
Chapter 2
An Overview of Serious Game Engines
and Frameworks

Brent Cowan and Bill Kapralos

Abstract Despite the growing popularity and widespread use of serious games, the
development of effective serious games is difficult, requiring an appropriate balance
between game design and instructional design. Although there are fundamental
differences between games developed purely for entertainment compared to those
developed for “serious” purposes, there are currently no standard development tools
specifically intended for serious game design and development available that
encourage developers to follow a set of best practices. Rather, developers of serious
games often rely on existing game engines and frameworks that are specific to
entertainment-based game development. Given the availability of a large number of
game engines and frameworks, deciding on which one to use to develop a serious
game may be difficult, yet the choice of engine or framework can play a significant
role in the development process. In this paper we present the results of a literature
review that examined the frameworks and game engines that are used to develop
serious games. We provide a list of the most commonly used frameworks and game
engines and summarize their features. Knowledge of the frameworks and game
engines that are most popular and details regarding why they are popular may prove
to be useful to serious games developers seeking such tools. The chapter ends with
a brief discussion regarding a framework that is currently being developed
specifically for the development of serious games. Through consultation with the
potential users of the framework (serious games developers), the framework aims to
strike a balance between ease of use and functionality, while providing the user
with the necessary options and tools to ideally develop effective serious games.

Keywords Serious gaming ⋅ Virtual simulation ⋅ Game engine ⋅ Game
development ⋅ Framework ⋅ Review

B. Cowan
Faculty of Science, University of Ontario Institute of Technology, Oshawa,
ON, Canada

B. Kapralos (✉)
Faculty of Business and Information Technology, University of Ontario Institute
of Technology, Oshawa, ON, Canada
e-mail: bill.kapralos@uoit.ca

© Springer International Publishing AG 2017
A.L. Brooks et al. (eds.), Recent Advances in Technologies
for Inclusive Well-Being, Intelligent Systems Reference Library 119,
DOI 10.1007/978-3-319-49879-9_2

15

2.1 Introduction

The idea of using games for purposes other than entertainment was first formulated
in a book titled ‘Serious Games’ by Clark C. Abt in 1975. Abt introduces the
concept of serious games and defines them by stating: “We are concerned with
serious games in the sense that these games have an explicit and carefully
thought-out educational purpose and are not intended to be played primarily for
amusement” [1]. The examples discussed by Abt were limited to table-top
(“board”) games as video games were still in their infancy in 1975. In 2002,
motivated by Clark Abt’s book ‘Serious Games’, David Rejeski from the Woodrow
Wilson Center for Scholars added the term serious games to a report Ben Sawyer
prepared titled “Improving Public Policy through Game-based Learning and Sim-
ulation” [47]. The expression “serious game” may be seen as a contradiction, or a
tautology [7]. More specifically, if games are fun, how can they also be serious? It
could even be argued that games have an evolutionary background as instruments
for survival training [7]. Although no particularly clear definition of the term is
currently available, “serious games” usually refer to games that are used for
training, advertising, simulation, or education, and are designed to run on personal
computers or video game consoles [55]. Serious games have also been referred to as
“games that do not have entertainment, enjoyment, or fun as their primary purpose”
[34]. A serious game can more formally be defined as an interactive computer
application, with or without a significant hardware component that (i) has a chal-
lenging goal, (ii) is fun to play and/or engaging, (iii) incorporates some concept of
scoring, and (iv) imparts to the user a skill, knowledge, or attitude that can be
applied to the real world [5]. The terms “serious game” and “educational game” are
often used interchangeably. However, the primary purpose of a serious game is not
necessarily educational. For example, the America’s Army series of games serve as
a recruitment tool designed to persuade young people to consider a career in the U.
S. military [59]. Educational games are typically viewed as a subset of serious
games, and are mainly developed for use within kindergarten to grade twelve
(K-12) education [42]. Education generally refers to the acquisition of knowledge,
while training refers to the acquisition of both skills and knowledge. Educational
games generally focus on the acquisition of knowledge while using entertainment
as a motivator.

Serious games “leverage the power of computer games to captivate and engage
players for a specific purpose such as to develop new knowledge or skills” [13] and
greater engagement within an educational setting has been linked to higher aca-
demic achievement [50]. In addition to promoting learning via interaction, there are
various other benefits to serious games. More specifically, they allow users to
experience situations that are difficult (even impossible) to achieve in reality due to
a number of factors including cost, time, safety, and ethical concerns [54]. Serious
games may also support the development of various skills including analytical and
spatial, strategic, recollection, and psychomotor skills, as well as visual selective
attention [36]. Further benefits of serious games may include improved

16 B. Cowan and B. Kapralos

self-monitoring, problem recognition and solving, improved short- and long-term
memory, and increased social skills [36]. Serious games are being applied within a
wide range of applications including, medical/surgical skills development [3],
military strategy training [43], and interpersonal skills development [8]. Given the
ubiquity of video game use across a large demographic (i.e., males, females, youth,
and the elderly), and their ability to engage and motivate learners, the popularity of
serious games has seen a recent surge across many areas of education and training.

Despite the growing popularity of serious games and the benefits they afford, the
development of effective serious games is a difficult and time consuming process,
requiring an appropriate balance between game design and instructional design. It
has been suggested that a lack of proper instructional design will lead to ineffective
serious games or “instructional games” [4, 26]. Further complicating matters, there
are currently no standard development tools available that emphasize, and
encourage developers of serious games to follow best practices. Many serious game
developers are using tools that were developed for the creation of commercial
entertainment games instead of tools designed specifically for education and
training. Serious games are often developed by developers with limited knowledge
regarding a game’s educational content and possess limited, if any knowledge of
instructional design.

In order to understand how serious games are currently being developed, we
begin by examining the development tools used to create them. Here, we present
the results of two literature reviews that were conducted across three databases. The
first survey compiled a list of development tools that were frequently mentioned in
academic writing. A search was performed for each framework using three separate
search terms. By measuring the number of search results for each framework in
relation to each search term, we determined which development tool or framework
is the “most discussed academically”. In addition to measuring the notoriety of each
framework/engine, separating the results by search term allows us to examine the
context in which the framework/engine was frequently discussed. The second
survey was conducted to determine which tools were utilized most often in the
creation of a serious game. By knowing which tools are popular among the
developers of serious games, we are able to investigate the features that are most
important to developers. The toolset utilized to create a game may also provide
insight regarding the size of the team, their skill level, and the project’s budget.

2.1.1 Paper Organization

The remainder of this paper is organized as follows. Section 2.2 provides back-
ground information, and more specifically, an overview of existing frameworks and
game engines. The results of a literature review that examined the tools (game
engines and frameworks), used to develop serious games are also presented. This
review led to a compiled list of the frameworks and game engines that are the most
popular among serious games developers. A discussion of the survey results and

2 An Overview of Serious Game Engines and Frameworks 17

concluding remarks are provided in Sect. 2.3. This includes a summary of the most
popular game engines and frameworks along with common features that are
important to developers of serious games in addition to a description of our ongoing
work that is seeing the development of a serious game framework for medical
education. This framework is intended to bridge the gap between the specific needs
of serious game developers and the development tools they currently have available
to them.

