3, · · · , β8} for some β ∈ F

∗
q whose

order is 9. Thus, each row of M has at most one non-zero entry and that
non-zero entry must be from < Z >. To be < Z >= {1̄, β, β2, β3, · · · , β8},
it is required that at least one row must contain one element from the set
{β, β2, β4, β5, β7, β8} as a non-zero element. Now, choose any element, say s,
from F

∗
q . Take H = {s}.

For the credit card example over binary field, we showed how to construct the
matrix M using < Z > and the desired format preserving set S with respect to
M using < Z > and < H >. The idea of constructing S and M was based upon
the Theorem 1. Although Theorem 1, as per our best knowledge, do not provide
any cryptographically significant matrices which might be used in diffusion layer,
it has undoubtedly a theoretical significance.

The left case is when M has at least one row which has at least two non-zero
entries. This case is covered by the next lemma.

Lemma 5. Let 0̄ ∈ S. Suppose M has at least one row which contains at least
two non-zero entries. Suppose s1, s2 ∈ S. If S is an FPS wrt M , then s1+s2 ∈ S.

Proof. From Corollary 1, s1 < Z >⊆ S and s2 < Z >⊆ S. Let ith row of the
matrix M contains at least two non-zero entries, say mi,j1 and mi,j2 , at column
positions j1 and j2. Let v = [0̄ · · · s1m

q−2
i,j1

0̄ · · · 0̄ s2m
q−2
i,j2

0̄ · · · 0̄]T where
s1m

q−2
i,j1

is at the j1
th, s2m

q−2
i,j2

is at the j2
th position of the vector v and rest

0̄. Since s1 < Z > and s2 < Z > both are subsets of S, therefore s1m
q−2
i,j1

and
s2m

q−2
i,j2

both belong to S and thus v ∈ S
n. As S is an FPS wrt M , the vector

Mv ∈ S
n. The ith entry of the vector Mv will be s1m

q−1
i,j1

+ s2m
q−1
i,j2

which is
equal to s1 + s2 due to the fact that mq−1

i,j1
= mq−1

i,j2
= 1̄ in F

∗
q . Hence, the lemma.

�	
We now define a new set

K = {k1α1 + k2α2 + · · · + krαr | r ≥ 0, ki ≥ 1, αi ∈< Z >}
with the convention that if r = 0, the sum over the empty list is 0̄. The set
K is in-fact the smallest field containing entries of the matrix M , or containing
entries of Z because Z contains all non-zero entries of M . The only difference lies
when M has at least one entry which is 0̄. In such case, Z does not contain all
entries of M , however, the smallest field containing Z has 0̄ and hence it becomes
equal to the smallest field containing entries of M . Let SF (Z) and SF (M) be
the smallest field containing entries of Z and M respectively. The next three
lemmas will show the relation between SF (Z), SF (M) and K.

420 K.C. Gupta et al.

Lemma 6. K = SF (Z).

Proof. SF (Z) contains Z and therefore contains < Z > too. Thus < Z >⊆
SF (Z). Take any α ∈ Z. Since Z ⊆ SF (Z), therefore α ∈ SF (Z). As SF (Z) is
a field, so α+α+ · · ·+α (k times addition), i.e. kα belongs to SF (Z). Take any
element from K. If that element is 0̄, it belongs to SF (Z) too. Otherwise, the
element will be of the form of k1α1+k2α2+ · · ·+krαr for some r ≥ 1 and ki ≥ 1.
All elements kiαi ∈ SF (Z). Since SF (Z) is a field, hence k1α1+k2α2+· · ·+krαr

also belongs to SF (Z). Thus K ⊆ SF (Z).
To complete the proof, we need to show that K is a field. To show it, we

must prove - (a) K is an abelian group under addition, (b) K \ {0̄} is an abelian
group under multiplication and (c) follows distributive law (see definition and
preliminaries). Using the fact that (i) 0̄ ∈ K (ii) 1̄ ∈< Z >, so 1̄ ∈ K and (iii)
α1α2 ∈< Z >, so α1α2 ∈ K, it can be easily proved that K is a field.

Since SF (Z) is the smallest field containing Z, therefore SF (Z) ⊆ K. Thus
K = SF (Z). �	
Lemma 7. K = SF (Z) = SF (M).

Proof. Using similar arguments as in Lemma 6, it can be shown that K =
SF (M). Therefore K = SF (Z) = SF (M). �	
Theorem 2. Let 0̄ ∈ S. Suppose M has at least one row which contains at least
two non-zero entries. Then, S is an FPS wrt M if and only if S is a vector space
over the field SF (M).

Proof. Suppose S is a format preserving set. To show that S is a vector space
over SF (M), we need the following (see definition and preliminaries):

1. S is an abelian group under addition (+) - (a) If s1, s2 ∈ S, then s1 + s2 ∈ S

(From Lemma 5), (b) associativity comes from the fact that S ⊆ Fq, (c) 0̄ is
the additive identity (we assumed that 0̄ ∈ S) (d) For every s ∈ S, its inverse
(p − 1)s ∈ S (because of Lemma 5 and the fact that char(Fq) = p) and (e)
commutativity comes from the fact that S ⊆ Fq.

2. Take any α ∈ SF (M). If α = 0̄, then αs = 0̄ ∈ S for any s ∈ S. Suppose
α �= 0̄, say α = k1α1 + k2α2 + · · · + krαr (from Lemmas 6 and 7) where
αi ∈< Z >, r ≥ 1 and ki ≥ 1 for all i = 1, · · · , r. Take s ∈ S. Then
αs = k1(α1s) + k2(α2s) + · · · + kr(αrs). From Corollary 1, αis ∈ S for all
i = 1, · · · , r. From Lemma 5, it can be concluded that ki(αis) ∈ S and from
the same lemma again,

∑r
i=1 ki(αis) ∈ S.

Rest conditions trivially come from the fact that S and SF (M) both are subsets
of Fq.

Conversely, let S be a vector space over SF (M). Since S ⊆ Fq, therefore S

is finite and hence finite dimensional. Let {γ1, γ2, · · · , γd} be the basis of S. Let
sr =

∑d
j=1 α

(r)
j γj for r = 1, · · · , n. Consider the vector v = [s1 s2 · · · sn]T .

