Chapter 3

A Review of and Taxonomy for Computer
Supported Neuro-Motor Rehabilitation
Systems

Lucas Stephenson and Anthony Whitehead

Abstract Stroke and other acquired brain injuries leave a staggering number of
people worldwide with impaired motor abilities. Repetitive motion exercises can,
thanks to brain plasticity, allow a degree of recovery, help adaptation and ultimately
improve quality of life for survivors. The motivation for survivors to complete these
exercises typically wanes over time as boredom sets in. To ease the effect of
boredom for patients, research efforts have tied the rehabilitation exercises to
computer games. Review of recent works found through Google scholar and
Carleton’s summon service which indexes most of Carleton’s aggregate collection,
using the key terms: stroke, acquired brain injury and video/computer games
revealed a number of research efforts aimed primarily at proving the viability of
these systems. There were two main results; (1) A classification scheme for com-
puter neurological motor rehabilitation systems (CNMRS) was created based on the
researched systems. (2) The systems reviewed all reported some degree of positive
results—small sample sizes, large range of neuro-impairments, varied motion
recording technology and different game designs make it problematic to formally
quantify results, beyond a general net positive trend. The taxonomy presented here
can be used to classify further works, to form the basis for meta-studies or larger
long term longitudinal study and by neurological rehabilitation practitioners to help
select and deploy systems to match client specific needs.
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3.1 Introduction

Stroke and other traumatic brain injuries leave many with residual motor impair-
ment. Stroke is the leading cause of adult disability in the United States [1], and
along with other types of acquired brain injuries, results in a variety of neurological
impairments, including impaired motor ability. A primary method for aiding
recovery are repetitive motion exercises. The goal of these exercises is to utilize the
brain’s plasticity to (re)build and strengthen neural pathways to affected motor
systems which allows a degree of recovery [2]. This type of rehabilitation differs
from typical physical rehabilitation, in that the focus is on rebuilding neurological
control, and not directly on muscle strength and flexibility.

The effectiveness of neurological motor rehabilitation is dependent on the vol-
ume of repetitions of prescribed exercises, in other words: a high volume of rep-
etitions is prescribed by clinicians [3]. Patient motivation, especially when away
from a clinician’s watch, often wanes over time [4]. The primary causes of
declining interest and motivation are the declining benefit to exercise ratio and
mental fatigue (boredom). The mental boredom of repeatedly performing “tedious”
movements can be mitigated by attaching the exercises to additional stimulation,
such as interactive games. This connection enables the client to potentially sustain
interest and maximise the possible movement-based therapy recovery.

By digitally capturing human movement, computer system processing is pos-
sible; passing this information through a computer can provide verification to help
ensure that movements comply with prescribed therapeutic exercises. Supporting
compliance provides confidence to stakeholders; therapists can verify that their
clients are performing required therapeutic movements and clients can be sure that
they are optimising their recovery whilst performing their exercises. A system that
helps verify that exercises are being executed correctly allows prescribed rehabil-
itation to be most effective [5]. Further, a system that allows the capture of motion
data allows a trained professional to review and enforce proper form without their
physical presence during the exercises. Indirect monitoring of clients allows greater
coverage of patients at lower cost and allows for remote (outpatient) rehabilitation
and facilitates long term tracking by therapists, which has been shown to be
instrumental in maximising recovery [6].

The purpose of a computer neurological motor rehabilitation system (CNMRS)
is to facilitate the provisioning of effective and long-term rehabilitation services to
patients. A typical CNMRS is composed of 4 main logical parts: capture, process,
interact and report, illustrated in Fig. 3.1.

A therapist is a primary stakeholder; deciding which CNMRS best fit with a
client’s current needs, monitoring progress and re-assessing requirements. In
practise, a system that makes use of a CNMRS will have at least one software
application configured; that users will interact with, the software would provide the
user feedback including the cognitive and motivational aspects of the therapy.
When choosing applications to be used in conjunction with the CNMRS, the goals
of the client must be considered. For example, if the application is to be used as
pure motivation/entertainment, then a commercially available game might be
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applicable by mapping gestures and movement input from the CNMRS to in-game
controls. Alternatively, if specific learning objectives are desired, custom or spe-
cialized software could be provided, optimally a mix of these two ends of the
spectrum could be used to meet a specific client’s needs.

3.2 Taxonomy Overview

Identifying and classifying the characteristics of computer systems intended to
provide support for neurological motor-rehabilitation enables clarification of the
available systems and technologies, through categorization. This categorization
allows efficient evaluation of current systems based on case specific need. Further, it
allows a simple path to develop goals for new and evolving systems.

