
Chapter 13
Information Flow Analysis

Christoph Scheben and Simon Greiner

13.1 Introduction

Software systems are becoming increasingly trusted to handle sensitive information,
though they have the potential to abuse this trust with serious consequences. in
particular if they are connected to the internet. We allow web browsers to access our
bank accounts, but also allow them to send usage reports to the browser’s developers.
A mainstream smartphone application has permissions to read our digital photo
albums, contact lists and calendar, while at the same time it is free to use the phone’s
internet connection in every way possible. This chapter discusses how the KeY
System can be used to address the increasingly important question of information
flow control: does a program introduce information flows between resources in a way
which is in violation of our security policy?

As a concrete example consider an electronic voting system: an important property
of voting systems is the preservation of privacy of votes. Information on votes may
not be published directly nor indirectly.

for (int i = 0; i < votes.lengh; i++) {
publish(votes[i]);

}

Listing 13.1 Example for an explicit leak

In Listing 13.1, the secret value of a vote is directly written to the output channel
publish. Therefore, this kind of information leak is called explicit. In Listing 13.2,
the information is leaked indirectly via the control flow of the program. By observing
the output, it is possible to decide whether the first vote was cast for candidate 0 or
not. This is called an implicit leak. In complex programs, these leaks can be much
more subtle.

c© Springer International Publishing AG 2016
W. Ahrendt et al. (Eds.): Deductive Software Verification, LNCS 10001, pp. 453–471, 2016
DOI: 10.1007/978-3-319-49812-6 13

454 13 Information Flow Analysis

if (votes[0] == candidates[0])
publish("The␣result␣is␣");
publish(calculateResult(votes, candidates));

} else {
publish("The␣outcome␣is␣");
publish(calculateResult(votes, candidates));

}

Listing 13.2 Example for an implicit leak

Information can also be leaked via side channels, such as execution time, power
consumption, heat generation, and others. These kinds of information flow are not
considered here. Instead, we focus on explicit and implicit leaks.

In order to verify a program for secure information flow, we need a general notion
on what secure information flow means. Intuitively, a program has this property, if
the observable output is not influenced by secret input, i.e., the observable output
does not depend on the secret input. This is obviously the case, if for all program
executions with the same nonsecret input, the public output is equal. Darvas et al.
[2005] phrase this for a program α the following way: A program α has secure
information flow if “Running two instances of α with equal low-security values and
arbitrary high-security values, the resulting low-security values are equal, too.” Here,
low-security values are values which can be observed by potential attackers whereas
all other values are called high-security values. This policy is called noninterference
[Lampson, 1973, Denning, 1976, Cohen, 1977, Goguen and Meseguer, 1982].

For instance, let the observable output be the variable l, while all other vari-
ables are not observable. Then, the program l = h + 1; is insecure: Two runs of
l = h + 1; with different values of h result in states with different values for l. If,
on the other hand, neither l nor h are observable, the program has secure informa-
tion flow. The program also has secure information flow, if h and l are observable.
The program l = 0; if (h) { l = 1; } is insecure if solely the value of l is
observable, because l has the value 0 if, and only if, h has the value false. The
program h = 0; if (l) { h = 1; } on the other hand has secure information
flow in thiscase. Indeed, l is not changed at all.

In the past, a variety of sophisticated information flow analysis techniques and
tools have been developed. As in functional verification, the proposed techniques
can be divided into lightweight (that is, automatic but approximate) and heavyweight
(that is, semiautomatic but precise approaches.

Popular lightweight approaches are security type systems (a prominent example
in this field is the Java Information Flow (JIF) system by Myers [1999]), the analysis
of program dependence graphs for graph-theoretical reachability properties [Hammer
et al., 2006], specialized approximate information flow calculi based on Hoare
like logics [Amtoft et al., 2006, Scheben, 2014] and the usage of abstraction and
ghost code for explicit tracking of dependencies [Bubel et al., 2009]. A popular
heavyweight approach is to state information flow properties by self-composition
[Barthe et al., 2004, Darvas et al., 2005] and use off-the-shelf software verification

13.2. Specification and the Attacker Model 455

systems to check for them. An alternative is to formalize information flow properties
in higher-order logic and use higher-order theorem provers for the verification of
those properties, as presented for instance by Nanevski et al. [2011].

Lightweight approaches are usually efficient and scale well on large programs,
but do not have the necessary precision to express and verify complex information
flow-properties of programs with controlled release of information. An instance of
programs with controlled release of information are electronic voting systems. In
those systems, secrecy of votes is an important property which could not be proven
by approximate approaches so far. Heavyweight approaches on the other hand were,
until recently, applicable to artificially small examples only.

This chapter discusses deductive verification of complex information flow-
properties of open programs with controlled release of information. This approach
allows analysis of Java programs by comparing two symbolic executions of the pro-
gram, a variation of self-composition [Scheben and Schmitt, 2012, Scheben, 2014].
The feasibility of the approach has been proven by a case study on a simplified
electronic voting system (Chapter 18), carried out in cooperation with the research
group of Prof. Ralf Küsters from the University of Trier. The approach has also been
used in [Dörre and Klebanov, 2015] to analyze information flow in the Android
pseudo-random number generator.

