
Algebraic Foundations for Specification
Refinements

Pablo F. Castro1,2(B) and Nazareno Aguirre1,2

1 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ŕıo Cuarto, Córdoba, Argentina

{pcastro,naguirre}@dc.exa.unrc.edu.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

Buenos Aires, Argentina

Abstract. In this paper we present a mathematical framework tailored
for reasoning about specification/program refinements. The proposed
framework uses formal concepts coming from Institution Theory and
Category Theory, such as theories and morphisms, to capture the notion
of specification/program refinement. The main benefits of the proposed
mathematical theory are its generality and compositionality, that is, it is
based on abstract concepts that can be used to reason about refinements
in different formal settings (such as Z, B, VDM, Alloy, statecharts and
others), as well as it heavily relies upon the notion of component, thus
enabling modular reasoning over the process of specification/program
refinement.

1 Introduction

Software Verification, i.e., the rigorous evaluation of a formal specification
against a corresponding implementation, is perhaps the most widely acknowl-
edged advantage of formal specification notations over their informal counter-
parts. Still, the task of formally verifying that a system correctly implements a
specification is in general a complex task (although under certain restrictions,
it can be algorithmically decided, e.g., via model checking), since systems and
specifications are usually of a very different nature: the former are intrinsically
operational and verbose, while the latter tend to be declarative and more concise.

An alternative to verification, strongly based on formal specification, con-
sists of avoiding having to formally prove that an implementation complies with
a specification, and instead generate a correct-by-construction implementation
from a specification. Of course, this cannot be completely automated, but via
a series of small, step by step, sound refinement steps, one may transform a
declarative specification into an operational implementation complying with it.
This has an obvious impact in scalability, since the “large” problem of system
verification is modularised in a number of small sound steps, made by employing
proved-correct refinement rules.

For most formal specification languages, such as Z [29], B [1] and VDM [19],
the notion of refinement is usually a critical component. In effect, the B Method
c© Springer International Publishing AG 2016
L. Ribeiro and T. Lecomte (Eds.): SBMF 2016, LNCS 10090, pp. 112–128, 2016.
DOI: 10.1007/978-3-319-49815-7 7

Algebraic Foundations for Specification Refinements 113

provides the possibility of refining a specification, until an implementation is
reached. Each refinement step generates a set of proof obligations, whose valid-
ity guarantees the correctness of the refinement. Z does not provide a language
for refinement within the Z notation, but “external” notations can be system-
atically employed for refining Z specifications, as is described for instance in
[6,29]. In general, the approaches to refinement tend to be language/formalism
dependent, since refinement rules depend on the specification language’s con-
structs. In this work, we present an abstract categorical formulation of
refinement, allowing us to capture the essentials of refinements in model based
specification languages. Our approach, based on well known concepts from the
theory of institutions, is defined at a level of abstraction that makes it formalism-
independent, and enables us to capture what is the precise semantic relationship
that must hold between a (structured) specification and its refinements, whatever
the language these specifications and refinements correspond to. It also allows us
to distinguish the more traditional refinement based on reducing nondetermin-
ism, from an orthogonal kind of refinement, that of (abstract) state representa-
tion/implementation, and understand the relationship between them. We believe
that an important aspect of the framework presented below is that its level of gen-
erality allows one to apply refinement over heterogeneous specifications, that is,
specifications that are made using different formal languages; an example of this
is CSP-Z [12] which uses Z for producing specification of states and operations
and CSP for expressing the dynamic behavior of the systems; another important
characteristic of our approach is that it enables compositional reasoning about
refinements, that is, specifications that are structured in a collection of compo-
nents can be refined by reasoning at the component level, simplifying in this way
the task of refining.

The paper is structured as follows. In Sect. 2 we introduce the basic back-
ground assumed throughout this paper, we introduce the framework in Sects. 3
and 4, together with its properties. In Sect. 5 we present some conclusions and
further work.

2 Preliminaries

In the following we use some basic notions of category theory. A category is a
mathematical structure composed of two collections: a collection a, b, c, . . . of
objects, and a collection f , g , h, . . . of arrows (or morphisms). Every arrow has
two associated objects, its domain and codomain; we write f : a → b to indicate
that a (resp. b) is the domain (resp. codomain) of arrow f . There are two basic
operations involving arrows: the identity, that given an object a, it returns an
arrow ida : a → a, and the composition which, given arrows f : a → b and
g : b → c, returns an arrow f ; g : a → c. Arrow composition is associative;
identity arrows satisfy: f ; ida = f and idb ; f = f , for every f : a → b. A natural
example of category is Set, made up of the collection of sets and the collection
of functions between sets. A functor is essentially a homomorphism between
categories. Given a category C, we denote by |C| its collection of objects, and
by ||C|| its collection of arrows.

114 P.F. Castro and N. Aguirre

Given a category C, a bicategory [5] is composed of: (i) a collection of objects,
called 0-cells; (ii) a category C(A,B), for each pair of 0-cells A,B , whose objects
are called 1-cells and whose arrows are called 2-cells; and (iii) a (bi)functor:
� : C(A,B) × C(B ,C) → C(A,C), which satisfies some coherence properties:
it must have an identity, and it must be associative. In bicategories, there are
two kinds of arrows: the horizontal and the vertical ones. We refer the interested
reader to [3], for an introduction to category theory. We will assume throughout
the paper that the reader has some basic knowledge of category theory.