2.2 Game Engines and Frameworks

With respect to entertainment-based video games, early video games such as Pong
were designed to run on hardware that was not well suited for video game devel-
opment. With little in the way of processing power or memory to work with, games
were typically written completely from scratch in assembly language (a low-level
language). The close link between the game “code” and the hardware prevented the
code from being re-used [6]. As hardware capabilities improved, higher level
languages such as C/C++ and Java gradually replaced assembly language for game
programming, leading to greater code re-use. Over time, many game companies
accumulated a library of well-tested reusable code. To further reduce production
time, simplified Application Programming Interfaces (APIs) and external tools such
as level editors were developed. id software began licensing their Quake engine to
other companies as an additional source of revenue in 1996 [31]. Other companies
such as Epic Games soon began licensing their game engines (Unreal) too. There
are now hundreds of commercial game engines competing for licensees. Modern
game engines provide advanced rendering technologies, simple tools for content
creation, allow game developers to reuse code, and decrease development time and
costs [31]. Sherrod [49] defines a game engine as “a framework comprised of a
collection of different tools, utilities, and interfaces that hide the low-level details of
the various tasks that make up a video game”. The terms “game engine” and
“framework” are often used interchangeably. For the purpose of this paper, the term
game engine refers to the functionality and features that become part of the com-
pleted game. A framework includes a game engine in addition to tools and inter-
faces that simplify the process of game development (this is depicted graphically in
Fig. 2.1).

Listed below are the main features provided by most modern game engines. The
code responsible for providing this functionality becomes a part of the finished
game.

• Scripting: Simple code that can be written to control game objects and events.
• Rendering: The speed and accuracy by which a three-dimensional (3D) scene is

generated, as well as the visual effects provided.
• Animation: The movement and deformation of objects, such as characters.

18 B. Cowan and B. Kapralos

• Artificial Intelligence: Steering behaviors, such as pursuing, dodging, and
fleeing are combined with path finding.

• Physics: Objects respond accurately to applied forces or pressures (e.g., when
colliding).

• Audio: Spatial rendering of audio allows sounds to have a location within the
environment. Digital Signal Processing (DSP) is used to add variation as well as
environmental cues such as reverberation.

• Networking: Allows players to interact with other players within the game by
sharing data through a network.

Game creation frameworks generally provide a Graphical User Interface
(GUI) which often ties together several editors. Listed below are some of the editing
tools commonly included with game creation frameworks:

• Level Editor: Also known as a “world editor”, this tool aids in the creation of
two-dimensional (2D) or three-dimensional (3D) environments (game levels,
maps, etc.).

• Script Editor: Scripts can be attached to objects selected in the level editor to
customize their behavior.

Fig. 2.1 The relationship between game framework, game engine, and their constituent
components

2 An Overview of Serious Game Engines and Frameworks 19

• Material Editor: Shader (programs that provide a procedure for rendering
surface details), code is edited and combined with images to form the surface of
objects or to create visual effects.

• Sound Editor: Sound level, attenuation and other settings can be combined
with filter effects provided by the sound engine.

Level and script editors may also be part of a game engine, and, at times, these
components may be purposely included with a finished (shipped) game to
encourage modification (“modding”) of the game itself by the users. Game mod-
ding refers to additional game content such as new missions, items, and environ-
ments created by fans of the game, not by the developer.

2.2.1 Game Engines for Serious Games

Developers of serious games often use existing (entertainment-based) game engines
and frameworks to develop serious games despite the fact that they have different
needs than developers of “pure entertainment” games [41]. More specifically,
serious games are often produced by small teams with limited budgets when
compared to companies specializing in entertainment-based games whose budget
often times is millions of dollars.

Although the development of games for entertainment often requires consider-
able planning, there are fewer design restrictions when compared to the develop-
ment of serious games. Entertainment games must be fun and engaging; the game’s
content may be designed around the chosen gameplay mechanic and the designers
are free to modify the design throughout the development process. Developers of
serious games often begin with content that exists outside of the game world and,
therefore, this content cannot be changed [4, 26]. For example, a serious game for
surgical skills training must strictly adhere to the process and the equipment used in
the surgical procedure in order for the skills acquired in the game to translate into
real world application. Being games, serious games should also be fun and
engaging, though this may not necessarily be their primary purpose.

A serious game development team may not include team members skilled in
every area of game development. For example, an engine capable of rendering very
large, highly detailed environments might not appeal to a team that lacks the art and
modeling skills necessary to construct such an environment. In addition, some
frameworks and engines are specialized for building a specific type of game, such
as a first person shooter (FPS). Selecting the right engine is dependent on the type
of game being developed and the skill set of the development team.

20 B. Cowan and B. Kapralos

2.2.1.1 Engine Survey 1: Engines/Frameworks Most Discussed
in Academic Literature

Although having knowledge of the frameworks and game engines that are popular
amongst the developers of serious games will allow for the features most important
to developers to be easily examined, very little prior work has considered this. As a
result, two literature surveys to determine the frameworks and engines most
commonly used by serious games developers (i.e., the most popular frameworks
and engines) were recently conducted. The first survey (Survey 1) involved
searching the following three data bases for game engines and frameworks that are
most popular among serious games development: (i) Google Scholar, (ii) the ACM
Digital Library, and (iii) the IEEE Xplore Digital Library. The Google Scholar
search was conducted over a period of three days (August 2–5, 2015), while the
ACM and IEEE Digital Library searches were conducted over a period of four days
(August 3–7, 2015). The search terms “serious game”, “educational game”, and
“simulator” were used to reveal more than 200 academic publications related to
serious games and game development. Each of these publications were then
scanned for the names of game engines without regard for the context in which the
engine was discussed. By counting the number of publications that mention a
framework by name, each framework was given a score signifying its notoriety
among academic publications. The top 20 most mentioned game engines and
frameworks were deemed worthy of further investigation (this initial investigation
was conducted to limit any potential personal bias).

For each of the top 20 game engines, Google Scholar, the IEEE Xplore Digital
Library, and the ACM Digital Library were used to survey the engine’s popularity
based on the number of search results returned. In each case, the engine name was
combined with the search terms described above (“educational game”, “serious
game”, or “simulator”). Many game engines, including Unity, Unreal, Torque,
Half-Life, and Flash, have names that are common words in the English language
and whose meaning may not necessarily have any relation to game engines or
frameworks. For example, the term “half-life” is a commonly used in the physics
domain to describe the decay rate of radioactive elements, but has no gaming
reference. “Half-life” could also refer to a game by the same name, and not the
game engine itself. To separate the search results specific to game engines and
frameworks from those that did not relate to game development, the first 30 doc-
uments for each search term were manually reviewed. The approximate percentage
of search results relating to the game engine was determined by dividing the
number of documents found that referred to the engine by the total number of
documents reviewed. The results were then normalized to ensure that each of the
three search terms were equally weighted. For example, the search term “simulator”
returned many more search results than the term “serious game”.