In the following section we give an intuitive understanding of an information
flow specification and its relation to a possible attacker model. In Section 13.3 we
formally define noninterference. In Section 13.4, JML specifications for information
flow properties for Java programs are defined, and used in Section 13.5 to formalize
noninterference in JavaDL to gain proof obligations for the KeY prover. Directly
proving the resulting proof obligation with the KeY tool may not be feasible for
realistic programs, we therefore also present optimizations of the proof process
for information flow properties in KeY in this section. Finally, we conclude in
Section 13.6 and point to alternative approaches for verification of information flow
properties in KeY.

The presentation (including the introduction) is based on [Scheben and Schmitt,
2012, 2014, Scheben, 2014].

We assume the reader to be familiar with some topics presented in earlier chapters.
For understanding the details of the following presentation, it might be helpful to
read the chapters on JavaDL (Chapter 3), theories used in the KeY framework (Chap-
ter 5), specifications in JML (Chapter 7), and modular specification and verification
(Chapter 9) first.

13.2 Specification and the Attacker Model

Information flow is a property of a program, and thus can be analyzed and verified. In
order to verify the flow of information in a program, we need a specification describ-
ing the intended flow of information. The examples in the introduction separate the
input and output of a program into an observable and a secret part. The input is the

456 13 Information Flow Analysis

state and the parameters before execution of the program, the output is the state after
execution and possibly the return value. The specification describes the observable
part of these states, and thus implicitly specifies the secret parts as everything else.

To describe the observable part of a state, we use observation expressions. In the
simplest case, an observation expression is a list (or sequence) of program variables.
The sequence 〈x,y〉 of program variables x and y, for instance, describes that x and
y are observable.

Restricting observation expressions to program variables is often too coarse-
grained. It may be necessary to specify that only parts of the information contained
in a program variable or the aggregation of several variables is observable. Therefore,
we allow arbitrary JavaDL terms or JML expressions to appear in observation expres-
sions. To specify, for example that only the last bit of x and the sum of y and z is
observable, the observation expression 〈 x%2, (y + z)〉 can be used.1 In general, it
is possible to combine two observations described by two observation expressions R1
and R2 of sequence type by concatenation. We denote their concatenation by R1;R2.
Since any observation expression R can be embedded into a singleton sequence, we
extend the concatenation of observation expressions to any type in the obvious way.

This very flexible way of specification has two major advantages. For one, it
allows us to express very precisely the information which actually may be seen by
a possible attacker. In Chapter 18, we present the verification of information flow
in an e-voting system. In this context, we specify that the result of an election may
be observable, while other information, for example who voted for which candidate
is not. Second, the approach allows a precise specification of method contracts and
loop invariants, which is helpful when a modular analysis for realistic programs is
necessary.

Typically in literature, information flow is used to verify the security of a program
with respect to an attacker. The attacker is able to see the low part of the input and
output of a program, which we call observations. It is counterintuitive to specify that
an attacker is able to observe only the last bit of a parameter or only some elements of
the heap but not others. Therefore we want to point out that the motivation behind our
approach for specification is mainly driven by a precise specification of information
flow, not by a realistic attacker model. Usually, an attacker is able to observe certain
outputs of a program, for example the return value of a method or calls to logging
methods. Observation expressions do not describe the ability of a realistic attacker,
but the parts of inputs and outputs of a program which may influence each other. A
program that has a specified information flow is secure against all attackers who are
able to see only a subset of the information described by observation expressions.

Given the specification of observable parts of states, we can now give a formal
definition of what it means for a program to have secure information flow.

1 For a precise definition of observation expressions see [Scheben, 2014].

13.3. Formal Definition of Secure Information Flow 457

13.3 Formal Definition of Secure Information Flow

Intuitively, a program is noninterferent, i.e., it has secure information flow, if two
runs of the program with equal low-security input have equal low-security output.
Observation expressions describe the low part of states, while states are the input and
output of programs. We can formally define what it means for states to have equal
low-security values.

Definition 13.1 (Agreement of states). Let R be an observation expression.
Two states s and s′ agree on R, abbreviated by agree(R,s,s′), if and only if

evals(R) = evals′(R).

With the agreement of states we can define noninterference formally.

Definition 13.2 (Unconditional Noninterference). Let α be a program and R1, R2
observation expressions.

Program α allows information to flow only from R1 to R2, denoted by the predicate
flow(α,R1,R2), if and only if for all states s1,s′1,s2,s′2 such that evals1(α) = {s2}
and evals′1(α) = {s′2}, we have

if agree(R1,s1,s′1) then agree(R2,s2,s′2).

The observation expressions R1 and R2 describe the publicly available information
of a pre- and a poststate of the system respectively. For all states which agree on
the publicly available information, the states resulting from an execution of α agree
on the part of the state described by R2. Of course, this only holds if both runs of
α actually terminate. If one run does not terminate, its poststate is undefined and
therefore agree(R2,s2,s′2) is undefined. Therefore this notion of noninterference is
termination insensitive.

In the simplest case, Ri expresses explicit declarations of program variables
and fields which are considered low. In more sophisticated scenarios the Ri may
be inferred from a multi-level security lattice (see for instance [Scheben, 2014]).
Usually we will have R1 = R2. But, there are other cases: to declassify an expression
edecl , for instance, one would choose R1 = R2;edecl .

