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Malignant gliomas are the most common primary
brain tumor found in adults [1]. Regretfully,
prognosis for these tumors remains dismal
despite aggressive treatment with surgical resec-
tion, radiation, and chemotherapy. Treatment of
glioblastoma patients with the current standard of
care consisting of maximal resection, 6 weeks of
concurrent chemoradiation with daily temozolo-
mide followed by 6–12 cycles of adjuvant
temozolomide, results in a median overall sur-
vival of only approximately 16 months [2].
Malignant gliomas have proven to be among the
most difficult cancers to treat due to their genetic
heterogeneity, elaborate overlapping signaling
pathways, and difficulties in delivering drugs
across the blood–brain barrier [3]. Recent

in-depth description of the distinct molecular and
genetic alterations in glioblastomas, using
advanced sequencing technologies and
large-scale gene expression studies, has inspired
interest in the development of targeted therapies.
Targeted therapies work by the inhibition of the
deregulated cell signaling pathways in cancer
cells by small molecules or antibodies, whereas
traditional cytotoxic chemotherapies operate by
impeding DNA synthesis or cell metabolism.
This chapter will explore these aberrant signaling
pathways in malignant gliomas and the results of
the clinical trials of therapeutics targeting them.

The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA), a collabo-
ration between the National Cancer Institute
(NCI) and National Human Genome Research
Institute (NHGRI), was undertaken to generate
comprehensive, multidimensional maps of the
major genomic changes in several types of can-
cer. One of the first cancers studied by the TCGA
was glioblastoma, and the analysis characterized
a decidedly interrelated network of aberrations. It
identified three key pathways: the retinoblastoma
(RB) and p53 tumor suppressor pathways, and
the receptor tyrosine kinases (RTKs) signaling
pathway [4]. For glioblastoma patients with
sequencing data, the frequencies of somatic
alterations were 78, 87, and 88%, respectively, in
each of these pathways (Fig. 9.1). Of further
note, 74% of glioblastoma samples contained
abnormalities in all three pathways [4].
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Retinoblastoma Tumor Suppressor
Pathway

The RB protein is a tumor suppressor protein that
is dysfunctional in several cancer types [5]. It is
encoded by the RB gene, which is located at

chromosome 13q14.1-q14.2. Normally, the RB
protein prevents unwarranted cell growth by
inhibiting cell cycle progression until a cell is set
to undergo mitosis. When ready for cell division,
the RB protein is then phosphorylated by cyclin
D, cyclin-dependent kinase 4 (CDK4), and
cyclin-dependent kinase 6 (CDK6) inactivating

Fig. 9.1 Critical signaling pathways altered in malignant
gliomas. Primary sequence alterations and significant
copy number changes for the components of the a |
RTK/RAS/PI3K, b | p53, and c | Rb signaling pathways
are shown. Red indicates activating genetic alterations.
Conversely, blue indicates inactivating alterations. For

each altered component of a particular pathway, the
nature of the alteration and the percentage of tumors
affected are indicated. Boxes contain the final percentages
of glioblastomas with alterations in at least one known
component gene of the designated pathway. Abbreviation:
RTK receptor tyrosine kinase
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the protein and allowing for cell cycle progres-
sion [5]. Most commonly, homozygous deletion
of cyclin-dependent kinase inhibitor 2A
(CDKN2A) can produce loss of p16INK4a and a
suppressor of CDK4, leading to dysregulation of
RB signaling [5–7]. Mutations in retinoblastoma
protein 1 (RB1) and CDK4 amplification can
also trigger dysfunction of the RB signaling
pathway. A CDK4 inhibitor, PD-0332991 (pal-
bociclib isethionate), has been examined in two
phase I trials leading to a phase II trial in recur-
rent RB-positive glioblastoma with results not
yet reported [8–10].

p53 Tumor Suppressor Pathway

The tumor protein p53 (p53) gene is the most
frequently mutated gene in human cancer and
performs a critical function in preventing cancer
formation [11]. It is located at chromosome
17p13.1 and reacts to DNA injury and toxic
pressures by producing cell cycle arrest and
apoptosis [12, 13]. Loss of p53 pathway function
can be due to p53 mutation/deletion itself or by
interferences in other genes that regulate p53
function such as murine double minute
(MDM2/4) and the tumor suppressor protein
alternate reading frame (ARF) [14–16].

