
The main purpose of the KeY system is to ensure program correctness w.r.t. a formal
specification on the level of source code. However, a flawed(?) compiler may invali-
date correctness properties that have been formally verified for the program’s source
code. Hence, we additionally need to guarantee the correctness of the compilation
result w.r.t. its source code.

Compiler verification, as a widely used technique to prove the correctness of
compilers, has been a research topic for more than 40 years [McCarthy and Painter,
1967, Milner and Weyhrauch, 1972]. Previous works [Leroy, 2006, 2009, Leinenbach,
2008] have shown that compiler verification is an expensive task requiring nontrivial
user interactions in proof-assistants like Coq [Leroy, 2009]. Maintaining these proofs
for changes to the compiler back-end (e.g., support of new language features or
optimization techniques) is not yet counted into that effort.

In this chapter, instead of verifying a compiler, we use the verification engine of
KeY to prove a correct bytecode generation through a sound program transformation
approach. Thus program correctness on source code level is inherited to the bytecode
level. The presented approach guarantees that the behavior of the compiled program
coincides with that of the source program in the sense that both programs terminate
in states in which the values of a user specified region of the heap are equivalent.

Moreover, we often want the generated program to be more optimized than the
original program. If the source and the target programs are in the same language,
this program translation process is also known as program specialization or partial
evaluation.

The correctness of the source program (w.r.t. its specification) entails correctness
of the generated program. No further verification on the level of bytecode is needed,
though verification of Java programs on the bytecode level, even if interaction is
needed, is also possible using dynamic logic [Ulbrich, 2011, 2013].

When constructing the symbolic execution tree (see Section 11.2) the program is
analyzed by decomposing complex statements into a succession of simpler statements.
Information about the heap and local program variables is accumulated and added in
the form of formulas and/or updates. This information can be used to deem certain
execution paths as unfeasible.

Chapter 14
Program Transformation and Compilation

Ran Ji and Richard Bubel

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 473–492, 2016
DOI: 10.1007/978-3-319-49812-6 14

474 14 Program Transformation and Compilation

Technically, we implemented symbolic execution as part of the sequent calculus
(see Section 3.5.6), whose rules are applied analytically from bottom-to-up. For the
program generation part, the idea is to apply the sequent calculus rules reversely (i.e.,
top-down) and to generate the target program step-by-step.

This chapter is structured as follows: Section 14.1 introduces partial evaluation
and how it can be interleaved with symbolic execution to boost the performance of
automatic verification. We discuss how to achieve verified correct compilation in
Section 14.2 and discuss a prototypical implementation in Section 14.3.

14.1 Interleaving Symbolic Execution and Partial Evaluation

We first motivate the general idea for interleaving symbolic execution and partial
evaluation (Section 14.1.1). Then we show how to integrate a program transformer
soundly into a program calculus in Section 14.1.2 and conclude with a short evalua-
tion of the results.

14.1.1 General Idea

To motivate our approach of interleaving partial evaluation and symbolic execution,
we first take a look at the program shown in Figure 14.1(a). The program adapts
the value of variable y to a given threshold with an accuracy of eps by repeatedly
increasing or decreasing y as appropriate. The function abs(·) computes the absolute
value of an integer.

Symbolically executing the program results in the symbolic execution tree (intro-
duced in Section 11.2) shown in Figure 14.2, which is significantly more complex
than the program’s control flow graph (CFG) in Figure 14.1(b). The reason is that
symbolic execution unwinds the program’s CFG producing a tree structure. As a
consequence, identical code is repeated on many branches, however, under different
path conditions and in different symbolic states. Merging back different nodes of the
tree is usually not possible without approximation or abstraction [Bubel et al., 2009,
Weiß, 2009].

During symbolic execution, there are occasions in which fields or parameters have
a value which is fixed a priori, for instance, because certain values are fixed for some
call sites, the program is an instantiation of a product family or contracts exclude
certain program paths. In our case, the program from Figure 14.1(a) is run with a
fixed initial value (80) for y and the threshold is fixed to 100.

To exploit this knowledge about constant values and to derive more efficient
programs, partial evaluation has been used since the mid 1960s, for instance as part
of optimizing compilers. The first efforts were targeted towards Lisp. Due to the rise
in popularity of functional and logic programming languages, the 1980s saw a large

14.1. Interleaving Symbolic Execution and Partial Evaluation 475

y = 80;
threshold = 100;

if (y > threshold) {
decrease = true;

} else {
decrease = false;

}

while (abs(y-threshold) > eps) {
if (decrease) {

y = y-1;
} else {

y = y+1;
}

}

(a) Source code of control circuit

y=80

threshold=100

y>threshold ?

decrease=true decrease=false

abs(y-threshold) > eps ?

decrease ?

y=y-1 y=y+1

•
•

(b) Control flow graph of control circuit

Figure 14.1 A simple control circuit Java program and its control flow graph

threshold=100

y>100 ?

decrease=true decrease=false

abs(y-100)>eps ? abs(y-100)>eps ?

decrease ? decrease ?

y=y-1 y=y+1 y=y-1 y=y+1

abs(y-100)>eps? abs(y-100)>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

abs(y-100)>eps? abs(y-100)>eps?

decrease? decrease?

y=y-1 y=y+1 y=y-1 y=y+1

Figure 14.2 Symbolic execution tree of the control circuit program

amount of research in partial evaluation of such languages. A seminal text on partial
evaluation is the book by Jones et al. [1993].