As seen in Chapter 9, method contracts are useful in order to provide abstract
knowledge about parts of a program, for example the states in which a method may
be called. We would like to have a notion of noninterference which also respects
knowledge about these states. In contract-based specifications, this condition is given
by the precondition. The following definition of conditional noninterference allows
us to use this knowledge.

Definition 13.3 (Conditional Noninterference). Let α be a program, R1, R2 obser-
vation expressions and φ a formula.

Program α allows information to flow only from R1 to R2 under condition φ ,
denoted by flow(α,R1,R2,φ), if and only if for all states s1,s′1,s2,s′2 such that
evals1(α) = {s2} and evals′1(α) = {s′2} we have

if s1 � φ , s′1 � φ and agree(R1,s1,s′1) then agree(R2,s2,s′2).

458 13 Information Flow Analysis

The idea behind this generalization is that in many cases a method in isolation
has secure information flow only in case a precondition holds, for instance, if a
parameter is not null. In such a situation, it is necessary to use the precondition
within the information flow proof and show in a different proof that the precondition
holds whenever the method is called. For details about modular specification and
verification, please refer to Chapter 9.

Conditional noninterference enjoys the following compositionality property.

Lemma 13.4 (Compositionality of flow). Let α1, α2 be programs, and α1;α2 their
sequential composition. If flow(α1,R1,R2,φ1), flow(α2,R2,R3,φ2) and s1 � (φ1→
〈α1〉φ2) = true hold for all states s1, s2, s3 such that α1 started in s1 and terminates
in s2, and α2 started in s2 and terminates in s3, then flow(α1;α2,R1,R3,φ1) holds.

Now that conditional noninterference has been defined formally, we show how
it can be specified on program level with the help of JML. Finally, we present how
noninterference can be verified using the KeY System.

13.4 Specifying Information Flow in JML

In Chapter 7 JML was introduced as a specification language, mainly for functional
properties of Java programs. In this section, we want to show how JML can be
extended to allow the specification of noninterference properties for Java programs.
The presentation follows [Scheben and Schmitt, 2012] and [Scheben, 2014].

JML is built according to the design by contract (DBC) concept. To achieve a nat-
ural integration of information flow and functional specifications, the JML extension
uses DBC for the specification of noninterference as well. Conditional noninterfe-
rence with declassification is specified by information flow method contracts. Similar
to functional method contracts, which specify the functional behavior of methods,
information flow method contracts specify the information flow behavior of methods.

Information flow contracts augment functional JML contracts by determines
clauses. Each determines clause defines a restriction on the information flow.
The clause defines two lists of JML expressions, one expressing the observation
expression for the poststate, the other list expressing the observation expression for
the prestate. The determines clause
//@ determines l \by l;
void m();

specifies for the method m() that attackers may observe the value of the program
variable l before and after the execution of m().

It is possible to define different observation expressions for the pre- and the
poststate of a method:
//@ determines l \by l, x;
void m();

13.4. Specifying Information Flow in JML 459

specifies that the observation expression in the prestate of method m() contains
the locations l and x, while in the poststate, it contains l only. This is useful for
declassification as the method sum() in Figure 13.1 illustrates. The method calculates

class C {
private int[] values;

/*@ determines \result \by
@ (\sum int i; 0 <= i && i < values.length; values[i]);
@*/

int sum() {
int s = 0;
for (int value : values) {
s += value;

}
return s;

}
}

Figure 13.1 Program declassifying the sum of an array

the sum of the entries of the array values and returns the result. Accordingly, the
specification allows a declassification of the sum to the result.

A contract may contain several determines clauses. This is useful if a pro-
gram run is observed by different parties with different abilities. For instance,
there might be a party which may observe the unrestricted information stored in
the field unrestricted and another party which may observe the information in
unrestricted as well as the restricted information stored in the field restricted.
Both parties may not access the information in secret1 and secret2. This situation
can be specified naturally with the help of two determines clauses as shown in
Figure 13.2.

class C {
private int unrestricted, restricted, secret1;

/*@ determines unrestricted \by unrestricted;
@ determines unrestricted, restricted \by unrestricted,
@ restricted;
@*/

void m(int secret2) {
unrestricted++;
restricted = restricted + unrestricted;
secret1 = secret1 * (restricted + secret2);

}
}

Figure 13.2 Program with multiple information flow contracts

460 13 Information Flow Analysis

The semantics of the determines clauses is defined with the help of conditional
noninterference (see Definition 13.3): Let Rpost be defined as the concatenation
of the expressions behind the determines keyword. Let Rpre be defined as the
concatenation of the expressions behind the \by keyword and the expressions behind
an optional \declassifies keyword. Let further φpre be the precondition of the
contract defined as usual by requires-clauses and class invariants. A method m
fulfills a determines clause if and only if flow(m,Rpre,Rpost,φpre) is valid.

Similar to method contracts, we extend JML loop invariants by determines
clauses. We omit a detailed presentation for loop invariants here, the interested reader
may refer to [Scheben, 2014] for a complete discussion.

