
Chapter 15
Using the KeY Prover

Wolfgang Ahrendt and Sarah Grebing

15.1 Introduction

This whole book is about the KeY approach and framework. This chapter now
focuses on the KeY prover, and that entirely from the user’s perspective. Naturally,
the graphical user interface (GUI) will play an important role here. However, the
chapter is not all about that. Via the GUI, the system and the user communicate, and
interactively manipulate, several artifacts of the framework, like formulas of the used
logic, proofs within the used calculus, elements of the used specification languages,
among others. Therefore, these artifacts are (in parts) very important when using
the system. Even if all of them have their own chapter/section in this book, they
will appear here as well, in a somewhat superficial manner, with pointers given to
in-depth discussions in other parts.

We aim at a largely self-contained presentation, allowing the reader to follow the
chapter, and to start using the KeY prover, without necessarily having to read other
chapters of the book before. The reader, however, can gain a better understanding
by following the references we give to other parts of the book. In any case, we do
recommend to read Chapter 1 beforehand, where the reader can get a picture of
what KeY is all about. The other chapters are not treated as prerequisites to this one,
which of course imposes limitations on how far we can go here. Had we built on the
knowledge and understanding provided by the other chapters, we would be able to
guide the user much further into the application of KeY to larger as well as more
difficult scenarios. However, this would raise the threshold for getting started with
the prover.

The KeY framework was designed from the beginning to be usable without having
to read a thick book first. Software verification is a difficult task anyhow. Neither
the system nor the used artifacts (like the logic) should add to that difficulty, and
are designed to instead lower the threshold for the user. The used logic, dynamic
logic (DL), features transparency w.r.t. the programs to be verified, such that the
code literally appears in the formulas, allowing the user to relate back to the program
when proving properties about it.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 495–539, 2016
DOI: 10.1007/978-3-319-49812-6 15

496 15 Using the KeY Prover

The taclet language for the declarative implementation of both, rules and lemmas,
is kept so simple that we can well use a rule’s declaration as a tooltip when the user
is about to select the rule. The calculus itself is, however, complicated, as it captures
the complicated semantics of Java. Still, most of these complications do not concern
the user, as they are handled in a fully automated way. Powerful strategies relieve
the user from tedious, time consuming tasks, particularly when performing symbolic
execution.

In spite of a high degree of automation, in many cases there are significant,
nontrivial tasks left for the user. It is the very purpose of the GUI to support those
tasks well.

Figure 15.1 Verification process using the KeY system

The general proof process using the KeY system is illustrated in Figure 15.1. The
user provides Java source code with annotations written in JML and passes them
to the KeY system, which translates these artifacts into a proof obligation in Java
Dynamic Logic. Now the user is left with the choice of trying to let the prover verify
the problem fully automatically or of starting interactively by applying calculus rules
to the proof obligation. If the user chooses to start the automated proof search strategy
offered by the prover, the result can be one of the two: either the prover succeeds
in finding a proof or the prover stops, because it was not able to apply more rules
automatically (either because the maximal number of proof steps has been reached
or the prover cannot find anymore applicable rules). This is the point in the proof
process, where the user gets involved. The user now has to decide whether to guide
the prover in finding a proof by applying certain rules (or proof steps) by hand or
whether the look for mistakes in the annotation or the corresponding source code,
which is one reason why the prover is not able to apply rules automatically anymore.
Observing a wrong program behavior or specification leads the user to the correction
of the mistake in the source code or annotation and to start the whole proof process
over again.

When proving a property which is too involved to be handled fully automatically,
certain steps need to be performed in an interactive manner. This is the case when
either the automated strategies are exhausted, or else when the user deliberately per-
forms a strategic step (like a case distinction) manually, before automated strategies

15.1. Introduction 497

are invoked (again). In the case of human-guided proof steps, the user is asked to
solve tasks like: selecting a proof rule to be applied, providing instantiations for the
proof rule’s schema variables, or providing instantiations for quantified variables of
the logic. The system, and its advanced GUI, are designed to support these steps well.
For instance, the selection of the right rule, out of over 1500(!), is greatly simplified
by allowing the user to highlight any syntactical subentity of the proof goal simply by
positioning the mouse. A dynamic context menu will offer only the few proof rules
which apply to this entity. Furthermore, these menus feature tooltips for each rule
pointed to. These tooltips will be described in 15.2.1. When it comes to interactive
variable instantiation, drag-and-drop mechanisms greatly simplify the usage of the
instantiation dialogues, and in some cases even allow to omit explicit rule selection.
Other supported forms of interaction in the context of proof construction are the
inspection of proof trees, the pruning of proof branches, and arbitrary undoing of
proof steps.

Performing interactive proof steps is, however, only one of the many functional-
ities offered by the KeY system. Also, these features play their role relatively late
in the process of verifying programs. Other functionalities are (we go backwards
in the verification process): controlling the automated strategies, customizing the
calculus (for instance by choosing either of the mathematical or the Java semantics
for integers), and generating proof obligations from specifications. Working with
the KeY system has therefore many aspects, and there are many ways to give an
introduction into those. In the following, we focus on the KeY prover only, taking an
‘inside out’ approach, describing how the prover and the user communicate which
artifacts for which purpose with each other. In addition hints for the user are provided
on how to proceed in the verification process interactively, when automation stops.

In general, we will discuss the usage of the system by means of rather (in some
cases extremely) simple examples. Thereby, we try to provide a good understanding
of the various ingredients before their combination (seemingly) complicates things.
Also, the usage of the prover will sometimes be illustrated by at first performing basic
steps manually, and demonstrating automation thereafter. Please note that the toy
examples used all over this chapter serve the purpose of a step by step introduction
of the concepts and usage of the KeY system. They are not suitable for giving any
indication of the capabilities of the system. (See Chapter 16 instead.)

Before we start, there is one last basic issue to discuss at this point. The evolution
of both, the KeY project in general, and the KeY system in particular, has been
very dynamic up to now, and will continue to be so. As far as the system and its
GUI is concerned, it has been constantly improved and will be modified in the
future as well. The author faces the difficult task of not letting the description of the
tool’s usage depend too much on its current appearance. The grouping of menus,
the visual placement of panes and tabs, the naming of operations or options, all
those can potentially change. Also, on the more conceptual level, things like the
configuration policy for strategies and rule sets, among others, cannot be assumed to
be frozen for all times. Even the theoretical grounds will develop further, as KeY is
indeed a research project. A lot of ongoing research does not yet show in the current
public release of the KeY system. The problem of describing a dynamic system

498 15 Using the KeY Prover

is approached from three sides. First, we will continue to keep available the book
release of the system, 2.6, on the KeY book’s web page. Second, in order to not
restrict the reader to that release only, we will try to minimize the dependency of
the material on the current version of the system and its GUI. Third, whenever we
talk about the specific location of a pane, tab, or menu item, or about key/mouse
combinations, we stress the dynamic nature of such information in this way.

For instance, we might say that “one can trigger the run of the automated proof
search strategy which is restricted to a highlighted term/formula by Shift + click
on it.” There is a separate document shipped with the KeY system, the Quicktour1

which is updated more often and describes the current GUI and features of the KeY
system.

Menu navigation will be displayed by connecting the cascaded menu entries with
“→”, e.g., Options → SMT Solvers Options. Note that menu navigation is release
dependent as well. Most functionalities in the KeY system can also be activated by
keystrokes in order to be more efficient while performing proof tasks.

This chapter is meant for being read with the KeY system up and running. We
want to explore the system together with the reader, and reflect on whatever shows
up along the path. Downloads of KeY, particularly 2.6, the release version related
to this book, are available on the project page, www.key-project.org. The example
input files, which the reader frequently is asked to load, can be found on the web
page for this book, www.key-project.org/thebook2. The example files can also be
accessed via the File→ Load examples as well. However, for this chapter we assume
the reader to have downloaded the example files from the web-page and extracted
them to a folder in the reader’s system.

15.2 Exploring KeY Artifacts and Prover Simultaneously

Together with the reader, we want to open, for the first time, the KeY system, in order
to perform first steps and understand the basic structure of the interface. There are
two ways to start the stand-alone KeY prover. Either you download the archive of
KeY 2.6, unpack it, and in the key directory execute the key.jar file, in the standard
way .jar files are executed in your system and setup. Or you execute KeY directly
from your browser, by navigating to the webstart link of KeY 2.6, and simply click it.

In both cases, the KeY–Prover main window pops up. Like many window-based
GUIs, the main window offers several menus, a toolbar, and a few panes, partly
tabbed. Instead of enumerating those components one after another, we immediately
load an example to demonstrate some basic interaction with the prover. Please note
that most of the GUI components are labeled with tooltips, which are visible when
hovering over that component. They give useful information about the features of the
system.

1 Available from the Download pages at www.key-project.org.

http://www.key-project.org/
http://www.key-project.org/thebook2
http://www.key-project.org/

15.2. Exploring KeY Artifacts and Prover Simultaneously 499

15.2.1 Exploring Basic Notions And Usage:
Building A Propositional Proof

In general, the KeY prover is made for proving formulas in dynamic logic (DL), an
extension of first-order logic, which in turn is an extension of propositional logic.
We start with a very simple propositional formula, when introducing the usage of the
KeY prover, because a lot of key concepts can already be discussed when proving
the most simple theorem.

Loading the First Problem

The formula we prove first is contained in the file andCommutes.key. In general,
.key is the suffix for what we call problem files, which may, among other things,
contain a formula to be proven. (The general format of .key files is documented in
Appendix B.) For now, we look into the file andCommutes.key itself (using your
favorite text editor):

KeY Problem File
\predicates {

p;
q;

}
\problem {

(p & q) -> (q & p)
}

KeY Problem File

The \problem block contains the formula to be proven (with -> denoting the logical
implication and & denoting the logical and). In general, all functions, predicates, and
variables appearing in a problem formula are to be declared beforehand, which, in our
case here, is done in the \predicates block. We load this file by selecting File→
Load (or selecting in the tool bar) and navigating through the opened file browser.
The system not only loads the selected .key file, but also the whole calculus, i.e., its
rules, as well as locations referenced by the file. This includes the source folder and
its subdirectories.

Reading the Initial Sequent

Afterwards, we see the text ==> p & q -> q & p displayed in the Current Goal
pane. This seems to be merely the \problem formula, but actually, the arrow ==>
turns it into a sequent. KeY uses a sequent calculus, meaning that sequents are the
basic artifact on which the calculus operates. Sequents have the form

φ1, . . . ,φn =⇒ φn+1, . . . ,φm

500 15 Using the KeY Prover

with φ1, . . . ,φn and φn+1, . . . ,φm being two (possibly empty) comma-separated lists of
formulas, distinguished by the sequent arrow =⇒ (written as ==> in both input and
output of the KeY system). The intuitive meaning of a sequent is: if we assume all for-
mulas φ1, . . . ,φn to hold, then at least one of the formulas φn+1, . . . ,φm holds. In our
particular calculus, the order of formulas within φ1, . . . ,φn and within φn+1, . . . ,φm
does not matter. Therefore, we can for instance write Γ =⇒ φ → ψ,∆ to refer to
sequents where any of the right-hand side formulas is an implication. Γ and ∆ are
both used to refer to arbitrary, and sometimes empty, lists of formulas. We refer to
Chapter 2, Section 2.2.2, for a proper introduction of a (simple first-order) sequent
calculus. The example used there is exactly the one we use here. We recommend to
double-check the following steps with the on paper proof given there.

We start proving the given sequent with the KeY system, however in a very
interactive manner, step by step introducing and explaining the different aspects of
the calculus and system. This purpose is really the only excuse to not let KeY prove
this automatically.

Even if we perform all steps manually for now, we want the system to minimize
interaction, e.g., by not asking the user for an instantiation if the system can find one
itself. For this, please make sure that the menu item Minimize interaction option (at
Options→ Minimize interaction) is checked for the whole course of this chapter.