Since our main goal is to introduce the framework in an abstract language-
independent manner, we do not use a particular logic to introduce the concepts;
instead, we use the abstract setting of Institutions. It is useful to recall the
definition of Institution:

Definition 1. An institution [13] is given by: (i) a category Sign of signatures;
(ii) a functor sen : Sign → Set, that sends each signature to its set of formulas;
(iii) a functor Mod : Signop → Cat, that sends each signature to the cate-
gory of its models1; and (iv) a collection of relations �Σ (satisfaction relations
relating models of a signature to formulas of the signature), that satisfies the
following requirement: Mod(σ)(M ′) �Σ φ ⇔ M ′ �Σ sen(σ)(φ) for any formula
φ ∈ sen(Σ) and σ : Σ → Σ′.

Institutions are an abstract formulation of Model Theory. The last requirement
in Definition 1 captures the fact that truth does not depend on notation.

Example 1 (Higher Order Logic). Let us give a standard example of Institution,
Higher Order Logic (or simply HOL) is one of the basic institutions used in
computer science. Here we follow the definition given in [9]. Given a set of sorts
S , the set of types of S (denoted S) is the least set such that: S ⊆ S , if s1, s2 ∈ S
then s1 → s2. A HOL signature is a tuple (S ,F) where S is a set of sorts and
F is a set of typed constants {Fs | s ∈ S}. A morphism between signatures
σ : (S ,F) → (S ′,F ′) is a function σ : S → S ′, and a family of functions
{σs : Fs → F ′

σ∗(s) | s ∈ S}, where σ∗ is the inductive extension of σ to S . On
the other hand, models in HOL are given by interpreting each type as a set. A
model M of a signature (S ,F) maps each type s to a set Ms (mapping types of
the form s → s ′ to functions). A morphism between (S ,F) models is a collection
of functions ms : Ms → Ns , such that for any f ∈ Ms→s′ (for s, s ′ ∈ S) we have:
ms′ ◦f = ms→s′(f)◦ms . Terms of HOL are defined as usual, any f ∈ Fs is said to
be a term of type s; and t(t ′) is a term of type s2, when t is of type s1 → s2 and
t ′ is of type s. Sentences of signature (S ,F) are built up from equations by using
the usual boolean connectives and quantifiers, the functor sen : Sign → Set,
sends each signature to the sets of its sentences. It is direct to define the relation
�. The institution HOL is the tuple (SignHOL, senHOL,ModHOL,�) as defined
above.

1 Signop denotes the dual category of Sign, obtained by reversing arrows. This is so
since reducts and translations go in different directions.

Algebraic Foundations for Specification Refinements 115

A restricted version of the institution HOL is obtained by requiring signature
morphisms to preserve types. We have used this institution to capture construc-
tions coming from the Z notation [7].

Example 2 (Z Notation). We describe briefly this institution, the technical
details can be found in [7]. The institution Z = (Zign, sen,Mod ,�) is as fol-
lows. Signatures in Zign are tuples (V ,T) where V is a collection of typed
variables, and T the basic types. A morphism σ : Σ → Σ′ between signatures is
defined as in Example 1, but we require that, for any variable v , the translated
variable σ(v) has the same type as v . The functor sen is defined as in HOL, we
consider the standard mathematical operators usual in Z (see [29]), which can
be defined in HOL. The models and the � relation are the same as Example 1.

We assume the reader is familiar with the Z notation, standard references
are [26,29]. Another interesting example is the institution of communicating
sequential processes [23] (named CSP), let us introduce the basics of this formal
construction which will be useful in the rest of the paper.

Example 3 (Communicating Sequential Processes). The category of CSP signa-
tures (denoted SignCSP) has as objects tuples (A,N), where A is an alphabet
of communications, and N = (N , sort , param) contains the basic descriptions of
processes: N is a collection of process names, sort is a function indicating the
collection of possible communication in a given process (i.e., sort(p) ⊆ A); and
param, for each process, returns the collection of its parameters. A morphism
σ : (A,N) → (A′,N ′) is given by functions α : A → A′ (translating alphabets)
and ν : N → N ′ (translating processes), respectively. Obviously, some coherence
conditions are imposed over α and ν (e.g., preservation of parameters types,
etc.) the interested reader is referred to [23]. There are different ways of giving
semantics to CSP, one of them is to consider the set of possible traces of each
process, this is called the trace model, model reducts can be defined directly over
models, and model morphisms are captured as set inclusions; this gives rise to
the category ModCSP of CSP models. On the other hand, sentences are given by
standard CSP definitions by means of equations (see [15] for examples). The rela-
tion M � p(x0, . . . , xk) = P holds when the interpretation of process p refines
the set of traces defined by P2. For the sake of clarity we omit the technical
definitions here, but them can be consulted in [23].

3 A Category of Refinements

Before describing our formalization of refinement, let us we introduce the formal
vehicle we use to express system specifications. The basic notion we employ to
specify the states of a system is that of theory presentation [10].

2 In [23] this definition is stronger and the authors require that the sets of traces of
both terms have to be the same, here we focus on refinement, and since that we only
require an inclusion between the corresponding set of traces.