The results of Survey 1 are summarized in Fig. 2.2 where the x-axis is a list of
the top ten most discussed (academically) engines and frameworks, and the y-axis
represents the normalized occurrence (the number of search results) for each of the
three search terms (“educational game”, “serious game”, and “simulator”).

2 An Overview of Serious Game Engines and Frameworks 21

The results of this survey provide an indication of the game engines/frameworks
that are mentioned most frequently in academic writing. The results do not take into
account whether or not the authors view the framework/engine favorably, and do
not directly relate to the number of games made with each engine. For example,
many of the publications that mention Second Life do not use it as a framework for
their own content creation. Instead, Second Life is frequently discussed in relation
to the psychological or social impact of virtual worlds. Adobe Flash is often dis-
cussed in papers relating to educational games. Unity and Unreal are frameworks
capable of rendering highly realistic 3D graphics, so it is not surprising that they
were frequently mentioned in papers relating to simulators.

2.2.1.2 Survey 2: Engines/Frameworks Most Utilized by Game
Developers

After the completion of Survey 1, Survey 2 was conducted (August 7–11, 2015) to
determine the engines or frameworks that serious game developers are using to
create their serious games. This survey consisted of conducting a search within
Google Scholar, IEEE Xplore Digital Library, and ACM Digital Library, using the
search term “serious game”. Five hundred peer reviewed papers were downloaded
from the three databases. These papers were manually reviewed to determine which

Fig. 2.2 Game engine/framework versus normalized occurrence (number of search results) by
search term

22 B. Cowan and B. Kapralos

game engine the authors used to create a serious game. The majority of the papers
that were downloaded (approximately 82 %) were disqualified since there was no
mention regarding the framework/engine used, described more than one serious
game, or described a serious game that was developed from “scratch” without the
use of a specific framework/engine. Papers were also removed from the list if they
featured a game that had been discussed in a previous paper, or if the first author
matched an author of a previous paper. Only 90 out of 500 papers satisfied the
above requirements and were used to determine the most popular engines utilized
by serious game developers. The results of Survey 2 are summarized in Fig. 2.3
where, for each framework/engine, the percentage of games developed with it is
provided. The frameworks/engines shown in green are freely available, while the
frameworks/engines shown in blue are commercial products (although many of
them are free for non-commercial use).

2.2.2 Notable Frameworks and Engines

A detailed description of the top ten most utilized frameworks/engines (as revealed
by Survey 2) is provided below. The descriptions are not intended to be a review or
evaluation the frameworks/engines, but rather an objective look at the main features
that each framework/engine has to offer.

Fig. 2.3 Game engine/framework versus the percentage of serious games that were created with it

2 An Overview of Serious Game Engines and Frameworks 23

2.2.2.1 Unity

The Unity game creation framework was developed by Denmark-based Unity
Technologies. Unity combines a powerful rendering engine that incorporates the
nVidia PhysX physics engine [15]. Many successful commercial games have been
developed using Unity, including various AAA titles such as Call of Duty Strike
Team, and Rain. A “What You See Is What You Get” (WYSIWYG) level editor is
combined with an intuitive terrain sculpting tool allowing developers to quickly
generate realistic 3D environments. Objects in the environment can be visually
selected, and changes can be made to their variables and scripts. Users can press the
“Play” button at any time to preview the running game and test their changes [23].
Unity is non-game-type specific, allowing for 2D or 3D rendering [58].

Efficient multiplatform publishing at an affordable price has made Unity a
favorite for independent developers and non-commercial projects. After a game has
been created once in Unity, it can be exported to a wide variety of platforms,
including all major game consoles and many mobile device platforms including
Android and iOS, with only minor changes (such as reducing the file size or
complexity of 3D assets) [58]. Figure 2.4 illustrates a sample screenshot taken from
“Sort ‘Em Up”, a serious game that was commissioned by the Regional Munici-
pality of Durham (Ontario, Canada) to allow residents to test their knowledge about
recycling in a first-person shooter manner.

Access to the Unity engine source code is not provided with any of the standard
licenses. All game logic is written in one of three scripting languages: JavaScript,
C#, or Boo [23]. Unity simplifies programming by providing built-in visual effects
such as particles, water, and post-processing. Artificial intelligence routines such as

Fig. 2.4 Sort ‘Em Up, a serious game created by Squabble Studios to teach children about
recycling [53]

24 B. Cowan and B. Kapralos

path finding and steering behaviors are also provided. These routines allow amateur
programmers to easily create believable non-player characters (NPCs) [58]. A sin-
gle-player game can be converted into a multiplayer experience with minimal
changes to the existing code. Unity also allows for easy integration with social
media sites such as Facebook. Massively multiplayer games can be created by way
of third-party solutions that must be purchased at additional cost through the Unity
Asset Store [58]. Unity’s asset store also contains many sound effects, images, 3D
models, scripts, and complete games that can be used as a “starting point”. How-
ever, the majority of the content found in the asset store is not free of charge.
Community members are encouraged to upload assets to the store and set their own
prices. Members receive 70 % of the sale price for each item sold through the store
(Unity Technologies receives a 30 % commission on all sales).

Support is primarily provided by community members through online forums.
A Premium Support package may be purchased granting the user direct access to
the support team at Unity Technologies. Support packages cost between $500 USD
and $1,000 USD a month, and there are limits to the number of times support can
be requested and the number of users within a development team who may request
support [58]. Unity does not charge on a per-title basis, and there are no annual
maintenance fees. A free, Personal Edition of Unity is available that has a limited
subset of available features. The Personal Edition of Unity can be used to create
commercial projects royalty free provided that the licensee does not receive revenue
or funding exceeding $100,000 USD in the previous year [58]. Projects (games)
developed with the free version can be upgraded once a Unity Pro license has been
purchased. A Unity Pro license costs $1,500 USD and permits publication of
content created using Unity on desktop computers and the web (browser-based
content). An additional license must be purchased at a cost of $1,500 USD for each
mobile device (iOS, Android, BlackBerry) one wishes to publish content for [58].
Licenses may be provided at a reduced cost for developers of serious games or
non-commercial projects. The licensing fee for serious game developers is nego-
tiated on a case-by-case basis by the Unity sales team. Prices for console licenses
are not posted and must be negotiated. Licensing the Unity source code is also
possible.

2.2.2.2 Adobe Flash

Adobe Flash (formerly Macromedia Flash) began as a multimedia platform
allowing 2D vector animations to be played in a web browser or as standalone
applications. The free Flash player is included pre-installed on most computers and
many mobile devices. It is estimated that the Flash player is currently installed on
more than 1.3 billion computers and more than 500 million portable devices
worldwide [2]. The Flash Builder framework combines a simple scripting language
(Action Script) with a graphical editor used to position and animate objects. With
Flash Builder, developers are able to easily release games on a variety of platforms
including mobile devices. There are currently more than 50,000 mobile games and

2 An Overview of Serious Game Engines and Frameworks 25

applications developed using Flash [2]. Some of the more notable Flash games
include Machinarium, a version of Angry Birds, and FarmVille. At its peak,
FarmVille alone attracted more than 80 million active monthly players [9]. Flash
now supports High Definition (HD) video playback, full screen viewing, and 3D
GPU accelerated rendering [2].