The cognitive aspect of these systems is either motivation based or
client-specific-goal based, which are considered aspects of application design. It is
assumed that a CNMRS provides the user with control of computer applications;
ranging from commercially available games to custom designed software for
cognitive rehabilitation and development. The software user interface, or game
design aspect of these systems is related, but distinct and separable from the sensor
systems that support these systems. This taxonomy is a classification system for
CNMR hardware and software systems used to acquire and process raw input and
provide directly usable data, for use as input into a computer system. It does not
include terms to describe games or other software used with these systems.

To develop a taxonomy for CNMRSs an existing related taxonomy [7] was used
as a starting point. The proposed taxonomy in [7] was deemed insufficient primarily
because it couples application design and control aspects, a coupling that is felt
artificially limits the applicability of the control apparatus. Further, the classification
scheme assumed systems were pre-configured; we wanted to include basic setup
and deployment information, in order to give stakeholders an idea of the costs
involved with providing a system to the end users.
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Fig. 3.2 Classification hierarchy for CNMRS

A review of the available literature was performed to identify key features of
these systems. After features were identified, terms that allow classifying a system’s
implementation details were added so that review of the potential barriers to
acquisition, setup and use of a particular CNMRS is possible.

The resultant taxonomy presented in Fig. 3.2, is presented as a hierarchy,
intended to categorize the taxonomy terms, and thus classified systems into diges-
tible chunks. The classification terms themselves are presented in a darker shade.

3.3 Taxonomy Development

There were 3 stages to the survey that informed the development of the taxonomy.
Stage 1 included reviewing the works cited in Serious Games for Rehabilitation [7]
and focusing on the research that was classified as having a “Motor” Application
Area in the presented taxonomy. From these works, we were able to identify a
variety of input mechanisms that used a number of sensor input types further
described in Sect. 3.3.1.1. We also found that these systems are usually designed
specifically for a particular body region/joint(s) [8—11]. While all systems surveyed
provided video (and assumed audio ability) output [8—11], Ma and Bechkoum [9]
made use of a haptic glove to provide an additional output modality, namely, haptic.
Also noted was the granularity of movements supported. For example, Burke et al.
[10] required explicit positions be held by the user, while others [8, 9, 11] proposed
systems with a dynamic movement range that could be adjusted in software. This
enabled us to craft a draft intermediary CNMRS taxonomy.

The 2nd stage of the review involved querying research databases, primarily
Google scholar to seek out recent (since 2011) projects that involved stroke or
acquired brain injury (ABI) computer aided motor rehabilitation. Those works



3 A Review of and Taxonomy for Computer Supported ... 43

found were filtered for relevance (many of the terms are common or have homo-
nyms) and the references in found works were inspected for additional projects.
Subsequently, works were classified using the intermediary taxonomy, and minimal
refinement and expansion of terms occurred. The individual terms of the taxonomy
are discussed in Sect. 3.3.1 along with the projects that effected their inclusion
within the final proposed taxonomy.

Stage 3 was a validation stage, a thought exercise, cognitively inspecting novel
input and output mechanisms such as Google Soli [12] and Microsoft HoloLens
[13], verifying that these could be represented within the proposed taxonomy. This
stage resulted in no changes to the taxonomy.

3.3.1 Taxonomy Details

To provide clarity, subgroups of related terms were implemented. There are two
main groups that delineate the therapeutic and system classifiers. The therapeutic
side includes all the portions of a system that would be relevant to treatment and the
therapy capabilities of the system. The system stem includes classifiers related to
the setup, cost and mobility and hardware of the system.

3.3.1.1 Therapeutic

The therapeutic aspect of the systems reviewed was further divided into 2 sub-
groups: (1) Interaction: to identify a system’s input and output modalities and how
and if the system can support progressive range, and (2) Motor System: provides
terms for the granularity (fine vs. gross) and type(s) of motor system that is intended
to be supported by a system.

Interaction

The interaction group holds classifiers that identify the ways in which the client
interacts with the rehabilitation system; how movement data is provided to the
system, any output mechanisms inherent in the system and whether the system
provides progressive range adjustment (e.g. range of motion can increase over time).