116 P.F. Castro and N. Aguirre

Definition 2. Given an Institution I = 〈Sign, sen,Mod ,�〉, a theory presenta-
tion S = 〈Σ,Φ〉 is made up of a signature Σ ∈ |Sign| and a set Φ ⊆ sen(Σ) of
formulas (the axioms of the theory).

Intuitively, a theory presentation is used to formally describe the states of the
system. We have used the concept of theory presentation in [7] to capture the
notion of schema employed in the Z notation; the generality of this concept allows
us to give semantics to schema calculus through categorical constructions. Note
also, that the given definition is independent of the logic used to described the
state of the system, other logics can be used, some examples are show below.
Let us give a simple example of how we can use theory presentation to express
state specifications:

Example 4. Let us give a first example of theory and morphism in an Institution.
Consider a simple specification of a memory, it can be written in the Institution
of Z specifications (Z), as follows:

Mem = (({Data,Nat}, {mem : Nat 	→ Data}), {{true}})

which contains two types Data and Nat and a term of type Nat 	→ Data, rep-
resenting a function that maps naturals to data; there is no axioms. From now
on, we write Z specifications using Z notation, that is:

Mem =̂ [Data : N; mem : N 	→ N | True]

On the other hand, a morphism between theory presentations is a translation of
symbols that preserves properties:

Definition 3. A theory morphism τ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature morphism
σ : Σ → Σ′ that satisfies the following condition: ∀ φ ∈ Φ • Φ′ � sen(σ)(φ).

Intuitively, a morphism between two specifications corresponds to two important
concepts: specification embedding, that is, putting a specification into a wider
system; and specification strengthening. Let us give an example in the Institution
CSP, as presented in Sect. 2.

Example 5. Consider the following specification of a process:

Γ0 = {VDM 1 = coin → (choc → VDM 1 | coffee → VDM 1)}
a vending machine that, after receiving a coin, serves chocolate or coffee. The
signature of this process is given by A = {coin, choc}, we have a unique process
name: VDM 1, where sort(VDM 1) = {choc, coin} and param(VDM 1) = ().
Indeed, we can devise a more restrictive version of the vending machine:

Γ1 = {VDM 2 = coin → choc → VDM 2}
where the functions sort and param are defined as above. As can be verified,
The identity translation σ : VDM 1 → VDM 2 is a morphism between these two
specifications, it represents the refinement of VDM 1 achieved by removing some
internal non-determinism.

Algebraic Foundations for Specification Refinements 117

For any institution I, it is direct to prove that specifications and morphisms
are a category (see [10] for the technical details).

Definition 4. Given an institution I = 〈Sign, sen,Mod ,�〉, PresI, is the cate-
gory composed of: 1. Theory presentations (see Definition 2) as objects, 2. Theory
morphisms (see Definition 3) as morphisms.

We just write Pres instead PresI, when I is clear by context. Given any presen-
tation s, we denote by Ax (s) its sets of axioms, and Sign(s) its signature. Note
that, for any institution, Sign : Pres → Sign is a functor.

Another important concept when constructing software specifications is that
of operation, usually operations are specified by stating their pre and post con-
ditions. In our setting, operations are also logical theories, capturing their cor-
responding pre-post relations via formulas. Consider the following diagram in
PresI (for any institution I):

Op

S

i
������

S ′

j
������

In this diagram, S is an state specification, i : S → Op is an inclusion (the
embedding of S into the operation), while S ′ (denoting the states after the
operation execution) is a theory obtained by priming the symbols in S , and
j : S ′ → Op is the embedding of S ′ into the operation specification.

Let us give an example of operation for the specification of a memory given
above.

Example 6. Given the state specification Mem the following is an operation
over it:

Write =̂ [ΔMem; a? : N; i? : Data | Mem ′ = Mem ⊕ {a 	→ d}]

Here note that ΔMem means that the signature of Mem and its axioms are
included as part of Write and similarly for Mem ′, i.e., the inclusions i : Mem →
Write and j : Mem ′ → Write are just the identity mappings.

In order to put together data domain and operation specifications, the latter
understood as the above diagrams, the concept of bicategory [5] can be used. In
effect, domain specifications (theories) correspond to 0-cells, whereas operations
are diagrams of the form S → Op ← S ′, called cospans. The morphisms between
cospans, that make the corresponding diagram commute, are the 2-cells. Cospans
are in fact one of the typical examples of bicategories, where the two classes of
arrows are the operations (horizontal arrows) and the morphisms between these
operations (vertical arrows).

Let us see how we build this construction. Given any institution I, we define
the bicategory of states and operations over I as the bicategory of cospans over
PresI (a proof that it is already a bicategory can be found in [5]).

118 P.F. Castro and N. Aguirre

Definition 5. Spec is the bicategory of I-specifications, defined as the struc-
ture composed of: (i) the set |Pres| as its set of objects; (ii) for each pair of
theory presentations S ,S ′, the category OP(S ,S ′) of cospans between S and S ′

(called 1-cells), and morphisms between cospans (called 2-cells); and (iii) the
composition between 2-cells is defined as usual by using the composition (i.e.,
pushouts) of cospans (denoted by �).