In contrast to symbolic execution, the result of a partial evaluator, also called
program specializer (or short mix), is not the symbolic value of output variables, but
another, equivalent program. The known fixed input is also called static input while
the part of the input that is not known at compile time is called dynamic input.

Partial evaluation traverses the CFG (e.g., the one of Figure 14.1(b)) with a partial
evaluator, while maintaining a table of concrete (i.e., constant) values for the program

476 14 Program Transformation and Compilation

locations. In our example, that table is empty at first. After processing the two initial
assignments, it contains U = {y := 80 ||threshold := 100}.

Whenever a new constant value becomes known, the partial evaluator attempts to
propagate it throughout the current CFG. This constant propagation transforms the
CFG from Figure 14.1(b) into the one depicted in Figure 14.3(a). We can observe that
occurrences of y within the loop (incl. the loop guard) have not been replaced. The
reason for this is that the value of y at these occurrences is not static, because it might
be updated in the loop. Likewise, the value of decrease after the first conditional
is not static either. The check whether the value of a given program location can
be considered static with respect to a given node in the CFG is called binding time
analysis (BTA) in partial evaluation.

Partial evaluation of our example proceeds now to the guard of the first conditional.
This guard became the constant expression 80>100 which can be evaluated to false.
As a consequence, one can perform dead code elimination on the left branch of the
conditional. The result is depicted in Figure 14.3(b). Now the value of decrease is
static and can be propagated into the loop (note that decrease is not changed inside
the loop). After further dead code elimination, the final result of partial evaluation is
the CFG shown in Figure 14.3(c).

y=80

threshold=100

80>100 ?

decrease=true decrease=false

abs(y-100) > eps ?

decrease ?
y=y-1 y=y+1

•
•

(a) CFG after constant propagation
for threshold and y

y=80

threshold=100

decrease=false

abs(y-100) > eps ?

decrease ?
y=y-1 y=y+1

•
•

(b) CFG after evaluation of
constant expressions (and
dead code elimination)

y=80

threshold=100

decrease=false

abs(y-100) > eps ?

y=y+1

•
•

(c) Final CFG after addi-
tional constant propagation
and dead code elimination

Figure 14.3 Partial evaluation of a simple control circuit program

The hope with employing partial evaluation is that it is possible to factor out
common parts of computations in different branches by evaluating them partially
before symbolic execution takes place. The naïve approach, however, to first evaluate
partially and then perform symbolic execution fails miserably. The reason is that
for partial evaluation to work well, the input space dimension of a program must
be significantly reducible by identifying certain input variables to have static values
(i.e., fixed values at compile time).

Typical usage scenarios for symbolic execution like program verification are not
of this kind. For example, in the program shown in Figure 14.1, it is unrealistic to

14.1. Interleaving Symbolic Execution and Partial Evaluation 477

classify the value of y as static. If we redo the example without the initial assignment
y=80, then partial evaluation can only perform one trivial constant propagation.
The fact that input values for variables are not required to be static can even be
considered to be one of the main advantages of symbolic execution and is the source
of its generality: it is possible to cover all finite execution paths simultaneously,
and one can start execution at any given source code position without the need for
initialization code.

The central observation that makes partial evaluation work in this context is
that during symbolic execution, static values are accumulated continuously as path
conditions added to the current symbolic execution path. This suggests to perform
partial evaluation interleaved with symbolic execution.

To be specific, we reconsider the example shown in Figure 14.1(a), but we remove
the first statement, which assign y the value 80. As observed above, no noteworthy
simplification of the program’s CFG can be any longer achieved by partial evaluation.
The CFG’s structure after partial evaluation remains exactly the same and only the
occurrences of variable threshold are replaced by the constant value 100. If we
symbolically execute this program, then the resulting execution tree spanned by
unrolling the loop twice is shown in Figure 14.2. The first conditional divides the
execution tree in two subtrees. The left subtree deals with the case that the value of y
is too high and needs to be decreased, the right subtree with the complementary case.

threshold=100

y>100?

decrease=true decrease=false

|y-100|>eps? |y-100|>eps?

y=y-1 y=y+1

abs(y-100)>eps?

y=y-1

abs(y-100)>eps?

y=y+1

mix mix

mix

Figure 14.4 Symbolic execution with interleaved partial evaluation

All subsequent branches result from either the loop condition (omitted in Fig-
ure 14.2) or the conditional expression inside the loop body testing the value of
decrease. As decrease is not modified within the loop, some of these branches
are infeasible. For example the branch below the boxed occurrence of y=y+1 (filled
in red) is infeasible, because the value of decrease is true in that branch. Sym-
bolic execution will not continue on these infeasible branches, but abandon them by

478 14 Program Transformation and Compilation

proving that the path condition is contradictory. Since the value of decrease is only
tested inside the loop, however, the loop must still be unwound first and the proof that
the current path condition is contradictory must be repeated. Partial evaluation can
replace this potentially expensive proof search by computation which is drastically
cheaper.