13.5 Information Flow Verification with KeY

We have a formalization of information flow and a specification method as an
extension of JML. In this section we explain how these two parts can be translated into
JavaDL, providing us with a proof obligation which can naturally be verified in KeY.
Since performing proofs in KeY efficiently depends, among others, on the number
of branches a proof has, we also introduce an optimization which neither limits
expressiveness nor precision, but reduces the number of branches an information
flow proof consists of.

When considering information flow in object-oriented languages like Java, some
special cases arise when it comes to object creation. KeY makes the assumption that
the identity of an object created by calling a constructor is nondeterministic. This
means, for one, it is not guaranteed that two runs of a program with the same initial
heap generate the same object. And second, it is not possible to judge the order of
creation for two new objects. We do not discuss this special issue here, but refer
the interested reader to the related work [Beckert et al., 2014, Scheben, 2014]. The
implementation in the KeY system however does consider this.

First, we define the JavaDL equivalent for the semantic agree predicate.

Definition 13.5 (Observation Equivalence). The formulas x̄1, x̄2 and the heaps h1,
h2 are observationally equivalent with respect to observation expression R, written
obsEq(x̄1,h1, x̄2,h2,R), iff {heap := h1 || x̄ := x̄1}R

.= {heap := h2 || x̄ := x̄2}R
evaluates to true.

Observational equivalence and the agree predicate are indeed equivalent.

Lemma 13.6. Let s1, s2 be two states described by the formulas x̄1, h1 and x̄2, h2,
respectively. Let R be an observation expression.

The formula obsEq(x̄1,h1, x̄2,h2,R) is valid if and only if agree(R,s1,s2) holds.

Now we are ready to formulate conditional noninterference (Definition 13.3) in
JavaDL.

Lemma 13.7. Let α be a program with local variables x̄ of types X̄ , let R1, R2 be
observation expressions and let φ be a formula.

13.5. Information Flow Verification with KeY 461

The formula

Ψα,x̄,R1,R2,φ ≡ ∀Heaph1,h′1,h2,h′2 ∀X̄ x̄1, x̄′1, x̄2, x̄′2
{heap := h1 || x̄ := x̄1}(φ ∧〈α〉(heap

.= h2∧ x̄
.= x̄2))∧

{heap := h′1 || x̄ := x̄′1}(φ ∧〈α〉(heap
.= h′2∧ x̄

.= x̄′2))
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
is valid if and only if flow(α,R1,R2,φ) holds.

The formula shown in Lemma 13.7 is a direct formalization of information flow
in JavaDL. This direct formalization expresses the intended property very precisely,
however, containing two modalities and requiring two symbolic program executions
comes at a price during verification. In the following we show some inefficiencies
of this approach and introduce some optimization of the proof process which takes
these inefficiencies into consideration and allows proving noninterference for larger
programs.

13.5.1 Efficient Double Symbolic Execution

We use the example in Figure 13.3 to show several points for improvement when
performing noninterference proofs.

The first point becomes obvious, when we have a closer look at the symbolic
execution of the program. In the proof obligation as defined in Lemma 13.7 the
program, which is executed first only differs in the name of the heap variable in the
update and some renaming of parameters and return values from the second execution.
Nevertheless, all rules necessary for symbolic execution are applied twice, once for
each modality containing the program. Especially for larger programs and more
complicated programs, this additional effort can become relevant. We can reduce
the costs of calculating the weakest precondition by performing this calculation only
once and then reuse the result for the noninterference proof.

Second, the poststate of one program execution is compared to all possible post-
states of the second program execution. If the program has n possible execution
paths, the symbolic execution yields n branches. Combining both program executions

/*@ public normal_behavior
@ determines l \by l;
@*/

public void m() {
l = l+h;
if (h!=0) {l = l-h;}
if (l>0) {l--;}

}

Figure 13.3 Example of a secure program

462 13 Information Flow Analysis

Figure 13.4 Sketch of the control flow graphs of (a) the original program and (b) the program with
double symbolic execution

results in O(n2) branches for which the observation expressions have to be compared.
In contrast, specialized information flow calculi, which consider the program only
once, have to check only the outcome of the n paths through the program.

Let again α be the program as shown in Figure 13.3. The control flow graph of α

is sketched in Figure 13.4(a). After combining both executions we have to perform a
proof on the proof tree according to Figure 13.4(b).

In the following sections, we introduce optimizations, first regarding the calcula-
tion of the weakest precondition. This is followed by a discussion how the number of
comparisons can be reduced. Finally, we show how block contracts can be used to fur-
ther increase scalability and present how these optimizations can be used in the KeY
system. The following argumentations are based on Dynamic Logic. Readers which
are more familiar with weakest precondition calculi might prefer the presentation in
[Scheben and Schmitt, 2014].

13.5.1.1 Reducing the Cost for the Weakest Precondition Calculation

First, we show that it is possible to prove noninterference in our setting with the help
of only one symbolic execution of α .

Lemma 13.8. Let heap and x̄ be the program variables of α and let h1, x̄1, h2, x̄2,
h′1, x̄′1, h′2 and x̄′2 be variables of appropriate type.

There exist formulas ψ and ψ ′ without modalities, which replace {heap :=
h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) and {heap := h′1 || x̄ := x̄′1}〈α〉(heap

.=
h′2∧ x̄

.= x̄′2) in Lemma 13.7.
The formulas ψ and ψ ′ can be calculated with a single symbolic execution of α .