Take Mv = M [s1 s2 · · · sn]T . Then the ith element of the vector Mv will be
∑n

r=1 mi,rsr =
∑n

r=1 mi,r(
∑d

j=1 α
(r)
j γj) =

∑d
j=1 γj(

∑n
r=1 mi,rα

(r)
j). Since α

(r)
j ,

Format Preserving Sets: On Diffusion Layers of FPE Schemes 421

mi,r ∈ SF (M), therefore α
(r)
j mi,r ∈ SF (M). So,

∑d
j=1 γj(

∑n
r=1 mi,rα

(r)
j) ∈ S

(because S is a vector space over SF (M)). Thus, the ith element of the vector
Mv belongs to S and hence Mv ∈ S

n. Therefore, S is an FPS wrt M . Hence,
the theorem. �	
Suppose S is a format preserving set with respect to a matrix M which has at
least one row that contains at least two non-zero entries. Then from Theorem
2, |S| = |SF (M)|d where d is the dimension of the vector space S over the
field SF (M). Let char(Fq) = p and |SF (M)| = pm′

for some m′ ≥ 1. Then,
|S| = pm′d. Therefore, in our credit card example, in such case, it is impossible
to get a format preserving set whose cardinality is 10.

Now, we consider the case when 0̄ may not belong to S.

3.2 What if 0̄ May or May not Belong to S?

In the last subsection, we assumed that 0̄ ∈ S and then showed the complete
algebraic structure of S. In-fact, the broader question is what happens if 0̄ may
or may not belong to S?

For matrices M and Mk for k ≥ 1, let mi =
∑n

j=1 mi,j and m(k)
i =

∑n
j=1 m

(k)
i,j

where m
(k)
i,j is the (i, j)th entry of the matrix Mk. When k = 1, mi,j = m

(k)
i,j and

mi = m(k)
i and hence can be used interchangeably. If any of m(k)

i = 0̄ for any
k ≥ 1, we obtain the following lemma.

Lemma 8. Let m(k)
i = 0̄ for some i ∈ {1, · · · , n} and for any k ≥ 1. If S is an

FPS wrt M , then 0̄ ∈ S.

Proof. Suppose s ∈ S. Let v = [s s · · · s]T ∈ S
n. From Lemma 3, S is an FPS

wrt Mk also for k ≥ 1. Therefore ith element of Mkv will be sm(k)
i = 0̄ ∈ S.

Hence the lemma. �	
Let R = {mi | mi �= 0̄} and R(k) = {m(k)

i | m(k)
i �= 0̄}. It is easy to see that when

k = 1, R and R(k) are same and hence can be used interchangeably. Furthermore,
it is easy to observe that < R > and < R(k) > are subgroups of F∗

q .

Lemma 9. Let s ∈ S. If S is an FPS wrt M , then s < R(k) >⊆ S for all k ≥ 1.

Proof. Consider the vector v = [s s · · · s]T . Because S is an FPS wrt Mk also
for any k ≥ 1 (from Lemma 3), Mkv = [sm(k)

1 sm(k)
2 · · · sm(k)

n]T ∈ S
n. Thus

sm(k)
i ∈ S for all i = 1, · · · , n. Now, we show that s(m(k)λ1

i1
m(k)λ2

i2
· · · m(k)λr

ir
) ∈ S

where m(k)
it

∈ R(k), r ≥ 1 and λt ≥ 0 for all t = 1, · · · , r.

We prove it by induction. It is assumed that s ∈ S and shown that sm(k)
i ∈ S

for all i = 1, · · · , n. Lets assume that s(m(k)e1
i1

m(k)e2
i2

· · · m(k)er

ir
) ∈ S for some et =

λt ≥ 0 for all t = 1, · · · , r. Now, we show s(m(k)e1
i1

m(k)e2
i2

· · · m(k)ej+1
ij

· · · m(k)er

ir
) ∈

S for any j ∈ {1, · · · , r}. Let s′ = s(m(k)e1
i1

m(k)e2
i2

· · · m(k)ej

ij
· · · m(k)er

ir
). Then

s′m(k)
ij

∈ S for any j ∈ {1, · · · , r} (proved in the first paragraph). Hence the
lemma. �	

422 K.C. Gupta et al.

Next theorem characterises the format preserving set S with respect to any
matrix M using Lemma 9. Although this characterisation does not provide a
complete picture of the possibility of cardinalities of S, still it allows to eliminate
some candidates.

Theorem 3. Let k ≥ 1. If S is an FPS wrt M , then there exists a set H ⊆ Fq

such that S =
⋃

s∈H s < R(k) >.

Proof. Take H to be an empty set. Choose s1 from the set S. From Lemma 9,
s1 < R(k) >⊆ S. Consider S1 = S \ s1 < R(k) > and add s1 into H. Repeat
this process until we are left with empty set only. Finally, we get S =

⋃
s∈H s <

R(k) >. Hence the theorem. �	

3.3 When 0̄ May Belong to S?

This section explores some relationship between the format preserving set S and
the matrix M which ensure that 0̄ ∈ S. These results become significant in
the sense that if 0̄ ∈ S, then from Subsect. 3.1, we can completely identify the
algebraic structure of S with respect to M .

Lemma 10. Let mi,j ∈< R > ∪ {0̄} for some 1 ≤ i ≤ n and for all j =
1, · · · , n. Let the characteristic of the underlying field be p. Suppose the ith row
has l ≥ 1 number of non-zero entries where l �≡ 1 mod p. If S is an FPS wrt M ,
then 0̄ ∈ S.

Proof. Being a subgroup of the cyclic group F
∗
q , < R > also is a cyclic group.

Let β ∈ F
∗
q be the generator of this group, i.e. < R >=< β >. Then, entries of

the row i will be either 0̄ or βij for some ij ≥ 0. Let the ith row of the matrix
M be [mi,1 mi,2 · · · mi,n] where mi,j is either βij or 0̄. For every βij ∈< R >,
there exists βkj ∈< R > such that βijβkj = 1̄. Consider the vector v(1) =
[m̄i,1 m̄i,2 · · · m̄i,n]T where m̄i,j = βkj when mi,j = βij else m̄i,j = 1̄. It is easy
to see that v(1) ∈ S

n.
Now, consider the vector Mv(1). The ith entry of the vector Mv(1) will be

l1̄ = (l − 1)1̄ + 1̄. Since S is an FPS wrt M , therefore l1̄ ∈ S. From Lemma 9,
(l1̄) < R >⊆ S. Let j1 be the first column entry in the ith row which has non-zero
entry. Take the vector v(2) = [¯̄mi,1 ¯̄mi,2 · · · ¯̄mi,n]T where ¯̄mi.j = 1̄ if mi,j = 0̄
else ¯̄mi,j = (l1̄)βkj1 if j = j1 otherwise ¯̄mi,j = βkj . Now, consider Mv(2). The
ith entry of the vector Mv(2) will be 2(l − 1)1̄ + 1̄ ∈ S.