The use of an intratumoral injection of a
p53-containing adenovirus vector to increase
wild-type p53 expression in tumor cells has been
attempted in a phase 1 study in recurrent glioma,
but it did not appear to achieve systemic viral
dissemination [17]. Phase I trials of wild-type
Ad5CMV-p53 gene therapy and recombinant
adenovirus p53 (SCH-58500) in combination
with surgery in recurrent malignant gliomas have
been completed, but the results have yet to be
published [18, 19].

SGT-53 is a nanocomplex of cationic lipo-
some encapsulating a normal human wild-type
p53 DNA sequence in a plasmid backbone
exhibited to supply the p53 cDNA to the tumor
cells with the goal of the p53 cDNA sequence to
restore wild-type p53 function in the apoptotic
pathway [20]. SGT-53 has shown to prolong
survival in a mouse model and is currently

undergoing investigation in a phase II trial in
recurrent glioblastoma [20, 21]. An MDM2
inhibitor, JNJ-26854165, was examined in a
phase I study in refractory solid tumors but has
yet to be examined in brain tumor patients
exclusively [22, 23]. MK-1775, a Wee1 kinase
inhibitor, has been shown to radiosensitize
p53-defective human tumor cells and is currently
under investigation in a multicenter phase I trial
in newly diagnosed or recurrent glioblastoma
[24, 25].

Receptor Tyrosine Kinase Signaling
Pathway

Receptor tyrosine kinases (RTKs) are
high-affinity cell surface receptors and primary
mediators of signal transduction events shown to
have an essential function in the growth and
progression of many cancers [26]. Twenty dif-
ferent RTK classes have been identified, and
members of this family include the vascular
endothelial growth factor receptor (VEGFR),
epidermal growth factor receptor (EGFR),
platelet-derived growth factor receptor (PDGFR),
and hepatocyte growth factor receptor (MET).
The receptor tyrosine kinase signaling pathway
has been the most extensively studied pathway in
malignant gliomas to date (Table 9.1).

Vascular Endothelial Growth Factor
Receptor (VEGFR)

Vascular endothelial growth factor (VEGF) is a
significant component implicated in the forma-
tion of new blood vessels which is a distin-
guishing feature of glioblastoma [27]. VEGF
binding to its receptors VEGFR-1 and VEGFR-2
leads to phosphorylation of tyrosine kinase and
initiation of downstream signaling pathways
including phosphatidylinositol-4,5-bisphosphate
3-kinase (PI3K)/protein kinase B (Akt/PBK) and
Ras/mitogen-activated protein kinases (MAPK)
[28].

Bevacizumab, a monoclonal antibody that
targets the VEGF-A ligand, was granted
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accelerated approval by the Food and Drug
Administration for use as a single agent in
recurrent glioblastoma in 2009 [29]. Approval
was granted based on the results of two phase II
clinical trials that demonstrated durable objective
imaging responses based on independent radio-
logic review with stable or decreasing corticos-
teroid use [29–31]. Subsequently, two phase III
clinical trials (RTOG 0825 and AVAglio) were
performed examining the addition of beva-
cizumab or placebo to the current standard of
care regimen of concurrent chemoradiation with

temozolomide followed by adjuvant temozolo-
mide in newly diagnosed glioblastoma [32, 33].
Both studies found that the addition of beva-
cizumab improved progression-free but not
overall survival [32, 33]. While the addition of
irinotecan to bevacizumab was not beneficial in
the early studies of bevacizumab, a subsequent
phase II study appeared to suggest that the
combination of lomustine and bevacizumab may
prolong overall survival compared to either
treatment administered alone [30, 31, 34]. Dis-
appointingly, the preliminary report of the results

Table 9.1 Targeted therapies for malignant gliomas in published clinical trials

Therapy Pathway Target/s

Bevacizumab RTK VEGF-A [30–37]

Cediranib RTK VEGFR-1, VEGFR-2, VEGFR-3, PDGFR-α/β, FGFR-1, c-Kit [38, 39]

Pazopanib RTK VEGFR, c-Kit, FGFR, and PDGFR [40, 41]

Sorafenib RTK VEGFR-2, Raf, PDGFR, c-Kit, Flt-3 [42–46]