In the example, specializing the remaining program in each of the two subtrees
after the first assignment to decrease eliminates the inner-loop conditional, see
Figure 14.4 (the partial evaluation steps are labeled with mix). Hence, interleaving
symbolic execution and partial evaluation promises to achieve a significant speed-up
by removing redundancy from subsequent symbolic execution.

14.1.2 The Program Specialization Operator

We define a program specialization operator suitable for interleaving partial eval-
uation with symbolic execution in JavaDL. The operator implements a program
transformer which issues correctness conditions as side-proofs that are ‘easy’ to
proof directly and can thus be safely integrated into the sequent calculus. This ap-
proach avoids formalizing the partial evaluator in the program logic itself which
would be tedious and inefficient.

Definition 14.1 (Program Specialization Operator). Let Σ be a sufficiently large
signature containing countably infinitely many program variables and function sym-
bols for any type and arity. A program specialization operator

↓Σ : ProgramElement×UpdatesΣ ×ForΣ → ProgramElement

takes as arguments a (i) program statement or expression, (ii) an update and (iii) a
formula; and maps these to a program statement or expression.

The intention behind the above definition is that p ↓Σ (U ,φ) denotes a “simpler”
but semantically equivalent version of p under the assumption that both are exe-
cuted in a state which satisfies the constrained imposed by U and φ . The program
specialization operator may introduce new temporary variables or function symbols.

Interleaving partial evaluation and symbolic execution is achieved by introduction
rules for the specialization operator. Application of the program transformer is
triggered by application of the rule

introPE
Γ =⇒U [(p) ↓ (U , true)]φ ,∆

Γ =⇒U [p]φ ,∆

where (p) ↓ (U , true) returns a semantically equivalent program w.r.t. initial state
U and condition φ . The program transformer is usually defined recursively over the
program structure. We discuss a selection of program transformation rules that can
be used to define the specialization operator in the next section.

14.1. Interleaving Symbolic Execution and Partial Evaluation 479

14.1.3 Specific Specialization Actions

We instantiate the generic program specialization operator of Definition 14.1 with
some possible actions. In each case we derive soundness conditions.

Specialization Operator Propagation

The specialization operator needs to be propagated through the program as most of the
different specialization operations work locally on single statements or expressions.
During propagation of the operator, its knowledge base, the pair (U ,φ), needs to
be updated by additional knowledge learned from executed statements or by erasing
invalid knowledge about variables altered by the previous statement. Propagation of
the specialization operator as well as updating the knowledge base is realized by the
following program transformation (read p p′ as program p is transformed into
program p′)

(p;q) ↓ (U ,φ) p ↓ (U ,φ); q ↓ (U ′,φ ′) .

This rule is unsound for arbitrary U ′, φ ′. Soundness is ensured under a number of
restrictions:

1. Let mod be a collection that contains all program locations possibly changed by
p including local variables. This can be proven similar to framing in case of loop
invariants (see Section 8.2.5).

2. Let Vmod be the anonymizing update for mod, which assigns each local program
variable contained in mod a new constant and performs the heap anonymization
using the anon function. By fixing U ′ :=U Vmod, we ensure that the program
state reached by executing p is covered by at least one interpretation and variable
assignment over the extended signature.

3. φ ′ must be chosen in such a way that |=U (φ → 〈p〉φ ′) holds. This ensures that
the postcondition of p is correctly represented by φ ′. Computation of such a
φ ′ can be arbitrarily complex. The actual complexity depends on the concrete
realization of the program specialization operator. Usually, φ ′ is a relatively
cheaply computed safe approximation (abstraction) of p’s postcondition.

Constant propagation

Constant propagation is one of the most basic operations in partial evaluation and
often a prerequisite for more complex rewrite operations. Constant propagation
entails that if the value of a variable v is known to have a constant value c within a
certain program region (typically, until the variable is potentially reassigned) then
usages of v can be replaced by c. The rewrite rule

(v)↓(U ,φ) c

480 14 Program Transformation and Compilation

models the replacement operation. To ensure soundness the rather obvious condition
|=U (φ → v .= c) has to be proved where c is an interpreted constant (e.g., a compile-
time constant or literal).

Dead-Code Elimination

Constant propagation and constant expression evaluation often result in specializa-
tions where the guard of a conditional (or loop) becomes constant. In this case,
unreachable code in the current state and path condition can be easily located and
pruned.

A typical example for a specialization operation eliminating an infeasible symbolic
execution branch is the rule

(if (b) {p} else {q}) ↓ (U ,φ) p ↓ (U ,φ) ,

which eliminates the else branch of a conditional, if the guard can be proved
true. The soundness condition of the rule is straightforward and self-explaining:
|=U (φ → b .= TRUE).

Another case is

(if (b) {p} else {q}) ↓ (U ,φ) q ↓ (U ,φ)

where the soundness condition is: |=U (φ → b .= FALSE).

Safe Field Access

Partial evaluation can be used to mark expressions as safe that contain field accesses
or casts that may otherwise cause abrupt termination. We use the notation @(e) to
mark an expression e as safe, for example, if we can ensure that o 6= null, then we
can derive the annotation @(o.a) for any field a in the type of o. The advantage
of safe annotations is that symbolic execution can assume that safe expressions
terminate normally and needs not to spawn side proofs that ensure it. The rewrite
rule for safe field accesses is

o.a ↓ (U ,φ) @(o.a) ↓ (U ,φ) .