In a similar manner, take the vector v(3)=[¯̄̄mi,1
¯̄̄mi,2 · · · ¯̄̄mi,n] where ¯̄̄mi.j =1̄

if mi,j = 0̄ else ¯̄̄mi,j = (2l−1)1̄βkj1 if j = j1 otherwise ¯̄mi,j = βkj . Now, consider
Mv(3). The ith entry of the vector Mv(3) will be 3(l − 1)1̄ + 1̄ ∈ S.

Repeating the process e−1 times in a similar fashion, we get e(l−1)1̄+1̄ ∈ S

for all e ≥ 0. In a field of characteristic p, if l − 1 �≡ 0 mod p, there exists an
1 ≤ e < p such that e(l−1)1̄+ 1̄ = 0̄. The value of e is in-fact −(l−1)−1 mod p.
Thus 0̄ ∈ S. Hence the lemma. �	
Similarly, from Lemmas 3 and 10, we get the following theorem.

Format Preserving Sets: On Diffusion Layers of FPE Schemes 423

Theorem 4. Suppose k1, k2 ≥ 1 and s ∈ S. Let m
(k1)
i,j ∈ s < R(k2) > ∪ {0̄}

for some 1 ≤ i ≤ n and for all j = 1, · · · , n. Let the characteristic of the
underlying field be p. Suppose the ith row has l ≥ 1 number of non-zero entries
where l �≡ 1 mod p. If S is an FPS wrt M , then 0̄ ∈ S.

Lemma 11. Let 1̄ ∈ S. Suppose r ≥ 1. If S is an FPS wrt M , then (mi − 1̄)
(
∑r

l=0 ml
i,j) + 1̄ ∈ S for all 1 ≤ i, j ≤ n.

Proof. Recall that mi =
∑n

j=1 mi,j . Consider v = [1̄ 1̄ · · · mi · · · 1̄]T ∈ S
n

(from Lemma 9) where mi is at the jth position of the vector v and rest 1̄. The
ith element of the vector Mv will be (mi − 1̄)(1̄ + mi,j) + 1̄ ∈ S. Now, we show
that (mi − 1̄)(

∑r
l=0 ml

i,j) + 1̄ ∈ S for any r ≥ 1. We prove it by induction.
For r = 1, we have shown that (mi − 1̄)(1̄ + mi,j) + 1̄ ∈ S. Assume that

(mi − 1̄)(
∑r

l=0 ml
i,j)+ 1̄ ∈ S for some r = r1. Now, we show that its true for r =

r1+1 also. Consider the vector v = [1̄ 1̄ · · · (mi− 1̄)(
∑r1

l=0 ml
i,j)+1̄ · · · 1̄]T ∈ S

n

where (mi − 1̄)(
∑r1

l=0 ml
i,j) + 1̄ is at the jth position of the vector v and rest 1̄.

Then the ith element of the vector Mv will be mi,j((mi − 1̄)(
∑r1

l=0 ml
i,j) + 1̄) +

mi − mi,j = (mi − 1̄)(
∑r1+1

l=0 ml
i,j) + 1̄ ∈ S. Hence the lemma. �	

Lemma 12. Let s �= 1̄ and {1̄, s} ⊆ S. Suppose r ≥ 1 and mi = 1̄ for some
i ∈ {1, · · · , n}. If S is an FPS wrt M , then mr

i,j(s−1̄)+1̄ ∈ S for all j = 1, · · · , n.

Proof. Consider the vector v = [1̄ 1̄ · · · s · · · 1̄]T ∈ S
n where s is at the jth

position of the vector v and rest 1̄. The ith element of the vector Mv will be
(s − 1̄)mi,j + 1̄ ∈ S (because S is a format preserving set). Now, we show that
(s − 1̄)mr

i,j + 1̄ ∈ S for all r ≥ 1. We prove it by induction.
For r = 1, we have shown that (s−1̄)mi,j+1̄ ∈ S. Assume that (s−1̄)mr

i,j+1̄ ∈
S for some r = r1 > 1. Now, we show that its true for r = r1 + 1 also. Consider
the vector v = [1̄ 1̄ · · · (s − 1̄)mr1

i,j + 1̄ · · · 1̄]T ∈ S
n where (s − 1̄)mr1

i,j + 1̄ is at
the jth position of the vector v and rest 1̄. Then the ith element of the vector
v will be 1̄ − mi,j + mi,j((s − 1̄)mr1

i,j + 1̄) = (s − 1̄)mr1+1
i,j + 1̄ ∈ S. Hence the

lemma. �	
Using Lemmas 11 and 12, we get the next theorem.

Theorem 5. Let s �= 1̄ and {1̄, s} ⊆ S. Suppose the ith row of the matrix M has
l ≥ 1 number of non-zero entries where l �≡ 1 mod p. For some j ∈ {1, · · · , n},
let there be an element mi,j such that SF (M)∗ =< mi,j >. If S is an FPS wrt
M , then 0̄ ∈ S.

Proof. If mi,j = 1̄, then SF (M) = F2. In such case, all entries of M will be either
0̄ or 1̄. If ith row of the matrix has l �≡ 1 mod 2 number of non-zero entries, i.e.,
even number of 1̄s, then mi = 0̄ which further implies 0̄ ∈ S (from Lemma 8).

We assume that mi,j �= 1̄ and divide it into three cases - (a) when mi /∈
{1̄,mi,j}, (b) when mi = 1̄ and (c) when mi = mi,j . Consider these following
cases:

424 K.C. Gupta et al.

(a) From Lemma 11, (mi − 1̄)(
∑r

l=0 ml
i,j) + 1̄ = (mi − 1̄)(mi,j − 1̄)−1(mr+1

i,j − 1̄)
+ 1̄ ∈ S for all r ≥ 1. Since < mi,j >= SF (M)∗, so for r ≥ 1, (mr+1

i,j − 1̄)
varies over all the elements of the field SF (M) except −1̄. In this case,
mi /∈ {1̄,mi,j} and mi,j �= 1̄, therefore there exists r = r1 ≥ 1, such that
(mi − 1̄)(mi,j − 1̄)−1(mr+1

i,j − 1̄) = −1̄ and thus 0̄ ∈ S.
(b) From Lemma 12, mr

i,j(s− 1̄)+1̄ ∈ S for all r ≥ 1. Since SF (M)∗ =< mi,j >,
so mr

i,j varies over all the elements of the field SF (M)∗. As s �= 1̄, there
exists some r = r1 ≥ 1 such that mr

i,j(s − 1̄) + 1̄ = 0̄ ∈ S.
(c) If < mi >= SF (M)∗, then mi,l ∈< mi > ∪{0̄} ⊆< R > ∪{0̄} for all

l = 1, · · · , n. From Lemma 10, we can conclude that 0̄ ∈ S.