Applying the First Rule

The sequent ==> p & q -> q & p displayed in the Current Goal pane states that
the formula p & q -> q & p holds unconditionally (no formula left of ==>), and
without alternatives (no other formula right of ==>). This is an often encountered
pattern for proof obligations when starting a proof: sequents with empty left-hand
sides, and only the single formula we want to prove on the right-hand side. It is
the duty of the sequent calculus to take such formulas apart, step by step, while
collecting assumptions on the left-hand side, or alternatives on the right-hand side,
until the sheer shape of a sequent makes it trivially true, which is the case when
both sides have a formula in common2. (For instance, the sequent φ1,φ2 =⇒ φ3,φ1 is
trivially true. Assuming both, φ1 and φ2, indeed implies that “at least one of φ3 and
φ1” holds, namely φ1.) It is such primitive shapes which we aim at when proving.

‘Taking apart’ a formula refers to breaking it up at its top-level operator. The
displayed formula p & q -> q & p does not anymore show the brackets of the
formula in the problem file. Still, for identifying the leading operator it is not required
to memorize the built in operator precedences. Instead, the term structure gets clear
by moving the mouse pointer back and forth over the symbols in the formula area,
as the subformula (or subterm) under the symbol currently pointed at always gets
highlighted. In general to get the whole sequent highlighted, the user needs to point
to the sequent arrow ==>. To get the whole formula highlighted in our example, the

2 There are two more cases, which are covered in Section 15.2.2 on page 513.

15.2. Exploring KeY Artifacts and Prover Simultaneously 501

user needs to point to the implication symbol ->, so this is where we can break up
the formula.

Next we want to select a rule which is meant specifically to break up an implication
on the right-hand side. A left mouse-click on -> will open a context menu for rule
selection, offering several rules applicable to this sequent, among them impRight,
which in the usual text book presentation looks like this:

impRight
Γ ,φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆

The conclusion of the rule, Γ =⇒ φ → ψ,∆ , is not simply a sequent, but a sequent
schema. In particular, φ and ψ are schema variables for formulas, to be instantiated
with the two subformulas of the implication formula appearing on the right-hand
side of the current sequent. (Γ and ∆ denote the sets of all formulas on the left- and
right-hand side, respectively, which the rule is not concerned with. In this rule, Γ

are all formulas on the left-hand side, and ∆ are all formulas on the right-hand side
except the matching implication formula.)

As for any other rule, the logical meaning of this rule is downwards (concerning
validity): if a sequent matching the premiss Γ ,φ =⇒ ψ,∆ is valid, we can conclude
that the corresponding instance of the conclusion Γ =⇒ φ → ψ,∆ is valid as well.
On the other hand, the operational meaning during proof construction goes upwards:
the problem of proving a sequent which matches Γ =⇒ φ → ψ,∆ is reduced to
the problem of proving the corresponding instance of Γ ,φ =⇒ ψ,∆ . During proof
construction, a rule is therefore applicable only to situations where the current goal
matches the rule’s conclusion. The proof will then be extended by the new sequent
resulting from the rule’s premiss. (This will be generalized to rules with multiple
premisses later on.)

To see this in action, we click at impRight in order to apply the rule to the current
goal. This produces the new sequent p & q ==> q & p, which becomes the new
current goal. By goal, we mean a sequent to which no rule is yet applied. By current
goal we mean the goal in focus, to which rules can be applied currently (the node
selected in the proof tree in the Proof tab).

Inspecting the Emerging Proof

The user may have noticed the Proof tab as part of the tabbed pane in the lower left
corner. It displays the structure of the current (unfinished) proof as a tree. All nodes
of the current proof are numbered consecutively, and labeled either by the name of
the rule which was applied to that node, or by OPEN GOAL in case of a goal. The
selected and highlighted node is always the one which is detailed in the Current Goal
or inner node pane in the right part of the window. So far, this was always a goal,
such that the pane was called Current Goal. But if the user clicks at an inner node, in
our case on the one labeled with impRight, that node gets detailed in the right pane

502 15 Using the KeY Prover

now called Inner Node. It can not only show the sequent of that node, but also, if the
checkbox Show taclet info is selected, the upcoming rule application.

Please observe that the (so far linear) proof tree displayed in the Proof tab has its
root on the top, and grows downwards, as it is common for trees displayed in GUIs.
On paper, however, the traditional way to depict sequent proofs is bottom-up, as is
done all over in this book. In that view, the structure of the current proof (with the
upper sequent being the current goal) is:

p∧q =⇒ q∧ p
=⇒ p∧q→ q∧ p

For the on-paper presentation of the proof to be developed, we refer to Chapter 2.

Understanding the First Taclet

With the inner node still highlighted in the Proof tab, we click onto the checkbox
Show taclet info (Inner Nodes only) in the left lower corner of the Proof tab. We now
obtain the rule information in the Inner Node pane, saying (simplified):

KeY Output
impRight {

\find (==> b -> c)
\replacewith (b ==> c)
\heuristics (alpha)

}
KeY Output

What we see here is what is called a taclet. Taclets are a domain specific language
for programming sequent calculus rules, developed as part of the KeY project. The
depicted taclet is the one which in the KeY system defines the rule impRight. In this
chapter, we give just a hands-on explanation of the few taclets we come across. For a
good introduction and discussion of the taclet framework, we refer to Chapter 4.

The taclet impRight corresponds to the traditional sequent calculus style presenta-
tion of impRight we gave earlier. The schema b -> c in the \find clause indicates
that the taclet is applicable to sequents if one of its formulas is an implication, with
b and c being schema variables matching the two subformulas of the implication.
Further down the Inner Node pane, we see that b and c are indeed of kind \formula:

KeY Output
\schemaVariables {

\formula b;
\formula c;

}
KeY Output

15.2. Exploring KeY Artifacts and Prover Simultaneously 503

The sequent arrow ==> in \find(==> b -> c) further restricts the applicability
of the taclet to the top-level3 of the sequent only. For this example the taclet is only
applicable to implications on the right-hand side of the sequent (as b -> c appears
right of ==>). The \replacewith clause describes how to construct the new sequent
from the current one: first the matching implication (here p & q -> q & p) gets
deleted, and then the subformulas matching b and c (here p & q and q & p) are
added to the sequent. To which side of the sequent p & q or q & p, respectively,
are added is indicated by the relative position of b and c w.r.t. ==> in the argument
of \replacewith. The result is the new sequent p & q ==> q & p. It is a very
special case here that \find(==> b -> c) matches the whole old sequent, and
\replacewith(b ==> c) matches the whole new sequent. Other formulas could
appear in the old sequent. Those would remain unchanged in the new sequent. In other
words, the Γ and ∆ traditionally appearing in on-paper presentations of sequent rules
are omitted in the taclet formalism. (Finally, with \heuristics clause the taclet
declares itself to be part of some heuristics, here the alpha heuristics which defines
the priority with which the rule is applied during the execution of the automated
strategies.) The discussed taclet is the complete definition of the impRight rule in
KeY, and all the system knows about the rule. The complete list of available taclets
can be viewed in the Info tab as part of the tabbed pane in the lower left corner,
within the Rules →Taclet Base folder. To test this, we click that folder and scroll
down the list of taclets, until impRight, on which we can click to be shown the same
taclet we have just discussed. It might feel scary to see the sheer mass of taclets
available. Please note, however, that the vast majority of taclets is never in the picture
when interactively applying a rule in any practical usage of the KeY system. Instead,
most taclets, especially those related to symbolic execution, are usually applied
automatically.

Backtracking the Proof

So far, we performed only one tiny little step in the proof. Our aim was, however,
to introduce some very basic elements of the framework and system. In fact, we
even go one step back, with the help of the system. For that, we make sure that the
OPEN GOAL is selected (by clicking on it in the Proof tab). We now undo the proof
step which led to this goal, by clicking at (Goal Back) in the task bar or using the
short cut Ctrl + Z . In this example, this action will put us back in the situation
we started in, which is confirmed by both the Current Goal pane and the Proof tab.
Please observe that Goal Back reverts always only the last rule application and not
for instance, all rules applied automatically by the proof search strategy.

3 Modulo leading updates, see Section 15.2.3.

504 15 Using the KeY Prover

Viewing and Customizing Taclet Tooltips

Before performing the next steps in our proof, we take a closer look at the tooltips
for rule selection. (The reader may already have noticed those tooltips earlier.) If
we again click at the implication symbol -> appearing in the current goal, and
preselect the impRight rule in the opened context menu simply by placing the mouse
at impRight, without clicking yet, we get to see a tooltip, displaying something similar
to the impRight taclet discussed above.

The exact tooltip text depends on option settings which the user can configure.
Depending on those settings, what is shown in the tooltip is just the taclet as is, or
a certain ‘significant’ part of it. Note that, in either case, schema variables can be
already instantiated in what is shown in tooltips, also depending on the settings. For
this chapter we control the options actively here, and discuss the respective outcome.
We open the tooltip options window by View→ ToolTip options, and make sure that all
parts of taclets are displayed by making sure the pretty-print whole taclet . . . checkbox
is checked.

The effect of a taclet to the current proof situation is captured by tooltips where
the schema variables from the \find argument are already instantiated by their
respective matching formula or term. We achieve this by setting the Maximum size . . .
of tooltips . . . with schema variable instantiations displayed . . . to, say, 40 and have the
show uninstantiated taclet checkbox unchecked. When trying the tooltip for impRight
with this, we see something like the original taclet, however with b and c already
being instantiated with p & q and q & p, respectively:

Tooltip
impRight {

\find (==> p & q -> q & p)
\replacewith (p & q ==> q & p)
\heuristics (alpha)

}
Tooltip

This instantiated taclet-tooltip tells us the following: if we clicked on the rule name,
the formula p & q -> q & p, which we \find somewhere on the right-hand side
of the sequent (see the formula’s relative position compared to ==> in the \find
argument), would be \replace(d)with the two formulas p & q and q & p, where
the former would be added to the left-hand side, and the latter to the right-hand side
of the sequent (see their relative position compared to ==> in the \replacewith
argument). Please observe that, in this particular case, where the sequent only con-
tains the matched formula, the arguments of \find and \replacewith which are
displayed in the tooltip happen to be the entire old, respectively new, sequent. This is
not the case in general. The same tooltip would show up when preselecting impRight
on the sequent: r ==> p & q -> q & p, s.

A closer look at the tooltip text in its current form, reveals that the whole \find
clause actually is redundant information for the user, as it is essentially identical with
the anyhow highlighted text within the Current Goal pane. Also, the taclet’s name is

15.2. Exploring KeY Artifacts and Prover Simultaneously 505

already clear from the preselected rule name in the context menu. On top of that, the
\heuristics clause is actually irrelevant for the interactive selection of the rule. The
only nonredundant piece of information in this case is therefore the \replacewith
clause. Accordingly, the tooltips can be reduced to the minimum which is relevant
for supporting the selection of the appropriate rule by unchecking pretty-print whole
taclet . . . option again. The whole tooltip for impRight is the one-liner:

Tooltip
\replacewith (p & q ==> q & p)

Tooltip

In general, the user might play around with different tooltip options in order to see
which settings are most helpful. However, for the course of this chapter, please open
again the View → ToolTip options again, set the “Maximum size . . . of tooltips . . .
with schema variable instantiations displayed . . . ” to 50 and check both checkboxes,
“pretty-print whole taclet . . . ” as well as “show uninstantiated taclet.” Nevertheless,
we will not print the \heuristics part of taclets in this text further on.