A specification is a subcategory of Spec, the subcategory generated by the
corresponding schemas and operations. We denote by Op : S ⇒ S ′ the existence
of operation Op from S to S ′, i.e., the cospan S → Op ← S ′. From now on, we
assume that Sign is an adhesive category [20]. Roughly speaking, this means
that pushouts (generalized unions) are well-behaved ; this, for example, ensures
us that Sign has nice properties that allow us to put together different parts
of a specification. Examples of adhesive categories are the categories of sets,
graphs, labelled graphs, trees, amongst others. We also assume that Sign has a
strict initial object (that is, any arrow Σ → ∅ is an isomorphism). This holds
for most logics; for instance, in propositional logic, the empty set is the initial
signature (which is strict). These basic assumptions imply, among other things,
that Sign has finite colimits; this is important since the colimit is the standard
construction to put together specifications [13].

Now, let us start dealing with the problem of refinement. Operation refine-
ment is typically understood as a kind of strengthening. As we already men-
tioned, arrows in PresI capture the concept of specification strengthening. How-
ever, these morphisms are not adequate for formalizing the notion of operation
refinement, since the strengthening associated with operations make a distinc-
tion between preconditions and postconditions: they correspond to weakening
preconditions and strengthening postconditions. First, we need to distinguish
preconditions from postconditions, thus we require that any operation Op has
to be an extension of the coproduct S + S ′ of S and S ′, that is, we assume the
following situation regarding any operation Op:

Op

S + S ′
u

��

S

i
������

��

S ′

j
������

��

and we require that the arrow u be monic, i.e., symbols from S and S ′ are
not mixed in Op. This will be useful for calculating pre and postconditions. An
essential property that we must guarantee is that, under this characterization of
operation specification, operations can be composed3. This is guaranteed by the
following Theorem.

3 Note that this is straightforward to prove for standard cospans when we have a
finitely cocomplete category.

Algebraic Foundations for Specification Refinements 119

Theorem 1. Given an institution I, if Sign : Pre → Sign is faithful, then,
given operations Op1 : S ⇒ S ′ and Op2 : S ′ ⇒ S ′′, the composition (denoted by
Op1 � Op2) exists, and is obtained by taking the colimit of the diagram composed
by solid arrows below:

Op1 � Op2

Op1

		�
�

�
S + S ′

u

���
�

Op2

�
�
�

S

��				

��

S ′

�����
		�����

S ′′

��� � � �

Proof. Since the category Pre is finitely cocomplete (Sign reflects colimits [13]),
we know that the colimit of the diagram exists. We have to prove that the arrow
u : S + S ′′ → Op1 � Op2 is mono. Since Sign is adhesive and has strict initial
elements, the injection morphisms of a coproduct are monos, i.e., the arrows
i : Op1 → Op1 +Op2 and j : Op2 → Op1 +Op2 are monos. Now, since Op1 �Op2
is a colimit, we have an arrow Op1 � Op2 → Op1 + Op2; therefore, by properties
of monic arrows, the morphisms Op1 → Op1 � Op2 and Op2 → Op1 � Op2 are
monos. That is, the arrows f : S → Op1 �Op2 and g : S ′′ → Op1 �Op2 are monos
(since they are compositions of monic arrows). Therefore, the arrow [f , g] = u
is monic (since Sign is adhesive and Sign reflects monos).

As we explained, we need to factor the precondition and postcondition from
an operation specification, to describe what a refinement is. Let us first deal
with preconditions. A precondition is a predicate prescribing for which states
an operation is correctly defined. Categorically, and given a component S , this
concept of precondition over S corresponds to an arrow pre : S → P . That is, pre
is an extension of S which characterizes the states where the precondition is true.
We require that pre preserves language; that is: Sign(pre) must be iso in Sign.
Now, preconditions can be weakened during the refinement of an operation.
This corresponds to a construction called coslice category. The coslice category
S ↓ Presop has arrows Pre : S → P as objects; its morphisms are arrows
f : pre → pre ′ that make the following diagram commute in Pre:

S
pre

����
�� pre′

���
��
�

P P ′
f

��

Notice that we used Presop , since arrows go “in the opposite direction” for
preconditions. We will denote by pre(S) the subcategory S ↓ Presop , of pre-
conditions of S . The same observations that we made for preconditions can
be extrapolated to postconditions. More precisely, a postcondition is an arrow
post : S +S ′ → Q describing the correct final states of a given operation. Notice
that, for postconditions, we include the language of the initial state (i.e., S). The
reason for this is that, in model based specification languages, it is customary to

120 P.F. Castro and N. Aguirre

often describe the “post states” in relation to the “pre states”, i.e., to describe
the transition relation of the operation as the postcondition of the operation.
Using the (inclusion) arrows i : S → S + S ′ and j : S ′ → S + S ′, we obtain the
cospan:

Q

S

i;Post
������

S ′

j ;Post
������

We require these two arrows to be extensions; furthermore, i ; post must be con-
servative (see [11] for the definition of these concepts); intuitively this means
that a postcondition does not add any restrictions on initial states.

The category S + S ′ ↓ Pres gives us the base category to reason about
postconditions of operations transforming S . We denote by post(S ′) the sub-
category of S +S ′ ↓ Pres of postconditions. Notice that, as opposed to the case
of preconditions, in this case the arrows go in the usual direction.