Support is primarily provided by other community members through the online
forums. Expert support packages are available for purchase from Adobe. There are
also several books specific to Flash development currently available including
“Flash Game Development by Example [19]. Flash builder is available for Win-
dows and Mac OS. The content created with Flash Builder can be viewed on
Windows, Mac OS, Linux, iOS, and Android. The Flash Builder software (standard
edition) sells for $249 USD. Games created with Flash Builder can be sold without
incurring additional license fees [2].

Plug-ins such as Flash are no longer needed to create rich interactive content
online. The HyperText Markup Language (HTML) is the standard language used to
create web pages. Until recently, the HTML standard did not support real-time
interaction. Interactive elements and other forms of multimedia were added to web
pages using web browser plug-ins such as Flash. The new HTML5 standard now
includes video and audio playback, vector animation, and support for WebGL
applications which allow for hardware-accelerated 3D graphics [56]. However,
browser-based game development frameworks such as Flash may persist based on
the strength of their development tools and a large user base.

2.2.2.3 Second Life

Second Life was launched in 2003 by Linden Labs, located in San Francisco, CA
[33]. Second Life is not a game, and not a game engine. Instead, it is a massively
multiplayer (supports a large number of players simultaneously) 3D virtual world; a
social space where people can meet, chat, play, explore, and also construct their
own virtual spaces within the world. Each Second Life account comes with an
avatar that the player can customize to look any way they want. Players interact
with each other and the world through their avatars. The content for this virtual
world is created by the people who inhabit it. Massively Multiplayer Online games
(MMOs) such as World of Warcraft (WOW) or EVE Online, provide a themed
environment created by the game’s developers. The virtual world within an MMO
can be viewed as a stage where the game’s narrative plays out. Second Life does not
provide any theme or narrative. Instead, users are encouraged to create their own
themed environments and items, including games [29]. The environments they
create may be static or interactive. Users may use their creations to tell a story, or
simply provide a space to inhabit and explore. Second Life has managed to harness
the creativity of its user base in order to provide an ever expanding world that is as
diverse as those who author it.

In Second Life, simple tools are provided for content creation. Original objects
can be made by combining many simple shapes such as cubes, spheres, cones, etc.

26 B. Cowan and B. Kapralos

[29]. Second Life also allows users to import models created with professional 3D
modeling software such as Maya or 3D Studio Max. Objects in Second Life can be
made interactive with the addition of scripts written in Linden Script (LSL), Second
Life’s proprietary scripting language. Scripted objects can move, react to being
touched, and even respond to chat messages [21].

Linden Labs grants the users with intellectual property rights for the objects and
environments they create, implying that users can buy and sell virtual items such as
land, buildings, vehicles, fashion accessories, and even in-game pets [21]. Second
Life employs its own currency called Linden dollars that can be bought or sold in
exchange for real dollars. The rate of exchange fluctuates as it is based on what
users are willing to pay. For example, between February 2008 and February 2011,
the exchange rate ranged between 250 and 270 Linden dollars for one USD [32].

A standard membership is free of charge. A premium membership costs $9.95
USD per month. Premium members receive 1,200 Linden dollars (L$) a month
[48], have the right to purchase land at auctions, and can have a second avatar on
the same account [46]. A full region of land measures 65,536 m2 and costs 295 L$
per month in addition to the purchase price. Land may also be purchased from
Linden Labs or other users in smaller sizes. The price of virtual items in Second
Life varies and is driven by the market [24].

It has been many years since Second Life was launched, and it currently
maintains a large user base with new content added daily. As of June 2011, there
were approximately 800,000 logins per month [32], and the average number of
users online at any given time was estimated to be around 50,000 [24]. Many
colleges and universities around the world have a presence in Second Life, often
enabling students to explore a virtual version of the campus. Simulation Linked
Object Oriented Dynamic Learning Environment (SLOODLE) is a free and open
source project which integrates Second Life with Moodle, a learning management
system. With SLOODLE, students can register for classes, attend lectures, and write
quizzes within a virtual environment [51]. Real-world tourist attractions such as
museums and historical sites are replicated in Second Life to educate and encourage
tourism. Government agencies such as the Center for Disease Control (CDC) and
the National Aeronautics and Space Administration (NASA) also have a presence
in Second Life, with the goal of educating the public, and encouraging an interest in
the sciences among students (see Fig. 2.5 for an example).

With Second Life, there are technical limitations due to the underlying archi-
tecture which at times could hinder its use for educational purposes. For example,
the inclusion of user-created content forces the Second Life server to send every
user’s avatar and objects to every other user present in the same area. If too many
users and unique objects are grouped together, it will lead to an increase in both
computational requirements and network traffic (bandwidth) [60]. In addition to
reducing immersion, lag caused by excessive network traffic reduces the accuracy
of movement within the game and can lead to motion sickness [20]. Therefore,
Second Life is not well suited to serious games that require accurate movement,
pointing, or timing. Furthermore, the Second Life server is provided by and
maintained exclusively by Linden Labs. Institutions may set up an “island”

2 An Overview of Serious Game Engines and Frameworks 27

(a privately owned area of land within Second Life where the owner has control
over the content and access), on the Linden server. In January 2007, Linden Labs
released source code of the Second Life client software (Second Life Viewer). The
Open Simulator community was able to create their own server software capable of
connecting to Second Life clients [40]. Institutions can now host their own virtual
worlds similar to those found on Second Life but with fewer restrictions. Second
life restricts the number of objects and the size of scripts depending on the size of
the land owned [30].

2.2.2.4 eAdventure

eAdventure was developed as a research project at Complutense University of
Madrid (Spain), one of the oldest universities in the world [12]. eAdventure is the
only framework in our top-ten survey results that was designed specifically for
educational use. The framework has been designed to allow educators to author
their own interactive content. eAdventure games can be integrated with learning
management systems such as Moodle and Sakai [17].

Unlike most of the frameworks revealed by our literature survey, eAdventure is
limited to building one specific type of game, 2D point-and-click adventures. Most
step-by step procedures can be easily adapted to a point-and-click style interface.

Fig. 2.5 Large rockets on display at Spaceport Alpha in Second Life [52]

28 B. Cowan and B. Kapralos

By limiting development to one type of interaction, the framework is far less
complicated than a general purpose game development tool. Games can be
developed using the eAdventure language or created with a graphic-based editor
which does not require a technical background or any programming skill [57].
eAdventure games can be deployed as a standalone application or as an applet
playable in a web browser [17]. eAdventure is freely available and open source.
You may use it, modify it, redistribute it, or integrate it into your project even if
your project has commercial applications [17]. Documentation and tutorials are
provided on the official site. Support is provided by the developers as well as
community members by way of an online forum.