13.5. Information Flow Verification with KeY 463

(a) (b) (c)

Figure 13.5 Reducing the verification overhead by compositional reasoning

Proof. LetK be a Kripke structure, s a state and β a variable assignment. The main
step is finding a formula ψ—by symbolic execution of α—such that (K ,s,β) �
{heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) implies (Kext,s,β) � ψ for an

extensionKext ofK by new Skolem symbols. (We need to consider extensions of
K , because the symbolic execution of α might introduce new Skolem symbols.)
Note that the application of the JavaDL calculus—which contains all necessary rules
for the symbolic execution of α—on {heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2∧ x̄
.=

x̄2) does not deliver the desired implication: it approximates {heap := h1 || x̄ :=
x̄1}〈α〉(heap

.= h2∧ x̄
.= x̄2) in the wrong direction. We have to take an indirection.

Intuitively, the formula {heap := h1 || x̄ := x̄1}〈α〉(heap
.= h2∧ x̄

.= x̄2) is valid
in (K ,s,β) if α started in state s1 : heap 7→ hβ

1 , x̄ 7→ x̄β

1 terminates in state s2 :
heap 7→ hβ

2 , x̄ 7→ x̄β

2 . We calculate a formula ψnot which is at most true if α started
in s1 : heap 7→ hβ

1 , x̄ 7→ x̄β

1 does not terminate in s2 : heap 7→ hβ

2 , x̄ 7→ x̄β

2 . Then ψ =
¬ψnot is at least true if α started in s1 terminates in s2. We obtain ψnot by symbolic
execution of {heap := h1 || x̄ := x̄1}〈α〉(heap 6

.= h2 ∨ x̄ 6
.= x̄2): application of the

JavaDL calculus on the sequent =⇒{heap := h1 || x̄ := x̄1}〈α〉(heap 6
.= h2∨ x̄ 6

.= x̄2)
results in a set of sequents Fseq, where each fseq ∈ Fseq does not contain modalities
any more. Let F be the set of meaning formulas for Fseq. We set ψnot =

∧
f∈F f .

Given ψ , we observe that we obtain a formula ψ ′ such that (K ,s,β) � {heap :=
h′1 || x̄ := x̄′1}〈α〉(heap

.= h′2∧ x̄
.= x̄′2) implies (K ,s,β) � ψ ′ by a simple renaming

of the variables h1, x̄1, h2, x̄2 to h′1, x̄′1, h′2, x̄′2 and by the renaming of the new Skolem
symbols c̄ to new primed Skolem symbols c̄′. The thus obtained formulas ψ and
ψ ′ can be used to replace {heap := h1 || x̄ := x̄1}〈α〉(heap

.= h2 ∧ x̄
.= x̄2) and

{heap := h′1 || x̄ := x̄′1}〈α〉(heap
.= h′2∧ x̄

.= x̄′2) in Lemma 13.7. Their calculation
involves only one symbolic execution.

The full correctness proof of the approach can by found in [Scheben, 2014].

13.5.1.2 Reducing the Number of Comparisons

The second problem, the quadratic growth of the number of necessary comparisons in
the number of program paths, can be tackled with the help of compositional reasoning
if the structure of the program allows for it. Reconsider the initial example:

464 13 Information Flow Analysis

l = l + h;
if (h != 0) { l = l - h; }
if (l > 0) { l--; }

As discussed above, the first part above the dashed line, and the second part below
the line, are noninterferent on their own. Therefore, by Lemma 13.4 on composition-
ality of flow, the complete program is noninterferent. As illustrated in Figure 13.5,
checking the two parts independently from each other results in less verification
effort: When splitting the control flow graph of the entire program along the dashed
line (Figure 13.5(a)), each subprogram has only two paths as shown in (b). When
symbolically executing both of the subprograms twice, we gain four paths each (c
and d).

Thus, altogether only eight comparisons of post states have to be made to prove
noninterference of the complete program. Checking the complete program at once
would require (about) 12 comparisons.2 We summarize the above observation in the
following lemma.

Lemma 13.9. Let α be a program with m branching statements.
If α can be divided into m noninterferent blocks with at most one branching

statement per block, then noninterference of α can be shown with the help of double
symbolic execution with 3m comparisons.

Since a program with m branching statements has at least n = m + 1 paths,
Lemma 13.9 shows that the verification effort of double symbolic execution ap-
proaches can be reduced from O(n2) to O(n) comparisons, if the program under
consideration is compositional with respect to information flow. In the best case, a
program with m branching statements has Ω(2m) paths. In this case, the verifica-
tion effort reduces to O(log(n)) comparisons, if the program under consideration is
compositional with respect to information flow.

Unfortunately, the separation is not always as nice as in the example above.
Consider for instance the following program:
if (l > 0) { if (l % 2 == 1) { l--; } }

The program can be divided into blocks
b1 = if (l % 2 == 1) { l--; }

and
b2 = if (l > 0) { b1 }.
To conclude that b2 is noninterferent, it is necessary to use the fact that b1 is nonin-
terferent in the proof of b2. Unfortunately, the double execution approach does not
easily lend itself to such compositional verification. In the next section, the problem
of compositional reasoning will be discussed.