Its soundness condition is |=U (φ →¬(o .= null)).

Type Inference

For deep type hierarchies dynamic dispatch of method invocations may cause serious
performance issues in symbolic execution, because a long cascade of method calls
is created by the method invocation rule (Section 3.7.1). To reduce the number of

14.1. Interleaving Symbolic Execution and Partial Evaluation 481

implementation candidates we use information from preceding symbolic execution to
narrow the static type of the callee as far as possible and to (safely) cast the reference
to that type. The method invocation rule can then determine the implementation
candidates more precisely:

res = o.m(a1, . . . ,an);↓ (U ,φ)
res = @((Cl)o ↓ (U ,φ)).m(a1 ↓ (U ,φ), . . . ,an ↓ (U ,φ));

The accompanying soundness condition |=U (φ → instanceCl(x)
.= TRUE) ensures

that the type of o is compatible with Cl in any state specified by U , φ .
A note to the side conditions: The side conditions are in general full-blown first-

order proofs and the needed effort to discharge them could eliminate any positive
effects of the specialization. But in practice, these side conditions can be (i) proven
very easily as the accumulated information is already directly contained in the
formula φ without the need of full first-order reasoning; and (ii) the conditions can
be proven in separate side-proofs and hence, do not pollute the actual proof tree. This
results in a shorter and more human-readable proof object.

14.1.4 Example

As an application of interleaving symbolic execution and partial evaluation, consider
the verification of a GUI library. It includes standard visual elements such as Window,
Icon, Menu and Pointer. An element has different implementations for different
platforms or operating systems. Consider the following program snippet involving
dynamic method dispatch:

Java
framework.ui.Button button = radiobuttonX11;
button.paint();

Java

The element Button is implemented in one way for Max OS X while it is
implemented differently for the X Window System. The class Button, which is
extended by the classes CheckBox, Component, and Dialog, defines the method
paint(). Altogether, paint() is implemented in 16 different classes including
ButtonX11, ButtonMPC, RadioButtonX11, MenuItemX11, etc. The type hierarchy
is outlined in Figure 14.5. In the code fragment above, button is assigned an object
of type RadioButtonX11 which implements paint(). We want to prove that it
always terminates, and hence, the formula 〈gui〉true should be provable where gui
abbreviates the code above.

First, we employ symbolic execution alone to do the proof. During this process,
button.paint() is unfolded into 16 different cases by the method invocation rule
(see Section 3.6.5.5), each corresponding to a possible implementation of button

482 14 Program Transformation and Compilation

Button

CheckBox Component
DialogButtonX11 ButtonAqua ButtonMFC

RadioButtonX11 MenuItemX11

Figure 14.5 Type hierarchy for the GUI example

in one of the subclasses of Button. The proof is constructed automatically using an
experimental version of KeY; the proof consists of 161 nodes on ten branches.

In a second experiment, we interleave symbolic execution and partial evalua-
tion to prove the same claim. The partial evaluator propagates with the help of the
TypeInference rule presented in the previous section the information that the run-
time type of button is RadioButtonX11 (known from the declared type of variable
radiobuttonX11 and the type hierarchy) and the only possible implementation
of button.paint() is RadioButtonX11.paint(). All other possible implemen-
tations are pruned. Only 24 nodes and two branches occur in the proof tree when
running KeY integrated with a partial evaluator.

The reduction in the size of the proof tree is in particular important for human
readability and increases the efficiency of the interactive proving process. A thorough
evaluation and more details can be found in Ji [2014].

14.2 Verified Correct Compilation

The previous section was concerned with the interleaving of partial evaluation and
symbolic execution. In this section, we go one step further and discuss how to employ
JavaDL and symbolic execution calculus to support more semantics-preserving
program transformations. One interesting use case is the compilation of a program
into a target language that the compiled program behaves verifiably equivalent w.r.t.
to its source code version. For ease of presentation, we describe the approach here for
a source-to-source transformation of a while language. But the presented approach
can be extended to all sorts of source and target languages. A detailed description
including bytecode compilation can be found in [Ji, 2014].

Equivalence checking between code and compilation result is important in com-
piler correctness checking. General equivalence checking of programs of the same
abstraction level is also an active field of research.

The simplified language for this presentation is a while-language (with a Java-like
syntax) that operates on integer variables and comes without intricacies like abrupt
termination. The verifiably correct output is a simplified (and possibly specialized)
variant of the original one.

Semantic equivalence is a relational property of the two compared programs. In
order to accommodate such relational problems on the syntactical level in JavaDL, a
new modality, called the weak bisimulation modality, is introduced that contains not

14.2. Verified Correct Compilation 483

one but two programs. The two programs in the modality are meant to be equivalent,
but need not reach fully equivalent poststates. A criterion can be given which decides
about the equivalence of states. This criterion is the set of observable variables obs
on which the termination states have to coincide.

Definition 14.2 (Weak bisimulation modality—syntax). Let p, q be two while-
language programs, obs,use⊆ ProgVSym sets of program variables and φ ∈DLFml
a first-order formula.

We extend the definition of JavaDL formulas: Under the above conditions [p G
q]@(obs,use)φ is also a JavaDL formula.