Hence the theorem. �	

4 Credit Card Example over the Field F24

In the credit card example, we fixed our requirement to be |S| = 10. In Sect. 3,
the case when 0̄ ∈ S has been discussed and that’s why, in this section, we do
not assume that 0̄ ∈ S. In this section, we discuss only for 4 × 4 matrices whose
entries are from the field F24 .

From Theorem 3, there exists a subset H ⊆ F
∗
24 such that S = ∪s∈Hs < R >.

Suppose s1, s2 ∈ H such that s1 �= s2. Since < R > is the subgroup of F∗
24 , it can

be easily shown that either s1 < R >= s2 < R > or s1 < R > ∩ s2 < R >= φ
(an empty set). Thus | < R > | divides |S| = 10. Moreover, | < R > | divides
|F∗

24 | = 15. Therefore | < R > | divides the greatest common divisor of 10 and
15 which is 5. So, the possible values of | < R > | are 1 and 5.

The multiplicative group F
∗
24 is cyclic, therefore, its subgroup < R > also

is cyclic. Let < γ >= F
∗
24 . For | < R > | = 1, the subgroup < R >= {1̄},

whereas, for | < R > | = 5, the subgroup < R >= {1̄, γ3, γ6, γ9, γ12}. Let
γ3 = α. Then < R > will be either {1̄} or {1̄, α, α2, α3, α4}. Let β = γ5. Then
F

∗
24 =< R > ∪ β < R > ∪ β2 < R >. For the case | < R > | = 5, there are

three possibilities - (a) S =< R > ∪ β < R >, (b) S =< R > ∪ β2 < R > and
(c) S = β < R > ∪ β2 < R >.

A matrix can have either (a) all rows which contains at most one non-zero
entry or (b) at least one row which has at least two non-zero entries. We do not
consider those matrices which has at least one row whose all entries are 0̄ because
in such case, 0̄ ∈ S. Therefore, in case (a), we consider only those matrices whose
all rows have exactly one non-zero entry. Similarly, for case (b), there is no row
whose all entries are 0̄.

4.1 Case (a)

In this subsection, we provide the structure of 4 × 4 matrix M and the set S

which is a format preserving set with respect to M . Let mi,ji �= 0̄ for some
ji ∈ {1, · · · , 4} and for all i = 1, · · · , 4. Consider the following cases:

Format Preserving Sets: On Diffusion Layers of FPE Schemes 425

– When < R >= {1̄}. In such case, mi,ji = 1̄ for all i = 1, · · · , 4. Thus each row
of M has exactly one non-zero entry whose value is 1̄. Furthermore, choose
any 10 elements from F

∗
24 . Let these elements be {s1, s2, · · · , s10}. Then S =

{s1, s2, · · · , s10}.
– When < R >= {1̄, α, α2, α3, α4}. Since, | < R > | = 5, a prime number,

hence, α, α2, α3 and α4 all are generators of < R >. Therefore mi,ji ∈
{1̄, α, α2, α3, α4} for all i = 1, · · · , 4 with the condition that at least one
of mi,ji ∈ {α, α2, α3, α4}. Furthermore, S =< R > ∪ β < R > or
S =< R > ∪ β2 < R > or S = β < R > ∪ β2 < R >.

4.2 Case (b)

This subsection shows the impossibility of the existence of our desired matrix
M . We assume that the matrix M has at least one row, say ith, which has l ≥ 2
number of non-zero entries. Moreover, no row contains all entries whose values
are 0̄. Now, consider the following cases:

– When < R >= {1̄}. In such case mi = 1̄ for all i = 1, · · · , 4. As |S| = 10,
there exists an s ∈ S such that s �= 1̄. From Theorem 5, in case of l = 2
and 4, if < mi,j >= F

∗
24 for some j ∈ {1, · · · , 4}, then 0̄ ∈ S. Therefore, we

consider mi,j ∈ {0̄, 1̄, α, α2, α3, α4, β, β2} for all j = 1, · · · , 4 because all other
elements of F∗

24 are the generators of F∗
24 . Consider those mi,j ’s which are not

zero. Then, non-zero mi,js belong to {1̄, α, α2, α3, α4, β, β2} only. Consider the
following cases -

• l = 2. Two non-zero mi,js can be either {αr1 , αr2} or {αr1 , β} or {αr1 , β2}
or {β, β2} for some 1 ≤ r1, r2 ≤ 5. The only possible candidate is {β, β2}
because none other than {β, β2} will have sum 1̄. Suppose δ ∈ F24 . Con-
sider the set Hδ = {δ, βδ, β2δ}. It is easy to verify that 0̄ ∈ Hδ if and
only if δ = 0̄. If δ �= 0̄, the set Hδ will have all distinct elements. Sup-
pose δ1, δ2 ∈ F

∗
24 such that δ1 �= δ2. It is easy to verify then that either

Hδ1 = Hδ2 or Hδ1 ∩ Hδ2 = φ. Therefore, there exists a set D such that
F

∗
24 = ∪δ∈DHδ.

Let βa1δ and βa2δ be two distinct elements from the set Hδ where
a1 �≡ a2 mod 3 and δ �= 0. If βa1δ and βa2δ both belong to the set S,
then (βa1+1 + βa2+2)δ ∈ S (because [β β2] · [βa1δ βa2δ]T ∈ S). Therefore,
if two distinct elements from Hδ belong to the set S, then 0̄ ∈ S. For
0̄ /∈ S, there can be at most 15/3 = 5 elements in S. Thus |S| �= 10, a
contradiction.

• l = 4. Let Ri = {mi,1,mi,2,mi,3,mi,4}. Consider these following cases -
∗ The sum of four elements from the set {1̄, α, α2, α3, α4} can be 1̄ only

when those four elements are α, α2, α3 and α4. Let Ri = {α, α2, α3,
α4}. Suppose δ ∈ F24 . Consider Hδ = {δ, αδ, α2δ, α3δ, α4δ}. It is easy
to verify that 0̄ ∈ Hδ if and only if δ = 0̄. If δ �= 0̄, the set Hδ will
have all distinct elements. Suppose δ1, δ2 ∈ F

∗
24 such that δ1 �= δ2.

It is easy to verify then that either Hδ1 = Hδ2 or Hδ1 ∩ Hδ2 = φ.
Therefore, there exists a set D such that F

∗
24 = ∪δ∈DHδ.

426 K.C. Gupta et al.

If any 4 distinct elements from the set Hδ belong to S, then there
exists a vector v ∈ S

4 such that 0̄ becomes an element in the vector
Mv. Therefore, there can be at most 3 elements from the set Hδ which
may belong to the set S. For 0̄ /∈ S, there can be at most (15/5)∗3 = 9
elements in the set S, a contradiction.