Input

The Input classifier indicates the type of input the system tracks. This can be motion
or tangible. A tangible system tracks the user through their interaction with explicit
objects, potentially providing an augmentation path for existing therapeutic tech-
niques, such as in [14] where a box and blocks therapeutic game was augmented with
sensors. A motion system uses sensors that track the client’s movements directly,
capturing motion, confirming the client’s compliance with the prescribed gestures
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and poses, either from external sensors, sensors attached to the body or explicit
actions. The majority of the reviewed works included: basic video camera setups that
do blob detection [10, 15, 16], systems that provide inverse kinematic skeletal
reconstruction simulations using external (unattached sensors) [17—-19], systems that
use inertial measurement units (IMU) that are attached to the limbs [11], EMG
sensors that measure muscle flexion [20], and pressure sensor arrays that can be used
to measure weight distribution [8, 11]. Additionally there were a few examples of
systems that used more direct interaction, such as touch [21], or provided classical
options for input such as mouse and keyboard to record motion data [9].

Output

Output indicates the methods the client receives live feedback from the system.
Most of the reviewed systems output standard video, and sometimes audio. There
was an example of specialized video; a head mounted display, allowing for a
3D-immersive environment [9]. An additional form of output that was recorded
were haptic gloves that can provide some tactile based feedback to clients when
worn [9, 22].

Compliance

The Compliance term is used to indicate if the system helps the client complete the
required rehabilitative motions correctly, either through software analyzed feedback
or (inclusively) physical orthosis. Initial construction of the taxonomy did not
include compliance, primarily because it was seen as something purely provided by
analyzing sensor input and providing feedback through the software interface.
There was, however a number of works that included physical feedback by way of
orthosis [23], control of objects (tangible) [14] or haptic feedback [9] and the term
was added.

Progressive range

Progressive range indicates that the system provides the ability for incremental
changes to required motions, for example to extend (or contract), the required range
of motion. This can be therapeutically beneficial allowing the client to progress over
time with the use of the system [24]. The reviewed works were implicitly able to
support progressive range, and this data would be interpreted by the target game or
application, however, in most configurations there is a logical maximum range. For
example, a camera-based motion capture sensor would be restricted to the camera’s
viewable area.

There is a variety of options for how progressive range is implemented:

1. The CNMRS provides the progressive range classification, providing the
underlying system with the corresponding executed movement input only when
the range is sufficient to overcome the current target extent.

2. The CNMRS passes sufficient motion data for applications to interpret range
along with recognized motions, allowing in-game feedback.

The CNMRS could be developed to be flexible enough to provide both. Option 1
would be ideal for existing software (where the CNMRS emulates standard input
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mechanisms) while 2 is potentially more interactive, as it allows the target software
to provide a varying experience and direct feedback.

Motor System

The motor system subgroup holds terms to classify a system’s target body region,
and target motor range maximum and minimum, which can be used to determine
what range of the fine/gross motor spectrum a system can analyze.

Body Region

The term Body Region is used to specify what regions of the body can be tracked
and in what dimensional order (1D, 2D, 3D). This is important for therapists
selecting a CNMRS so that they can provide targeted rehabilitation. It was
described in every work surveyed; explicitly classifying supported body region(s)
allows clinicians to select relevant systems more efficiently. Appropriate values
would include; whole body/balance, major limb (arm/leg/head), minor joints
(hands/feet/fingers/toes).

Range

Range is used to specify where on the gross versus fine motor spectrum the system
lies. It specifies the minimum and maximum recordable movements in terms of
distance and speed. Underlying sensor systems generally have limitations—a touch
panel has specific dimensions, a video capture system can only record in a
well-defined area, and IMU systems have maximum speeds.

Activity

The Activity classifier allows a brief description of the typical rehabilitative motions
supported by the system; that is, the motions the researchers designed the system to
support. This classifier, in combination with the body region classifier, enables
more comprehensive coverage of the system’s designed rehabilitation. Researchers
looking to perform further work in supporting a specific motion type can use this
term to focus their efforts on similar projects.

3.3.1.2 System

The system group includes classifiers for how accessible and responsive the system is.
Table 3.2 shows the system subgroup classification results for the reviewed works.
Accessibility

The accessibility subtree was included to provide classification of the system within

potential time, monetary and mobility restrictions. It is used to identify where, when
and at what cost can a CNMRS be used?
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Portability

The portability group explicitly states if a system is movable during use (base
system). The amount and type of setup were also viewed to be relevant to clinicians
(setup effort). All the systems reviewed were attached to stationary systems, and
thus were classified as having a fixed range system value for portability.
Subsequently, an additional term (sensor type) was added, to allow identification of
sensor mobility. The intention of this field is to allow researchers looking to extend
and create mobile rehabilitation frameworks to be able to identify and leverage
existing works.