Nintedanib RTK VEGFR 1-3, FGFR 1-3, PDGFR-α/β [47]

Vandetanib RTK VEFGR-2, EGFR [48, 49]

Sunitinib RTK VEGFR2, PDGFR-α, and c-Kit [50–53]

Aflibercept RTK VEGF and PlGF [54]

Vatalanib RTK VEGFR, PDGFR, and c-Kit [55–57]

Cabozantinib RTK VEGFR-2, MET, and RET [58]

Gefitinib RTK EGFR [64–69]

Erlotinib RTK EGFR [45, 70–80]

Cetuximab RTK EGFR [81, 82]

Lapatinib RTK EGFR and HER2 [83–85]

AEE-788 RTK EGFR, HER2, and VEGFR2 [86]

Nimotuzumab RTK EGFR [92]

Imatinib RTK PDGFR, Bcr-Abl, and c-Kit [56, 100–105]

Dasatinib RTK PDGFR, Src, Bcr-Abl, c-Kit, and EphA2 [106]

PX-866 RTK PI3K [118]

Enzastaurin RTK protein kinase C, PI3K, and Akt [125–128]

Everolimus RTK mTOR [135–137]

Temsirolimus RTK mTOR [46, 138–140]

Sirolimus RTK mTOR [49, 68, 79, 80]

Tipifarnib RTK Ras [151, 152]

Lonafarnib RTK Ras [155, 156]

Abbreviations: RTK receptor tyrosine kinase, VEGF vascular endothelial growth factor, VEGFR vascular endothelial
growth factor receptor, PDGFR platelet-derived growth factor receptor, FGFR fibroblast growth factor receptor, FLT3
Fms-like tyrosine kinase-3, EGFR epidermal growth factor receptor, PlGF placental growth factor receptor, MET
hepatocyte growth factor receptor, HER2 human epidermal growth factor receptor 2, EphA2 ephrin type-A receptor 2,
PI3K phosphatidylinositide 3-kinases, mTOR mammalian target of rapamycin
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of an EORTC phase III study comparing
lomustine alone versus lomustine and beva-
cizumab in reccurent glioblastoma failed to
demonstrate an improvement in overall survival
with the combination treatment [35]. Phase II
trials of recurrent glioblastoma examining the
addition of fotemustine or carboplatin to beva-
cizumab also did not demonstrate any increased
survival benefit with the addition of these cyto-
toxic therapies [36, 37]. Despite the improve-
ment in progression-free survival and increased
imaging response rate, bevacizumab has yet to
improve overall survival in either the upfront or
recurrent setting.

Other VEGF inhibitors have failed to even
match the limited success of bevacizumab.
Cediranib, an oral pan-VEGF receptor tyrosine
kinase inhibitor, demonstrated a 6-month
progression-free survival of 25.8% and partial
radiographic responses in 56.7% of patients in a
phase II study of patients with recurrent
glioblastoma [38]. However, a phase III ran-
domized trial in recurrent glioblastoma compar-
ing the efficacy of cediranib as monotherapy, and
in combination with lomustine, versus lomustine
alone failed to show any improvement with
cediranib either as monotherapy or in combina-
tion with lomustine versus lomustine alone [39].
Pazopanib, a multikinase inhibitor of c-Kit,
FGFR, PDGFR, and VEGFR, also did not show
any prolongation of progression-free survival in
a phase II study in recurrent glioblastoma [40].
A subsequent phase I/II examining pazopanib in
combination with lapatinib (an EGFR inhibitor)
in relapsed malignant glioma patients had limited
antitumor activity leading to early termination of
the study [41]. Sorafenib, an oral VEGFR-2, Raf,
PDGFR, c-Kit, and Flt-3 inhibitor, was used in
combination with temozolomide for initial adju-
vant therapy in a phase II study for patients with
glioblastoma but failed to improve the efficacy
when compared to historical controls [42].
Additionally, sorafenib has been examined in
several other phase II studies in recurrent
glioblastoma in combination with temozolomide,
bevacizumab, erlotinib, and temsirolimus of
which no combination resulted in a prolongation
of survival [43–46]. Nintedanib, an inhibitor that