∗ If Ri ⊆ {1, β, β2} ∪ {0̄}, then, for mi = 1̄, only 4 non-zero possible
values are β, β2, βa, βa for some a = 0, 1, 2. Such case can be dealt in
a similar manner as done in the case for l = 2 above. Thus, it can be
shown that 0̄ ∈ S.

∗ If Ri ∩{α, α2, α3, α4} �= φ and Ri ∩{β, β2} �= φ both, then there exists
column indices 1 ≤ j1 �= j2 ≤ n such that mi,j1 = αa1 and mi,j2 = βa2

for some a1 = 1, · · · , 4 and a2 = 1, 2. If some s − 1̄ ∈ {α, α2, α3, α4},
then from Lemma 12, there exists r ≥ 1 such that mr

i,j1
(s − 1̄) + 1̄ =

0̄ ∈ S. Similarly, when s − 1̄ ∈ {β, β2}, then from Lemma 12 again,
there exists r ≥ 1 such that mr

i,j2
(s − 1̄) + 1̄ = 0̄ ∈ S. Thus, in this

case, s− 1̄ /∈ {α, α2, α3, α4, β, β2}. Thus S can have at most 15−6 = 9
elements, a contradiction.

• l = 3. If, for some 1 ≤ j1 ≤ 4, mi,j1 ∈ Ri such that < mi,j1 >=
F

∗
24 , then from Lemma 12, 0̄ ∈ S. Therefore, we assume that Ri ⊆

{1̄, α, α2, α3, α4, β, β2} ∪ {0̄}. Consider these following cases-
∗ If Ri ⊆ {1̄, α, α2, α3, α4}∪{0̄}, then only possible non-zero values in Ri

which make mi = 1̄ are 1, αa, αa where a ∈ {1, · · · , 5}. If s1, s2 ∈ S,
then 1̄ + αa(s1 + s2) ∈ S. For 0̄ /∈ S, it is required that s1 and
−(α−a +s1) both should not belong to S. Vary s1 over all elements of
F

∗
24 ; −(α−a+s1) will vary from all elements of F24 except −α−a. There

will be exactly one non-zero value s1 for which −(α−a + s1) becomes
0̄. Thus, there can be at most 8 elements in S, a contradiction.

∗ Similar case occurs if Ri ⊆ {1̄, β, β2} ∪ 0̄.
∗ Therefore we assume that Ri∩{α, α2, α3, α4} �= φ and Ri∩{β, β2} �= φ

both. For such case, similar argument holds which has been discussed
in the case for l = 4 above.

– When < R >= {1̄, α, α2, α3, α4}. In such case, without loss of generality, we
may assume that S =< R > ∪ β < R >. Moreover, mi ∈< R > for all
i = 1, · · · , 4 but all mi �= 1̄. From Theorem 5, in case of l = 2 and 4, if
< mi,j >= F

∗
24 for some j ∈ {1, · · · , 4}, then 0̄ ∈ S. Therefore, we consider

mi,j ∈ {0̄, 1̄, α, α2, α3, α4, β, β2} for all j = 1, · · · , 4. Consider the following
cases:

• l = 2. Two non-zero mi,js can be either (a) {αr1 , αr2} or (b) {αr1 , β} or
(c) {αr1 , β2} or (d) {β, β2} for some 1 ≤ r1, r2 ≤ 5. Choose s1 = α5−r1 ,
s2 = α5−r2 for (a), s1 = α5−r1 , s2 = 1̄ for (b), s1 = α5−r1 , s2 = β for
(c) and s1 = β, s2 = 1̄ for (d). All four choices of s1 and s2 belong to
S and for each such choices, 0̄ ∈ S in (a), (c), (d) and β2 ∈ S in (b), a
contradiction.

• l = 4. Any four non-zero values from the set {1̄, α, α2, α3, α4, β, β2} will
yield either 0̄ ∈ S or β2 ∈ S, a contradiction.

Format Preserving Sets: On Diffusion Layers of FPE Schemes 427

• l = 3, In this case, we cannot apply Theorem 5, therefore mi,j ∈< R >
∪ β < R > ∪ β2 < R > ∪ 0̄ for all j = 1, · · · , 4. If mi,j ∈< R > ∪ {0̄}
for all j = 1, · · · , 4, then mi /∈< R >, a contradiction. Thus we assume
that there exists at least one j1 ∈ {1, · · · , 4} such that mi,j1 ∈ β < R >
∪ β2 < R >. Since S =< R > ∪ β < R >, it can be shown that either
0̄ ∈ S or β2 ∈ S, a contradiction.

Thus, we conclude that if a 4 × 4 matrix M over the field F24 has a row which
contains at least two non-zero entries, then there does not exist any format
preserving set S with respect to the matrix M such that |S| = 10.

5 Conclusion and Future Work

This paper discusses the algebraic structure of the format preserving set S with
respect to the matrix M over the field Fq. It is shown that if the matrix M has
a row which contains at least two non-zero entries and 0̄ ∈ S, then S becomes a
vector space over the smallest field containing entries of M . Therefore, in a field
of characteristic p, for such matrices M , |S| = pm′

for some m′ ≥ 1. But, this
paper does not provide the complete algebraic structure of format preserving set
as it is unknown what happens when 0̄ may not belong to S? In this direction, we
obtain some more interesting results which can be used to find out the possibility
or impossibility of the algebraic structure of format preserving set S with respect
to M . Using these results, it is shown that if a 4× 4 matrix M over the field F24

has a row which contains at least two non-zero entries, then it is impossible to
construct a format preserving set whose cardinality is 10.

But, if each row of the matrix M has at most one non-zero entry, then a
format preserving set S of any given cardinality can be constructed. Although,
to the best of our knowledge, such matrices do not have any cryptographic
significance, these results are useful in providing the theoretical completeness.

Future Work: This paper does not provide the complete structure of format
preserving set S with respect to M when the condition, 0̄ ∈ S is relaxed. There-
fore, it would be interesting to explore the complete structure of S with respect
to any matrix M . Furthermore, this paper considers that S is a subset of some
field Fq and entries of the matrix M also are from the same field. It would be
worth to explore what happens if instead of the field Fq, the set S is a subset of
some ring R and entries of the matrix M also are from the same ring.