As we mentioned previously, in order to be able to refine operations we
need to express them as composed by preconditions postconditions. Notice that,
given a precondition pre : S → P and a postcondition: post : S + S ′ → Q of an
operation Op, we can compose these as follows:

Op

[pre, post]

u
����

P

���������
Q

���������

S

Pre
�������

��

S

Pre
�����������

j ;Post
�����������

S ′

i;Post�������

��

where [pre, post] is the colimit of the above diagram. When the (unique) arrow
u : [pre, post] → Op is conservative, we say that the operation Op : S ⇒ S ′

can be factorized in Pre : S → P and Post : S + S ′ → S ′; in this case, we
write Op as [pre, post]. The following theorem allows us to guarantee that every
operation can be factorized, and therefore to treat operations as defined by pre
and postconditions.

Theorem 2. For any given institution I, every operation in SpecI can be fac-
torized in a unique way (up to isomorphism).

Proof. Let us first prove that there is at least one factorization. Given Op :
S ⇒ S ′, suppose that S = 〈ΣS , ΦS 〉. Let us define pre : S → P, where P =
〈ΣP , i−1(ΦOp ∩ i(ΦΣS

))〉, where i : S → Op, i−1 is the usual pre image over sets
and ΦΣS

denotes the set of all formulas generated from Σ. Note that pre : S → P
is mono, since Sign reflects monos. Let us prove that it is a morphism between
presentations. If we have that φ ∈ i−1(ΦOp ∩ i(ΦΣS

)), then i(φ) ∈ ΦOp ∩ i(ΦΣS
)

but therefore ΦOp � i(Φ). Now, let us define the postcondition post : Σ+Σ′ → Q;
we define Q as 〈ΣS + ΣS ′ , j−1(ΦOp \ i(ΦPre))〉. By using the identity ΣS +

Algebraic Foundations for Specification Refinements 121

ΣS ′ → ΣS + ΣS ′ , the proof that post : Σ + Σ′ → Q is an arrow between theory
presentations is similar to that of pre. Now, we need to prove that [pre, post] is
the unique (up to isomorphism) factorization. Consider the following diagram:

Op

[Pre,Post]

f
���������

[Pre ′,Post ′]

g
���������

P

�������
x

���
�

� �
�

P ′

������������

x−1

 �
��

�
� Q

������������
y

���

� �

Q ′

�����

y−1

 �

�

�

S

��!!!!

��""""""""""""""
S

������

��###############

��$$$$

 %%%%%%%%%%%%%%%
S ′′

������

!!&&&&&&&&&&&&&&&

Let us show that there exist arrows x and y as shown above. Note that, since
Sign(pre) : Sign(S) → Sign(P), and Sign and Sign(pre ′) : Sign(S) → Sign(P ′)
are iso in Sign, we can define the following arrow x = Sign(pre)−1;Sign(pre ′) :
P → P ′. Note that we have the following diagram which commutes, since P and
P ′ are pre-conditions:

Op

P

f
��$$$$

P ′

g
""����

S

pre

��'''' pre′
��((((

The arrows (f ; pre) : P → [P ,Q] and (g ; pre ′)P ′ → [P ′,Q ′] are conservative.
Furthermore, since Sign(pre) and (pre ′) are iso, we have an arrow in Sign
x : Sign(P) → Sign(P ′) which is iso. Let us prove that this arrow is a morphism
between theory presentations: if φ ∈ P, then (f ;pre)(φ) ∈ Op. Then, since these
arrows commute (see the diagram above), we have that (g ; pre ′)(φ) ∈ Op, and
therefore (g ;pre ′)−1(φ) ∈ P ′. So, by the commutativity of the diagram above, we
get x (φ) ∈ P ′. Similarly, we can find a iso morphism y : Q → Q ′. Finally, by
properties of colimit we get that [P ,Q] and [P ′,Q ′] are isomorphic.

We are now ready to define operation refinement. Given two operations Op
and Op′, factorized as [pre, post] and [pre ′, post ′], respectively, a refinement is
composed of two arrows f and g , in the situation, involving the cospans of the
two operations, captured in the following diagram:

[pre, post]

[f ,g]
##

[pre ′, post ′]

S

$$)))))

%%

S ′

��

Arrow f is in pre(S), while arrow g is in post(S ′). According to the definitions
of these subcategories, an operation refinement is composed of a precondition

122 P.F. Castro and N. Aguirre

weakening and a postcondition strengthening, precisely as we expected. The
following result, stating that operations and operation refinements constitute
a category, is an important one: it implies that operation refinements can be
composed, an essential property for step by step refinement.

Theorem 3. Given two theories S and S ′, the collection of operations Op(S ,S ′)
between S and S ′, and refinement arrows between the corresponding factoriza-
tions, is a category, denoted by Ref(S ,S ′).

Furthermore, given factorizations [pre, post] : S → S ′ and [pre ′, post ′] : S ′ → S ′′,
we can consider the following diagram:

C

P

&&+++++++++++ Q

���
�

�
P ′

���
�

�
Q ′

'', , , , , , , , , , ,

S

pre
��������

S

pre
((������

i;post
��������

S ′

j ;post
((������

pre′ ��������
S ′

pre′((������
i′;post′ ��������

S ′′

j ′;post′��������

where C is the colimit of the base of the diagram (called cocone). Taking the
factorizations of arrows S → C and S ′′ → C , we obtain an object of Ref(S ,S ′′).
We can then define a bifunctor (composition) of factorizations � : Ref(S ,S ′) ×
Ref(S ′,S ′′) → Ref(S ,S ′′). It is not hard to see that this bifunctor satisfies the
coherence properties required for composition in bicategories (it is defined by
using colimits in a similar way that it is done in cospan categories).