2.2.2.5 Unreal

The Unreal Engine was created by Epic Games, Inc., currently based in North
Carolina, USA. Unreal Engine 1 was released in 1998 and since then, Unreal has
been used to create more than 50 top-selling games, including Gears of War,
Borderlands, Mass Effect, and BioShock [18]. In addition to being one of the most
widely used commercial game engines, the Unreal engine has also been used to
develop many well-known serious games, including the US Department of
Defense’s America’s Army [59] (Fig. 2.6), and NASA’s Moonbase Alpha [38].
Unreal Engine 4 features a 64-bit color HDR (High Dynamic Range) rendering
pipeline with a wide range of post-processing effects, such as motion blur, depth of
field, bloom, and screen space ambient occlusion. Unreal is well known for having
some of the most realistic lighting effects, including real-time global illumination
and surface interreflections [18].

Fig. 2.6 America’s Army serious game [59]

2 An Overview of Serious Game Engines and Frameworks 29

Epic games now provides full access to the Unreal engine’s C++ source code.
However, most games are developed completely using UnrealScript, a proprietary
object oriented scripting language that is similar in syntax to Java. Unreal also
provides a visual scripting tool called Kismet that allows events and actions to be
connected together by way of a “drag and drop” style interface. Kismet enables
level designers to create simple behaviors and gameplay without writing any code.
The Unreal Editor (UnrealEd) is a WYSIWYG editing tool. Designers can make
changes to the environment and then preview the level directly within the editor.
UnrealEd is more than just a level editor; it is a collection of visual tools for
sculpting terrain, mesh painting, sound editing, amongst other operations [18]. One
common complaint about the Unreal engine is that it is geared toward FPS style
games. However, the Unreal engine can be used (and has been used) to develop
many different types of games from virtually every genre even though game
development with the Unreal engine becomes more difficult the farther you stray
from the engine’s FPS roots [61].

Support is provided by the large community of users consisting of both pro-
fessional and amateur developers who provide help to fellow members in the
community forums. Licensed developers receive a greater level of support provided
by Epic [41]. The Unreal Development Kit (UDK) is free for non-commercial and
educational use. For commercial projects, there is a 5 % royalty charged for revenue
in excess of $3,000 USD per product per quarter [18].

2.2.2.6 Torque

The technology behind Torque Game Engine was originally developed by Dynamix
for the Tribes series of games. Torque is currently maintained by GarageGames and
has been re-engineered as a general purpose game-development framework. The
Torque game engine was written in the C++ programming language and is now
open source. The TorqueScript scripting language is similar syntactically to C++.
Most of the game engine’s functionality is available through TorqueScript, which
makes it possible to build an entire game without the need to recompile the engine.
The World Editor is a collection of graphical editors which allow artists to sculpt
terrain, lay roads and rivers, place objects, edit materials, and create particle effects
without writing any code [22].

Torque 3D supports Windows and all major web browsers. Unofficial support
for other platforms may be provided by the community. GarageGames also offers a
2D version of the framework (Torque 2D) which is dedicated to 2D game devel-
opment and supports most mobile devices. Both Torque 3D and Torque 2D are free
under the MIT open source software license. Support is generally provided by the
online community. Expert on-site support provided by GarageGames starts at
$5,000 USD [22].

30 B. Cowan and B. Kapralos

2.2.2.7 Ogre

According to our survey, Ogre was the 7th most utilized engine despite the fact that
Ogre is a graphics engine only. In other words, if you want to add features such as
audio, physics, and artificial intelligence to your game, you must either program
such features yourself or integrate third party libraries into the project. Example
programs combining Ogre with various physics and audio libraries are freely
available thanks to the active community [39]. Ogre is freely available and open
source under the MIT license. Supported platforms currently include Windows,
Linux, Mac OSX, Android, iOS, and Windows Phone. Support is provided by the
community via online forums [39].

2.2.2.8 Cocos

Cocos is a very popular freely available open source game development framework
that supports development on all major mobile and desktop platforms. Cocos games
can be deployed as a browser-based or stand-alone application [25]. Cocos includes
visual editors for building the user interface, animating characters, and placing
objects in the scene. There are several versions of Cocos being maintained by the
community, some of which are focused on developing games for a specific plat-
form. The most popular is Cocos2D-x which is written in C++ and supports the
Javascript and Lua scripting languages. There are versions that support Python, C#,
and Objective-C (iOS development) [10]. Cocos3D extends the 2D version by
adding full support for 3D rendering based on OpenGL [11].

2.2.2.9 XNA

XNA Game Studio is game engine developed by Microsoft with the goal of making
it easier to develop games for Windows, the Xbox, and Windows Phone [35]. It is
free to develop XNA games for Windows, Xbox 360 game development requires a
small yearly subscription fee. XNA was released in 2006 and quickly attracted a
large community of independent game developers because of its simplicity and low
cost [28]. Both 3D and 2D games can be created with XNA. XNA games written
using the C# programming language. Although there are no official visual editing
tools included with XNA, third party editors for UI design and level editing are
available. Despite its popularity, Microsoft decided to retire XNA in 2014 [44]. The
open source community has picked up where Microsoft left off with the creation of
MonoGame. MonoGame is an open source implementation of XNA that has been
extended to support additional platforms such as Linux, iOS, Android, and MacOS
[37].

2 An Overview of Serious Game Engines and Frameworks 31

2.2.2.10 RPG Maker

RPG Maker was created by Enterbrain located in Tokyo Japan, and as the name
suggest, this framework was designed specifically for the development of Role
Playing Games (RPGs) only. More specifically, RPG Maker can only be used to
create tile based games with separate combat screens viewed from the side
(non-tiled). The developer is provided with limited control over the interface or
game play, and must therefore focus on crafting a story told through NPC dialogs
and quests instead. However, RPG Maker’s singular focus makes it one of the
simplest frameworks to use. No knowledge of programming is required. The visual
editor assists the user in developing animated characters, and the WYSIWYG map
editor allows trees, mountains and other objects to be added simply by selecting the
object and clicking on one of the grid squares [45].

2.3 Discussion and Conclusions

Two literature surveys were conducted using Google Scholar, ACM Digital
Library, and the IEEE Xplore Digital Library. The first survey (Survey 1) compared
the number of papers mentioning the name of each engine in relation to search
terms such as “serious game,” “educational games,” and “simulator.” The frame-
works and engines that scored well in this survey are those that are often discussed
in academic publications. It could be argued that some of the frameworks listed here
are not game engines or game development frameworks at all. Adobe Flash for
example, is a framework for developing web-based applications in general, and is
commonly used to make online advertisements. Second Life is a massively mul-
tiplayer virtual world, and it is not technically a game or a game engine. However,
the content creation tools available to Second Life users, allows them to create their
own games and interactive content. The serious games created with Second Life are
essentially modifications (“mods”) that exist as a location within the Second Life
world. After Unity, Adobe Flash, Second Life, Unreal, and XNA Game Studio were
referenced most often in academic publications. The second survey (Survey 2)
attempted to discover which game engines and frameworks were used most often to
develop serious games. A search was performed using the search term “serious
game.” Papers detailing the creation of a serious game were downloaded and read
in order to determine which engine was used. Four of the top ten engines were
full-featured game creation frameworks and six of the top ten were commercial
products. However, three of these commercial game engines were free for
non-commercial use. Out of the top ten most utilized frameworks, eAdventure was
the only one designed specifically for educational purposes.