targets VEGFR 1-3, FGFR 1-3, and PDGFR-α/β,
was studied in a phase II study that was termi-
nated early following a preplanned futility anal-
ysis [47]. Vandetanib, an inhibitor of VEFGR-2
and EGFR, failed to display any significant
activity in a phase I/II trial of patients with
recurrent malignant glioma [48]. In addition, a
phase I/II study of vandetanib plus sirolimus (an
mTor inhibitor) in adults with recurrent
glioblastoma failed to display benefit when
compared to historical controls [49]. Sunitinib,
an inhibitor of VEGFR-2, PDGFR-α, and KIT,
similarly did not show any improvement in sur-
vival either as a monotherapy or in combination
with irinotecan in phase I or phase II studies in
recurrent glioma [50–53]. An inhibitor of VEGF
and placental growth factor, aflibercept, also had
minimal evidence of single-agent activity in
unselected patients with recurrent malignant
glioma [54]. Vatalanib, an inhibitor of VEGFR,
PDGFR, and c-Kit, was examined alone in newly
diagnosed glioblastoma patients and with ima-
tinib and hydroxyurea at time of tumor recur-
rence in two phase I studies [55, 56]. However, a
planned randomized phase II trial was terminated
at its initiation (after completion of its phase I
component) because of industry decision [57].
Cabozantinib, an inhibitor of VEGFR-2, MET,
and RET, was used in a phase II study whose
final results are yet to be published [58].

Epidermal Growth Factor Receptor
(EGFR)

The epidermal growth factor receptor is located
on chromosome 7p12 and is a member of the
ErbB family of receptor tyrosine kinases [59].
Overexpression of EGFR is one of the most
common signaling mutations in GBM and is
thought to occur in around 50% of glioblastomas
[60]. Glioblastomas with EGFR overexpression
have been demonstrated to potentially be more
radioresistant [61]. Additionally, EGFR amplifi-
cation is often associated with the expression of a
constitutively active, ligand-independent mutant
form of the receptor called EGFRvIII generated
by an in-frame deletion of exons 2–7 [61, 62].
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EGFRvIII expression may be an independent
prognostic factor for poor survival [63].

Unfortunately, EGFR inhibitors in malignant
glioma trials have likewise been disappointing.
Gefitinib, an EGFR inhibitor approved to treat
non-small-cell lung cancer in 2003, failed to
show any benefit when added to the treatment in
newly diagnosed glioblastoma patients [64, 65].
Additionally, gefitinib in the treatment of recur-
rent disease has shown minimal activity alone or
in combination with mammalian target of rapa-
mycin (mTOR) inhibitors such as sirolimus or
everolimus [66–69]. Another EGFR inhibitor,
Erlotinib, also has shown minimal efficacy
against newly diagnosed or recurrent glioblas-
toma [70–76]. Furthermore, several phase II
studies in recurrent glioblastoma examining the
combination of erlotinib with carboplatin, sor-
afenib, bevacizumab, or sirolimus have failed to
demonstrate significant antitumor activity [45,
77–80]. Cetuximab, another EGFR inhibitor used
for the treatment of metastatic colorectal cancer,
metastatic non-small-cell lung cancer, and head
and neck cancer, regrettably has failed to show
benefit in recurrent glioblastoma when used
alone or in combination with bevacizumab and
irinotecan [81, 82]. Lapatinib, the first dual
inhibitor of EGFR and human epidermal growth
factor receptor 2 (HER2) tyrosine kinases, also
did not show significant activity in recurrent
glioblastoma patients [83]. Additionally, lapa-
tinib was studied in a phase I study with temodar
and a phase I/II study with pazopanib in recurrent
malignant gliomas [84, 85]. The phase II study of
lapatinib and pazopanib revealed limited antitu-
mor activity of this combination leading to early
study termination [84]. AEE788, another inhi-
bitor of EGFR, HER2, and VEGFR2, was asso-
ciated with unacceptable toxicity and minimal
activity for the treatment of recurrent glioblas-
toma in a phase I trial [86].