This modality is closely related to the relational Hoare calculus by Benton [2004],
the notion of product programs by Barthe et al. [2011] and similar to the two-
program weakest-precondition calculus in [Felsing et al., 2014, Kiefer et al., 2016].
The principle idea behind the modality is that [p G q]@(obs,use)φ holds if the
programs p,q behave equivalently w.r.t. the program variables in obs. The formula
φ is used as postcondition for program p such that the weak bisimulation modality
implies the ‘ordinary’ modality [p]φ . Initially, formula φ is chosen as true. Only when
handling loops, to increase precision by means of a loop invariant, other formulas
can appear for φ .

In the verification-based compilation process outlined in the following, the bisim-
ulation modality serves two purposes:

1. It guides the generation of compiled code after symbolic execution.
2. It allows the formal equivalence verification between source code and compila-

tion result afterwards.

Before looking at the formal semantics of the modality and stating the calculus
rules performing these tasks, we will give a brief overview over the compilation
process. The initial input is the source program p and the equivalence criterion obs;
this can, for example, be the set that only contains the variable holding the returned
value if the result-equivalence is the target property.

The process follows a two-step protocol. In the first step, the source program is
symbolically executed. This can be done using rules corresponding to ones of the
calculus presented in Chapter 3, in a fashion similar to the symbolic execution de-
bugger outlined in Section 11.2. It starts from the modality [p G Q1]@(obs,U1)true
with Q1 and U1 placeholder meta variable symbols which have no impact in the first
phase. In the second phase, a compilation algorithm will fill these gaps starting from
the leaves of the symbolic execution tree such that every step is one for which the
calculus for the bisimulation modality has a rule.

The result is a closed proof tree with root [p G q]@(obs,use)true for some
program q synthesized during the second phase. The proof guarantees us that q is
equivalent to the input program p as far as the observations in obs are concerned.

To explain the meaning of the likewise synthesized use, we first introduce the
set usedVar(s,p,obs) capturing precisely those program variables whose value in-
fluences the final value of an observable location l ∈ obs after executing p in a
state s.

484 14 Program Transformation and Compilation

Definition 14.3 (Used program variable). Let s be a (Kripke) state (see Sec-
tion 3.3.1).

A variable v ∈ ProgVSym is used by program p from s with respect to variable
set obs if there is a program variable l ∈ obs such that

s |= ∀vl ;
(
(〈p〉l .= vl)→∃v0;{v := v0}〈p〉l 6

.= vl
)

.

The set usedVar(s,p,obs) of used program variables is defined as the smallest set
containing all program variables in s by p with respect to obs.

A program variable v is used if and only if there is an interference with a location
contained in obs, i.e., the value of v influences at least the value of one observed
variable. Conversely, this means that if two states coincide on the variables in use,
then the result states after the execution of p coincide on the variables in obs.

If two states s,s′ coincide on the variables in a set set ⊆ ProgVSym, we write
s≈set s′.

Definition 14.4 (Weak bisimulation modality—semantics). Let p,q be while-
programs, obs,use ∈ ProgVSym, s a Kripke state. Then s |= [p G q]@(obs,use)φ if
and only if

1. s |= [p]φ
2. use⊇ usedVar(s,q,obs)
3. for all s≈use s′ and (s, t) ∈ ρ(p), (s′, t ′) ∈ ρ(q), we have t ≈obs t ′.

The formula [p G q]@(obs,use)φ holds if the behaviors of p and q are equivalent
w.r.t. the program variables contained in the set obs, and the set use contains all
program locations and variables that may influence the value of any program variable
or location contained in obs or the truth value of φ .

In the compilation scenario, p is the source program and q the created target
program, hence validity of the formula ensures that the compilation is correct w.r.t.
the equivalence criterion obs.

Bisimulation modalities can be embedded into sequents like Γ =⇒ U [p G
q]@(obs,use)φ ,∆ , and the sequent calculus rules for the bisimulation modality
are of the following form:

ruleName

Γ1 =⇒U1[p1 G q1]@(obs1,use1)φ1,∆1
...

Γn =⇒Un[pn G qn]@(obsn,usen)φn,∆n

Γ =⇒U [p G q]@(obs,use)φ ,∆

As mentioned earlier, application of the bisimulation rules is a two step process:

Step 1: Symbolic execution of source program p as usual using rules obtained
from the ones in Chapter 3. The equivalence criterion obs is propagated from one
modality to its children in the proof tree. In every arising modality, the second
program parameter and the use set are filled with distinct meta-level placeholder
symbols. The observable location sets obsi are propagated and contain those

14.2. Verified Correct Compilation 485

variables on which the two programs have to coincide. Intuitively, the variables
mentioned here are protected in the sense that information about the value of
these variables must not be thrown away during the symbolic execution step as
the synthesized program will have to maintain their value.

Step 2: Synthesis of the target program q and used variable set use from qi and usei
by applying the rules in a leave-to-root manner. Thus the placeholder symbols are
instantiated. Starting with a leaf node, the program is generated until branching
node is reached where the generation stops. The synthesis continues in the same
fashion with the remaining leaves until programs for all subtrees of a branching
node have been generated. Then these programs are combined according to the
rule applied on the branching node.