Let us present an example, illustrating our above construction. We have
already introduced a specification of memories, with some operations. Consider
an additional operation, called Choose, whose purpose is to nondeterministically
choose an address, and returns the data stored in it. An implementation, or
more concrete specification, of this operation may reduce nondeterminism, for
instance by deterministically choosing a specific address to be read. A possible
implementation would be to use the minimum of the addresses, and return the
value read in it. This specification, called MinChoose, together with the more
abstract Choose, their pre/postcondition factorizations and the refinement, are
shown in the diagram below, together with the corresponding arrows. Notice
that the arrows between schemas Q and Q ′ imply that any model of Q ′ would
be a model of Q (semantic arrows go in the other direction).

Let us finally put together specifications, operations, and operation refine-
ments. Note that bicategory Pres is unsuitable to subsume refinement, since

Algebraic Foundations for Specification Refinements 123

arrows between cospans (the vertical arrows) capture the notion of specifica-
tion strengthening, not refinement. In order to deal with this issue, we define a
new class of arrows between cospans: given operations Op,Op′, with factoriza-
tions [Pre,Post] and [Pre ′,Post ′], respectively, we define the bicategory Spec
of specifications as follows.

Definition 6. The structure of specifications (called Ref) and refinements is
defined as follows:

– The collection of 0-cells is given by the collection of theory presentations.
– For each pair of theories S and S ′, we have the category Ref(S ,S ′) as defined

in Theorem3, where cospans are the 1-cells, and refinements are the 2-cells.
– The composition � : Ref(S ,S) × Ref(S ′,S ′′) → Ref(S ,S ′′) is as defined

above.

The following result shows the coherence of the above structure.

Theorem 4. Ref is a bicategory.

Proof. That Ref(S ,S ′) is a category follows from Theorem4. The key of the
proof is showing that � behaves as a composition. In order to show this, it suffices
to take the factorization of the colimit of the factorizations.

3.1 Heterogeneous Refinements

Let us give a simple example of how the framework described in the section above
can be used to combine notions of refinements coming from different formal
systems. Consider the combination of Z with CSP, this formal system can be
defined in diverse ways, we take the definition of the institution CZP (that
combines CSP with Z) specifications given in [7].

Definition 7. The institution CZP is defined as follows:

– Signatures are tuples (ΣZ , ΣCSP), where ΣZ is a Z signature, and ΣCSP is a
CSP signature, and signature morphisms are pairs of signature morphisms.

– sen is defined pointwise: sen(ΣZ , ΣCSP) = (sen(ΣZ), sen(ΣCSP)),
– Given a signature ΣCZP , a model is this signature is a subset of the set:

{〈a0, . . . , an〉, 〈I0, . . . , In+1, 〉) | 〈a0, . . . , a1〉 ∈ Mod(σZ) ∧ Ij ∈ Mod(ΣZ)},

that is collection of traces together with a set of interpretations in Z repre-
senting the state changes of the system during the given execution.

– The satisfaction relation is defined as follows: M � 〈π, φ〉 iff π1(M) � π and
for every 〈I1, . . . , In+1〉 ∈ π2(M) we have Ii � φ,

In this institution, a theory presentation is defined as follows [7]:

124 P.F. Castro and N. Aguirre

Definition 8. A theory in CZP is a tuple 〈ΣCSP , ΣZ ,S ,Ops, events, π〉, where:
1. ΣCSP = 〈A,N 〉 is a signature in CSP, 2. ΣZ is a signature in Z, 3. S is a
collection of formulas, 4. OPS = {op0 : S ⇒ S ′, . . . opn : S ⇒ S ′} is a collection
of operations over presentation 〈ΣZ ,S 〉. 5. event : A → OPS is a function
mapping events to operations, 6. π is a set of CSP processes.

Now, we can define the notion of refinement of specification in CZP:

Definition 9. Given theories presentations Pi = 〈Σi
CSP , Σi

Z ,S ,Ops i , events i ,
πi〉, for i ∈ {0, 1} a CZP refinement r : P0 → P1 is given by: 1. An arrow
z : 〈Σ0

Z ,S 0〉 → 〈Σ1
Z ,S 1〉 in PresZ, 2. An arrow p : 〈Σ0

CSP , π0〉 → 〈Σ1
CSP , π1〉 in

PresCSP, 3. A mapping i : Ops0 → Ops1, such that, for each o ∈ Ops, there are
arrows r : o → i(o) in RefZ, and the following holds: i ◦ events0 = events1 ◦ p.

Roughly speaking, a refinement in CZP is composed of refinements of processes
and refinements of schemas and operations satisfying certain coherence proper-
ties, basic properties of category theory imply that specifications and refinements
in CZP conform a category.

4 Data Refinement

We have described a category of refinements that allows us to reason about
the process of refining operations and strengthening state descriptions. Another
mechanism for refining specifications is the so-called data refinement [14]. This
form of refinement is achieved by adding details to the datatypes used in the spec-
ifications. In this way, specifications get closer to the data structures available in
programming languages. Categorically, data refinements can be characterized by
the so-called institution representations. Intuitively, a data refinement is a map-
ping between specifications that preserve basic properties. First, let us introduce
the notion of institution representation, as presented in [27].