References

1. Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion layers using
shortened BCH codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol.
8540, pp. 3–17. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 1

2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol.
5867, pp. 295–312. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05445-7 19

http://dx.doi.org/10.1007/978-3-662-46706-0_1
http://dx.doi.org/10.1007/978-3-642-05445-7_19

428 K.C. Gupta et al.

3. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg
(1999). doi:10.1007/3-540-48519-8 17

4. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for
format-preserving encryption (2010). http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/ffx/ffx-spec.pdf

5. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). doi:10.
1007/3-540-45760-7 9

6. Brier, E., Peyrin, T., Stern, J.: BPS: A Format-Preserving Encryp-
tion Proposal (2010). http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/
proposedmodes/bps/bps-spec.pdf

7. Chang, D., Kumar, A., Sanadhya, S.K.: SPF: a new family of efficient format-
preserving encryption algorithms. In: Preprint

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-The Advanced Encryption
Standard. Springer, Berlin (2002)

9. Gupta, K.C., Ray, I.G.: On constructions of involutory MDS matrices. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
43–60. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7 3

10. Gupta, K.C., Ray, I.G.: On constructions of MDS matrices from companion matri-
ces for lightweight cryptography. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl,
E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8128, pp. 29–43. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40588-4 3

11. Gupta, K.C., Ray, I.G.: On constructions of circulant MDS matrices for lightweight
cryptography. In: Huang, X., Zhou, J. (eds.) ISPEC 2014. LNCS, vol. 8434, pp.
564–576. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06320-1 41

12. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45146-4 28

13. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-24660-2 23

14. Herstein, I.N.: Topics in Algebra. Wiley, Hoboken (1975)
15. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)

CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-14623-7 33

16. Hoffman, K.M., Kunze, R.: Linear Algebra. Prentice-Hall, Upper Saddle River
(1971)

17. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(2008)

18. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009). doi:10.1007/978-3-642-03356-8 17

19. Rao, A.R., Bhimasankaram, P.: Linear algebra, vol. 19 of texts and readings in
mathematics. Hindustan Book Agency, New Delhi. Technical report, ISBN 81-
85931-26-7 (2000)

20. Sheets, J., Wagner, K.R.: VISA Format Preserving Encryption (2011). http://csrc.
nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/vfpe/vfpe-spec.
pdf

21. Terence Spies. Feistel Finite Set Encryption Mode (2008). http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/proposedmodes/ffsem/ffsem-spec.pdf

http://dx.doi.org/10.1007/3-540-48519-8_17
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://dx.doi.org/10.1007/3-540-45760-7_9
http://dx.doi.org/10.1007/3-540-45760-7_9
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://dx.doi.org/10.1007/978-3-642-38553-7_3
http://dx.doi.org/10.1007/978-3-642-40588-4_3
http://dx.doi.org/10.1007/978-3-319-06320-1_41
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-45146-4_28
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-540-24660-2_23
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-14623-7_33
http://dx.doi.org/10.1007/978-3-642-03356-8_17
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/vfpe/vfpe-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/vfpe/vfpe-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/vfpe/vfpe-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffsem/ffsem-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffsem/ffsem-spec.pdf

Author Index

Arriaga, Afonso 227
Ashur, Tomer 269
Azarderakhsh, Reza 191

Banik, Subhadeep 173, 305
Barbosa, Manuel 227
Bogdanov, Andrey 173

Choudary, Marios O. 137

Fang, Fuyang 25
Farshim, Pooya 227

Gaj, Kris 207
Gérault, David 287
Goubin, Louis 3
Grassi, Lorenzo 322
Gupta, Kishan Chand 411

Homsirikamol, Ekawat 207

Isobe, Takanori 305

Jha, Sonu 305
Jhanwar, Mahabir Prasad 380
Jia, Dingding 393
Jing, Wenpan 25

Kim, Kwangjo 248
Koziel, Brian 191
Kuppusamy, Lakshmi 81

Lafourcade, Pascal 287
Li, Bao 25, 393
Liu, Muhua 99
Liu, Yamin 25
Lu, Xianhui 25, 393

Miller, Douglas 345
Mohamed, Mohamed Saied Emam 61
Mozaffari-Kermani, Mehran 191

Nishide, Takashi 248

Ohigashi, Toshihiro 305
Okamoto, Eiji 248

Pandey, Sumit Kumar 411
Pessl, Peter 153
Petzoldt, Albrecht 61
Poussier, Romain 137
Prabowo, Theo Fanuela 364

Rangasamy, Jothi 81
Ray, Indranil Ghosh 411
Rechberger, Christian 322
Regazzoni, Francesco 173
Rijmen, Vincent 269

Sahu, Rajeev Anand 43
Saraswat, Vishal 43
Scrivener, Adam 345
Sharma, Birendra Kumar 43
Sharma, Neetu 43
Srinathan, Kannan 380
Standaert, François-Xavier 137
Stern, Jesse 345

Tan, Chik How 364
Tsuchida, Hikaru 248

Venkitasubramaniam,
Muthuramakrishnan 345

Vial Prado, Francisco José 3

Wu, Ying 99

Xue, Rui 99

Zhang, Lin 119
Zhang, Zhenfeng 119

	Preface
	Organization
	Invited Talks
	Leakage-Resilient Symmetric Cryptography - Overview of the ERC Project CRASH, Part II
	Faster Zero-Knowledge Protocols for General Circuits and Applications
	Contents
	Public-Key Cryptography
	Blending FHE-NTRU Keys -- The Excalibur Property
	1 Introduction
	1.1 The Excalibur Property
	1.2 Modified NTRU
	1.3 Excalibur Key Generation
	1.4 Fully Homomorphic Encryption
	1.5 FHE and Bidirectional Multi-hop Re-encryption Paradigm
	1.6 Our Contributions

	2 Preliminaries
	2.1 Notation
	2.2 The Quotient Ring Rq
	2.3 Bounded Gaussian Samplings on Z[x]/(xn+1)

	3 Modified NTRU Encryption
	3.1 The Multikey Property

	4 Hardness Assumptions
	4.1 Small Polynomial Ratio Problem, from [23]
	4.2 Small Factorizations in the Quotient Ring

	5 Two-Party Multiplication Protocols in Rq
	5.1 Secret Inputs Setting
	5.2 Shared Inputs Setting

	6 Excalibur Key Generation
	7 Security
	7.1 Honest-But-Curious Model
	7.2 Security Against One Malicious Party

	8 Extensions
	8.1 Chains of Keys
	8.2 Plugging in LATV-FHE

	9 Conclusion
	References

	Approximate-Deterministic Public Key Encryption from Hard Learning Problems
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Notations
	2.2 Lattices

	3 Approximate-DPKE: Definition and Security
	4 A-DPKE from LPN
	4.1 Coding Theory
	4.2 The LPN Assumption
	4.3 Construction 1: A-DPKE from LPN
	4.4 Correctness
	4.5 Security