Afatinib, an irreversible covalent inhibitor of
the EGFR and HER2, is approved for first-line
treatment of patients with EGFR
mutation-positive non-small-cell lung carcinoma
[87]. Afatinib is currently under investigation in
a phase I/II trial in recurrent malignant glioma.
Additionally, a phase I trial of afatinib in newly

diagnosed glioblastoma patients with radiother-
apy alone in patients with an unmethylated
MGMT promotor or radiotherapy and temo-
zolomide in patients with a methylated MGMT
promotor is ongoing [88, 89]. Dacomitinib is
another selective and irreversible inhibitor of
EGFR studied in two phase II trials in recurrent
glioblastoma with one of the trials limited to only
patients with EGFR gene amplification and/or
EGFRvIII mutation [90, 91]. Another EGFR
inhibitor, nimotuzumab, has received orphan
drug status in the USA and EU for glioma.
A phase I/II trial in high-grade glioma with
nimotuzumab showed an excellent safety profile
and significant survival benefit in combination
with irradiation, but unfortunately, a subsequent
phase III trial of nimotuzumab in newly diag-
nosed glioblastoma was negative [92, 93].

Platelet-Derived Growth Factor
Receptor (PDGFR)

Platelet-derived growth factor receptors
(PDGFRs) are cell surface receptors for members
of the PDGF family and signal through the alpha
and beta PDGF receptor tyrosine kinases [94].
The PDGFR alpha (PDGFRA) gene is located on
chromosome 7p22 and amplified in approxi-
mately 13% of glioblastomas [4, 95]. PDGFRA
can be overexpressed, amplified, mutated, or
truncated in gliomas, with PDGFRA point
mutations being observed exclusively in
glioblastomas [96].

Imatinib mesylate is an inhibitor of the
PDGFR, Bcr-Abl, and c-Kit tyrosine kinases that
have been found to beneficial in the treatment of
chronic myelogenous leukemia b and in gas-
trointestinal stromal tumors [97–99]. However,
imatinib alone displayed only minimal activity in
recurrent malignant gliomas and in newly diag-
nosed glioblastoma [100, 101]. Subsequent
studies looking at imatinib with the addition of
hydroxyurea in recurrent malignant gliomas also
failed to show clinically meaningful antitumor
activity [102–105]. As discussed previously,
imatinib with hydroxyurea was also examined in
combination with vatalanib [56].
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Dasatinib, an inhibitor of PDGFR, Src,
Bcr-Abl, c-Kit, and EphA2 receptors, was stud-
ied in a phase 2 trial in target-selected patients
(activation or overexpression of ≥2 putative
dasatinib targets) with recurrent glioblastoma and
was found ineffective with no radiographic
responses [106]. Additional, phase II studies with
dasatinib in combination with bevacizumab in
recurrent glioblastoma and in newly diagnosed
glioblastoma with chemoradiation have not yet
reported results [107, 108]. A phase I multicenter
trial of dasatinib in combination with CCNU was
found to have substantial hematological toxicities
leading to suboptimal exposure to both agents
[109]. Another phase I study of dasatinib in
combination with erlotinib was better tolerated
[110].

Furthermore, Tandutinib, a small molecule
inhibitor of PDGFR, fms-like tyrosine kinase
receptor-3 (FLT3), and c-Kit, has been examined
alone or with bevacizumab in recurrent
glioblastoma with results awaiting publication
[111, 112].

PI3K/AKT/mTOR Pathway

Along with targeting cell surface receptors, there
has been a significant effort undertaken on
inhibiting downstream survival signaling path-
ways stimulated by these receptors. The
PI3K/Akt/mTOR pathway can be crucial in
controlling cellular functions regulating cellular
proliferation, apoptosis, cell invasion, and
mobility. Activation of phosphatidylinositide
3-kinase (PI3K) complex is regulated by several
growth factors in conjunction with their recep-
tors, the most frequent of which is the amplifi-
cation of EGFR [113, 114]. PI3K activation
phosphorylates and activates Akt (protein kinase
B) a serine/threonine-specific protein kinase
[115]. Akt next activates mTOR (mammalian
target of rapamycin), another serine/threonine
protein kinase that controls cell growth and
proliferation via the regulation of protein syn-
thesis and transcription [116]. It is comprised of
two parts, mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2), operating as both

a downstream effector and upstream regulator of
PI3K [117].