For instance, in case of an if-then-else statement, first the then-branch and then
else-branch are generated before synthesizing the corresponding conditional state-
ment in the target program (see rule ifElse). Note that, in general, the order of
processing the different branches of a node matters, for instance, in case of the
loopInvariant the program for the branch that deals with program after the loop has
to be synthesized before the loop body (as the latter’s set of observable variable
depends on those used on the other branch).

We explain some of the rules in details.

emptyBox
Γ =⇒U φ ,∆

Γ =⇒U [{} G {}]@(obs,obs)φ ,∆

The emptyBox rule is the starting point of program transformation in each sequen-
tial block. The location set use is set to obs.

assignment

Γ =⇒U {l := r}[ω G ω]@(obs,use)φ ,∆(
Γ =⇒U [l=r;ω G l=r;ω]@(obs,use\{l}∪{r})φ ,∆ if l ∈ use
Γ =⇒U [l=r;ω G ω]@(obs,use)φ ,∆ otherwise

)
The assignment rule above comes in two variants. In the symbolic execution

phase (first step) both are identical. The difference between both comes to play in the
program synthesis phase (second step), i.e., when we instantiate the meta variables
for the program and the used variable set.

In the second step, we check if the program variable l is contained in the use set of
the premiss, i.e., the variable has been potentially read by the original program after
the assignment. If l is read later-on, then the assignment of the original program (left
compartment of the bisimulation modality) is generated for the specialized program.
Otherwise the assignment is not generated for the specialized program.

In addition, the used variable set has to be updated, if the assignment was generated.
The update used variable set removes first the variable on the left-hand side (l) as it
is assigned a new value, and hence, the old value of l is unimportant from that time
on. Thereafter, the variable r on the right-hand side is added to the used variable set

486 14 Program Transformation and Compilation

(as we read from it) which ensures that the following program syntheses steps will
ensure that the correct value of r is computed. The order of the removal and addition
is of importance as can be seen for the assignment l=l; where the computed used
variable set must contain variable l.

ifElse

Γ ,U b =⇒U [p;ω G p;ω]@(obs,usep;ω)φ ,∆
Γ ,U ¬b =⇒U [q;ω G q;ω]@(obs,useq;ω)φ ,∆

Γ =⇒U [if (b) {p} else {q} ω G
if (b) {p;ω} else {q;ω}]@(obs,usep;ω ∪useq;ω ∪{b})φ ,∆

(with b Boolean variable)

On encountering a conditional statement, symbolic execution splits into two
branches, namely the then branch and else branch. The generation of the condi-
tional statement will result in a conditional. The guard is the same as used in the
original program, the then branch is the generated version of the source then branch
continued with the rest of the program after the conditional, and the else branch is
analogous to the then branch.

Note that the statements following the conditional statement are symbolically
executed on both branches. This leads to duplicated code in the generated program,
and, potentially to code size duplication at each occurrence of a conditional statement.
One note in advance: code duplication can be avoided when applying a similar
technique as presented later in connection with the loop translation rule. However, it
is noteworthy that the application of this rule might have also advantages: as discussed
in Section 14.1, symbolic execution and partial evaluation can be interleaved resulting
in (considerably) smaller execution traces. Interleaving symbolic execution and
partial evaluation is orthogonal to the approach presented here and can be combined
easily. In several cases this can lead to different and drastically specialized and
therefore smaller versions of the remainder program ω and ω . The use set is extended
canonically by joining the use sets of the different branches and the guard variable.

loopInvariant

Γ =⇒U inv,∆
Γ ,U Vmod(b∧ inv) =⇒U Vmod

[p G p]@(use1∪{b},use2)inv,∆
Γ ,U Vmod(¬b∧ inv) =⇒U Vmod[ω G ω]@(obs,use1)φ ,∆

Γ =⇒U [while(b){p}ω G while(b){p}ω]@(obs,use1∪use2∪{b})φ ,∆

(with b a Boolean program variable and inv a first-order formula)

The loop invariant rule has, as expected, three premises like in other appearances
in this book. Here we are interested in compilation of the analyzed program rather
than in proving its correctness. Therefore, it would be sufficient to use true as a
trivial loop invariant. In this case, the first premise ensuring that the loop invariant

14.2. Verified Correct Compilation 487

is initially valid contributes nothing to the program compilation process and can be
ignored (if true is used as invariant then it holds trivially).

Using a stronger loop variant allows the synthesis algorithm to be more precise
since the context on the sequent then contains more information which can be
exploited during program synthesis.

Two things are of importance: the third premise (use case) executes only the
program following the loop. Furthermore, this code fragment is not executed by
any of the other branches and, hence, we avoid unnecessary code duplication. The
second observation is that variables read by the program in the third premise may
be assigned in the loop body, but not read in the loop body. Obviously, we have to
prevent that the assignment rule discards those assignments when compiling the loop
body. Therefore, in the obs for the second premise (preserves), we must include
the used variables of the use case premise and, for similar reasons, the program
variable(s) read by the loop guard. In practice, this is achieved by first executing the
use case premise of the loop invariant rule and then including the resulting use1
set in the obs of the preserves premise. The work flow of the synthesizing loop is
shown in Figure 14.6.

. . .

while(b)

body rest

5 1

3

4
2

Figure 14.6 Work flow of synthesizing loop

Now we show the program transformation in action.