	5 A-DPKE from LWE
	5.1 The LWE Assumption
	5.2 A-DPKE from LWE
	5.3 Construction 2: A-DPKE from LWE
	5.4 Correctness
	5.5 Security

	6 Conclusion
	References

	Adaptively Secure Strong Designated Signature
	1 Introduction
	1.1 Related Work
	1.2 Applications
	1.3 Our Contribution
	1.4 Outline of the Paper

	2 Preliminaries
	3 Identity-Based Strong Designated Verifier Signature
	3.1 Identity-Based Strong Designated Verifier Signature
	3.2 Security Model for Identity-Based Strong Designated Verifier Signature

	4 Proposed Scheme
	5 Analysis of the Proposed Scheme
	5.1 Correctness of the Proposed Scheme
	5.2 Unforgeability
	5.3 Unverifiability
	5.4 Non-transferability
	5.5 Strongness

	6 Comparative Analysis
	7 Conclusion
	References

	The Shortest Signatures Ever
	1 Introduction
	2 (Wireless) Sensor Networks
	3 Multivariate Cryptography
	3.1 The Rainbow Signature Scheme
	3.2 The HFEv- Signature Scheme

	4 Solving Multivariate Quadratic Systems
	4.1 The Relinearization Technique
	4.2 Other Techniques

	5 Reducing the Signature Size of Multivariate Schemes
	5.1 How to Choose the Parameter k?

	6 Results
	6.1 Efficiency of the Verification Process

	7 Application of Our Technique to Gui
	8 Discussion
	9 Conclusion
	References

	Cryptographic Protocols
	CRT-Based Outsourcing Algorithms for Modular Exponentiations
	1 Introduction
	1.1 Related Work
	1.2 Our Motivation and Contributions

	2 Security Definitions
	2.1 Outsource-Security Definitions

	3 Secure Outsourcing of Modular Exponentiations to Two Non-colluding Untrusted Servers
	3.1 2EXP: Secure Outsourcing Algorithm for Single Modular Exponentiation
	3.2 Security and Efficiency Analysis
	3.3 Comparison

	4 2GEXP: Algorithm to Outsource Simultaneous Modular Exponentiations
	4.1 Security and Efficiency Analysis
	4.2 Comparison

	5 Potential Applications of Our Algorithms
	5.1 Securely Offloading the Final Exponentiation in Pairings
	5.2 Outsource-Secure Cryptographic Schemes and Primitives

	6 Conclusion
	A Security Defintions
	References

	Verifiable Computation for Randomized Algorithm
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Definitions
	2.1 Formal Definition of Verifiable Computation for Randomized Algorithms

	3 Preliminaries
	3.1 Indistinguishability Obfuscation
	3.2 Constrained Verifiable Random Functions
	3.3 Functional Pseudorandom Functions

	4 Construction
	5 Conclusion
	A Modified Construction of Constrained VRF
	A.1 Assumption
	A.2 Construction

	References

	UC-secure and Contributory Password-Authenticated Group Key Exchange
	1 Introduction
	1.1 Our Contributions

	2 Security Definitions
	2.1 Universal Composability Framework
	2.2 Split Functionalities
	2.3 The Ideal Functionality for GPAKE
	2.4 Discussions

	3 Our GPAKE Scheme
	3.1 Concrete Construction

	4 Security Analysis
	4.1 Description of Simulator
	4.2 Sequence of Games

	A Auxiliary Ideal Functionalities
	A.1 Random Oracles
	A.2 Common Reference Strings

	References

	Side-Channel Attacks
	Score-Based vs. Probability-Based Enumeration -- A Cautionary Note
	1 Introduction
	2 Background
	2.1 Attacks
	2.2 Key Enumeration
	2.3 Rank Estimation

	3 Experiments
	3.1 Simulations with Identical S-Box Leakages
	3.2 Simulations with Different S-Box Leakages
	3.3 Actual Measurements
	3.4 Additional Heuristics

	4 Conclusions
	References

	Analyzing the Shuffling Side-Channel Countermeasure for Lattice-Based Signatures
	1 Introduction
	2 BLISS and Gaussian Samplers
	2.1 BLISS - Bimodal Lattice Signatures
	2.2 Discrete Gaussians

	3 Side-Channel Attacks and Countermeasures for Gaussian Sampling
	3.1 A Cache Attack on BLISS
	3.2 Countermeasures

	4 A Side-Channel Attack on a Gaussian Sampler
	4.1 Implementation and Measurement Setup
	4.2 Reconstructing the Control Flow
	4.3 Determining the Sampled Values via Templates

	5 An Analysis of the Shuffling Countermeasure
	5.1 Cost
	5.2 Considered Attackers
	5.3 Attack Without Shuffling
	5.4 An Attack on Shuffling - Basic Concept
	5.5 Attack Details
	5.6 Adaptation to Two-Stage Shuffling

	6 Conclusion
	References

	Implementation of Cryptographic Schemes
	Atomic-AES: A Compact Implementation of the AES Encryption/Decryption Core
	1 Introduction
	1.1 Contribution and Organization

	2 Background and Preliminaries
	3 Atomic-AES: Architecture and Dataflow
	3.1 Issues with the Decryption Circuit
	3.2 Inverse Shiftrow
	3.3 Inverse Keyschedule
	3.4 Sequence of Operations
	3.5 S-Box
	3.6 Mixcolumn/Inverse Mixcolumn
	3.7 Round Constants and Control System

	4 Performance Evaluation
	5 Conclusion
	References

	Fast Hardware Architectures for Supersingular Isogeny Diffie-Hellman Key Exchange on FPGA
	1 Introduction
	2 Preliminaries
	3 Proposed Architectures for Isogeny Computations
	3.1 Finite Field Adder
	3.2 Field Multiplier

	4 Parallelizing SIDH
	4.1 Scheduling
	4.2 Extension Field Arithmetic
	4.3 Scheduling Isogeny Computations and Evaluations
	4.4 Total Cost of Routines

	5 FPGA Implementations Results and Discussion
	6 Conclusion
	References

	AEZ: Anything-But EaZy in Hardware
	1 Introduction
	2 AEZ Overview
	3 Hardware Implementation Challenges
	4 Design Architecture
	4.1 Interface, Protocol, and Design Parameters
	4.2 Tweakable Block Cipher
	4.3 CipherCore

	5 Timing Analysis
	5.1 Latency
	5.2 Throughput

	6 Benchmarking in Hardware
	6.1 Hardware Results and Comparison with Other CAESAR Candidates
	6.2 Comparison with the Optimized Software Implementation