Hardware Cost

Hardware cost directly affects the level of access a client will have to the system.
However, none of the systems reviewed specified this information, in addition, the
price of these systems is constantly in flux. Therefore, an estimation is provided
with a relative rating of Low, Medium or High based on estimates of hardware cost.

Availability

The Availability term is used to indicate the availability of the hardware involved,
the values Off the Shelf (OTS), Specialized and Multiple can be specified. OTS
indicates the sensors are generally available commercially, and easy to access,
service and replace. Specialized means it is not mainstream hardware, and is likely
more difficult to acquire, and repair/replace. Multiple is intended to represent sys-
tems that require more than one piece of sensor hardware, with at least one being
OTS and another Specialized.

Responsiveness

In order to be considered valid for use in a game, a sensor system, must be able to
provide an interactive experience for clients. However, real and perceived system
reaction time is a factor in a system’s appropriateness for use. For example, if the
system requires that a pose be held, or has a client-noticeable delay in recognizing a
movement, then the system is unlikely suitable for use with many real-time
applications. For this reason, the responsiveness term was added. Systems that
indicated perceptively real-time responsiveness were indicated as “real-time”,
systems that required a position be held for any length time for technical reasons
were indicated as “delayed”.

3.4 Classifying CNMRS Systems

The crafted taxonomy detailed in Sects. 3.2 and 3.3 was applied to 55 published
research papers. The System and Therapeutic areas, as seen in Fig. 3.2, were
classified independently, and are presented below in Tables 3.1 and 3.2.
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3.5 Conclusion

A review of a number of computer based rehabilitation systems revealed that these
were created as singletons; novel input mechanisms are used as input to custom
designed software. This pattern works well for research efforts and proof of concept
prototypes. However, it tightly couples the entire logical system stack (as outlined
in Fig. 3.1: Logical Structure of a CNMRS) and limits re-use of both components
and software. This artificially limits the availability of such systems, as the time and
monetary cost of developing them is higher than a system made primarily of reused
components, such as off the shelf hardware and community developed software
modules [25].

This taxonomy was created in response to a perceived need—there is significant
evidence [8-23] that CNMRSs are effective in boosting patient outcomes, however
these systems are not widely available to patients. The primary reason is that the
existing solutions are developed and tested for research, not necessarily driven by
therapists and thus the cost to deploy such systems widely is prohibitive.

The taxonomy described above, in Sects. 3.2 and 3.3 provides a categorization
scheme that can be applied as a tool to identify input apparatus in support of
neuro-motor rehabilitation clients. Specifically, systems that can monitor specific
motor actions for compliance, record progress, provide feedback and provide
digitized input signals. This taxonomy is purposefully external to application
design, focusing on the neuro-motor rehabilitation capabilities of the systems.
Future work would ideally integrate this taxonomy into a useable interactive
database tool that would allow systems to be discovered through taxonomy-based
query parameters. This would allow stakeholders to both locate the most appro-
priate system for a situation, and identify the need for CNMRS with specific
parameters.

The collected works used to craft the included taxonomy, feature few works that
are built around highly portable mobile systems such as phones or portable tablets.
The difficulty in locating work that covered these portable systems might indicate a
gap that could be explored further in future works. Further, an analysis of the
relative (taxonomy) feature sets could identify over- and underexplored feature sets.
To analyze the available research feature sets, an online user contributed,
peer-reviewed database of taxonomy classified CNMRS research projects is pro-
posed. This database could be used as a basis for performing multidimensional
feature-space analysis.

Some combinations of feature sets could be beneficial to clients. Rehabilitation
programs usually indicate to patients that they should make an effort to continue
their rehabilitative exercises long term [5, 26]. Providing more accessible feature
sets, including portable or mobile options to clients could increase the longevity and
compliance with movement therapy programs. With the array of sensors available
on consumer mobile phones a project evaluating the long term effectiveness of a
mobile phone based CNMRS is needed.
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To support the availability of CNMRSs, a tool to process and aggregate

movement data, from a variety of sensors is proposed. Such a system would allow
the free selection of supported sensors, by the clinician, allowing them to select the
most appropriate system for their client’s situation. The signals provided as output
from the tool would then be mapped to discrete or ranged computer input.
Researchers and developers would be able to improve upon the system by devel-
oping modules for the system.
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