Example 14.5. Given observable locations obs={x}, we perform program transfor-
mation for the following program.

Java
y = y + z;
if (b) {
y = z++;
x = z;

} else {
z = 1;

488 14 Program Transformation and Compilation

x = y + z;
y = x;
x = y + 2;

}

Java

In the first phase, we do symbolic execution using the extended sequent calculus
from above We use placeholders spi to denote the program to be generated, and
placeholders usei to denote the used variable set. To ease the presentation, we omit
postcondition φ , as well as the context formulas Γ and ∆ . The first active statement
is an assignment, so the assignment rule is applied. A conditional is encountered.
After the application of ifElse rule, the result is the symbolic execution tree shown in
Figure 14.7.

U1b =⇒U1[y=z++; . . . G sp2]@({x},use2) U1¬b =⇒U1[z=1; . . . G sp3]@({x},use3)

=⇒{y := y+z}[if(b){...}else{...} G sp1]@({x},use1)

=⇒ [y = y + z;... G sp0]@({x},use0)

Figure 14.7 Symbolic execution tree until conditional

Now the symbolic execution tree splits into two branches. U1 denotes the update
computed in the previous steps: {y := y+z}. We first concentrate on the then branch,
where the condition b is True. The first active statement y=z++; is a complex
statement. We decompose it into three simple statements using the postInc rule.
Then after a few applications of the assignment rule followed by the emptyBox rule,
the symbolic execution tree in this sequential block is shown in Figure 14.8.

U1b =⇒U1{t := z}{z := z+1}{y := t}{x := z}φ

U1b =⇒U1{t := z}{z := z+1}{y := t}{x := z}[{} G sp8]@({x},use8)

U1b =⇒U1{t := z}{z := z+1}{y := t}[x=z; G sp7]@({x},use7)

U1b =⇒U1{t := z}{z := z+1}[y=t;... G sp6]@({x},use6)

U1b =⇒U1{t := z}[z=z+1; y=t;... G sp5]@({x},use5)

U1b =⇒U1[int t=z; z=z+1; y=t;... G sp4]@({x},use4)

U1b =⇒U1[y=z++;... G sp2]@({x},use2)

Figure 14.8 Symbolic execution tree of then branch

Now the source program is empty, so we can start generating a program at
this node. By applying the emptyBox rule in the other direction, we get sp8 as {}

14.2. Verified Correct Compilation 489

(empty program) and use8={x}. The next rule application is assignment. Because
x ∈ use8, the assignment x = z; is generated and the used variable set is updated by
removing x but adding z. So we have sp7: x = z; and use7={z}. In the next step,
despite another assignment rule application, no statement is generated because y 6∈
use7, and sp6 and use6 are identical to sp7 and use7. Following 3 more assignment
rule applications, in the end we get sp2: z = z + 1; x = z; and use2={z}. So
z = z + 1; x = z; is the program synthesized for the then branch.

Analogous to this, we can generate the program for the else branch. After the
first phase of symbolic execution, the symbolic execution tree is built as shown
in Figure 14.9. In the second phase, the program is synthesized after applying a
sequence of assignment rules. The else branch is sp3:

z = 1; x = y + z; y = x; x = y + 2; ,

with use3={y}.

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}{x := y+2}φ

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}{x := y+2}[{} G sp12]@({x},use12)

U1¬b =⇒U1{z := 1}{x := y+z}{y := x}[x=y+2; G sp11]@({x},use11)

U1¬b =⇒U1{z := 1}{x := y+z}[y=x;... G sp10]@({x},use10)

U1¬b =⇒U1{z := 1}[x=y+z;... G sp9]@({x},use9)

U1¬b =⇒U1[z=1;... G sp3]@({x},use3)

Figure 14.9 Symbolic execution tree of else branch

Now we have synthesized the program for both branches of the if-then-else
statement. Back to the symbolic execution tree shown in Figure 14.7, we can build a
conditional by applying the ifElse rule. The result is sp1:

if(b) { z=z+1; x=z; } else { z=1; x=y+z; y=x; x=y+2; } ,

and use1={b,z,y}. After a final assignment rule application, the program generated
is shown in Listing 14.1.

Remark 14.6. Our approach to program transformation will generate a program that
only consists of simple statements. The generated program is optimized to a certain
degree, because the used variable set avoids generating unnecessary statements. In
this sense, our program transformation framework can be considered as program
specialization. In fact, during the symbolic execution phase, we can interleave partial
evaluation actions, i.e., constant propagation, dead-code elimination, safe field access
and type inference (Section 14.1.2). It will result in a more optimized program.

Example 14.7. We specialize the program shown in Example 14.5. In the first phase,
symbolic execution is interleaved with simple partial evaluation actions.

490 14 Program Transformation and Compilation

y = y + z;
if (b) {
z = z + 1;
x = z;

} else {
z = 1;
x = y + z;
y = x;
x = y + 2;

}

Listing 14.1 The generated program for Example 14.5

In the first two steps of symbolic execution until conditional, no partial evaluation
is involved. The resulting symbolic execution tree is identical to that shown in
Figure 14.7.

There are 2 branches in the symbolic execution tree. Symbolical execution of the
then branch is the same as in Example 14.5. It builds the same symbolic execution
tree (Figure 14.8).