Definition 10 (Institution representation). Let I = 〈Sign, sen,Mod , {|=Σ

}Σ∈|Sign|〉 and I ′ = 〈Sign′, sen ′,Mod ′, {|=′
Σ}Σ∈|Sign′|〉 be institutions. The

structure 〈γSign , γsen , γMod 〉 : I → I ′ is an institution representation if and
only if:

1. γSign : Sign → Sign′ is a functor,
2. γsen : sen → sen ′ ◦ γSign , is a natural transformation,
3. γMod : Mod ′ ◦ (γSign)op → Mod, is a natural transformation,

Moreover, for any Σ ∈| Sign |, the function γSen
Σ : sen(Σ) → sen ′(γSign(Σ))

and the functor γMod
Σ : Mod ′(γSign(Σ)) → Mod(Σ) preserve the following

satisfaction condition: for any α ∈ sen(Σ) and M′ ∈| Mod(γSign(Σ)) |,
M′ |=γSign (Σ) γSen

Σ (α) iff γMod
Σ (M′) |=Σ α.

An institution representation captures an embedding of a given logic in a richer
logic. Data abstractions correspond to endo institutions representations, that is,

Algebraic Foundations for Specification Refinements 125

they describe how a specification can be mapped into another one within the
same formalism.

First, let us note that given a (endo) representation map such that γMod is
epi can be extended to a endofunctor between the corresponding categories of
theory presentations.

Theorem 5. Let I be an institution, and an institution representation abs =
〈γSign , γSen , γMod 〉 : I → I, with γMod epi, then the mapping abs : Pres → Pres,
defined as follows:

– For any theory presentation 〈Σ,Ax 〉, abs(〈Σ,Ax 〉) = 〈γSign(Σ), γSen
Σ (Ax)〉

– For any theory morphism σ : 〈Σ,Ax 〉 → 〈Σ′,Ax ′〉,
abs(σ) = 〈γSign(σ),Sen(γSign(σ))〉

is a functor.

Proof. The proof is straightforward by resorting to properties of institution rep-
resentations, and the fact that abs is an endofunctor and γMod is epi.

Finally, the concept of data refinement can be formally defined using the
notion of lax functor (homomorphisms between bicategories).

Definition 11. Given specifications C0,C1 (subcategories of the bicategory
Spec) a data refinement is a lax functor a : C0 → C1 composed by:

– A mapping between the 0-cells (theory presentations), defined by an (endo)
representation map 〈γSign , γSen , γMod 〉 such that γMod is epi.

– Mappings between cospans (1-cells): fS ,S ′ : OpC0(S ,S ′) → OpC1(S ,S ′). For
any operation Op we call abs(op) its corresponding operation obtained by
applying the data refinement.

As in any lax functor, mappings fS ,S ′ are subject to some coherence laws, roughly
speaking, identity and composition must be preserved [5].

Intuitively, a data refinement is composed of a mapping between specifications
(that preserves properties) and a mapping between operations. In this case the
natural transformation γMod can be thought of as the usual abstraction function
[14]; the requirement that such mappings be surjective (epi) is standard for
abstraction mappings.

Let us now present an example of data refinement. We use the Z notation to
illustrate the above defined concepts, using an example of memories and mem-
ories with cache based on that described in [17]. A memory is, as we explained
before, simply a mapping from addresses to data. A cache memory is composed
of two memories: one smaller memory playing the role of the cache, and a main
memory. The assumption is that the cache is faster, and thus can be used to speed
up memory writing and reading. In Fig. 1 we have the specification of memories
with cache, and their operations. In that figure, we can observe two specifications
of a memory; the arrows between Memory (resp. Memory ′) and CacheMemory
(resp. Memory ′) are obtained by mapping the function data : N → Data to a

126 P.F. Castro and N. Aguirre

Fig. 1. An example of data refinement

pair of functions mdata : N → Data and cdata : N → Data. The abstraction
function in this case is obtained by the union of the two functions (see [17]).
The mappings between the corresponding operations are represented by the big
arrows between the squares.

5 Related Work and Conclusions

We have proposed an abstract, language independent, mathematical foundation
for refinements. The abstract setting that we presented was developed using well
established abstract notions of logical systems. Indeed, the notions that we used
in this formalisation have been employed to structure concurrent system spec-
ification languages and algebraic specification languages, and other formalisms
[10]; we think that one of the main benefits of this abstract framework is the
possibility of combining different refinement calculi in a simple way by resorting
to categorical constructions.

With respect to related work, various formalizations of refinement calculi
have been previously presented. Most of these are concrete, language or formal-
ism specific (e.g., [2,24,29]). In [2], there is a categorical treatment of refinement,
but is restricted to the use of categories to capture semantic domains. In [4], a
categorical framework of allegories is used to deal with program calculation, in
the functional programming sense (as opposed to our case, where we consider the
notion of state to be inherent to model based specification). In [25], an abstract
treatment of refinement is presented, using the theory of π-institutions. How-
ever, [25] does not deal with the notions of operation or component, in the sense
of component based specification, as we do in this paper. In [21], refinement is
studied in comparison with composition, in the context of action-based systems;
the treatment is categorical, but the approach is different from ours: [21] employs
a category where objects are software components, and different arrows capture

Algebraic Foundations for Specification Refinements 127

superposition and refinement between components. This work concentrates on
action refinement, and does not deal with data refinement.