Splitting Up the Proof

We apply impRight and consider the new goal p & q ==> q & p. For further de-
composition we could break up the conjunctions on either sides of the sequent. By
first selecting q & p on the right-hand side, we are offered the rule andRight, among
others. The corresponding tooltip shows the following taclet:

Tooltip
andRight {

\find (==> b & c)
\replacewith (==> b);
\replacewith (==> c)

}
Tooltip

Here we see two \replacewiths, telling us that this taclet will construct two new
goals from the old one, meaning that this is a branching rule. Written as a sequent
calculus rule, it looks like this:

andRight
Γ =⇒ φ ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ψ,∆

We now generalize the earlier description of the meaning of rules, to also cover
branching rules. The logical meaning of a rule is downwards: if a certain instantiation
of the rule’s schema variables makes all premisses valid, then the corresponding
instantiation of the conclusion is valid as well. Accordingly, the operational meaning
during proof construction goes upwards. The problem of proving a goal which
matches the conclusion is reduced to the problem of proving all the (accordingly

506 15 Using the KeY Prover

instantiated) premisses. If we apply andRight in the system, the Proof tab shows the
proof branching into two different Cases. In fact, both branches feature an OPEN
GOAL. At least one of them is currently visible in the Proof tab, and highlighted to
indicate that this is the new current goal, being detailed in the Current Goal pane
as usual. The other OPEN GOAL might be hidden in the Proof tab, as the branches
not leading to the current goal appear collapsed in the Proof tab by default. A
collapsed/expanded branch can however be expanded/collapsed by clicking on / .4

If we expand the yet collapsed branch, we see the full structure of the proof, with
both OPEN GOALs being displayed. We can even switch the current goal by clicking
on any of the OPEN GOALs.5

An on-paper presentation of the current proof would look like this:

p∧q =⇒ q p∧q =⇒ p
p∧q =⇒ q∧ p

=⇒ p∧q → q∧ p

The reader might compare this presentation with the proof presented in the Proof
tab by again clicking on the different nodes (or by clicking just anywhere within the
Proof tab, and browsing the proof using the arrow keys).

There are also several other mechanisms in the KeY system which help inspecting
the current proof state. Instead of expanding/collapsing whole branches, it is also
possible to hide intermediate proof steps in the current proof tree. This can be done
by right-clicking onto the proof tree in the Proof tab and selecting the context menu
entry Hide Intermediate Proofsteps. This results in a more top-level view on the proof
tree – only branching nodes, closed and open goals are displayed. Still, some proof
trees tend to get quite large with a lot of open and closed goals. For a better overview
over the open goals, there is also an option to hide closed goals in the Proof tab. It
can be accessed similar to the Hide Intermediate Proofsteps option. The KeY system
incorporates another feature supporting the comprehension of the proof, allowing for
textual comments to the proof nodes. This feature is accessible by right clicking onto
the proof node in the proof tree and choosing the menu entry Edit Notes. A dialog
appears in which the user can enter a note which is then attached to the chosen proof
node. This note can later be read when hovering with the mouse over the chosen
proof node.

Closing the First Branch

To continue, we select OPEN GOAL p & q ==> q again. Please recall that we want
to reach a sequent where identical formulas appear on both sides (as such sequents
are trivially true). We are already very close to that, just that p & q remains to be

4 Bulk expansion, and bulk collapsing, of proof branches is offered by a context menu via right
click on any node in the Proof tab.
5 Another way of getting an overview over the open goals, and switch the current goal, is offered by
the Goals tab.

15.2. Exploring KeY Artifacts and Prover Simultaneously 507

decomposed. Clicking at & offers the rule andLeft, as usual with the tooltip showing
the taclet, here:

Tooltip
andLeft {

\find (b & c ==>)
\replacewith (b, c ==>)

}

Tooltip

which corresponds to the sequent calculus rule:

andLeft
Γ ,φ ,ψ =⇒ ∆

Γ ,φ ∧ψ =⇒ ∆

We apply this rule, and arrive at the sequent p, q ==> q . We have arrived where
we wanted to be, at a goal which is trivially true by the plain fact that one formula
appears on both sides, regardless of how that formula looks like. (Of course, the
sequents we were coming across in this example were all trivially true in an intuitive
sense, but always only because of the particular form of the involved formulas.) In
the sequent calculus, sequents of the form Γ ,φ =⇒ φ ,∆ are considered valid without
any need of further reduction.

This argument is also represented by a rule, namely:

close
∗

Γ ,φ =⇒ φ ,∆

Rules with no premiss close the branch leading to the goal they are applied to, or, as
we say in short (and a little imprecise), close the goal they are applied to.

The representation of this rule as a taclet calls for two new keywords which we
have not seen so far. One is \closegoal, having the effect that taclet application
does not produce any new goal, but instead closes the current proof branch. The
other keyword is \assumes, which is meant for expressing assumptions on formulas
other than the one matching the \find clause. Note that, so far, the applicability
of rules always depended on one formula only. The applicability of close, however,
depends on two formulas (or, more precisely, on two formula occurrences). The
second formula is taken care of by the \assumes clause in the close taclet:

Taclet
close {

\assumes (b ==>)
\find (==> b)
\closegoal

}

Taclet

508 15 Using the KeY Prover

Note that this taclet is not symmetric (as opposed to the close sequent rule given
above). To apply it interactively on our Current Goal p, q ==> q, we have to put the
right-hand side q into focus (cf. \find(==> b)). But the \assumes clause makes
the taclet applicable only in the presence of further formulas, in this case the identical
formula on the left-hand side (cf. \assumes(b ==>)).

This discussion of the close sequent rule and the corresponding close taclet shows
that taclets are more fine grained than rules. They contain more information, and
consequently there is more than one way to represent a sequent rule as a taclet. To
see another way of representing the above sequent rule close by a taclet, the reader
might click on the q on the left-hand side of p, q ==> q , and preselect the taclet
close.

The tooltip will show the taclet:

Tooltip
closeAntec {

\assumes (==> b)
\find (b ==>)
\closegoal

}

Tooltip

We, however, proceed by applying the taclet close on the right-hand side formula
q. After this step, the Proof pane tells us that the proof branch that has just been under
consideration is closed, which is indicated by that branch ending with a Closed goal
node colored green. The system has automatically changed focus to the next OPEN
GOAL, which is detailed in the Current Goal pane as the sequent p & q ==> p.

Pruning the Proof Tree

We apply andLeft to the & on the left, in the same fashion as we did on the other
branch. Afterwards, we could close the new goal p, q ==> p, but we refrain from
doing so. Instead, we compare the two branches, the closed and the open one, which
both have a node labeled with andLeft. When inspecting these two nodes again (by
simply clicking on them), we see that we broke up the same formula, the left-hand
side formula p & q, on both branches. It appears that we branched the proof too
early. Instead, we should have applied the (nonbranching) andLeft, once and for
all, before the (branching) andRight. In general it is a good strategy to delay proof
branching as much as possible and thereby avoiding double work on the different
branches. Without this strategy, more realistic examples with hundreds or thousands
of proof steps would become completely unfeasible.

In our tiny example here, it seems not to matter much, but it is instructive to
apply the late splitting also here. We want to redo the proof from the point where
we split too early. Instead of reloading the problem file, we can prune the proof at
the node labeled with andRight by right-click on that node, and selecting the context

15.2. Exploring KeY Artifacts and Prover Simultaneously 509

menu entry Prune Proof. As a result, large parts of the proof are pruned away, and the
second node, with the sequent p & q ==> q & p, becomes the Current Goal again.

Closing the First Proof

This time, we apply andLeft before we split the proof via andRight. We close the two
remaining goals, p, q ==> q and p, q ==> p by applying close to the right-hand
q and p, respectively. By closing all branches, we have actually closed the entire
proof, as we can see from the Proof closed window popping up now.

Altogether, we have proven the validity of the sequent at the root of the proof tree,
here ==> p & q -> q & p. As this sequent has only one formula, placed on the
right-hand side, we have actually proven validity of that formula p & q -> q & p,
the one stated as the \problem in the file we loaded.

Proving the Same Formula Automatically

As noted earlier, the reason for doing all the steps in the above proof manually was
that we wanted to learn about the system and the used artifacts. Of course, one would
otherwise prove such a formula automatically, which is what we do in the following.

Before loading the same problem again, we can choose whether we abandon the
current proof, or alternatively keep it in the system. Abandoning a proof would be
achieved via the main menu entry: Proof→ Abandon or the shortcut Ctrl + W . It
is however possible to keep several (finished or unfinished) proofs in the system, so
we suggest to start the new proof while keeping the old one. This will allow us to
compare the proofs more easily.

Loading the file andCommutes.key again can be done in the same fashion as
before or alternatively via the menu entry Reload, the toolbar button or the shortcut
Ctrl + R . Afterwards, we see a second ‘proof task’ being displayed in the Proofs

pane. One can even switch between the different tasks by clicking in that pane.
The newly opened proof shows the Current Goal ==> p & q -> q & p, just as last
time. For the automated proof process with KeY, we are able to set options in the
Proof Search Strategy tab. One option is the slider controlling the maximal number
of automated rule applications. It should be at least 1000, which will suffice for all
examples in this chapter.

By pressing the “Start/Stop automated proof search” button in the toolbar, we
start the automated proof search strategy. A complete proof is constructed immedi-
ately. Its shape (see Proof tab) depends heavily on the current implementation of the
proof search strategy and the use of the One Step Simplifier . One step simplification
in the KeY system means that the automated prover performs several simplification
rules applicable at once by a single rule application. One example for such a simplifi-
cation rule is the rule eq_and which simplifies the formula true & true to true.
Which rules the prover has used can be found in the proof tree in a node labeled
with One Step Simplification. This option comes in very handy when proofs tend to

510 15 Using the KeY Prover

get large. Because of the summarization of simplification rules, the proof tree is
more readable. For the following examples we assume that the One Step Simplifier
is turned off (the toolbar icon is unselected) and we point out to the reader when
to toggle it to on. However, the automatically created proof will most likely look
different from the proof we constructed interactively before. For a comparison, we
switch between the tasks in the Proofs pane.

Rewrite Rules

With the current implementation of the proof search strategy, only the first steps
of the automatically constructed proof, impRight and andLeft, are identical with the
interactively constructed proof from above, leading to the sequent p, q ==> q & p.
After that, the proof does not branch, but instead uses the rule replace_known_left:

Taclet
replace_known_left {

\assumes (b ==>)
\find (b)
\sameUpdateLevel
\replacewith (true)

}
Taclet

It has the effect that any formula (\find(b)) which has another appearance on
the left side of the sequent (\assumes(b ==>)) can be replaced by true. Note
that the \find clause does not contain ==>, and therefore does not specify where
the formula to be replaced shall appear. However, only one formula at a time gets
replaced.

Taclets with a \find clause not containing the sequent arrow ==> are called
rewrite taclets or rewrite rules. The argument of \find is a schema variable of
kind \formula or \term, matching formulas or terms, respectively, at arbitrary
positions, which may even be nested. The position can be further restricted. The
restriction \sameUpdateLevel in this taclet is however not relevant for the current
example. When we look at how the taclet was used in our proof, we see that indeed
the subformula p of the formula q & p has been rewritten to true, resulting in the
sequent p, q ==> true & p. The following rule application simplifies the true
away, after which close is applicable again.

Saving and Loading Proofs

Before we leave the discussion of the current example, we save the just accomplished
proof (admittedly for no other reason than practicing the saving of proofs). For that,
we either use the shortcut Ctrl + S , or select the main menu item File→ Save, or
the button in the toolbar. The opened file browser dialogue allows us to locate and

15.2. Exploring KeY Artifacts and Prover Simultaneously 511

name the proof file. A sensible name would be andCommutes.proof, but any name
would do, as long as the file extension is .proof. It is completely legal for a proof
file to have a different naming than the corresponding problem file. This way, it is
possible to save several proofs for the same problem. Proofs can actually be saved
regardless of whether they are finished or not. An unfinished proof can be continued
when loaded again. Loading a proof (finished or unfinished) is done in exactly the
same way as loading a problem file, with the only difference that a .proof file is
selected instead of a .key file.

15.2.2 Exploring Terms, Quantification, and Instantiation:
Building First-Order Proofs

After having looked at the basic usage of the KeY prover, we want to extend the
discussion to more advanced features of the logic. The example of the previous
section did only use propositional connectives. Here, we discuss the basic handling
of first-order formulas, containing terms, variables, quantifiers, and equality. As an
example, we prove a \problem which we load from the file projection.key:

KeY Problem File
\sorts {

s;
}
\functions {

s f(s);
s c;

}
\problem {

(\forall s x; f(f(x)) = f(x)) -> f(c) = f(f(f(c)))
}

KeY Problem File

The file declares a function f (of type s→ s) and a constant c (of sort s). The first
part of the \problem formula, \forall s x; f(f(x)) = f(x), says that f is a
projection: For all x, applying f twice is the same as applying f once. The whole
\problem formula then states that f(c) and f(f(f(c))) are equal, given f is a
projection.