PX-866, an oral PI3K inhibitor, in a recent
phase II study had a low overall response rate
and failed to improve progression-free survival in
patients with recurrent glioblastoma [118].
BKM-120, another oral inhibitor of PI3 kinase, is
currently under investigation in combination with
standard of care for newly diagnosed glioblas-
toma and as monotherapy in recurrent glioblas-
toma [119, 120]. Additionally, a phase II study in
recurrent glioblastoma examining the combina-
tion of BKM-120 and bevacizumab is underway
[121]. XL-147 (a potent inhibitor of PI3K) and
XL-765 (a dual PI3K and mTOR inhibitor) are
currently being investigated as monotherapy in
recurrent glioblastoma [122]. XL-765 has also
been studied in combination with temozolomide
in malignant glioma patients with no results
published yet [123]. Pictilisib (a potent inhibitor
of PI3K) and BEZ235 (a dual ATP-competitive
PI3K and mTOR inhibitor) are also currently
undergoing investigation in a phase II study of
recurrent glioblastoma [124].

Enzastaurin is a protein kinase C and
phosphoinositide-3 kinase/Akt inhibitor that
failed to improve survival in newly diag-
nosed patients with and without O(6)-
methylguanine-DNA-methyltransferase (MGMT)
promotor methylation in combination with stan-
dard of care and as a monotherapy in recurrent
glioblastoma [125–128]. Perifosine, an Akt inhi-
bitor and a PI3K inhibitor, is currently being
examined in recurrent malignant gliomas alone or
in combination with temsirolimus [129, 130].
Ipatasertib, a highly selective pan-Akt inhibitor
targeting Akt1/2/3, is also present in a phase II
study of recurrent glioblastoma [131]. Nelfinavir, a
protease inhibitor interfering with Akt activity, has
been given neo-adjuvantly and concomitant to
chemoradiotherapy with temozolomide in a phase
I/II study of patients with newly diagnosed
glioblastoma [132].

Several mTOR inhibitors have been devel-
oped over the past few years. mTOR is inhibited
by these agents forming a complex with
FK-binding protein-12 (FKBP-12) which joins to
mTOR, blocking its stimulation and constraining
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tumor cell proliferation [133]. Everolimus, an
mTOR inhibitor, has been shown to cause a
marked reduction in the volume of subependy-
mal giant cell astrocytomas and seizure fre-
quency in patients with tuberous sclerosis [134].
Unfortunately, everolimus has not displayed
durable responses as a monotherapy or when
combined with gefitinib in patients with recurrent
glioblastoma [69, 135]. Moreover, the addition
of everolimus to standard of care in newly
diagnosed glioblastoma patients did not translate
into an appreciable survival benefit [136]. Fur-
thermore, a phase II study in newly diagnosed
glioblastoma patient of concurrent radiation
therapy, temozolomide, and bevacizumab fol-
lowed by bevacizumab/everolimus as first-line
treatment failed to improve survival compared to
historical controls [137].

Temsirolimus, an mTOR inhibitor approved
for the treatment of renal cell carcinoma, likewise
has shown limited benefit in recurrent glioblas-
toma as a monotherapy or in combination with
sorafenib [46, 138, 139]. When temsirolimus was
used in a phase I study in addition to standard of
care in newly diagnosed glioblastoma, an
increased risk of infection was noted [140].

Rapamycin (sirolimus), another mTOR inhi-
bitor, has also failed to show benefit in recurrent
glioblastoma when used in combination with
vandetanib, erlotinib, or gefitinib as discussed
earlier [49, 68, 79, 80]. Additionally, a phase II
trial of rapamycin in combination with beva-
cizumab in recurrent glioblastoma patients was
stopped early due to lack of response [141].

New mTOR-specific inhibitors are in devel-
opment which can block activity of both mTOR
complexes. AZD8055, one of these dual
mTORC1/mTORC2 inhibitors, is currently in a
phase I trial in adults with recurrent gliomas
[142].

The PTEN (phosphatase and tensin homo-
logue) gene, located on chromosome 10, is a
tumor suppressor gene that negatively controls
the PI3K/AKT/PKB pathway by preventing Akt
signaling via the reduction of intracellular levels
of phosphatidylinositol-3,4,5-triphosphate [143].
PTEN mutations have been reported in up to
40% of glioblastoma [4, 144]. In addition to

inhibiting the Akt pathway, PTEN has also
demonstrated the ability to enable the degrada-
tion of activated EGFR leading to the extinction
of EGFR signaling [145]. Instigating expression
of functional PTEN has been suggested as a
potential future therapeutic approach in
glioblastoma.