Unifying Theories of Programming (UTP) [16] provides a common notion
of refinement for different programming paradigms, and it is used for providing
the semantics of heterogeneous specification languages such as Circus [28]. It is
worth noting that UTP mainly uses first-order logic and fixpoint constructions,
whereas the framework described in this paper does not depend on any partic-
ular logic, it is based on the abstract notion of logical theory; thus, it can be
employed to capture the notion of refinement in other settings, examples of this
are specification languages using higher-order logics, infinitary logics, etc.

Finally, it is worth mentioning that there exist a broad literature on struc-
turing algebraic specifications that may be applied to refinement as a particular
case. For instance, [18] describes a categorical formulation of data refinement
using lax transformations, this approach focuses on the semantics of an imper-
ative language, even though the authors propose extensions to cope with more
expressive languages. On the other hand, Institution theory has been used to
provide heterogeneous specification formalisms, for instance, those described in
[8,22], although none of them particularly deal with specification refinements.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Springer, New York (1998)
3. Barr, M., Wells, C.: Category Theory for Computer Science. Centre de Recherches

Mathématiques, Université de Montréal, Montreal (1999)
4. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River

(1997)
5. Borceux, F.: Handbook of Categorical Algebra. Basic Category Theory, Encyclo-

pedia of Mathematics and its Applications, vol. 1. Cambridge University Press,
Cambridge (1994)

6. Cavalcanti, A.L.C.: A Refinement calculus for Z. Ph.D. thesis, Oxford University
Computing Laboratory, Oxford, UK (1997)

7. Castro, P., Aguirre, N., Lopez Pombo, C., Maibaum, T.: Categorical foundations
for structured specifications in Z. Form. Asp. Comput. 27(5–6), 831–865 (2015)

8. Diaconescu, R.: Grothendieck institutions. Appl. Categ. Struct. 10(4), 383–402
(2002)

9. Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser Verlag, Basel
(2008)

10. Fiadeiro, J.: Categories for Software Engineering. Springer, Heidelberg (2004)
11. Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D.,

Tarlecki, A. (eds.) ADT 1987. LNCS, vol. 332, pp. 44–72. Springer, Heidelberg
(1988). doi:10.1007/3-540-50325-0 3

12. Fischer, C.: Combining CSP and Z. Technical report, University of Oldenburg
(1996)

13. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. J. ACM 39(1), 95–146 (1992). ACM Press

http://dx.doi.org/10.1007/3-540-50325-0_3

128 P.F. Castro and N. Aguirre

14. He, J., Hoare, C.A.R., Sanders, J.W.: Data refinement refined resume. In:
Robinet, B., Wilhelm, R. (eds.) ESOP 1986. LNCS, vol. 213, pp. 187–196.
Springer, Heidelberg (1986). doi:10.1007/3-540-16442-1 14

15. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,
Upper Saddle River (1985)

16. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science. Prentice-Hall, Upper Saddle River (1998)

17. Jackson, D.: Data Abstractions. Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

18. Johnson, M., Naumann, D., Power, J.: Category theoretic models of data refine-
ment. Electr. Notes Theor. Comput. Sci. 225, 21–38 (2009)

19. Jones, C.B.: Systematic Software Development Using VDM, 2nd edn. Prentice
Hall, New York (1990)

20. Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24727-2 20

21. Lopes, A., Fiadeiro, J.: Superposition: composition vs refinement of non-
deterministic, action-based systems. Form. Asp. Comput. 16(1), 5–18 (2004).
Springer

22. Mossakowski, T.: Heterogeneus specification and the heterogeneous tool set. Habil-
itation thesis (2005)

23. Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an insti-
tution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007). doi:10.1007/978-3-540-71998-4 6

24. Morgan, C.C.: Programming from Specifications. Prentice-Hall, Upper Saddle
River (1990)

25. Rodrigues, C., Martins, M., Madeira, A., Barbosa, L.: Refinement by interpretation
in π-institutions. In: Proceedings of the 15th International Refinement Workshop
(2011)

26. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall, Upper Saddle
River (1992)

27. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl,
O.-J. (eds.) ADT/COMPASS -1995. LNCS, vol. 1130, pp. 478–502. Springer,
Heidelberg (1996). doi:10.1007/3-540-61629-2 59

28. Woodcock, J., Cavalcanti, A.L.C.: The semantics of Circus. In: Bert, D.,
Bowen, J.P., Henson, M.C., Robinson, K. (eds.) ZB 2002. LNCS, vol. 2272, pp.
184–203. Springer, Heidelberg (2002). doi:10.1007/3-540-45648-1 10

29. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice
Hall, Upper Saddle River (1996)

http://dx.doi.org/10.1007/3-540-16442-1_14
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-71998-4_6
http://dx.doi.org/10.1007/3-540-61629-2_59
http://dx.doi.org/10.1007/3-540-45648-1_10

	Algebraic Foundations for Specification Refinements
	1 Introduction
	2 Preliminaries
	3 A Category of Refinements
	3.1 Heterogeneous Refinements

	4 Data Refinement
	5 Related Work and Conclusions
	References