Instantiating Quantified Formulas

We prove this simple formula interactively, for now. After loading the problem file,
and applying impRight to the initial sequent, the Current Goal is:
\forall s x; f(f(x)) = f(x) ==> f(c) = f(f(f(c))).

512 15 Using the KeY Prover

We proceed by deriving an additional assumption (i.e., left-hand side formula)
f(f(c)) = f(c), by instantiating x with c. For the interactive instantiation of
quantifiers, KeY supports drag and drop of terms over quantifiers (whenever the
instantiation is textually present in the current sequent). In the situation at hand, we
can drag any of the two c onto the quantifier \forall by clicking at c, holding and
moving the mouse, to release it over the \forall. As a result of this action, the new
Current Goal features the additional assumption f(f(c)) = f(c).

There is something special to this proof step: even if it was triggered interactively,
we have not been specific about which taclet to apply. The Proof pane, however, tells
us that we just applied the taclet instAll. To see the very taclet, we can click at the
previous proof node, marked with instAll. We then make sure, that the checkbox
Show taclet info (Inner Nodes only) at the bottom of the Proof tab is checked, such that
the Inner Node pane displays (simplified):

KeY Output
instAll {

\assumes (\forall u; b ==>)
\find (t)
\add ({\subst u; t}b ==>)

}
KeY Output

{\subst u; t}b means that (the match of) u is substituted by (the match of) t in
(the match of) b, during taclet application.

Making Use of Equations

We can use the equation f(f(c)) = f(c) to simplify the term f(f(f(c))), mean-
ing we apply the equation to the f(f(c)) subterm of f(f(f(c))). This action can
again be performed via drag and drop, here by dragging the equation on the left
side of the sequent, and dropping it over the f(f(c)) subterm of f(f(f(c))).6 In
the current system, there opens a context menu, allowing to select a taclet with the
display name applyEq.7

Afterwards, the right-hand side equation has changed to f(c) = f(f(c)), which
looks almost like the left-hand side equation. We can proceed either by swapping
one equation, or by again applying the left-hand side equation on a right-hand side
term. It is instructive to discuss both alternatives here.

First, we select f(c) = f(f(c)), and apply eqSymm. The resulting goal has
two identical formulas on both sides of the sequent, so we could apply close. Just to
demonstrate the other possibility, we undo the last rule application using Goal Back ,
leading us back to the Current Goal f(f(c)) = f(c),...==> f(c) = f(f(c)).

6 More detailed, we move the mouse over the “=” symbol, such that the whole of f(f(c)) = f(c)
is highlighted. We click, hold, and move the mouse, over the second “f” in f(f(f(c))), such that
exactly the subterm f(f(c)) gets highlighted. Then, we release the mouse.
7 Possibly, there are more than one offered; for our example, it does not matter which one is selected.

15.2. Exploring KeY Artifacts and Prover Simultaneously 513

The other option is to apply the left-hand equation to f(f(c)) on the right
(via drag and drop). Afterwards, we have the tautology f(c) = f(c) on the right.
By selecting that formula, we get offered the taclet eqClose, which transforms the
equation into true. (If the reader’s system does not offer eqClose in the above step,
please make sure that One Step Simplification is unchecked in the Options menu, and
try again.)

Closing ‘by True’ and ‘by False’

So far, all goals we ever closed featured identical formulas on both sides of the
sequent. We have arrived at the second type of closable sequents: one with true on
the right side. We close it by highlighting true, and selecting the taclet closeTrue,
which is defined as:

Taclet
closeTrue {

\find (==> true)
\closegoal

}

Taclet

This finishes our proof.
Without giving an example, we mention here the third type of closable sequents,

namely those with false on the left side, to be closed by:

Taclet
closeFalse {

\find (false ==>)
\closegoal

}

Taclet

This is actually a very important type of closable sequent. In many examples, a
sequent can be proven by showing that the assumptions (i.e., the left-hand side
formulas) are contradictory, meaning that false can be derived on the left side.

Using Taclet Instantiation Dialogues

In our previous proof, we used the “drag-and-drop” feature offered by the KeY prover
to instantiate schema variables needed to apply a rule. This kind of user interaction
can be seen as a shortcut to another kind of user interaction: the usage of taclet
instantiation dialogues. While the former is most convenient, the latter is more
general and should be familiar to each KeY user. Therefore, we reconstruct the (in
spirit) same proof, this time using such a dialogue explicitly.

514 15 Using the KeY Prover

After again loading the problem file projection.key, we apply impRight to
the initial sequent, just like before. Next, to instantiate the quantified formula
\forall s x; f(f(x)) = f(x), we highlight that formula, and apply the taclet
allLeft, which is defined as:

Taclet
allLeft {

\find (\forall u; b ==>)
\add ({\subst u; t}b ==>)

}

Taclet

This opens a Choose Taclet Instantiation dialogue, allowing the user to choose the
(not yet determined) instantiations of the taclet’s schema variables. The taclet at
hand has three schema variables, b, u, and t. The instantiations of b and u are
already determined to be f(f(x)) = f(x) and x, respectively, just by matching
the highlighted sequent formula \forall s x; f(f(x)) = f(x) with the \find
argument \forall u; b. The instantiation of t is, however, left open, to be chosen
by the user. We can type c in the corresponding input field of the dialogue,8 and click
Apply. As a result, the f(f(c)) = f(c) is added to the left side of the sequent. The
rest of the proof goes exactly as discussed before. The reader may finish it herself.

Skolemizing Quantified Formulas

We will now consider a slight generalization of the theorem we have just proved.
Again assuming that f is a projection, instead of showing f(c) = f(f(f(c)))
for a particular c, we show f(y) = f(f(f(y))) for all y. For this we load
generalProjection.key, and apply impRight, which results in the sequent:

KeY Output
\forall s x; f(f(x)) = f(x) ==> \forall s y; f(y) = f(f(f(y)))

KeY Output

As in the previous proof, we will have to instantiate the quantified formula on the
left. But this time we also have to deal with the quantifier on the right. Luckily, that
quantifier can be eliminated altogether, by applying the rule allRight, which results
in:9

KeY Output
\forall s x; f(f(x)) = f(x) ==> f(y_0) = f(f(f(y_0)))

KeY Output

8 Alternatively, one can also drag and drop syntactic entities from the Current Goal pane into the
input fields of such a dialogue, and possibly edit them afterwards.
9 Note that the particular name y_0 can differ.

15.2. Exploring KeY Artifacts and Prover Simultaneously 515

We see that the quantifier disappeared, and the variable y got replaced. The replace-
ment, y_0, is a constant, which we can see from the fact that y_0 is not quantified.
Note that in our logic each logical variable appears in the scope of a quantifier binding
it. Therefore, y_0 can be nothing but a constant. Moreover, y_0 is a new symbol.

Eliminating quantifiers by introducing new constants is called Skolemization (after
the logician Thoralf Skolem). In a sequent calculus, universal quantifiers (\forall)
on the right, and existential quantifiers (\exists) on the left side, can be eliminated
this way, leading to sequents which are equivalent (concerning provability), but
simpler. This should not be confused with quantifier instantiation, which applies to
the complementary cases: (\exists) on the right, and (\forall) on the left, see our
discussion of allLeft above. (It is instructive to look at all four cases in combination,
see Chapter 2, Figure 2.1.)

Skolemization is a simple proof step, and is normally done fully automatically.
We only discuss it here to give the user some understanding about new constants that
might show up during proving.

To see the taclet we have just applied, we select the inner node labeled with
allRight. The Inner Node pane reveals the taclet:

KeY Output
allRight {

\find (==> \forall u; b)
\varcond (\new(sk, \dependingOn(b)))
\replacewith (==> {\subst u; sk}b)

}
KeY Output

It tells us that the rule removes the quantifier matching \forall u;, and that (the
match of) u is \substituted by the \newly generated Skolem constant sk in the
remaining formula (matching b).

The rest of our current proof goes exactly like for the previous problem formula.
Instead of further discussing it here, we simply run the proof search strategy to
resume and close the proof.

15.2.3 Exploring Programs in Formulas:
Building Dynamic Logic Proofs

Not first-order logic, and certainly not propositional logic, is the real target of the KeY
prover. Instead, the prover is designed to handle proof obligations formulated in a
substantial extension of first-order logic, dynamic logic (DL). What is dynamic about
this logic is the notion of the world, i.e., the interpretation (of function/predicate
symbols) in which formulas (and subformulas) are evaluated. In particular, a formula
and its subformulas can be interpreted in different worlds.

The other distinguished feature of DL is that descriptions of how to construct one
world from another are explicit in the logic, in the form of programs. Accordingly, the

516 15 Using the KeY Prover

worlds represent computation states. (In the following, we take ‘state’ as a synonym
for ‘world’.) This allows us to, for instance, talk about the states both before and
after executing a certain program, within the same formula.

Compared to first-order logic, DL employs two additional (mixfix) operators: 〈 .〉 .
(diamond) and [.] . (box). In both cases, the first argument is a program, whereas the
second argument is another DL formula. With 〈p〉ϕ and [p]ϕ being DL formulas,
〈p〉 and [p] are called the modalities of the respective formula.

A formula 〈p〉ϕ is valid in a state if, from there, an execution of p terminates
normally and results in a state where ϕ is valid. As for the other operator, a formula
[p]ϕ is valid in a state from where execution of p does either not terminate normally
or results in a state where ϕ is valid.10 For our applications the diamond operator is
way more important than the box operator, so we restrict attention to that.

One frequent pattern of DL formulas is ϕ → 〈p〉ψ , stating that the program p,
when started from a state where ϕ is valid, terminates, with ψ being valid in the post
state. (Here, ϕ and ψ often are pure first-order formulas, but they can very well be
proper DL formulas, containing programs themselves.)

Each variant of DL has to commit to a formalism used to describe the programs
(i.e., the p) in the modalities. Unlike most other variants of DL, the KeY project’s
DL variant employs a real programming language, namely Java. Concretely, p is a
sequence of (zero, one, or more) Java statements. Accordingly, the logic is called
JavaDL.

The following is an example of a JavaDL formula:

x < y→ 〈t = x; x = y; y = t;〉 y < x (15.1)

It says that in each state where the program variable x has a value smaller than that
of the program variable y, the sequence of Java statements t = x; x = y; y = t;
terminates, and afterwards the value of y is smaller than that of x. It is important to
note that x and y are program variables, not to be confused with logical variables. In
our logic, there is a strict distinction between both. Logical variables must appear
in the scope of a quantifier binding them, whereas program variables cannot be
quantified over. This formula (15.1) has no quantifier because it does not contain any
logical variables.

As we will see in the following examples, both program variables and logical
variables can appear mixed in terms and formulas, also together with logical constants,
functions, and predicate symbols. However, inside the modalities, there can be
nothing but (sequents of) pure Java statements. For a more thorough discussion of
JavaDL, please refer to Chapter 3.

10 These descriptions have to be generalized when nondeterministic programs are considered, which
is not the case here.

15.2. Exploring KeY Artifacts and Prover Simultaneously 517

Feeding the Prover with a DL Problem File

The file exchange.key contains the JavaDL formula (15.1), in the concrete syntax
used in the KeY system:11

KeY Problem File
\programVariables { int x, y, t; }
\problem {

x < y
-> \<{ t=x;

x=y;
y=t;

}\> y < x
}

KeY Problem File

When comparing this syntax with the notation used in (15.1), we see that diamond
modality brackets 〈 and 〉 are written as \<{ and }\> within the KeY system. What
we can also observe from the file is that all program variables which are not de-
clared in the Java code inside the modality (like t here) must appear within a
\programVariables declaration of the file (like x and y here).

Instead of loading this file, and proving the problem, we try out other examples
first, which are meant to slowly introduce the principles of proving JavaDL formulas
with KeY.