2 By symmetry, the number of comparisons can be reduced further in both cases: in the first case
2 · (2+1) = 6 comparisons are sufficient, in the second case 4+3+2+1 = 10 comparisons are
enough.

13.5. Information Flow Verification with KeY 465

13.5.1.3 Compositional Double Symbolic Execution

If a program α calls a block b, one (sometimes) does not want to look at its code but
rather use a software contract for b, a contract that had previously been established
by looking only at the code of b. This kind of compositionality can also be applied
to methods instead of blocks and is essential for the scalability of all deductive
software verification approaches. With double symbolic execution, the block b is not
only called in the first execution of α , but also in the second execution. This poses
the technical problem of somehow synchronizing the first and second call of b for
contract application.

In this paragraph, we show how software contracts can be applied in proofs using
double symbolic execution. An important feature of our approach is the seamless
integration of information flow and functional reasoning allowing us to take advan-
tage of the precision of functional contracts also for information flow contracts, if
necessary.

In the context of functional verification, compositionality is achieved through
method contracts. We extend this approach to the verification of information flow
properties. We define information flow contracts as a tuple of a precondition and
observation expressions for the pre- and the poststate.

Definition 13.10 (Information Flow Contract). An information flow contract (in
short: flow contract) to a block (or method) b with local variables x̄ := (x1, . . . ,xn) of
types Ā := (A1, . . . ,An) is a tuple Cb,x̄::Ā = (pre,R1,R2), where (1) pre is a formula
which represents a precondition and (2) R1, R2 are observation expressions which
represent the low expressions in the pre- and poststate.

A flow contract Cb,x̄::Ā = (pre,R1,R2) is valid if and only if the predicate
flow(b,R1,R2,pre) is valid.

The difficulty in the application of flow contracts arises from the fact that flow
contracts refer to two invocations of a block b in different contexts.

Example 13.11. Consider

Java
if (l>0) { l++; if (l%2 == 1) {l--;} }

Java

again, with blocks b1 = if (l%2 == 1) {l--;} and b2 = if (l>0) {l++; b1}.
Let Cb1,x̄::Ā = Cb2,x̄::Ā = (true,l,l) be flow contracts for b1 and b2. To prove Cb2,x̄::Ā
by double symbolic execution,

l .= l′→ (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b1}〉l
.= l′)

has to be shown. (For presentation purposes, we ignore the heap in this example.)
Symbolic execution of the program, as far as possible, yields:

466 13 Information Flow Analysis

l .= l′, l > 0
=⇒{l := l+1}

〈b1;
if(l′>0){
l′++;
b1

}
〉l .= l′

(13.1)

*apply-
Equality +
close l .= l′

l′ > 0
=⇒ l > 0,
{l′ := l′+1}
〈b′1〉l

.= l′

*
close

l .= l′

=⇒ l > 0,
l′ > 0,
l .= l′

... symbolic execution

=⇒ l .= l′→ (〈if (l>0) {l++; b1}; if (l′>0) {l′++; b′1}〉l
.= l′)

To close branch (13.1), Cb1,x̄::Ā needs to be used—but it is not obvious how this
can be done, because Cb1,x̄::Ā refers to the invocation of b1 in the first and the second
execution at the same time. A similar problem occurs if Cb2,x̄::Ā is proved with the
help of the optimizations discussed above.

The main idea of the solution is a coordinated delay of the application of flow
contracts. The solution is compatible with the optimizations discussed above and
additionally allows the combination of flow contracts with functional contracts.

Let b be a block with the functional contractFb,x̄::Ā = (pre,post,Mod) where (1)
the formula pre represents the precondition; (2) the formula post represents the post-
condition; and (3) the term Mod represents the assignable clause for b. In functional
verification, block contracts are applied by the rule useBlockContract, introduced
by Wacker [2012]. The rule is an adaptation of the rule useMethodContract from
Section 9.4.3 for blocks. For presentation purposes, we consider a simplified version
of the rule only:

useBlockContract

pre Γ =⇒{u}pre,∆
post Γ =⇒{u;uanon}(post→ [π ω]φ),∆

Γ =⇒{u}[π b; ω]φ ,∆

Here, u is an arbitrary update; uanon = (heap := anon(heap,Mod,h), x̄ := x̄′) is an
anonymizing update setting the locations of Mod (which might be modified by b)
and the local variables which might be modified to unknown values; h of type Heap
and x̄′ of appropriate types are fresh symbols. We require pre to entail equations
heappre

.= heap and x̄pre
.= x̄ which store the values of the program variables of the

initial state in program variables heappre and x̄pre such that the initial values can be
referred to in the postcondition. Additionally, we require that pre and post entail a
formula which expresses that the heap is well-formed.