RAS/MAPK Pathway

The RAS/MAPK is another downstream survival
signaling pathway stimulated by RTKs such as
EGFR and PDGFR. Ras (rat sarcoma) gene
mutations are present in a diverse group of tumor
types with varying incidence [146]. Mutations in
one of the three Ras genes (H-Ras, N-Ras, or
K-Ras) in humans transform these genes to
operating oncogenes [147]. Ras proteins have
critical functions in regulating the activity of vital
signaling pathways that control normal cellular
proliferation. Activation and deactivation of Ras
are regulated by cycling between its binding with
the active guanosine triphosphate (GTP) and
inactive guanosine diphosphate (GDP) forms
[148]. Activated Ras results in activation of a
serine/threonine kinase named Raf (rapidly
accelerated fibrosarcoma). Raf subsequently
phosphorylates and activates a kinase enzyme
MEK (mitogen/extracellular signal-regulated
Kinase) which in turn then phosphorylates and
activates MAPK (mitogen-activated protein
kinases).

Ras gene mutations have been found to only
rarely occur in glioblastoma [4]. However, acti-
vation of Ras can occur by mechanisms that do
not involve mutations in Ras. The neurofibromin
1 (NF-1) gene located on chromosomal segment
17q11.2 is a negative regulator of Ras, and loss
of NF-1 may activate Ras [149]. NF-1 mutations
have been reported in up to 18% of patients with
glioblastoma [4].

Ras is posttranscriptionally modified by far-
nesyltransferase, and in vitro studies of
glioblastoma with farnesyltransferase inhibitors
have shown reduced cellular proliferation as well
as the ability to trigger cell cycle arrest and
induce apoptosis [150]. Tipifarnib is a potent and
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selective inhibitor of farnesyltransferase that has
been examined in a phase I trial in newly diag-
nosed glioblastoma plus radiation therapy with
and without temozolomide [151]. Unfortunately,
a phase II trial of tipifarnib as a treatment for
recurrent malignant glioma did not show benefit
in 6-month progression-free survival compared
to historical controls [152]. Lonafarnib, another
farnesyltransferase inhibitor, has shown the
ability to inhibit cell growth in preclinical studies
[153, 154]. Two phase I studies have examined
lonafarnib in combination with temozolomide,
with one study in patients with malignant glioma
after radiation and the other in patients with
recurrent glioblastoma [155, 156].

Gene Expression-Based Molecular
Classification of GBM into Subtypes

Following The Cancer Genome Atlas Network
cataloging recurrent genomic abnormalities in
glioblastoma, they subsequently defined four
subtypes of glioblastoma (proneural, neural,
classical, and mesenchymal) based on gene
expression-based molecular classification [157].
Additionally, alterations and gene expression of
EGFR, NF1, and PDGFRA/IDH1 were found to
distinctly delineate the classical, mesenchymal,
and proneural subtypes, respectively [157]. These
discoveries support the supposition that certain
molecular-targeted therapies may potentially be
most effective against a segment of glioblas-
tomas. Results from a retrospective analysis of
AVAglio (a randomized, placebo-controlled
phase III trial examining the addition of beva-
cizumab to radiotherapy plus temozolomide in
newly diagnosed glioblastoma) suggest that
patients with IDH1 wild-type proneural
glioblastoma may derive an overall survival
benefit from first-line bevacizumab treatment
[158]. This finding, however, still remains to be
independently validated in future studies.

Furthermore, the classification of glioblas-
toma into unique subtypes based on genomic
expression implies that there is a propensity for
particular aberrations to group together. This
theoretically could enable particular

combinations of molecularly targeted agents to
be more successful in certain subtypes.

Discussion

Large-scale gene expression studies have
recently provided an in-depth description of the
distinct molecular and genetic alterations in
glioblastomas. This scientific progress has spur-
red an interest in the development of targeted
therapies for these signaling pathways. Unfortu-
nately, despite trying several agents and different
pathways, targeted therapies have currently failed
to improve the overall survival of glioblastoma
patients. New therapies examining novel targets
and innovative combinations are presently under
investigation (Table 9.2).