Table 2.1 summarizes some of the most popular game engines and frameworks
(as determined by the survey results detailed in Sect. 2.1) along with common
features that are important to developers of serious games.

32 B. Cowan and B. Kapralos

Companies such as Unity Technologies and Epic refer to their products as “game
engines” even though they provide a complete set of visual editing tools. Adding to
the confusion, frameworks such as Unreal include the visual editors with shipped
games. This allows the modding community to modify and extend the game by
adding new content. Free content created and shared by modders helps to extend the
life of commercial games, which in turn leads to increased sales [27]. Many serious
games are really game mods which can be distributed freely, although they do
require the player to own a copy of the original game in order to play them.
Graphics engines (APIs dedicated to rendering graphics only) are often referred to
as game engines even though they lack much of the functionality required to
develop a complete game. Part of the confusion stems from the fact that popular
graphics engines are often combined with physics and audio engines by the user
base, and distributed via personal webpages or as official tutorials. Academic
publications to date rarely make the distinction between game development
frameworks that supply a complete set of editing tools and game engines which
supply a code base of core functionality.

The results presented here suggest that serious game developers are primarily
using game engines and frameworks that were designed for the creation of
leisure-based or entertainment-based games. Given the disparity in available
resources to serious game developers when compared to commercial (entertain-
ment) game companies, it is peculiar that they chose the same tools. This suggests
that the currently available serious game engines may be lacking many of the
features found in commercial engines. The results may also indicate that game
engines designed specifically for serious games do not simplify the process beyond
that of commercial entertainment focused engines and frameworks. Each game
engine/framework has a number of features that may lend itself to a specific serious
game development project.

Table 2.1 Popular engines/frameworks and their features (features that are available in the form
of an add-ons created by a third party or with additional licensing fees are not included)

Unity Flash Second
life

e-Adventure Unreal Torque Ogre Cocos XNA RPG
maker

Level editor ■ ■ ■ ■ ■ ■ ■ ■

Scripting ■ ■ ■ ■ ■ ■ ■ ■

C++ ■ ■ ■ ■

Networking ■ ■ ■ ■ ■ ■ ■

3D Graphics ■ ■ ■ ■ ■ ■ ■

Shader effects ■ ■ ■ ■ ■ ■

Dynamic
shadows

■ ■ ■ ■ ■

Physics ■ ■ ■ ■ ■ ■

Artificial
intelligence

■ ■ ■

Free
non-commercial

■ ■ ■ ■ ■ ■ ■ ■

Free for
commercial

■ ■ ■ ■

Mobile devices ■ ■ ■ ■ ■ ■ ■

Web player ■ ■ ■ ■ ■ ■

2 An Overview of Serious Game Engines and Frameworks 33

It should be noted that although a significant amount of time and effort was
placed to conduct the searches and review the hundreds of resulting papers, there
are limitations to our results. More specifically, our results are specific to papers
within three academic databases (Google Scholar, IEEE Xplore Digital Library, and
ACM Digital Library), and therefore, game engines and frameworks that are not
described in any research-based publications may have been missed altogether. The
results of Surveys 1 and 2 are also subject to any bias Google Scholar, IEEE Xplore
Digital Library, or the ACM Digital Library may have relating to the ordering of the
search results. Furthermore, although access to the ACM and IEEE Digital Libraries
was available, 46 % of the articles revealed in the Google Scholar search were not
freely accessible and thus not considered.

Therefore, significant limitation was introduced by the fact that papers were
selected only if they could be freely accessed. Despite these limitations, the Surveys 1
and 2 do help to remove any personal bias on the part of the authors in selecting the
frameworks that warrant further investigation. Finally, although no claim is made
that the conducted search is completely exhaustive of all serious games developed
and all available development tools, a number of popular and commonly used game
engines and frameworks, in addition to some of their features, have been outlined.

2.3.1 Content Experts and Educators as Game Developers

Most of the frameworks revealed by our surveys are complex game development
tools requiring extensive training or programming knowledge before they can be
utilized effectively. Content experts and educators often need to hire skilled
developers to create games on their behalf. The eAdventure framework is unique in
that it is targeted to educators who are not expected to have a game development
background or any programming knowledge. Many educators are prolific in the
amount of educational content they author for their students. This content takes the
form of PowerPoint presentations, instructional documents, quizzes, videos, and
websites. However, the educational content currently being created by educators is
rarely interactive.

Educators could take on a greater role in the design and development of edu-
cational software and serious games if tools were made available to them that
greatly simplified the game development process. The availability of such tools
coupled with an educator’s educational background (instructional design in par-
ticular), may lead to more effective serious games as well as the proliferation of
interactive educational content. Although it is unrealistic to expect educators to be
highly skilled in game development and programming, one can expect that some
educators would be willing to take the time to learn some basic skills in order to
provide a better learning environment for their students. If a game creation
framework could be made “simple enough”, a layperson could become competent
enough to develop their own games, or at least modify existing games developed by
others using the framework. eAdventure may be a step in the right direction, but

34 B. Cowan and B. Kapralos

currently it is limited to the creation of one specific genre of game, and more
specifically, 2D point-and-click adventures. Although 2D point-and-click adven-
tures can be applied to a large number of learning applications, we believe that there
is need for a simple general purpose framework for educators, or perhaps a series of
frameworks each simplified for the development of one specific type of game, to
ultimately provide educators (and serious games developers alike), greater freedom
and flexibility.

Empowering content experts and educators to build their own interactive soft-
ware and serious games may allow them to better meet the needs of their students. It
could be argued that educators who do not have a background in game development
may create games that do not offer an enjoyable experience for the players (stu-
dents). However, it could also be argued that game developers who do not
understand the educational content of the game or the needs of the students, may
create games that do not meet the educational needs of the students.

To empower educators and provide them the opportunity to have a greater role
within the serious game development process, we have assembled an interdisci-
plinary group of researchers, educators, computer scientists/engineers, and game
developers, and have begun development of a novel game development framework
that will greatly simplify the three primary areas of game development (art and
animation, sound and music, and programming) [14]. The framework (known as the
Serious Game Surgical Cognitive Education and Training Framework (SCETF)),
allows for the creation of serious games by those who are not necessarily game
developers or expert programmers (e.g., many educators). Although the framework
may be of value to educators in general, we are currently targeting medical edu-
cators specifically. Serious gaming is growing in popularity within the medical
education and training realm for a number of reasons including their ability to
motivate and engage the trainees, and their cost effectiveness. However, medical
procedures and practices are constantly changing in response to new technologies,
new treatments, and a shifting patient demographic. By providing medical educa-
tors with the tools necessary to easily develop and/or easily modify their own
interactive content (i.e., serious games), we are aiming for a proliferation of serious
games for medical education and training with a current focus on cognitive-based
surgical skills.