Notice that after executing the statement t = z;, we did not propagate this
information to the statement y = t; and rewrite it to y = z;. The reason being z is
reassigned in the statement z = z + 1; before y = t;, thus z is not a “constant”
and we cannot apply constant propagation. In the program generation phase, we also
get sp2: z = z + 1; x = z; and use2={z} for this sequential block.

The first step of symbolic execution of the else branch is the application of
the assignment rule on z = 1;. Now we can perform constant propagation and
rewrite the following statement x = y + z; into x = y + 1;. The next step is
a normal application of the assignment rule on x = y + 1;. Now we apply the
assignment rule on y = x;. Since neither x nor y is reassigned before the statement
x = y + 2;, x is considered as a “constant” and we do another step of constant
propagation. The statement x = y + 2; is rewritten into x = x + 2;. After final
application of the assignment rule and emptyBox rule, we get the symbolic execution
tree:

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}{x := x+2}@({x},_)

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}{x := x+2}[G sp12]@({x},use12)

U1¬b =⇒U1{z := 1}{x := y+1}{y := x}[x=x+2; G sp11]@({x},use11)

U1¬b =⇒U1{z := 1}{x := y+1}[y=x;... G sp10]@({x},use10)

U1¬b =⇒U1{z := 1}[x=y+1;... G sp9]@({x},use9)

U1¬b =⇒U1[z=1;... G sp3]@({x},use3)

In the second phase of program generation, after applying the emptyBox rule and
4 times assignment rules, we get sp3: x = y + 1; x = x + 2; and use3={y}.

Combining both branches, we finally get the specialized version of the original,
shown in Listing 14.2.

14.3. Implementation and Evaluation 491

y = y + z;
if (b) {
z = z + 1;
x = z;

}
else {
x = y + 1;
x = x + 2;

}

Listing 14.2 The generated program for Example 14.7

Compared to the result shown in Listing 14.1, we generated a more optimized
program by interleaving partial evaluation actions during symbolic execution phase.
Further optimizations can be achieved by involving updates during program genera-
tion, which are discussed in [Ji, 2014].

14.3 Implementation and Evaluation

We have a prototype implementation of the program transformation framework
named PE-KeY introduced in this chapter.

We applied our prototype partial evaluator also on some examples stemming
from the JSpec test suite [Schultz et al., 2003]. One of them is concerned with the
computation of the power of an arithmetic expression, as shown in Figure 14.10.

The interesting part is that the arithmetic expression is represented as an abstract
syntax tree (AST) structure. The abstract class Binary is the superclass of the two
concrete binary operators Add and Mult (the strategies). The Power class can be
used to apply a Binary operator op and a neutral value for y times to a base value
x, as illustrated by the following expression:

power = new Power(y, new op(), neutral).raise(x)

The actual computation for concrete values is performed on the AST representation.
To be more precise, the task was to specialize the program

power = new Power(y, new Mult(), 1).raise(x);

The ac under the assumption that the value of y is constant and equal to 16.
As input formula for PE-KeY we use:

y .= 16→
[power=new Power(y,new Mult(),1).raise(x); G spres]@(obs,use)post

with post denoting an unspecified predicate which can neither be proven nor dis-
proved. PE-KeY then executes the program symbolically and extracts the special-
ized program spres as power = (...((x*x)*x)*...)*x; (or power = x16). The

492 14 Program Transformation and Compilation

class Power extends Object{
int exp;
Binary op;
int neutral;

Power(int exp, Binary op,
int neutral) {

super();
this.exp = exp;
this.op = op;
this.neutral = neutral;

}

int raise(int base) {
int res = neutral;
for (int i=0; i<exp; i++) {
res = op.eval(base, res);

}
return res;

}
}

class Binary extends Object {
Binary() { super(); }
int eval(int x, int y) {

return this.eval(x, y);
}

}

class Add extends Binary {
Add() { super(); }
int eval(int x, int y) {

return x+y;
}

}

class Mult extends Binary {
Mult() { super(); }
int eval(int x, int y) {

return x*y;
}

}

Figure 14.10 Source code of the Power example as found in the JSpec suite

achieved result is a simple int-typed expression without the intermediate creation of
the abstract syntax tree and should provide a significantly better performance than
executing the original program.

14.4 Conclusion

In this chapter we described how symbolic execution and thus verification can benefit
from interleaving partial evaluation and symbolic execution steps. This interleaving
results in smaller, less redundant proof and symbolic execution trees making these
easier to comprehend. This is advantageous for both manual interaction with the
prover itself and for code reviews/debugging using the symbolic execution debugger
(see Chapter 11).

We also presented how to integrate verifiably correct compilation of programs
within our verification framework based on JavaDL. We showcased our application
along the implementation of a partial evaluator that produces verifiably correct
specialized programs. Our approach can make use of the full power of our verifier
and thus produce optimized [Ji, 2014] programs. [Ji and Hähnle, 2014] adapt the
approach to implement an information flow analysis.

	14 Program Transformation and Compilation
	14.1 Interleaving Symbolic Execution and Partial Evaluation
	14.1.1 General Idea
	14.1.2 The Program Specialization Operator
	14.1.3 Specific Specialization Actions
	14.1.4 Example

	14.2 Verified Correct Compilation
	14.3 Implementation and Evaluation
	14.4 Conclusion