Several possible explanations have been pro-
posed on why early clinical results of molecu-
larly targeted agents in malignant glioma have
been so disappointing. These include the signif-
icant intratumoral heterogeneity, overlapping/
redundant signaling pathways, use of molecular
data from initial tumor resection as entry criteria
in trials of recurrent disease, poor drug delivery
to the brain, and unclear pharmacodynamic
effects of drugs on tumor tissue.

Tumor heterogeneity poses a significant
challenge with glioblastoma being renowned for
its intratumoral heterogeneity. Due to the
heterogenous nature of these tumors, it is possi-
ble that we may be inhibiting a distinct group of
cells susceptible to that specific targeted pathway
yet still permitting the proliferation of another
group of cells whose development is independent
of that pathway. A recent study has demonstrated
that glioblastoma subtype classifiers can variably
be expressed even across individual cells within
a tumor [159].

Additionally, these tumors appear to have the
intrinsic ability to respond to the inhibition of
one pathway by upregulating another different
pathway making a single agent unsuccessful in
stopping tumor progression. For example, the use
of EGFR inhibitors has demonstrated the lack of
ability to change downstream targets like Akt
and may even upregulate the activity of the
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PI3K/Akt pathway [160, 161]. Moreover, many
of the mutations that we are currently targeting
may be essential only for the early development
of the tumor and subsequently are superseded by
secondary pathways of tumor growth.

Another potential reason for the lack of suc-
cess with these agents may be that entry into
targeted therapy trials for recurrent disease is
often based upon molecular characteristics from
initial resection due to surgical resections at
tumor recurrence not being routinely performed.
However, it is possible that these targeted
mutations may be altered at time of recurrence
compared to initial diagnosis. A recent study in
glioblastoma found that of the tumors expressing
EGFRvIII at initial diagnosis, approximately
one-half loses their EGFRvIII expression at
tumor recurrence [162].

Additionally, with surgery at tumor recurrence
being difficult, it is often challenging to

determine how well the drugs are crossing the
blood–brain barrier. Furthermore, even if the
agent crosses into the brain, it is often uncertain
whether the drug is inhibiting its intended target
and having its envisioned effect without patho-
logical confirmation.

Numerous ways to improve the success of
targeted therapies in malignant glioma have been
propositioned and are currently underway. These
include the creation of more advanced preclinical
animal models, development of more potent
inhibitors that can affect multiple pathways, trials
with a combination of drugs designed uniquely
for each individual, identification of predictive
molecular biomarkers, and novel adaptive trial
designs.

Despite the discouraging results to date and
the above challenges, the use of targeted thera-
pies remains a promising approach that continues
to be explored in malignant glioma and will

Table 9.2 Targeted therapy for malignant gliomas in ongoing clinical trials or trails with results not yet published

Therapy Pathway Target/s

PD-0332991 RB CDK4 [10]

Ad5CMV-p53 P53 p53 [18]

Adenovirus p53 (SCH-58500) P53 p53 [19]

SGT-53 P53 p53 [21]

MK-1775 P53 Wee1 [25]

Afatanib RTK EGFR and HER2 [88, 89]

Dacomitinib RTK EGFR [90, 91]

Dasatinib RTK PDGFR, Src, Bcr-Abl, c-Kit, and EphA2 [107, 108]

Tandutinib RTK PDGFR, FLT3, and c-Kit [111, 112]

BKM-120 RTK PI3K [119–121]

XL-147 RTK PI3K [122]

XL-765 RTK PI3K and mTOR [122, 124]

Pictilisib RTK PI3K [124]

BEZ235 RTK PI3K and mTOR [122, 124]

Perifosine RTK Akt and PI3K [129, 130]

Ipatasertib RTK Akt [124]

Nelfinavir RTK Akt [132]

AZD8055 RTK mTORC1/mTORC2 [142]

Abbreviations: RB retinoblastoma, P53 tumor protein p53, RTK receptor tyrosine kinase, CDK4 cyclin-dependent
kinase 4, EGFR epidermal growth factor receptor, HER2 human epidermal growth factor receptor 2, PDGFR
platelet-derived growth factor receptor, EphA2 ephrin type-A receptor 2, FLT3 Fms-like tyrosine kinase-3, PI3K
phosphatidylinositide 3-kinases, mTOR mammalian target of rapamycin
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hopefully someday prove more beneficial for this
patient population in desperate need of more
effective treatments.
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