Using the Prover as an Interpreter

We consider the file executeByProving.key:

KeY Problem File
\predicates { p(int,int); }
\programVariables { int i, j; }
\problem {

\<{ i=2;
j=(i=i+1)+4;

}\> p(i,j)
}

KeY Problem File

As the reader might guess, the \problem formula is not valid, as there are no
assumptions made about the predicate p. Anyhow, we let the system try to prove
this formula. By doing so, we will see that the KeY prover will essentially execute
our (rather obscure) program i=2; j=(i=i+1)+4;, which is possible because all

11 Here as in all .key files, line breaks and indentation do not matter other than supporting
readability.

518 15 Using the KeY Prover

values the program deals with are concrete. The execution of Java programs is of
course not the purpose of the KeY prover, but it serves us here as a first step towards
the method for handling symbolic values, symbolic execution, to be discussed later.

We load the file executeByProving.key into the system. Then, we run the
automated JavaDL strategy (by clicking the play button). The strategy stops with
==> p(3,7) being the (only) OPEN GOAL, see also the Proof tab. This means that
the proof could be closed if p(3,7) was provable, which it is not. But that is fine,
because all we wanted is letting the KeY system compute the values of i and j after
execution of i=2; j=(i=i+1)+4;. And indeed, the fact that proving p(3,7) would
be sufficient to prove the original formula tells us that 3 and 7 are the final values of
i and j.

We now want to inspect the (unfinished) proof itself. For this, we select the first
inner node, labeled with number 0:, which contains the original sequent. By using
the down-arrow key, we can scroll down the proof. The reader is encouraged to do so,
before reading on, all the way down to the OPEN GOAL, to get an impression on how
the calculus executes the Java statements at hand. This way, one can observe that one
of the main principles in building a proof for a DL formula is to perform program
transformation within the modality(s). In the current example, the complex second
assignment j=(i=i+1)+4; was transformed into a sequence of simpler assignments.
Once a leading assignment is simple enough, it moves out from the modality, into
other parts of the formula (see below). This process continues until the modality
is empty (\<{}\>). That empty modality gets eventually removed by the taclet
emptyModality.

Discovering Updates

Our next observation is that the formulas which appear in inner nodes of this proof
contain a syntactical element which is not yet covered by the above explanations of
DL. We see that already in the second inner node (number 1:), which looks like:

KeY Output
==>
{i:=2}

\<{ j=(i=i+1)+4;
}\> p(i,j)

KeY Output

The i:=2 within the curly brackets is an example of what is called updates. When
scrolling down the proof, we can see that leading assignments turn into updates
when they move out from the modality. The updates somehow accumulate, and
are simplified, in front of a “shrinking” modality. Finally, they get applied to the
remaining formula once the modality is gone.

Updates are part of the version of dynamic logic invented within the KeY project.
Their main intention is to represent the effect of some (Java) code they replace. This
effect can be accumulated, manipulated, simplified, and applied to other parts of the

15.2. Exploring KeY Artifacts and Prover Simultaneously 519

formula, in a way which is disentangled from the manipulation of the program in the
modality. This enables the calculus to perform symbolic execution in a natural way,
and has been very fruitful contribution of the KeY project. First of all, updates allow
proofs to symbolically execute programs in their natural direction, which is useful for
proof inspection and proof interaction. Moreover, the update mechanism is heavily
exploited when using the prover for other purposes, like test generation (Chapter 12),
symbolic debugging (Chapter 11), as well as various analyzes for security (Chapter
13) or runtime verification [Ahrendt et al., 2015], to name a few.

Elementary updates in essence are a restricted kind of assignment, where the
right-hand side must be a simple expression, which in particular is free of side effects.
Examples are i:=2, or i:=i + 1 (which we find further down in the proof). From
elementary updates, more complex updates can be constructed (see Definition 3.8,
Chapter 3). Here, we only mention the most important kind of compound updates,
parallel updates, an example of which is i:=3 || j:=7 further down in the proof.
Updates can further be considered as explicit substitutions that are yet to be applied.
This viewpoint will get clearer further-on.

Updates extend traditional DL in the following way: if ϕ is a DL formula and u
is an update, then {u}ϕ is also a DL formula. Note that this definition is recursive,
such that ϕ in turn may have the form {u′}ϕ ′, in which case the whole formula
looks like {u}{u′}ϕ ′. The strategies try to transform such subsequent updates into a
single parallel update. As a special case, ϕ may not contain any modality (i.e., it is
purely first-order). This situation occurs in the current proof in form of the sequent
==> {i:=3 || j:=7}p(i,j) (close to the OPEN GOAL, after the rule application
of emptyModality in the current proof). Now that the modality is gone, the update
{i:=3 || j:=7} is applied in form of a substitution, to the formula following the
update, p(i,j). The reader can follow this step when scrolling down the proof.
Altogether, this leads to a delayed turning of program assignments into substitutions
in the logic, as compared to other variants of DL (or of Hoare logic). We will return
to the generation, parallelization, and application of updates on page 524.

Employing Active Statements

We now focus on the connection between programs in modalities on the one hand,
and taclets on the other hand. For that, we load updates.key. When moving the
mouse around over the single formula of the Current Goal,
\<{ i=1;

j=3;
i=2;

}\> i = 2
we realize that, whenever the mouse points anywhere between (and including) “\<{”
and “}\>,” the whole formula gets highlighted. However, the first statement is
highlighted in a particular way, with a different color, regardless of which statement
we point to. This indicates that the system considers the first statement i=1; as the
active statement of this DL formula.

520 15 Using the KeY Prover

Active statements are a central concept of the DL calculus used in KeY. They
control the application/applicability of taclets. Also, all rules which modify the pro-
gram inside of modalities operate on the active statement, by rewriting or removing
it. Intuitively, the active statement stands for the statement to be executed next. In the
current example, this simply translates to the first statement.

We click anywhere within the modality, and preselect (only) the taclet assignment,
just to view the actual taclet presented in the tooltip:

Tooltip
assignment {

\find (
\modality{#allmodal}{ ..

#loc=#se;
... }\endmodality post

)
\replacewith (
{#loc:=#se}

\modality{#allmodal}{ }\endmodality post
)

}

Tooltip

The \find clause tells us how this taclet matches the formula at hand. First of all,
the formula must contain a modality followed by a (not further constrained) formula
post. Then, the first argument of \modality tells which kinds of modalities can
be matched by this taclets, in this case all #allmodal, including 〈.〉. in particular.
And finally, the second argument of \modality, .. #loc=#se; ... specifies the
code which this taclet matches on. The convention is that everything between “..”
and “...” matches the active statement. Here, the active statement must have the
form #loc=#se;, i.e., a statement assigning a simple expression to a location, here
i=1;. The “...” refers to the rest of the program (here j=3;i=2;), and the match
of “..” is empty, in this particular example. Having understood the \find part, the
\replacewith part tells us that the active statement moves out into an update.

After applying the taclet, we point to the active statement j=3;, and again preselect
the assignment. The taclet in the tooltip is the same, but we note that it matches the
highlighted subformula, below the leading update. We suggest to finish the proof by
pressing the play button.

The reader might wonder why we talk about active rather than first statements.
The reason is that our calculus is designed in a way such that block statements are
not normally active. By block we mean both unlabeled and labeled Java blocks, as
well as try-catch blocks. If the first statement inside the modality is a block, then the
active statement is the first statement inside that block, if that is not a block again, and
so on. This concept prevents our logic from being bloated with control information.
Instead, the calculus works inside the blocks, until the whole block can be resolved,
because it is either empty, or an abrupt termination statement is active, like break,

15.2. Exploring KeY Artifacts and Prover Simultaneously 521

continue, throw, or return. The interested reader is invited to examine this by
loading the file activeStmt.key.

Afterwards, one can see that, as a first step in the proof, one can pull out the
assignment i=0;, even if that is nested within a labeled block and a try-catch block.
We suggest to perform this first step interactively, and prove the resulting goal
automatically, for inspecting the proof afterwards.

Now we are able to round up the explanation of the “..” and “...” notation
used in DL taclets. The “..” matches the opening of leading blocks, up to the first
nonblock (i.e., active) statement, whereas “...” matches the statements following
the active statement, plus the corresponding closings of the opened blocks.12

Executing Programs Symbolically

So far, all DL examples we have been trying the prover on in this chapter had in
common that they worked with concrete values. This is very untypical, but served the
purpose of focusing on certain aspects of the logic and calculus. However, it is time
to apply the prover on problems where (some of) the values are either completely
unknown, or only constrained by formulas typically having many solutions. After
all, it is the ability of handling symbolic values which makes theorem proving more
powerful than testing. It allows us to verify a program with respect to all legitimate
input values!

First, we load the problem symbolicExecution.key:

KeY Problem File
\predicates { p(int,int); }
\functions { int c; }
\programVariables { int i, j; }
\problem {

{i:=c}
\<{ j=(i=i+1)+3;
}\> p(i,j)

}

KeY Problem File

This problem is a variation of executeByProving.key (see above), the difference
being that the initial value of i is symbolic. The c is a logical constant (i.e., a function
without arguments), and thereby represents an unknown, but fixed value in the range
of int. The update {i:=c} is necessary because it would be illegal to have an
assignment i=c; inside the modality, as c is not an element of the Java language, not
even a program variable. This is another important purpose of updates in our logic:
to serve as an interface between logical terms and program variables.

The problem is of course as unprovable as executeByProving.key. All we
want this time is to let the prover compute the symbolic values of i and j, with

12 “..” and “...” correspond to π and ω , respectively, in the rules in Chapter 3.

522 15 Using the KeY Prover

respect to c. We get those by clicking on the play button and therefore running KeY’s
proof search strategy on this problem which results in ==> p(1+c,4+c) being the
remaining OPEN GOAL. This tells us that 1+c and 4+c are the final values of i and j,
respectively. By further inspecting the proof, we can see how the strategy performed
symbolic computation (in a way which is typically very different from interactive
proof construction). That intertwined with the ‘execution by proving’ (see 15.2.3)
method discussed above forms the principle of symbolic execution, which lies at the
heart of the KeY prover.

Another example for this style of formulas is the \problem which we load from
postIncrement.key:

KeY Problem File
\functions { int c; }
\programVariables { int i; }
\problem {

{i:=c}
\<{ i=i*(i++);
}\> c * c = i

}
KeY Problem File

The validity of this formula is not completely obvious. But indeed, the obscure
assignment i=i*(i++); computes the square of the original value of i. The point
is the exact evaluation order within the assignment at hand. It is of course crucial
that the calculus emulates the evaluation order exactly as it is specified in the Java
language description by symbolic execution, and that the calculus does not allow any
other evaluation order. We prove this formula automatically here.

Quantifying over Values of Program Variables

A DL formula of the form 〈p〉ϕ , possibly preceded by updates, like {u}〈p〉ϕ , can
well be a subformula of a more complex DL formula. For instance in ψ → 〈p〉ϕ , the
diamond formula is below an implication (see also formula (15.1)). A DL subformula
can actually appear below arbitrary logical connectives, including quantifiers. The
following problem formula from quantifyProgVals.key is an example for that.

KeY Problem File
\programVariables { int i; }
\problem {

\forall int x;
{i := x}

\<{ i = i*(i++);
}\> x * x = i

}
KeY Problem File

15.2. Exploring KeY Artifacts and Prover Simultaneously 523

Please observe that it would be illegal to have an assignment i=x; inside the modality,
as x is not an element of the Java language, but rather a logical variable.

This formula literally says that, \forall initial values i, it holds that after the
assignment i contains the square of that value. Intuitively, this seems to be no
different from stating the same for an arbitrary but fixed initial value c, as we did
in postIncrement.key above. And indeed, if we load quantifyProgVals.key,
and as a first step apply the taclet allRight, then the Current Goal looks like this:

KeY Output
==>
{i:=x_0}

\<{ i=i*(i++);
}\> x_0 * x_0 = i

KeY Output

Note that x_0 cannot be a logical variable (as was x in the previous sequent), because
it is not bound by a quantifier. Instead, x_0 is a Skolem constant.

We see here that, after only one proof step, the sequent is essentially not different
from the initial sequent of postIncrement.key. This seems to indicate that quan-
tification over values of program variables is not necessary. That might be true here,
but is not the case in general. The important proof principle of induction applies to
quantified formulas only.