As part of the development of the SCETF, a needs analysis is being conducted to
ensure that the design of the tool will meet the needs of the end user. This includes
conducting a survey to gauge the technical background and computer literacy of
clinical educators in order to gauge whether they possess the appropriate skillset
and willingness to develop interactive software and games (given appropriate
development tools). The results of this survey will then be used to guide the
development process and ultimately allow us to strike a balance between ease of use
and functionality, while providing the user with the necessary options and tools to
ideally develop effective serious games. The survey itself has been evaluated by a
panel of experts using the Delphi method to determine whether the survey questions
are appropriate given the demographic and research goals. The Delphi method
seeks to obtain a consensus on the opinions of experts, termed panel members,

2 An Overview of Serious Game Engines and Frameworks 35

through a series of structured questionnaires [16]. As part of the process, the
responses from each round are fed back in summarised form to the participants who
are then given an opportunity to respond again to the emerging data. The Delphi
method is therefore an iterative multi‐stage process designed to combine opinion
into group consensus. Experts from a variety of fields; medicine, education, and
computer science, have taken part in the panel.

Although participants for this survey are still being sought, preliminary results
suggest that clinical educators generally do possess a high degree of computer literacy
and are interested in developing their own interactive content. Participants have also
indicated that the time they are able to devote to learning to use such tools is limited. The
framework should therefore be made simple enough that an educator can learn to use it
by following the provided examples in their spare time over a one to two week period.

In summary, serious games provide a viable education and training option, and
are becoming more widespread in use for a variety of applications. However, in
contrast to traditional entertainment game design and development, serious games
and serious game designers/developers must strictly adhere to the corresponding
content/knowledge base, while ensuring that their end product is not only fun and
engaging, but is also an effective teaching tool. Despite the importance of proper
serious game design, very few tools that are specific to serious game development
and account for the unique requirements and complexities inherent in the serious
game development process are currently available. In this paper we have provided
insight into more popular tools currently used to develop serious games. We have
also provided details regarding our current work that is seeking to bridge the game
between what is currently available and what is actually needed by developers of
serious games. Although plenty of work remains to be done, we are confident that
these first steps will at the very least bring light to this important topic and ideally
lead to greater work in the area of serious game framework and engine design.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), and the Social Sciences and Humanities Research Council of Canada
(SSHRC), Interactive and Multi-Modal Experience Research Syndicate (IMMERSe) initiative.

References

1. Abt CC (1975) Serious games. Viking Compass, New York
2. Adobe Flash Product Information. http://www.adobe.com/ca/products/flash-builder-family.

html. Accessed 27 Aug 2015
3. Arnab S (ed) (2012) Serious games for healthcare: applications and implications: applications

and implications. IGI Global
4. Becker K, Parker J (2011) The guide to computer simulations and games. Wiley, Indianapolis
5. Bergeron B (2006) Developing serious games. Thomson Delmar Learning, Hingham, MA
6. Bishop L, Eberly D, Whitted T, Finch M, Shantz M (1998) Designing a PC game engine.

Comput Graph Appl IEEE 18(1):46–53
7. Breuer J, Bente G (2010). Why so serious? On the relation of serious games and learning.

Eludamos. J Comput Game Cult 4(1):7–24

36 B. Cowan and B. Kapralos

http://www.adobe.com/ca/products/flash-builder-family.html
http://www.adobe.com/ca/products/flash-builder-family.html

8. Campbell J, Core M, Artstein R, Armstrong L, Hartholt A, Wilson C, Birch M (2011)
Developing INOTS to support interpersonal skills practice. In: Aerospace conference, 2011
IEEE. IEEE, pp 1–14

9. Chiang O (2010) FarmVille players down 25 % since peak, now below 60 million. http://
www.forbes.com/sites/oliverchiang/2010/10/15/farmville-players-down-25-since-peak-now-
below-60-million/. Accessed 16 Nov 2015

10. Cocos2D game engine, Official website. http://cocos2d.org/. Accessed 13 Nov 2015
11. Cocos3D game engine, Official website. http://cocos3d.org/. Accessed 13 Nov 2015
12. Complutense University of Madrid, Home page. https://www.ucm.es/english. Accessed 23

Aug 2015
13. Corti K (2006) Game-based learning; a serious business application. PIXELearning,

Coventry, UK
14. Cowan B, Kapralos B, Moussa F, Dubrowski A (2015) The serious gaming surgical cognitive

education and training framework and SKY script scripting language. In: Proceedings of the
8th international conference on simulation tools and techniques. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), pp 308–310

15. Craighead J, Burke J, Murphy R (2007) Using the unity game engine to develop sarge: a case
study. Computer 4552:366–372

16. Dalkey N, Helmer O (1963) An experimental application of the Delphi method to the use of
experts. Manage Sci 9(3):458–467

17. eAdventure, Home page. http://e-adventure.e-ucm.es/. Accessed 22 Aug 2015
18. Epic games, unreal engine, Official website. http://www.unrealengine.com. Accessed 8 Nov 2015
19. Feronato E (2011) Flash game development by example: build 9 classic flash games and learn

game development along the way. Packt Publishing Ltd
20. Fraser M, Glover T, Vaghi I, Benford S, Hindmarsh CGJ, Heath C (2000) Revealing the

realities of collaborative virtual reality. In: Proceedings of the third international conference
on collaborative virtual environments, New York, NY, USA, pp 29–37

21. Gans JS, Halaburda H (2013) Some economics of private digital currency. In: economics of
digitization. University of Chicago Press

22. GarageGames, Official website for the Torque 2D and Torque 3D game engines. https://www.
garagegames.com/. Accessed 8 Nov 2015

23. Goldstone W (2009) Unity game development essentials. Packt Publishing
24. Hill V, Meister M (2013) Virtual worlds and libraries Gridhopping to new worlds. Coll Res

Libr News 74(1):43–47
25. Hussain F, Gurung A, Jones G (2014) Cocos2d-x game development essentials. Packt

Publishing Ltd
26. Iuppa N, Borst T (2010) End-to-end game development: creating independent serious games

and simulations from start to finish. Focal Press, Oxford, UK
27. Jeppesen LB (2004) Profiting from innovative user communities. In: Working paper,

Department of Industrial Economics and Strategy, Copenhagen Business School
28. Keller B (2006) XNA studio: introduction to XNA. In: Game developer conference
29. Kemp J, Livingstone D (2006) Putting a second life “metaverse” skin on learning

management systems. In: Proceedings of the second life education workshop at the second
life community convention. The University Of Paisley, CA, San Francisco, pp 13–18

30. Konstantinidis A, Tsiatsos T, Demetriadis S, Pomportsis A (2010) Collaborative learning in
opensim by utilizing sloodle. In: The sixth advanced international conference on telecom-
munications, 9–15 May, 2010, Barcelona, Spain, pp 91–94

31. Lewis M, Jacobson J (2002) Game engines. Commun ACM 45(1):27
32. Linden BK. Q1 2011 Linden dollar economy metrics up, Users and usage unchanged, June