The plan is to use an extended version of the rule useBlockContract during
symbolic execution—in many cases for the trivial functional contract Fb,x̄::Ā =
(true, true,allLocs)—which adds some extra information to the sequent allowing a
delayed application of information flow contracts. The extra information is encap-
sulated in a new two-state predicate Cb(x̄,h, x̄′,h′) with the intended meaning that b

13.5. Information Flow Verification with KeY 467

started in state s1 : heap 7→ h, x̄ 7→ x̄ and terminates in state s2 : heap 7→ h′, x̄ 7→ x̄′.
This predicate can be integrated into the rule useBlockContract as follows:

useBlockContract2

pre Γ =⇒{u}pre,∆
post Γ ,{u}Cb(x̄,heap, x̄′,h′),{u;uanon}(heap

.= h′∧ x̄ .= x̄′)
=⇒{u;uanon}(post→ [π ω]φ),∆

Γ =⇒{u}[π b; ω]φ ,∆

where h′ and x̄′ are fresh function symbols. By [Scheben, 2014], useBlockContract2
is sound. The introduction of Cb(x̄,h, x̄′,h′) to the post branch allows us to store
the initial and the final state of b for a delayed application of information flow
contracts: the two predicates Cb(x̄1,h1, x̄′1,h

′
1) and Cb(x̄2,h2, x̄′2,h

′
2) appearing on the

antecedent of a sequent can be approximated by an instantiation of a flow contract
Cb,x̄::Ā = (pre,R1,R2) for b by

{heap := h1 || x̄ := x̄1}pre∧{heap := h2 || x̄ := x̄2}pre
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
.

This approximation is applied by the rule useFlowContract:

useFlowContract

Γ ,Cb(x̄1,h1, x̄′1,h
′
1),Cb(x̄2,h2, x̄′2,h

′
2),

{heap := h1 || x̄ := x̄1}pre∧{heap := h2 || x̄ := x̄2}pre
→
(
obsEq(x̄1,h1, x̄′1,h

′
1,R1)→ obsEq(x̄2,h2, x̄′2,h

′
2,R2)

)
=⇒ ∆

Γ ,Cb(x̄1,h1, x̄′1,h
′
1),Cb(x̄2,h2, x̄′2,h

′
2) =⇒ ∆

Formally, a flow contract Cb(x̄,h, x̄′,h′) is valid in a Kripke structure K and a
state s if and only if

{x̄ := x̄ || heap := h}〈b〉(heap .= h′∧ x̄ .= x̄′)

is valid in (K ,s). Note that the usage of the rule useBlockContract2 during symbolic
execution allows the application of arbitrary functional contracts in addition to flow
contracts. This allows for taking advantage of the precision of functional contracts
within information flow proofs, if necessary. The default, however, is using the trivial
functional contractFb,x̄::Ā = (true, true,allLocs) as in the presented example. The
soundness proof for the above approach can be found in [Scheben, 2014].

Example 13.12. LetFb1,x̄::Ā = (true, true,allLocs) be the trivial functional contract
for b1. Applied on the example from above, (13.1) can be simplified as shown
in Figure 13.6. For presentation purposes, all heap symbols have been removed
from the example. Therefore, Cb1 takes only two parameters and obsEq only three
parameters. Adding the heap results in essentially the same proof but with more
complex formulas.

The proof uses the following abbreviations of rule names:

468 13 Information Flow Analysis

*
close

l .= l′, l > 0, Cb1 (l+1, `), `anon
.= `,

l′ > 0, Cb1 (l
′+1, `′), `′anon

.= `′,
`anon

.= `′anon
=⇒ `anon

.= `′anoneq +
simp l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′,

l+1 .= l′+1→ `
.= `′

=⇒ `anon
.= `′anon

obsEq
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′,

obsEq(l+1,l′+1,l .= l′)
→ obsEq(`,`′,l .= l′)

=⇒ `anon
.= `′anon

uFC
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0, Cb1 (l

′+1, `′), `′anon
.= `′

=⇒ `anon
.= `′anon

simp
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0,
{l := `anon}{l′ := l′+1}Cb1 (l

′, `′),
{l := `anon}{l′ := l′+1}{l := `′anon}l

.= `′

=⇒{l := `anon}{l′ := l′+1}{l := `′anon}l
.= l′

uBC2
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0

=⇒{l := `anon}{l′ := l′+1}〈b′1〉l
.= l′

++
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
l′ > 0

=⇒{l := `anon}〈l′++; b′1〉l
.= l′

simp
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `,
{l := `anon}l′ > 0

=⇒{l := `anon}〈l′++; b′1〉l
.= l′

*
close

l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒ l > 0,

`anon
.= l′

eq
l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒ l′ > 0,

`anon
.= l′

simp
l .= l′,
l > 0,
Cb1 (l+1, `),
`anon

.= `
=⇒{l := `anon}

l′ > 0,
{l := `anon}
l .= l′

if
l .= l′, l > 0, Cb1 (l+1, `), `anon

.= `
=⇒{l := `anon}〈if (l′>0) {l′++; b′1}〉l

.= l′
simp

l .= l′, l > 0, {l := l+1}Cb1 (l, `), {l := l+1}{l := `anon}l
.= `

=⇒{l := l+1}{l := `anon}〈if (l′>0) {l′++; b′1}〉l
.= l′

uBC2
l .= l′, l > 0

=⇒{l := l+1}〈b1; if (l′>0) {l′++; b′1}〉l
.= l′

Figure 13.6 Proof tree of Example 13.12.