Proving DL Problems with Program Variables

So far, most DL \problem formulas explicitly talked about values, either concrete
ones (like 2) or symbolic ones (like the logical constant a and the logical variable x).
It is however also common to have DL formulas which do not talk about any (concrete
or symbolic) values explicitly, but instead only talk about program variables (and
thereby implicitly about their values). As an example, we use yet another variation of
the post increment problem, contained in postIncrNoUpdate.key:

KeY Problem File
\programVariables { int i, j; }
\problem {

\<{ j=i;
i=i*(i++);

}\> j * j = i
}

KeY Problem File

Here, instead of initially updating i with some symbolic value, we store the value of
i into some other program variable. The equation after the modality is a claim about
the relation between (the implicit values of) the program variables, in a state after
program execution. When proving this formula automatically with KeY, we see that

524 15 Using the KeY Prover

the proof has no real surprise as compared to the other variants of post increment.
Please observe, however, that the entire proof does not make use of any symbolic
value, and only talks about program variables, some of which are introduced within
the proof.

Demonstrating the Update Mechanism

In typical applications of the KeY prover, the user is not concerned with the update
mechanism. Still, this issue is so fundamental for the KeY approach that we want
to put the reader in the position to understand its basic principles. We do this by
running an example in a much more interactive fashion than one would ever do for
other purposes. (For a theoretical treatment, please refer to Section 3.4).

Let us reconsider the formula

x < y→ 〈t = x; x = y; y = t;〉 y < x

and (re)load the corresponding problem file, exchange.key (see above 15.2.3) into
the system. Also, we make sure that the “One Step Simplifier” button in the toolbar
is unselected such that we can illustrate the update mechanism fully transparent.

The initial Current Goal looks like this:

KeY Output
==>

x < y
-> \<{ t=x;

x=y;
y=t;

}\> y < x
KeY Output

We prove this sequent interactively, just to get a better understanding of the basic
steps usually performed by automated strategies.

We first apply the impRight rule on the single formula of the sequent. Next, the
first assignment, t=x;, is simple enough to be moved out from the modality, into
an update. We can perform this step by pointing on that assignment, and applying
the assignment rule. In the resulting sequent, that assignment got removed and the
update {t:=x}13 appeared in front of the modality. We perform the same step on the
leading assignment x=y;. Afterwards, the sequent has the two subsequent updates
{t:=x}{x:=y} leading the formula.

This is the time to illustrate a very essential step in KeY-style symbolic execution,
which is update parallelization. A formula {u1}{u2}ϕ says that ϕ is true after the
sequential execution of u1 and u2. Update parallelization transforms the sequential
steps (u1 and u2) into a single, parallel step u1 ||u′2, leading to the formula {u1 ||u′2}ϕ ,

13 Strictly speaking, the curly brackets are not part of the update, but rather surround it. It is however
handy to ignore this syntactic subtlety when discussing examples.

15.2. Exploring KeY Artifacts and Prover Simultaneously 525

where u′2 is the result simplifying {u1} u2, i.e., applying u1 to the u2. This will get
clearer by continuing our proof in slow motion.

With the mouse over the curly bracket of the leading update, we select the rule
sequentialToParallel2. (Its tooltip tells the same story as the previous sentences.) The
resulting, parallel update is {t:=x || {t:=x}x:=y}. As t does not appear on the
right side of x:=y, the parallel update can be simplified to {t:=x || x:=y}. (Paral-
lelization is trivial for independent updates.) In the system, we select {t:=x}x:=y,
and apply simplifyUpdate3. Then, by using the assignment rule a third time, we arrive
at the nested updates {t:=x || x:=y}{y:=t} (followed by the empty modality).
Parallelizing them (application of the rule sequentialToParallel2) results in the single
parallel update {t:=x || x:=y || {t:=x || x:=y}y:=t}. Applying the rule
simplifyUpdate3 simplifies the rightmost of the three updates, {t:=x || x:=y}y:=t
and removes x:=y, as it has no effect on y:=t.

Only now, when processing the resulting update {t:=x}y:=t further, we are at
the heart of the update parallelization, the moment where updates turn from delayed
substitutions to real substitutions. The reader can see that by applying the rule ap-
plyOnElementary on {t:=x}y:=t, and then applyOnPV (apply on Program Variable)
on {t:=x}t. With that, our parallel update looks like {t:=x || x:=y || y:=x}.
Its first element is not important anymore, as t does not appear in the postcondition
x < y. It can therefore be dropped (simplifyUpdate2 on the leading curly bracket).
The reader may take a moment to consider the result of symbolic execution of the
original Java program, the final update {x:=y || y:=x}. It captures the effect of
the Java code t=x;x=y;y=t; (in so far as it is relevant for remainder for the proof)
in a single, parallel step. The right-hand sides of the updates x:=y and y:=x are
evaluated in the same state, and assigned to the left-hand sides at once.

With the empty modality highlighted in the OPEN GOAL, we can apply the rule
emptyModality. It deletes that modality, and results in the sequent x < y ==> {x:=y
|| y:=x}(y < x). When viewing the (parallel) update as a substitution on the
succeeding formula, it is clear that this sequent should be true. The reader is invited
to show this interactively, by using the rules applyOnRigidFormula, simplifyUpdate1
and applyOnPV a few times, followed by close.

Let us stress again that the above demonstration serves the single purpose of
gaining insight into the update mechanism. Never ever would we apply the aforemen-
tioned rules interactively otherwise. The reader can replay the proof automatically,
with the One Step Simplifier switched on or off, respectively. In either case, the
proof is quite a bit longer than ours, due to many normalization steps which help the
automation, but compromise the readability.

Using Classes and Objects

Even though the DL problem formulas discussed so far all contained real Java code,
we did not see either of the following central Java features: classes, objects, or
method calls. The following small example features all of them. We consider the file
methodCall.key:

526 15 Using the KeY Prover

KeY Problem File (15.1)
\javaSource "methodExample/"; // location of class definitions
\programVariables { Person p; }
\problem {

\forall int x;
{p.age:=x} // assign initial value to "age"
(x >= 0
-> \<{ p.birthday();

}\> p.age > x)
}

KeY Problem File

The \javaSource declaration tells the prover where to look up the sources of classes
and interfaces used in the file. In particular, the Java source file Person.java is
contained in the directory methodExample/. The \problem formula states that a
Person is getting older at its birthday(). As a side note, this is an example where
an update does not immediately precede a modality, but a more general DL formula.

Before loading this problem file, we look at the source file Person.java in
methodExample/:

Java
public class Person {

private int age = 0;
public void setAge(int newAge) { this.age = newAge; }
public void birthday() { if (age >= 0) age++; }

}
Java

When loading the file into the KeY system, the reader may recognize a difference
between the proof obligation given in the problem file and the initial proof obligation
in the KeY system:

KeY Output (15.2)
==>
\forall int x;
{heap:=heap[p.age := x]}

(x >= 0
-> \<{ p.birthday();

}\> p.age > x)
KeY Output

Note that, in the display of the prover, the update {p.age:=x} from the problem
file is now written as {heap:=heap[p.age := x]}. Both updates are no different;
the first is an abbreviation of the second, using a syntax which is more familiar
to programmers. The expanded version, however, reveals the fact that this update,
whether abbreviated or not, changes the value of a variable named heap. We explain
this in the following, thereby introducing the representation of object states in KeY.

15.2. Exploring KeY Artifacts and Prover Simultaneously 527

In the context of object-oriented programming, the set of all objects—including
their internal state—is often referred to as the heap. This is an implicit data structure,
in so far as it cannot be directly accessed by the programmer. Instead, it is implicitly
given via the creation and manipulation of individual objects. However, in KeY’s
dynamic logic, the heap is an explicit data structure, and is stored in a variable called
heap (or a variant of that name).14 For the sake of clarity, we first discuss the abstract
data type of heaps in a classical algebraic notation, before turning to KeY’s concrete
syntax shortly. Let us assume two functions store and select with the following type
signature:

store : Heap×Object×Field×Any→ Heap

select : Heap×Object×Field→ Any

store models the writing of a value (of Any type) to a given field of a given object,
in a given heap. The result is a new heap. The function select looks up the value of
a given field of a given object, in a given heap. The following axioms describe the
interplay of store and select.

select(store(h,o, f ,x),o, f) .= x

f 6= f ′∨o 6= o′ → select(store(h,o, f ,x),o′, f ′) .= select(h,o′, f ′)

Please observe that we deliberately simplified these axioms for presentation. The
real formalization has to distinguish select functions for different field types, has to
check type conformance of x, and take special care of object creation. Please refer to
Section 2.4.3 for a full account on this.

However, in the user interface of the KeY system, the above notation would give
unreadable output for real examples. In particular, we would get deeply nested store
terms during symbolic execution of a program (with one store per assignment to a
field). Therefore, KeY uses the following, shorter syntax. Instead of store(h,o, f ,x),
we write h[o.f:=x], denoting a heap which is identical to h everywhere but at o.f,
whose value is x. With that, a nested store like store(store(h,o1, f 1,x1),o2, f 2,x2)
becomes h[o1.f1:=x1][o2.f2:=x2], presenting the heap operations in their natu-
ral order. The select operation is also abbreviated. Instead of select(h,o, f), we write
o.f@h, denoting the access to o.f in heap h. With that, the above axioms become

o.f@h[o.f:=x] = x (15.2)

f 6= f’∨o 6= o’ → o’.f’@h[o.f:=x] = o’.f’@h (15.3)

Please note that the symbol := in h[o.f:=x] does not denote an update. Instead,
it is part of the mix-fix presentation ␣[␣.␣:=␣] of store. In particular, h[o.f:=x]
does not, in itself, change h. Instead, it constructs a new heap that is (in most cases)
different from h. An actual change to h has to be done extra, in an update like

14 The object representation described here is implemented in KeY 2.0 onward, and significantly
differs from the earlier object representation which was described in the first book about KeY
[Beckert et al., 2007].

528 15 Using the KeY Prover

h := h[o.f:=x]. Only after that, h has a new value, given by applying store to the
old value of h.

In proofs, during symbolic execution, KeY uses largely a specific heap variable
called exactly heap, which is constantly modified in updates (resulting from assign-
ments). There are some exceptions, however, where a proof node talks about more
than one heap, for instance to distinguish the heap before and after execution of
a method call. But as the one variable called heap dominates the picture, special
shorthand notations are offered for this case. The select expression o.f@heap can be
abbreviated by o.f, and the update heap := heap[o.f:=x] can be abbreviated by
o.f:=x. Note that these abbreviations only apply to the single variable called exactly
heap, not otherwise.

After this excursion on heap manipulation and presentation, let us look back to
the KeY problem file methodCall.key, and KeY’s presentation after loading the
problem, see (15.2 from above). We now know that, in methodCall.key, the up-
date p.age:=x abbreviates heap := heap[p.age:=x], and that the postcondition
p.age > x abbreviates p.age@heap > x. The first abbreviation was immediately
expanded by KeY when loading the file, whereas the second one will be expanded
later-on during the proof.

Calling Methods in Proofs

We now want to have a closer look at the way KeY handles method calls. We make
sure that methodCall.key is (still) loaded and set the option Arithmetic treatment in
the Proof Search Strategy tab to Basic and the option Method treatment to Contract or
Expand. The reader is encouraged to reflect on the validity of the problem formula a
little, before reading on.—Ready?—Luckily, we have a prover at hand to be certain,
so we press the play button.

The strategy stops with the a number of OPEN GOALs, one of them being
p = null, x_0 >= 0 ==> 15. There are different ways to read this goal, which
however are logically equivalent. One way of proving any sequent is to show that
its left-hand side is false. Here, it would be sufficient to show that p = null is
false. An alternative viewpoint is the following: in a sequent calculus, we always
get a logically equivalent sequent by throwing any formula to the respective other
side, but negated. Therefore, we can as well read the OPEN GOAL as if it was
x_0 >= 0 ==> p != null. Then, it would be sufficient to show that p != null
is true.