	7 Conclusions
	References

	Functional Encryption
	Private Functional Encryption: Indistinguishability-Based Definitions and Constructions from Obfuscation
	1 Introduction
	1.1 Function Privacy
	1.2 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Functional Encryption

	3 Unpredictable Samplers
	4 Obfuscators
	5 Function Privacy: A Unified Approach
	6 Constructions
	6.1 The Obfuscate-Extract (OX) Transform
	6.2 The Trojan-Obfuscate-Extract (TOX) Transform
	6.3 The Disjunctively-Obfuscate-Extract (DOX) Transform
	6.4 The Verifiably-Obfuscate-Encrypt-Extract (VOEX) Transform

	References

	Revocable Decentralized Multi-Authority Functional Encryption
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Key Techniques
	1.4 Related Works
	1.5 Notations
	1.6 Preliminaries

	2 Revocable Decentralized Multi-Authority Functional Encryption (R-DMA-FE)
	2.1 Definitions of R-DMA-FE
	2.2 Construction
	2.3 Performance
	2.4 Security of the Proposed R-DMA-FE

	3 Conclusion
	References

	Symmetric-Key Cryptanalysis
	On Linear Hulls and Trails
	1 Introduction
	2 Notation and Terminology
	2.1 Boolean Functions
	2.2 Masks and Approximations
	2.3 Linear Hulls and Trails

	3 One-Round Hulls in Simon
	3.1 Simon
	3.2 Linear Hulls and Trails Through One Round of Simon
	3.3 Correlations and Correlation Contributions

	4 Correlation Matrices
	4.1 Correlation Matrix for Simon
	4.2 Examples
	4.3 Conclusion

	5 Expected Correlation and Potential
	5.1 Expected Correlation
	5.2 Potential
	5.3 Additions/Corrections
	5.4 Conclusion

	6 On Matsui's Algorithm 1
	6.1 Four Trails Through Three Rounds of Simon
	6.2 Correlation Contributions of the Trails
	6.3 Knowing Trail 1 only
	6.4 Knowing only One of the Trails 2--4
	6.5 Knowing All Trails
	6.6 Conclusion

	References

	Related-Key Cryptanalysis of Midori
	1 Introduction
	2 Description of Midori Encryption Scheme
	3 Related-Key Cryptanalysis
	4 Constraint Programming Model
	4.1 Step 1
	4.2 Step 2

	5 Results
	5.1 Key Recovery Attacks
	5.2 Related-Key Distinguishers

	6 Conclusion
	A 16 Related-Key Differentials for WK for Midori64
	B 4 Related-Key Differentials for K[0] for Midori64
	C 16 Related-Key Differentials for Midori128
	D Example of Related-Key Distinguisher for Midori64
	References

	Some Proofs of Joint Distributions of Keystream Biases in RC4
	1 Introduction
	1.1 Description of the RC4 Stream Cipher
	1.2 Our Contribution and Organization of the Paper

	2 Proofs of Biases Present in Non-consecutive Bytes and Consecutive Triple Bytes
	2.1 Biased Probability of the Triplet Z3=4, Z4=255 and Z5=4
	2.2 Biased Probability of the Triplet Z4=5, Z5=255 and Z6=255
	2.3 Bias of Z3=131 and Z131=3

	3 Proofs of Biases Influenced by Z1
	3.1 Bias in the Equality Z1=Z4
	3.2 Bias in Z1=257-X and ZX=0
	3.3 Bias in Z1=257-X and ZX=X
	3.4 Bias in Z1=257-X and ZX=257-X
	3.5 Bias in Z1=X-1 and ZX=1

	4 Proofs of Consecutive Bytes Biases and Long-Term Biases
	4.1 The Biased Consecutive Output Bytes Z1=0 and Z2=x
	4.2 The Biased Consecutive Output Bytes Z1=x and Z2=1
	4.3 The Biased Consecutive Output Bytes Z1=x and Z2=258-x
	4.4 Long-Term Bias in Output Bytes Zw256 and Zw256+2

	5 Conclusion
	References

	Practical Low Data-Complexity Subspace-Trail Cryptanalysis of Round-Reduced PRINCE
	1 Introduction
	2 Description of PRINCE
	3 Subspace Trails
	3.1 Subspaces of PRINCE
	3.2 Subspace Trails of PRINCE

	4 An ``Equivalent'' Representation of PRINCE
	5 Truncated Differential Attack on 4 Rounds of PRINCE
	A MANTIS Encryption Scheme: Subspace Trail Cryptanalysis
	References

	Foundations
	On Negation Complexity of Injections, Surjections and Collision-Resistance in Cryptography
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 One-Way Functions
	2.2 Target Collision-Resistant Hash-Function Families
	2.3 Error-Correcting and Balanced Codes

	3 Negation Complexity of Collision-Resistance
	4 One-Way Monotone Surjections
	5 One-Way Monotone Injections
	6 Negation Complexity of Some One-Way Injections
	7 Some Corollaries to Our Injection Lower Bound
	References

	Implicit Quadratic Property of Differentially 4-Uniform Permutations
	1 Introduction
	2 Preliminaries
	3 Main Tools
	4 Examining the Known Differentially 4-Uniform Permutations
	4.1 Functions Constructed by Primary Construction
	4.2 Functions Constructed by Switching Method
	4.3 Functions Constructed by Expansion
	4.4 Functions Constructed by Contraction

	5 An Open Question and Its Partial Answer
	6 Conclusion
	References

	Secret Sharing for mNP: Completeness Results
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Access Structure and Its Complexity
	2.2 Secret Sharing

	3 A Division Property for Access Structures
	4 A Transformation
	5 Completeness Under Monotone-Reductions
	6 Completeness Without Monotone-Reductions
	References

	New Cryptographic Constructions
	Receiver Selective Opening Security from Indistinguishability Obfuscation
	1 Introduction
	2 Preliminaries and Definitions
	2.1 Preliminaries
	2.2 Security Definitions
	2.3 Indistinguishability Obfuscation
	2.4 Puncturable Pseudo-random Functions
	2.5 LTDFs and ABO-TDFs
	2.6 Randomness Extractor

	3 Constructions
	3.1 CPA Secure Construction from LTDF
	3.2 CCA Secure Construction from Puncturable PRFs (for Bit Encryption)

	4 Conclusion
	References

	Format Preserving Sets: On Diffusion Layers of Format Preserving Encryption Schemes
	1 Introduction
	2 Definition and Preliminaries
	3 Our Results
	3.1 What if S?
	3.2 What if May or May not Belong to S?
	3.3 When May Belong to S?

	4 Credit Card Example over the Field F24
	4.1 Case (a)
	4.2 Case (b)

	5 Conclusion and Future Work
	References

	Author Index