5th 2011. Accessed 2013
33. Linden Labs, About Linden lab. http://www.lindenlab.com/about. Accessed 8 Nov 2015
34. Michael D, Chen S (2006) Serious games: games that educate, train and inform. Thomson

Course Technology, Boston, MA

2 An Overview of Serious Game Engines and Frameworks 37

http://www.forbes.com/sites/oliverchiang/2010/10/15/farmville-players-down-25-since-peak-now-below-60-million/
http://www.forbes.com/sites/oliverchiang/2010/10/15/farmville-players-down-25-since-peak-now-below-60-million/
http://www.forbes.com/sites/oliverchiang/2010/10/15/farmville-players-down-25-since-peak-now-below-60-million/
http://cocos2d.org/
http://cocos3d.org/
https://www.ucm.es/english
http://e-adventure.e-ucm.es/
http://www.unrealengine.com
https://www.garagegames.com/
https://www.garagegames.com/
http://www.lindenlab.com/about

35. Miller T, Johnson D (2010) XNA game studio 4.0 programming: developing for windows
phone 7 and xbox 360. Pearson Education

36. Mitchell A, Savill-Smith (2004) The use of computer and video games for learning: a review
of the literature. London, UK. www.LSDA.org.uk

37. MonoGame, Official website. http://www.monogame.net/. Accessed 10 Nov 2015
38. NASA, Moonbase Alpha. http://www.nasa.gov/offices/education/programs/national/ltp/

games/moonbasealpha/index.html. Accessed 1 Mar 2014
39. Ogre, Official website for Ogre, An open-source 3D graphics engine. http://www.ogre3d.org/.

Accessed 12 Nov 2015
40. Open simulator, Information page. http://opensimulator.org/wiki/Main_Page. Accessed 14

Oct 2015
41. Petridis P, Dunwell I, Panzoli D, Arnab S, Protopsaltis A, Hendrix M, de Freitas S (2012)

Game engines selection framework for high-fidelity serious applications. Int J Interact Worlds
42. Ratan R, Ritterfeld U (2009) Classifying serious games. In: Ritterfeld U, Cody M, Vorderer P

(eds) Serious games: mechanisms and effects. Routledge, New York/London
43. Roman PA, Brown D (2008) Games–just how serious are they. In: The interservice/industry

training, simulation & education conference (I/ITSEC), vol 2008, no 1
44. Rose M (2013) It’s official: XNA is dead. http://www.gamasutra.com/view/news/185894/Its_

official_XNA_is_dead.php. Accessed 25 Sep 2015
45. RPG Maker, Official website. http://www.rpgmakerweb.com/. Accessed 9 Nov 2015
46. Rymaszewski M (2007) Second life: the official guide. Wiley
47. Sawyer B (2009) Foreword: from virtual U to serious games to something bigger. In:

Ritterfeld U, Cody MJ, Vorderer P (eds) Serious games. Mechanisms and effects, pp xi–xvi
48. Second Life, Official website. http://secondlife.com/. Accessed 20 Oct 2015
49. Sherrod A (2007) Ultimate 3D game engine design & architecture. Charles River Media
50. Shute V, Ventura M, Bauer M, Zapata-Rivera D (2009) Melding the power of serious games

and embedded assessment to monitor and foster learning. In: Ritterfeld U, Cody MJ,
Vorderer P (eds) Serious games. Mechanisms and effects, pp 295–321

51. SLOODLE (simulation linked object oriented dynamic learning environment). http://www.
sloodle.org/. Accessed 22 Oct 2013

52. Space today online. http://www.spacetoday.org/Rockets/SecondLife/SL_Spaceport_Alpha.
html. Accessed 23 Oct 2013

53. Squabble studios, Sort ‘Em Up project page. http://www.squabblestudios.ca/sort.html.
Accessed 10 Oct 2013

54. Squire K, Jenkins H (2003) Harnessing the power of games in education. Insight 3(1):5–33
55. Susi T, Johannesson M, Backlund P (2007) Serious games—an overview (Technical report no

HS-IKI-TR-07-001). School of Humanities and Informatics, University of Skovde, Sweden
56. The World Wide Web Consortium (w3C) HTML standard. http://www.w3.org/standards/

webdesign/htmlcss. Accessed 26 Aug 2015
57. Torrente J, Moreno-Ger P, Fernández-Manjón B, Sierra JL (2008) Instructor-oriented

authoring tools for educational videogames. In: 8th international conference on advanced
learning technologies (ICALT 2008), Santander, Spain, 2008, pp 516–518

58. Unity, Official website. http://unity3d.com/. Accessed 10 Oct 2015
59. US Army, America’s Army serious game. http://www.americasarmy.com/. Accessed 9 Oct 2013
60. Warburton S (2009) second life in higher education: assessing the potential for and the barriers to

deploying virtual worlds in learning and teaching. Brit J Educ Technol 40(3):414–426
61. Zielke MA (2010) The game engine space for virtual cultural training. The University of

Texas at Dallas Arts and Technology

38 B. Cowan and B. Kapralos

http://www.LSDA.org.uk
http://www.monogame.net/
http://www.nasa.gov/offices/education/programs/national/ltp/games/moonbasealpha/index.html
http://www.nasa.gov/offices/education/programs/national/ltp/games/moonbasealpha/index.html
http://www.ogre3d.org/
http://opensimulator.org/wiki/Main_Page
http://www.gamasutra.com/view/news/185894/Its_official_XNA_is_dead.php
http://www.gamasutra.com/view/news/185894/Its_official_XNA_is_dead.php
http://www.rpgmakerweb.com/
http://secondlife.com/
http://www.sloodle.org/
http://www.sloodle.org/
http://www.spacetoday.org/Rockets/SecondLife/SL_Spaceport_Alpha.html
http://www.spacetoday.org/Rockets/SecondLife/SL_Spaceport_Alpha.html
http://www.squabblestudios.ca/sort.html
http://www.w3.org/standards/webdesign/htmlcss
http://www.w3.org/standards/webdesign/htmlcss
http://unity3d.com/
http://www.americasarmy.com/

	2 An Overview of Serious Game Engines and Frameworks
	Abstract
	2.1 Introduction
	2.1.1 Paper Organization

	2.2 Game Engines and Frameworks
	2.2.1 Game Engines for Serious Games
	2.2.1.1 Engine Survey 1: Engines/Frameworks Most Discussed in Academic Literature
	2.2.1.2 Survey 2: Engines/Frameworks Most Utilized by Game Developers

	2.2.2 Notable Frameworks and Engines
	2.2.2.1 Unity
	2.2.2.2 Adobe Flash
	2.2.2.3 Second Life
	2.2.2.4 eAdventure
	2.2.2.5 Unreal
	2.2.2.6 Torque
	2.2.2.7 Ogre
	2.2.2.8 Cocos
	2.2.2.9 XNA
	2.2.2.10 RPG Maker

	2.3 Discussion and Conclusions
	2.3.1 Content Experts and Educators as Game Developers

	Acknowledgements
	References