Whichever reading we choose, we cannot prove the sequent, because we have no
knowledge whatsoever about p being null or not. When looking back to our problem
formula, we see that indeed the formula is not valid, because the case where p is
null was forgotten. The postcondition p.age > x depends on the method body of
birthday() being executed, which it cannot in case p is null. Interpreting the Proof
pane leads to the same reading. The first split, triggered by the taclet methodCall,

15 Note that the particular index of the name x_0 can differ.

15.2. Exploring KeY Artifacts and Prover Simultaneously 529

leads to two unclosed proof branches. The shorter one, marked as Null Reference (p =
null), leads immediately to an OPEN GOAL where the strategy gets stuck.

The file methodCall2.key contains the patch of the problem formula. The
problem formula from above is preceded by p != null ->. We load that problem,
and let KeY prove it automatically without problems.

We now look at the first split in the proof (and click on the node before the split).
Like in the previous proof, the first split was triggered by the taclet methodCall. Then,
in the branch marked as Normal Execution (p != null), the first inner node looks like
this:

KeY Output (15.3)
x_0 >= 0
==>
p = null,
{heap:=heap[p.age:=x_0]}

\<{ p.birthday()@Person;
}\> p.age >= 1 + x_0

KeY Output

We should not let confuse ourselves by p = null being present here. Recall that
the comma on the right-hand side of a sequent essentially is a logical or. Also, as
stated above, we can always imagine a formula being thrown to the other side of the
sequent, but negated. Therefore, we essentially have p != null as an assumption
here. Another thing to comment on is the @Person notation in the method call. It
represents that the calculus has decided which implementation of birthday is to be
chosen (which, in the presence of inheritance and hiding, can be less trivial than here,
see Section 3.7.1).

At this point, the strategy was ready to apply methodBodyExpand.16 After that,
the code inside the modality looks like this:
method-frame(source=birthday()@Person,this=p): {

if (this.age >= 0) {
this.age++;

}
}

This method-frame is the only really substantial extension over Java which our
logic allows inside modalities. It models the execution stack, and can appear nested
in case of nested method calls. Apart from the class and the this reference, it can
also specify a return variable, in case of nonvoid methods. However, the user is
rarely concerned with this construction, and if so, only passively. We will not discuss
this construct further here, but refer to Section 3.6.5 instead. One interesting thing
to note here, however, is that method frames are considered as block statements in
the sense of our earlier discussion of active statements, meaning that method frames
are never active. For our sequent at hand, this means that the active statement is

16 This is the case even if Method treatment was chosen to be Contract instead of Expand. If
no contract is available, the Contract strategy will still expand the method body.

530 15 Using the KeY Prover

if (this.age>=0) {this.age++;}. The rule methodBodyExpand has also intro-
duced the update heapBefore_birthday:=heap. This is necessary because, in
general, the formula succeeding the modality may refer to values that were stored in
the heap at the beginning of the method call. (An example for that is presented in
Section 15.3.) However, in the current proof, this update is simplified away in the
next step, because in the formula following the modality, there is no reference to
values in the heap from before calling the method.

Controlling Strategy Settings

The expansion of methods is among the more problematic steps in program verifica-
tion (together with the handling of loops). In place of recursion, an automated proof
strategy working with method expansion might not even terminate. Another issue is
that method expansion goes against the principle of modular verification, without
which even midsize examples become infeasible to verify. These are good reasons
for giving the user more control over this crucial proof step.

KeY therefore allows the user to configure the automated strategies such that
they refrain from expanding methods automatically.17 We try this out by loading
methodCall2.key again, and selecting None as the Method treatment option in the
Proof Search Strategy tab. Then we start the strategy, which now stops exactly at
the sequent which we discussed earlier (Figure 15.3). We can highlight the active
statement, apply first the taclet methodCall. After this step we could call method-
BodyExpand interactively. KeY would then only apply this very taclet, and stop
again.

Controlling Taclet Options

We draw out attention back to the proof of methodCall2.key. This proof has a
branch for the null case (Null Reference (p=null)), but that was closed after a few
steps, as p = null is already present, explicitly, on the right side of the sequent
(close). It is, however, untypical that absence of null references can be derived so
easily. Often, the “null branches” complicate proofs substantially.

In the KeY system the handling of null references and other runtime exceptions
can be adjusted by setting taclet options We open the taclet option dialogue, via the
main menu Options → Taclet options. Among the option categories, we select the
runtimeExceptions, observe that ban is chosen as default, and change that by selecting
allow instead. Even if the effect of this change on our very example is modest, we
try it out, to see what happens in principle.18. We then load methodCall.key and
push the play button. The proof search strategy stops with two open goals in the Null
Reference (p = null) branch. Allowing runtime exceptions in the KeY system results

17 For a discussion of loop treatment, please refer to Chapter 3 and Section 16.3.
18 Please note that changing back to default settings of KeY can be enforced by deleting the .key
directory in the user’s home directory and restarting KeY.

15.2. Exploring KeY Artifacts and Prover Simultaneously 531

in the treatment of these exceptions as specified in the Java language specification,
i.e., that exceptions are thrown if necessary and have to be considered. KeY is able
to not only consider explicit exceptions, such as throwing exceptions “by-hand,” it
is also able to map the behavior of the JVM, i.e., to treat implicit exceptions. The
proof tree branches at the point where the strategy reaches the method call p.birthday
in the modality. The branching of the proof tree results from the taclet methodCall.
One branch deals with the case, that the object on which the method is called is
nonnull and the other branch deals with the case that the object is null. Depending
on the setting of the taclet option runtimeException the null branch representing the
exceptional case in the proof looks different. At the moment we have set the option
for runtime exceptions to allow. Therefore, in the null branch the method call in
the modality is replaced by throw new java.lang.NullPointerException ().
So an exception is instantiated and thrown which allows the verified code to catch it
and to continue execution in the exceptional case. In this case the exception has to be
symbolically executed and it has to be proven that the postcondition also holds after
the exception had occurred in the program.

Loading the same file with setting the option runtimeException to ban results in a
proof stopping in the null-branch as well. If the user bans runtime exceptions in the
KeY system, KeY treats any occurrence of a runtime exception as an irrecoverable
program failure. The reader can reproduce this by comparing the node before the
branching of the proof—into Null Reference (p=null) and Normal Execution (p!=null)—
and the nodes after the split. In the node after the split the modality and the formula
succeeding the modality (postcondition) in the succedent is fully replaced by false.
This means that the program fails and therefore the postcondition will be false. If
the succedent has more formulas than the modality and the postcondition, it is still
possible to close the proof with the remaining parts of the sequent (in our case the
context). The formula is replaced by false for two reasons. The first reason is that
we do not want to take the runtime exceptions into account, therefore we replace
the modality as well as the postcondition by false. Now the prover can not consider
the case of an exception in a modality like it is the case in the option set to allow.
Secondly, it makes the verification easier because the user and the prover do not
have to deal with the symbolic execution of the implicit exception. For the remaining
examples we switch the option runtimeException to ban.

We briefly mention another very important taclet option, the intRules. Here, the
user can choose between different semantics of the primitive Java integer types byte,
short, int, long, and char. The options are: the mathematical integers (easy to use,
but not fully sound), mathematical integers with overflow check (sound, reasonably
easy to use, but unable to verify programs which depend on Java’s modulo semantics),
and the true modulo semantics of Java integers (sound, complete, but difficult to
use). This book contains a separate section on Java integers (Section 5.4), discussing
the different variants in the semantics and the calculus. Please note that KeY 2.6
comes with the mathematical integer semantics chosen as default option, to optimize
usability for beginners. However, for a sound treatment of integers, the user should
switch to either of the other semantics.

532 15 Using the KeY Prover

15.3 Understanding Proof Situations

We have so far used simple toy examples to introduce the KeY system to the reader.
However, the application area of the KeY system is verification of real-world Java
programs, which are specified using the Java Modeling Language (JML). Proving the
correctness of larger programs with respect to their specification can be a nontrivial
task. s In spite of a high degree of automation, performing the remaining interactive
steps can become quite complex for the user.

In this section we give some hints for where to search for the necessary informa-
tion, and how to proceed the verification process.

We will introduce these hints on an example which will be described in more
detail in Chapter 16.

There are several potential reasons why the automated strategy stops in a state
where the proof is still open.

We first start with a simple case: the number of proof steps (adjustable in the slider
in the Proof Search Strategy pane) is reached. In this case, one may simply restart the
automated strategy by pressing the play button in the toolbar again and let the prover
continue with the proof search. Or alternatively, first increase the number of maximal
rule applications in the slider and then restart the strategy to try to continue with the
automated proof search. This can already lead to a closed proof.

However, if incrementing the number of proof steps does not lead to a successful
proof, one of the following reasons may be responsible for the automated strategy to
stop:

• there is a bug in the specification, e.g., an insufficient precondition,
• there is a bug in the program
• the automated proof search fails to find a proof and

– (some) rule applications have to be done manually,
– or automated strategies have to be adjusted,
– or both.

In the first two cases there is a mismatch between the source code and the specifi-
cation, and the automated proof search strategy is not able to find a proof because
there is none. Here the user has to review the source code and the specification in
order to fix the bug.

In the third case we are limited by the proof complexity of dynamic logic. Here
the user has to guide the prover by providing the right information, e.g., instantiations
of quantifiers, such that the prover can carry on.

We cannot give a nostrum that would allow the user to decide which of the
three cases is responsible for the prover to stop. (In fact, this case distinction is
undecidable.) We rather reach a point in the interactive proof process where the
user may have to understand aspects of the open goal in order to provide the right
information or to identify mistakes in the program or in the specification. In the
following, we give some hints for the comprehension of open goals.

15.3. Understanding Proof Situations 533

The first step in understanding what happened during the proof process is to have a
look at the proof tree. The user should start at the original proof obligation and follow
the proof tree to the open goal(s). The labels at the nodes in the proof tree already
give good hints what happened. The user may first draw the attention to the labels
which are highlighted light-blue. These indicate the nodes where taclets have been
applied that perform symbolic execution. Here the user gets an impression which
point in the control flow of the program is presented in the open goal. Moreover,
looking at branching points in the proof tree can give very useful insights. Looking
closer into the node before the proof branches may give good hints about what is
(supposed to be) proven in either of the branches.

Recall the example dealing with a method call (methodCall.key, KeY Problem
File (15.1), page 526), where the proof splits into two branches: the case where the
object on which the method is called is assumed to be not null (p!=null on the left
side of the sequent, or, equivalently, p=null on the right side of the sequent) and the
case where the object is assumed to be null (p = null on the left side of the sequent).
The labels as well as the taclet applied to the node directly before the proof split
give the information what has to be proven (i.e., in the mentioned example that the
postcondition holds in both cases, p being null and p being not null).

The next step in understanding the proof situation is to take a closer look at the
sequent of an open goal. First of all the sequent consists of a number of formulas.
Depending on the progress of the symbolic execution of the program during proof
construction and the original formula, there will also be a formula containing a modal
operator and Java statements.

A good strategy is to first finish the symbolic execution of the program by letting
the prover continue with the proof search on the branch with the open goal, such
that the modality is removed from the sequent. This strategy is also implemented
in the KeY system as so called macro proof step, which basically is a collection of
proof steps and strategies and accessible by right-clicking onto the sequent arrow
and selecting the context menu entry Auto Pilot→ Finish Symbolic Execution.

If this task is successful, we are often left with a formula in pure first-order logic
of which the validity has to be shown. However, this strategy does not always succeed.
If the user is left with a sequent still containing a modal operator, the reader should
be aware that the sequent remains in the prestate. This means that all formulas in
the sequent refer to the state before executing the program. (But please observe that
subformulas, following updates or modalities, are evaluated in different states.)

When directly looking at the sequent of an open goal the user should also keep in
mind the intuitive meaning of sequents: the left-hand side of the sequent is assumed
and one of the right-hand side formulas has to be proven. As a special case, a sequent
is valid if the left-hand side is contradictory, which may have to be exhibited by
further proof steps.

The user should also keep in mind that Γ ⇒ o = null,∆ is equivalent to Γ ,o 6=
null⇒ ∆ . This means that, instead of intuitively trying to prove o = null or ∆ , we
can think of proving ∆ under the assumption o 6= null, which is effectively the same.
The reader may again recall an example from methodCall.key, where this was
discussed earlier.