13.5. Information Flow Verification with KeY 469

Abbreviation Full name Abbreviation Full name
uBC2 useBlockContract2 eq applyEquality
uFC useFlowContract if conditional
obsEq replaces obsEq(·) by its defi-

nition (Lemma 13.6)
simp combination of all update

simplification rules
++ plusPlus close close
eq+ simp repeated application of the

rules eq and simp

Firstly, the symbolic execution is continued by the rule useBlockContract2 and
(after several simplifications) by the rule conditional. The conditional rule splits
the proof into two branches. The right branch, which represents the case that the
condition l′ > 0 evaluates to false, can be closed after further simplifications and the
application of equalities. On the other branch, the remaining program is executed
symbolically by the rule plusPlus and another application of useBlockContract2,
now on the block b′1. After some further simplifications, we are in the position
to apply the flow contract for b1: the antecedent of the sequent contains the two
predicates Cb1(l+1, `) and Cb1(l

′+1, `′) on which the rule useFlowContract can
be applied. With the help of the guarantees from the flow contract for b1, the proof
closes after some final simplifications.

13.5.2 Using Efficient Double Symbolic Execution in KeY

In this section, we show how efficient double execution proofs can be performed in
the KeY system. Readers not familiar with the KeY system may find it helpful to read
Chapter 15 on using the KeY prover first.

Efficient double execution is implemented in KeY with the help of strategy macros.
The simplest way to use the optimizations is by application of the macro Full Informa-
tion Flow Auto Pilot. It can be selected by highlighting an arbitrary term, left-clicking,
choosing the menu item Strategy macros and then Full Information Flow Auto Pilot.
KeY should be able to prove most of the information flow examples delivered with
KeY (under examples→ firstTouch→ InformationFlow) automatically this way.

On complicated examples, the auto pilot might fail. In this case, we can gain better
control of the proof by application of the following steps.

As discussed in Section 13.5.1, double execution considers the same program
twice, but it suffices to calculate only one weakest precondition. Therefore we start a
side-proof for the weakest precondition calculation. This is done as follows:

1. We highlight an arbitrary term and left-click. We then choose the menu item
Strategy macros and in the upcoming menu the item Auxiliary Computation Auto
Pilot. A side proof opens and KeY tries to automatically calculate the weakest
precondition.
KeY succeeded in the calculation if the open goals of the side proof do not
contain modalities any more. If a goal still contains a modality, then one can
either simply try to increase the number of auto-mode steps or one can remove
the modalities by interactive steps.

470 13 Information Flow Analysis

If one of the open goals contains an information flow proof obligation from a
block contract or from an information flow loop invariant, then this goal has to
be closed by going through steps (1) to (3) again before continuing with step (2).

2. We choose an open goal, highlight an arbitrary term in the sequent and left-
click. We choose the menu item Strategy macros and in the upcoming menu
the item Finish auxiliary computation. The side-proof closes and a new taclet
(rule) is introduced to the main proof. The new taclet is able to replace the
double execution term (the shortest term which contains both modalities) by two
instantiations of the calculated formula.

3. On simple examples, it suffices to activate the auto mode by choosing the menu
item Continue from the menu Proof. On more complex examples it is helpful
to run the strategy macro self-composition state expansion with inf flow contracts
first. The latter macro applies the new rule and afterwards tries to systematically
apply information flow contracts.

The macro Full Information Flow Auto Pilot applies steps (1)–(3) automatically.

13.6 Summary and Conclusion

We have presented how information flow properties can be specified in JML and
that KeY can analyze whether Java programs satisfy the specification. The approach
implemented in the KeY prover allows for a very precise specification of information
flows which is important especially in a real-world object-oriented programming
language. Information flow is represented in JavaDL directly by the semantic meaning
of the property: We directly compare two executions of a program only differing
in the secret input. While this allows for precise reasoning with KeY, the pairwise
comparison of all execution paths leads to quadratic growth of proof obligations.
Therefore, we also show how the proof process can be optimized such that verifying
real-world programs becomes feasible.

The approach as presented here was applied for the verification of a simplified
e-voting case study. Experiences of this work can be found in Chapter 18.

Another approach for precise information flow analysis has been developed
by Klebanov [2014]. The approach is based on symbolic execution in KeY, combined
with an external quantifier elimination procedure and a model counting procedure.
The method and tool chain not only identify information leaks in programs but
quantify them using a number of information-theoretical metrics.

Very popular enforcement methods for information flow properties in the litera-
ture are type systems. These approaches are usually less precise than the approach
presented here, however only a single execution of a program has to be considered
during analysis. So-called dependent types allow to further improve precision of type-
based analysis. Here, dependencies between variables and partial and aggregated
information is tracked during symbolic execution. Using theorem provers for the
analysis of programs with dependent types, it is possible to track the semantics of
information during a program run. An extension for KeY supporting a type-based

13.6. Summary and Conclusion 471

reasoning of information flow in programs can be found in [Bubel et al., 2009, van
Delft and Bubel, 2015].

	13 Information Flow Analysis
	13.1 Introduction
	13.2 Specification and the Attacker Model
	13.3 Formal Definition of Secure Information Flow
	13.4 Specifying Information Flow in JML
	13.5 Information Flow Verification with KeY
	13.5.1 Efficient Double Symbolic Execution
	13.5.2 Using Efficient Double Symbolic Execution in KeY

	13.6 Summary and Conclusion