534 15 Using the KeY Prover

When the user is left with a pure first-order logic formula, it may be the case that
parts of the invariants or the postcondition can not be proven. To identify those parts,
there is a strategy which in many cases helps to get further insights. This strategy is
also implemented as proof macro Full Auto Pilot and it is accessible by right-clicking
onto the sequent arrow and selecting the context menu entry Auto Pilot→ Full Auto
Pilot. We will first describe how this method basically works and apply this method
to an example afterwards.

After exhausting the automated strategy, the reader should split the proof interac-
tively doing case distinctions of each conjunct of the postcondition using for example
the taclet andRight or the cut rule. (This can also be achieved by using the proof
macro Propositional→ Propositional Expansions w splits.) After this case distinction
each branch contains only one conjunct of the postcondition. Now the user should try
to close each branch separately by either using the automated proof search strategy
on each open goal or by applying the proof macro Close provable goals below to the
node before the splits (right-clicking onto the node in the Proof pane in the proof tree
and selecting the proof macro) The branches which do not close may not be provable
and give hints on which part of the postcondition might be problematic.

For this we load the file PostIncMod.java, which is a slightly modified version
of the first example in Chapter 16. For demonstration purposes we have incorporated
a little mistake in the code or its specifications. For a detailed description of the
example we point the reader to Chapter 16.

Java + JML
public class PostIncMod{

public PostIncMod rec;
public int x,y;

/*@ public invariant rec.x >= 0 && rec.y>= 0; @*/

/*@ public normal_behavior
@ requires true;
@ ensures rec.x == \old(rec.y)+1 && rec.y == \old(rec.y)+1;
@*/

public void postInc(){
rec.x = rec.y++;

}
}

Java + JML

The special Java comments /*@ ... @*/ mark JML annotations in the Java
code. The keyword normal_behavior states that the method postInc() termi-
nates without throwing an exception. The method contract consists of a pre- and a
postcondition. The meaning of the contract is that if the caller of the method fulfills
the precondition, the callee guarantees the postcondition to hold after termination.
In this example the precondition is true and the postcondition says that after the
successful termination of the method the field rec.x is equal to the value of the field

15.3. Understanding Proof Situations 535

rec.y before the method call (indicated by the keyword \old) increased by one.
Similarly, the field rec.y is equal to the value of the field rec.y before the method
call increased by 1. For a more detailed description of JML we point the reader
to Chapter 7. The reader is encouraged to determine what the method postInc()
performs.

When loading this file, the Proof Management dialogue will open. In its Contract
Targets pane, we make sure that the folder PostIncMod (not PostInc) is expanded,
and therein select the method postInc() we want to verify. We are asked to select a
contract (in this case, there is only one), and press the Start Proof button. The reader
may make sure that the One Step Simplifier is turned on, and start the automated
proof search strategy. The prover will stop with one open goal where the modality is
already removed.

The reader may now search for the node where the empty modality is about to be
removed from the sequent (the last node on the open branch which is highlighted in
light blue and labeled with { }) and select that node. In the case at hand, the automated
strategy searched a little too far, so we undo some automated rule applications in
order to understand the case that could not be proved. For that we left-click on
the next node in the proof tree (where the empty modality is removed), and select
the context menu item Prune Proof. The open goal should now look similar to the
following:

KeY Output
wellFormed(heap),
self.<created> = TRUE,
PostIncMod::exactInstance(self) = TRUE,
measuredByEmpty,
self.rec.x >= 0,
self.rec.y >= 0
==>
self.rec = null,
self = null,
{heapAtPre:=heap || exc:=null ||
heap:=

heap[self.rec.y:= 1 + self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y = self.rec.x
& self.rec.y@heapAtPre = -1 + self.rec.y
& self.<inv>
& exc = null)

KeY Output

This is the point in the proof process where the prover has processed the entire
Java method postInc(). The effects of the method execution are accumulated in the
(parallel) update, which precedes the properties that must hold after postInc() (the
formulas connected with &). To determine which of the parts of the postcondition
does not hold (if any), we highlight the last formula of the sequent (by focusing
the leading { of the update), and apply the rule andRight, which splits one of the

536 15 Using the KeY Prover

conjuncts. We repeat this step for as long as the is more than one conjuncts left.19

Now we have a closer look at the different sequents.
We start with the node whose last formula is:

KeY Output
{heapAtPre:=heap || exc:=null ||
heap:=heap[self.rec.y:=1+self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y@heapAtPre = -1 + self.rec.y)

KeY Output

Focusing on (the leading { of) this formula, we apply the rule One step Simplification.
This will basically apply, and thereby resolve, the parallel update as a substitution on
the equation self.rec.y@heapAtPre =-1 + self.rec.y(@heap). (Recall that
the field access self.rec.y, without @, abbreviates self.rec.y@heap). Therefore,
the last formula of the new sequent is

KeY Output
self.rec.y = -1 + self.rec.y@heap[self.rec.y:=1+self.rec.y]

[self.rec.x:=self.rec.y]
KeY Output

This formula states that the value of self.rec.y(@heap) is equal to -1 plus the
value self.rec.y on a heap that is constructed from heap through the two given
store operations. It can be instructive for the reader to try to understand whether,
and why, this formula is true. One way to do that is to, mentally, apply the axiom
(15.3) (page 527), which removes the [self.rec.x:=self.rec.y]. Then apply
the axiom (15.2), which turns self.rec.y@heap[self.rec.y:=1+self.rec.y]
into 1+self.rec.y. To prove this branch the reader may now left-click on the
sequent arrow and select the context menu entry Apply rules automatically here.

We now switch to the open goal with the following last formula:

KeY Output
{heapAtPre:=heap || exc:=null ||
heap:=heap[self.rec.y:=1+self.rec.y][self.rec.x:=self.rec.y]}
(self.rec.y = self.rec.x)

KeY Output

We again apply the rule One step Simplification onto the shown formula. The new last
formula is

KeY Output
self.rec.y@heap[self.rec.y:=1+self.rec.y]

[self.rec.x:=self.rec.y]
=

19 For postconditions with a lot of conjunctions this task can be tedious. Therefore, the KeY system
offers a proof macro called Propositional Expansions w/ splits which the user may apply
instead.

15.4. Further Features 537

self.rec.x@heap[self.rec.y:=1+self.rec.y]
[self.rec.x:=self.rec.y]

KeY Output

This formula says that, in a heap constructed from heap with the two given stores,
the values of self.rec.y and self.rec.x are the same. This is not true, however.
The user can see that by, again mentally, applying the axioms (15.3) and (15.2) to
the left side of the equation, resulting in 1 + self.rec.y, and axiom (15.2) to the
right side of the equation, resulting in self.rec.y.

With this technique we have encountered a mistake in our postcondition. We
should have stated rec.x==\old(rec.y) instead of rec.x==\old(rec.y)+1 in
the JML specification. The reason is that the postincrement expression (in the Java
implementation) returns the old value. A corrected version of the problem is included
in file PostIncCorrected.java. The reader is encouraged to load this file and use
the automated strategy to prove the problem. For further examples on using the KeY
system we point the reader to the tutorial chapter (Chapter 16).

15.4 Further Features

Besides the introduced features and mechanisms in this chapter, the KeY systems
employs a variety of different features. In the following we will give a glimpse into
some other useful features of KeY.

Employing External Decision Procedures

Apart from strategies, which apply taclets automatically, KeY also employs external
decision procedure tools for increasing the automation of proofs. If formulas contain
a lot of equations and inequations over terms that represent structures from different
theories it can be a good idea to use SMT solvers instead of a full theorem prover.
SMT solvers implement highly-efficient algorithms for deciding the satisfiability
of formulas over specific theories, in contrast to full theorem provers, which are
designed to work on many different domains. We refer to [Bradley and Manna, 2007]
and [Kroening and Strichman, 2008] for a more detailed introduction and description
of decision procedures and their applications.

The field of decision procedures is very dynamic, and so is the way in which
KeY makes use of them. The user can choose among the available decision proce-
dure tools by selecting the main menu item Options → SMT Solvers. We first load
generalProjection.key and then choose SMT solvers Options via the main menu
item Options. This opens the Settings for Decision Procedure dialogue. The user can
now adjust general SMT options as well as settings for individual solvers.

In the General SMT Options pane, we can choose for instance the timeout for
the SMT solvers. Timeouts are important when working with SMT solvers, as the

538 15 Using the KeY Prover

search process can last very long, without necessarily leading anywhere. Here we
suggest using as a first step the default timeout settings. However, for more complex
problems, it can be useful to increase the timeout, to give the solver a better chance
to find a proof. For now we select the external decision procedure tool Z320 in the
menu on the left-hand side in the dialogue. Now we are able to adjust some settings
for the solver if needed, but for this example we leave the default settings and click
Okay. In the tool bar the Run Z3 button now appears and we can press it. This opens
a dialogue which shows the application of Z3 and whether it was successful. In this
case the dialogue says valid and the reader is now able to press the button Apply. This
closes the proof in one step(!), as the Proof tab is telling us. Decision procedures
can be very efficient on certain problems. On the down side, we sacrificed proof
transparency here.

In a more realistic setting, we use decision procedures towards the end of a
proof (branch), to close first-order goals which emerged from proving problems that
originally go beyond the scope of decision procedures.

Counterexample Generator

A feature that comes in handy when deciding whether a proof obligation is invalid
is the counter example generator in KeY. This feature is accessible by pressing the
toolbar button when a proof state is loaded. The mechanism translates the negation
of the given proof obligation to an SMT specification and uses an SMT solver to
decide the validity of this formula. To use this feature, the SMT solver Z3_CE has to
be configured in the SMT solver options dialogue.

Model Search

If a sequent contains a lot of (in)equations, the KeY system offers the possibility to
adjust the proof search strategy to systematically look for a model. This strategy is
accessible via the Proof Search Strategy tab. It is a support for nonlinear inequations
and model search. In addition, this strategy performs multiplication of inequations
with each other and systematic case distinctions (cuts).

The method is guaranteed to find counterexamples for invalid goals that only con-
tain polynomial (in)equations. Such counterexamples turn up as trivially unprovable
goals. It is also able to prove many more valid goals involving (in)equations, but will
in general not terminate on such goals.

20 To use an external SMT solver it has to be installed beforehand and the path to the executable of
the solver has to be set in the Settings for Decision Procedure dialogue.

15.5. What Next? 539

Test Case Generation

Another feature of KeY is the automated generation of test cases, achieving high code
coverage criteria by construction. This feature is called KeYTestGen. It constructs
and analyses a (partial) proof tree for a method under test, extracts path conditions,
generates test data, and synthesizes test code. This includes the generation of test ora-
cles, or alternatively the usage of the OpenJML runtime checker. Test case generation
is accessible by pressing the button right after starting a proof for the method under
test. The usage and underlying principles of test generation with KeY are described
in detail in Chapter 12. In particular, the ‘Quick Tutorial’ (Section 12.2) offers a
quick introduction into the usage of KeYTestGen to a new user.

15.5 What Next?

In this chapter, we introduced the usage of the KeY prover, in parallel to explaining
the basic artifacts used by KeY, the logic, the calculus, the reasoning principles, and
so on. As we did not assume the reader to be familiar with any of these concepts prior
to reading this text, we hope we have achieved a self contained exposition. Naturally,
this imposed limits on how far we could go. The examples were rather basic, and
discussed in depth. Demonstrating the usage of KeY in more realistic scenarios is
not within the scope of this chapter. However, this book contains the tutorial ‘Formal
Verification with KeY’ (Chapter 16), which lifts the usage of KeY to the next level. It
discusses more realistic examples, more involved usage of the tool, and solutions to
archetypal problems of verification. We therefore encourage the reader to not stop
here, but continue to learn more about how KeY can be used for program verification.

	15 Using the KeY Prover
	15.1 Introduction
	15.2 Exploring KeY Artifacts and Prover Simultaneously
	15.2.1 Exploring Basic Notions And Usage
	15.2.2 Exploring Terms, Quantification, and Instantiation
	15.2.3 Exploring Programs in Formulas

	15.3 Understanding Proof Situations
	15.4 Further Features
	15.5 What Next?

